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Abstract

To understand the fluctuating world, we introduce probabilistic assumptions on microscopic
systems and study their statistical properties. It is known that for macroscopic systems in
equilibrium and in the relaxation to equilibrium, the principle of equal a priori probabilities
is useful to understand their equilibrium fluctuations and irreversible relaxation behavior.
In addition, a statistical thermodynamical theory, called stochastic thermodynamics, for
mesoscopic systems that are weakly coupled to equilibrium environments has been developed
over the past decades. In recent years, it was found that a game-theoretic approach to
stochastic thermodynamics based on martingale theory sheds light on novel properties in
non-equilibrium systems including the stopping times and extreme value statistics. In this
thesis, inspired by thesis works, we investigate problems in statistical thermodynamics from
the viewpoint of martingale theory.

Martingale theory is useful for studying two properties. First, as suggested by previous
works, martingale theory provides a useful tool to examine stopping time statistics through
several mathematical properties, e.g., the information inequality at stopping times. In Chap-
ter 2, by using this property, we derive a fundamental bound on first passage times for
accumulated currents in Markov jump processes. Second, the martingale processes are used
to characterize the randomness of the microscopic realizations through the condition that
we cannot make much money in a fair betting game. In Chapter 3, via a simple dynamical
model, we argue that random initial microstates characterized by martingale processes ex-
hibit irreversible behavior macroscopically. Moreover, in Chapter 4, we consider a repeated
work extraction from a small heat engine and find that the accumulation of the extracted
work is a martingale process. By using martingale theory and information-theoretic tech-
niques, we show that the second law of thermodynamics in this situation leads to the Gibbs
distribution.
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Chapter 1

Introduction

1.1 Probability in Physics

1.1.1 Statistical Mechanics for Large Systems

One of the most important achievements of probability theory in physics is statistical mechan-
ics for macroscopic equilibrium systems. The purpose of equilibrium statistical mechanics
is to connect the microscopic dynamical properties of the large system with its macroscopic
behavior in equilibrium through probabilistic considerations. A fundamental assumption of
equilibrium statistical mechanics is the principle of equal a priori probabilities: Consider a
system with a microscopic Hamiltonian Hy, where the subscript N denotes the system size.
The statistical properties of the equilibrium state specified by its energy E are then described
by the microcanonical measure,

png(dw) = (F — Hy(w))dw, (1.1.1)

N;E
where w is a microscopic state of the system and Wy.p = [ 6(E — Hy(w))dw is the normal-
ization factor. This probabilistic assumption allows us to obtain two important information
on the equilibrium state:

e First, by considering the consistency of the microcanonical form (1.1.1) with the vari-
ational principle in thermodynamics, we can identify the logarithm of the normaliza-
tion factor In Wy.p with the entropy function up to the additive constant: Sy(E) =
kg In Wi g+ (const.). Since the entropy function completely determines the most prob-
able behavior of the equilibrium state, we can obtain all the typical macroscopic proper-
ties from the microscopic Hamiltonian through this relationship, called the Boltzmann
formula.

e Second, the probability distribution (1.1.1) provides useful expressions for macroscopic
fluctuations. As an example, we consider an isolated system with the total energy Fi.
We suppose that this system is separated into the left-hand side and the right-hand side

11



12 CHAPTER 1. INTRODUCTION

by a diathermal wall and the position of the wall is fixed. By applying the principle of
equal a priori probabilities to this composite system, we find that the probability that
the energy of the left-hand side E deviates from the equilibrium value Ne* tends to
zero in the thermodynamic limit: For any € > 0,

I E_olse) 2o 1.1.2
dim pvig | |7 — €| 2€) =0 (1.1.2)

Here, the equilibrium value e* is determined by the variational formula: e* = argmax, s(e)
for s(e) = limy 00 (SN (F) + Sn(Eiot — E))/N. The law of large numbers (1.1.2) guar-
antees the reproducibility of thermodynamic observations, i.e., the outcomes in the
instantaneous measurements of the energy for different samples give the same result
with high probability. Moreover, we can obtain more detailed information on the de-
viation probability from the principle of equal a priori probabilities. The deviation
probability decays exponentially in the system size N and the decay rate is expressed
in terms of the entropy function:

LN Eyoy (% s e) =< exp [Nkg'(s(e) — s(e”))] . (1.1.3)

Thus, the entropy function characterizes instantaneous fluctuations for macroscopic
observables as well as the most probable values. The expression (1.1.3) was found by
Einstein, and it is regarded as the large deviation principle for static fluctuations of
equilibrium states.

As well as equilibrium states, the idea of the principle of equal a priori probabilities
is useful when we consider the irreversibility paradox. Let us imagine a macroscopic sim-
ple fluid in an adiabatic container. According to the zeroth law of thermodynamics, any
thermodynamically isolated macroscopic system reaches a macroscopically stationary state,
called the equilibrium state, after a sufficiently long time. In this relaxation process, the
spatiotemporal change of coarse-grained density fields of conserved quantities is believed to
be described universally by deterministic and irreversible hydrodynamic equations. This
asymmetry in the direction of time is referred to as macroscopic irreversibility. In contrast,
the macroscopic system microscopically consists of many interacting molecules. If the system
is microscopically isolated, the time evolution of the constituent molecules is described by
deterministic and reversible equations such as the classical Hamiltonian equations or quan-
tum Schrodinger equations. This apparent inconsistency between macroscopic irreversibility
and microscopic reversibility is called the irreversibility paradox. To resolve this paradox, we
have to formulate the macroscopic irreversible laws within microscopic reversible dynamical
systems [Leb93, Brio6).

A crucial idea is again the principle of equal a priori probabilities and the associated law of
large numbers. Suppose that initial microscopic states are sampled from the microcanonical
measure corresponding to a given non-equilibrium macroscopic state. The validity of the
deterministic macroscopic law is then formulated as a result of the law of large numbers
[LPS88], i.e., there is a set of microscopic states satisfying the macroscopic equations with



1.1. PROBABILITY IN PHYSICS 13

probability approaching one in a macroscopic limit. This is why the hydrodynamic equations
describe even a single experimental result with high accuracy. Although to prove the law of
large numbers for a given microscopic dynamics and initial probability measure is not an easy
task in general, the above scenario is believed to be valid for a wide class of models and it
is proved rigorously for specific models. Thus, the probabilistic assumption for microscopic
states and the appropriate choice of the measure describing the macroscopic system play
essential roles in statistical mechanics.

1.1.2 Thermodynamics for Small Systems

In contrast to macroscopic systems, small systems such as biomolecular motors are strongly
affected by thermal fluctuations. Therefore, whether or not the thermodynamic structure
can be found in small systems is a non-trivial problem. Nevertheless, a thermodynamic
theory for mesoscopic systems that are weakly coupled to equilibrium environments has been
developed over the past decades. For example, we can decompose the fluctuating energy
transfer into two contributions, work and heat, similarly to macroscopic thermodynamics, and
moreover we can verify the second law of thermodynamics for averaged quantities under this
decomposition. Thanks to this framework, we can discuss the energy balance at nanoscales
and a thermodynamic efficiency for molecular motors. This theory is now called stochastic
thermodynamics.

A remarkable achievement in this field is the discovery of the fluctuation relations gov-
erning the fluctuation of the entropy production in generic stochastic systems. While the
second law of thermodynamics claims only the positivity of the averaged entropy production,
the fluctuation relation reveals a symmetry in fluctuations of the entropy production. The
fluctuation relations can be applied to systems far from equilibrium and present a unifying
picture of existing results in non-equilibrium statistical mechanics such as the second law of
thermodynamics and the linear response theory. Moreover, the theoretical ideas and tools
found in the course of these developments provided many interesting results such as steady
state thermodynamics for small systems and information thermodynamic.

We must emphasize that the theory of stochastic thermodynamics has evolved with tech-
nological advances that allow us to observe and control micro- or nanoscale fluctuations.
While experimental techniques that can access nanoscale fluctuations validate stochastic
thermodynamics, the theoretical side provides novel methods to extract useful information
on thermodynamic properties of small systems. For example, Jarzynski and Crooks relations
can be used to estimate the free energy difference of a single molecule from nonequilib-
rium measurements of work fluctuations [LDST02, CRJT05]. Another application of stochas-
tic thermodynamics is the experimental estimation of heat dissipation. While the energy
dissipation into the heat bath is difficult to measure directly in experiments, the Harada-
Sasa equality [HS05, HS06], which connects the heat dissipation with the violation of the
fluctuation-dissipation relation, enables us to estimate it from measurements of the response
and autocorrelation function [ATM18].

Finally, we mention a novel inequality that has been intensively studied recently and
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called the thermodynamic uncertainty relation (TUR). A typical form of TUR is as follows:

(E[A)*
Var[Jy]

< E[X4, (1.1.4)

where J; and YJ; are a time-integrated current and the entropy production up to the time
t, respectively. As well as the fluctuation relations, this type of inequality is universally
valid for various non-equilibrium stochastic systems under various situations, particularly,
Markov jump processes and overdamped Langevin systems. This inequality is important in
two respects. First, this inequality gives a tighter lower bound on the entropy production
than the second law of thermodynamics if EJ; # 0. Second, this inequality expresses a
trade-off relation between the precision of the time-integrated current and the mean entropy
production: The smaller the dissipation of the system, the larger the uncertainty of the
current. In other words, this inequality provides a novel thermodynamic efficiency nryr =
(E[J;])?/Var[J,JE[Z;] < 1, which may be useful in quantifying the efficiency of biomolecular
motors.

1.2 Thermodynamics meets Gambling

1.2.1 Stochastic Thermodynamics with Martingale

In a typical situation in stochastic thermodynamics, we observe a stochastic system in a
certain observation time interval and investigate the statistics of an observable at the fixed
time. Here, we address a complementary problem, in which we exchange the roles of the
observable and time, and study the statistics of the random time at which the observable
first reaches a fixed threshold. Such random times are called first passage times. The distri-
butions of first passage times, or more generally stopping times, are extensively studied in
various fields such as the theory of stochastic processes [Red01, vK07], reaction rate theory
[HTB90], biology [IBZ16, Ewe04], statistical estimations [GMS97], and finance [BBDG18].
Moreover, in nonequilibrium physics, the universal natures of the first-passage-time statis-
tics for thermodynamically relevant quantities were found recently, including the fluctuation
relations at stopping times [NRJ17, MSM*21], the universality of the asymptotic behavior
of the first-passage-time distributions [SD16, Pan18, SMG*19], and several tradeoff relations
concerning the first passage time [GH17, Garl7, FE20]. In particular, the thermodynamic
constraint on the precision of the first passage times, which is a topic of this thesis, may be
useful in measuring the efficiency of the biological clocks beyond merely theoretical interests
[MCH19] (see also [BS15, BS16, BS17]).

Among these studies, several interesting results including the integral fluctuation relations
at stopping times are obtained from applications of martingale theory in probability theory to
stochastic thermodynamics. Martingale theory also plays essential roles in topics we consider
in this thesis. Let us give a concise explanation on martingale theory below.
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Martingale

To understand a motivation to introduce the concept of “martingale”, let us consider a simple
situation. A gambler visits a casino with money My > 0 in his pocket and plays the following
gambling with a dealer. First, the gambler predicts the outcome of coin tossing and bet
his money on two outcomes, head and tail. After his betting, the dealer tosses a coin. We
introduce a variable x; that takes 1 and 0 if the outcome of the first coin tossing is head and
tail, respectively. Let ¢; and gg be the amount of money the gambler bet on head and tail,
respectively. If z; = i (i € {0,1}), the payoff is assumed to be m;¢;. Then, the gambler’s
wealth M (x) after the first coin tossing is given by

M;(0) = My — (qo + ¢1) + moqo, Mi(1) = Mo — (g0 + 1) + m1¢a- (1.2.1)

How should we choose odds (g, 71) to realize “fair” gambling if the probability that X; = 1
is p? One reasonable definition is that we say that the gambling is fair if the gambler’s wealth
neither increase nor decrease on average. Since the average of the wealth is given by

pMy(1) + (1= p)My(0) = My + (pmy — )1 + (1= p)mo — o, (12.2)

the fair odds must be m; = 1/p and 7y = 1/(1 — p). For instance, the coin is unbiased, i.e.,
p = 1/2, the fair odds are m = my = 2.

We now suppose that the gambler and the dealer repeat this fair gambling many times.
We only allow the gambler’s strategy to choose his betting money that depends causally on
the past outcomes and is independent of the future outcomes of coin tossing. We can identify
a strategy for the gambler with a sequence of functions M, : {0,1}" — Ry, satisfying the
condition

M, 1(z1,.. . xn—1) = pMyp(x1, ..., 201, 1) + (1 = p) My (21, ..., 2,-1,0) (1.2.3)
for any n and ...z, 1 € {0,1}""!. The value M, (z1,...,z,) gives the gambler’s wealth
after n-th round of the gambling when the outcome up to the n-th round is (z1,...,x,) €

{0,1}". Therefore, Eq. (1.2.3) expresses the fairness condition similarly to Eq. (1.2.2) at
m = 1/p and my = 1/(1 — p). After extending the domain of M, into Q := {0,1}" in the
trivial way, we say that the process {M,, : n € N} is a martingale if it satisfies the condition
(1.2.3) for all n and w € Q.

The concept of “martingale” is useful to study two problems in which the gambler is
interested.

e The first interest is when should the gambler stop betting. The gambler must decide
whether or not he stops betting based on only the information on past outcomes of
the coin tossing. If the stopping rule satisfies such a causality condition, the time at
which the gambler stops betting is called a stopping time. More formally, we say that
a random time T : Q@ — N U {oo} is a stopping time if

Vn e NU{oo}, {weQ:T(w) <n} e F, (1.2.4)
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where F,, =oc({w € Q:wp =i} : 0 <k <n,ie{0,1}) for n € N and F, = o(U,F,).
A typical example of stopping times is a first passage time:

T =inf{n>0: M, =m}
= “the first time for the wealth to reach a threshold m”, (1.2.5)

where inf(()) = co. The following random time is not a stopping time because we must
know the future in order to stop betting:

T =inf{n > 0:n <10, M, = max M;}. (1.2.6)

0<k<10

Indeed, {T" =0} = {M; < My, ..., My < My} & Fo.

If the gambler stops betting at a fixed time, the average of his wealth neither increase
nor decrease because of the fairness condition, i.e., EM, = M,. How about when the
gambler applies a fluctuating stopping time. According to Doob’s optional stopping
theorem, we have that

E(My) = M, (1.2.7)

if M is uniformly integrable, where My = lim, o Mrs, with T A n = min{7T,n}.
Due to this theorem, even if the gambler applies a stopping rule, his wealth cannot be
greater than the initial value.

e The second interest is how the maximum value of the wealth is distributed. For example,
the gambler may stop betting by the n-th round if his wealth exceeds A > 0 times the
initial wealth. The gambler is then interested in the probability that the maximum
value of the wealth up to the n-th round becomes greater than the threshold value, i.e.,
{supy<,, M, > AMy}. According to Doob’s martingale inequality, we have that

P (sup M, > )\MO> S ATE(Molsupye, mizamey) < ATTMGTE(M,) = A7 (1.2.8)

k<n

In contrast to Markov’s inequality, Doob’s inequality gives an upper bound on a tail
probability of the mazimum value. Since a martingale expresses a capital process in the
fair game under a strategy, this inequality implies that whatever strategy the gambler
applies, the probability that the gambler can quit betting while his wealth exceeds 100
times the initial wealth is smaller than 1%.

The above arguments can be extended to more general settings. Let (2, F,{F:},P) be
a filtered probability space (the parameter ¢ may be discrete or continuous). A stochastic
process M; is said to be a (P, {F;})-martingale (or simply, martingale) if M is adapted to
{Fi}, E[|M;]] < oo for any ¢, and

E[M|Fs] = M, a.s. Vt > s. (1.2.9)
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Examples of martingale processes that are important in this thesis are likelihood ratio mar-
tingales. We now have two stochastic processes P and QQ such that Q is absolutely continuous
relative to P on every F; and define a process M; as a version of the likelihood ratio between
P and Q:

. d@|.7:t
: dIP)|]:t .

M, (1.2.10)

Then, we find that {M,} is a (P, {F;})-martingale. Since the likelihood ratio function mea-
sures the distinguishability between two processes, it mainly plays two roles in stochastic
thermodynamics.

e If we consider the original process and the time-reversed process, the likelihood ratio
between them quantifies the time irreversibility of the original process. Moreover, it is
identified with the entropy production characterizing the thermodynamic dissipation.
The theoretical idea on fluctuation relations is based on this perspective. Recently,
martingale property of the entropy production has been studied and several interest-
ing results are obtained: the integral fluctuation relation at stopping times, the work
relation at stopping times, a bound on the tail probability of the infimum of the en-
tropy production, the detailed fluctuation relation associated with the first passage
time distributions.

e If we consider the original process and the perturbed process, the likelihood ratio be-
tween them characterizes the response property of the system against the perturbation.
Indeed, the several response properties in Markovian dynamics can be obtained through
the Taylor expansion of the logarithmic likelihood ratio function with respect to the
small response field. A recent important finding based on the second perspective is the
fluctuation-response inequality, which provides a new tool to study universal bounds on
the response and fluctuations. For instance, the thermodynamic uncertainty relation
explained before is derivable from the fluctuation-response inequality. In this thesis, we
employ this technique with the martingale theory to study a class of universal bounds
on the statistics of the stopping times.

Thus, the likelihood processes play important roles in stochastic thermodynamics. How-
ever, the martingale aspect of the likelihood processes has been studied only recently. One
of the purposes of this thesis is to develop stochastic thermodynamics from the viewpoint of
the martingale.

1.2.2 Thermodynamic Uncertainty Relation at Stopping Time

We explain in more detail the second perspective on the likelihood ratio processes in the
context of stochastic thermodynamics. We are interested in the response property of a
stochastic dynamics, a Markov jump process or a diffusion process in many cases, against
perturbations. We use P and P? to denote the path probability measures for the original
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dynamics and the perturbed dynamics, respectively. Here, the parameter # € R quantifies
the amplitude of the perturbation, e.g., the external driving force on a Brownian particle.
We write the likelihood ratio between the original and perturbed dynamics as
pB — dP9|-7:t
' dIP)|-7'-t '

For an observable A; that depends on trajectories up to the time ¢, we have an expression
for the expectation of A; under the perturbed dynamics in terms of the original dynamics:

Eq[A/] = E[Apf]. (1.2.12)

(1.2.11)

The (linear response) fluctuation-response inequality provides an upper bound on the in-
tensity of the linear response. Here, the response intensity is measured by the ratio of the
squared response function to the variance in the original process:

R(4A,) = (69%[;3%]:0) = Varl[ 4 ( / AtagpﬂgodP) . (1.2.13)

According to the fluctuation-response inequality, this intensity is bounded above by the
Fisher information I;:

R(A,) < 1,(0) == E[(9g In p?)?]|g—0. (1.2.14)

We remark that while the left-hand side depends on the choice of the observable A;, the
right-hand side is dependent only on the likelihood ratio function. Therefore, the fluctuation-
response inequality gives a uniform upper bound on the response intensity. This inequality is
interesting and useful in two respects. First, although few results are available for non-Markov
processes, this inequality can be applied in principle to general stochastic processes, not
limited to diffusion processes and Markov jump processes. Second, the perturbations added
to the system are not limited to physical ones. For example, by adding a drift perturbation
that does not correspond to any physical operations, which is called a “virtual” perturbation
in [DS20], we obtain the thermodynamic uncertainty relation from the fluctuation-response
inequality.

It is known that even if we apply a stopping rule in the experiment, we can prove the
fluctuation-response inequality by employing martingale theory. Therefore, it is natural to
ask whether the extended inequalities may reveal novel bounds on fluctuations at stopping
times, in a similar manner that the thermodynamic uncertainty relation provides a measure
quantifying an efficiency of a fluctuating system in a fixed observation time. In Chapter 2,
we study this issue. Specifically, we derive the kinetic bound on the precision of the first
passage time for the time-integrated current and find that this kinetic bound can be relevant
far from equilibrium in contrast to the thermodynamic bound.

1.2.3 Randomness from Gambling

Until now we have reviewed martingale theory as a useful tool to study the stopping time
and extreme value statistics. However, the concept of “martingale” has also been studied in
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another context as a tool to characterize randomness. To see this, we return to the gambling
with coin tossing, i.e., stochastic processes on 2 = {0, 1}N . First, we review an important
observation by Jean Ville [Vil39]. For a martingale process M,,, let us take A = 2" and define

Up ={weQ: (Ik e N)(M(w) > 2"M,)}. (1.2.15)
The maximal inequality (1.2.8) implies P(U,,) < 27". Then, we conclude that

U= ﬂ U, = {sup M,, = oo} (1.2.16)

neN

is a null set, i.e., P(U) = 0. This means that the probability that the gambler make in-
finite profits is zero. This consequence is consistent with our intuition on fair gamblings.
Conversely, for a given null set IV, there is a non-negative martingale that is divergent on

N. Let us prove this statement. For a null set N, we have an open subsets {U,,} such that
N C N, U, and P(U,) <27". We now define a process M,, ;. as

P(U, N C(wy, ..., wy))
P(C(wi,. .. wr)

My, o (w) = (1.2.17)

where C(wy,...,wg) = {0 € Q1 w; = 05,1 < i < k}. We can see that this process is a
non-negative martingale:

pMn,kH(wl, cee, Wy 1, .. ) + (1 —p)Mn,kH(wl, e ,wk,O, .. )

P(C(wr, . .., wk, 1)) P(U, N C(wy, ..., wk,i))
2 P(C(wl,...,wp) P(Clwi,...,wpi))

1€{0,1}

P(U, NC(wi,...,wk, 1))
Z P(C(wl,...,wk))

1€{0,1}
_ PU,NC(wy,...,wi))
 P(C(wr,. .. wr) My (w). (1.2.18)

Since M, o = P(U,) < 27", M, defined by M, = > ;- M,y is finite and the process
{M,, : n € N} defines a non-negative martingale. Moreover, since M, ,(w) =1 for w € N by
definition, we obtain that sup,, M,, = co on N.

The above correspondence between null sets and martingale processes suggests that the
concept of “martingale” is useful to define “random sequences”. Approximately speaking, a
sequence w € (2 is called random if it satisfies no exceptional properties. For instance, consider
an experiment where we toss an unbiased coin many times. A sequence in which 0 and 1
appear at a rate of 1/3 and 2/3, respectively, is not random under this experiment because
its frequencies of 0 and 1 are exceptional. Exceptional properties are mathematically defined
as null sets. The correspondence between null sets and non-negative martingales motivates
the following definition of randomness: A sequence w is random if sup,, M, (w) < oo for any
non-negative martingales M. In other words, if we bet on the future bits by utilizing the
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knowledge of the previous bits of the random sequence, there is no betting strategy by which
we are able to make much money.

