
Thesis

Nonequilibrium

quantum many-body phenomena

in Floquet systems

Kaoru Mizuta

January, 2022



2



Abstract

Periodically-driven (Floquet) systems are one of the most important classes in nonequilibrium
physics, which are modulated periodically in time. They have various realizations, such as materials
under laser light and AMO (atomic, molecular and optical) systems. In addition, due to their
time-dependency, they can host various quantum phenomena inherent in nonequilibrium beyond
conventional equilibrium physics. Floquet systems also enable the control of materials by periodic
drive, which is called “Floquet engineering.” These various platforms, nonequilibrium properties,
and applications have brought extremely rapid growth of Floquet systems during the past decade,
giving fundamental comprehension of nonequilibrium physics and technical developments related
to optical devices, quantum simulations, and quantum computation.

One of the most significant interests in Floquet systems in recent years may be :

What kinds of nonequilibrium phenomena take place when nonequilibrium properties inherent in
Floquet systems and quantum many-body properties induced by interactions coexist ?

As mentioned before, nonequilibrium properties are keys for Floquet systems to surpass conven-
tional equilibrium setups. A representative example is an anomalous Floquet topological insulator,
in which a winding number, emerging from the breakdown of the conventional band picture in
static systems, characterizes topological natures. On the other hand, quantum many-body prop-
erties bring various basic but nontrivial phenomena in condensed matter physics, well-known for
crystals, ferro- or antiferro-magnets, and superconductors. Thus, Floquet systems with the inter-
play of nonequilibrium and quantum many-body properties, dubbed Floquet many-body systems,
are intriguing fields lying in the frontier of nonequilibrium condensed matter physics.

Unfortunately, there exists a notorious problem called heating problem, which is believed to
valid for nonintegrable closed Floquet many-body systems from some numerical studies. Briefly
speaking, the heating problem dictates that any nonintegrable closed Floquet systems always relax
to featureless states after a long time as a result of Floquet Eigenstate Thermalization Hypothesis
(Floquet-ETH). Does this immediately mean that Floquet many-body systems host no interesting
nonequilibrium phenomena ? The answer is actually no, as a series of recent studies have revealed
various stimulating many-body phenomena in Floquet setups. We should explore several directions
to realize nontrivial phenomena that overcome the heating problem as follows:

1. Ordered and topological phases on quasi-steady states in intermediate time regime

2. Ordered and topological phases in localized Floquet many-body systems

3. Nonequilibrium dynamics and steady states in dissipative Floquet many-body systems

Each of the fields 1., 2., and 3. breaks some part of the assumptions, “after a long time,” “noninte-
grable,” and “closed” in the heating problem (or Floquet-ETH) respectively, thereby enabling its
own nontrivial physics. Simultaneously, we should note that the heating problem (or Floquet-ETH)
is merely an empirical law confirmed by some numerical simulations. Therefore, it is nontrivial
whether the heating problem completely prohibits steady states other than featureless thermal
ones. To be precise, it is also a significant question whether there exist

4. Athermal steady states in nonintegrable closed Floquet many-body states

as opposed to featureless thermal steady states expected from the heating problem.
In this thesis, we focus on nontrivial nonequilibrium dynamics and steady states in Floquet

many-body systems, which cover the above fields 1., 3., and 4., as follows:
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Resonant prethermal phases and resonant Floquet engineering (Chapter 2) — The high-frequency
regime, where the local energy scale of the Hamiltonian is much smaller than the driving frequency,
can host nontrivial quantum many-body phenomena during their quasi-steady states before heat-
ing to featureless steady states. However, in the high-frequency regime, the stroboscopic dynamics
of Floquet systems completely corresponds to that of static local Hamiltonians, indicating the
absence of unique nonequilibrium properties in this regime. In our study, we consider a hybrid
regime, where high-frequency drives and resonant drives having comparable energy scale to the
frequency coexist. Compared to the high-frequency regime, this hybrid regime can host unique
nonequilibrium phenomena such as prethermal discrete time crystals. We construct a perturbative
method to analyze their quasi-steady states with emergent unitary symmetries and prethermal
discrete time crystals. Furthermore, we also propose a new protocol for Floquet engineering, with
which we can simultaneously control phases and symmetries by resonant drives.

Emergent non-Markovianity in dissipative Floquet systems (Chapter 3) — We consider dissipa-
tive Floquet many-body systems which break the assumption “closed” in Floquet-ETH. They are
typically described by Floquet-Lindblad equations when we assume Markovianity. While they are
expected to host athermal steady states by avoiding the heating problem, their universal nature
has remained a mystery because of their complexity caused by the coexistence of periodic drives,
interactions, and dissipation. In our study, we focus on the high-frequency regime, and uncover
that dissipative Floquet many-body systems universally show emergent non-Markovianity due to
the spread of interactions. This result indicates that dissipative Floquet systems have no coun-
terparts in dissipative static systems under Markovianity even in the high-frequency regime, in
contrast to closed Floquet systems which have no unique nonequilibrium effect compared to static
systems in the same regime.

Exact Floquet quantum many-body scars under Rydberg blockade (Chapter 4) — Floquet-ETH
is just an empirical law confirmed by some numerical simulations. It is a crucial and fundamental
question whether nontrivial athermal steady states appear in Floquet many-body systems satisfying
all the assumptions of Floquet-ETH, “nonintegrability,” “isolation,” and “infinite lifetime.” In
our study, we tackle this question by constructing a counter example of Floquet-ETH, called
Floquet quantum many-body scars. We consider a one-dimensional system with extremely strong
repulsive interactions, recently observed in Rydberg atoms experiments. By exploiting a binary
drive composed of two static Hamiltonians showing static quantum many-body scars, our model
shows athermal persistent oscillations under some special initial states, while all the other initial
states relax to infinite-temperature states. This anomalous behavior dependent on the initial
conditions contradicts the consequence of Floquet-ETH or the heating problem, and exemplifies a
novel nonequilibrium phenomena in nonintegrable closed Floquet many-body systems.
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Chapter 1

Introduction

1.1 Floquet systems

Floquet systems are one of the classes of nonequilibrium systems, driven periodically in time. In
the case of quantum systems isolated from environments, they are described by time-dependent
Schrödinger equation:

i
d

dt
|ψ(t)⟩ = H(t) |ψ(t)⟩ , H(t) = H(t+ T ). (1.1)

Here, a quantum state |ψ(t)⟩ is an element of a Hilbert space H with the normalization ⟨ψ(t)|ψ(t)⟩ =
1, and a time-periodic Hamiltonian H(t) is a linear map from H to H. Throughout this thesis, we
set the Planck constant as ℏ = 1 and consider a finite-dimensional Hilbert space H.

The center of today’s condensed matter physics is static or equilibrium systems dominated
by a time-independent Hamiltonian H. They are described by well-established theories for time-
independent Schrödinger equation or the equilibrium partition function Z = Tr[exp(−βH)]. The
difference between conventional equilibrium systems and Floquet systems is just the time-dependency,
but this is essential for Floquet systems to have unique nonequilibrium phenomena due to the
absence of energy conservation and the breakdown of statistical physics for equilibrium. The time-
periodicity of Floquet systems is also important in that it gives simple but various experimental
platforms and works as discrete time translation symmetry inherent in time-dependent systems.
Floquet systems have experienced the rapid growth both in theories and experiments during the
past decade, and have attracted much interest compared to conventional equilibrium systems and
other nonequilibrium systems, mainly due to the following characteristics of Floquet systems.

Various platforms for Floquet systems

There are several experimental platforms rapidly developing in recent years for Floquet systems.
They directly realize time-periodic Hamiltonians, or indirectly provide Floquet systems by realizing
unitary dynamics equivalent to that in Floquet systems.

Solid materials under laser light.— The first typical platform for Floquet systems is materials
coupled with classical light. Let us consider a material described by a tight-binding Hamiltonian

H =
∑
k⃗∈G

εk⃗c
†
k⃗
ck⃗, G : reciprocal lattice, (1.2)

for the undriven case. When we shine classical laser light described by the time-periodic gauge
field A⃗(t) = A⃗(t+ T ), the time-periodic Hamiltonian is obtained by

H(t) =
∑
k⃗∈G

εk⃗−A⃗(t)c
†
k⃗
ck⃗, (1.3)

dubbed Pieres substitution. Recent typical experimentally-realized examples are two-dimensional
materials, such as graphene [1], under circularly-polarized light.

9
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Figure 1.1: Various platforms for Floquet systems. (a) Laser-irradiated materials. (b) Artificial
quantum systems under alternating pulse. (c) Quantum walk and quantum circuits.

Artificial quantum systems under periodic switching.— We can generate the time-periodicity
with the period T by the following Hamiltonians:

H(t) =


H1 0 = T0 ≤ t̃ < T1

H2 T1 ≤ t̃ < T2
...

Hn Tn−1 ≤ t̃ < Tn = T

(1.4)

with t̃ = (t mod T ) and a set of static Hamiltonians {Hj}nj=1. Experimentally, they can be
realized by alternate sequential pulse (See Fig. 1.1). Such non-smooth modulation is generally
easy to implement highly-tunable artificial quantum systems such as trapped ions [2], cold atoms
[3], photonic waveguides [4, 5]. In these setups, the time evolution operator over one period T
(called Floquet operator later) is simply represented by

Uf = UnUn−1 . . . U2U1, Ui = e−iHj(Tj−Tj−1), (1.5)

with a set of unitary operators {Uj}nj=1.
Quantum walk and quantum circuits.— Quantum walk is an extended version of the classical

random walk, which allows the superposition at different sites. The state at time t ∈ Z is given by
|ψ(t)⟩ =

∑
x,σ αx,σ(t) |x, σ⟩ (αx(t) ∈ C) with discrete spatial coordinate x and internal degrees of

freedom σ. Its dynamics with the probability conservation is described as

|ψ(t)⟩ = U t |ψ(0)⟩ , U : unitary. (1.6)

Typically, the unitary evolution U is experimentally implemented by optical elements in optical
systems, and is composed of the following operations for one-dimensional systems with σ = ±
[6, 7]:

C(θ) =
∑
x,σ

eiθσ |x, σ⟩ ⟨x, σ| : Coin operator with tunable θ ∈ R, (1.7)

S± =
∑
x

(|x± 1,±⟩ ⟨x,±| + |x,∓⟩ ⟨x,∓|) : Shift operator. (1.8)

Thus, quantum walk is often discussed as Floquet systems, in that U and its components {C(θ), S±}
respectively correspond to Uf and {Uj}j in Eq. (1.5).

Quantum circuits are one of the models for quantum computation. The quantum state defined
on multiple qubits are transformed by a set of unitary gates:

|ψoutput⟩ = unun−1 . . . u2u1 |ψinput⟩ . (1.9)

A set of unitary gates {uj}j is often chosen from elementary gates acting on single qubit (Pauli
gates etc.) and two qubits (CNOT gate etc.). When the series {uj}j has some time-periodicity
given as uj+k = uj for a certain k ∈ N, the quantum circuit is analysed as a Floquet system
with the correspondence of U = ukuk−1 . . . u1 and Uf [See Eq. (1.5)]. Even in the absence of
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such time periodicity, we can obtain some insight from Floquet analysis with relating the whole
gate U = un . . . u1 to Uf . Quantum circuits are experimentally implemented in artificial quantum
circuits such as superconducting qubits, photonic systems and trapped ions [8, 9, 10]. When we
remember the underlying Hamiltonians of these setups, quantum circuits often become equivalent
to the quantum systems described in the previous paragraph, given by Eq. (1.5). In that sense,
Floquet analysis on quantum circuits seems to be natural.

Novel nonequilibrium phenomena inherent in Floquet systems

What makes Floquet systems attractive seems to be their novel nonequilibrium phenomena pro-
hibited in static or equilibrium systems. Various interesting physics in Floquet systems comes from
the time-dependency of their Hamiltonians. This implies the absence of energy conservation, as we
can imagine from the fact that light irradiation does not conserve energy. Thus, energy eigenvalues
and energy eigenstates of Hamiltonians become ill-defined in Floquet systems. As discussed later
in Section 1.2.1, Floquet systems are characterized by quasienergy and a Floquet eigenstate of
certain time evolution operators (Floquet operators), which can show anomalous behaviors that
energy eigenvalues and energy eigenstates in static systems cannot mimic.

A prototypical example of unique nonequilibrium phases is an anomalous Floquet topological
phase [11]. A topological phase in static systems is a phase of matter characterized by the topology
of their static Hamiltonians H [12]. It is robust against any local perturbation as long as the
gap of H is maintained. If the robustness is present only under some symmetries, the phase is
called a symmetry-protected topological (SPT) phase. In Floquet systems, the gap of energy
eigenvalues is replaced by that of quasienergy eigenvalues. Quasienergy has periodicity of 2π/T
unlike energy in static systems (See Section 1.2.1), thereby enabling the nontrivial winding in the
quasienergy direction. This plays a role of a topological index unique to Floquet systems, and for
instance, Floquet systems can host unique two-dimensional Chern insulators with the vanishing
Chern numbers, which is topologically nontrivial due to the nonzero winding number [13]. The
periodicity of quasienergy also provides an emergent symmetric point at quasienergy ε = ±π/T in
addition to ε = 0 under some symmetries such as a particle-hole symmetry (PHS). This provides
a unique SPT phase accompanied by a topologically-protected gapless excitation appearing at
ε = ±π/T , dubbed Majorana π mode (MPM) [14], while static systems host a Majorana zero
mode (MZM), appearing at ε = 0. In terms of deformation of Hamiltonians H(t), Floquet systems
can be classified by the topology of their effective Hamiltonians, which is time-independent, or that
of their time evolution operators [15]. This difference results in various manifestations of Floquet
topological phases including the above examples.

We also note that various symmetries brought by the time-dependency are resources for inter-
esting physics in Floquet systems. The time-periodicity of Hamiltonians, H(t) = H(t + T ), can
be interpreted as a discrete time-translation symmetry (TTS). Thus, we can expect spontaneous
symmetry breaking (SSB) for it. As a matter of fact, the ordered phases brought by spontaneous
breaking of a discrete TTS are known as discrete time crystals (DTCs) [16]. The no-go theorem
for static systems with local interactions ensures that spontaneous breaking of a continuous TTS
is absent in ground states and thermal equilibrium states [17], and hence time crystals are referred
to as novel nonequilibrium phases (See Section 1.3.5 for the detail). Furthermore, we can define
various symmetries combined with the time-dependency other than a discrete TTS. For instance,
the symmetries generated by the combination of the time translation and the spatial symmetry
operations are known as dynamical symmetries, which includes Floquet nonsymmorphic symme-
tries. Such symmetries inherent in Floquet systems lead to Floquet topological phases protected
by the time-glide symmetries, which is composed of the half-period time translation and the spatial
rotation [18, 19], and selection rules for optical responses such as high-harmonic generation [20, 21].

Control of phases of matter in nonequilibrium setups (Floquet engineering)

The other interesting aspect of Floquet systems is the control of materials by periodic drives,
dubbed Floquet engineering. With the usage of Floquet theory discussed later, the stroboscopic
dynamics of Floquet systems, the dynamics at t = mT (m = 0, 1, 2, . . .) can be described by a
static Hamiltonian Heff , called the effective Hamiltonian. Floquet engineering aims to reproduce
dynamics or steady states under a preferable static Hamiltonian H by tuning the periodic drive
H(t) so that the effective Hamiltonian Heff becomes the preferable one H.
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Floquet engineering is widely utilized both in artificial quantum systems and materials. For
instance, in cold atoms which are typically charge-neutral, we can realize a Hamiltonian involving
artificial gauge fields by exploiting the optical lattice shaking as a periodic drive [22]. This technique
is actually used for realizing the Haldane model [23], which is usually difficult due to the sublattice-
dependent gauge fields. Another important example is a light-induced phase transition in solid
materials, which employs the coupling between electrons and time-periodic gauge fields like Eq.
(1.3). For instance, we can realize topological phase transitions in graphene by shining circularly-
polarized light, which are theoretically proposed in 2009 [24] and experimentally observed in 2020
[1]. Recently, Floquet engineering with high-frequency light has been extensively explored such as
laser-induced topological superconductivity [25, 26], as the development of a powerful tool for the
effective Hamiltonian, called the high-frequency expansions [See Section 1.2.3].

1.2 Floquet theory

In this section, we introduce a mathematical framework, Floquet theory, to tackle quantum physics
in Floquet systems. The terminology Floquet theory is named after a French mathematician
Gaston Floquet in the 19-th century. Floquet theory, which was constructed before the birth
of quantum physics, provides information about solutions of generic linear differential equations
whose coefficients are periodic in some parameters. Nowadays, Floquet theory is widely used in the
context of quantum physics described by time-dependent Schrödinger equation with time-periodic
Hamiltonians — Floquet systems. We briefly discuss Floquet theory developed in the context of
quantum physics below.

1.2.1 Floquet theorem

Here, we introduce Floquet theorem, which identifies the solutions of time-periodic Schödinger
equations. In generic time-dependent Schrödinger equation, the solution is given by

|ψ(t)⟩ = U(t, 0) |ψ(0)⟩ , U(t, t′) = T exp

{
−i
∫ t

t′
H(t̃)dt̃

}
, (1.10)

where T denotes the time-ordered product. By using the time-periodicity, the following theorem
is obtained.

