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Systems in which different phases coexist, such as growing crystal, exhibit a rich
variety of dynamical behaviors. A typical situation is that an interface connects a stable
phase and a metastable phase. Then, through the propagation of the interface, the
stable phase grows and eventually the metastable phase vanishes. This phenomenon is
ubiquitously observed in nature.

The propagation of the interface can be described by the time evolution of an order-
parameter field that represents the extent of the order. When the order parameter is
the only relevant dynamical variable of the system, the propagation velocity of the in-
terface between the two phases is proportional to the difference in free energy densities,
where the proportional constant is the mobility. However, as typically observed in crys-
tallization, energy flow becomes a significant physical quantity, because latent heat is
generated in the growth process. In this case, a temperature field also evolves under
the influence of the generated latent heat, and this temperature field influences the time
evolution of the order parameter. The set of coupled equations is called the phase-field
model, which may be the most standard description of the phase growth that takes the
effect of latent heat into account. It has been known that the interface position R(t) at
time ¢t depends on the extent of the metastability A. Here, A is defined as

Cp
T.(ds)

A= |Tc - Tms|a

where T, is the equilibrium transition temperature, Ty, is the temperature of the heat
bath in contact with the metastable phase, ds is the entropy jump per unit volume,
and ¢, is the specific heat capacity per unit volume under constant pressure. When
the extent of supercooling is less than unity, the interface displacement during some
time interval is proportional to the square root of the time interval. This phenomena, is
observed by the numerical simulation using the phase-field model. Latent heat modifies
the law of the propagation of interfaces. However, to our knowledge, there have been no
theoretical studies of the v/t-dependence in the phase-field model.

Furthermore, it is not obvious whether or not the phase-field model is appropriate for
describing phase growth. Following the Onsager principle, we can derive an equation
equivalent to the phase-field model. Because the noise intensity is determined by the
fluctuation-dissipation relation of the second kind, the thermal noises are inevitable in
the description. Thus, it is not evident whether noise effects are irrelevant to the phase
growth, which is assumed in the phase-field model. Even worse, a typical interface width
is the order of 1077 cm. Thus, the interface may be out of the mesoscopic description.
In the phase-field model, all such properties are universally represented by only the
gradient term. These are issues on the validity of the phase-field model.



Based on the background, this thesis study the deterministic and stochastic phase
growth with latent heat and examine the effect of the thermal fluctuation on the phase
growth. In Chapter 2, we demonstrate the square root behavior by deriving a per-
turbative solution for a propagating interface in the phase-field model. The particular
solution possesses the scaling form with two scaled coordinates and one dimensionless
time-dependent small parameter. Expanding the solution in the small parameter, we cal-
culate the leading-order contribution and the next-order contributions explicitly. we find
that the solutions shows the square root behavior and the interface temperature deviates
from the equilibrium transition temperature in proportion to the interface velocity.

In Chapter 3, we propose a stochastic growth model describing the phase growth
accompanying latent heat. The model is based on an energy-conserving Potts model
with a kinetic energy term defined on a sparsely random lattice only in one direction.
For this model, we calculate the stable and metastable phases exactly using statistical
mechanics. Furthermore, owing to the presence of the kinetic energy, the conversion
from the potential energy to the kinetic energy of the Potts model can be described in
the model, which corresponds to the generation of latent heat.

In Chapter 4, performing numerical simulations of the model, we measure the displace-
ment of the interface. we find the scaling relation R(t) = L,R(Dt/L2), where L, is the
system size between the two heat baths (See Fig. 1). The scaling function R(z) shows
R(z) ~ 2% for z < z. and R(z) =~ 2% for z >> 2., where the crossover value z. and the
exponent «, 0.5 < o < 1, depend on the temperature of the heat bath in contact with
the stable phase. The scaling relation in the late stage is not observed in the phase-field
model. This means that the stochastic growth law is qualitatively different from that of
the deterministic phase-field model.

The final chapter is devoted to the summary of the thesis.
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Fig. 1: One example of the numerical result. Log-log plot of R(t)/L, as a function of
z =t/L2. The two guidelines are R(z) ~ 20° and R(z) ~ 2%7°, respectively.