Since a singleton {w} is a null set, there is a betting strategy = non-negative martingale
such that lim,,_,o, M, (w) = co. Therefore, unfortunately, the above definition of randomness
turns out to be meaningless. We have to restrict the class of martingales to provide a
meaningful definition of randomness. Following the celebrated idea of Levin and Schnorr, we
restrict martingales to ones that can be performed feasibly in an algorithmic manner. They
specified such a feasible martingale as an effective martingale, more precisely, a lower semi-
computable martingale. Then, a sequence w is called random if sup,, M, (w) < oo for any
effective martingales. Remarkably, this randomness, which characterizes random sequences
from the viewpoint of gambling, is equivalent to other notions of randomness characterized by
typicalness and incompressibility conditions. As a result, this randomness, called algorithmic
randomness, is regarded as a natural notion of randomness.

Is the characterization of randomness through martingale theory relevant to statistical
physics? In the next two subsections, we introduce two problems, thermodynamic irre-
versibility and the second law of thermodynamics, and argue the relevancy of randomness in
statistical physics.

1.2.4 Thermodynamic Irreversibility and Randomness

In Chapter 3, we study thermodynamic irreversibility from the viewpoint of algorithmic
randomness. In subsection 1.1.1, we explain that the law of large numbers gives a clear
account of the emergence of macroscopic laws from microscopic dynamics. However, we
should notice that it refers only to the probability that the macroscopic law is satisfied and
does not tell us which microscopic states among all realizable states obey the macroscopic
law. When considering the reversibility paradox, one finds that this fact becomes problematic.
Loschmidt pointed out that if a microscopic trajectory satisfying the microscopic equation of
motion obeys the macroscopic law, the time-reversed trajectory is also a solution of the same
equation due to the microscopic reversibility, but violates the macroscopic law due to the
irreversibility of that law [Los76]. Thus, the apparent inconsistency between the macroscopic
irreversibility and the microscopic reversibility is relevant to individual trajectories. We
note that the recurrence paradox posed by Zermelo also refers to a single trajectory [Zer96],
but this paradox is resolved by considering the thermodynamic limit first. To resolve the
reversibility paradox, it is desirable to have a more direct formulation studying individual
microscopic states in the thermodynamic limit. In particular, we need a criterion to determine
whether a given microscopic state belongs to a set characterized by typical macroscopic
properties.

To this end, in Chapter 3, we apply the theory of algorithmic randomness to statistical
physics on the basis of its characteristics that the algorithmically random sequences satisfy
statistical properties such as the law of large numbers and of the iterated logarithm. The
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strong law of large numbers in probability theory states that

n—1

1 1
lim — Zx(z) =3 for almost all x with respect to P. (1.2.19)

1
lim — ) z(i) = 5 for random x with respect to P. (1.2.20)

Although the former statement refers to only the probability that the law of large numbers
is satisfied, the latter refers to individual sequences. In the context of statistical physics, the
statistical properties of random sequences imply that the probability-theoretic statement,

“Almost all microscopic states with respect to a probability measure obey a
macroscopic law,”

can be replaced by the pointwise one,

“Random microscopic states with respect to a probability measure obey a macro-
scopic law.”

Since this statement is expressed at the level of individual states, the notion of algorith-
mic randomness may be useful to discuss the foundations of statistical mechanics beyond
probability-theoretic statements.

The formulation with the notion of randomness provides a new perspective on the re-
versibility paradox. From a measure-theoretic point of view, the microscopic reversibility
is consistent with our experience since the time-reversed state of a typical state with re-
spect to a probability measure violates the macroscopic law, but has only an extremely small
probability with respect to the same measure. In contrast, from a viewpoint of algorithmic
randomness, the microscopic reversibility implies that the time-reversed state of a random
state is not random because it is contained in a null set involved with a violation of the
macroscopic law. This fact has an implication in the relation between the randomness of
a physical state and the ease of preparation of that state. If we can specify a description
of a binary sequence completely in an algorithmic manner, the sequence is not random be-
cause we can easily predict the sequence by using the algorithmic description. In contrast, a
sequence we generate by a stochastic device such as tossing a coin many times is algorithmi-
cally random. Now, when we prepare a state of a physical system, we cannot avoid a certain
source of noise. Although the relation between a stochastic device and noises in preparation
of physical states is not obvious, we may say that it is difficult to experimentally prepare
the time-reversed state of a random state, which is nonrandom, because we have to avoid all
sources of noises to prepare a nonrandom state. In this manner, the theory of algorithmic
randomness clarifies a conceptually new aspect of the reversibility paradox. In Chapter 3,
we show a part of the results that the theory of algorithmic randomness reveals.
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1.2.5 Game-Theoretic Thermodynamics

The role of martingales in the study of thermodynamic irreversibility is only of secondary
importance. Indeed, in Chapter 3, we analyze it based on the measure-theoretic typicality
instead of martingale theory. Therefore, the connection of thermodynamic concepts with
martingales is indirect. In Chapter 4, we find that a process of the extracted work in re-
peated cyclic operations is identified with a martingale process. The combination of this
identification and Ville’s theorem reveals a novel relationship between the Gibbs distribution
and the second law of thermodynamics.

The problem we consider in Chapter 4 is formulated as follows. A fundamental assumption
of equilibrium statistical mechanics is that microscopic states are randomly sampled according
to the Gibbs distribution for the Hamiltonian. While we can obtain statistical properties of
observables, such as means and variances, from this probabilistic assumption, the assumption
is also consistent with the second law of thermodynamics. In fact, we cannot extract a strictly
positive amount of work through any cyclic process on average if the initial probability
distribution is Gibbsian [PW78, Len78, GP80, Dan81, Jar97, Cro98|. This result can be
regarded as a derivation of the second law of thermodynamics from statistical mechanics. It
is natural to ask whether the second law conversely characterizes the Gibbs distribution or
not. This question has been traditionally studied in terms of passivity [PW78, Len78, GP80,
Dan81]. These studies showed that the initial probability distribution is Gibbsian if and only
if any number of copies of the identical state satisfy the second law of thermodynamics. In
this approach, we crucially assume that the system is described by a probability distribution
on the phase space. In contrast, the question we consider in Chapter 4 is how the probabilistic
description based on the Gibbs distribution emerges from the second law of thermodynamics,
particularly the absence of the perpetual motion machine of the second kind.

A similar question was posed in the context of probability theory. In measure-theoretic
probability theory, we assign a real value in [0, 1] to each event under certain compatibility
conditions such as additivity. Although measure-theoretic probability theory is a useful tool
to analyze the random behavior of phenomena in nature, it does not provide a characterization
of randomness itself. As an alternative approach, Shafer and Vovk proposed game-theoretic
probability theory [SVO01, SV19] whose fundamental idea is Ville’s theorem. In a gambling,
they say that the gambling is fair if the gambler never become infinitely rich in the limit
as the gamble continues and that the sequence of events obtained from such gambling is
random. Based on these ideas, they proved, say, the law of large numbers in terms of the
gambling, without using measure-theoretic concepts. If we think of the work extraction as
a certain gambling between an agent and the nature, the second law of thermodynamics
corresponds to the fairness condition in the gambling. If this reasoning is true, we can
expect that randomness of the microscopic states in an equilibrium system is characterized
through the second law of thermodynamics without using the probabilistic assumption in
statistical mechanics. The purpose of Chapter 4 is to validate this idea and to answer in the
affirmative based on the identification of the work processes with martingale processes and
the game-theoretic probability theory.



Chapter 2

Kinetic Uncertainty Relation on Fist
Passage Time

2.1 Introduction

2.1.1 Summary of results

In this chapter, we study the kinetic uncertainty relations (KURs) on the first passage times
for time-integrated currents. Whereas the thermodynamic uncertainty relation gives a bound
on the precision of an observable in terms of entropy production, the KUR [TB19] gives
a bound in terms of the time-symmetric dynamical activity [Mae20]. Garrahan [Garl7]
obtained a kinetic bound on the FPT for a stationary continuous-time Markov chain,

E[r]*
Var|[7]

< nE[7], (2.1.1)

in the large threshold limit. Here E[7] denotes the mean time at which the time-integrated
current first reaches a threshold, Var[r] the variance of 7, and n the mean number of jumps
per time in the stationary state. This trade-off relation implies that the smaller the activity
of the stochastic system, the larger the uncertainty of the time to reach the threshold. The
inequality (2.1.1) was derived via the large deviation theory and verified only in the large
threshold limit. The main purpose of this chapter is to derive the KUR on the first passage
time that is valid for any finite threshold and to simplify the derivation based on the technique
recently developed in [DS20, TB19].

2.1.2 Outline of the chapter

The remainder of the chapter is organized as follows. In Section 2.2, we review previous
studies and present main results of this chapter. In Section 2.3, we applies our results to two
examples and find that the kinetic bounds are relevant far from equilibrium. In Section 2.4,
we review the information inequalities at stopping times, which is the key ingredient in the

23
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derivation of our results, and present a proof of our main result. In Section 2.5, we end this
chapter with concluding remarks.

2.2 Main Result

2.2.1 Setup and previous results
Setup

We consider a time-homogeneous and continuous-time Markov chain on a directed multigraph
G = (S, E). Here S is a discrete state space and F is the set of directed edges between two
states. Let k.(z,y) be the transition rate from the state = to y via the edge e € E and A(z) =
> e 2 y(#x) ke(,y) the escape rate from x, where the summation is taken over edges starting
from z. For a fixed time ¢t > 0, X0 = (X;)scpp,g denotes a single trajectory of the system

and is characterized by the discrete-time sequence (zg,to = 0;x1,t1,€15...;ZN,, N, €N, )5
which indicates that the total number of jumps for trajectory Xy, over [0,¢] is V;, and the
transition from x; 1 to z;(# x;_1) occurs via the edge e; at times ¢; for i = 1,..., N;. We

focus on a time-integrated current J; := J(X [O,t]) defined as

Ny
J<X[0,t}) = dei(l‘iflwr’i)? (221)
i=1

where g.(x,y) weights the contribution of the transition from x to y via the edge e. The class
of observables of this form includes many important physical quantities. Here we address two
significant examples, the number of jumps and the fluctuating entropy production. The total
number of jumps via edge f is obtained by taking g. = d. . This quantity measures how
active the system is on edge f and is called dynamical activity. Next, we consider two edges,
f connecting from x to y, and b connecting from y to x, with k¢(z,y) # 0 and ky(y, ) # 0.
We assume that these edges are in contact with the same heat bath, and require that the
entropy per the Boltzmann constant kg produced in the heat bath during the transition
x — y is given by In(ks(z,y)/ks(y,x)). The fluctuating entropy production associated with
the paired edges (f,b) is then obtained by taking g. = In(k¢(z,y)/ks(y, x))[de,f — Oep]. The
requirement we impose here is called the local detailed balance condition.

Thermodynamic and kinetic uncertainty relations

If the system satisfies the local detailed balance condition, the system starts from the steady

state, and we consider the time-asymmetric currents, i.e., g(x,y) = —g(y, x), the precision
of the time-integrated current is bounded above by the entropy production
E[J]*
< E[%,), 2.2.2
Varls] = (222)

where Y, is the total entropy production up to the time ¢. This inequality, called the thermo-
dynamic uncertainty relation (TUR), is regarded as a trade-off relation between the precision



2.2. MAIN RESULT 25

of the current and the dissipation. We have another trade-off relation called the kinetic un-
certainty relation (KUR). The KUR claims that

E[/]?
Vo < BN (2.2.3)

Here, N; denotes the total number of jumps up to the time ¢ and therefore the right-hand
side of the KUR quantifies a dynamical activity of the system. Although the KUR is valid
for any observables in contrast to the TUR, we consider only time-integrated currents for
simplicity. Numerical simulation for simple systems shows that while the TUR is tight near
equilibrium, the KUR gives a better bound in the regime far from equilibrium.

First passage statistics

In the above situation, we fix an observation time ¢ and study the statistics of time-integrated
currents J;. In this chapter, instead of studying the statistics at a fixed time, we consider
the statistics of the random time at which the time-integrated current first reaches a fixed
threshold. The first passage time (FPT) 7 for the time-integrated current J; is defined as

T=inf{t >0:J;, = Ju}, (2.2.4)

where Ji;, denotes the threshold value. The FPT is obviously a stochastic variable and
accompanies fluctuations. The first time for the system to reach the specific state z can be
represented in this form by taking g.(x,y) = d,. and Jy, € (0,1). Methods to analyze the
statistics of the FPTs in the class are well established [Red01, vK07]. Our concern here is
the precision of the FPT quantified by the ratio of the squared mean FPT to the variance,
E[r]?/Var|7].

Main result

Garrahan [Garl7] derived the kinetic uncertainty relation on the first passage time (2.1.1)
via the large deviation theory. By using a similar method, Gingrich and Horowitz obtained
the thermodynamic uncertainty relation on the first passage time. Their argument is based
on the asymptotic behavior in the large threshold limit J — oo. Therefore, the same method
cannot be straightforwardly applied to first passage times with finite thresholds. Since there
are problems that concern the first passage times with finite thresholds, e.g., the escape rate
from metastable states and searching problem, it is desired to develop a method to study
trade-off relations on first passage times with finite thresholds.

Our main result is the kinetic uncertainty relation that is valid for any finite threshold.
We suppose that the mean and variance of 7 are finite. We find that the precision of the
FPT is bounded from above by the mean dynamical activity, which is quantified by the mean
number of jumps:

Eyo[7] ?

Var, 7] < E,,[N,], (2.2.5)



26 CHAPTER 2. KINETIC UNCERTAINTY RELATION ON FIST PASSAGE TIME

where N, is the total number of jumps up to the first passage time 7 and E, [-] denotes
the expectation value conditioned on the initial configuration Xy = xy. This activity bound
(2.2.5) is the main result of this chapter. The inequality (2.2.5) implies that the reduction
in the number of jumps up to the time for the system to passage the threshold inevitably
accompanies the worsening of the optimal precision of the FPT.

We make several remarks on our result.

e First, our result holds for any finite threshold Jy, in contrast to the inequality (2.1.1)
in [Garl7]. For a sufficiently large threshold Jy, and ergodic Markov process, we expect
that E[N,] nearly equals nE[r| because in that situation the jump number per time
is well approximated over a sufficiently large time interval by the stationary value
n. Hence the inequality (2.1.1) is recovered in this asymptotic limit from our result.
Although the precision of the FPT for the integrated current is also bounded from above
by the mean entropy production, the thermodynamic bound of the form in [GH17] is
guaranteed only in this asymptotic limit. We illustrate the violation of the TUR with
examples in the next section.

e Second, we should notice that the KUR (2.2.5) can be applied to the case that the
system starts from a specific initial state zo. In addition, the inequality (2.2.5) is still
valid if we replace the conditional expectation E,, by the expectation value E, with
respect to the arbitrary initial distribution p.

e Third, the thermodynamic bound is tighter than the activity bound around equilibrium
because in the regime close to equilibrium the mean entropy production tends to zero
but the mean number of jumps remains finite. In contrast, even when the mean entropy
production goes to infinity in the regime far from equilibrium, the mean activity up to
the first passage time may be finite due to a nonequilibrium force driving the system
to the threshold. In that case, the KUR provides a tighter bound than the TUR.

e Forth, the KUR is applicable even if the Markov chain is not ergodic or does not satisfy
the reversibility condition, i.e., k(z,y) # 0 iff k(y,z) # 0. Examples of stochastic
processes violating the reversibility condition are models including absorbing states in
the population dynamics and stochastic resetting systems [EMS20].

e Fifth, we note that the mean and variance of the FPT may diverge; in such circum-
stances, the KUR (2.2.5) may be violated. For instance, when the accumulated current
has a positive drift, the FPT for a negative threshold takes infinite value with positive
probability. However, the modified KUR still holds in the following form,

2
B [r]” < By [ N4, (2.2.6)
Var,,[7]

We note that if the probability that the first passage time is infinite is positive, the
modified probability distribution is unnormalized, E[1] = Prob(7 < o0) < 1.
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2.3 Examples

Before going to the derivation of main result, we examine the KUR (2.2.5) in two paradigmatic
examples.

2.3.1 Biased Random Walk

The first example is the biased random walk X; on 7Z starting from Xy = 0. The transition
rates between neighboring sites are set to k+ = k(z, 74 1) = ae**/? and other transitions do
not occur. Here a > 0 and ¢ > 0 are positive constants. Suppose that this system describes
a colloid under an external driving force f in a channel having a periodic structure of length
[ and filled with water in equilibrium at temperature 7' (Fig. 2.1(a)). According to the local
detailed balance condition, € = fI/kgT = In(k, /k_) is the entropy per kg produced in the
water by the one forward jump. We consider the random time 7, = inf{t > 0: X; = x} at
which the colloid first reaches the site z > 0.

The entropy production along the path Xy, is given by X; := X, and therefore the sta-
tionary entropy production is o == E[¥;]/t = 2esinh(e/2). We easily find that the precision of
7, is given by E[r,]?/Var[r,] = x tanh(e/2) and the TUR [GH17], E[r,]?/Var[r,] < ¢E[r.]/2,
is directly verified for any thresholds [GRJ20]. In addition, the mean dynamical activity is
given by E[N,, | = x coth(e/2) and is in agreement with the KUR, E[r,]?/Var|r,| < E[N,,].

In Fig. 2.1(b), we see that while the TUR is tighter near the equilibrium € < 1, the KUR
becomes relevant as the nonequilibrium driving force increases. We remark that the TUR
may be violated in general for finite thresholds. As an example, we consider a random walk
with a reflecting boundary condition at the origin, i.e., k(0, —1) = 0 and a precision of the
FPT for the threshold x = 1. The distribution of 77 is the exponential distribution with the
decay rate k, and therefore E[r;])?/Var[r;] = 1 = E[N,,] for any ¢, whereas the upper bound
of the TUR, ¢E[r] = €/2, becomes less than 1 for sufficiently small e.

2.3.2 Two Level System

The second example is a two-level system in contact with two heat baths at different tem-
peratures (Fig. 2.2(a)). The lower (resp. higher) energy level is coded by 0 (resp. 1) and
the energy gap is set to A > 0. The transition rate from = € {0,1} to y(# x) associated
with the heat bath at the inverse temperature g, is given by k.(z,y) > 0 for e € {h,c}.
We assume that 3, < 8. and define 8 := (8. + B4)/2. The local detailed balance condition
imposes k(1,0)/k.(0,1) = e’ for each bath e. We observe the heat produced in the cold
bath e = ¢ and measure the accumulated heat current per 5.A from the system into the cold
bath J; == Ziv:tl[émfl,lé%o — 0z, 1.002,.1)0¢; . Our interest is the variation in precision of the
first passage time 7, = inf{t > 0: J, = m} (m € Z) along with the temperature difference,
which quantifies a distance from equilibrium in this model. To measure the degree by which

temperatures differ, we introduce a dimensionless parameter ¢ := (3. — 3,)/B8 € [0,2]. We
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Figure 2.1: (a) Schematics of a colloid being driven by an external force f in a periodic channel
filled with water at temperature 7" and 1D biased random walk describing the dynamics of the
colloid. (b) Plots showing the precision E[r,])?/(xVar[r,]) (blue solid line), the TUR bound
oE[r.]/(2z) (red dash line), and the KUR bound E[N,,]/z (green dash-dot line) as functions

of e. The dimensionless parameter € = fI/kgT measures a distance from equilibrium in this
model.
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Figure 2.2: (a) Schematic of two-level system. (b) Efficiencies associated with the TUR
(red circles) and KUR (blue diamonds) obtained from the Monte Carlo simulations for 107
samples for various temperature differences. We set Xo = 0, k.(0,1) = 1, k.(1,0) = €2,
kn(0,1) =1, ky(1,0) = %2, BA =10, m = 1 in our simulation.

define the efficiencies associated with the TUR and KUR as

2 E[r,) 1 Eln)?

2 <1 2.3.1
'TURr ]Var[Tm] = 4 ( 3 )

o Var([r,]’ KUR = E[N

Tm

respectively. From the plot of the efficiencies obtained by Monte Carlo simulations (Fig.
2.2(b)), we see that although they are actually reversed as the temperature difference in-
creases, the efficiency associated with the KUR is always far from optimal.

2.4 Derivation based on Information Inequalities

2.4.1 Preliminaries

The key ingredient of the derivation of our result is the information inequality at stopping
times, which provides a uniform bound on the ratio of the response to the fluctuation. In
this section, we review the information inequality at stopping times. The readers who are
not interested in technical details can skip this section.

Re-weighting formula at stopping time

We first derive the re-weighting formula, which is useful to study the response property of
the stochastic process. We consider a family of stochastic processes over time interval [0, co)
with path probability measures P, parametrized by a real parameter . We can imagine that
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Py and Py (0 # 0) are the reference process and the perturbed process, respectively, and
the parameter 6 represents the amplitude of the perturbation, e.g., the external field. This
situation is mathematically modeled by the probability space (2, F,{F;}i>0, FPp). Here Q
denotes the space of stochastic trajectories over [0, 00), F the collection of all events that can
occur in this system, F(C F) the collection of events that can occur up to fixed time ¢, and
Py : F — [0,1] the map assigning events in F into probabilities. F and {F;};>¢ are called
the o-algebra and filtration, respectively. We use P} to denote the probability distribution
that assigns probabilities to events in F;. More formally, P} is defined as the restriction
of Py to Fy, ie., P} = Pylr,. We assume that for any 0, #" and ¢t > 0, P} are mutually
absolutely continuous with respect to Pj,. Under this assumption, we define the likelihood
ratio function p}, = dP}/dP} for each ¢ > 0, which characterizes the response property of the
reference system 6 = 0 against the perturbation. Indeed, the expectation value with respect
to the perturbed process of an observable A; that depends only on the trajectory up to the
time t is written in terms of the expectation with respect to the original process and the
likelihood ratio function:

t
Eol[A;] = /Atdpa = /Atj—igdpé = Eo[A;pp], (2.4.1)
where Ey denotes the expectation operator with respect to the process Py. Thus, we can
obtain the information on the response property of the original dynamics by studying the
re-weighting factor pj.