Theorem 1.2.1. (Floquet theorem)
Let us consider time-periodic Schr̈odinger equation,

i
d

dt
|ψ(t)⟩ = H(t) |ψ(t)⟩ , H(t) = H(t+ T ). (1.11)

Then, the solutions are always written in the following form:

|ψ(t)⟩ =
∑
n

cne
−iεnt |ϕn(t)⟩ , |ϕn(t+ T )⟩ = |ϕn(t)⟩ . (1.12)

Here, the coefficients cn ∈ C are determined by the initial condition as cn = ⟨ϕn(0)|ψ(0)⟩.
The real numbers εn, called quasienergy, are eigenvalues of an effective Hamiltonian Heff

given by

Heff = − i

T
logUf , Uf = T exp

{
−i
∫ T

0

H(t)dt

}
. (1.13)

Proof

The unitary operator Uf , defined by Eq. (1.13), is always written in the spectral decomposition as

Uf =
∑
n

e−iεnT |ϕn(0)⟩ ⟨ϕn(0)| , (1.14)
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where |ϕn(0)⟩ is an eigenstate of Uf . By setting t = t0 +mT (m = 0, 1, 2, . . .), the solution of Eq.
(1.11) becomes

|ψ(t)⟩ = U(t0 +mT, t0)(Uf )m |ψ(0)⟩ = U(t0, 0)
∑
n

e−iεnmT |ϕn(0)⟩ ⟨ϕn(0)|ψ(0)⟩

=
∑
n

cne
−iεn(t0+mT )(eiεnt0U(t0, 0) |ϕn(0)⟩) (1.15)

When we define the Floquet states by |ϕn(t)⟩ = eiεnt0U(t0, 0) |ϕn(0)⟩, they satisfy the time-
periodicity as

|ϕn(t+ T )⟩ = eiεn(t0+T )U(t0, 0)Uf |ϕn(0)⟩ = |ϕn(t)⟩ . (1.16)

This completes the proof of Floquet theorem, Eq. (1.12). □

Terminology

The complex values εn and the time-periodic states |ϕn(t)⟩ in Eq. (1.12) are called quasienergy
and Floquet states respectively. Here, the Floquet states composes a orthornormal basis for the
Hilbert space H in that

⟨ϕn|ϕn′⟩T ≡ 1

T

∫ T

0

dt ⟨ϕn(t)|ϕn′(t)⟩ = δnn′ . (1.17)

Floquet theorem dictates that the solution is always written by the superposition of e−iεnt |ϕn(t)⟩.
The time evolution operator over one period T is called Floquet operator, given as Uf . The

first role of Uf is to provide quasienergy εn. It has a spectral decomposition

Uf =
∑
n

e−iεnT |ϕn(0)⟩ ⟨ϕn(0)| , (1.18)

giving the quasienergy. We note that the Floquet operator depends on the choice of the time origin
t0 (sometimes referred as Floquet gauge), since U(T, 0) is not equal to U(t0 + T, t0) in general.
However, since Floquet operators in different gauges are connected by unitary transformation as

U t0
f ≡ U(t0 + T, t0) = U(t0 + T, T )U(T, 0)U−1(t0, 0) = U(t0, 0)UfU

−1(t0, 0), (1.19)

the quasienergy εn does not depend on the gauge t0.
The second important role of the Floquet operator Uf is to provide the stroboscopic dynamics

of quantum states |ψ(mT )⟩ (m = 0, 1, 2, . . .). By using the time-periodicity and the effective
Hamiltonian introduced by Eq. (1.13), we obtain

|ψ(mT )⟩ =
∑
n

cne
−iεnmT |ϕn(0)⟩ = (Uf )m |ψ(0)⟩ = e−iHeffmT |ψ(0)⟩ . (1.20)

The time evolution at any time t = t0 + mT (0 ≤ t0 < T ) is always decomposed into the stro-
boscopic dynamics (Uf )m and the microscopic dynamics U(t0, 0) as U(t, 0) = U(t0, 0)(Uf )m. The
stroboscopic dynamics describes characteristic long-term behaviors of Floquet systems, confirming
the importance of Uf or Heff. Therefore, physics in Floquet systems often focus on the stroboscopic
dynamics, so we do in this thesis.

We also note that the effective Hamiltonian Heff plays a role of a static Hamiltonian in time-
independent systems as Eq. (1.20). Analysis of Heff as a static Hamiltonian gives the properties
of Floquet systems. In fact, Floquet engineering aims to reproduce a preferable time-independent
system by the effective Hamiltonian Heff.

Quasi-energy periodicity and Relation to Bloch theorem

Each solution of the time-periodic Schrödinger equation satisfies

e−iεnt |ϕn(t)⟩ = e−i(εn+lω)t |ϕ̃n(t)⟩ , |ϕ̃n(t)⟩ ≡ eilωt |ϕn(t)⟩ = |ϕ̃n(t+ T )⟩ (1.21)

with l ∈ Z. It dictates that {εn, |ϕn(t)⟩} and {εn + lω, |ϕ̃n(t)⟩} give the identical solution, regarded
as the quasienergy periodicity. We can also see this behavior as the choice of branch for the
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logarithm appearing in Eq. (1.13). In order to avoid considering the identical solutions by different
quasienergy, we generally consider ε ∈ [−π/T, π/T ), which is called the first Brillouine zone (BZ).

Floquet theorem for time-periodic systems is completely parallel to well-known Bloch theorem
for spatially-periodic systems. Bloch theorem says that the eigenstates of a static Hamiltonian
H(x) satisfying H(x) = H(x + L) is given by e−iknx |un(x)⟩ with |un(x)⟩ = |un(x+ L)⟩. This is
a counterpart of Eq. (1.12) in Floquet systems. The quasienergy periodicity in Floquet systems
corresponds to that of the wavenumber kn, which gives the first BZ kn ∈ [−π/L, π/L).

1.2.2 Formulation in Sambe space

Here, we introduce another formulation of Floquet systems based on the Fourier space in time,
called Sambe space. Using Floquet theorem, the independent solution of time-periodic Schrödinger
equation satisfies

i
d

dt

(
e−iεnt |ϕn(t)⟩

)
= H(t)e−iεnt |ϕn(t)⟩ . (1.22)

We define the Fourier transformation in time by

H(t) =
∑
l∈Z

Hle
−ilωt, |ϕn(t)⟩ =

∑
l∈Z

|ϕ(l)n ⟩ e−ilωt (1.23)

with ω = 2π/T based on the periodicity H(t + T ) = H(t) and |ϕn(t+ T )⟩ = |ϕn(t)⟩. By substi-
tuting Eq. (1.23) into Eq. (1.22), we obtain∑

l∈Z
(εn + lω)e−ilωt |ϕ(l)n ⟩ =

∑
l,l′∈Z

Hl′ |ϕ(l)n ⟩ e−i(l′+l)ωt. (1.24)

By performing the inverse Fourier transformation, this becomes equivalent to the following equa-
tion:

H |Φn⟩ = εn |Φn⟩ , (1.25)

with

H =



. . .

H0 − 2ω H+1 H+2 H+3 H+4

H−1 H0 − ω H+1 H+2 H+3

H−2 H−1 H0 H+1 H+2

H−3 H−2 H−1 H0 + ω H+1

H−4 H−3 H−2 H−1 H0 + 2ω
. . .


, |Φn⟩ =



...

|ϕ(2)n ⟩
|ϕ(1)n ⟩
|ϕ(0)n ⟩
|ϕ(−1)

n ⟩
|ϕ(−2)

n ⟩
...


.

(1.26)
Floquet state |ϕn(t)⟩ has one-to-one correspondence with the vector |Φn⟩ in an infinite-dimensional
space called Sambe space. Thus, Eq. (1.25) suggests that solving time-periodic Schrödinger equa-
tion is equivalent to solving the eigenvalue problem of the time-independent hermitian operator
H on Sambe space.

We note that, while the time-dependency disappears in Eq. (1.25), the difficulty itself does not
alter from Eq. (1.11) in general due to the infinite dimensionality of Sambe space. However, this
formalism sometimes make use of physical intuitions and approximations based on them. Let us

regard each Fourier component |ϕ(−l)
n ⟩ as a state dressed with l photons. Then, the Hamiltonian

H describes a set of duplicated systems with different number of photons (See Fig. 1.2). The
diagonal term H0 + lω represents the energy of the l-photon-dressed states. The off-diagonal term
H∆l (∆l ∈ Z) plays a role of couplings with pairs of states having different photon numbers by ∆l.

1.2.3 High-frequency expansions

Here, we consider the effective Hamiltonian Heff, given by Eq. (1.13). While it enables analysis
of Floquet systems based on a static Hamiltonian, it is too difficult to obtain its explicit form
due to the existence of time-ordered product and the logarithm of operators. Possible ways to
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Figure 1.2: Intuitive picture of Floquet systems in Sambe space. Floquet systems are equivalent
to an infinite series of static systems having l photons, described by H0 + lω, with the coupling
by the time-dependent terms H±l′ . The van Vleck expansions or the Brillouin-Wigner expansions
intuitively give the effective Hamiltonian for the 0-photon state in the high-frequency regime.

obtain Heff is considering some limiting parameter regimes and performing some approximations.
The important parameter here is the ratio of the frequency ω = 2π/T to the energy scale of the
Hamiltonian H(t).

Let us consider a parameter regime where the frequency ω is much larger than the energy scale
of H(t), called high-frequency regime. In this regime, we can apply perturbative expansions in the
small parameter ||H(t)||/ω, where || || denotes the operator norm. The result for Heff is known
as Floquet-Magnus expansions below.

Remark. (Floquet-Magnus expansion)
For a time-periodic Hamiltonian H(t) with the period T , we define the n-th order Floquet-
Magnus expansion Hn

FM (n = 0, 1, 2, . . .) by

Hn
FM =

n∑
m=0

H
(m)
FM , (1.27)

with each m-th order term H
(m)
FM given by

H
(m)
FM =

∑
σ

(−1)m−θ̃(σ) θ̃(σ)!(m− θ̃(σ))!

m!(m+ 1)2imT

×
∫ T

0

dtm+1 . . .

∫ t2

0

dt1[H(tσ(m+1)), [H(tσ(m)), . . . , [H(tσ(2)), H(tσ(1))] . . .]],

θ̃(σ) ≡
m∑

k=1

θ(σ(k + 1) − σ(k)), θ(x): a step function. (1.28)

Here, σ represents the permutation of {1, 2, . . . ,m+ 1} [27, 28]. Then, the effective Hamil-
tonian Heff defined by Eq. (1.13) is approximated as

Heff = Hn
FM +O

(
||H(t)|| · rn+1

)
, r =

||H(t)||
ω

, (1.29)

for the sufficiently small dimensionless parameter r.

We note several points on Floquet-Magnus expansions. First, they are not always convergent,
that is, the perturbative expansion Eq. (1.27) has a finite convergence radius rc > 0 in the ratio
r. Although the exact value of rc is still unclear, several mathematical analysis has revealed
rc = O(1). When we consider quantum many-body systems under periodic drives, the energy
scale of ||H(t)|| is typically proportional to the system size L, making the ratio r larger than rc.
This means that Floquet-Magnus expansions become divergent and the approximation is no longer
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valid in generic Floquet many-body systems. However, as we will see later in Section 1.3.4, when
we consider Floquet many-body systems only with local interactions, Floquet-Magnus expansions
Hn

FM are still meaningful for the dynamics despite their divergence.
Second, we can also provide Floquet-Magnus expansions by using the Fourier components given

by

Hl =
1

T

∫ T

0

H(t)eilωtdt. (1.30)

After some simple calculations, we obtain each m-th order term by

H
(0)
FM = H0, H

(1)
FM =

∑
m̸=0

[H−m, Hm]

2mω
+
∑
m ̸=0

[Hm, H0]

mω
, . . . (1.31)

Finally, Floquet-Magnus expansion depends on the time origin t0 due to the change of the Flo-
quet operator. With explicitly writing the t0-dependence, the Floquet-Magnus expansion Hn

FM[t0]
approximates the effective Hamiltonian Heff[t0] = (i/T ) logU t0

f with U t0
f = U(t0 + T, t0). It is

proven that we can remove the Floquet gauge dependence by a unitary transformation as

Heff[t0] = e−iK[t0]H ′
eff e

iK[t0]. (1.32)

The effective Hamiltonian H ′
eff becomes gauge-dependent while K[t0], called a kick operator, is

t0-dependent with satisfying K[t0 + T ] = K[t0]. Since the time evolution operator becomes

(U t0
f )m = e−iHeff[t0]mT = e−iK[t0]e−iH′

effmT eiK[t0], (1.33)

H ′
eff and K[t0] respectively represent the macroscopic dynamics and the gauge-dependent micro-

scopic dynamics. We can also apply perturbative expansions to the gauge-independent effective
Hamiltonian H ′

eff and the kick operator K[t0], dubbed van Vleck expansions.

Remark. (van Vleck expansion)
For a time-periodic Hamiltonian H(t) with the period T , we define the n-th order van Vleck
effective Hamiltonian Hn

vV and kick operator Kn
vV[t0] (n = 0, 1, 2, . . .) by

Hn
vV =

n∑
m=0

H
(m)
vV , Kn

vV[t0] =

n∑
m=0

K
(m)
vV [t0], (1.34)

where each m-th order term is given by

H
(0)
vV = H0, H

(1)
vV =

∑
m ̸=0

[H−m, Hm]

2mω
, (1.35)

H
(2)
vV =

∑
m̸=0

[[H−m, H0], Hm]

2m2ω2
+
∑
m̸=0

∑
n ̸=0,m

[[H−m, Hm−n], Hn]

3mnω2
, (1.36)

... ,

iK
(0)
vV [t0] = −

∑
m̸=0

Vm
mω

, (1.37)

iK
(1)
vV [t0] =

∑
m̸=0

∑
n ̸=0,m

[Hm, Hm−n]

2mnω2
+
∑
m ̸=0

[Hm, H0]

m2ω2
, (1.38)

... .

Then, for the sufficiently small r = ||H(t)||/ω, the effective Hamiltonian is approximated
by

Heff[t0] = e−iKn
vV[t0]Hn

vVe
iKn

vV[t0] +O(||H(t)|| · rn+1). (1.39)

When we set t0 = 0, this reproduces the Floquet-Magnus expansion up to the order of
O(rn).
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Floquet-Magnus expansions and van Vleck expansions both give the approximate dynamics of
Floquet systems. The former becomes important when we consider the real-time dynamics from
a certain initial state, since the Floquet gauge is specified by t0 = 0. On the other hand, when we
consider quasi-steady states in the high-frequency regimes, the latter is often used to capture the
gauge-independent properties of the quasi-steady states.

We also introduce a property of van Vleck expansions for later convenience. As described in

Eqs. (1.35) and (1.36), each m-th order term H
(m)
vV is composed of the (m+ 1)-th order products,

Hl1Hl2 . . . Hlm+1
, (1.40)

by expanding all the commutators. Here, we use the gauge-independence of the van Vleck expan-
sions. If we change the time origin from 0 to t0, the Fourier component Hl changes to Ht0

l , given
by

Ht0
l =

1

T

∫ T

0

H(t+ t0)eilωtdt = e−ilωt0Hl. (1.41)

Each term given by Eq. (1.40) is transformed to

Ht0
l1
Ht0

l2
. . . Ht0

lm+1
= exp

(
−iωt0

m+1∑
i=1

li

)
Hl1Hl2 . . . Hlm+1

. (1.42)

This should be the same as Eq. (1.40) for any t0 due to the gauge-independence of Hn
vV, and hence

we obtain the following result.

Remark. (Gauge-independence of van Vleck expansion)
Each m-th order term in van Vleck expansions Hn

vV (0 ≤ m ≤ n) is composed of the
(m+ 1)-th order products like

Hl1Hl2 . . . Hlm+1
. (1.43)

Then, the gauge-independence of Hn
vV results in

m+1∑
i=1

li = 0 for any m. (1.44)

As discussed in Sambe formalism in Section 1.2.2, Hl represents the l-photon absorption or
emission process. Equation (1.44) indicates that only the processes satisfying the conservation of
the photon number have an effect on the gauge-independent part of Floquet dynamics. To be
precise, each m-th order term represented by Eq. (1.44) captures a process where a certain dressed
state gets back to the original space after repeating li-photon absorption or emission (See Fig. 1.2).

We can also derive the perturbative theory based on Sambe formalism. In the high-frequency
regime ω ≫ ||H(t)||, we can focus on the space dressed with no photon (l = 0) and regard the
other dressed spaces (l ̸= 0) as an environment since the energy scale of each space, ω, is much
larger than the couplings Hl in the Hamiltonian H [Eq. (1.25)]. By applying the conventional
perturbation theory of static Hamiltonian, we obtain the effective Hamiltonian for each space with
the fixed photon number given by

Hn
BW = H0 +

∑
m ̸=0

H−mHm

mω
+

 ∑
m,l ̸=0

H−mHm−lHl

mlω2
+
∑
m ̸=0

H−mHmH0

m2ω2

+ . . .+H
(n)
BW, (1.45)

up to the n-th order. This is called Brillouine-Wigner expansion. The higher order terms capture
the process in which a state with the certain photon number travels other dressed spaces and
finally goes back to the original space via photon absorption and emission. Although the physical
sense of HBW is similar to that of van Vleck expansions,we note that HBW does not approximate
the dynamics. Nowadays, Brillouine-Wigner expansions are proven to be related to other high-
frequency expansions (Floquet-Magnus, van Vleck) via non-unitary transformations [29].
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1.3 Steady states in closed static and Floquet many-body
systems

One of the today’s central questions in quantum physics is what kind of phenomena can take place in
quantum many-body systems. In this section, we introduce the generic properties of the dynamics
in closed quantum many-body systems, that is, the solutions of Schrödinger equation under a many-
body Hamiltonian. The key notion in this section is Floquet eigenstate thermalization hypothesis
(Floquet-ETH), which we should overcome for realizing nontrivial quantum many-body phenomena
in Floquet systems. For the clear description and the comparison with time-independent cases, we
begin with discussion on static quantum many-body systems.

1.3.1 Eigenstate thermalization hypothesis (ETH)

Here, we focus on a closed quantum many-body system described by time-independent Schrödinger
equation,

i
d

dt
|ψ(t)⟩ = H |ψ(t)⟩ . (1.46)

We assume that a system is defined on a lattice Λ with the size |Λ| = L, and that the many-body
Hamiltonian H is bounded, which means ||H|| <∞ (bosonic systems with the limited occupation
at each site, fermionic systems, or spin systems).

In generic quantum systems coupled to a huge external bath, as we intuitively expect, any
initial state arrives at a thermal equilibrium state after a sufficiently long time. From this fact,
it has been one of the central questions whether there exists relaxation or some steady state in
isolated quantum many-body systems obeying Schrödinger equation. Some analytical and numer-
ical studies have shown that generic nonintegrable many-body systems generally relax to thermal
equilibrium states even in isolated cases while integrable and many-body localized (MBL) systems
avoid thermalization. They have also conjectured that what distinguishes them is the eigenstate
thermalization hypothesis (ETH), which is expected to be valid only for nonintegrable systems.
We discuss integrablity of quantum many-body systems and ETH below, and MBL is discussed in
Section 1.3.5.

Integrability and Nonintegrability

Integrability characterizes conserved quantities of Hamiltonians, which seem to play a crucial role
on the dynamics. We call a many-body Hamiltonian H integrable if it has a macroscopic number
(∼ O(L)) of conserved quantities, and we call nonintegrable otherwise. The simplest examples for
integrable Hamiltonians is non-interacting Hamiltonians and their corresponding ones connected
via some transformations. For instance, the one-dimensional transverse-field Ising Hamiltonian,
given by

HTFIM = J
∑
i

σz
i σ

z
i+1 + h

∑
i

σx
i , (1.47)

is integrable since it is equivalent to free-fermionic systems via Jordan-Wigner transformation.
Another nontrivial example of integrable Hamiltonians is the one-dimensional XXZ Hamiltonian,
given by

HXXZ =
∑
i

{
J⊥(σx

i σ
x
i+1 + σy

i σ
y
i+1) + Jzσ

z
i σ

z
i+1

}
. (1.48)

This model is exactly solvable and proven to have an extensive number of conserved quantities with
the usage of Bethe ansatz [30]. On the other hand, as an example of nonintegrable Hamiltonians,
the one-dimensional XYZ model under a magnetic field, given by

HXYZ,h =
∑
i

(JXσ
x
i σ

x
i+1 + JY σ

y
i σ

y
i+1 + JZσ

z
i σ

z
i+1) + h

∑
i

σz
i , (1.49)

is rigorously proven to have no local conserved quantities [31]. We note that rigorous judgment
on the integrability and the nonintegrability is generally difficult. For the integrability, we should
exactly solve the model and identify its conserved quantities in some way. The nonintegrability
is further difficult since we should prove the absence of local conserved quantities. While generic
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interacting models, in which we cannot naively find a set of conserved quantities (i.e. non-fine-
tuned Hamiltonians), are expected to be nonintegrable, the rigorous proof on the nonintegrability
is limited to specific models such as HXYZ,h [31].

