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Systems in which different phases coexist, such as growing crystal, exhibit a rich

variety of dynamical behaviors. A typical situation is that an interface connects a stable

phase and a metastable phase. Then, through the propagation of the interface, the

stable phase grows and eventually the metastable phase vanishes. This phenomenon is

ubiquitously observed in nature.

The propagation of the interface can be described by the time evolution of an order-

parameter field that represents the extent of the order. When the order parameter is

the only relevant dynamical variable of the system, the propagation velocity of the in-

terface between the two phases is proportional to the difference in free energy densities,

where the proportional constant is the mobility. However, as typically observed in crys-

tallization, energy flow becomes a significant physical quantity, because latent heat is

generated in the growth process. In this case, a temperature field also evolves under

the influence of the generated latent heat, and this temperature field influences the time

evolution of the order parameter. The set of coupled equations is called the phase-field

model, which may be the most standard description of the phase growth that takes the

effect of latent heat into account. It has been known that the interface position R(t) at

time t depends on the extent of the metastability ∆. Here, ∆ is defined as

∆ ≡ cp
Tc(δs)

|Tc − Tms|,

where Tc is the equilibrium transition temperature, Tms is the temperature of the heat

bath in contact with the metastable phase, δs is the entropy jump per unit volume,

and cp is the specific heat capacity per unit volume under constant pressure. When

the extent of supercooling is less than unity, the interface displacement during some

time interval is proportional to the square root of the time interval. This phenomena is

observed by the numerical simulation using the phase-field model. Latent heat modifies

the law of the propagation of interfaces. However, to our knowledge, there have been no

theoretical studies of the
√
t-dependence in the phase-field model.

Furthermore, it is not obvious whether or not the phase-field model is appropriate for

describing phase growth. Following the Onsager principle, we can derive an equation

equivalent to the phase-field model. Because the noise intensity is determined by the

fluctuation-dissipation relation of the second kind, the thermal noises are inevitable in

the description. Thus, it is not evident whether noise effects are irrelevant to the phase

growth, which is assumed in the phase-field model. Even worse, a typical interface width

is the order of 10−7 cm. Thus, the interface may be out of the mesoscopic description.

In the phase-field model, all such properties are universally represented by only the

gradient term. These are issues on the validity of the phase-field model.



Based on the background, this thesis study the deterministic and stochastic phase

growth with latent heat and examine the effect of the thermal fluctuation on the phase

growth. In Chapter 2, we demonstrate the square root behavior by deriving a per-

turbative solution for a propagating interface in the phase-field model. The particular

solution possesses the scaling form with two scaled coordinates and one dimensionless

time-dependent small parameter. Expanding the solution in the small parameter, we cal-

culate the leading-order contribution and the next-order contributions explicitly. we find

that the solutions shows the square root behavior and the interface temperature deviates

from the equilibrium transition temperature in proportion to the interface velocity.

In Chapter 3, we propose a stochastic growth model describing the phase growth

accompanying latent heat. The model is based on an energy-conserving Potts model

with a kinetic energy term defined on a sparsely random lattice only in one direction.

For this model, we calculate the stable and metastable phases exactly using statistical

mechanics. Furthermore, owing to the presence of the kinetic energy, the conversion

from the potential energy to the kinetic energy of the Potts model can be described in

the model, which corresponds to the generation of latent heat.

In Chapter 4, performing numerical simulations of the model, we measure the displace-

ment of the interface. we find the scaling relation R(t) = LxR̄(Dt/L2
x), where Lx is the

system size between the two heat baths (See Fig. 1). The scaling function R̄(z) shows

R̄(z) ≃ z0.5 for z ≪ zc and R̄(z) ≃ zα for z ≫ zc, where the crossover value zc and the

exponent α, 0.5 ≤ α < 1, depend on the temperature of the heat bath in contact with

the stable phase. The scaling relation in the late stage is not observed in the phase-field

model. This means that the stochastic growth law is qualitatively different from that of

the deterministic phase-field model.

The final chapter is devoted to the summary of the thesis.
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An unexpected behavior of R(t) is observed for the
case TR = 1.2Tc > Tsp. As shown in Fig. 7a,
four graphs for different system sizes, (Lx, Ly) =
(100, 100), (200, 100), (300, 100), and (400, 100) do not
overlap, while the Ly dependence is hardly visible. We
then consider a finite size scaling to plot R/Lx as a func-
tion of t/L2

x. The result is displayed in Fig. 7b. We find
the scaling relation

R(t)

Lx
= R̄

(
Dt

L2
x

)
(25)

works well, where R̄ is a scaling function. The scaling
function indicates the cross-over from R̄(z) ! z0.5 to
R̄(z) ! zα with 0.5 ≤ α ≤ 1. It should be noted that the
scaling relation in the late stage is not observed in the
phase-field model.
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FIG. 7. (a). R(t) versus t for TR = 1.2Tc. The average of
100 samples was taken for the system with different system
sizes. (b) R(t)/Lx as a function of z = t/L2

x. The two guide-
lines are Az0.5 and A′z0.75, where A ! 0.04 and A′ ! 0.03,
respectively.

The exponent α does not seem universal but depends
on the value of TR. Decreasing TR further, we find that
the late stage becomes dominant and α increases. For
the case TR = TL = 1.01Tc < Tsp, α turns out to be
close to unity, as shown in Fig. 8.
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FIG. 8. R/Lx as a function of t/L2
x for the case TR = 1.01Tc.

The guideline represents Az0.95 with A ! 8.2× 10−4.

V. CONCLUDING REMARKS

We have proposed a stochastic model that describes
phase growth. We propose a q-state Potts model with
an additional variable representing the kinetic energy at
each site and define a stochastic process satisfying the de-
tailed balance condition. By designing a sparse-randomly
connected lattice in one direction, we have explicitly cal-
culated the thermodynamic properties via equilibrium
statistical mechanics. Using this model, we have numer-
ically observed that the interface between the stable and
metastable phases moves following the scaling relation
(25) with the scaling function R̄(z). The scaling func-
tion shows a cross-over from R̄(z) ! z0.5 to R̄(z) ! zα,
where the cross-over value of z and the exponent α de-
pends on the temperature of the heat bath attached to
the stable phase.
These results suggest that the interface motion qualita-

tively changes when stochastic processes are considered.
When the driving force originating from the difference
in free energy densities is the main factor in the inter-
face motion, the result is consistent with the solution of
the phase-field model. Contrary to this case, when the
driving force is weak, the behavior cannot be described
by the phase-field model, presumably because of strong
fluctuation effects. We do not yet have a theoretical un-
derstanding of the observed behavior. Nevertheless, it is
reasonable to interpret the observation as renormaliza-
tion of the interface motion even apart from the critical
point. To our knowledge, this aspect has never been stud-
ied. Therefore, it is a challenging problem to theoretically
derive our observation.
It should be noted that the results are not specific

to the model on the tailored lattice. For example, in
Figs. 9a, 9b, and 9c, we show the results for the q-state
Potts model on the square lattice whose parameter is the
same as that of the model on the sparsely random lat-
tice. The observed behavior is qualitatively similar to
that reported in the previous section. Therefore, we ex-

Fig. 1: One example of the numerical result. Log-log plot of R(t)/Lx as a function of

z = t/L2
x. The two guidelines are R̄(z) ∼ z0.5 and R̄(z) ∼ z0.75, respectively.