The purpose of this section is to find a fundamental limitation on the statistics at stopping
times. A stopping time is a random time when the stochastic process satisfies a certain
condition first time. Formally, a random variable 7 is said to be a stopping time if {T <t} €
F; for each ¢ > 0, which means that the value of 7 is smaller than ¢ is determined by the
information about the trajectory up to the time ¢t. Typical examples of stopping times are
first passage times, e.g.,

T=inf{t > 0: X; € R}, (2.4.2)
where R is a region. We define the o-algebra F,. generated by the stopping time 7 as
EeF. < M>0)(En{r<t}eF). (2.4.3)

This means that F, is the collection of events of which we can determine the happening before
the stopping time 7. As an example of events in F,, let us consider whether an observable
at the time 7 is in a certain range. For an observable A; that depends on the trajectory up
to time ¢, we define the observable A, at the stopping time 7 as

Ar(w) = Ay (w) (2.4.4)

for trajectories w € € such that 7(w) < oco. If 7(w) = oo, there is no canonical way to
define A.(w). In this chapter, we always study events on the set {T < oo} and therefore
this ambiguity does not matter. Since whether A, € [a,a + da) or not is determined by
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the information on the trajectory up to the stopping time 7, {A, € [a,a + da)} € F..
The probability distribution P that assigns probabilities to events in F; is defined as the
restriction of Py to F, i.e., Pj = Py|z.. The expectation value of an observable A, at the
stopping time is obtained via this distribution Pj: Eg[A,] = [ A,dFj] if Pp(T < o0) = 1.
Can we obtain the re-weighting formula (2.4.1) when the experiment is terminated at the

random time 77 Whether the random variable pj(w) = pg(w) (w) is related to the Radon-
Nikodym derivative of Pj with respect to Fj is a non-trivial problem because these two
objects are defined in different ways. However, we can prove that

Py(ENn{r <oo}) = / Py lir<oc}dFo (2.4.5)
E

for any events E € F;. By defining the modified probability distribution P, [E] = B[EN
{T < o0}] and the corresponding expectation Ey, we obtain the re-weighting formula for the
modified distributions,

Eo[A,] = Eo[A,pj] (2.4.6)

from (2.4.5). We remark that Eo[1] = Py(7 < 0o) may be less than 1, i.e., the distribution P,
may be unnormalized. If Py(7 < co) = 1 for any 6, we have that P] is mutually absolutely
continuous with respect to Pj, and the Radon-Nikodym derivative is actually related to pj:

_ arg
- dPj’

Dh (2.4.7)
In that case, Pyand E, yield the normalized probability distribution and the usual expectation
operator.

A proof of (2.4.5) is as follows. First, we consider a truncated stopping time 7 A n =

min{7,n} for a fixed natural number n. Then, we have PJ"" < P;"" since F,r, C F,, and
PJ < Pj. Therefore, we obtain that

aBp” o [dBE
APy 0 L dRy

‘FT/\H:| = IEO [pg|f‘r/\n] . (248>

Because 7 A n is bounded by definition and the process (p§)nen is a {F, }-martingale with
respect to Py, we obtain from the optional stopping theorem that

pg™" = Eo [0 | Fran] - (2.4.9)

We now fix a natural number k € N and choose E € F,ri. Since EN {1 < m} € Fa, for
TAM

any m > k and pj = p;""™ on the truncated set {7 < m}, we obtain from Egs. (2.4.8) and
(2.4.9) that

PAEN{r<m}) = / qr, — / PP, — / pidPy.  (2.4.10)
En{r<m} En{r<m} En{r<m}
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By taking m — oo, we have from the monotone convergence theorem for 1gngr<mypp T
1 En{r<oc}Py that

PyEN {r < o0}) = / pidPy. (2.4.11)
En{r<oo}

Since

{rT<oo}nNF,={r<o0}no (G .7:mk> , (2.4.12)

k=1

Eq. (2.4.11) is true for £ € F, as well as elements in F, ;. for each k € N.

Information inequality at stopping time

Based on the re-weighting formula (2.4.5), we explain the information inequalities at stopping
times. For a stopping time 7, if Py(7 < oo) = 1 for any 6, the following inequality holds:

(05Eg[A,])?
S <L) (2.4.13)

where I.(0) = E¢[—02Inpj] is called the Fisher information of the family {Pp}s. This
inequality is called information inequality or Cramér-Rao inequality. The linear response
property of the observable at the stopping time 7 against the perturbation 8§ — 6 4 df is
captured by the derivative 0yEg[A,]. Therefore, the relative amplitude of the linear response
against the fluctuation is quantified by the left-hand side of Eq. (2.4.13). Since the Fisher
information is independent of the choice of the observable, it gives a uniform upper bound
on the ratio of the linear response to the fluctuation.

We prove a modified form of Eq. (2.4.13):

(DpEo[A,])? _ ~
eSO, (2.4.14)

where we have defined the modified Fisher information TT(Q) = Eg[—ag Inp}]. A crucial
assumption here is that Egy[1] is independent of 0, i.e.,

OEy[1] = 0y Py(r < o0) = 0. (2.4.15)

This assumption means that the probabilities that the stopping time diverges have the same
value over all parameters. Under this assumption and several regularity conditions, we obtain
the inequality,

OpEq(A;) = Eo[pj (99 Inpp) A, ]
= By[(0p In pp) A,
= Eo[(9p In pj) (A — Eg[A])

< \/Eol(@h In )2y Vars[ 4], (2.4.16)
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where we have used (2.4.6) and Ogpj = pj0p Inpj in the first line, (2.4.6) again in the second
line, Eg[0y Inpj| = Eo[Oppy] = OpEg[1] and the assumption (2.4.15) in the third line, and the
Cauchy-Schwarz inequality in the fourth line. By using a similar argument, we find that

Eo[(9p Inpj)*] = Eo[—0} In pj]. (24.17)

Hence, we have the information inequality at the stopping time, Eq. (2.4.14). If the stopping
time 7 is finite with probability one for any parameter 6, the above inequality simplifies to
the form (2.4.13).

2.4.2 Application of information inequalities: the kinetic uncer-
tainty relation

Before giving a proof of (2.2.5), we explain the idea behind our derivation via the derivation
of the kinetic uncertainty relation at a fixed time [TB19]. The essential step of the derivation
is to find a perturbation, or equivalently, a family of modified processes { P : 6} that satisfies
two conditions:

0oy Ji]|o=0 = E[J4], (2.4.18)
and
I;(0) = E[Vy]. (2.4.19)

If we find such a family, by applying the information inequality (2.4.13) with 7 =t and 6 = 0,
we obtain the KUR (2.2.3).

According to Ref. [TB19], the time rescaled process satisfies the above two conditions.
To see this, we define the modified processes with transition rates k.o = (1 + 0)k.(z,y),
where 6 is the real parameter. The escape rates for the modified process are given by
Ao(x) = (1 4+ 0)A(z). This modification of the rate clearly corresponds to a rescaling of time
in the stochastic process. The distribution Py = P corresponds to the original stochastic
process. Since the process {YZ’ = X(140)¢ : t > 0} has the distribution F, we have that

Jo(t) = Eg[Jt] = E[Ja1ey] = T((1 + 0)t). (2.4.20)

Therefore, we obtain OyEgy[.J;]|g—0 = td; T (t). If the system starts from the steady state, this
equation becomes 0pEg[J;]|o=0 = J (t) because J(t) = tjss, where jg is the averaged current
in the steady state.

Let us calculate the Fisher information for these modified processes. The logarithm of
the likelihood ratio function p}, = dP}/dF( is given by

N
¢ : keiﬁ(xi—lu ﬂUz) !
hlpa - ZZ:; In kei<xz’—17 xz) /0 {)‘Q(Xs) )‘<Xs)]d8

=N In(1+6) — Q/t AN Xs)ds (2.4.21)
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Therefore, we obtain that —d3 Inp} = (1+6) 72N, and [,(0) = (1+60)*Ey[N,]. Consequently,
by applying the information inequality to the time-rescaled processes, we obtain the KUR at
a fixed time (2.2.3).

2.4.3 Proof of (2.2.5)

We present a derivation of (2.2.6) via the information inequality at stopping times (2.4.14).
For a time-integrated current J; of the form (2.2.1), we consider the first passage time 7 =
inf{t > 0: J; > Jy,} at which the accumulated current J; first reaches a certain threshold
Jin. Similarly to the above derivation, let us find a family of modified processes that satisfies

E[7]|o—o = E[7] (2.4.22)
and
1.(0) = E[N,]. (2.4.23)

Recall that the Fisher information at a fixed time for the time-rescaled processes is the
dynamical activity. Therefore, we use the time-rescaled processes as modified processes.
From (2.4.21), the Fisher information at the stopping time for the time-rescaled processes is
given by I.(8) = (1 4 6)2E4[N,]. The second condition is satisfied.

We check that the time-rescaled processes satisfies the first condition. Since the observable
J; has the property J[(Ys == Xcs)seo,c-14] = J; for any ¢ > 0, we have that

T{(Xes)seo,00)] = ¢ TI(Xs) sefo,00))- (2.4.24)
This means that the first passage time for the time-integrated current scales by factor ¢!
because of the rescaling of time for the stochastic trajectories X, +— X.;. Therefore, the

cumulative distribution function of 7 with respect to Py and F, are related through

Pyao(T <) = Ppoy(r <t AN, =n)

n=1

:Z Z / dt 1{T<t}[(xs)s€[0t]]
0<ti<- <tn<t

=1 (z1,e1::1Tn,en
x g~ Ao(wo) tlk‘el,g(xowl)e o(@1)-(ta=t1) kemg(:vn_l,:Bn)e_)‘e(x")'(t_t")
Z / dty...dt, 1{7St}[(x8)se[g7t]]
(xl €11 Tn,en ) 0<t1<<tn<t

+ 0)71 7}\(500) (l+9 tlk ($0’ xl)ef)\(xl)(]ﬁ#@)(tzftl) o ken (xn 1y xn)ef)\(;cn)(l#»e)(tftn)

> / dty ... dt, 1ir<azon[(Tato)-1s)seo,a+0)]
0<t) <--<th <(140)t

1 (z1,e1::xn,en

—)\ (z0) tlk’ ($07 [L’l)e Ax1)-(t5—t)) o ken (xn_l’ xn>€—/\(a:n) ((1+0)t—t.)

o (T < (1+0)).

I
g

X

I
g

3
Il

I
'~U><



2.5. DISCUSSION 35

This relation implies that the unnormalized probability density function fy(t) of 7 satisfies
folt) = (1 +60) fo((1 + 6)t). Hence, we have that Eg (7] = (1 +0) ' Ey,[7] and 0pEg 7] =
—(1 4+ 6)2E,, [7].

The rescaling of time with finite factor (14-6) does not change the probability that the first
passage time diverges, i.e., Eg[l] is independent of #. Therefore, we can apply the information
inequality (2.4.14) to this modified processes. By taking § = 0 in (2.4.14), we have the KUR
(2.2.6). If P(T < 00) =1, the KUR (2.2.5) is recovered.

2.5 Discussion

We have derived the kinetic bound (2.2.5) on the first passage time for time-integrated current
that is valid for any finite threshold. In contrast to TURs, KUR may be relevant for a system
far from equilibrium. An interesting challenge is to apply our result to biological systems
such as circadian clocks, molecular motors and enzyme kinetics, and measure the efficiency
of these systems from the perspective of the precision of the first passage time.

Refs. [GH17, Garl7] use the connection between the rate functions for current statistics
and first-passage-time statistics to derive the same type of inequality. Nevertheless, our
derivation is based on the idea given in [DS20, TB19] that finite-time TUR and KUR are
obtained from the information inequalities for virtually perturbed systems. This method
significantly simplifies the derivation and extends the range of applicability. Indeed, recently,
the uncertainty relation on the precision of the first passage time in Markovian open quantum
systems was derived based on the same technique. The extension of the uncertainty relation
on the first passage time to diffusion processes will be studied in future work.

Finally, we make a remark on the derivation of the thermodynamic uncertainty relation
from the information inequality. In Ref. [DS20], Dechant and Sasa derived the finite-time
TUR on a time-integrated current from the information inequality. Specifically, they found
a family of stationary continuous-time Markov chains {Fy} for which Ey[J;] = (1 + 0)E[J}]
and I;(0) < E[X;]/2, where X, is the total entropy production over [0,%]. Although one
may expect that the mean first passage time for J; has rescaling property Ey[r] = (1 +
0)~'E[r] for this family and the finite-threshold TUR on the FPT can be derived from
(2.4.13), it is not true. This is because the statistics of the first passage time depends on
the transition probability. Although the perturbation considered in [DS20] corresponds to
the time-rescaling of the single-time probability distribution and current, it does not have
the same property at the level of the transition probability. Nevertheless, TUR-type bounds
were derived for first passage times to reach a specific state based on more complicated
perturbations [PRR21]. The upper bounds on precisions of first passage times contains kinetic
contributions associated with absorbing states as well as the entropic contributions, which is
consistent with the conclusion in the subsection 2.3.1. More recently, Shiraishi [Shi21] found
the optimal upper bound on the precision of the time-integrated currents that is derived
from the information inequality and presented a unifying picture of the thermodynamic and
kinetic uncertainty relation. Whether the same picture can be applied to the precision of the
first passage time remains an open problem.
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Appendix 2.A Mean dynamical activity in random walk

The random walker X; is described in the form,

Ny
X =Y 7. (2.A.1)
=1

Here NV, is the number of jumps over [0, ¢] and (Z;, Z,, . .. ) are random variables independently
and identically distributed according to P(Z; = £1) = ki /(ky + k_). Let us consider the
first passage time 7, = inf{t > 0 : X; = x}. Because condition X; = z is equivalent
to Zivztl Z; = x, N, is a first passage time at which the discrete-time stochastic process
(Zy,Zs,...) first reaches the threshold z. If x > 0, the expectation value of N, is finite.
By applying the Wald identity [GMS97, Theorem 2.4.4], we obtain E[X, | = E[N, |- E[Z,].
Hence,

(2.A.2)



Chapter 3

Macroscopic Law for Algorithmic
Random States

3.1 Introduction

3.1.1 Summary of the results

In this chapter, we demonstrate with the aid of a pedagogical model how the emergence of
macroscopic irreversible laws from reversible microscopic dynamics is formulated in terms of
algorithmic randomness. We expect that the following results hold true for a wide class of
models although we investigate a specific model in this chapter.

We study a variant of the Kac ring model [Kac59, GO09, MNS09], which consists of
two kinds of degrees of freedom, particles with spin 2z(i) — 1 € {—1,1} (i € Z) on a one-
dimensional infinite lattice Z and scatterers y(i) € {0, 1} located between particles. At each
discrete time step, a particle at site ¢ € Z moves to site ¢ + 1. Then, the bit x(7) is flipped if
the scatterer at site ¢ is present, y(i) = 1, and it remains its value if absent, y(i) = 0. This
evolution rule ¢ : {0,1}% x {0,1}2 — {0,1}% x {0, 1}% defines a discrete-time, deterministic
and reversible dynamical system on {0,1}# x {0,1}%. If we choose a set of macroscopic
variables m = (mg,m;) as the average magnetization m{’ and the fraction of scatterers m"
over 2N +1 sites around the origin, the system exhibits deterministic and irreversible behavior

in the sense of the law of large numbers: for almost all (z,y) with respect to fa1mg)/2 X fm, s

Jim (m o ') (x,y) = ®L(m) for all i € {0,1} and t € {0,...,T}, (3.1.1)
— 00

where p1, is the Bernoulli measure on {0, 1}# with parameter p € [0, 1]. ¢'(z,y) is the micro-
scopic state at time ¢ starting from a microstate (z,y). ®(m) = ((1—2my)mg, m;) represents
a macroscopic law in the model. Our main claim of this chapter is that algorithmically ran-
dom microstates with respect to the initial probability measure satisfy the macroscopic law
in the thermodynamic limit. That is to say, for Martin-Lof random (z,y) with respect to
H(1+mo)/2 X Hmy,

lim (m)" o ¢")(x,y) = ®(m) for all i € {0,1} and t € {0,...,T}. (3.1.2)

7
N—oo

37
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This result implies the zeroth law of thermodynamics for individual random microstates.
Thus, the notion of algorithmic randomness opens the possibility of formulating macroscopic
properties such as hydrodynamic equations and the zeroth law of thermodynamics at the
level of individual microscopic states.

To quantify the irreversibility for individual trajectories, we define a quantity called the
irreversible information loss as the logarithm of the ratio of probabilities at time ¢ of a
microscopic state ¢'(z,y) and the time-reversed one (m o ¢')(x,y) [SK00]. We prove that
the irreversible information loss is positive for any random state, which implies the difficulty
of realizing the time-reversed state of a random state in a measure-theoretic sense. The
randomness notion sheds light on another aspect of the reversibility paradox. We show
that the time-reversed state of a random microstate is not random as well as it violates the
macroscopic law.

3.1.2 Previous studies

There are a few works that have applied the theory of algorithmic randomness to statistical
physics. The basic idea of such previous studies is to employ the Kolmogorov complexity for a
microscopic state, which is the shortest program length outputting the state, and to present
a formulation combining the Shannon entropy with the Kolmogorov complexity [Ben82].
For example, a new definition of entropy for microstates was proposed to provide some
insight into Maxwell’s demon problems [Zur89b, Zur89a, Cav93]. It should be noted that
the Kolmogorov complexity is independent of the probability measure, while the Martin-Lof
randomness is defined for a probability measure. The most important relation between the
two concepts is that an infinite sequence is Martin-Lof random with respect to a probability
measure j if and only if the Kolmogorov complexity of the sequence is not smaller than the
optimal compression length under the probability measure, — log i, calculated from Shannon
information theory. See Theorem 3.2.4.6 for the precise statement. Therefore, the difference
of the optimal compression length from the Kolmogorov complexity, which is referred to
as the randomness deficiency [Gac, Gac94], is the most important quantity to identify the
Martin-Lof randomness. By using the randomness deficiency, we can express our statement as
“The randomness deficiency for an initial state diverges if the macroscopic behavior does not
obey a macroscopic law.” As far as we know, no statement using the Kolmogorov complexity
of initial microstates has been addressed for describing the macroscopic irreversibility.

3.1.3 Outline of the chapter

The remainder of the chapter is organized as follows.

In section 3.2, we review the theory of algorithmic randomness. To explain it in a self-
contained manner, we include a brief review of computability theory and measure theory on
the binary Cantor space. In section 3.3, we first introduce a variant of the Kac ring model. We
prove the law of large numbers in a measure-theoretic sense. With this in mind, we provide
the pointwise version of the law of large numbers on the basis of algorithmic randomness.
In section 3.4, we define the Shannon and Boltzmann entropies. The pointwise law of large
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numbers leads to a pointwise version of the zeroth law of thermodynamics. In section 3.5,
we investigate the consequence of microscopic reversibility. We define a quantity called
irreversible information loss quantifying the asymmetry between a microscopic trajectory and
the time-reversed one, and prove the positivity of this quantity for random states. By using
the reversibility property of microscopic dynamics, we construct a probability measure with
respect to which the Boltzmann entropy decreases along the typical macroscopic trajectory.
Similarly, we prove the nonrandomness of time-reversed states. In section 3.6, we conclude
with open problems and related topics.

3.1.4 Notations

We use the following notations throughout this chapter.

N, Z, Q, R, Q>p, and R denote the set of natural numbers, integers, rational numbers,
real numbers, nonnegative rational and real numbers, respectively. Let {0, 1} denote the set
of all infinite binary sequences, which is identified the set of all functions from N to {0, 1},
{0, 1}<N the set of finite binary strings including the empty string (J, |o| the length of a string
o € {0,1}<N and o7 the concatenation of finite string ¢ and finite or infinite string 7. A
subset of natural numbers A C N is identified with its characteristic function x4 € {0, 1}".
For a finite string ¢ and finite or infinite string 7, we let ¢ = 7 denote that o is a prefix of 7.
For a finite or infinite string z, x(n) denotes the n-th element of z and x [ n or (0 : n — 1)
its first n bits 2(0)x(1)...z(n — 1).

3.2 Preliminaries

In this section, we review the algorithmic theory of randomness. Since this theory is based
on computability theory, we also provide a brief review of computability theory. We hope
that the chapter will be read by theoretical physicists who are unfamiliar with computability
theory. This section includes only a minimal set of concepts necessary for reading this chapter
and omits proofs of theorems. For more details of topics and proofs of theorems, see [LV0S,
Nie09, DH10, Géc| for the theory of algorithmic randomness and [Coo04, Odi99a, Odi9ob]
for the computability theory.

3.2.1 Computability theory

A function from a subset A C {0,1}<N to {0,1}<N is called a partial function on {0,1}<N
and is denoted by f :C {0,1}<N — {0,1}<N. The subset A is called the domain of f and is
denoted by dom(f). The range of f is denoted by range(f). If A = {0,1}<N, f is called total
and is denoted by f:{0,1}<N — {0,1}<N. A central concept of computability theory is the
following.

Definition 3.2.1.1 (computable function). A partial function f :C {0,1}<N — {0,1}<N is
computable if there exists a Turing machine M such that M computes f.
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Informally, each Turing machine M represents a computer program. A partial function f
is computable if there is a program or algorithm such that for any input string o € {0, 1} <N,
it either outputs f(o) if f(o) is defined, or it outputs nothing if f(o) is not defined. If
we choose a coding function from {0,1}<N to a countable object such as natural numbers,
finite tuples of natural numbers, integers and rational numbers, we can extend the notion
of computability of functions on {0,1}<N to functions on the object. For instance, we can
represent a natural number n € N as a binary string 3(n) € {0,1}<N by using the binary
expansion. A partial function f on N is called computable if there is a partial computable
function g :C {0,1}<N — {0,1}<N with go3 = Bo f. Similarly, a function f :C {0,1}<N — Q
is computable if there exists computable functions § x px ¢ :C {0, 1}<Nx {0, 1}<¥x {0, 1}<N —
{0,1} x N x N\{0} such that f(c) = (—1)°“)p(c)/q(c) for any o € {0,1}<N. All functions
implemented in modern computers such as addition, multiplication, subtraction, division,
and bounded summation are computable.

A set A C {0,1}=N is computable if its characteristic function x4 : {0,1}<N — {0, 1}
is computable. For instance, the set of all prime numbers is computable because there is
an algorithm that decides whether a given natural number is a prime number or not. To
formulate the notion of algorithmic randomness, we use a weaker notion of the computability
of sets.

Definition 3.2.1.2 (computably enumerable). A set A C {0,1}<N is computably enumerable
(c.e.) if there exists a partial computable function f :C {0,1}<N — {0,1}<N such that
A = range(f).

This means that there exists an algorithm enumerating or listing all the members of
the set. For example, for a polynomial p(yi,y2) with integer coefficients, D = {x € N :
Jy1,y2 € N p(y1,y2) = z} may not be computable but is computably enumerable. It is
easy to prove that A C {0,1}<N is computable if and only if both A and A are c.e. In
particular, if A is computable, then A is c.e. Computable enumerability is a properly weaker
notion than computability because there is a set that is computably enumerable but not
computable. Examples of such sets are the halting problem of Turing machines and Hilbert’s
tenth problem.

We also define uniformly computable enumerability of sequences of sets.

Definition 3.2.1.3 (uniformly c.e.). A sequence (A, )nen of sets A,, C {0, 1}<N is computably
enumerable uniformly in n if there exists a partial computable function f :C {0,1}<N x N —
{0,1}<N such that A, = range(f(-,n)) for all n € N.