However, we can numerically test the integrability and nonintegrability based on the energy
spectrum of a many-body Hamiltonian [32, 33]. Let En denote the n-th smallest eigenvalue of H
(n = 0, 1, . . . ,dim(H) − 1), and define the level spacing sn and the level spacing ratio rn by

sn = En+1 − En, rn = min

(
sn
sn+1

,
sn+1

sn

)
. (1.50)

In generic many-body systems, the tendency of adjacent energy eigenvalues avoiding the degener-
acy, called the level repulsion, is expected to vary depending on their integrability. The statistics
of {sn}n or {rn}n measures the repulsion of the energy eigenvalues. When the Hamiltonian H is
integrable, the eigenvalue En is composed of independent contributions of a macroscopic number
of conserved quantities, implying the absence of the level repulsion. Thus, in integrable systems,
the level spacing {sn}n is expected to have the probability distribution of the Poisson statistics,

P (s) ∝ e−s/⟨sn⟩n , (1.51)

where ⟨sn⟩n denotes the mean value of sn. This gives the averaged value of the level spacing ratio,

r ≡ ⟨rn⟩n ≃ 0.386, (1.52)

providing a simple diagnosis for integrable systems.
On the other hand, generic nonintegrable systems, without a macroscopic number of local

conserved quantities, host the level repulsion. Their Hamiltonians behave like a random hermitian
matrix from the Gaussian ensemble, with reflecting their hermiticity and symmetry. When the
nonintegrable Hamiltonian does not respect any symmetry, the level statistics {sn}n is expected
to obey the Wigner-Dyson distribution for the Gaussian Unitary Ensemble (GUE), given by

P (s) ∝
(

s

⟨sn⟩n

)2

exp

(
− 4s2

π ⟨sn⟩2n

)
, r ≡ ⟨rn⟩n ≃ 0.603. (1.53)

In the presence of the time-reversal symmetry, that is, if there exists a certain unitary operator
UT satisfying

UTH
∗U†

T = H, (1.54)

the level statistics behaves like that of the Gaussian Orthogonal Ensemble (GOE). As a result, a
time-reversal symmetric nonintegrable Hamiltonian gives the level statistics obeying the Wigner-
Dyson distribution,

P (s) ∝ s

⟨sn⟩n
exp

(
− πs2

4 ⟨sn⟩2n

)
, r ≡ ⟨rn⟩n ≃ 0.536. (1.55)

We can numerically test the integrability by fully diagonalizing the Hamiltonian H and checking
its level statistics {sn}n or {rn}n, which can be visualized as Fig. 1.3.

Eigenstate thermalization hypothesis

Now, let us consider the long-time dynamics of closed quantum many-body systems, that is the
Schödinger solution |ψ(t)⟩ = e−iHt |ψ(0)⟩ for the sufficiently large time t and size L. The quantum
state |ψ(t)⟩ itself cannot reach a thermal equilibrium state, since the latter one is a mixed state
while |ψ(t)⟩ is a pure state at any time. We note that this does not prohibit the existence of
relaxation in closed systems.

We characterize the relaxation from the viewpoint of indistinguishability in local observables.
We define the equivalence of a pure state |ψ⟩ and a mixed state ρ by

⟨ψ|O|ψ⟩ ≃ Tr[Oρ], (1.56)



20 CHAPTER 1. INTRODUCTION

(a)                                                      (b)                                                     (c)

Figure 1.3: Level statistics {sn} in static Hamiltonians. (a) Poisson statistics, given by Eq. (1.51).
It appears in integrable and many-body localized systems. (b) Wigner-Dyson statistics for random
matrices from Gaussian Unitary Ensemble, Eq. (1.53). It appears in nonintegrable systems without
TRS. (c) Wigner-Dyson statistics for random matrices from Gaussian Orthogonal Ensemble, Eq.
(1.55). It appears in nonintegrable systems with TRS.

for any local observable O, which acts in a nontrivial way simultaneously on at-most O(1) sites.
In terms of the long-time dynamics of closed systems, we are interested in

⟨O⟩ ≡ lim
τ→∞

1

τ

∫ τ

0

⟨ψ(t)|O|ψ(t)⟩ dt, (1.57)

which represents the infinite-time average of a local observable O(t) = ⟨ψ(t)|O|ψ(t)⟩. Whether
O(t) reaches a constant steady-state value at t→ ∞ is diagnosed by its fluctuation in time,

⟨(∆O)2⟩ ≡ lim
τ→∞

1

τ

∫ τ

0

⟨ψ(t)|O|ψ(t)⟩2 dt−
(

lim
τ→∞

1

τ

∫ τ

0

⟨ψ(t)|O|ψ(t)⟩ dt
)2

. (1.58)

We refer to that the quantum many-body state |ψ(t)⟩ equilibrates if ⟨(∆O)2⟩ ≪ ||O|| for any local
observable O. In addition, if the steady-state value ⟨O⟩ corresponds to the thermal equilibrium
value ⟨O⟩eq with satisfying ⟨(∆O)2⟩ ≪ ||O||, we call it the thermalization in isolated setups.

The existence of thermalization generally depends on the integrability of the system. In inte-
grable or MBL systems, a macropic number of conserved or quasi-conserved quantities prevent the
state from relaxing to equilibrium. On the other hand, some numerical and experimental stud-
ies have verified that nonintengrable systems generally host thermalization from any initial state
[34, 35, 36, 37, 38] (See Refs. [39, 40, 41] for review). They have also conjectured that the difference
comes from the following hypothesis, dubbed Eigenstate thermalization hypothesis (ETH). 1

1Here, we consider the satisfaction of Eq. (1.61) for all the eigenstates |En⟩. The statement discussed here is
sometimes called “strong ETH” to be distinguished from weak ETH. Weak ETH indicates the satisfaction of Eq.
(1.61) for almost all the eigenstates |En⟩, and even integrable systems avoiding thermalization can satisfy it [42, 43].
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Remark. (Eigenstate thermalization hypothesis, ETH)
Let |En⟩ denote the n-th eigenstate of a Hamiltonian H. We consider the microcanonical
ensemble value in the energy shell ∆(En) = [En − ∆E,En + ∆E], given by

⟨O⟩MC = Tr[OρMC], ρMC =
1

NEn

∑
m:Em∈∆(En)

|Em⟩ ⟨Em| , (1.59)

where NEn
denotes the number of the eigenstates in the shell ∆(En). In general, for a local

operator O, it corresponds to the canonical ensemble value,

⟨O⟩MC ≃ ⟨O⟩β ≡ Tr[Oρβ ], ρβ = e−βH/Tr[e−βH ], (1.60)

with the inverse temperature β determined by En = ⟨H⟩β . The diagonal ETH (or simply
ETH) and off-diagonal ETH are described as follows.

(Diagonal ETH, or simply ETH)
Every eigenstate |En⟩ is equivalent to the microcanonical ensemble, that is,

⟨En|O|En⟩ ≃ ⟨O⟩MC (1.61)

for a local operator O when the system size L is sufficiently large.

(Off-diagonal ETH)
Off-diagonal matrix elements ⟨En|O|En′⟩ (n ̸= n′) for a local operator O show exponential
decay in the system size L,

⟨En|O|En′⟩ ≃ fO(Ēnn′ , ωmn)√
DĒmn

Rnn′ , Ēnn′ =
En + En′

2
, ωnn′ = En − En′ . (1.62)

with a smooth function fO(Ē, ω). The density of states under the Hamiltonian, denoted
by DĒ , usually shows exponential decay in the size L. The complex random variable
Rnn′ , satisfying Rnn′ = R∗

n′n, has zero mean and unit variance.

While integrable and MBL systems violate ETH and off-diagonal ETH, it has been conjec-
tured that generic nonintegrable systems satisfy them.

Let us see the relation between ETH and thermalization in closed setups. Keeping the dynamics
of nonintegrable systems in mind, we assume (diagonal) ETH, Eq. (1.61). For any inital state in
the energy shell at E, given by |ψ(0)⟩ =

∑
n:En∈∆(E) cn |En⟩, the infinite-time mean value of a

local observable O becomes

⟨O⟩ = lim
τ→∞

1

τ

∫ τ

0

∑
n,n′

c∗ncn′ei(En−En′ )t ⟨En|O|En′⟩ dt. (1.63)

Due to the level repulsion in generic nonintegrable systems, it is natural to assume the absence of
degeneracy in the spectrum {En}n. Combining with Eq. (1.61), we obtain

⟨O⟩ =
∑
n

|cn|2 ⟨En|O|En⟩ ≃ ⟨O⟩MC . (1.64)

Therefore, ETH is a sufficient condition for the long-time average of any local observable to ap-
proach the microcanonical ensemble value in nonintegrable many-body systems.

Next, we consider the fluctuation ⟨(∆O)2⟩ to assess the equilibration of the system. Here, we
further assume off-diagonal ETH, Eq. (1.62). For the initial state |ψ(0)⟩ =

∑
n:En∈∆(E) cn |En⟩,

we can compute the fluctuation as

⟨(∆O)2⟩ =
∑
n̸=n′

∑
l ̸=l′

c∗ncn′c∗l cl′

(
lim
τ→∞

1

τ

∫ τ

0

dtei(En−En′+El−El′ )t

)
⟨En|O|En′⟩ ⟨El|O|El′⟩ . (1.65)
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In generic nonintegrable systems, the energy eigenvalues are expected to be placed at random with
experiencing the repulsion. This validates the assumption of the non-resonance condition,

En − En′ = El′ − El ̸= 0 only when n = l′ and n′ = l, (1.66)

which indicates that any pair of the eigenstates has a different gap. This results in

⟨(∆O)2⟩ =
∑
n

∑
n′ ̸=n

|cn|2|cn′ |2| ⟨En|O|En′⟩ |2

≤ max
n ̸=n′

| ⟨En|O|En′⟩ |2, (1.67)

where we use the normalization condition
∑

n |cn|2 = 1 in the last inequality. Considering off-

diagonal ETH represented by Eq. (1.61), the fluctuation ⟨(∆O)2⟩ rapidly vanishes as e−O(L) with
the increasing system size L. As a result, the satisfaction of off-diagonal ETH suggests that generic
nonintegrable systems equilibrate, and also relax to thermal equilibrium when combined with the
result of ETH.

ETH and off-diagonal ETH are merely a sufficient condition of thermalization and there is no
rigorous proof of them for generic nonintegrable systems. However, due to the satisfaction of them
and the existence of thermalization for generic nonintegrable systems and the opposite results for
integrable and MBL systems, ETH and off-diagonal ETH are considered to be key ingredients for
understanding thermalization in closed quantum systems.

Entanglement properties of ergodic systems

Generic nonintegrable systems are believed to satisfy ETH and off-diagonal ETH, thereby hosting
relaxation to thermal equilibrium states. Such systems are often referred to as ergodic systems, in
analogy with ergodicity in classical systems. Although it is difficult to rigorously judge whether
a given quantum system is ergodic, we can numerically test it from the common properties of er-
godic systems. As discussed above, the fingerprints of quantum ergodic systems appear in the level
repulsion and the level spacing obeying the Wigner-Dyson statistics, which comes from their non-
inetgrability. We can detect ergodicity by directly confirming that the matrix elements ⟨En|O|En⟩
correspond to thermal equilibrium values.

We hereby introduce entanglement entropy as another frequently-used signature of ergodicity.
We split the whole system Λ by Λ = A ∪ B with A ∩ B = ϕ, where A and B denote subsystems.
For a given quantum state |ψ⟩, we define its entanglement entropy between A and B by

S[ψ] = −Tr[ρA[ψ] log ρA[ψ]] = −Tr[ρB [ψ] log ρB [ψ]], (1.68)

ρA[ψ] = TrB [|ψ⟩ ⟨ψ|], ρB [ψ] = TrA[|ψ⟩ ⟨ψ|]. (1.69)

While the entanglement entropy measures quantum correlations between the two subsystems, it
corresponds to the von Neumann entropy of the reduced density matrix for each subsystem. Let
us discuss how the entanglement entropy behaves in generic ergodic systems. Here, we assume the
subsystem A is sufficiently large but much smaller compared to the whole system Λ. Then, for any
local observable OA acting only on A, ETH dictates the indistinguishability,

TrA[OAρA[En]] = ⟨En|OA|En⟩ ≃ Tr[OAρβ ] (1.70)

for every eigenstate |En⟩ of the whole Hamiltonian H. If the subsystem A is large enough so that
the interactions between A and B at their boundaries can be neglected, the thermal equilibrium
value Tr[OAρβ ] is approximated by that of the subsystem equilibrium ρAβ = e−βHA/Tr[e−βHA ].

Thus, the equivalence by TrA[OAρA[En]] ≃ TrA[OAρ
A
β for any OA suggests ρA[En] ≃ ρAβ , and

hence every eigenstate |En⟩ is expected to have the volume-law entanglement entropy,

S[En] ∼ Ld, (1.71)

in generic nonintegrable systems satisfying ETH.
We also mention typical behaviors of entanglement dynamics in ergodic systems. We prepare

a certain product state |ψ(0)⟩, and track its entanglement entropy S(t) = S[ψ(t)] with |ψ(t)⟩ =
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e−iHt |ψ(0)⟩. From some numerical simulations on spin systems, it has been conjectured that
generic ergodic systems experience ballistic transport of information due to the absence of local
conserved quantities, which results in the linear growth, S(t) ∼ t [44]. This is in contrast to
localized systems, where the local conserved quantities strongly suppress the entanglement growth,
as discussed in Section 1.3.5.

1.3.2 Quantum many-body scars (QMBS)

As ETH is referred to as “hypothesis”, it has been a fundamental and crucial question whether
ETH is genuinely satisfied for any nonintegrable Hamiltonian. Quantum many-body scars (QMBS)
have been explored as intriguing nonintegrable models violating ETH since the observation of their
athermal behaviors in Rydberg atoms in 2017 [45, 46, 47, 48] (See Refs. [49, 50] for review).

Here, we briefly introduce QMBS based on some initial studies along the Rydberg-atom exper-
iments. Let us consider a one-dimensional Ising spin chain whose Hamiltonian is

HTFIM = J
∑
i

σz
i σ

z
i+1 + h

∑
i

σx
i . (1.72)

When the nearest-neighbor interaction J is extremely large compared to h, a pair of neighboring
excited states is prohibited and the states are restricted in the Hilbert space

HRyd = span{PRyd |ψ⟩ | |ψ⟩ ∈ H}, PRyd =

N−1∏
i=1

(
I − |↑↑⟩ ⟨↑↑|

2

)
i,i+1

. (1.73)

We can obtain the effective static Hamiltonian in the restricted Hilbert space HRyd by

PRydHTFIMPRyd = PRydHPXPPRyd ∼ HPXP (on HRyd), (1.74)

with a so-called PXP Hamiltonian 2,

HPXP =

N∑
i=1

Pi−1σ
x
i Pi+1, Pi = (I − |↑⟩ ⟨↑|)i. (1.75)

The PXP Hamiltonian can be experimentally realized in Rydberg atoms, a cold atomic system
which has excited states with a larger quantum number ∼ 100. Neighboring atoms in the excited
states feel strong repulsive van der Waals interactions, thereby making the restriction to the Hilbert
space HRyd (called Rydberg blockade).

From the level statistics, the PXP Hamiltonian HPXP on HRyd is numerically confirmed to
be nonintegrable [46]. Nevertheless, opposed to the expectation from ETH that any initial state
relaxes to thermal equilibrium, it shows the following dynamics dependent on the initial states:

1. (Exact AKLT (Affleck-Kennedy-Lieb-Tasaki) QMBS) Persistent motion completely avoiding
thermalization from the exact QMBS eigenstates |Γ⟩ (See Chapter 4 for the detail).

2. (Approximate Zn QMBS) Extremely long-term oscillation from the Zn states,

|Z2⟩ = |↑↓↑↓ . . .⟩ , |Z3⟩ = |↑↓↓↑↓↓ . . .⟩ , . . . . (1.76)

3. Relaxation to thermal equilibrium from the other initial states

The rigorous analytical calculation confirms the behavior 1. [47], and the experiments in Rydberg
atoms observes 2. and 3. [45]. The numerical simulations with some approximations, such as the
forward scattering approximation (FSA) [46] and the time-dependent variational principle (TDVP)
[48], reproduce all of them, especially explaining the mechanism of 2. As an important signature
related to ETH here, the exact QMBS eigenstate |Γ⟩ is an athermal eigenstate of HPXP, which
means that there exists a local observable O such that

⟨Γ|O|Γ⟩ ≠ ⟨O⟩MC . (1.77)

2We change the definition of the projection P0 and PL+1 depending on the boundary condition. Under the
periodic boundary condition, we choose P0 ≡ PL and PL+1 ≡ P1. Under the open boundary condition, we choose
P0 ≡ IL and PL+1 ≡ I1.
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This indicates the violation of ETH in nonintegrable systems, resulting the completely athermal
dynamics 1. The approximately athermal behavior 2. can also attributed to the exact QMBS
eigenstate |Γ⟩ in that the Zn states have large overlap with |Γ⟩ and a series of its locally-excited
states [47].

Therefore, quantum many-body scars (QMBS), the above athermal behavior from some special
scar states in nonintegrable systems, provide a counterexample of ETH, leading to the possibility of
another mechanism of thermalization in interacting systems. We note that ETH is still considered
to be one of the keys to understanding thermalization, since generic nonintegrable systems in fact
satisfy ETH, thereby experiencing thermalization. Even in the exceptional models showing QMBS,
the Hamiltonian restricted to the Hilbert space except for the exact QMBS eigenstates satisfies
ETH as well as generic nonintegrable models, resulting in the thermal steady state (See 3.).

After the proposal of the PXP model, various types of QMBS have been extensively explored.
The first type resembles the PXP model, in which local constraints by projections generate some
special QMBS eigenstates [51]. The second type relies on algebraic structures in the restricted
Hilbert space [52]. In this type, a series of QMBS eigenstates appears in the restricted space with
a tower structure generated by ladder operators. The third type is called Hilbert space shattering
[53, 54], in which the coexistence of macroscopic symmetries and locality causes the separation of
the whole Hilbert space leading to athermal steady states. Any type of QMBS not only plays a
role as counterexamples of ETH, but also provides an insight into many-body Hamiltonian and
many-body states, such as the hidden separated structure of the Hilbert space.

1.3.3 Floquet eigenstate thermalization hypothesis (Floquet-ETH)

Let us go back to the discussion on Floquet many-body systems described by

i
d

dt
|ψ(t)⟩ = H(t) |ψ(t)⟩ , H(t) = H(t+ T ). (1.78)

We again assume a system defined on a lattice Λ with the size |Λ| = L, and the bounded Hamil-
tonian satisfying ||H(t)|| < ∞ at any instantaneous time t. We are interested in the stroboscopic
dynamics of generic quantum many-body systems, |ψ(mT )⟩ = (Uf )m |ψ(0)⟩. Particularly, in anal-
ogy with closed time-independent systems, it is of central interest whether or not the periodically-
driven system relaxes to some steady state, and what characterizes the steady state if true. As well
as time-independent cases, the existence of thermalization depends on the integrability for Floquet
systems, in which the Floquet version of ETH, “Floquet-ETH”, is considered to play a significant
role.

Integrability and nonintegrability

We begin with the integrability and the nonintegrability for Floquet many-body systems. In the
case of Floquet systems, we focus on the Floquet operator Uf , instead of static Hamiltonians.
We call a Floquet system integrable if its Floquet operator Uf has an extensive number of local
conserved quantities. We call a Floquet system nonintegrable if the Floquet operator Uf does
not have an extensive number of local conserved quantities and the effective Hamiltonian Heff =
(i/T ) logUf becomes nonlocal. Here, we include the nonlocality of Heff for the nonintegrablity to
exclude the cases equivalent to time-independent systems. In nonintegrable Floquet systems, there
is no physically meaningful conserved quantity that is macroscopic and local, while nonintegrable
static systems possess conserved energy.

As well as static systems, integrability and nonintegrablity in Floquet systems can numeri-
cally be detected by level statistics [55]. With the usage of the quasienergy spectrum {εn}n, the
eigenvalues of the effective Hamiltonian Heff , we define the level spacing rn by

rn = min

(
sn
sn+1

,
sn+1

sn

)
, sn = εn+1 − εn. (1.79)

Since the quasienergy near the branch cut occupies only the small fraction of the whole spectrum,
the choice of the brunch cut hardly affects its statistics {rn}n. In integrable Floquet systems, the
quasienergy does not host the level repulsion, and hence the statistics of its gap is expected to
obey Poisson distribution. On the other hand, in nonintegrable Floquet systems, it hosts the level
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repulsion with mimicking random matrices. Instead of Gaussian ensemble for random hermitian
matrices in static cases, the Floquet operator Uf behaves like a random unitary matrix from
Circular Unitary Ensemble (CUE) [without TRS] or Circular Orthogonal Ensemble (COE) [with
TRS] . Here, the TRS for Floquet systems is defined by

∃UT : unitary, s.t. UT U
∗
fU

†
T = U†

f . (1.80)

To summarize, the integrability of Floquet systems can be diagnosed by the mean value of the
level spacing ratio rn coming from the different level statistics as follows.

r ≡ ⟨rn⟩n ≃


0.386 (Integrable cases)

0.597 (Nonintegrable cases without TRS)

0.527 (Nonintegrable cases with TRS).

(1.81)

Floquet-ETH and the heating problem

With the above description for the integrability and nonintegrability in Floquet systems, let us
consider how the dynamics of closed Floquet many-body systems behaves. For Floquet systems, we
focus on the stroboscopic dynamics described by |ψ(mT )⟩ = (Uf )m |ψ(0)⟩, and we are interested
in the infinite-time average at discrete time,

⟨O⟩Strobo = lim
M→∞

1

M

M−1∑
m=0

⟨O(mT )⟩ , (1.82)

with ⟨O(mT )⟩ ≡ ⟨ψ(mT )|O|ψ(mT )⟩. The convergence of the observable ⟨O(mT )⟩ can be evaluated
by the fluctuation,

⟨(∆O)2⟩Strobo = lim
M→∞

1

M

M−1∑
m=0

⟨O(mT )⟩2 −

(
lim

M→∞

1

M

M−1∑
m=0

⟨O(mT )⟩

)2

. (1.83)

When the fluctuation ⟨(∆O)2⟩Strobo is sufficiently small compared to ||O||2, the Floquet system

equilibrates after long time. In addition, under the equilibration with ⟨(∆O)2⟩Strobo ≪ ||O||2, we

can regard a mixed state ρSS, which gives ⟨O⟩Strobo ≃ Tr[OρSS] for any local observable O, as a
steady state of the Floquet system. The central questions are whether there exists equilibration
in generic Floquet many-body systems, and what characterises the steady state ρSS then. The
latter is rather important in Floquet cases, since generic Floquet systems do not have the energy
conservation due to their time-dependency. The thermal equilibrium state ρβ , Eq. (1.60), becomes
ill-defined except for β = 0 in Floquet cases.

The existence of thermalization depends on the integrability also in Floquet cases. In integrable
Floquet systems, a macroscopic number of local conserved quantities again prevent the thermaliza-
tion. On the other hand, generic nonintegrable Floquet systems are believed to satisfy the Floquet
versions of ETH and off-diagonal ETH, while integrable Floquet systems violate them [55, 56]. In
a similar way to static cases, they lead to thermailization in nonintegrable Floquet systems from
any initial state. We describe them, dubbed Floquet-ETH and off-diagonal Floquet-ETH, and
discuss their relation to thermalization in Floquet systems below.
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Remark. (Floquet eigenstate thermalization hypothesis, Floquet-ETH)
Let |εn⟩ denote the eigenstate of the Floquet operator Uf with the quasienergy εn. We
define the infinite-temperature state by

ρ∞ = lim
β→0

e−βH

Tr[e−βH ]
=

I

dim(H)
. (1.84)

as a thermal equilibrium state at infinite temperature. The state ρβ is referred to as trivial
in that it does not reflect the underlying Hamiltonian H(t) at all. Diagonal Floquet-ETH
(or simply Floquet-ETH) and off-diagonal Floquet-ETH are described by the following
statements.

(Diagonal Floquet-ETH, or simply Floquet-ETH)
Every eigenstate |εn⟩ is equivalent to the infinite-temperature state, that is,

⟨εn|O|εn⟩ ≃ ⟨O⟩∞ , ⟨O⟩∞ ≡ Tr[Oρ∞], (1.85)

for a local operator O when the system size L is sufficiently large.

(Off-diagonal Floquet-ETH)
Off-diagonal matrix elements ⟨εn|O|εn′⟩ (n ̸= n′) for a local operator O show exponential
decay in the system size L,

⟨εn|O|εn′⟩ ≃ fO(ωnn′)√
D

Rnn′ , ωnn′ = εn − εn′ , (1.86)

with a smooth function fO(ω) and D = dim(H). Here, Rnn′ denotes a complex random
variable with zero mean and unit variance, satisfying Rnn′ = R∗

n′n.

While integrable Floquet systems and Floquet-MBL systems (See Section 1.3.5) violate
ETH and off-diagonal ETH, it has been conjectured that generic nonintegrable Floquet
systems satisfy them.

Let us discuss what Floquet-ETH and off-diagonal Floquet-ETH imply in the dynamics of
generic nonintegrable Floquet systems. We consider a generic initial state |ψ(0)⟩ =

∑
n cn |εn⟩,

and we first assume the satisfaction of Floquet-ETH, Eq. (1.85). Then, the infinite-time average
of a local observable, given by Eq. (1.82), becomes

⟨O⟩Strobo = lim
M→∞

∑
n,n′

1

M

M−1∑
m=0

c∗ncn′ei(εn−εn′ )mT ⟨εn|O|εn′⟩ . (1.87)

We can make the assumption of no degeneracy in the quasienergy {εn}n, which naturally comes
from the level repulsion in nonintegrable systems. As a result, we obtain

⟨O⟩Strobo =
∑
n

|cn|2 ⟨εn|O|εn⟩ ≃
1

dim(H)
Tr[O]. (1.88)

Therefore, in nonintegrable Floquet systems, Floquet-ETH or Eq. (1.85) is the sufficient condition
for the infinite-time average of local observables corresponding to their infinite-temperature values.
In other words, after sufficiently long time, any initial state becomes indistinguishable from the
trivial infinite-temperature state in its time average.

Whether or not the nonintegrable Floquet systems equilibrate can be determined by the fluc-
tuation ⟨(∆O)2⟩Strobo, given by Eq. (1.83). Here, let us assume off-diagonal ETH for the noninte-
grable Floquet systems, Eq. (1.86), in a similar way to static systems. Then, we can calculate the
fluctuation in time as follows:

⟨(∆O)2⟩Strobo =
∑
n ̸=n′

∑
l ̸=l′

c∗ncn′c∗l cl′

(
lim

M→∞

1

M

M−1∑
m=0

ei(εn−εn′+εl−εl′ )mT

)
⟨εn|O|εn′⟩ ⟨εl|O|εl′⟩ .

(1.89)
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As a natural assumption in generic nonintegrable systems, we again suppose the non-resonance
condition,

εn − εn′ = εl′ − εl ̸= 0 only when n = l′ and n′ = l. (1.90)

We combine this condition with off-diagonal Floquet-ETH, Eq. (1.86), which leads to

⟨(∆O)2⟩Strobo =
∑
n̸=n′

|cn|2|cn′ |2| ⟨εn|O|εn′⟩ |2

≤ max
n̸=n′

| ⟨εn|O|εn′⟩ |2. (1.91)

Off-diagonal Floquet-ETH, Eq. (1.86), implies the vanishing fluctuation ⟨(∆O)2⟩Strobo with the
growing system size L, representing that the expectation value ⟨O(mT )⟩ itself approaches a certain
value after sufficiently long time. With the combination of Floquet-ETH, we arrive at the following
conjecture in Floquet systems, dubbed heating problem.

Remark. (Heating problem)
In generic Floquet many-body systems with no local conserved quantities, any initial state
|ψ(0)⟩ is believed to relax to a featureless infinite-temperature state:

⟨O(mT )⟩ ≃ 1

dim(H)
Tr[O], (1.92)

for sufficiently large time t = mT as a result of Floquet-ETH and off-diagonal Floquet-ETH.

Overcome Floquet-ETH or the heating problem

To summarize, Floquet-ETH (or the heating problem) implies the thermalization of the long-
time average ⟨O⟩Strobo (or ⟨O(mT )⟩ at late time t = mT ) to the infinite-temperature value. As
well as static systems, Floquet-ETH, off-diagonal Floquet-ETH, and the resulting thermalization
are numerically verified [55, 56, 57]. In a particular class of Floquet systems, called dual-unitary
quantum circuits [58, 59, 60, 61, 62], the distribution of off-diagonal matrix elements, which appear
in off-diagonal Floquet-ETH [See Eq. (1.86)] can be exactly obtained [63]. Taking into account
that thermalization is absent in integrable Floquet systems and Floquet-MBL systems violating
Floquet-ETH and off-diagonal Floquet-ETH, they are believed to explain thermalization in closed
nonintegrable Floquet systems.

What distinguishes Floquet-ETH or the heating problem from their counterparts in static
systems, they predict trivial physics in generic Floquet many-body systems. Any local observable
in steady states of generic Floquet many-body systems, given by Tr[Oρ∞], does not reflect the
Hamiltonian H(t) at all. This comes from the absence of a macroscopic local observable, which is
a counterpart of a Hamiltonian H in static systems. Although the effective Hamiltonian Heff is a
conserved macroscopic observable in nonintegrable Floquet systems, it gives no physical sense for
any local observable O due to its nonlocality.

Quantum many-body phenomena in Floquet systems, which are at the center of this thesis,
have been a significant and fundamental field in today’s nonequilibrium condensed matter physics.
To find out nontrivial phenomena, we should overcome Floquet-ETH or the heating problem and
avoid trivial steady states predicted from them. In the following subsections, we introduce some
preliminary phenomena avoiding the troubles by Floquet-ETH and the heating problem in some
way.

1.3.4 Floquet prethermalization in the high-frequency regime

Floquet-ETH or the heating problem predict trivial inifinite-temperature steady states in generic
Floquet many-body systems, but they do not deny the non-triviality in the quasi-steady states.
Floquet prethermalization indicates the realization of nontrivial thermal quasi-steady states with
sufficiently-long but not infinite lifetime. We note that generic Floquet many-body systems hosting
Floquet prethermalization still satisfy Floquet-ETH, and typically show dynamics with multiple
equilibrations like Fig. 1.4. The existence of Floquet prethermalization or equivalently the long-
lived quasi-steady states is nontrivial. However, it has been proven that Floquet many-body
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Figure 1.4: Schematic picture of Floquet prethermalization in the high-frequency regime. Dynamics
under the time-independent local Hamiltonian Hn0

FM is approximately realized for a sufficiently long
time. After that, it is expected to relax to infinite-temperature states due to Floquet-ETH.

systems, where the local energy scale is much smaller than the frequency (the high-frequence
regime), can universally host such a phenomenon [28, 64, 65, 66].

To discuss Floquet prethermalization in the high-frequency regime, we first introduce the way
to quantitatively evaluate the local energy scale below. We define the locality and the extensiveness
as follows.

Definition 1.3.1. (Locality and Extensiveness)
We consider a static Hamiltonian H on a lattice Λ. The Hamiltonian H can be always
represented by H =

∑
X⊂Λ hX , where hX nontrivially acts just on a domain X ⊂ Λ. Then,

the locality k and the extensiveness J are defined as follows:

H is k-local ⇔ |X| ≤ k for any X s.t. hX ̸= 0, (1.93)

H is J-extensive ⇔ max
i∈Λ

( ∑
X:X∋i

||hX ||

)
≤ J. (1.94)

For a time-periodic Hamiltonian H(t), we define its locality and extensiveness in a sim-
ilar way. We call H(t) a k-local Hamiltonian when it can be represented as H(t) =∑

X:|X|≤k hX(t), and call it J-extensive when the maximum of
∑

X:X∈i ||hX(t)|| with re-
spect to a site i and time t is bounded by J . We define the local energy scale by λ = 2kJ .

The k-locality means that a Hamiltonian involves at-most k-body interactions. Using the
following inequality

||H|| ≤
∑
X

||hX || ≤
∑
i∈Λ

∑
X:X∋i

||hX || ≤ JL, (1.95)

the extensiveness J (≥ ||H||/L) gives the maximal energy scale per site, characterizing the local
energy scale of a Hamiltonian, λ = 2kJ . For a simple example described by the one-dimensional
long-ranged Hamiltonian

H =
∑
i ̸=j

Jint
|i− j|α

σz
i σ

z
j +

∑
i

hxσ
x
i , (α > 1), (1.96)

we obtain the locality k = 2 and the extensiveness J = 2|Jint|ζ(α)+ |hx| (ζ(x) is the zeta function).
We note that the locality defined here is not related to the range of interactions.

Quasi-steady states and Effective Hamiltonian

We now discuss Floquet prethermalization in the high-frequency regime. We consider a k-local
(k = O(1)) and J-extensive Hamiltonian H(t) on an L-site lattice Λ. We assume the high-frequency
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regime, JT ≪ 1. Then, as explained below, the following approximation is verified:

|ψ(mT )⟩ ≃ e−iH̃effmT |ψ(0)⟩ , t = mT < τc = eO(ω/J)T, (1.97)

with a certain local time-independent Hamiltonian H̃eff . In the exponentially-long time τc =
eO(ω/J)T , the stroboscopic dynamics has a macroscopic local conserved quantity H̃eff just like that
in static systems, thereby avoiding the heating. This approximate dynamics under H̃eff within
t < eO(ω/J)T is called Floquet prethermalization.

Here, we briefly review how the macroscopic local conserved quantity H̃eff emerges in Floquet
prethermalization. Let us consider the effective Hamiltonian Heff = (i/T ) logUf and the Floquet-
Magnus expansion Hn

FM [See Eqs. (1.27)-(1.29)], since we are now focusing on the high-frequency
regime JT ≪ 1. We should note that, for generic many-body systems, the perturbative expansion

H∞
FM =

∑∞
m=0H

(m)
FM is divergent since the parameter ||H(t)||/ω ∼ JL/ω exceeds the convergence

radius rc = O(1) even in the case of JT ≪ 1. This means that the Floquet-Magnus expansion is
not an asymptotic expansion for the effective Hamiltonian Heff , and it seems to have no physical
sense. Nevertheless, under the locality and the extensiveness, the Floquet-Magnus expansion is
proven to show a convergent behavior up to a certain order. For instance, the first-order term

H
(1)
FM is bounded by

∣∣∣∣∣∣H(1)
FM

∣∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣ 1

2iT

∫ T

0

dt1

∫ t1

0

dt2[H(t1), H(t2)]

∣∣∣∣∣
∣∣∣∣∣

≤ 1

2T

∫ T

0

dt1

∫ t1

0

dt2
∑

X,Y⊂Λ

||[hX(t1), hY (t2)]|| (1.98)

Since the integrand is further bounded by∑
X,Y⊂Λ

||[hX(t1), hY (t2)]|| = 2
∑

X,Y :X∩Y ̸=ϕ

||hX(t1)|| · ||hY (t2)||

≤ 2

(∑
Y

∑
i∈Y

∑
X:X∋i

+
∑
X

∑
i∈X

∑
Y :Y ∋i

)
||hX(t1)|| · ||hY (t2)||

≤ 2kJ
∑
X

(||hX(t1)|| + ||hX(t2)||) ≤ 4kJ2N, (1.99)

we obtain
∣∣∣∣∣∣H(1)

FM

∣∣∣∣∣∣ ≤ λT (JL)/4. This bound is comparably smaller than the expected one,

O(||H(t)|| · r) ∼ λT (JL) · (N/k) , obtained from the perturbation parameter r = ||H(t)||/ω if
the locality k is smaller compared to the system size L. In a similar way, Floquet systems with
locality and extensiveness have the Floquet-Magnus expansion with suppressed divergence.

Theorem 1.3.2. (FM expansion under locality and extensiveness) [28]
For a k-local and J-extensive HamiltonianH(t), eachm-th order term of its Floquet-Magnus

expansion H
(m)
FM , given by Eq. (1.28), has the following upper bound:

||H(m)
FM ||/L ≤ J (m) ≤ (λT )m

m+ 1
m! · J, (1.100)

where J (m) is the extensiveness of H
(m)
FM .