A Turing machine is a special-purpose machine in the sense that the machine computes
one computable function. Since we can code a program by a natural number in a computable
manner, we can construct a wuniversal Turing machine, which is a model of present-day
computers. This is why we can now implement any program by using only one computer.

Theorem 3.2.1.4 (universal Turing machine). There is a partial computable function of two
variables g such that g(e,x) = f.(x) for any input x and any partial computable function f,
indexed by a natural number e.
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There is no coding that maps from finite strings to real numbers because the set of all real
numbers is uncountable. Therefore, we say that a real number is computable if there exists a
sequence of rationals approximating the real number from below and above in a computable
way.

Definition 3.2.1.5 (computable real, computable real-valued function). A real number x €
R is lower semicomputable if the set {¢ € Q : ¢ < x} is computably enumerable. =z is
upper semicomputable if —x is lower semicomputable. z is computable if it is both lower
and upper semicomputable. Similarly, a real-valued function f : {0,1}<N — R is lower
semicomputable if the set {(o,q) € {0,1}<N x Q : ¢ < f(0)} is computably enumerable. f
is upper semicomputable if — f is lower semicomputable. f is computable if it is both lower
and upper semicomputable.

3.2.2 Topology and measure theory in Cantor space

We review the basics of topology and measure theory on the set of infinite binary sequences.
For a finite string o € 2<N, we use [o] to denote the cylinder set, that is, the set of all infinite
binary sequences whose prefix is o, [0] = {o7 : 7 € {0,1}N}. For S C {0,1}<N, we let

151 = Useslo].

Definition 3.2.2.1 (c.e. open). The Cantor space is {0, 1} equipped with the product
topology of a countable number of copies of the discrete topological space {0, 1}. The Cantor
space has a countable basis of cylinder sets {[o] : ¢ € {0,1}<N}. A subset A C {0,1}" is
open if it is the union of a subset of cylinder sets, that is,

A=[5= o] (3.2.1)

ogeS

for some subset of strings S C {0,1}<N. If there exists a computably enumerable set S such
that A = [S], then A is called c.e. open. A sequence (A, )nen of sets A, C {0,1}V is c.e.
open uniformly in n if there exists a sequence (S, ),en of c.e. sets uniformly in n such that

A, =[5, for all n.

Let ({0, 1}, B) be the measurable space, where B is the Borel o-algebra. It is known that
a probability measure on ({0, 1}, B) can be constructed from a premeasure on {[o] : o €
{0,1}<N} with the aid of the Carathéodory’s extension theorem. In the following, y, denotes
the induced probability measure from a premeasure p and is identified with the premeasure.

Definition 3.2.2.2 (premeasure, computable measure). A probability premeasure is a func-
tion p : {0,1}<N — Ry such that p(d) = 1 and p(c0) + p(ol) = p(o) for all o € {0,1}<N.
The induced probability measure j, is computable if p is computable as a real-valued function.

Example 3.2.2.3.

(1) A premeasure p(c) = 2719 for ¢ € {0,1}<N induces the uniform measure or the
Lebesgue measure .
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(2) Let p be a real number such that p € (0,1). We set p(1) = p, p(0) =1 — p, and define
a probability premeasure p, : {0,1}<N — Rs( by

|o|—1

pp(0) = H plo(i))- (3.2.2)

We call the induced measure y,, the Bernoulli measure of parameter p, which is denoted
simply by pt,. The Bernoulli measure p, of parameter p is computable if and only if p
is a computable real. We note that the Bernoulli measure with p = 1/2 is the uniform
measure .

(3) Let = € {0,1}" be a sequence. The Dirac measure §, concentrated on z is induced by
the premeasure

1 feCx
- = - 3.2.3
p:(0) {0 otherwise. ( )

For any measurable set A C {0, 1}V,

1 ifzeA

0, (A) = {0 —— (3.2.4)

We use the first Borel-Cantelli lemma to prove the strong form of the law of large numbers.
Additionally, Martin-Lof randomness has an alternative characterization in terms of the
effective version of the Borel-Cantelli lemma (see Definition 3.2.3.7).

Lemma 3.2.2.4 (first Borel-Cantelli lemma). Let (C},),en be a sequence of measurable sets.
If >0, 1(C) < oo, then

o

w({x : z € C, for infinitely many n}) = u (ﬂ U Ck) =0 (3.2.5)

n=0k>n

3.2.3 Martin-Lof randomness

In the probability theory, any realization of a stochastic process is assumed to occur randomly.
In an n times fair coin tossing experiment, a realization 0" = 00...0 (n zeros) has the same
probability 27" as any other realization. There is no difference between all realizations in
this sense. Nevertheless, we believe that the relative frequencies of heads and tails approach
asymptotically to 1/2 as n — oo under this experiment. This belief is represented by the
strong law of large numbers in the probability theory. Although 0N = 00... (infinitely
many zeros) is a realizable outcome, it is not random in that it does not satisfy the law of
large numbers. Thus, it is possible to distinguish between random sequences and nonrandom
ones according to the statistical laws that have the probability one. In other words, the
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notion of random sequences generated by a stochastic process is defined as ones having
typical properties, or equivalently, having no exceptional properties. However, it is not clear
what class of typical properties or exceptional properties we should choose to define random
sequences. For instance, although (01)Y = 010101 ... satisfies the law of large numbers,
our intuition tells us that it is not a typical sequence generated by a fair coin tossing and
therefore should not be random. FEven if we require that the law of large numbers should
hold for subsequences selected from a whole sequence by countable rules, there is a sequence
satisfying the requirement but violating the law of the iterated logarithm, which is known
as Ville’s counterexample [Vil39] (see also Theorem 6.5.1 in [DH10]). Hence, just the law of
large numbers is not enough to characterize randomness. One naive idea is to consider all
exceptional properties. We then define a set describing an exceptional property.

Definition 3.2.3.1 (null set). A set N C {0, 1} is a null set with respect to a probability
measure £ if there is a sequence (Uy,)nen of open sets such that N C (1), .y U, and pu(U,) <
27",

Example 3.2.3.2.

(1) For x € {0,1}", the one-element set {z} is a null set with respect to A. Indeed,
{z} = N,en Un, where U, = [z | n] with A(U,) =27".

(2) N ={z € {0,1}": z(2n) = 1 for all n € N} is a null set with respect to A. Indeed,
N =\, ex Un, where U, = {z € {0, 1} : 2(2k) =1, 0 < k < n} with A\(U,,) =27

Example 3.2.3.2 (1) shows that the naive idea fails because there is no sequence not
contained in all null sets. To obtain a meaningful definition of random sequences, we have
to restrict the class of null sets. The definition must satisfy the following two requirements
at least.

1. The set of random sequences is typical in measure-theoretic sense, that is, it has prob-
ability one.

2. Sequences generated by some simple rule such as (01)Y are not random with respect to
A

We should note that a countable union of null sets is also a null set.

Proposition 3.2.3.3. Let (N.).eny be a sequence of null sets with respect to a probability
measure z. The countable union (J, .y Ne of the sequence is a null set.

Therefore, if we choose a countable family of null sets to define random sequences, the first
condition is automatically satisfied. We should also impose some computability conditions on
the null sets if we interpret the generation by simple rules as listing elements in an algorithmic
manner. The above argument motivates the following definition.
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Definition 3.2.3.4 (Martin-Lof random [ML66]). Let 1 be a computable probability measure
on {0, 1}, A Martin-Ldf test with respect to the measure j (ML p-test) is a sequence (U, )nen
of c.e. open sets uniformly in n such that p(U,) < 27" for all n € N. A set N C {0, 1}
is called a Martin-Lof null set with respect to p (ML p-null set) if there is a Martin-Lof
test (Up)nen such that N C (), oy Un- A sequence z € {0,1} is Martin-Lof random with
respect to 1 (ML p-random) if {z} is not a Martin-Lof null set. MLR,, denotes the set of ML
p-random sequences.

Martin-Lof randomness satisfies the first requirement. Indeed, there are only countably
many ML tests because there are only countably many c.e. sets. Since the union of all ML
p-null sets is a null set with respect to p from Proposition 3.2.3.3, p-almost every sequence
is ML p-random.

Theorem 3.2.3.5. y(MLR,) = 1.

We present an interpretation of Definition 3.2.3.4 from the viewpoint of the hypothesis
testing. In a casino, a gambler Skeptic and a dealer Reality are about to play a game using
an unbiased coin. However, the coin is prepared by Reality and Skeptic doubts whether or
not the coin is really unbiased. Skeptic needs to make sure of the unbiasedness of the coin in
some way. One simple way to check this is to toss the coin many times and to test whether
or not the generated sequence w € {0,1}" is random. To this end, we apply the idea in
hypothesis testing. Skeptic prepare a subset C' C {0, 1} consisting of the sequences that are
clearly non-random. As an example, we here consider the set of sequences whose 2k-th bits
are 1,

C={ne{0,1}": (Vk e N)(n(2k) = 1)}. (3.2.6)

We remark that this subset consists of non-random sequences although it does not cover whole
non-random sequences. On the one hand, since Reality claims that the coin is unbiased, the
null hypothesis Hj is expressed as

H()IUJQC.

On the other hand, since Skeptic doubts the claim Hj, the alternative hypothesis H; is
expressed as

lewGC'.

To judge Hy or Hy, Skeptic observes the sequence w up to the 2(n — 1)-th bits. If there is a
bit k € {0,...,n— 1} such that w(2k) = 0, Skeptic accept Hy and judge w ¢ C. If w(2k) =1
for all k € {0,...,n — 1}, Skeptic reject Hy and judge w € C. This means that Skeptic take

Co={nec{0,1}V:(vke{0,...,n—1})(n(2k) = 1)} (3.2.7)

as a rejection region. In this testing procedure, although the probability of the type II error is
zero, the probability of the type I error is given by A(C,,) = 27". Therefore, if n is sufficiently
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large, the type I error probability is extremely small. Definition 3.2.3.4 applies the idea that
a sequence of rejection regions whose probabilities decay to zero defines a test for random
sequences.

As we mentioned above, a single test {U,} does not cover whole non-random sequences.
To determine whether a given sequence is random or not, we have to implement a countable
number of ML tests. However, the existence of a universal Turing machine implies that the
union of all ML, u-tests is also a ML p-test. Such a test is called universal Martin-Lof p-test.

Theorem 3.2.3.6 (universal Martin-Lof test). There exists a Martin-Lof test {U,, }nen with
respect to p such that for any ML p-test {V; }nen, (Npen Vo € Npen Un-

Proof. See Fact 3.2.4 in [Nie09] or Theorem 6.2.5 in [DH10] O

ML randomness also satisfies the second requirement. If z € {0,1}" is computable, then
z is not ML A-random because (U, )neny = ([ | n])nen is @ ML A-test. We remark that even
z = 0% is ML random with respect to the Dirac measure §, concentrated on z.

The notion of randomness can be extended to objects in {0,1}% and {0, 1} x {0, 1}".
We fix a bijective coding ¢ : {0,1}% — {0, 1}" in the following. We assign a two-sided infinite
binary sequence z = ... z(—1)xz(0)z(1) -+ € {0,1}% to a one-sided infinite binary sequence

(x) = 2(0)z(=Dx(1)z(=2)z(2) - - - € {0, 1} (3.2.8)

We let i be a computable probability measure on {0, 1}%. We say that x € {0, 1}2 is Martin-
Lof random with respect to p if «(z) is ML random with respect to g o™, Similarly, we
define a coding function from {0, 1} x {0, 1} to {0, 1} as

k(x,y) = z(0)y(0)z()y(1)--- € {0, 1} for (x,y) € {0,1} x {0, 1} (3.2.9)

For a computable probability measure p on {0, 1} x {0, 1}N, (z,y) € {0,1}" x {0, 1}V is
called Martin-Lof random with respect to p if #(z,y) is ML random with respect to o kL.

There is an alternative characterization of Martin-Lof randomness in term of Solovay
tests. We use this equivalence to prove the effective law of large numbers.

Definition 3.2.3.7 (Solovay random). Let u be a computable probability measure. A Solo-
vay test is a sequence (Sy)neny of c.e. open sets uniformly in n such that > u(S,) < oo.

x € {0, 1} is Solovay p-random if x is in only finitely many S,,.

Proposition 3.2.3.8. An element x € {0,1}" is Martin-Lof p-random iff it is Solovay pu-
random.

Proof. See Proposition 3.2.19 in [Nie09] or Theorem 6.2.8 in [DH10]. O
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3.2.4 Robustness of Martin-Lof randomness
Conservation of ML randomness

The definition of Martin-Lof randomness refers to an underlying probability measure. There-
fore, even if a sequence x € {0, 1}" is ML p-random, it may not be random with respect to
another measure v. A trivial example is a sequence that is A-random but not random with
respect to the Bernoulli measure p;/3. However, ML randomness is a robust notion in the
sense that it is preserved by simple transformations. Here a simple transformation means a
computable function from {0, 1} to {0, 1}, which is defined through a partial computable
monotone function on {0, 1}<N.

Definition 3.2.4.1. A partial function f :C {0,1}<N — {0, 1}~ is monotone if
oC71= f(o) C f(7) (3.2.10)

holds for all o,7 € dom(f). For a partial monotone function f :C {0,1}<" — {0, 1}, we
define a partial function f:C {0, 1} — {0, 1} as

undefined otherwise

Fa) = {Umf(a) if sup{|o|: o C 2,0 € dom(f)} = o0 (32.11)

for z € {0,1}N. A partial function F' :C {0,1} — {0,1}Y is computable if there ex-
ists a partial computable monotone function f :C {0,1}<N — {0,1}<N with F = f. It
dom(F) = {0,1}", the function F is called total. Hereafter, we consider only total (com-
putable) functions on {0, 1},

We define an image measure pF ! of 4 under a function F : {0, 1} — {0,1}" as
(WF~)(A) = i (F~(4) (3212)

for any measurable set A € B. Then, computable functions on {0, 1} preserve the com-
putability of probability measures and the ML randomness.

Proposition 3.2.4.2. Let p be a measure on {0, 1} and F : {0, 1} — {0,1}" be a total
computable function. If i is computable, uF~! is computable.

Proof. See Lemma 2.6 in [BP12]. O

Theorem 3.2.4.3 (conservation of ML randomness). Let p be a computable probability
measure on {0, 1} and F : {0, 1} — {0, 1} a total computable function. If z € {0, 1}" is
ML p-random, then F(z) is ML puF~!-random.

Proof. See Theorem 3.2 in [BP12]. O

Other characterization of ML randomness

Martin-Lof randomness has robustness in another sense. It has other characterizations in
terms of incompressibility and unpredictability.
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Incompressibility approach Let us consider a sequence. If the sequence has a simple
structure, it can be compressed into a shorter length one by using an algorithm. For instance,
(01)10909 can be transformed to the shorter program “output one hundred thousand 01s 7.
Conversely, if the sequence is “random”, there is no simple description of it. This considera-
tion leads to the idea of the Kolmogorov complexity [Sol64a, Sol64b, Kol65]. Here we use a
prefix-free version of the Kolmogorov complexity for technical reasons.

Definition 3.2.4.4 (prefix-free computable function). A set of strings A C {0, 1} is called
prefix-free if for any two distinct elements o and 7 in A, o is not a prefix of 7. A partial
computable function f :C {0,1}<N — {0, 1}<N is prefiz-free if dom(f) is prefix-free.

The Kolmogorov complexity of a string o € {0,1}<N with respect to a prefix-free com-
putable function f is defined as the length of a shortest program (string) 7 € {0, 1}<N with

f(r) = 0. That is,
K¢(o) = min{|7| : f(7) = 0o}, (3.2.13)

where the minimum is taken to be oo if the set after the “min” is empty. The Kolmogorov
complexity of a string ¢ depends on the underlying prefix-free computable function f. How-
ever, there exists an optimal prefix-free computable function U in the sense that if for any
partial computable function f :C {0,1}<N — {0,1}<N, there is a positive constant ¢; < oo
such that for all o € {0, 1}<N,

KU(O') < Kf(O') + Cf. (3.2.14)

Thus, if a string can hardly be compressed by an optimal function, then the string cannot
be compressed by any computable function. In other words, the Kolmogorov complexity is
an intrinsic property of strings.

Definition 3.2.4.5 (prefix-free Kolmogorov complexity). We fix an optimal prefix-free com-
putable function U and define the prefiz-free Kolmogorov complexity K(o) of a string o €
{0,1}N as K(0) = Ky(o).

According to the following theorem, the Kolmogorov complexity provides a characteri-
zation of randomness in terms of incompressibility. That is to say, the measure-theoretic
typicalness of a sequence is equivalent to the incompressibility of it in the sense of the Kol-
mogorov complexity.

Theorem 3.2.4.6 (equivalence between ML randomness and complexity randomness). Let
 be a computable probability measure. A binary sequence x € {0, 1} is Martin-Lof random
with respect to p if and only if there exists a positive constant ¢ such that for all n

K(z [ n) > —logu([x [ n])—c. (3.2.15)

Proof. See Theorem 6.2.3 in [DH10] for the case of the uniform measure. The extension to
an arbitrary computable measure is straightforward. O]
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Unpredictability approach There is another characterization by unpredictability. If a
sequence is random, the knowledge of the first n bits of the sequence provides no useful
information on the (n + 1)-th bit. Therefore, if we bet on the future bits by utilizing the
knowledge of the previous bits of the random sequence, there is no betting strategy by which
we are able to make much money. A betting strategy is represented mathematically by
a martingale, which is a crucial concept in the theory of stochastic process [Doob53]. See
[Nie09, DH10] for more details in the context of the theory of algorithmic randomness.

3.3 Kac infinite chain model

We aim to understand how deterministic and irreversible macroscopic laws emerge from
deterministic and reversible microscopic dynamics. The Kac ring model has often been used
as an instructive model to demonstrate the macroscopic law as the law of large numbers
[Kac59, GO09, MNS09]. The model is also suitable as an example of an application of the
randomness notion because the dynamical system is defined on infinite binary sequences.

3.3.1 Model

Let us consider the one-dimensional lattice Z. For each site ¢ € Z, there is one particle
having a spin variable n(i) € {—1,1} and at most one scatterer. The occupation number of
the scatterer at site i is denoted by y(i) € {0, 1}. For convenience, we set z(i) = (1+n(i))/2 €
{0,1} for all 7+ € Z and think of them as dynamical variables. Then, a microscopic state of
our model is represented by (x,y) = (x(i),y(i))iez and the state space is {0,1}% x {0, 1}Z.
A discrete-time deterministic dynamical system on {0, 1}% x {0, 1}% is defined by a function
¢ :{0,1}7 x {0,1}* — {0,1}* x {0,1}* with

ple,y)(i) = (@i = 1) +y(i = 1) = 2z(i = Dy(i — 1), y(4)). (3.3.1)

By using (3.3.1), we obtain the time evolution of the spin variables, n(z,y)(i) = 2z(i) — 1, as

(o @) (@, y)(i) = [1—2y(i = 1)]... [L = 2y(i — £)](22(i — t) — 1). (3.3.2)

Thus, this dynamical system has the following interpretation. Let us prepare an initial
configuration of spins and scatterers. For each time step, the configuration of scatterers
remains unchanged and the particle at site ¢ jumps to the neighbor site ¢ 4+ 1. Then, the spin
n(i) of the particle is flipped if the scatterer at site i is present, y(i) = 1, or it keeps its value
if absent, y(i) = 0.

The dynamical system is deterministic and invertible. In fact, the map

o (@, y)(0) = (i + 1) + (i) — 22 + Dy(i), y(i)) (3.3.3)

is the inverse of . Obviously, this dynamics corresponds to jumps of particles to the left
site. We discuss the details of the microscopic reversibility in section 3.4.
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The dynamical system on {0, 1} x {0, 1}% can be regarded as that on {0, 1} x {0, 1} and
{0, 1} by the encoding function ¢ and k. Hereafter, (z,y) (resp. ¢) represents an element
of {0,1}% x {0,1}%, {0,1}N x {0,1}", or {0,1}" (resp. the function on {0,1}% x {0,1}%,
{0, 13N x {0, 1}, or {0,1}") interchangeably. It is easy to show that if we think ¢ as a
function from {0, 1} to {0,1}", ¢ is a total computable function on {0, 1},

Remark 3.3.1.1. Our model is a variant of the Kac ring model [Kac59]. The original model
is defined on the ring of size N. We use the infinite chain model in this chapter because
the randomness notion in section 3.2 is sharply defined for infinite sequences. Therefore,
Zermelo’s recurrence paradox, which is a characteristic of finite systems, does not occur.

The model can be thought to be a dynamical system that consists of spin degrees of
freedom with quenched scatterers because the configuration of scatterers does not change in
time. In this chapter, we include the scatterers in state variables for simplicity. See Remark
3.3.3.2

3.3.2 Measure-theoretic approach

Let us imagine the situation we observe the system macroscopically. We introduce the fol-
lowing two macroscopic variables over 2N + 1 sites for a microscopic state (x,y):

N N

1 1
N _ § 20(i) — 1 N = E ). 3.4
mO <x7 y) 2N + 1 i:_N( x(z) )7 ml <x7 y) 2N + 1 S y(@) (3 3 )
If we observe the time evolution of the macroscopic variables m(t) = (mq(t),m1(t)), the

variables obey a macroscopic law and relax to the equilibrium values. In fact, at each time
step ¢, we assume that the up or down spins are scattered at a rate mq(t) for sufficiently
large N. Then, the fraction of the up or down spins changes from (1 4 my(t))/2 to [1 £
(1 — 2mq(t))mo(t)]/2. Therefore, the average magnetization changes from mg(t) to (1 —
2my (t))mo(t). Because the average density of the scatterers is constant, the macroscopic law
has the form m(t) = ®*(m(0)) with ®(m) = ([1 — 2m4|mg, m1).

This “molecular chaos” argument provides the form of the macroscopic law that the
system should obey on average. However, the hydrodynamic equations for fluids predict the
macroscopic behavior of a single experiment, not just the ensemble average. The same holds
true for this model. Suppose that initial microscopic states are sampled according to an
initial probability measure corresponding to a nonequilibrium state. Then, the macroscopic
law is understood as typical behavior with respect to the initial probability measure. This
scenario is represented mathematically by the law of large numbers.