Using Stirling’s formula m! ∼ (m/e)m, this theorem says that the m-th order term H
(m)
FM ,

which is order of (mλT/e)mJN/m, shows a convergent behavior up to the order n0 = O(1/λT )
(≫ 1) satisfying n0λT/e ∼ 1. This behavior is in contrast to the divergence of the Floquet-
Magnus expansion in generic Floquet many-body systems. In fact, after some discussion based on
the locality and the extensiveness, the Floquet-Magnus effective Hamiltonian Hn

FM plays a role in
giving a macroscopic local quasi-conserved quantity when its convergent behavior is accompanied
under n < n0 = O(1/λT ).
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Theorem 1.3.3. (Floquet prethermalization) [28]
For a k-local and J-extensive Hamiltonian H(t), we assume 4λT < 1 with the local energy
scale λ = 2kJ . Then, the Floquet operator Uf is approximated as follows:∣∣∣∣∣∣Uf − e−iH

n0
FMT

∣∣∣∣∣∣ ≤ 3

k
L(λT )2−n0 (1.101)

where n0 is the largest integer that does not exceed 1/(16λT ). When we truncate it at the
order n ≤ n0, the bound becomes∣∣∣∣∣∣e−iH

n0
FMT − e−iHn

FMT
∣∣∣∣∣∣ ≤ 2||H(n+1)

FM ||T ≤ 2(n+ 1)!

(n+ 2)k
L(λT )n+2. (1.102)

The right hand side of Eq. (1.101) becomes smaller as the order n increases up to n0 = O(1/λT ).
Considering the relation ||(Uf )m − exp(−iHn0

FMmT )|| ≤ m||Uf − exp(−iHn0

FMT )|| and choosing the
order n by n0, the stroboscopic dynamics can be approximated as

|ψ(mT )⟩ = (Uf )m |ψ(0)⟩ = e−iH
n0
FMmT |ψ(0)⟩ +mL · eO(−1/λT ) ≃ e−iH

n0
FMmT |ψ(0)⟩ , (1.103)

as long as the time t = mT is smaller than eO(1/λT )T/L. This reproduces Eq. (1.97), indi-
cating that the truncated Floquet-Magnus expansion Hn0

FM plays a role of a local macroscopic
conserved quantity and that the Floquet systems experience the dynamics under Hn0

FM during
t < eO(1/λT )T/L. This lifetime is much larger than the one expected from the convergence radius,
O(T/(λL)), for many-body systems. Although this theorem says nothing about the dynamics after
the prethermal regime, they are expected to host thermalization to infinite temperature due to
Floquet-ETH. Thus, the generic dynamics of Floquet many-body systems in the high-frequency
regime show multiple relaxations, which can be depicted as Fig. 1.4.

We also note that Eq. (1.102) validates the approximation by the lower-order Floquet-Magnus
expansion. The triangle equation with Eqs. (1.101) and (1.102) results in∣∣∣∣∣∣Uf − e−iHn

FMT
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣Uf − e−iH
n0
FMT

∣∣∣∣∣∣+
∣∣∣∣∣∣e−iH

n0
FMT − e−iHn

FMT
∣∣∣∣∣∣

≤ 3

k
L(λT )2−n0 +

2(n+ 1)!

(n+ 2)k
L(λT )n+2

≤ 3

k
L(λT )2−n0 +

2L

(n+ 2)2k
(nλT )n+2. (1.104)

Since the second term is decreasing function in n when n ≤ O(1/λT ) ∼ n0, the lower-order
expansion Hn

FM (n ≤ n0) also plays a role of a macroscopic conserved quantity in the time scale
t ≤ (λT )−n−2/L for small n.

Floquet engineering

Floquet prethermalization in the high-frequency regime is often used for Floquet engineering, which
enables the control of phases of matter in nonequilibrium setups. As discussed above, Floquet
systems with the local energy scale λ ≪ ω mimic the dynamics under the time-independent local
Hamiltonian Hn

FM during t ≤ eO(1/λT )T . The truncated Floquet-Magnus expansion Hn
FM generally

includes many-body interactions via commutators, and is expected to become nonintegrable. Thus,
by assuming ETH and off-diagonal ETH in static systems [Eqs. (1.61) and (1.62)], any local
operator O behaves like

⟨O(mT )⟩ ≃ ⟨ψ(0)|eiH
n
FMmTOe−iHn

FMmT |ψ(0)⟩ ≃ Tr[Oρβ ], (1.105)

for sufficiently large time t = mT but smaller than eO(1/λT )T . Here, the state ρβ is the thermal
equilibrium state under Hn

FM,

ρβ =
e−βHn

FM

Tr[e−βHn
FM ]

, (1.106)

and the effective temperature β is determined by the energy conservation,

⟨ψ(0)|Hn
FM|ψ(0)⟩ = Tr[Hn

FMρβ ]. (1.107)
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Thus, we can realize a preferable thermal state under the static Hamiltonian Hn
FM with finite

lifetime τ = eO(1/λT )T . In the context of Floquet engineering, we often use the van Vleck effective
Hamiltonian instead of the Floquet-Magnus expansion, since we are interested in quasi-steady state
properties independent of the time origin. In that case, we consider a thermal equilibrium state
under the static Hamiltonian

Hn
vV = H0 +

∑
m̸=0

[H−m, Hm]

2mω
+ . . .+H

(n)
vV . (1.108)

To determine the temperature, we replace the initial state by eiK
n
vV[0] |ψ(0)⟩ in Eq. (1.107), which

reflects the unitary equivalence between the two expansions Eq. (1.39).
One of the simplest examples is dynamical localization induced by laser light [67, 68, 69]. A

one-dimensional fermionic system coupled with linearly-polarized light is typically described by

H(t) = −2t
∑
k

∑
σ=↑,↓

cos(k −A sinωt)c†k,σck,σ +Hint, (1.109)

with the vector potential A(t) = A sinωt. Here, Hint denotes time-independent interactions such as

the Hubbard interaction HU = U
∑

i c
†
i,↑ci,↑c

†
i,↓ci,↓. When the local energy scale of the Hamiltonian

H(t) (e.g. max(t, U) in the case of Hint = HU ) is much smaller than the frequency ω, the system
can be approximated up to the lowest order by

H0
FM = −2tJ0(A)

∑
k

cos(k)c†kck + U
∑
k,k′,q

c†k+qc
†
k′−qck′ck, (1.110)

where we employ the formula for the m-th order Bessel function Jm(A) =
∫ 2π

0
(dθ/2π) cos(mθ −

A sin θ) (m = 0, 1, 2, . . .). This implies that we can control the hopping tFM(A) ≡ tJ0(A) by the
amplitude of the light. In particular, when we set A around the zeros of the Bessel function J0(A)
(A ≃ 2.405, 5.520, . . .), the suppressed hopping causes localization, dubbed dynamical localization.

Floquet engineering in Floquet prethermalization under high-frequency drives is now widely
discussed in the context of various phenomena (See [70] for review). Recent theoretical studies
on Floquet engineering also tell us possibilities of controlling various phenomena, which cover
laser-mediated multiferroics [71], laser-induced topological superconductivity [25, 26], and laser-
irradiated Kondo effects [72]. While this technique provides a powerful tool to analyze the high-
frequency regime, we should note that the stroboscopic dynamics in this regime is completely
understood by the time-independent local Hamiltonian Hn

FM. In other words, closed Floquet
systems in the high-frequency regime cannot host unique phenomena in nonequilibrium, such as
anomalous Floquet topological phases and discrete time crystals.

1.3.5 Many-body localization and time crystals

Floquet many-body-localized (Floquet-MBL) phases and discrete time crystals (DTCs) are robust
nonequilibrium phases realized in Floquet many-body systems. They have a macroscopic number
of local quasi-conserved quantities and violate the assumption of Floquet-ETH “nonintegrability”,
thereby enabling nontrivial phases avoiding thermalization to infinite temperature.

Many-body localization (MBL) and Floquet-MBL

Many-body localization (MBL) is characterized by the emergence of an extensive number of quasi-
local conserved quantities under interactions and disorder, forming a robust phase dubbed a MBL
phase [32, 73, 74, 75, 76] (See Refs. [77, 78] for review). Quantum many-body systems lying
in MBL phases have attracted much attention in that they violate ETH and avoid relaxation to
equilibrium states.

Let us begin with the simplest model for MBL phases. We consider a static one-dimensional
antiferromagnetic (AFM) Heisenberg model under a disordered magnetic field with S = 1/2 [73,
74],

HMBL =
∑
i

Jσ⃗i · σ⃗i+1 +
∑
i

hiσ
z
i , σ⃗i = (σx

i , σ
y
i , σ

z
i ). (1.111)
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Here, a real random variable hi is chosen uniformly from [−h, h]. Depending on the strength of
disorder h compared to the coupling J , this model lies in either a MBL phase or a delocalized phase,
hosting MBL transition between them. When the disorder strength h is smaller than a certain
threshold value hc ≃ 3.5J , the model lies in the delocalized phase. In this case, we can numerically
confirm that it behaves like usual nonintegrable systems; it experiences the level repulsion leading
to the Wigner-Dyson statistics of the level spacing, and it also satisfies ETH. Thus, the system in
the delocalized phase experiences thermalization from any initial state.

On the other hand, when the disorder strength is large, h > hc, the system lies in a MBL phase.
In this phase, a macroscopic number of quasi-local conserved quantities emergently appear. For
the one-dimensional spin chain with S = 1/2, such conserved quantities, called local integrals of

motion (LIOMs), can be identified by {τzi = Ulocalσ
z
i U

†
local}Li=1 with a certain local unitary operator

Ulocal. Each LIOM τzi is localized at the i-th site with exponentially-decaying tails around the i-th
site, and satisfies [τzi , τ

z
j ] = 0 and [τzi , HMBL] = 0 for any i, j. This results in the following generic

representation of the Hamiltonian in a MBL phase,

HMBL[{τzi }] =
∑
i

Jiτ
z
i +

∑
i,j

Jijτ
z
i τ

z
j +

∑
i,j,k

Jijkτ
z
i τ

z
j τ

z
k + . . . , (1.112)

where the coefficients Jij , Jijk, . . . exponentially decay with the distance between each pair of their
indices. Emergence of LIOMs brings characteristic properties of MBL phases that distinguishes
them from generic integrable or nonintegrable systems. First, every eigenstate of the Hamilto-
nian HMBL[{τzi }] is given by the simultaneous eigenstate of LIOMs |{τi}Li=1⟩ with the eigenvalue
HMBL[{τi}], where τi = ±1 represents the eigenvalue of τzi . Since each LIOM independently
contributes to the energy eigenvalue, MBL phases do not host the level repulsion and possesses
the level statistics obeying Poisson distribution. Second, each eigenstate |{τi}Li=1⟩ is distinguished
from thermal equilibrium states by local observables {τzi }zi=1. This immediately means that MBL
systems do not satisfy ETH. Related to the violation of ETH, MBL systems avoid thermaliza-
tion due to an extensive number of conserved quantities {τzi }i. The third characteristic property
of MBL phases appears in entanglement entropy. Each eigenstate |{τi}Li=1⟩ is an approximate
product state with local conserved quantities having exponentially-decaying tails. This indicates
that each eigenstate of MBL systems has area-law entanglement entropy S ∼ Ld−1. This also
provides the characteristic entanglement dynamics of MBL phases, that is, the entanglement of
|ψ(t)⟩ = exp(−iHMBLt) |ψ(0)⟩ logarithmically grows in time as S(t) ∝ log t when we prepare a
product state |ψ(0)⟩. 3

Floquet-MBL is the Floquet version of MBL, having an extensive number of quasi-local con-
served quantities [79, 80, 81, 82]. One of the most simplest examples for Floquet-MBL phases is
realized by the following Hamiltonian on one-dimensional spin chain with S = 1/2 [79],

H(t) =

{∑
i Jσ

z
i σ

z
i+1 +

∑
i hiσ

z
i (0 ≤ t < T1)∑

i J(σx
i σ

x
i+1 + σy

i σ
y
i+1) (T1 ≤ t < T1 + T2 = T ).

(1.113)

Here, the random variable hi, which is uniformly chosen from [−h, h], plays a role of disorder.
In the infinite-frequency limit T → 0, this model reproduces the static model Eq. (1.111) since
the effective Hamiltonian Heff corresponds to the zeroth-order Floquet-Magnus expansion H0

FM =
HMBL, which leads to MBL. When the frequency is finite T > 0, thermalization by periodic drive
competes with localization by disorder. If the former is dominant, the system lies in an ergodic
phase, and hosts thermalization to infinite-temperature as generic nonintegrable Floquet systems.
On the other hand, if the latter is dominant (e.g. T2 ≤ Tc ≃ 1 in the case of T1 = 1, J = 1/4,
h = 2.5), a Floquet-MBL phase is realized, where an extensive number of quasi-local conserved
quantities appear. The Floquet operator in Floquet-MBL phases can be written in the form of

Uf = exp(−iTHMBL[{τzi }]) (1.114)

with the usage of Eq. (1.112). Importantly, Floquet systems lying in Floquet-MBL phases vio-
late Floquet-ETH, and they can avoid thermalization to trivial infinite-temperature states. By

3Integrable systems, which violate ETH, possess the level statistics obeying Poisson statistics as well as MBL
systems. Typically, MBL systems can be distinguished from integrable systems by their entanglement nature. When
integrable systems can be mapped to free-fermionic systems or can be solved by Bethe ansatz like the XXZ model,
wave numbers work as conserved quantities. Since they are not localized in space, typical integrable systems have
eigenstates with volume-law entanglement, and host the linear growth in the entanglement dynamics, S(t) ∼ t.
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discussion parallel to MBL phases, Floquet-MBL phases host the characteristic behaviors of MBL
phases, such as the level statistics and the entanglement properties.

Since Floquet-ETH or the heating problem predicts trivial steady states in generic interacting
Floquet many-body systems, MBL and Floquet-MBL phases are significant ingredients for ex-
ploring the interplay of quantum many-body properties and nonequilibrium properties. The first
typical example is a discrete time crystal (DTC) phase exploiting MBL, as discussed below. The
second one is a Floquet topological phase in interacting systems [83, 84, 85, 86, 87]. It is often
discussed upon the existence of Floquet-MBL to avoid trivial Floquet eigenstates, and for instance,
two-dimensional class A systems accompanied by Floquet-MBL can host interacting Floquet topo-
logical phases characterized by a rational topological number [83]. This is in contrast to static
interacting systems where ETH predicts nothing about the gapped ground states and nontrivial
topological phenomena in the presence of interactions can be realized without breaking ETH.

Discrete time crystals (DTCs)

Time crystals are one of the ordered phases which spontaneously breaks time translation symmetry
(TTS). Time crystals breaking continuous TTS were originally proposed in equilibrium systems
as an analogy of crystals spontaneously breaking continuous spatial translation symmetry in 2012
[88], but it was later proven that such continuous time crystals cannot exist in the ground states
and the equilibrium states of short-ranged static systems in 2015 [17]. Thus, time crystals are
novel ordered phases inherent in nonequilibrium. In particular, Floquet systems have become one
of the central platforms for time crystals [16, 89, 90, 91, 92, 93, 94, 95, 96] (See Refs. [97, 98, 99]
for review). Such time crystals in Floquet systems are called discrete time crystals (DTCs) since
they spontaneously break discrete TTS H(t) = H(t+ T ).

DTCs are defined by ordered phases showing spontaneous breaking of discrete TTS. To be
precise, we call Floquet systems DTCs when an eigenstate of the Floquet operator |εn⟩ has a
spatio-temporal long-range order 4:

lim
|i−j|→∞

| ⟨εn|OiOj |εn⟩ − ⟨εn|Oi|εn⟩ ⟨εn|Oj |εn⟩ | = q0 > 0. (1.115)

with a certain local order parameter Oi that satisfies U†
fOiUf ̸= Oi and (U†

f )mOi(Uf )m = Oi

(m ∈ N\{1}). When we assume Floquet-ETH or equivalently Eq. (1.85), we obtain ⟨εn|OiOj |εn⟩ ∼
⟨OiOj⟩∞ = ⟨Oi⟩∞ ⟨Oj⟩∞ ∼ ⟨εn|Oi|εn⟩ ⟨εn|Oj |εn⟩ with ⟨O⟩∞ ≡ Tr[O]/dim(H). This indicates the
vanishing correlation function in Eq. (1.115), and hence DTCs can appear only when the Floquet
systems violate Floquet-ETH.

DTCs, violating Floquet-ETH, are usually realized in Floquet systems accompanied by MBL.
Let us consider the simplest case, a kicked Ising chain described by

H(t) =

{∑
i(Jiσ

z
i σ

z
i+1 + hiσ

z
i ) (0 ≤ t < τ)

π(1+ε)
2(T−τ)

∑
i σ

x
i (τ ≤ t < T ),

(1.116)

Uf = exp

(
−iπ(1 + ε)

2

∑
i

σx
i

)
exp

(
−iτ

∑
i

(Jiσ
z
i σ

z
i+1 + hiσ

z
i )

)
, (1.117)

where Ji and hi are randomly chosen from [J0−∆J, J0 +∆J ] and [h0−∆h, h0 +∆h], respectively.
When the disorder ∆J and ∆h are strong enough, MBL takes place suggesting the existence of a
extensive number of local conserved quantities {τzi = Ulocalσ

z
i U

†
local}i. Then, with the usage of the

deformed Pauli operator τxi = Ulocalσ
x
i U

†
local, the Floquet operator Uf is unitarily equivalent to

Uf =

(∏
i

(−iτxi )

)
exp(−iτHMBL[{τzi }]), (1.118)

4This definition of the spatio-temporal order is given in an analogous way to long-range orders in equilibrium
systems. Let us consider spontaneous breaking of a certain discrete symmetry generated by g to another discrete
symmetry generated by h in equilibrium. Then, the long-range order indicates the existence of a local order
parameter Oi satisfying g−1Oig ̸= Oi, h

−1Oih = Oi, and the non-vanishing correlation function:

lim
|i−j|→∞

| ⟨OiOj⟩eq − ⟨Oi⟩eq ⟨Oj⟩eq | = q0 > 0
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where HMBL[{τzi }] denotes the MBL Hamiltonian given by Eq. (1.112). Every eigenstate of the
Floquet operator Uf is given by

|{τi}i,±⟩ =
1√
2

(
eiτH

odd
MBL[{τi}]/2 |{τi}⟩ ± e−iτHodd

MBL[{τi}]/2 |{−τi}⟩
)
, (1.119)

e−iTε({τi},±) = ±eiτH
even
MBL[{τi}]. (1.120)

Here, τi takes ±1 and |{τi}⟩ satisfies τzi |{τi}⟩ = τi |{τi}⟩. We also give the odd (even) part of the

MBL Hamiltonian by H
odd(even)
MBL [{τzi }] = (HMBL[{τzi }]∓HMBL[{−τzi }])/2. We note that each pair

of |{τi}i,+⟩ and |{τi}i,−⟩ has the fixed quasienergy gap π/T . We can choose τzi as a local order

parameter that satisfies (Uf )†τzi Uf = −τzi , (U†
f )2τzi (Uf )2 = τzi , and then we find the non-vanishing

correlation function for each eigenstate:

| ⟨{τi},±|τzi τzj |{τi},±⟩ − ⟨{τi},±|τzi |{τi},±⟩ ⟨{τi},±|τzj |{τi},±⟩ | = |τiτj | = 1. (1.121)

Thus, this system is a DTC. Every eigenstate |{τi},±⟩ is a superposition of macroscopically
different states, dubbed a cat state. Cat states are vulnerable to decoherence, measurement, and
infinitesimal perturbations that break the underlying symmetry, and physically unstable. In the
actual experiments, we observe physically stable short-range-correlated states, which are superpo-
sitions of the eigenstates with the fixed π/T gap:

|{±τi}⟩ ∝ |{τi},+⟩ ± |{τi},−⟩ . (1.122)

Due to the quasienergy gap π/T , the physically stable state |{τi}⟩ shows a 2T -periodic motion,

(Uf )n |{τi}⟩ ∝ |{τi},+⟩ + (−1)n |{τi},−⟩ ∝ |{(−1)nτi}⟩ , (1.123)

giving a persistent 2T -periodic oscillation of the order parameter ⟨τzi (nT )⟩ = (−1)n ⟨τzi (0)⟩. The
form of the Floquet operator Eq. (1.118) is maintained under any local perturbation preserving
the time-periodicity H(t) = H(t + T ) [e.g. ε in Eq. (1.116)] in the presence of MBL. Thus, the
2T -periodic oscillation of the order parameter, interpreted as spontaneous breaking of discrete TTS
TZ to discrete TTS NTZ, is robust as long as the underlying discrete TTS TZ is preserved.

In the presence of the generic spatio-temporal order with m ≥ 2 [See Eq. (1.115)], pairs of m cat
states having the fixed gap 2π/mT appear as the eigenstates of Uf , thereby making a mT -periodic
oscillation of the local order parameter in the physically feasible states. We refer to the system
having the spatio-temporal order (with m ≥ 2) robust against any T -periodic local perturbation as
a mT -DTC (so the above example is a 2T -DTC). To summarize, DTCs are physically characterized
by the two following phenomena;

1. Existence of a local order parameter ⟨ψ(t)|O|ψ(t)⟩, which is mT -periodic but not T -periodic,
from a physically-feasible short-range-correlated state |ψ(0)⟩ in t, L → ∞ (time-translation
symmetry breaking, TTSB).

2. Robustness of the above behavior against any local T -periodic perturbation in t, L→ ∞.

Discrete time-crystalline behaviors were first experimentally observed in trapped ions [95] and
diamond NV centers [96], and later in NMR experiments [100, 101]. Although all of them show
a 2T -periodic oscillation robust against a certain perturbation [i.e. ε in Eq. (1.116)], the three-
dimensionality and the absence of disorder respectively deny the existence of MBL in the first and
third setups [102]. While trapped ions realize a one-dimensional disordered system, MBL seems to
be absent due to the lack of disorder in interactions [98]. Thus, the realization of DTCs with the
absolute stability brought by MBL is controversial in these prototypical setups. Recently, it has
been vigorously discussed to realize DTCs accompanied by MBL in programmable quantum simu-
lators for quantum circuits. In these setups, we can implement tunable disorder and measurements
on each qubit, and robustness of DTCs benefits as stability to coherent errors in quantum circuits.
After the theoretical proposal on noisy intermediate-scale quantum (NISQ) devices [103], DTCs
on superconducting qubits [104, 105, 106] and 13C nuclear spins in diamond [107] were reported.
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1.4 Overview of this thesis

At the end of this chapter, we give an overview of this thesis. As discussed so far, Floquet systems
have become one of the most important nonequilibrium systems due to their various platforms
and phenomena inherent in nonequilibrium. Throughout the thesis, we aim at understanding the
fundamental question lying at the center of nonequilibrium condensed matter physics for Floquet
systems:

What kind of nonequilibrium phenomena can take place when nonequilibrium properties inherent
in Floquet systems and quantum many-body properties induced by interactions coexist ?

Although the theoretical framework of Floquet systems beyond equilibrium seems to easily host
unique phenomena, generic Floquet systems suffer from trivial steady states brought by Floquet-
ETH: “all the eigenstates of the Floquet operator become equivalent to infinite-temperature states
in closed nonintegrable systems.” Thus, we should seek for nonequilibrium dynamics or steady
states that overcome trivial physics by Floquet-ETH. We expect that a possible direction for
nontrivial nonequilibrium phenomena should be to explore outside of Floquet-ETH:

1. Long-lived quasi-steady states of Floquet systems, instead of trivial steady states

2. Integrable or localized Floquet systems, breaking the nonintegrability

3. Dissipative Floquet many-body systems, breaking the isolation

We also note that Floquet-ETH is an empirical law confirmed by experiments and numerical
simulations, and hence it is still significant to seek for

4. Nontrivial steady states in closed nonintegrable Floquet systems.

In Section 1.3.5, we briefly review recent development in Floquet-MBL phases and discrete time
crystals, which covers 2. We target nonequilibrium phenomena in the other fields 1., 3., and 4.

In Chapter 2, we consider Floquet prethermalization under the resonant and the high-frequency
drives, which covers 1. Although the conventional Floquet prethermalization in the high-frequency
regime, which we review in Section 1.3.4, enables Floquet engineering, it hosts phenomena having
a static counterpart. We clarify the effective Hamiltonian with emergent symmetries for quasi-
steady states in the presence of the resonant drive. We also provide its application to the analysis of
prethermal discrete time crystals and the resonant Floquet engineering, which enables simultaneous
control of symmetry and phases of matter.

In Chapter 3, we consider dissipative Floquet many-body systems in the high-frequency regime,
which covers 3. As mentioned above, closed Floquet systems in the high-frequency regime corre-
spond to closed static systems, but its dissipative version of the correspondence is nontrivial. We
clarify the breakdown of the correspondence universally caused by interactions, indicating that
dissipative Floquet systems can host unique phenomena that have no static counterpart even in
the high-frequency regime.

In Chapter 4, we construct a closed nonintegrable Floquet system showing nontrivial steady
states, which covers 4. By employing the notion of quantum many-body scars (QMBS) in static
systems [See Section 1.3.2], we find athermal and thermal steady states depending on initial states,
dubbed Floquet QMBS. We clarify that the model showing Floquet QMBS is a counterexample
to Floquet-ETH, and hence the empirical law, Floquet-ETH, is not always true.

Finally, we conclude and summarize this thesis in Chapter 5.



36 CHAPTER 1. INTRODUCTION



Chapter 2

Resonant prethermal phases and
resonant Floquet engineering

In this chapter, we focus on long-lived quasi-steady states in closed Floquet many-body systems.
As Floquet-ETH predicts trivial steady states in generic Floquet many-body systems, the quasi-
steady states realized before the trivial steady states potentially provide platforms for nontrivial
physics of Floquet setups. One of the well-known cases hosting such quasi-steady states is the
high-frequency regime, where the local energy scale is much smaller than the frequency. However,
it cannot host phenomena inherent in Floquet systems. Nonequilibrium phases of matter such as
anomalous Floquet topological phases and discrete time crystals usually take place in the resonant
regime, where the local energy scale is comparable to the frequency.

Here, we aim at understanding long-lived quasi-steady states in the resonant regime. We
consider generic Floquet many-body systems both in the presence of the resonant and the high-
frequency drives, and clarify the effective Hamiltonian which describes their quasi-steady states.
Remarkably, the effective Hamiltonian possesses an emergent Zn-symmetry up to any order of
the perturbation theory, different from the conventional high-frequency regime. This result is
utilized to explain and analyze discrete-time-crystalline behaviors in quasi-steady states, which
are unique to Floquet systems in the resonant regime. We further propose Floquet engineering
with the resonant drive, dubbed resonant Floquet engineering. With the usage of the emergent
Zn-symmetry, we can simultaneously control phases and symmetry of the system. As its example,
we show the control of topological phases protected by a Z2 × Z2 symmetry only in the presence
of a Z2 in Floquet setups.

2.1 Prethermal Floquet phases under resonant drives

In this section, we first describe the setup which we target as Floquet systems in the presence of
both resonant and high-frequency drives. After that, we derive the effective Hamiltonian describ-
ing the sufficiently-long intermediate dynamics in the resonant regime, which is the main result
throughout this chapter. Importantly, in contrast to the high-frequency regime in Section 1.3.4, the
effective Hamiltonian has a robust emergent Zn-symmetry up to any perturbation order, leading
to prethermal discrete time crystals and Floquet engineering in the following sections.

2.1.1 Setups

Here, we specify Floquet systems under resonant and high-frequency drives throughout this chap-
ter. We consider a time-periodic Hamiltonian H(t) = H(t + T ) on a finite lattice Λ. We assume
the following three conditions.

1. The time-periodic Hamiltonian H(t) is decomposed as

H(t) = H0(t) + V (t), (2.1)

where both H0(t) and V (t) are time-periodic Hamiltonians with the same period T .

37
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2. (Resonant drive) The Floquet operator under the Hamiltonian H0(t) gives an onsite ZN -
symmetry operation, that is,

∃N ∈ N s. t. XN = 1, X = T exp

(
−i
∫ T

0

dtH0(t)

)
. (2.2)

3. (High-frequency drive) The time-periodic Hamiltonian V (t) is k-local and J-extensive, de-
fined by Definition 1.3.1.

The condition 1. says that we assign resonant and high-frequency drives to H0(t) and V (t)
respectively. The condition 2. gives restrictions on the drive H0(t). In order to satisfy Eq.
(2.2) for the onsite operator X, the local energy scale of H0(t) should be given by ∼ 2πM/(NT )
[M ∈ Z], comparable to the frequency ω = 2π/T . In that sense, H0(t) gives the resonant drives.
The condition 3. dictates that the Hamiltonian V (t) includes at-most k-body interactions with its
characteristic energy scale per site, J . This condition is the same as that of Floquet prethermaliza-
tion in the high-frequency regime (See Section 1.3.4). We refer to V (t) as the high-frequency drive,
which typically has a local energy scale smaller than the frequency. If the resonant drive H0(t)
is absent, this setup reproduces the one for the high-frequency regime. Under these conditions,
the total Hamiltonian H(t) has local energy comparable to the frequency, and we hereby explore
Floquet prethermalization in the resonant regime, which is out of the conventional high-frequency
regime.

We note the applicability of the above setup. The strongest restriction is the form of the
resonant driveH0(t) designated by Eq. (2.2). Although it seems to be quite tight, such a form of the
resonant drive is often considered in the context of typical nonequilibrium phases of matter inherent
in Floquet systems. For instance, in anomalous Floquet topological insulators (AFTIs), unique
to the resonant regime, the Floquet operator often becomes or is deformed to a ZN -symmetry
operation. When we adopt such a drive as H0(t), we can deal with AFTIs under perturbations
V (t). Some prototypical examples for two-dimensional systems give X = 1 in the square lattice
[13, 108] and X2 = 1 in the honeycomb lattice [11, 109]. Another important example for the
resonant drive is a sequence of time-periodic pulse, widely used for realizing discrete time crystals
(DTCs). When we apply a transverse magnetic field to a spin system with S = 1/2 on and off as

H0(t) =

{
π
2τ

∑L
i=1 σ

x
i 0 ≤ t < τ

0 τ ≤ t < T,
(2.3)

we obtain the Z2 Ising symmetry operation X =
∏L

i=1(−iσx
i ) satisfying X2 = 1 for the even system

size L.
We also emphasize the unnecessity of the fine-tuning. When the resonant drive H0(t) slightly

deviates with XN ≃ 1, the assumption seems to be broken by the violation of Eq. (2.2). However,
the above setup covers even such situations; Let H ′

0(t) = H0(t)+ε(t) denote the deviated resonant
drive with the small deviation ε(t) = ε(t + T ). The original one H0(t) satisfies XN = 1 as Eq.
(2.2). By interpreting H0(t) and V (t) + ε(t) as the resonant and the high-frequency drives in the
deviated Hamiltonian H(t) = H ′

0(t)+V (t), all the above conditions are recovered. Thus, we do not
need to impose the fine-tuning, that is, the above Floquet setup in the resonant regime is robust
against any local perturbation as long as the periodicity is maintained.

Combining the various choice of the resonant drive and the robustness of the conditions, the
Floquet systems satisfying Eqs. (2.1) and (2.2) can deal with a wide class of nonequilibrium systems
in the resonant regime. It should be noted that they can include unique nonequilibrium phases such
as AFTIs and DTCs, while the conventional high-frequency regime always counterparts in static
systems (See Section 1.3.4). In the following section, we show that the choice of the resonant drive
by Eq. (2.2) enables Floquet prethermalization in the resonant regime, and clarify the effective
Hamiltonian for their intermediate dynamics.

2.1.2 Van Vleck expansions with emergent symmetries

Here, we clarify the effective Hamiltonian describing the sufficiently-long intermediate dynamics
in the above resonant setup. To this goal, we have two points that should be addressed. First,
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it is nontrivial whether there exists such intermediate time scale where Floquet systems under
resonant drive can avoid thermalization to infinite temperature. While Floquet prethermalization
in the high-frequency regime arises from the mismatch of local energy scale and excitation energy
by periodic drive, they are comparable in the resonant regime, which in general leads to quick
heating. As we will see later, the choice of resonant drive H0(t) by Eq. (2.2) enables Floquet
prethermalization in the resonant regime. Second, we should identify the characteristics of the
approximate Floquet operator or effective Hamiltonian for the intermediate dynamics. In the
case of the high-frequency regime, the Floquet operator is approximated by the Floquet-Magnus
effective Hamiltonian (See Theorem 1.3.3). In contrast, as we will show below, in the resonant
regime, we can obtain the clear description by the van Vleck expansion, dictating that the effective
system for the intermediate dynamics acquires an emergent ZN symmetry.

Floquet prethermalization in the resonant regime

Let us begin with the existence of Floquet prethermalization in the resonant regime satisfying Eqs.
(2.1) and (2.2). Considering that V (t) gives the high-frequency drive with the local energy scale
J , we employ the perturbation theory in J/ω. In order to separate the energy scales of H0(t) and
V (t), we consider the rotating frame in H0(t):

Ṽ (t) = U0(t)†V (t)U0(t), U0(t) = T exp

(
−i
∫ t

0

H0(t)dt

)
. (2.4)

With the rotating frame, we can derive the following theorem implying Floquet prethermalization.

Theorem 2.1.1. (Floquet prethermalization under resonant drive)
Assume that all the conditions 1.-3. [See Eqs. (2.1) and (2.2)] are satisfied. We define the
coarse-grained Floquet operator by

UN
f = U(NT ) = (Uf )N , (2.5)

which describes the stroboscopic dynamics with the interval NT . Then, for a sufficiently
small period T independent of the system size L, it can be approximated by

||UN
f − e−iṼ

n0
FMNT || ≤ e−O(1/(λNT ))L, (2.6)

with the Floquet-Magnus expansion Ṽ n
FM, given by Ṽ (t) up to the truncation order n0 =

O(1/(λNT )). Furthermore, with the corresponding van Vleck expansion for the lower
truncation order n ≤ n0, it is also approximated by

||UN
f − e−iK̃n

vVe−iṼ n
vVNT eiK̃

n
vV || ≤ e−O(1/(λNT ))L+O((λNT )n+2)L. (2.7)

Before proving the theorem, we give the explicit formula of the Floquet-Magnus and the van
Vleck expansions for Ṽ (t). We define the l-th Fourier component of Ṽ (t) by

Ṽl =
1

NT

∫ NT

0

Ṽ (t)eilωt/Ndt =
1

NT

∫ NT

0

U0(t)†V (t)U0(t)eilωt/Ndt, (2.8)

where we have used the period NT for the coarse-grained stroboscopic dynamics. The n-th order
Floquet-Magnus expansion is given by

Ṽ n
FM =

n∑
m=0

Ṽ
(m)
FM , Ṽ

(0)
FM = Ṽ0, Ṽ

(1)
FM = N

∑
l ̸=0

[Ṽ−l, Ṽl]

2lω
+N

∑
l ̸=0

[Ṽl, Ṽ0]

lω
, . . . , (2.9)

which are obtained by substituting Ṽ (t) and NT into H(t) and NT in Eqs. (1.28). In a similar
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way, the van Vleck expansion for Ṽ (t) is given by

Ṽ n
vV =

n∑
m=0

Ṽ
(m)
vV , Ṽ

(0)
vV = Ṽ0, Ṽ

(1)
vV = N

∑
l ̸=0

[Ṽ−l, Ṽl]

2lω
, (2.10)

Ṽ
(2)
vV = N2

∑
m̸=0

[[Ṽ−m, Ṽ0], Ṽm]

2m2ω2
+N2

∑
m ̸=0

∑
n ̸=0,m

[[Ṽ−m, Ṽm−n], Ṽn]

3mnω2
, . . . , (2.11)

K̃n
vV =

n∑
m=0

K̃
(m)
vV , iK̃

(0)
vV = −N

∑
m̸=0

Ṽm
mω

, (2.12)

iK̃
(1)
vV = N2

∑
m̸=0

∑
n ̸=0,m

[Ṽm, Ṽm−n]

2mnω2
+N2

∑
m̸=0

[Ṽm, Ṽ0]

m2ω2
, (2.13)

iK̃
(2)
vV = −N3

∑
m ̸=0

[[Ṽm, Ṽ0], Ṽ0]

m3ω3
+N3

∑
m,n ̸=0

[Ṽm, [Ṽ−n, Ṽn]]

4m2nω3

−N3
∑

m,n ̸=0

 ∑
l ̸=0,m,n

[Ṽn, [Ṽl−n, Ṽm−l]]

4mnlω3
+

∑
l ̸=0,m−n

[Ṽn, [Ṽl, Ṽm−n−l]]

12mnlω3


−N3

∑
m̸=0

∑
n ̸=0,m

(
[[Ṽn, Ṽ0], Ṽm−n]

2mn2ω3
+

[[Ṽn, Ṽm−n], Ṽ0]

2m2nω3

)
, . . . . (2.14)

We prove the theorem with the usage of these expansions in the rotating frame below.

Proof

For the time-periodic Hamiltonian H(t) = H0(t) + V (t), we consider Schrödinger equation,

i
d

dt
|ψ(t)⟩ = [H0(t) + V (t)] |ψ(t)⟩ , (2.15)

with the rotating frame by U0(t) [See Eq. (2.4)]. The state in the rotating frame |ψ̃(t)⟩ ≡
U0(t)−1 |ψ(t)⟩ obeys

i
d

dt
|ψ̃(t)⟩ = i

dU0(t)−1

dt
|ψ(t)⟩ + U0(t)−1i

d

dt
|ψ(t)⟩

= Ṽ (t) |ψ̃(t)⟩ . (2.16)

By solving this differential equation, we obtain

|ψ(t)⟩ = U0(t) |ψ̃(t)⟩ = U0(t)Ũ(t) |ψ(0)⟩ , Ũ(t) = T exp

(
−i
∫ t

0

Ṽ (t)dt

)
. (2.17)

The condition XN = U0(NT ) = 1 from Eq. (2.2) gives the coarse-grained Floquet operator
UN
f = Ũ(NT ).