In statistical mechanics, if we have information on only the values of relevant macroscopic
variables at the initial time, then one natural choice of an initial probability measure is the
Gibbs measure corresponding to the initial macroscopic state [ZMR96, ZMRI7]. In the
case of the Kac infinite chain model, the relevant macroscopic variables are the average
magnetization mg and the average density of scatterers m;. Then, the Gibbs measure in this
case is the product of the Bernoulli measures fi(i1mg)/2 X fm, on {0,1}% x {0,1}%, where
m = (mg,my) € [—1,1] x [0,1] is an initial nonequilibrium state.
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Under the above settings, the weak and strong laws of large numbers hold. Although the
facts are widely known, we give complete proofs of the theorems in the following. Henceforth,
We Write [l = fi(14mg)/2 X [m, for notational simplicity and E[X] denotes the expectation
value of a random variable X with respect to u,,. For instance,

E[2z(i) — 1] = mo, Ely(i)] =my fori e Z. (3.3.5)

Theorem 3.3.2.1 (weak law of large numbers [Kac59, GO09, MNS09]). For any 7" € N and
any 0 > 0,

T
Jim o [ U @) € 0,107 % {0,117 [(ml 0 ¢ () = @h(m)| > 6} | =0.
—00

t=04e{0,1}

(3.3.6)

Proof. Fix T € N and 6 > 0. By the subadditivity of measures, it is enough to show that for
any t € {0,...,T} and any ¢ € {0, 1},

T fan (| 0 ¢)(.9) — @ (m)| > 8) = 0. (337)
First, we show that
E[(m;" o ¢")(w,y)] = @j(m). (3.3.8)
By using (3.3.2), (3.3.4), (3.3.5) and statistical independence of z(i) and y(j), we have
B{(m o ), )] = g S B~ 2900~ 1) (1 29(i — )(2e(i 1) — 1)
— 2N1+ - Z E[1 —2y(i —1)]...E[l — 2y(i — t)|E[2z(i — t) — 1]
= (1 — 2my)'mg = @} (m). (3.3.9)
E[(mY o ¢')(z,y)] = my = ®{(m) is obvious. Next, we evaluate the second moments of
(mY o ¢")(x,y).
E [((méV o sot)(a:,y))z} = (2N—:—1)2 D Bl -2y 1)) (1= 2y~ 1))
X (1=2y(G=1)... (1=2y(G =) - E[(22(i — ) = 1)(22(j — ) = 1)]
_ m S 2N 1 [k) E[(1 - 2y(0))... (1 - 2y(t — 1))
X (1=2y(k))...(1=2y(k+t—1))]-E[(22(0) — 1)(2z(k) — 1)]
= (2N—1+1)2 (2N + 1) +2md Y (2N + 1 — k)(1L — 2my )"0
k=1

(3.3.10)
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We have used the translation invariance of u,, and statistical independence of random vari-
ables at different sites. We take N such that T' < 2N. Then, we have

2N ¢ 2N
QN +1—k)(1—2my) 2 =N QN 41— k) (1 —2m)* + Y (2N +1—k)(1—2my)*
k=1 k=1 k=t+1
1
< (2N + 1)t + 5(1 —2m)* (2N + 1) (3.3.11)
Therefore,
1+ 2mdt
Vot < =¥ 3.12
Var|(mg' o ¢)(2,y)] < 5 (3.3.12)
for t € {0,...,T} and T < 2N. Additionally, we obtain the variance of m?,
Var[(m} o ) (a.1)] = 111 (3:3.13
1 5 2N + 1 . cJ.
By using Chebyshev’s inequality, we have
Var[(m;" o ¢')(z, y)] C
m No oyl — P! 5) < d < 3.3.14
i (|(m 0 ) (@, y) — i(m)| > §) < 5 S@enyn 08
with a constant C' independent of N, which implies (3.3.7). ] ]

We have the strong form of the law of large numbers from the inequality (3.3.14) and the
first Borel-Cantelli lemma (Theorem 3.2.2.4).

Theorem 3.3.2.2 (strong law of large numbers). For any natural number 7" € N,

Lon ( lim (m) o ¢')(x,y) = ®(m) for all i € {0,1} and ¢ € {0, ... ,T}) =1.  (3.3.15)

N—oo

Proof. For k € Ny, we set

Cxo=U U {0 € 007 x 0.7 o ) o) — @l > 1} 6310

t=014€{0,1}

From (3.3.14), we have

2(T +1)CkK?
<~/ 3.1
i (Crzg) < IN? 1 (3.3.17)
for N satisfying T' < 2N. Therefore,
00 [T/2] 0o
2(T +1)Ck?

ZMm(CN2,k) < Z pm (Cn2 i) + Z TaNTE1) (3.3.18)
N=0 N=0 N=[T/2]
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By the first Borel-Cantelli lemma (Theorem 3.2.2.4) and Proposition 3.2.3.3, we have

| U ) U G | =0 (3.3.19)

kENsg NeEN M>N

This means that for fi,,-almost all configuration (z, 1), the subsequence ((m™*o¢!)(x,y))ven
converges to ®i(m) for t € {0,...,T} and ¢ € {0,1}
Next, we show the convergence of the whole sequence. For any natural numbers L, M

and a real number p with p < (2L +1)/(2M + 1) <1, we have

(m o ") y) — (m o ) y) = (1 2L+1 ) (m o o) (z.y)

T 2M +1
1 —L—1 . M .
- (Z;M@x(z) —1)+ i:;rl@x(@) — 1))
§1—p+2§j\\/‘[4—1? <2(1 —p), (3.3.20)

where we have used m{ € [~1,1] and 2z(i) — 1 € {—1,1}. We consider a natural number K
such that N? < K < (N +1)2. If we take L = N?, M = K and p = py = (2N?+1)/(2(N +
1)>+1) first and take L = K, M = (N +1)? and p = py second, the inequality (3.3.20) gives

(md” 0 ") (2, y) — 2(1 —py) < (mf 0 @)z y) < (M 0 ") (@, ) +2(1 — pw).

(3.3.21)

These inequalities also hold for (mf o ©!)(z,y). Since py — 1 as N — oo, for p,,-almost
all (z,y), the whole sequence ((m¥ o ¢')(x,y))yen converges to ®!(m) for i € {0,1} and
te{o,...,T}. O O
Remark 3.3.2.3. A similar analysis leads to the weak and strong law of large numbers
for the microscopic dynamics ¢! and positive integers T' > 0. This is a consequence of
the microscopic reversibility and the statistical property of the initial measure. If an initial
configuration has no correlation between sites, whether the microscopic dynamics is ¢ or ¢,
which corresponds to the direction of movement of the spins, is irrelevant to the validity of
the macroscopic relaxation.

3.3.3 Algorithmic randomness approach

We reformulate the law of large numbers associated with the macroscopic law as properties of
individual microscopic states. The concept of algorithmic randomness introduced in section
3.2 helps us to do that. By using the randomness notion, we have the following theorem.

Theorem 3.3.3.1 (effective strong law of large numbers). Let m = (mg, m;) be computable
reals and T € N. If (z,y) € {0,1}% x {0,1}? is Martin-Lof random with respect to fi,,

lim (m) o ¢')(z,y) = ®(m) (3.3.22)
N—oo
for all i € {0,1} and ¢t € {0,...,T}.
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Proof. Fix T € N. Since ®!(m) are computable reals, (Cyz)nen i c.e. open uniformly in
N. By (3.3.18), it is a Solovay test. Therefore, if (z,y) € {0, 1}% x {0, 1}% is ML random with
respect to fin,, then (z,y) € Uyen Narsny(Cnzi)¢. Because k is arbitrary, the subsequence
((mY 0 ") (x,y)) ven converges to ®(m) for any i € {0,1} and t € {0,...,T}. The proof of
the convergence of the whole sequence is the same as the proof of Theorem 3.3.2.2. [ [

According to Theorem 3.3.3.1, the algorithmic randomness of a microscopic state is a
sufficient condition that the microstate obeys the macroscopic relaxation law. Since the set
of all ML random microstates has measure one (see Theorem 3.2.3.5), this sufficient condition
is not too strong from a viewpoint of measure-theoretic typicality. In particular, the strong
law of large numbers (Theorem 3.3.2.2) follows from the effective law. We stress that the
effective law of large numbers holds for a wide class of models. We discuss the generality of
our result in ?77.

Remark 3.3.3.2. Van Lambalgen’s theorem [vL87] implies that (z,y) is ML p,,-random if
and only if y is ML ji,,,-random and x is ML fi(14m,)/2-random with oracle y. Therefore,
Theorem 3.3.3.1 insists that for a given ML p,,,-random configuration of quenched scatterers
Y, H(14+me)/2-Tandom microstates with oracle y satisfy the macroscopic law. We note that for
a [i(14mo)/2-Tandom element x and fi,,,,-random element y, the pair (z,y) does not necessarily
obey the macroscopic law. For instance, if (1+myg)/2 = m; and 2 is f4(14my)/2-random, (z, )
violates the law.

3.4 Entropy and the zeroth law of thermodynamics

Entropy is a fundamental concept in various fields such as thermodynamics, statistical
physics, information theory and dynamical systems theory. Each type of entropy has a dif-
ferent role. We investigate the Boltzmann entropy quantifying irreversibility on transitions
between macroscopic states.

3.4.1 Shannon entropy

Before considering the Boltzmann entropy, we review basic properties of the Shannon en-
tropy for convenience, which is an information-theoretic quantity characterizing the optimal
compression rate in the information source coding problem [CT12].

Remark 3.4.1.1. In this subsection, the configurations (z,y), the probability measures
and the microscopic dynamics ¢ are regarded as ones defined on {0, 1} x {0, 1}, not on
{0,1}% x {0,1}%, by the encoding function ¢ in section 3.2.3.

Definition 3.4.1.2 (Shannon entropy rate, self-entropy rate). The Shannon entropy rate of
the joint probability measure p on {0, 1} x {0, 1} is defined as

A(p) =tmswp—— 3" o] x [r)) (o] x 7)) (3.4.1)

oo (o,7)E2m X 27
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The self-entropy rate of (z,y) € {0, 1} x {0, 1} with respect to p is defined as

() = tisup =t (o [ ) [y | ) (3.4.2)

A straightforward calculation provides
() = h (X +2m°> + h(my), (3.4.3)
) is the binary entropy function. For x €

where h(p) = —plnp — (1 — p)In(1 —p) (p € [0, 1]
{0,1¥ and n € N, set N(x,n) = |{i : 2(i) = 1,0 <i <n —1}|. If (z,y) € {0,1}" x {0, 1}
satisfies
N N
lim Niw.n) =p,, lim Niy,n) = Dy, (3.4.4)

n—00 n n—oo n

the self-entropy rate of (x,y) with respect to p,, is given by

H,, (,y) = —p:In (1 +2m0> —(1—p,)In (1 _Qmo) —pylnmy — (1= py) In(1 —my).
(3.4.5)

In particular, for any random element (z,y) € {0, 1} x {0, 1} with respect to fi,,

Hy,, (2,y) = H(pm), (3.4.6)
because p, = (14 my)/2 and p, = my. This type of statement is referred to as the effective
version of the asymptotic equipartition property.

For deterministic and reversible dynamical systems, the Shannon entropy of the probabil-
ity measure describing the system does not provide useful information on irreversibility. If we
define the probability measure at time ¢ starting from the initial measure fi,,, as fims = fime ™",
the Shannon entropy rate is invariant under the time evolution, that is, H(t,) = H (fm)-
This invariance remains true for random elements. In fact, since the initial segment of the
first and second components of ¢!(z,y) € {0, 1} x {0,1}N, z; | n and y; | n, depend only
onx | n+2tand y | n+ 2t (the factor 2 comes from the way of encoding ¢ from {0, 1} to
{0, 1}Y), the inclusion relation

[ in+2]xyn+2] Co ([zsIn]x [y In)Clxn—2tx[yIn—-2t] (3.4.7)

holds. Then,

—%ln,um([{l? [n+2t x [y [ n+2t]) < —%lnum,t([:vt ['n] x [y [ n])

< —%lnum([x 2 x [y [n—21).  (3438)

For any random element (z,y) € {0,1}" x {0, 1}", the terms on the left- and right-hand sides
converge to H (). Therefore, the self-entropy rate of ¢(x,y) with respect to p,, exists
and equals that of (z,y) with respect to fi,:

H'um’t(got(x, y)) = lim _% In /vbm,t([xt f”] X [yt fn]) = H(,U/m) = H(/'Lm7t)' (349)

n—oo
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3.4.2 Boltzmann entropy and the zeroth law of thermodynamics

Because the Shannon entropy does not change in time in reversible dynamical systems, we
need another quantity to characterize the macroscopic irreversibility. According to Boltz-
mann’s idea, the asymmetry of the direction of time in the macroscopic behavior emerges
from the large differences between the number of microstates consistent with macrostates.
Since the number of microstates corresponding to a macrostate is proportional to the proba-
bility of the macrostate under the uniform measure A and different macrostates usually have
exponentially different probabilities, it is reasonable to introduce the rate function in the
large deviation theory as the Boltzmann entropy.

Definition 3.4.2.1 (Boltzmann entropy). The Boltzmann entropy of a macroscopic state
m = (mg, my) is defined as

In A x A ({(z,y) € {0,1}* x {0,1}* : |mg’ (z) — mo| < &, |m} (z) — my| < 6}) ,
(3.4.10)

S = lim li
p(m) =lim lim o

where ) is the uniform measure on {0, 1}%.

The following scenario is well-known [Leb93]: An initial microstate in a nonequilibrium
macrostate with low Boltzmann entropy evolves typically toward macrostates with higher
entropy and finally reaches the equilibrium state with the maximum entropy.

Although at first sight, it explains the macroscopic irreversibility qualitatively, it should
be noted that we must suppose an initial probability measure in order to argue the typical
macroscopic behavior. The above scenario is certainly true if we assume that initial mi-
crostates are chosen according to the microcanonical measure or the Gibbs measure. In fact,
by Stirling’s formula, we have

Sp(m) = =202+ H (). (3.4.11)

If we prepare initial microstates according to the Gibbs measure ,,, then the initial macrostate
is m and the macrostate evolves according to the law ® with probability one according to
Theorem 3.3.2.2. Then, the Boltzmann entropy difference is typically positive:

SB(@t(m)) — SB(m) = [_{(qut(m)) — F_I(um) > 0 for ¢ > 0. (3412)

We can reformulate the argument from a viewpoint of randomness. If an initial state (x,y) €
{0,1}% x {0,1}% is ML p,,-random, the macrostate at the initial time is m and at time ¢ is
®(m) (see Theorem 3.3.3.1). Then, the Boltzmann entropy increases over time. This is the
zeroth law of thermodynamics for algorithmic random microstates.
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3.5 Microscopic reversibility and anti-Boltzmann be-
havior

3.5.1 Microscopic reversibility

The microscopic dynamics ¢ : {0, 1}2x{0,1}Z — {0,1}%x{0, 1}% is invertible. This property
is referred to as microscopic reversibility. Let us define a time-reversal transformation m :

{0,1}% x {0,1}% — {0,1}% x {0,1}% by

(m(x,9))(i) = (2(=1), y(—i = 1)). (3.5.1)

The time-reversal transformation is an involution 72 = 1 and is totally computable. The
microscopic reversibility is represented by mo ¢ = ¢! om. We note that m{’ (w(z,y)) =
md (z,y) and m¥ (7(z,y)) = m{¥ (2,27 (y)). Here, X(x)(i) = x(i + 1) is the shift map on
{0,1}Z. In particular, the time-reversal transformation does not affect the macrostate.

3.5.2 Irreversible information loss

If there is a microscopic trajectory (¢*(x,y))ieqo,1,..., 7y Whose macroscopic trajectory is (®*(m))ieqo1,.... 7}
then the time-reversed one ((¢*omop?)(z,y))ieto1,... 10 = (Top? ) (2,y))ieto1,... 7} s macro-
scopically observed as (®7~*(m))ief0,1,... 7y Loschmidt inquired how the above consequence of
the microscopic reversibility is consistent with the macroscopic irreversibility. This question
is called the reversibility paradox problem.
Sasa and Komatsu introduced the irreversible information loss quantifying the asymmetry
between the trajectory (¢*(, y))iefo,1,..., 7y and the time-reversed one ((mop®=4)(x, Y))te{01,...T}
and investigated the relation to the Boltzmann entropy change [SK00]. Following this idea,
we define the rate of irreversible information loss as

L, (z,y) = limsup ! In e (T[22 T ] X [y [ m]))
Hm,t ) -

nsoo M fng([Te T 0] X [ye [ n])

, (3.5.2)

where the dynamical system is regarded as one on {0, 1} x {0, 1}. The positivity of the
irreversible information loss of a microstate (z,y) implies the exponential difference between
the probabilities at time ¢ of the microstate ¢'(x,y) and the time-reversed one (7o ¢")(x,y).
Then, it explains how difficult it is to prepare the time-reversed state (7 o ¢")(z,y) relative
to the state ¢'(x,y) in the measure-theoretic sense. We note that this argument is different
from the standard one on the reversibility paradox indicating the practical impossibility of
the time-reverse transformation.

We can easily calculate the above quantity for random states (z,y) as follows. The
microscopic reversibility implies that ¢ =% o7 o ! = 70 p?. If (x,y) is ML p,,-random, by
Theorem 3.3.3.1, we have

lim N(zg,m) _ 1+ ®§'(m) lim N(ya,n)

)
n—so0 n 2 n—00 n

= ®¥(m). (3.5.3)
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The same type of inclusion relation as (3.4.7) implies

2t _ P2t _
i (e ] ) = = - () Sy (A

— ¥ (m)Inmy — (1 — @3 (m)) In(1 — my). (3.5.4)
Therefore, the rate of the irreversible information loss of a random element (x,y) is given by

mo — (I)%t(m) In 14+ myg _ 1-— (1 — 2m1)2tm0 o 1+ mg.

4 1—m0 4 ]-_mO

1, (x,y) = (3.5.5)
If mg # 0, my # 1/2, and t > 0, then [, +(z,y) > 0. This result implies the measure-
theoretic difficulty of preparing the time-reversed state relative to the random state. More-
over, by explicit calculation, we have

L (2, ) — (S5(®"(m)) — Sp(m)) > 0. (3.5.6)

The above equality holds for mg = 0, m; € {0,1/2}, or t = 0. That is, the degree of difficulty
is greater than the Boltzmann entropy change in this case.

3.5.3 Violation of the macroscopic law and nonrandomness of time-
reversed states

Suppose that an initial probability measure is pu,, and (z,y) € {0,1}% x {0,1}% is ML
pm-random. By the conservation of ML randomness (see Theorem 3.2.4.3), ¢'(z,y) is ML
random with respect to the probability measure at time ¢, p,, ;. That is, the randomness of
the initial microstate is preserved under the dynamics. An intriguing question is whether the
time-reversed state (m o ¢')(z,y) is ML g, ,-random or not. The microscopic reversibility
implies that the macroscopic evolution starting from the state (7 o ¢')(x,y) does not obey
the macroscopic law ®. Therefore, (7 o ¢')(x,y) is not i, ,~random.

Theorem 3.5.3.1 (non-randomness of time-reversed state). Let m = (mg,m;) be com-
putable reals and mgy # 0, m; € {0,1/2}. For any p,,-random element (z,y) € {0,1}% x
{0,1}% and t € N\{0}, (7 0 ¢')(z,y) is not ML g, ;-random.

Proof. Assume (7 o ¢')(z,y) is ML fi,,, ;-random for ¢ € N\{0}. By the conservation of ML
randomness (Theorem 3.2.4.3), (u,v) = (p torop!)(x,y) = (mop?)(z,y) is ML p,,-random.
From Theorem 3.3.3.1, for s € {0, ...,2t},

m, (¢ (u,v)) = m ((¢° o wo ©*)(x,y))

=m; ((mo ™) (z,y))
— ®¥*(m) as N — oo, (3.5.7)

Since mg # 0, my & {0,1/2} and t # 0, there exists s € {0,...,2t} such that ®2'%(m) #
®5(m) (take s(# t)). This is a contradiction. O O

)
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= (p T omoph)(z,y) =

) (u,v) is ML ft,,-random.

This consideration leads to the following argument. (u,v)
(mo@®T)(z,y) is ML i, orm-random if and only if (z,y) = (7w o
As in the proof of Theorem 3.5.3.1,

lim m (¢! (u,v)) = & ~(m) (3.5.8)

N—o0

for t € {0,...,27} and ML p,, orm-random element (u,v) € {0,1}* x {0,1}%. Therefore, if
we observe the macroscopic time evolution starting from a random microscopic state with
respect to the initial probability measure i, orm, the system exhibits the time-reversed
behavior of the original macroscopic law ®!. In particular, the Boltzmann entropy along the
typical macroscopic trajectory decreases monotonically:

Sp(®*~(m)) — Sp(®*T(m)) <0 for 0 <t <2T. (3.5.9)

Thus, typical macroscopic behavior depends on the choice of an initial probability measure.
Even if an initial macroscopic state is given, the initial probability measure representing the
state is not unique. Therefore, we have to demonstrate why we regard the Gibbs measure as
important. See 3.6 for further discussion.

3.6 Concluding remarks

3.6.1 Remarks

Natural choice of initial measure We need to choose an initial probability measure to
state a probabilistic law of large numbers for an irreversible macroscopic law. In this chapter,
we have chosen the Gibbs measure because it works well in many examples in statistical
physics. Then, the system evolves typically so that the entropy increases monotonically to
equilibrium. In contrast, as shown in 3.5.3, if we choose another initial measure carefully, the
entropy decreases along the typical macroscopic evolution with respect to the measure. To
elucidate the origin of macroscopic irreversibility, we have to clarify the difference between
these two measures and to demonstrate why the measures under which the entropy increases
are realized in our world. The problem also occurs when we discuss the effective law of large
numbers since the notion of randomness formalizes typical states under a given probability
measure.

Nonrandom states satisfying the macroscopic law We have shown that random mi-
crostates satisfy the macroscopic law. However, the reverse is not generally true because the
condition on the violation of the macroscopic law is just a part of Martin-Lof tests. That is
to say, there are microscopic states satisfying the macroscopic law but not passing another
ML test. Little is known about the physical meaning of such ML tests, and therefore also of
nonrandom microstates satisfying the macroscopic law.
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Relevant randomness test In the theory of algorithmic randomness, there are various
classes of randomness according to the level of computability imposed on null sets in addition
to the Martin-Lof randomness (see Chapter 7 of [DH10] for example). In any case, we take
into account all effective null sets or corresponding statistical tests. However, all these tests
are not necessarily realizable in physical experiments. Therefore, one may say that the theory
of algorithmic randomness is unnecessary for the foundation of statistical physics. A critical
problem here is to identify the class of null sets associated with macroscopic properties. To
consider the problem, let us recall the argument in 3.2.3 motivating the definition of the
Martin-Lof randomness. We have seen that the law of large numbers does not provide a
sufficient characterization of randomness. Even if we add another law such as the law of the
iterated logarithm to the requirement of randomness, we may find other probabilistic laws
having probability one and the requirement may turn out to be insufficient. Avoiding these
difficulties, the theory of algorithmic randomness considers all effective statistical laws and
as a result clarifies a rich structure of randomness such as the equivalence between measure-
theoretic typicalness, incompressibility and unpredictability. When we attempt to specify
statistical laws involved with macroscopic properties, the above idea may be useful and there
may be a deep connection between algorithmic randomness and statistical physics.