Let us again focus on Eq. (2.16) in the rotating frame. From Eq. (2.2) and the time-periodicity
of V (t) = V (t + T ), the rotating-frame Hamiltonian Ṽ (t) is NT -periodic, Ṽ (t) = Ṽ (t + T ). Eq.
(2.16) can be interpreted as time-dependent Schrödinger equation for a Floquet system with the
period NT . In addition, since Ṽ (t) is related to the k-local and J-extensive Hamiltonian V (t) [the
condition 3.] by the onsite unitary transformation U0(t) [the condition 2.], Ṽ (t) is also a k-local
and J-extensive Hamiltonian. Therefore, we can apply Theorem 1.3.3, which dictates Floquet
prethermalization in the high-frequency regime. When λNT < 1/4 is satisfied with the local
energy scale λ = 2kJ , we obtain the following inequality for the coarse-grained Floquet operator
UN
f = Ũ(NT );

||UN
f − e−iṼ

n0
FMNT || ≤ 3

k
L(λNT )2−n0 = e−O(1/(λNT ))L, (2.18)
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where n0 is the largest integer that does not exceed 1/(16λNT ). This result completes the proof
of Eq. (2.6) in the theorem.

Next, we consider the approximation by the van Vleck expansion with the truncation order
n ≤ n0. Using the triangle inequality,

||UN
f − e−iK̃n

vVe−iṼ n
vVNT eiK̃

n
vV || ≤ ||UN

f − e−iṼ
n0
FMNT || + ||e−iṼ

n0
FMNT − e−iṼ n

FMNT ||

+||e−iṼ n
FMNT − e−iK̃n

vVe−iṼ n
vVNT eiK̃

n
vV || (2.19)

is obtained. The first term of the right hand side is bounded by Eq. (2.18). The second term
represents the deviation arising from the replacement of the n0-th order Floquet-Magnus expansion
with the n-th order. Since Ṽ (t) is a k-local and J-extensive Hamiltonian with the period NT , we
can exploit Theorem 1.3.3 again. This results in the following upper bound on the second term;

||e−iṼ
n0
FMNT − e−iṼ n

FMNT || ≤ 2(n+ 1)!

(n+ 2)k
L(λNT )n+2 = O((λNT )n+2)L. (2.20)

The third term comes from the replacement of the Floquet-Magnus expansion by the van Vleck

expansion at the n-th order. Since e−iṼ
n0
FMNT , e−iṼ n

FMNT , and e−iK̃n
vVe−iṼ n

vVNT eiK̃
n
vV (at least

formally) give the perturbative expansion for the same operator UN
f , they are equal to one another

up to the n-th order. Considering the locality and the extensiveness of Ṽ (t), the difference between
them is bounded by higher (n+ 1)-th order terms in the local energy scale λNT :

||e−iṼ n
FMNT − e−iK̃n

vVe−iṼ n
vVNT eiK̃

n
vV || ≤ O((λNT )n+2)L. (2.21)

We note that the naive perturbation theory predicts the difference of O((||Ṽ (t)||NT )n+2) =
O((λLNT )n+2), which gives a meaningless bound for the large system size L. The locality and
extensiveness of Ṽ (t) allows much more strict bound given by the above inequality. The derivation
of this bound is provided in the appendix for this chapter since it is technical (See Section 2.5).
Finally, we obtain Eq. (2.7) by combing Eqs. (2.18)-(2.21). □

Effective Hamiltonian with an emergent symmetry

In Theorem 2.1.1, Eq. (2.6) indicates that the sufficiently-long intermediate dynamics is described
by the Floquet-Magnus expansion, avoiding the thermalization to infinite-temperature at least in
this time scale. Then, what differs from Floquet prethermalization in the high-frequency regime,
which is similarly described by the Floquet-Magnus expansion as Eq. (1.101) ? In fact, we can find
the significant difference emerging from the presence of the resonant drive H0(t) by employing the
van Vleck expansion validated by Eq. (2.7) in Theorem 2.1.1. We derive the following theorem on
the van Vleck effective Hamiltonian Ṽ n

vV, which universally characterizes its symmetry.

Theorem 2.1.2. (Emergent ZN -symmetry in the effective Hamiltonian)
Assume that all the conditions 1.-3. [See Eqs. (2.1) and (2.2)] are satisfied. The van Vleck
expansion Ṽ n

FM, playing a role of the effective Hamiltonian for the intermediate dynamics,
respects the ZN -symmetry X at any truncation order:

X−1Ṽ n
vVX = Ṽ n

vV, X = T exp

(
−i
∫ T

0

H0(t)dt

)
, for any n. (2.22)
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Figure 2.1: Schematic picture of Floquet prethermalization in the resonant regime. Compared
to the high-frequency regime in Fig. 1.4, there exist multiple branches of intermediate dynamics
and quasi-steady states depending on the time modulo NT . The effective Hamiltonian for the
dynamics, Ṽ n

vV, emergently becomes ZN -symmetric due to the resonant drive.

Proof

The Fourier component Ṽl, given by Eq. (2.8), can be rewritten as follows:

Ṽl =
1

NT

∫ NT

0

Ṽ (t)eilωt/Ndt

=
1

NT

N−1∑
p=0

∫ T

0

U†
0 (t+ pT )V (t)U0(t+ pT )eilω(t+pT )/Ndt

=
1

NT

N−1∑
p=0

X−p

∫ T

0

Ṽ (t)eilω(t+pT )/NdtXp. (2.23)

Thus, by using the condition XN = 1, the action of X on the Fourier component is

XṼlX
−1 =

1

NT

N−1∑
p=0

X−p+1

∫ T

0

Ṽ (t)eilω(t+pT )/NdtXp−1

= ei2πl/N Ṽl. (2.24)

When we focus on the n-th order terms of the van Vleck expansion, each term is a product of n+1
Fourier components, that is, it is composed of,

Ṽl1 Ṽl2 . . . Ṽln+1 . (2.25)

From Eq. (2.24), this n-th order term transforms under X as follows,

XṼl1 Ṽl2 . . . Ṽln+1X
−1 = exp

(
2πi

N

n+1∑
i=1

li

)
Ṽl1 Ṽl2 . . . Ṽln+1 . (2.26)

As discussed in Section 1.2.3, the van Vleck expansion Ṽ n
vV has terms Ṽl1 Ṽl2 . . . Ṽln+1

satisfying∑
i li = 0 due to its gauge-independence or its equal photon absorption and emission [See Eq.

(1.44)]. Therefore, we obtain the emergent ZN -symmetry of the van Vleck expansion, X−1Ṽ n
vVX =

Ṽ n
vV, for any truncation order n. □

Floquet prethermalization with the emergent symmetry in the resonant regime

Here, we summarize the above theorems and provide their physical interpretation. We consider
Floquet many-body systems under the resonant drive H0(t) in addition to the conventional high-
frequency drive V (t). Since the Floquet-Magnus expansion Ṽ n0

FM plays a role of a macroscopic
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approximately-conserved quantity from Eq. (2.6), we expect Floquet prethermalization in the
resonant regime, avoiding infinite-temperature states for at least eO(1/(λNT )) time. Equation (2.7)
validates the approximation of the dynamics by

|ψ(mNT )⟩ = (UN
f )m |ψ(0)⟩ ≃ e−iK̃n

vVe−iṼ n
vVmNT eiK̃

n
vV |ψ(0)⟩ , (2.27)

with the truncation order n ≤ n0 = O(1/(λNT )). This says that the unitarily-transformed state

eiK̃
n
vV |ψ(t)⟩ obeys dynamics under the static Hamiltonian Ṽ n

vV. Since Ṽ n
vV generally has complex

terms from commutators in the higher order terms, we naturally assume that it is nonintegrable.

With believing ETH in nonintegrable static systems [See Eq. (1.61)], the state eiK̃
n
vV |ψ(t)⟩ is

expected to relax to the thermal equilibrium state under Ṽ n
vV, after the relaxation time τpre de-

termined by ETH. In other words, when the time t = mNT is large compared to τpre but smaller
than the lifetime in which Eq. (2.27) is valid, τ = eO(1/(λNT )), we obtain the quasi-steady states
in the intermediate time scale by

|ψ(mNT )⟩ ≃ e−iK̃n
vV ρ̃βe

iK̃n
vV , ρ̃β =

e−βṼ n
vV

Tr[e−βṼ n
vV ]

, (2.28)

where the symbol “≃” denotes the indistinguishability by any local observable. The effective
temperature β is determined by the energy conservation;

⟨ψ(0)|e−iK̃n
vV Ṽ n

vVe
iK̃n

vV |ψ(0)⟩ = Tr[Ṽ n
vVρ̃β ]. (2.29)

While the above equations give the quasi-steady state for the coarse-grained stroboscopic dynamics
with the interval NT , the stroboscopic dynamics with the interval T has N branches of quasi-
steady states determined by the time modulo NT . The quasi-steady state ρ̃β for t = mNT + t0
(t0 = 0, T, . . . , (N−1)T ) is obtained by employing |ψ(t0)⟩ instead of |ψ(0)⟩ in Eq. (2.29). After the
sufficient time longer than the lifetime τ = eO(1/(λNT )), all the branches are generally expected to
converge to trivial infinite temperature states due to Floquet-ETH (See Section 1.3.3). As a result,
we obtain the approximate dynamics of Floquet systems in the resonant regime as described in
Fig. 2.1.

Other than the multiple branches of quasi-steady states, we emphasize the essential difference
from the high-frequency regime; We can realize the quasi-steady state ρ̃β under a controlled Hamil-
tonian with the ZN -symmetry X, although the original system H(t) does not respect any symmetry
except for the discrete time translation symmetry. Furthermore, this emergent ZN -symmetry is
quite robust. As discussed in Section 2.1.1, all the assumptions for the drive are maintained even
under local perturbations, and hence the resulting ZN -symmetry is also maintained. Thus, we can
always mimic a ZN -symmetric static systems by Floquet systems in the resonant regime as long
as local perturbations do not break the time periodicity H(t) = H(t + T ), in which we refer to
the emergent ZN -symmetry X as “protected by discrete time translation symmetry.” At the end
of this section, we summarize Floquet prethermalization in the resonant regime, which is the main
assertion in this chapter.
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Remark. (Floquet prethermalization in the resonant regime)
Consider a Floquet system in the resonant regime driven by the Hamiltonian H(t) = H0(t)+
V (t). We assume that the resonant drive H0(t) generates a ZN -symmetry,

XN = 1, X = T exp

(
−i
∫ T

0

dtH0(t)

)
, (2.30)

and that the high-frequency drive V (t) has local energy scale λ smaller than the frequency
ω = 2π/T . Then, its stroboscopic dynamics is approximately dominated by a static Hamil-
tonian with the emergent ZN -symmetry;

UN
f = U(NT ) ≃ e−iK̃n

vVe−iṼ n
vVNT eiK̃

n
vV , (2.31)

Ṽ n
vV = Ṽ0 +N

∑
l ̸=0

[Ṽ−l, Ṽl]

2lω
+ . . .+ Ṽ n

vV, X−1Ṽ n
vVX = Ṽ n

vV, (2.32)

with the truncation order n ≤ O(1/(λNT )).

2.2 Prethermal discrete time crystals (pDTCs)

We reveal that Floquet systems under the resonant drive generating a ZN -symmetry can host
sufficiently-long intermediate dynamics and quasi-steady states under a static Hamiltonian with
the robust ZN -symmetry by Theorems 2.1.1 and 2.1.2. While Floquet-ETH predicts trivial physics
by the heating to infinite temperature in generic Floquet many-body systems (See Section 1.3.3),
Floquet prethermalization in the resonant regime can be novel platforms for Floquet many-body
physics with a sufficiently-long lifetime. The rest of this chapter is spared to explore the application
of this result; what kind of nonequilibrium many-body phenomena can appear in prethermalization
of resonant Floquet systems.

While Floquet systems in the high-frequency regime always have counterparts in static systems,
the resonant regime is reminiscent of unique nonequilibrium phases of matter such as AFTIs and
DTCs. Thus, we can expect that some similar phenomena unique to nonequilibrium can appear
in the intermediate dynamics or the quasi-steady states. One of the most intriguing phenomena
among them is a discrete time crystalline order in the quasi-steady states, dubbed “prethermal
discrete time crystals” (pDTCs). In this section, after describing the definition of pDTCs, we show
how Floquet prethermalization in the resonant regime enables the realization of pDTCs.

Definition of pDTCs

Discrete time crystals (DTCs) are nonequilibrium ordered phases which spontaneously break dis-
crete time translation symmetry. As discussed in Section 1.3.5, they are defined by Floquet many-
body systems having a non-vanishing spatio-temporal correlation function in the thermodynamic
limit, with violating Floquet-ETH. Since DTCs require the spectral splitting of 2π/(mT ), compa-
rable to the frequency, we need resonant drives for the realization.

Floquet many-body systems considered here, satisfying the conditions 1.-3., also lies in the
resonant regime. Although they generally satisfy Floquet-ETH and cannot host DTCs in a rigorous
sense, we can expect DTC-like behaviors in their quasi-steady states. In the intermediate time
scale, they become equivalent to a series of thermal equilibrium states ρ̃β(t) depending on the time
modulo NT , as shown in Fig. 2.1. The quasi-steady states ρ̃β are determined by Eq. (2.29) with
the initial state |ψ(tmod. NT )⟩. Based on the DTC signatures in Section 1.3.5, we call prethermal
discrete time crystals (pDTCs) if they satisfy

1. Existence of a local order parameter Tr[Oρ̃β(t)], which is mT -periodic but not T -periodic,
from a physically-feasible short-range-correlated state |ψ(0)⟩ for the intermediate time t and
the large but finite size L (time-translation symmetry breaking, TTSB).

2. Robustness of the above behavior against any local T -periodic perturbation for the interme-
diate time t and the large but finite size L.
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The first difference between DTCs and pDTCs is that pDTCs can appear only in the interme-
diate time scale τpre < t < τ = eO(1/(λNT ))T due to the lifetime of the quasi-steady states. Second,
we should consider the sufficiently-large but finite L in pDTCs. This is because the thermody-
namic limit generally causes the breakdown of the quasi-steady states as Eq. (2.6) in Theorem
2.1.1 gives no meaningful bound in L → ∞. Although pDTCs cannot host a genuine long-range
order, pDTCs show the same behaviors as DTCs under actual experiments with the limited coher-
ence time and size. As discussed later, pDTCs have an approximately non-vanishing correlation
function as long as description by the quasi-steady states is valid, suggesting the presence of the
approximate spatio-temporal long-range order .

Effective Hamiltonian for pDTCs

Here, we discuss how Floquet many-body systems in the resonant regime realize pDTCs, or equiv-
alently how Theorems 2.1.1 and 2.1.2 give TTSB and robustness in the quasi-steady states.

Let us consider Floquet systems satisfying the conditions 1.-3. For simplicity, we assume that
the resonant drive H0(t) generates a Z2-symmetry operation X (N = 2). Then, the coarse-grained
Floquet operator U2

f = U(2T ) is well approximated by

U2
f ≃ e−iK̃n

vVe−2iṼ n
vVT eiK̃

n
vV , (2.33)

with a proper truncation order n. We choose a local operator O satisfying X−1OX = −O, which
plays a role of an order parameter for Z2-symmetry breaking. Then, we have two branches for the
expectation value of O in the quasi-steady states;

ϕ ≡ ⟨ψ(2mT )|O|ψ(2mT )⟩ ≃ Tr[Oe−iK̃n
vV ρ̃β(0)eiK̃

n
vV ], (2.34)

ϕ′ ≡ ⟨ψ((2m+ 1)T )|O|ψ((2m+ 1)T )⟩ ≃ Tr[Oe−iK̃n
vV ρ̃β(T )eiK̃

n
vV ], (2.35)

where ρ̃β(0) and ρ̃β(T ) are thermal equilibrium states under Ṽ n
vV with the temperatures determined

by eiK̃
n
vV |ψ(0)⟩ and eiK̃

n
vV |ψ(T )⟩ respectively.

Next, we seek for the relation between ϕ and ϕ′, which should be different in order to host
TTSB. By using the description by the rotating frame Eq. (2.4), the Floquet operator Uf is also
given by

Uf = XŨ(T ), Ũ(T ) = T exp

(
−i
∫ T

0

Ṽ (t)dt

)
. (2.36)

Here, the unitary operator Ũ(T ) can be regarded as a Floquet operator under the T -periodic
Hamiltonian Ṽ (tmod. T ). Considering that Ṽ (tmod. T ) is also k-local and J-extensive, we can
apply Theorem 2.1.1 for Floquet prethermalization in the high-frequency regime. As a result, up
to the lowest order, we obtain the approximate Floquet operator by Uf = X +O(λT ). This result
gives the following approximate relation between ϕ and ϕ′;

ϕ′ = ⟨ψ(2mT )|U†
fOUf |ψ(2mT )⟩ (2.37)

= ⟨ψ(2mT )|X−1OX|ψ(2mT )⟩ +O(λT ) (2.38)

= −ϕ+O(λT ). (2.39)

Therefore, as long as ϕ is a nonzero value larger than O(λT ), the system hosts TTSB with a
2T -periodic oscillation.

On the other hand, ϕ = Tr[Oρ̃β ] +O(λT ) [See Eq. (2.28)] is approximately a thermal equilib-

rium value under the Z2-symmetric Hamiltonian Ṽ n
vV. While the Z2-symmetry generally predicts

the vanishing order parameter, ϕ can be nonzero if the spontaneous breaking of the Z2-symmetry
takes place under Ṽ n

vV. In other words, we should prepare the initial state |ψ(0)⟩ so that it can pro-
vide the temperature lower than the critical value for the spontaneous symmetry breaking (SSB)
under the static Hamiltonian Ṽ n

vV. As a matter of fact, such low-temperature initial states under a
Z2-symmetric Hamiltonian is unstable to dissipation and measurement. They are also vulnerable
to infinitesimal perturbations that break the discrete TTS H(t) = H(t+T ). In physically-feasible
setups, the quasi-steady state becomes a Z2-symmetry broken state with the nonzero order param-
eter ϕ, rather than the Z2-symmetric state ρ̃β(0) given by Eq. (2.28), thereby allowing the TTSB
behavior described in Fig. 2.2 (a).
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Figure 2.2: (a) Intuitive picture of pDTCs. In the presence of SSB under the Z2-symmetric Hamil-
tonian Ṽ n

vV, the quasi-steady state repeatedly experiences transitions between branches, resulting
in the robust nontrivial oscillation. (b) Schematic picture of how the lifetime of pDTCs depends
on the system size L. It reflects the lifetime of SSB in finite systems τSSB, and that of Floquet
prethermalization in the resonant regime τ .