Applications to other models In this chapter, we have shown that the algorithmic ran-
domness of microscopic states is a sufficient condition of macroscopic relaxation in the Kac
chain model. We expect to extend the theorem to a wider class of models. To prove the
effective law of large numbers, we need the upper bound on the probability of the sequence
of sets involved with the violation of the macroscopic law that tends to zero in the thermody-
namic limit and the computable enumerability of the sequence. The former condition follows
from a purely measure-theoretic argument. As long as we focus on macroscopic properties,
the latter condition is also expected to be satisfied. For instance, there are deterministic and
reversible dynamical systems with particle conservation that exhibit diffusive behavior in the
sense of the law of large numbers [Lef13, Lefl5]. It is possible to extend our results to these
models.

The models we refer above are cellular automata, that is, the dynamical systems on
infinite lattices with local rules. The Martin-Lof randomness in 3.2.3 is defined on {0, 1}
and can be applied to only the dynamical systems on discrete state spaces. Recently, the
notion of randomness has been generalized to computable metric spaces [Gac05, HR09] and
applied to the dynamical system theory [GHR10, GHR11]. Applying the theory to statistical
physics is an important problem.

Quantum randomness Another direction of future study is to generalize the notion of
randomness to quantum systems. As in classical settings, the quantum Kolmogorov com-
plexity of a quantum state is defined as the length of the shortest program outputting the
description of the state [Gac01, Vit01]. The notion of Martin-Lof random quantum state
and the relation to the quantum Kolmogorov complexity has been investigated only re-
cently [NS19]. In either case, the algorithmic randomness theory of quantum systems has
not yet been sufficiently studied compared to the case of classical systems. An example
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of the application of quantum randomness is the typicality of thermal equilibrium states
[Tas16, GLTZ06, PSW06, Sug07, Rei07]. Although there are various mathematical formula-
tions of the typicality of thermal equilibrium in quantum systems, they all state that almost
all quantum pure states in a Hilbert space spanned by a set of the energy eigenstates repre-
sent thermal equilibrium. With the analogy to the argument in classical systems, we expect
that random quantum states represent thermal equilibrium. A more challenging theoretical
issue in this context is the relation between the algorithmic randomness and the eigenstate
thermalization hypothesis (ETH). The ETH insist that all the energy eigenstates in an en-
ergy shell represent thermal equilibrium with the energy [RDOO08]. The ETH is regarded as a
plausible sufficient condition of thermalization in isolated quantum systems. The thermody-
namic structure such as the fluctuation theorem and second law of thermodynamics that has
been studied on the basis of the Gibbs state is being re-examined for the energy eigenstates
[IKT17, KIT19]. We anticipate that it is important to study the ETH from a viewpoint of
algorithmic randomness.

Martingale and thermodynamics Finally, we comment on the unpredictability aspect
of algorithmic randomness associated with thermodynamics and statistical physics. The
proofs and arguments in this chapter are based on the measure-theoretic typicalness aspect
of randomness. However, as explained in section 3.2.4, the randomness notion has several
characterizations such as incompressibility and unpredictability. We should further develop
these aspects of statistical physics. For instance, the notion of martingale, which captures
the unpredictability aspect of randomness, has not been well studied in statistical physics.
Recently, the martingale property of exponentiated entropy production in stochastic thermo-
dynamics has been investigated [CG11, NRJ17]. A more challenging task is to investigate the
fundamental assumption of statistical physic such as the principle of equal a priori probability
from the viewpoint of the martingale property. For instance, the game-theoretic probability
theory [SV01, SV19] provides a new formulation of limit theorems in probability theory such
as the law of large numbers and the central limit theorem by utilizing only the betting game
without the probabilistic structure. The idea in the game-theoretic probability theory that
the probability emerges from the martingale property may be useful to study this problem.
We will study this approach in Chapter 4.



Chapter 4

The Second Law implies the Gibbs
Distribution

4.1 Introduction

4.1.1 Elementary Example: Single-Particle Ideal-Gas Engine

Before going to main results, we consider a single-particle ideal-gas engine as an elementary
example to clarify the problem. A single particle is confined in a box of volume V = L? and
in contact with a heat bath having a temperature 7. An external agent attempts to extract
work from the system. The agent inserts a barrier at the center of the box, z = L/2, and
moves the barrier quasi-statically to z = (1 —u)L, where u € (0, 1) specifies the final position
of the barrier. When the particle is on the left side (resp. right side), we set w = 0 (resp.
w = 1). Since the volume of the region in which the particle is confined after the operation
is p@(1 — p)=*V, the work extracted in this process is given by

WH(w) = ——dV = kgTIn2u(1 — p)'™*, (4.1.1)

/u“’(l—u)lw‘/ kT
v/2 4

where kg is the Boltzmann constant and we have used the equation of state P(T,V,N) =
NEkgT/V for the ideal gas. Finally, the agent removes the barrier and the system returns
to the initial state such that the overall process becomes cyclic. According to the second
law of thermodynamics, the mechanical work extracted by any cyclic operations is always
non-positive. Eq. (4.1.1), however, becomes positive for some p and w, e.g., u = 1/4 and
w = 0. In statistical mechanics and stochastic thermodynamics, this apparent inconsistency
is considered to arise from the fluctuations in small systems. To resolve the inconsistency,
we assume that w is a random variable obeying the equilibrium distribution P /»({w = 0}) =
Pyjs({w = 1}) = 1/2. Then, although the second law is violated with positive probability
for p # 1/2, Prjp(W* > 0) = 1/2 > 0, due to the fluctuation, the expectation value of the
extracted work W* is non-positive for any operations u, Ep, ,[W*#] = kT In4u(1 — p) <0,
and the second law of thermodynamics remains true on average. Moreover, the second law

61
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conversely characterizes the equilibrium distribution. To prove this statement, we assume
that the initial distribution of w is given by P,({w = 0}) = 1 — p and P,{w = 1}) = p,
where p € (0,1) quantifies the inhomogeneity of the particle distribution. The expectation
value of the extracted work is given by Ep, [W*#] = kgT(D(F,||P1j2) — D(P,||FP,)). Here
D(P,||P,) = pIn(p/p)+(1—p)In[(1—p)/(1—p)] is the Kullback-Leibler divergence between
the Bernoulli distributions P, and P,. If the initial distribution is not uniform, i.e., p # 1/2,
we have that Ep [W?] = kgT'D(P,||Py/2) > 0 by choosing ju = p. Therefore, the condition
that Ep, [W#] <0 for any p € (0,1) implies p = 1/2. In summary, the non-positivity of the
averaged work is equivalent to the equilibrium condition for the initial distribution in this
example.

We stress again that the extracted work W#(w) is positive for some initial state w and
operation u. Therefore, when we speak of the validity of the second law of thermodynamics in
small systems, we have to consider a situation that we prepare microscopic states and extract
work many times. Moreover, if the empirical frequency of the initial microscopic states is
biased from the equilibrium distribution, the second law may be violated, as suggested by
the argument in the previous paragraph. In this sense, the second law in small systems may
require the stochastic behavior of the initial microscopic states in addition to the equilibrium
condition for the probability distribution characterizing its stochasticity. In this chapter, we
ask how can we formulate mathematically the emergence of stochasticity from the second
law of thermodynamics. To answer the question, we investigate two issues in this subsection.

First, we provide a mathematical definition of “stochastic behavior of the initial micro-
scopic states”. In this chapter, we consider the situation that the agent repeats the cyclic
operations infinitely many times and ask whether an infinite sequence wyws - - - € {0, 1} of
initial microscopic states in the experiments is a random sequence or not with respect to the
equilibrium distribution P; ;. Here Ny = {1,2,...} denotes the set of positive integers and
wy € {0, 1} denotes the initial position of the particle in the n-th cycle. An example of non-
random sequence is 00000 . .., which corresponds to the situation that the particle is always
in the left side of the box. Although the theory of algorithmic randomness [Nie09, DH10]
provides a reasonable and rigorous definition of randomness for individual sequences, we pay
attention to only the convergence of the empirical distribution and empirical mean in this
chapter. For the single-particle ideal-gas engine, we regard an infinite sequence wyws . ..
representing the positions of the particle as a random sequence if the sequence satisfies the
strong law of large numbers (SLLN),

1 1
nh_)rrolo - ;wl =3 (4.1.2)
We discuss the relation to the algorithmic randomness in Section 4.5.

Second, we formulate the second law of thermodynamics without probability measures.
Since our purpose is to clarify the emergence of the probabilistic description, we cannot
suppose the underlying probability distribution at the starting point of the discussion and use
the standard definition of the second law E[W#] < 0. To remove the probability distribution
and expectation value from the description, we consider again the situation that the agent
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repeats the cyclic operations infinitely many times (Fig. 4.1). In contrast to averaging
the extracted work for a single cyclic operation, in repeated cyclic operations, we allow the
agent to choose a different operation in each cycle. A critical problem here is to specify the
information that the agent can use when he decides the cyclic operation in each cycle. In this
chapter, we apply the prequential scheme [Daw84], where the agent determines the volume
fraction u, € (0,1) in the n-th cycle depending on only the past history wy,...,w,_1 of the
initial positions up to the (n—1)-th cycle V. In other words, the agent predicts the position of
the particle in the n-th cycle from the past results wy . ..w,_1 and performs a cyclic operation
based on the prediction. An assignment w; ...w,_1 — u, for each n = 1,2,... represents a
prediction scheme called a strategy for the agent and denoted by fi. For a given strategy [
for the agent, the accumulation of the extracted work W# is given by

Wh(wy .. wp) =Y kT In 2 (1 — 1) ™", (4.1.3)

=1

We define the violation of the second law in terms of the asymptotic behavior of W%, We
say that an infinite sequence wiwy -+ € {0, 1}N+ of initial positions of the particle violates
the second law of thermodynamics under the strategy f if the total amount of the extracted
work from the heat engine diverges to infinity, i.e.,

lim W (w; ... w,) = oco. (4.1.4)

n—oo
This means that the agent can extract work from such a sequence as much as he wants by
repeating the cyclic operations sufficiently many times. For example, if the agent chooses
py = 1/4 for any ¢t € Ny, the infinite sequence 0000... violates the second law because
Wh(w; ... .w,) = nkgT In(3/2) diverges to infinity as n — oo. We adopt this definition as
the second law in our study because it refers to no probability measure. We note that this
definition is consistent with equilibrium statistical mechanics. In fact, if we assume that
w1, ws, ... are independent and identically distributed random variables obeying the product
distribution PS§+({LU” =0}) = PSI;]*({wn = 1}) = 1/2, the probability that the second law
is violated is zero,

®Ny [ 1. 7
Pyt {77,11—I>I(>10 Wh = oo} =0, (4.1.5)
where we have defined a random variable WA(E) = Wh(w;...w,) for £ = wwy--+ €

{0, 1}N+2).

UThe protocol should not be confused with that in Szilard’s engine [Szi64]. Imagine that positions of the
particle are prepared independently and identically according to the uniform distribution P /5. The mutual
information between the positions up to the (n — 1)-th cycle and the position in the n-th cycle is zero due
to the statistical independency. Therefore, even if the agent can use the information on the past history, the
expectation value of the extracted work in the n-th cycle is always non-positive.

2)We can prove a stronger statement P{sup, W2 = oo} = 0. First, we note that P{sup, W2 = oo} =

P{sup,, Wi = oo} W1 is a positive martingale and bounded in L' because Ep(efW) =1 for any n. We
have from the martingale convergence theorem that e := lim,,_, e~ exists and is a finite non-negative
value almost surely. Hence, P{sup, W2 = 0o} = 0.
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Figure 4.1: Schematic of the protocol. (1) An agent named Skeptic announces the position of
the barrier p,, € (0,1) depending on the past history wy ...w,_; of positions of the particle.
(2) Another agent named Reality announces the position of the particle w, in the n-th cycle.
(3) Skeptic moves the barrier from z = L/2 to © = (1 — p,,) L and remove it. (4) Go back to

(1).

Based on the above two arguments, our question is formulated as follows. Instead of
assuming that w, is a random variable and introducing a probability measure from the
beginning, we ask which sequences can be realized under the second law of thermodynamics
and what statistical properties such sequences have commonly. As we noted before, in this
chapter, we consider the strong law of large numbers (4.1.2) as a relevant statistical property.
The SLLN is formulated in probability theory as

N
S; {JE&EZWZ = } =1 (4.1.6)

This statement means that the relative frequencies of positions of particle becomes one half
almost surely. However, we give a different formulation of the SLLN in our setting because
no probability measure enters the setting. According to the excellent book “Probability and
Finance: It’s Only a Game!” by Shafer and Vovk [SVO01], there exists a strategy figpin for
the agent such that if an infinite sequence wyws, - - - € {0, 1}+ of positions of the particle does
not satisfy the SLLN (4.1.2), the second law of thermodynamics is then violated, i.e., (4.1.4)
holds for the sequence. Equivalently, if the sequence retains the second law under the strategy
fisLLN, the positions of the particle necessarily obey the SLLN (4.1.2). This implies that even
though no probability measure is assumed, the empirical distribution for positions of the
particle must be consistent with the equilibrium distribution due to the constraint by the
second law. From the viewpoint of statistical mechanics, the second law of thermodynamics
is a consequence of the equilibrium distribution and equilibrium statistical mechanics gives
a microscopic foundation for the second law. However, according to the theorem by Shafer
and Vovk, the second law of thermodynamics (4.1.4) under some strategy requires that the
sequence must be random in the sense that it satisfies the SLLN (4.1.2), and leads to the
equilibrium distribution in this sense. Our purpose of the chapter is to investigate this novel
aspect of the relationship between equilibrium statistical mechanics and the second law of
thermodynamics for generic small systems.



4.1. INTRODUCTION 65

4.1.2 Summary of the results

The argument in subsection 4.1.1 suggests that statistical properties of equilibrium states are
characterized by the second law of thermodynamics. In this chapter, we extend the above
example to a system with a generic Hamiltonian on a finite state space. First, we consider
the situation that the external agent has an ability to prepare arbitrary Hamiltonians during
cyclic operations. We show that there exists a strategy for the agent such that the empirical
distribution for a sequence satisfying the second law of thermodynamics necessarily converges
to the Gibbs distribution of the initial Hamiltonian (Theorem 4.2.3.1). As in the case of
the single-particle ideal-gas engine, this result can be interpreted as a statement that the
empirical statistics must be consistent with the assumption of statistical mechanics, i.e., the
Gibbs distribution, due to the second law.

Second, we study the empirical statistics in the same manner when we restrict the ability
of the agent. The assumption that the agent can prepare arbitrary Hamiltonians is too
demanding for his ability because we control only a small number of parameters in the
Hamiltonian, such as the magnetic field, in many physical situations. The main aim of the
present chapter is to propose a protocol corresponding to such a restricted situation and to
determine what statistical properties are observed in that situation. This restriction weakens
the ability of the agent, and we thus expect that the statistical property the second law
imposes also weakens. We find that the Gibbs distributions for Hamiltonians having a small
number of parameters linearly coupled to conjugate variables form an exponential family
and propose a new protocol where the agent has to construct his strategy by changing only
these parameters. Our main contribution is that in the protocol there exists a strategy such
that the empirical mean of the conjugate variable with respect to the control parameter for
sequence satisfying the second law converges to the equilibrium value (Theorem 4.3.2.1). This
result suggests that there is a hierarchy of statistical properties observed under the second
law according to his ability.

4.1.3 Related Studies

Several studies shares the same mathematical structures and techniques with our work, al-
though our motivation and formalism in this chapter is quite different from the usual one
in statistical mechanics and stochastic thermodynamics. We review related studies in this
subsection.

First, an important property of the exponential of the accumulation of the extracted
work is martingality, which is a fundamental concept in the theory of stochastic processes
[Wil91, Doob3]. The martingale property is useful to investigate the statistics at stop-
ping times and extreme value statistics. In the context of nonequilibrium thermodynam-
ics, the novel statistical properties of stochastic entropy production were recently studied
[CG11, NRJ17, Ner20, MSM*21] based on this property of martingales and the fact that the
exponentiated negative entropy production or its modification is a martingale. Although our
results are also based on the fact that the exponential of the accumulation of the extracted
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work is a martingale®), we use another property that was first found by Jean Ville [Vil39], the
characterization of almost sure properties in terms of martingales. See subsection 4.2.4. As
other interesting study concerning the martingale property in physical systems, see [MS20]
for example.

Second, we use universal coding theory [Grii07] to construct a strategy for the agent.
The prediction strategy in universal coding is useful for proving our main result because our
problem is similar to the coding or prediction of the outcomes w, in the n-th cycle from
the past sample data w; ...w,_; where the performance of the prediction is measured by
the log-loss function. The analogy between gambling and source coding problems was first
discussed by Kelly [Kel56]. See also Chapter 6 of [CT12]. In addition, the analogy with
information thermodynamics was pointed out in [VPMI16, Ito16, TMMR20]. Specifically,
Refs. [TMMR20] applies universal coding theory to information thermodynamics to construct
an optimal work extraction protocol. A crucial difference of our work from this study is that
we analyze the asymptotic behavior of extracted work for individual sequences [VPM16,
KG11] and attempt to find statistical properties shared by sequences satisfying the second
law.

Finally, we stress that our studies are based on an analogy between the work extraction
in thermodynamics and betting in game-theoretic probability theory [SV01, SV19]. Game-
theoretic probability theory is a mathematical formulation of probability theory alternative
to the conventional measure-theoretic one. In game-theoretic probability theory, a gambler
named Skeptic bets money on head or tail of a coin and a dealer named Reality choose the
outcome. By repeating this gamble infinitely many times and imposing the duty that Reality
must chooses a sequence of outcomes such that Skeptic cannot make infinitely much money,
we study what statistical behavior is observed. For instance, as mentioned in subsection 4.1.1,
it is possible to construct an explicit strategy such that Skeptic’s capital grows infinitely as
long as the sequence violates the law of large numbers. The work extraction we proposed
in this chapter can be regarded as a game played between two players, Skeptic and Reality.
The external agent who attempts to extract work from the heat engine as much as possible
corresponds to the gambler Skeptic and the world who prepares the particle to retain the
second law of thermodynamics corresponds to the dealer Reality. Although the first main
result of this chapter in Section 4.2 is a straightforward extension of the theorem proved
by Shafer and Vovk, the possibility of analogous analysis of thermodynamics and the novel
aspect of the relationship between statistical mechanics and the second law are new findings
of this chapter as long as the author knows.

3)In externally driven systems, the exponentiated negative entropy production in a time interval is not
martingale in general [CG11, Ner20, MSM*21]. In this chapter, however, we do not consider the stochastic
time evolution of the system explicitly and concentrate our interest on the sum of the extracted work obtained
from statistically independent experiments. Therefore, the exponentiated negative entropy production in this
chapter is indeed a martingale. See subsection 4.2.4.
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4.1.4 Outline of the chapter

The remainder of the chapter is organized as follows. In Section 4.2, we formulate the work
extraction in a similar manner to the single-particle ideal-gas engine in subsection 4.1.1 and
give the first main result. We also discuss the mathematical backgrounds, Ville’s theorem,
behind our result. In Section 4.3, we propose another protocol where the ability of the agent
is restricted, and prove the second main result. In Section 4.4, we discuss a game-theoretic
interpretation of our protocols. We end our chapter with concluding remarks in Section 4.5.

4.1.5 Notations

This subsection summarize notations we use throughout this chapter. Since the author
explain notations when they are first used, the readers can skip this subsection.

Let Ny = {1,2,...} be the set of positive integers. We use 2 to denote a finite set
representing a microscopic state space. Q* = {0} U (U ,Q") denotes the set of finite
strings over €2, where [ is the empty string. A string over ) with length n is written as
W' =wi .. .wy, € QF, w; € Q. We use € = wiws - - - € QN to denote an infinite sequence on €.
A real-valued function H : €2 — R defines a Hamiltonian on the state space 2. For a positive
real number S > 0, the Gibbs distribution for the Hamiltonian H at the inverse temperature
3 is defined as a probability distribution on Q with density ggy(w) = e #H@ =) with
respect to the counting measure, where Fz(H) = -3 'InY" _, e ##®) is the free energy.

4.2 Analysis of Generic Hamiltonians

4.2.1 Setup

Let us consider a physical system whose state space is given by a finite set 2. The thermo-
dynamic property of the system in contact with the heat bath is described by a Hamiltonian
H : 2 — R and an inverse temperature [ of the bath. According to Kelvin’s principle, which
is one of the representation of the second law of thermodynamics, the positive amount of work
cannot be extracted by any cyclic operations. Here an operation is said to be cyclic if the
initial and final Hamiltonians coincide. This principle leads to the absence of the perpetual
motion machine of the second kind. However, the second law of thermodynamics may be
violated for some individual initial state and cyclic operation in the finite system. Therefore,
the second law in small systems is usually formulated as a statement on the non-positivity of
the expectation value of the extracted work assuming the underlying probability distribution.
In this subsection, we review the usual formulation of the second law of thermodynamics in
terms of the expectation value.

Let us consider the following type of cyclic process [EVdAB11] to avoid taking the dynam-
ical evolution of the system into consideration:

(P1) The agent quenches the Hamiltonian adiabatically from the initial Hamiltonian H to
another one H'.
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(P2) The agent equilibrates the system with the inverse temperature f.
(P3) The agent resets the system quasi-statically and isothermally

Let w be an initial state of the system. We suppose that the microscopic state w does not
change during the adiabatic quenching process (P1). Under this assumption, the extracted
work in the process (P1) is given by the decrease in internal energy H(w) — H'(w). In the
process (P2), the agent touches the system with the heat bath having the inverse temperature
B and the system relaxes to the new equilibrium state for the quenched Hamiltonian H’. This
equilibration process obviously requires no mechanical work. In the process (P3), the agent
changes the Hamiltonian from the quenched one H’ to the initial one H quasi-statically to
make the whole process cyclic. Moreover, we crucially assume that the work extracted in
the quasi-static isothermal process is equal to the decrease in free energy®. This assumption
implies that the extracted work in the process (P3) is given by Fg(H') — Fs(H). Here the
free energy for the Hamiltonian H at the inverse temperature (§ is defined as Fz(H) =
—B71In Y e e PH)  Therefore, the total amount of work extracted in this cyclic process
is given by W(wy) = H(w) — H'(w) + F(H') — F3(H).

Now we suppose that the initial state is sampled according to an initial density p. The
expectation value of the work extracted during the above cyclic process is given by

E, W] =) p(w)[Hw)~H'w)+ Fs(H") = F5(H)] = D(pllgsn) — D(pllgsmr).  (4.2.1)

weN

Here gsy(w) = e PH@=Fs(H)) i5 the Gibbs density function for the Hamiltonian with the

inverse temperature 5 and D(p||q) == Y o P(w) In(p(w)/q(w)) is the Kullback-Leibler diver-
gence between two densities p and ¢. From this expression, we have the following equivalence
between the second law of thermodynamics and the Gibbs distribution.

Theorem 4.2.1.1. For a probability density p, E,[W] < 0 if and only if p = ggn.

Proof. If the initial distribution is the Gibbs distribution for the initial Hamiltonian, the first
term on the right-hand side of Eq. (4.2.1) vanishes and therefore the expectation value of the

extracted work is non-positive for any quenched Hamiltonian H', i.e., E,[W] = —D(p||gan’) <
0. Conversely, if p # gau, the value E,[IW] can be positive. Indeed, by choosing H' such that
p = gsn, we have that E,[W] = D(p||gsu) > 0. O

Therefore, the second law of thermodynamics expressed in the form of the expectation
value during the cyclic process (P1)-(P3) is equivalent to that the initial distribution is the
Gibbs distribution for the initial Hamiltonian.

Finally, we remark that the single-particle ideal-gas engine in subsection 4.1.1 is formally
considered to be an example of the above setup.

Example 4.2.1.2 (Single-particle ideal-gas engine). Let = {0,1} be a state space. Each
state w € {0,1} codes the position of the particle in the box. The effective Hamiltonian for

Y We discuss the status of this assumption after Theorem 4.2.3.1 and Section 4.5.
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the single-particle ideal gas is defined as H,(w) = =8 ' Inu“(1 — p)'=“V, where V is the
total volume of the box and the parameter p € (0, 1) indicates the position of the barrier.
The free energy for the Hamiltonian is given by Fz(H,) = —f 'InV. If the initial and
quenched parameters are 1/2 and p, respectively, the extracted work is written as

W(w) = Hyjo(w) — Hy(w) + Fp(H,) — Fa(Hyp2) = B In2u°(1 — p)' =, (4.2.2)

which is identical to Eq. (4.1.1).

4.2.2 Prequential formulation

The purpose of the present chapter is to investigate the emergence of equilibrium statisti-
cal mechanics from the second law of thermodynamics without referring to any probability
measure. Hence we have to remove the probability measure from the definition of the second
law. In this subsection, as such a formulation, we give a prequential definition of the second
law.

To remove the probability distribution, we consider the situation that the agent repeats
cyclic processes (P1)-(P3) infinitely many times. First, the agent performs a cyclic process
according to the protocol (P1)-(P3). Let wy be an initial state and H; a quenched Hamiltonian
in this process. After the first cycle, the agent determines a quenched Hamiltonian Hs in the
second cycle depending on the initial state w; in the first cycle and performs the cyclic process
(P1)-(P3) again. In general, we suppose that the agent chooses a quenched Hamiltonian in
the n-th cycle depending on the past history wy ...w, 1 € Q"' up to the (n — 1)-th cycle.
The assignment of a quenched Hamiltonian in the n-th cycle to each past history w; ...w,_ 1
specifies a strategy for the agent to extract work. Therefore, we call a function H : Q* — R
strategy in this chapter. Here 2* denotes the set of finite strings over €2 including the empty
string [J. For a strategy H, ﬂ(|D) : 2 — R represents a quenched Hamiltonian in the
first cycle and H(-lwy...wy_y) : @ — R represents a quenched Hamiltonian in the n-th
cycle when the initial states up to the (n — 1)-th cycle are w;...w,_1. This scheme in
which the agent decides his action based on the past history of outcomes is called prequential
in statistics [Daw84] and causal or nonanticipating in information theory of gambling and
portfolio theory [CT12].

The accumulation of the extracted work up to the n-th cycle is given by the sum of the
extracted work in each cycle. For a strategy H, we define the function W# : Q* — R as
WH(O) = 0 and

W) = 37 [H(w) ~ Blwilw™) + Fa(H (™)) — Fa(H) (4.2.3)

=1

for w" = wy...w, € Q. From the definition, wi (w™) gives the accumulation of the work
up to the n-th cycle under the strategy H when the initial states up to the n-th cycle are
Wi ... Wy

Now we provide a prequential definition of the second law of thermodynamics.
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Definition 4.2.2.1. Let £ = wiwsy--- € O+ be an infinite sequence over Q and H be a
strategy for the agent. We say that

(1) & violates weakly the second law of thermodynamics under the strategy H if

sup Wﬁ(wl CWy) = 00, (4.2.4)

(2) & violates the second law of thermodynamics under the strategy Hif

lim WH(w; ... w,) = oo. (4.2.5)
n—oo
Definition 4.2.2.1 is regarded as a definition of the perpetual motion machine of the second
kind for individual sequences of states. Let w; be an initial microscopic state of the engine
in the first cycle. By performing the cyclic process (P1)-(P3) for the initial state, the agent
extract work from the engine by wH (w1). The engine cannot be regarded as a perpetual
motion machine of the second kind only because the value wh (wq) is positive. To say that
the engine violates the second law, we require that for any given positive value Wy > 0,
the agent should extract an amount of work larger than W, by repeating cyclic processes as
many times as he needs. Therefore, we define the second law for infinite sequences of initial
microscopic states of the engine as indicated in Definition 4.2.2.1. We note that while in the
above definition the violation of the second law depends on both a strategy the agent applies
and an infinite sequences of microscopic states, the definition needs no underlying probability
measure.

4.2.3 Convergence of empirical distribution to Gibbs distribution

Instead of introducing probability distributions, we consider which sequences satisfies the
second law of thermodynamics and what statistical properties are shared among these se-
quences. In general, a statistical property is described by a subset of infinite sequences
E C QN+ In this chapter, as a relevant statistical property, we focus on only the strong law
of large numbers, i.e.,

- — Ny .13 l Y ) =

SLLN = {f =wwyr € 71113010 - ; Ly (wi) = gpu(w) for all w € Q} . (4.2.6)
Here the quantity """, 1g.1(w;)/n is the empirical density for the string w” quantifying
the relative frequency of w in Ww" = w;...w,. If the sequence ¢ = wywsy ... are sampled
identically and independently according to the Gibbs distribution, the SLLN (4.2.6) happens
almost surely. In this sense, the SLLN (4.2.6) is a statistical property observed in equilibrium.
Our purpose is to find a strategy H such that any sequences & € QN+ satisfying the second
law of thermodynamics under the strategy H in the sense of Definition 4.2.2.1 necessarily
obey the SLLN, i.e., £ € SLLN. The existence of such strategy implies that the empirical
statistics of the sequences of initial states observed under the constraint by the second law
must be consistent with equilibrium statistical mechanics. Based on the above reasoning, we
provide the following theorem:
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Theorem 4.2.3.1. Let ggp(w) = e PH@HBEH) he the Gibbs density function for the initial
Hamiltonian H at the inverse temperature §. There exists a strategy H such that if an
infinite sequences & € QN+ of initial states does not satisfy the SLLN, i.e., £ € SLLN, then
the sequence £ violates the second law of thermodynamics under the strategy.

This is the first main result of this chapter. We make several remarks on Theorem
4.2.3.1. First, we stress again that no probability measure for initial microscopic states are
assumed. One may find that the Gibbs distribution is implicitly inserted in the definition of
the extracted work (4.2.3) through the assumption that the work extracted in the quasi-static
isothermal process is equal to the decrease in free energy. Although this reasoning is actually
true as we will see in subsection 4.2.4, the assumption on the form of the extracted work does
not immediately leads to the stochastic behavior of initial states and the content of Theorem
4.2.3.1 remains highly non-trivial. Second, we stress the difference from the argument in the
end of subsection 4.2.1. There, if the initial distribution deviates from the Gibbs distribution
for the initial Hamiltonian, we have to choose the quenched Hamiltonian depending on the
deviation in order to extract a positive amount of work. In contrast, Theorem 4.2.3.1 claims
the existence of a single universal strategy under which the second law is automatically
violated for the sequence whose empirical statistics deviate from the Gibbs distribution even
if we do not know the deviation.

We explain in subsection 4.2.4 the reason why the Gibbs distribution appears in Theorem
4.2.3.1 although no probability measure is assumed in our setting. We remark that Theorem
4.2.3.1 is just a straightforward extension of the case of single-particle ideal-gas engine in
subsection 4.1.1 and it is nothing new mathematically. In addition to the proof in textbooks
of Shafer and Vovk [SVO01, SV19], there are several proofs of Theorem 4.2.3.1 such as Ref.
[KT08] based on the maximum likelihood strategy and Ref. [KTTO08] based on the Bayesian
strategy. Nevertheless we prove Theorem 4.2.3.1 as a special case of Theorem 4.3.2.1.

Hereafter, we say that a strategy forces (resp. weakly forces) an event E C QN+ if
infinite sequences over {2 that do not satisfy E violate (resp. weakly violate) the second
of thermodynamics under strategy. According to this terminology, Theorem 4.2.3.1 claims
the existence of a strategy that forces the strong law of large numbers for the empirical
distribution.

Finally, we present a proof based on Refs. [SV01, SV19].

Proof of Theorem /.2.3.1. First, we prove two lemmas.

Lemma 4.2.3.2. For any w € ) and any sufficiently small positive real ¢ > 0, there exists
a strategy that weakly forces

1 n
lim sup — Ty (w;) < w) + €. 4.2.7
msup D ey () < gan() (4.27)

Similarly, for any w € € and any sufficiently small positive real ¢ > 0, there exists a strategy
that weakly forces

S N
hrIngolf - Z Ly} (wi) > gsr(w) — €. (4.2.8)

=1
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Proof. Fix an element w € Q. We define R,, := min{1/gsu(w),1/(1 — gsuw))} € (0,1) and
choose a real number € € (0, R,,/2). Consider a strategy

H(walwr .. wn1) = H(wy) = H(w,) = B I+ e(Lgy (wn) — gom ()] (4.2.9)
_ {H(w) - ﬂ:l In[1+ e(1 — ggu(w))] %f Wp = w (4.2.10)
H(w) — 87 In[1 — egpn(w)] if wy, # w.

We remark that the free energy of H™* is equal to Fz(H) because

D erprrtin = Ze—“ (1+ e(lwy () — gon()))

n
- Z M e |ePHW) _ (Z 6—6H(77)> gﬁH(w)] — o BFp(H)

"
Under this strategy, the accumulation of the extracted work is given by

n

W) =3 [H(ws) = H (wy)]

=1

=8t Z [l + (1w (wi) — gam(w))]. (4.2.11)

Since € < R, /2, e(1y(w;) — gpm(w)) < 1/2. By using the inequality In(1 + ¢) > t — ¢* for
|t| < 1/2, we have that

= Z [ (L @1) = gan (@) = € (Leop () = 9o ()’
> 5 Z 1{w} wl — gﬁH( )) — 62]
=enB ! [E Z Ly (wi) — gsm (W) — e] (4.2.12)

In the second line, we have used (1.} (w;) — gsm (w))2 < 1. For a given sequence { = wyws . . .,
if sup,, W (w,) < oo, there exists a real number C¢ such that W# (w,,) < C¢ for all n. We
then obtain that

1 < Ce

=Y (W) < 4.2.13

n; {w}(wi) !qu(cv)JrEerﬁ,1 ( )
for all n, which leads to

hmsup E Loy (wi) < gsm(w) + €. (4.2.14)

n—oo N _—
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This means that the strategy (4.2.9) weakly forces (4.2.7). By a similar argument, we find
that the strategy

H(wplwy .. wp1) = H " (wy,) = H(wy,) — B n[1 — €(Lguy(wn) — gpr(w))] (4.2.15)

weakly forces (4.2.8).
[l

Lemma 4.2.3.3. Let H, (k=1,2,...,) be a strategy that weakly forces Ej, C QN+, There
exists a strategy that weakly forces (N, Ej.

Proof. Let Hy be a strategy that weakly forces Ej, C QN+, We define a strategy H, as

H*<Wn|wn_l) = H(w, [ln <Z2 ko BW T (w ")> In (ZQ b Wk (w7~ 1)>] '

(4.2.16)

We remark that Y -, 9-kefW @) ig well-defined. We can prove this fact by induction. If

n = 0 9=keBWHR(O) = 1 gince W) = 0. Let us assume that 3°°, 2-kefWHE"
0, >0, 2 ke k=1

oo. Since ), W 0 () = AV e obtain that D on Dokt 2 keI g (W) <

9=k AW kT

oo, which implies > 7, < oo for any w"t!,

The free energy of the Hamiltonian H, (-|w™ ') is equal to F3(H) because

2 keﬁWHk (wn—1)

k WHk n—1
ZG*ﬁH*(n\w" Y ZQ*ﬁH Zk 1 27 e W
n

127 k ,BWH’“ ") =BH(n|w" ) +BF (Hy(-|lw" 1) ~BF5(H)

—zzk
S0 2 keBW k()

Zk:l 27k66WH’“( ) 277 G*ﬁﬁk(T]‘wn_l)+,3F5(I:Ik(-|w"_1))€75FB(H)

700 9-keBW Tk (wn )

Y 90—k AW Tk (W =1) ,—BF(H)

D e 9=k eBW Tk (wn=1)

Under this strategy, the accumulation of the extracted work is given by
n

W (W) = 3 [H (wi) — Ho(wilw™)]

i=1

=/t Z [ln (Z 2*keﬁwﬁk Wi)) —In (Z Q*keﬁwﬁk (‘”i_l)>]
i=1 k=1 k=1
=4 'In (Z Q—keﬂwﬁﬂw”) : (4.2.17)
k=1
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We now assume that sup, W (w") < co. From the expression (4.2.17), we conclude that
sup,, Wr(w") < oo for all k = 1,2,.... This implies that the strategy H, weakly forces

ﬂZil E.
O

We consider the set of strategies

{HU’W’Qk o {—+hweQk>ky27 < miél Rw/Q} : (4.2.18)
we
By Lemma 4.2.3.2, the strategy H™+2 " weakly forces

1 n
lim sup — Z Loy (wi) < gpu(w) +27%, (4.2.19)
=1

n—00 ni

and the strategy H —,27F weakly forces
1 n
cs et N> _ o—k
hgri)g.}f - Zl Liwy(wi) > ggr(w) — 277 (4.2.20)
By Lemma 4.2.3.3, the strategy H, defined in the proof of Lemma 4.2.3.3 weakly forces

1 <& 1<
9pn(w) — 27 < lim inf - ; Loy (wi) < limsup — ; Ly (wi) < gpur(w) +27%  (4.2.21)

for all w € € and sufficiently large k. This implies that the strategy H, weakly forces
.1
Jim =31 (@) = gan(w) (4.2.22)

for all w € 2. By Lemma 4.3.3.1, it is possible to construct a strategy that forces (4.2.22).
[

4.2.4 Martingale and Ville’s theorem

We clarify a general structure behind Theorem 4.2.3.1. Although we construct explicitly a
strategy that make the empirical distribution converge the Gibbs distribution in subsection
4.3.3, Theorem 4.2.3.1 follows from a more general theorem proved by Ville [Vil39]. The
essence of Ville’s theorem is some kind of equivalence between the asymptotic behavior of
martingales and almost sure properties.

To see this, we first clarify the martingale property of the exponentiated work. The
accumulation of the extracted work (4.2.3) can be written as the logarithmic likelihood ratio
function for Gibbs distributions:

q(w")

WH (W) = In =2
) =y

(4.2.23)
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where gy (w") =[]/~ gpr(w;) and
G(w") = Hgﬂﬁ(_lwi,l)(wi). (4.2.24)
i=1

Since g4 A(wi-1) specifies the conditional probability density conditioned on the past history
w1 the function (4.2.24) gives a probability density on Q™. Conversely, a stochastic process
on QN+ with strictly positive probability densities ¢ specifies a strategy for the agent in
our setting through the relation ggz ,n-1)(wn) = §(wn|w"™"). Therefore, a strategy H is
identified with a stochastic process having strictly positive densities.

Let us consider a discrete time stochastic process M : Q* — R. We say that M is a
martingale with respect to a probability measure P on QN+ if Ep[M,|w" 1] = M (w™!) for
any w" ! € O* [Wil91]. Here M, (wiws...) = M(w") and Ep[ - |w"] denotes the conditional
expectation conditioned on the past history w”. For a fixed strategy H, it is easy to see that
the exponential of the accumulation of the extracted work W is a positive martingale with
respect to the infinite product of Gibbs distributions g?}l,

I

E » [eﬁw’fl | w1 = AW @)
st

In particular, ]EQNJr [eﬁwfl] = AT = 1. In fact,

BH
q (™ 5(,m—1 ~f, m—1 )
Byl o = 3 Ay = 3 A ) G e,
wneﬂgﬁH(w) wncq I8H (1) gy (W)

where we have used > o G(w" 'w,) = G(w" ") in the last line. Conversely, for a given
positive martingale M with respect to g?}; starting from M () = 1, there exists a strategy

H such that V" @) = M (w") for any w™ € Q*. To prove this, we notice that G(w,|w" ') =
9pr(wn) M (w"w,) /M (w™™1) is a positive probability density on €. Indeed, the positivity
of M leads to §(w,|w™™!) > 0 and the martingale property of M implies that

Z Gwnlw"™) = m Z 9o (wn) M (W w,) = % = 1.

wn €N wn €N

By defining the strategy H through the relation gﬁ}f](-|w"71)(wn) = G(wn|w™™), we have that
ePWHW") = M (w™) for any w" € Q including the case w™ = 0. Thus, there is a one-to-one
correspondence between the processes of the exponentiated extracted work and the positive
martingales with respect to the Gibbs distribution.

Ville’s theorem [Vil39, SV01, SV19] in our setting claims that a measurable set E C QN+
has probability one with respect to ggfl if and only if there exists a positive martingale M
QO — R, with respect to the same probability measure such that lim,, ., M,(§) = oo for any
¢ ¢ E. Using the equivalence between positive martingales and strategies mentioned above,
we rephrase Ville’s theorem as follows.
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Theorem 4.2.4.1 ([Vil39, SVO01, SV19]) Let E C QY+ be a measurable set. The property E

happens almost surely with respect to gﬂ r if and only if there exists a strategy H:Q" - R
that forces F.

Ville’s theorem clarifies the reason why the convergence to the Gibbs distribution occurs
under the second law in spite that no probability measure comes into our setting. Let us
consider the experiment that we sample initial microscopic states infinitely many times in-
dependently and identically according to the Gibbs distribution gsy. We take a statistical
property £ C QN+ with probability one in the experiment such as the SLLN (4.2.6). Accord-
ing to Ville’s theorem, there exists a strategy H such that any sequences violate the second
law under the strategy if they do not have the property E. In other words, whether a statis-
tical property is consistent with equilibrium statistical mechanics or not is characterized in
terms of the violation of the second law of thermodynamics. In addition, our definition of the
second law (Definition 4.2.2.1) needs no probability measure. This is an essential structure
that makes it possible to argue the emergence of equilibrium statistical mechanics from the
second law without referring to any probability measures.

4.3 Analysis of Parametric Hamiltonian

In the setting in Section 4.2, the agent is assumed to have an ability to prepare any com-
plicated Hamiltonian containing non-local and many-body interactions. As a more physical
situation, it is natural to restrict the possible operations into changing a small number of
parameters in a certain class of Hamiltonians. In this section, we investigate such situation.

4.3.1 Preliminaries: exponential family

We focus on the Hamiltonians on 2 with a certain number of externally controllable param-

eters. We assume that the Hamiltonians have the form SHy(w) = —0 - ¢(w) — h(w), where
the parameter 6 corresponds to the control parameters taking values in the parameter space
© C Rk, ¢ : Q — R* is the conjugate variable with respect to @, the dot “ - ” denotes the

usual inner product in R* and A : Q — R is the remaining part of the Hamiltonian. © is
assumed to be an open and convex subset of R¥. Moreover, we suppose that the representa-
tion of the Hamiltonians is minimal, i.e., both {6; : i = 1,... k} and {¢; : i = 1,...,k} are
affinely independent.

The Gibbs distribution for these Hamiltonians forms a minimal canonical ezponential
family [BN78] P(O©, ¢, h), which is a family of distributions Py on © with densities py(w) =
gpm,(w) = PP FTh@) =) The function () = Iny" o e’ ?@H) is the Massieu func-
tion, which is related to the free energy Fj(Hy) through Fs(Hy) = —8 ' (0). The func-
tion 9 (0) is differentiable infinitely many times and strictly convex on ©. The expectation
value and covariance matrix of ¢ are respectively given by Ey(¢) = Vep(0) = u(0) and
Covg(9) = VgVeth(0) = Ey[—VeVyln Py] =: 1(0). 1(0) is the Fisher information at 6 for the
family P (O, ¢, h) and positive definite over ©. In the language of statistical physics, I(0) is
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the isothermal susceptibility matrix and the relation Covy(¢) = I(0) gives the fluctuation-
response relation for a static isothermal response. The strict convexity of ¢) implies that the
map 0 — u(0) is invertible and that the elements of P(O, ¢, h) can be reparametrized by the
mapping p — Py. 0(u) denotes the inverse and = := u(©) the conjugate parameter space.
We note that V,0(p) = I(n) gives the Fisher information in p-parametrization and is equals
to Covf(qﬁ). The Kullback-Leibler divergence between Py and Py is given by

D(Fy||Py) = (6 = 0) - p(0) — (6) + (). (4.3.1)

The class of Hamiltonians having the above form describes a variety class of models that
appears in statistical physics. We give two examples belonging to the above class.

Example 4.3.1.1 (One-dimensional Ising model). The first example is a one-dimensional
Ising model. Let N be a positive integer. The state space of N Ising spins on one-dimensional
chain is Q = {—1,1}" and a state is described by w = (01,...,0n), where o; € {—1,1} de-
notes the state of spin at the site i € {1,..., N}. The Ising model under a homogeneous mag-
netic field is described by the Hamiltonian SHy = —Bhey Zfil o; — BJ Zf\;l 0041, Wwhere
hex is the external field and J is the coupling constant. If the agent changes only the magnetic
field uniformly, the parameter is chosen as 6§ = [he, € © = R, the conjugate variable as
the total magnetization ¢(w) = S°~ | 07, and the remaining part as h(w) = £J S0 0,0:41.
In this case, the expectation of ¢ is the average magnetization p(6) = > """ | Py(o;) and the
Fisher information is I(f) = B!y, where x is the magnetic susceptibility. If the agent
changes the coupling constant J in addition to the magnetic field, the parameter becomes
two-dimensional vector § = (Bhey, 4J), the conjugate variable ¢ = (30, 04, S0, 0:10411)
and the remaining part h = 0. The parametrization for a given physical model is thus not
unique in general.

Example 4.3.1.2 (Positive distribution). The second example is positive distributions on
a general finite state space. This case corresponds to that we argued in Section 4.2. Let
Q={0,1,2,...,k} be a finite set. Putting © = {(In(p;/po))%_, € R*: 0 < p; < 1, Z?Zl p; <

Lipp=1- Zf:l pi}, 0 = In(pi/po), ¢i = 1y, h =0, ¥(0) = —In(1 — Zle pi) = —Inpy, we
have that

k
po(i) = exp {Z 0;0;(1) — 1/)(9)} = pi (4.3.2)

for every ¢ € ). The exponential family is therefore the family of strictly positive distributions
on ). The empirical mean of ¢ is identified with the empirical density and the expectation
wi(0) is given by p; for i =1,... k.

4.3.2 Setup and Result

The protocol we study in this subsection is almost the same as that in Section 4.2. A crucial
difference is that the agent cannot prepare an arbitrary Hamiltonian in general and he has
to construct a strategy by tuning only a small number of control parameters.
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We assume that the initial Hamiltonian has the form SHy = —60 - ¢ — h for some § € ©.
A strategy the agent applies is characterized by a function 6 : 2* — ©. The operation in the
n-th cycle is performed according to the following protocol:

(P1) The agent quenches the Hamiltonian adiabatically from the initial Hamiltonian Hy
to another one Hy, -1y when the initial states up to the (n — 1)-th cycle are wl =
W1 ... Wp—1-

(P2) The agent equilibrates the system with the inverse temperature f.
(P3) The agent resets the system quasi-statically and isothermally.

The accumulation of extracted work W9 := WHs in this protocol under the strategy g is
given by

n

W) = 3 (B = 0) - 6(wr) — () +w(6)] . (43.3)

=1

Let E C O+ be an almost sure property under the infinite product of the Gibbs distributions
p?* = ggge. Although there exists a strategy H that forces E according to Ville’s theorem

(Theorem 4.2.4.1), the strategy H may not be realizable within the above protocol. In
general, the decrease in the number of possible strategies the agent can apply leads to the
decrease in the variety of almost sure properties forced by the second law. The question we
study in this section is what statistical properties are forced when we restrict the ability of
the agent.

We expect from the expression (4.3.3) that such properties are restricted to the statistics
of the conjugate variable ¢ with respect to the control parameter 6. Indeed, we find that
there exists a strategy in the restricted protocol that forces the strong law of large numbers
for the conjugate variable.

Theorem 4.3.2.1. Let ¢, be the empirical mean of ¢ defined by

_ 1 <&
On(w") =~ lwn). (43.4)
i=1
There exists a strategy 0 : Q" — O that forces
lim ¢, = u(f). (4.3.5)
n—oo

This is the second main result of the present chapter. Theorem 4.2.3.1 is a special case of
Theorem 4.3.2.1 because the empirical mean of ¢ in Example 4.3.1.2 can be identified with
the empirical density.

Since p(#) is the equilibrium value of the conjugate variable, Theorem 4.3.2.1 implies that
the infinite sequences satisfying the second law are indistinguishable from random sequences
sampled from the equilibrium distribution as long as we observe the conjugate variable. In
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contrast to Theorem 4.2.3.1, the relative frequencies of initial microscopic states may not
converge to the Gibbs distribution under the strategy. For instance, when the agent controls
the homogeneous magnetic field on the free spin system, the average magnetization should
converge to the equilibrium value but the relative frequencies of spin configurations having
the same magnetization may not be controlled. Thus the statistical properties the agent can
force under the second law depend on what kind of physical operations are allowed for the
agent.

4.3.3 Proof of Theorem 4.3.2.1

We present a proof of Theorem 4.3.2.1. By the following lemma, it is sufficient to prove the
existence of a strategy that weakly forces (4.3.5) and takes values in a compact set containing
the initial parameter 6 as an interior point. It is proved in the same way as Lemma 3.1 in

[SVo1).

Lemma 4.3.3.1. Let £ C QN be an event and ©g C O a compact convex subset with
0 € intO,. If there exists a strategy that weakly forces F and takes values in ©g, then there
is also a strategy that forces E and takes values in the same set ©.

Proof. For a given strategy 6: Q0 — Oy and a positive real number C' > 0, we define the
“stopped strategy” 6(©) as

R %) n 3 é m <
§O () {Q(w ) if pWOw™) < C for all m <n (4.3.6)

0 otherwise.

Let 0 be a strategy that weakly forces E and é(c) its stopped strategy for C' > 0. Consider
the countable number of stopped strategies 6@ for i = 1,2,.... Since é@l)(w”) € O and O
is compact, 0*(w") == 3202, 279 (w") exists for any w™ € Q*. The closedness and convexity
of O lead to é*(w”) € 0. Hence, the function 0% : QO — Oy defines a strategy taking values
in ©y. We obtain from the convexity of ¢y and Jensen’s inequality that

W @) 2 3 27w (). (4.3.7)
=1

For w*™ € E°, the limit lim, BWé<C) (w") exists and is larger than or equal to C' because
sup, W?(w") = oco. Since lim, BWQ(QZ)(w”) > 2! for w® € E°, lim, W (w") diverges to
infinity for w™ € E°. O

Our method of the proof is based on the maximum likelihood strategy. If the agent applies
a constant strategy, i.e., § = @', the accumulation of extracted work up to the n-th cycle is
given by

AW (w") = In ]; o (4.3.8)
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The maximum likelihood strategy is defined as the maximizer of (4.3.8) for each w”. Because
the maximizer of (4.3.8) over the open set © may not exist, we restrict the range of the
strategy to a compact set O containing the initial parameter # as an interior point. The
maximum likelihood estimator éML - (0 — Oy with respect to Og is defined as

Ouir, (w") = arg Imax In pp (wW™). (4.3.9)
0

We define the corresponding conjugate parameter space Zg = 1(6y), which is also a compact
convex subset of Z. We set jivy,(w") = p(fur(w")). Because Vg Inpp(w) = d(w) — pu(0), the
maximum likelihood estimator Ay, and iy, are given as the solution of the equation

3 0(n) = Pig o (6) = fnan ") (4.3.10)

if and only if ¢, € =, which does not always hold.
We summarize the basic properties of the maximum likelihood estimator. The convexity
of —Inpjy(w™) with respect to 6 implies that

(6= By (@) - (i (") — B,) = 0 (4.3.11)

for all # € ©p. In fact, assume that it does not hold for some € ©g. Consider the
continuous path s(t) = t0 + (1 — t)fyr(w™) for t € [0,1]. The convexity of ©¢ implies that
s(t) € ©p for all t € [0,1]. From the assumption, we obtain that 0;[—Inp, (w")]llt=0 =

n(finin (W) — p(w™)) - (0 — Oy(w™)) < 0, and thus —Inpf,(w") < —lnngL(wn)(w") for a

sufficiently small ¢ € [0,1]. This contradicts the minimality of fyy,(w™) on ©y. We have from
the condition (4.3.11) that if Oy, (w”) € intOy, then ¢, € Zy and therefore jiyg (W) = .
Otherwise, (fiym (w™) —,) - (0 —Opw(w™)) < 0 for some 6 € O in a neighborhood of i, (w™),
which contradicts (4.3.11).

The maximum likelihood strategy was originally studied in the context of universal coding

and sequential prediction. Kottowski and Griinwald obtained the following lower bound in
[KG11]:

Lemma 4.3.3.2 ([KG11)).

- IEO B + CEO 2
Z [lnpéML(w"_l)(wi) - lnpéML(w")(wi)] 2> - ( 9 ) Inn + 0(1)7 (4'3'12>

i=1

where B = max,cq |¢(w)], Cz, = max ez, ||| and Iz, = max,ez, || I(1)]].

We note that these constants are all finite due to the compactness of {2 and =y. By using
Lemma 4.3.3.2, we obtain Theorem 4.3.2.1 immediately.

Proof of Theorem 4.3.2.1. For any strategy é, BW,? can be decomposed into two parts:

n

BW‘;(W") = Z [lnpé(wn)(wi) — lnpg(wi)] + Z [lnpé(wi_l)(wi) - lnpé(wn)(wi)] . (4.3.13)

i=1
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First, we investigate the first part for fyy,. We have from (4.3.1) and (4.3.11) that

n

Z [1npéML(wn)(wi) - lnpe(wz‘)] =nD(F; . wmllFo) + n(On(w™) = 0) - (8, — fnar(W™))

i=1
> nD(Fy ol Fo)- (4.3.14)
Combining Lemma 4.3.3.2 with the above inequality (4.3.14), we have that

Iz,(B + Cg,)*Inn
2

BWéNIL(wn> >n [D(PéML(w”)Hpe) — + O(l) (4.3.15)

Suppose that sup,, WT(?ML (€) < oo for € = wywy . ... Then, there exists a real number C¢ € R
such that W (w") < Cg for all n € N. From the inequality (4.3.15), we have that
O& IE()(B + 050)2 Inn

< =5 -1, 3.
o) < =5 + ; — 0™ (4.3.16)

D(PéML(wn
Since C¢ is independent of n, we obtain that D(Fp =« [[F) — 0 as n — oo. This implies
that ps . (w) converges to pp(w) for any w € €, and therefore finm,(w") — p(6). For
¢ € O+ such that finr, — p(0) € int=, ¢, € Zo and fing,(w") = ¢, for sufficiently large n,
and therefore ¢, — p(6). O

We have several remarks before ending the subsection.

(1) The lower bound (4.3.15) has much information on the asymptotic behavior. If the
second law is weakly valid, i.e., sup, W™t < oo, then F; .. converges to Fp with
respect to the Kullback-Leibler distance with the convergence rate O(y/Inn/n) and the

convergence factor \/Iz,(B + Cz,)2/2. We also note that if the convergence (4.3.5) does
not hold, the accumulation of the extracted work grows at least linearly. Specifically,
the extracted work per cycle becomes positive infinitely many times,

é
limsup% > 0, (4.3.17)

n—oo N

for sequences violating the strong law of large numbers (4.3.5). For instance, if Gy, (w™) —
0'(#£ 0) as n — oo, the rate of the extracted work is given by the Kullback-Leibler dis-
tance between Py and Py. This implies that our results (Theorem 4.2.3.1 and 4.3.2.1)
are valid even if we apply (4.3.17) as a definition of the violation of the second law.

(2) The maximum likelihood estimator Oy, (w,) defined by (4.3.9) depends on w, through
only ¢, because the conjugate variable ¢ is the sufficient statistic for the exponential
family P(O, ¢, h). Therefore, even if only the information on the past history of ¢ is
given to the agent, he can perform the maximum likelihood strategy and can forces the
strong law of large numbers for the conjugate variable.
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4.3.4 Numerical Demonstration

We illustrate the validity of the maximum likelihood strategy numerically for the Ising Hamil-
tonian under the homogeneous magnetic field for two spins, 5Hy(01,09) = —0109—0(01+03).
We consider the situation that the agent changes the magnetic field with fixed coupling
constant. We set §J = 1 for simplicity and write § = She. The initial parameter
is set to be § = 0. The average magnetization u(0) = Egloy + oo is given by u(0) =
2(e® +e720) /(e® + 2% 4 2¢72). The maximum likelihood estimator for § with respect to a
compact set Oy = [—In2,1In2] is given by

—In2 if ¢, < pu(—In2)
O (W) = { 0(¢y)  if by € [u(—1n2), pu(In2)] (4.3.18)
n2 if ¢, > u(ln2),

where

0(u) = %ln (“62 i \/; - Ef_4 - 1)“2> (4.3.19)

is the inverse of 6 — p(6). If a sequence is generated by the Gibbs distribution with 6 # 0,
the empirical mean for the sequence converges to p(f) but it is different from p(0). In Fig
4.2, we plot the accumulations of extracted work for sequences generated from the Gibbs
distribution with 6 = 0,+0.1,£0.2. The figure shows that while the accumulations for
parameters § = 40.1, 0.2 diverge to infinity and the second law is violated, the accumulation
for @ = 0 remains finite. The linear growth of the accumulation of extracted work is consistent
with the lower bound (4.3.15).

4.4 Game-theoretic Interpretation

We discuss a game-theoretic interpretation of the protocol of this chapter. The interpretation
is based on the analogy with game-theoretic probability theory [SV01, SV19].

We interpret the work extraction as a game played between two players, Skeptic and
Reality. The player Skeptic doubts that the statistical property of the heat engine is described
by equilibrium statistical mechanics, particularly the Gibbs distribution. He attempts to
test the hypothesis of equilibrium statistical mechanics by actually extracting work from
the engine many times and observing whether the second law of thermodynamics holds or
not. If the accumulation of the extracted work diverges to infinity, i.e., the second law is
violated, then Skeptic rejects the hypothesis. On the other hand, the player Reality decides
initial microscopic states of the heat engine. The duty of Reality is to prevent Skeptic from
extracting the infinite amount of work and to make the second law of thermodynamics valid
in our world.

The algorithm of the game corresponding to the protocol we discussed in Section 4.2 is
as follows.
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Figure 4.2: The accumulations of the extracted work for sequences generated by the Gibbs
distributions with various parameters versus the number of cycles. The top (resp. bottom)
dotted line indicates the Kullback-Leibler distance between Py (resp. Pp—+o.1) and Py—o.

Protocol 4.4.0.1 (Generic Hamiltonian).
Parameter:
an initial Hamiltonian H : 0 — R,
an inverse temperature 3 > 0.
Players: Skeptic, Reality.
Protocol:
w(O) = 0.
FORn=1,2,...:
Skeptic announces H,,
Reality announces w,, € €2
Wy i=Wu1+ H(w,) — Hy(wn) + F3(H,) — F(H)
END FOR

In Protocol 4.4.0.1, H, == H(-Jw™ ') denotes the quenched Hamiltonian in the n-th cycle
and W, = WH (w™) the accumulation of extracted work up to the n-th cycle. We remark
that Reality can decides an initial microscopic state w, after the announcement by Skeptic.
Therefore, we allow Reality to move strategically in Protocol 4.4.0.1. Nevertheless, Theorem
4.2.3.1 is still valid even if Reality decides microscopic states strategically because whether
a strategy forces a property or not is independent of the strategy Reality applies. Theorem
4.2.3.1 implies that there exists a strategy for Skeptic such that Reality has to converge the
empirical distribution to the Gibbs distribution. In other words, Reality is forced to act
probabilistically in a manner consistent with equilibrium statistical mechanics due to the
second law.

As an application of Theorem 4.2.3.1, we consider a testing procedure of random number
generator. Let us suppose that Reality claims that she finds an algorithm to generate random
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numbers with respect to the Gibbs distribution. Skeptic doubts her claim and attempts
to test it. Although there are several criteria that the random numbers should satisfy, we
consider the strong law of large numbers (4.2.6) for the empirical distribution as a criterion
here. If the random number obtained from Reality’s generator does not satisfy the SLLN,
Skeptic rejects her claim and concludes that the random number generator does not work well.
According to Theorem 4.3.2.1, Skeptic can confirm the validity of the SLLN by performing
cyclic operations for microscopic states prepared by the generator. In other words, the second
law of thermodynamics can be used as a test for the random number generators.

Similarly, the algorithm of the protocol in Section 4.3 is as follows.

Protocol 4.4.0.2 (Parametric Hamiltonian).
Parameter:
a control parameter space O,
a conjugate variable ¢ : Q — R¥,
a remaining Hamiltonian h : Q — R,
an initial parameter 6 € O,
an inverse temperature § > 0.
Players: Skeptic, Reality.
Protocol:
w(d) = 0.
FORn=1,2,...:
Skeptic announces 6,, € O.
Reality announces w,, € €2
W, =W,_1+ Hg(wn) — Hgn(wn) + FB(HQn) — FB(HQ)
END FOR

Theorem 4.3.2.1 can be interpreted game-theoretically in a similar way to the case of
Theorem 4.2.3.1.

4.5 Concluding Remarks

In this chapter, we provided a novel formulation of the second law of thermodynamics and
showed that there exist strategies for the agent that force statistical properties consistent
with equilibrium statistical mechanics, i.e., the strong law of large numbers for the empirical
distribution and empirical mean. In the protocol where the agent is able to prepare arbitrary
Hamiltonians, the empirical distribution must converge to the Gibbs distribution for the
initial Hamiltonian under some strategy. In the protocol where the agent can change a small
number of parameters in the Hamiltonian, the maximum likelihood strategy forces the strong
law of large numbers for the conjugate variable. Before ending the chapter, we discuss future
directions of the study.
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Extension to other situations We considered the simple settings where initial micro-
scopic states are prepared independently and identically. It is important to study in the
same spirit more complicated settings such as stochastic thermodynamics [Seil2, Sek98], in-
formation thermodynamics [SU10], and quantum systems [PW78, Len78]. In particular, it is
a future subject to treat the stochastic evolution of microscopic state in our framework and
to connect it with thermodynamic quantities. The extension to the quantum settings might
be more difficult because the quantum theory has a probabilistic structure different from the
classical one. See the chapter 10.6 in [SV19] for game-theoretic formulations for Born’s rule
and quantum computation.

Assumption on quasi-static isothermal work We assume in our settings that the work
extracted in the quasi-static isothermal process is equal to the decrease in free energy defined
by Fg(H)=—""In>"_.q e PH@)  This assumption allows us to connect the work extracted
in the quasi-static isothermal process with the microscopic Hamiltonian, without explicitly
referring to the time evolution of the system. However, we should remove it to clarify the
emergence of the probabilistic structure from thermodynamics. Although one way to do so
is to replace the difference in free energy, F(H) — F3(H), in Protocol 4.4.0.1 by the work in
the quasi-static process defined only in terms of mechanics, it is a challenging task because

we have to take the dynamical properties of the system into account explicitly.

Macroscopic systems We investigated the asymptotic behavior of the work extracted
from a finite system as the number of cycles n goes to infinity. While our results are valid
for small systems as with stochastic thermodynamics, the second law of thermodynamics is
believed to hold almost surely for macroscopic systems without repeating the operations.
Developing our formulation for macroscopic thermodynamics is a future direction of the
study.

Coarse-grained information We assumed in our protocol that the agent can use the
information about microscopic states in the past. However, this assumption may be too
demanding when the size of the system is large. In a more realistic situation, the agent can
measure only the value of extracted work. It is important to study statistical properties
forced by strategies under such situation.

Classification of probabilistic laws The approach based on the prequential form allows
us to classify the statistical property of the equilibrium state according to the ability of
the agent. In the usual formulation of statistical mechanics, the law of large numbers for
the empirical distribution and for the empirical mean of the conjugate variable are both
formulated as the events with probability one. In this sense, there is no distinction between
these probabilistic laws. However, in the prequential approach, what kind of probabilistic laws
can be observed depends on our ability. It is interesting to provide a detailed classification
of the probabilistic laws of equilibrium states according to the ability of the agent to operate
the system.
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Algorithmic randomness We mention the probabilistic feature of infinite sequences. Al-
though the empirical distribution for the simple binary sequence 01010101 ... converges to
the uniform distribution on {0,1}, it is not sufficiently random according to our intuition.
However, Theorems 4.2.3.1 and 4.3.2.1 refer to only the empirical distribution and mean.
To say that an infinite sequence is random with respect to a probability distribution, we
have to require stronger conditions on the empirical statistics. The algorithmic theory of
randomness provides an idealized notion of randomness on the basis of computability theory
and martingale theory [Nie09, DH10]. A class of randomness is defined as the intersection of
sets that are weakly forced by strategies with some computability condition. For instance,
computable strategies specify the class of randomness called computable random. Although
there exists no universal computable strategy, i.e., the computable randomness cannot be
forced by a single strategy, to investigate such class in the context of thermodynamics may
be interesting. We hope that the present study provides an insight into studying thermody-
namics from the viewpoints of the martingale structure and computability of strategies. As
a study in the same spirit, see Chapter 3 showing the relevance of algorithmic randomness
to thermodynamic irreversibility.



Chapter 5

Conclusion

In this thesis, we have studied several problems in statistical physics with a game-theoretic
approach. Throughout this thesis, we have seen that the concept of “martingale” is useful
to investigate two aspects of stochastic processes. On the one hand, martingale theory was
applied to the stopping time problem in stochastic thermodynamics. In Chapter 2, we have
studied along this line and derived the kinetic uncertainty relation on first passage time
for time-integrated currents via the information inequality at stopping time. On the other
hand, martingale processes are used to characterize the randomness in stochastic processes.
In Chapter 3 and 4, we have studied along this line. In Chapter 3, by using the theory of
algorithmic randomness, we have shown that the random configurations of a macroscopic
system exhibit irreversible relaxation behavior. In Chapter 4, we have identified processes
of exponentiated extracted work with positive martingale process with respect to the Gibbs
distribution and have proved that the second law of thermodynamics implies the Gibbs
distribution. Although the former aspect has already been studied in the context of stochastic
thermodynamics, the latter aspect in statistical physics was first proposed by the author and
should be studied in future works.
Before ending this thesis, we make some speculative remarks.

e In Chapter 2, we have used the information inequality at stopping time, which pro-
vides an upper bound on the relative fluctuations of the first passage time in terms
of the Fisher information. We recall that the Fisher information has been studied as
a geometric object, i.e., Riemannian metric, in the context of information geometry.
It is natural to expect that there may be a geometrical understanding of stochastic
thermodynamics and thermodynamic inequalities. Recently, the idea along this line
has been studied and there is room for further development. Is there a counterpart of
this problem in stopping time statistics? For example, consider the following transport
problem: for a given initial probability distribution p and final distribution ¢, find a
stopping time 7 such that Xy ~ p, X, ~ ¢, and it minimizes some cost function, e.g.,
the entropy production. Is there a concise characterization of such optimal stopping
time? Does the optimal stopping time allow a geometrical understanding? Is it use-
ful to control the thermodynamic system? Is it relevant to the efficiency of biological
systems?
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CHAPTER 5. CONCLUSION

e In Chapter 3 and 4, we have discussed the randomness of microscopic states. The same

idea can be applied to equilibrium statistical mechanics for large systems. Consider
a classical spin system on a lattice with a Hamiltonian H. According to the Birkhoff
theorem, for a spatially ergodic Gibbs measure pu, the spatial average of a local quan-
tity f converges to the equilibrium value E,(f) as the averaged region grows with
probability one. It is known that the Birkhoff theorem can be “effectivized”. That is
to say, for a spatially ergodic computable Gibbs measure, the spatial average of any
lower semicomputable function f converges to the equilibrium value if and only if the
spin configuration is Martin-Lof random with respect to the Gibbs measure. If we
define the “equilibrium state” as the set of all configurations whose spatial average of
any “effective” quantity converges to the equilibrium value, this theorem claims that
the equilibrium state is completely characterized in terms of Martin-Lof randomness.
Moreover, the Kolmogorov complexity density of a Martin-Lof random configuration
converges to the thermodynamic entropy density in the thermodynamic limit, despite
that the thermodynamic entropy is not usually considered as a function of microscopic
states. With this in mind, it would be a challenging task to formulate the second law
of thermodynamics for macroscopic systems in terms of (algorithmic) randomness.
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