We also show the robustness of the above TTSB behavior. We consider a perturbed Floquet
system Hε(t) = H0(t) + V (t) + ε(t) with a local time-periodic perturbation ε(t) (= ε(t + T )).
By regarding V (t) + ε(t) as the high-frequency drive, we can exploit Theorems 2.1.1 and 2.1.2
again. Then, TTSB in the perturbed Floquet system corresponds to SSB under the Z2-symmetric
Hamiltonian Ṽ n

vV,ε, given by the van Vleck expansion. Considering that SSB defined as phases of

matter under the static Hamiltonian Ṽ n
vV is generally stable to any local perturbation that preserves

the Z2-symmetry, SSB under Ṽ n
vV,ε which slightly deviates from Ṽ n

vV is maintained. Therefore,
the 2T -periodic oscillation is robust against any local time-periodic perturbation, ensuring the
realization of pDTCs.

We finally summarize the result. For generic cases where the resonant drive H0(t) generates
a ZN -symmetry X (XN = 1), the effective Hamiltonian Ṽ n

vV respects the ZN -symmetry. The
realization of pDTCs can be associated with the effective Hamiltonian as follows.

Remark. (Effective Hamiltonian for pDTCs)
Consider a Floquet system H(t) = H0(t) + V (t) with the resonant drive H0(t) generating
a ZN -symmetry X. It can host pDTCs when the ZN -symmetric effective Hamiltonian
Ṽ n
vV hosts SSB from the ZN -symmetry to a ZM -symmetry (M : a divisor of N) under the

temperature determined by the state eiK̃
n
vV |ψ(0)⟩. Then, with the order parameter O for

the SSB, ⟨ψ(t)|O|ψ(t)⟩ shows a MT -periodic oscillation in the quasi-steady state.

Since the quasi-steady state ρ̃β(t) corresponds to an ordered state under Ṽ n
vV, it has the non-

vanishing and oscillating correlation function,

|Tr[OiOj ρ̃β(t)] − Tr[Oiρ̃β(t)]Tr[Oj ρ̃β(t)]| ≃ q0f(t) (2.40)

for sufficiently-large |i − j|, where f(t) is a mT -periodic function. While this is reminiscent of
the spatio-temporal long-range order in DTCs [See Eq. (1.115)], we should note that Floquet
prethermalization takes place in finite systems. As the lifetime of SSB under Ṽ n

vV and that of
Floquet prethermalization are respectively given by τSSB ∼ eO(L) and τ ∼ eO(1/(λNT ))/L, the
lifetime of pDTCs will become the smaller one of the two, as described in Fig. 2.2 (b).
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Figure 2.3: Numerical results for the model described by Eqs. (2.41) and (2.42). Each of them is
calculated by the exact diagonalization for the finite size L = 4. (a,b) Stroboscopic dynamics of
the local magnetization ⟨ψ(t)|σz

i |ψ(t)⟩. The local magnetization oscillates with the period 2T in
the long transient dynamics.

Minimal model for pDTCs

We provide the simplest model for pDTCs,

H0(t) =
π

2

L∑
i=1

σx
i

∑
n∈Z

δ(t− nT ), (2.41)

V (t) = −J
L−1∑
i=1

σz
i σ

z
i+1 + ε sinωt

L∑
i=1

σx
i , (2.42)

which describes a one-dimensional Ising chain under periodic pulse. Like Eq. (2.3), the resonant

drive H0(t) generates the Z2 Ising symmetry operation X =
∏L

i=1(−iσx
i ) satisfying X2. After

simple calculation by Eqs. (2.10)-(2.14), we obtain the van Vleck expansion up to the lowest order;

Ṽ 0
vV = −J

L−1∑
i=1

σz
i σ

z
i+1, K̃0

vV = −εT
4π

L∑
i=1

σx
i . (2.43)

The effective Hamiltonian Ṽ 0
vV, corresponding to the one-dimensional Ising Hamiltonian, shows

spontaneous breaking of the Z2 Ising symmetry X only at zero temperature for J ̸= 0. Thus, in
order to observe pDTCs, we should prepare an initial state which gives the zero-temperature quasi-

steady states under Ṽ 0
vV. Such an initial state is spanned by eiK̃

1
vV |↓ . . . ↓⟩ and eiK̃

1
vV |↑ . . . ↑⟩, where

|↓ . . . ↓⟩ and |↑ . . . ↑⟩ are the two degenerate ground states of Ṽ 0
vV. However, the superposition of

them is physically unstable to observation or decoherence, known as a cat state. Either one of the
two states,

|ψ(0)⟩ = e−i εT
4π

∑L
i=1 σx

i |↓ . . . ↓⟩ , e−i εT
4π

∑L
i=1 σx

i |↑ . . . ↑⟩ , (2.44)

should be prepared as the initial state.
Figure 2.3 shows numerical results for the stroboscopic dynamics of the local magnetization

⟨ψ(t)|σz
i |ψ(t)⟩ and the lifetime of the oscillation when the initial state |ψ(0)⟩ is eiK̃1 |↑ . . . ↑⟩. We

do not see the first relaxation in Fig. 2.3 since the initial state itself corresponds to the steady
state under Ṽ 0

vV. Figures 2.3 (a) and (b) show the robust 2T -periodic oscillations of pDTCs, which
we can predict from the lowest-order approximation. As the strength JT (= εT ) increases, the
2T -periodic oscillation with the amplitude approximately 1 shrinks faster. This behavior can be
attributed to the increasing local energy scale ∼ O(J, ε) compared to the frequency ω.

We also compute the lifetime of pDTCs, which gives an estimation for the lifetime of Floquet
prethermalization τ . We define the lifetime of pDTCs by the time at which the amplitude of the
2T -periodic oscillation shrinks to 0.95 times as large as the initial value. Figure 2.4 describes
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Figure 2.4: (a) Lifetime of pDTCs with the increasing strength JT (= εT ). The system size
is fixed to 4. (b) Lifetime of pDTCs with the increasing system size L with the fixed strength
JT = εT = 0.9. In both cases, the lifetime of pDTCs is defined by the time at which the
amplitude of the oscillation in Fig. 2.3 reaches 0.95 times as large as the initial one.

how the lifetime of pDTCs depends on (a) the coupling JT and (b) the system size L. As the
lifetime of Floquet prethermalization increases with τ = eO(1/(λNT ))T , we confirm from Fig. 2.4
(a) that the lifetime of pDTCs also exponentially grows in 1/(JT ) ∼ 1/(λNT ). On the other
hand, Fig. 2.4 (b) says that the lifetime of pDTCs exponentially increases in the system size L.
This result well matches the behavior for small L in Fig. 2.2 (b), obtained by the lifetime of SSB
under the effective Hamiltonian and that of Floquet prethermalization. In order to observe the
lifetime inversely-proportional to L, we should compute larger systems in some other ways such
as the time-dependent density matrix renormalization group (tDMRG) or the time-evolving block
decimation (TEBD) [110, 111, 112].

We demonstrate a driven one-dimensional system here, where the initial states only at zero
temperature are available for pDTCs. When we consider higher-dimensional systems, we obtain
a series of initial states corresponding to finite temperature, which can host pDTCs. We also
discuss how the pDTC behavior can be distinguished from that of DTCs in experiments. DTCs
show a robust nontrivial oscillation with infinite lifetime in the genuine steady state under L→ ∞.
However, due to the experimental limitation of the finite coherence time and the finite size, the DTC
behavior has finite lifetime like that of pDTCs. In the case of DTCs accompanied by many-body
localization (MBL) [See Section 1.3.5], we can distinguish them from pDTCs by the dependence
on the initial states. In DTCs accompanied by MBL, all the Floquet eigenstates have the spatio-
temporal long-range orders, indicating that any physically-feasible initial state experiences a robust
nontrivial oscillation. On the other hand, pDTCs can host TTSB only when the initial state has
low-temperature under the effective Hamiltonian. Thus, by demonstrating the real-time dynamics
from different initial states, we can identify DTCs and pDTCs. In fact, while the first experimental
observation in trapped ions [95] has been expected to detect DTCs accompanied with MBL due
to the one-dimensionality and the randomness, Ref. [98] suggests that it might be attributed to
pDTCs because of the absence of TTSB from another initial state.

2.3 Resonant Floquet engineering

Here, we provide the other application of Floquet prethermalization in the resonant regime, dubbed
“resonant Floquet engineering.” As discussed in Section 1.3.4, Floquet engineering is one of the
most intriguing fields as the application of Floquet prethermalization in the high-frequency regime,
with which we can control phases of matter by periodic drive such as laser light. This technique
is based on the fact that Floquet prethermalization in the high-frequency regime enables a quasi-
steady state under the Floquet-Magnus or the van Vleck effective Hamiltonian, which can be
modulated by the periodic drive. In a similar way, one can expect that Floquet prethermalization
in the resonant regime enables Floquet engineering by exploiting its effective Hamiltonian.
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Let us formulate Floquet engineering with the application of Floquet prethermalization in the
resonant regime. With the usage of Theorems 2.1.1 and 2.1.2, we summarize resonant Floquet
engineering enabled by resonant drives as follows.

Remark. (Resonant Floquet engineering)
We prepare Floquet many-body systems in the resonant regime driven by H(t) = H0(t) +
V (t). We choose the resonant drive H0(t) so that it can generate a ZN -symmetry X;

XN = 1, X = T exp

(
−i
∫ T

0

dtH0(t)

)
. (2.45)

When we modulate the high-frequency drive V (t) with the local energy scale smaller than
the frequency ω, we can control phase of matters in ZN -symmetric static systems with the
Hamiltonian

Ṽ n
vV = Ṽ0 +N

∑
l ̸=0

[Ṽ−l, Ṽl]

2lω
+ . . .+ Ṽ n

vV, X−1Ṽ n
vVX = Ṽ n

vV, (2.46)

by focusing on the coarse-grained dynamics |ψ(mNT )⟩ in the intermediate time regime.
The emergent ZN -symmetry X is robust against any T -periodic local perturbation.

In Floquet engineering only with the high-frequency drive, we can modulate the effective Hamil-

tonian by the higher-order terms H
(m)
FM or H

(m)
vV (m ≥ 1). This enables the realization of preferable

phenomena under the static Hamiltonian Hn
FM or Hn

FM even when the undriven Hamiltonian H0

does not host them. Similarly, resonant Floquet engineering also enables us to modulate the ef-

fective Hamiltonian with the higher-order terms Ṽ
(m)
vV (m ≥ 1). What distinguishes it from the

conventional Floquet engineering is the emergence of the robust ZN -symmetry X. While the orig-
inal Hamiltonian H(t) does not necessarily respect the ZN -symmetry, we can control phases of
matter with adding the ZN -symmetry to the system.

Resonant Floquet engineering by Floquet prethermalization in the resonant regime can be
applied to quantum many-body phenomena where symmetries play a significant role. The simplest
application is the removal of unpreferable couplings with environments. For instance, let us consider
a spin system coupled with a bosonic bath, described by the Hamiltonian;

V (t) =

L∑
i=1

(Jσz
i σ

z
i+1 + hσx

i ) + γ

L∑
i=1

σz
i (bi + b†i ), (2.47)

where bi and b†i respectively represent bosonic annihilation and creation operators. We add a
periodic pulse to the system, described by the resonant Hamiltonian

H0(t) =
π

2

L∑
i=1

σx
i

∑
n∈Z

δ(t− nT ), (2.48)

and we assume that only the states with a few bosons are relevant (the Hilbert space has finite
dimension). Then, when the local energy scale ∼ max(J, h, γ) is small compared to the frequency
ω, one can effectively realize the static Hamiltonian,

Ṽ n
vV =

L∑
i=1

(Jσz
i σ

z
i+1 + hσx

i ) + Ṽ
(1)
vV + . . .+ Ṽ

(n)
vV , (2.49)

which retrieves the asymmetric coupling with the environment. This is reminiscent of the dynamical
coupling [113], in which we can retrieve the effect of the coupling with a non-Markovian bath by
applying a fast periodic pulse.

Another nontrivial application is the realization and control of symmetry protected topological
(SPT) phases. A SPT phase is a kind of topological phases, and has ground state degeneracies
robust against any local perturbation only in the presence of certain symmetries. Resonant Floquet
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Figure 2.5: Schematic picture of the driving protocol over one period T . The Ising interaction
Vint(t) [Eq. (2.54)] is uniformly imposed during 0 ≤ t < τ . The resonant drive H0(t) [Eq. (2.53)],
which acts as a π-pulse, is imposed only on the odd sites during τ ≤ t < T . The oscillating
transverse field Vh(t) and the static transverse field Vg [Eq. (2.55)] are both uniformly imposed
throughout.

engineering is expected to allow us to manipulate SPT phases even when the required symmetry is
absent in the original system. In the rest of this section, we provide a simple example of resonant
Floquet engineering for SPT phases.

2.3.1 Model for resonant Floquet engineering

Here, we discuss Floquet systems in the resonant regime, which exemplifies resonant Floquet
engineering for SPT phases, and describe how resonant Floquet engineering benefits the control of
phases of matter. As the simplest case, we focus on a one-dimensional spin system which becomes
equivalent to a spin system hosting SPT phases under a Z2×Z2-symmetry. While the SPT phases
require a Z2 × Z2-symmetric system in principle, we aim at constructing a Z2-symmetric Floquet
system hosting them as the nontrivial example of resonant Floquet engineering.

Let us describe the Z2-symmetric periodically-driven model on a one-dimensional spin chain
with S = 1/2. We assume that the system size L is a multiple of 4, and impose the open boundary
condition (OBC). We give the time-periodic Hamiltonian by

H(t) =


J

L−1∑
j=1

σz
jσ

z
j+1 + (g + h cosωt)

L∑
j=1

σx
j 0 ≤ t < τ

π

2(T − τ)

∑
j:odd

σx
i + (g + h cosωt)

L∑
j=1

σx
j τ ≤ t < T.

(2.50)

This model respects a global Z2-symmetry Xall, represented by

X−1
all H(t)Xall = H(t), Xall =

L∏
i=1

σx
i . (2.51)

The terms in the above Hamiltonian can be separated into resonant and high-frequency drives so
that we can grasp Floquet prethermalization in the resonant regime, as follows;

H(t) = H0(t) + Vint(t) + Vh(t) + Vg (2.52)

H0(t) =

0 (0 ≤ t < τ)
π

2(T − τ)

∑
j:odd

σx
j (τ ≤ t < T ) , (2.53)

Vint(t) =

J
L−1∑
j=1

σz
jσ

z
j+1 (0 ≤ t < τ)

0 (τ ≤ t < T )

, (2.54)

Vh(t) = h cosωt

L∑
j=1

σx
j , Vg = g

N∑
j=1

σx
j . (2.55)
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The high-frequency drive V (t) = Vint(t) + Vh(t) + Vg is composed of the Ising interactions Vint(t),
the oscillating transverse field Vh(t), and the static transverse field Vg. The local energy scale of
each term in V (t) should be small compared to the frequency ω, which means max(J, h, g)/ω ≪ 1.

On the other hand, the resonant drive H0(t) represents a sequential pulse of the transverse
field, whose Floquet operator X gives the following Z2-symmetry,

Xodd =
∏
i:odd

σx
i . (2.56)

Here, we employ the fact that L is a multiple of 4 to erase the phase factor (−i)L. Figure 2.5
schematically depicts how we drive the system. Here, we explore the way to realize and control
topological phases protected by the Z2 × Z2-symmetry generated by Xodd and Xeven, where the
symmetry operation Xeven is defined by

Xeven =
∏

i:even

σx
i = XallX

−1
odd. (2.57)

While a Z2-symmetric invariant under Xall cannot host SPT phases under the Z2 ×Z2-symmetry,
resonant Floquet engineering provides a quasi-steady state under the Z2×Z2-symmetry generated
by Xodd and Xeven by adding the Xodd-invariance to the system. Thus, even the Z2-symmetric
system under H(t) can be a platform for SPT phases under the Z2×Z2-symmetry. Such a control
of the symmetry is inherent in resonant Floquet engineering, compared to the conventional Floquet
engineering in the high-frequency regime. We concretely discuss what kind of the parameter choice
allows nontrivial SPT phases by analyzing the van Vleck effective Hamiltonian.

2.3.2 Realization of SPT phases in quasi-steady states

In this section, we discuss how nontrivial SPT phases are realized in the Floquet system driven by
the Hamiltonian Eq. (2.50) or Eq. (2.52). As shown in the beginning of Section 2.3, the quasi-
steady state is described by the van Vleck expansion Ṽ n

vV. Here, we consider up to the second
order,

Ṽ 2
vV = Ṽ

(0)
vV + Ṽ

(1)
vV + Ṽ

(2)
vV . (2.58)

To evaluate this effective Hamiltonian, we first compute the Fourier components of Ṽ (t), the
Hamiltonian V (t) = Vint(t)+Vh(t)+Vg(t) in the rotating frame. Based on the definition Eq. (2.8),

Ṽ0 = g

L∑
j=1

σx
j , Ṽ2 = Ṽ−2 =

h

2

L∑
j=1

σx
j , (2.59)

Ṽl = J

L−1∑
j=1

σz
jσ

z
j+1

eilωτ/2 − 1

ilπ
(l : odd), (2.60)

Ṽl = 0 (otherwise). (2.61)

Considering [Ṽ−l, Ṽl] = 0 for any nonzero integer l, the first order term Ṽ 1
vV, which is given by Eq.

(2.10), always vanishes. Thus, the second-order van Vleck expansion becomes

Ṽ 2
vV = g

L∑
j=1

σx
j + 4

∑
m ̸=0

[[Ṽ−m, Ṽ0], Ṽm]

2m2ω2
+ 4

∑
m ̸=0

∑
n ̸=0,m

[[Ṽ−m, Ṽm−n], Ṽn]

3mnω2
(2.62)

We assume that the local energy scale of Vg is much smaller than those of Vint(t) and Vh(t), that
is,

g

λ
= O((λ/ω)2), λ = max(J, h). (2.63)

Then, the second term in Eq. (2.62) is negligible compared to the other terms. In the summation of
the third term, the indices m and n satisfying m−n = ±2 and m:odd have nonzero contributions.
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This results in

Ṽ 2
vV ≃ g

L∑
j=1

σx
j +

4

3ω2

∑
m:odd

(
[[Ṽ−m, Ṽ2], Ṽm−2]

m(m− 2)
+

[[Ṽ−m, Ṽ−2], Ṽm+2]

m(m+ 2)

)

= g

L∑
j=1

σx
j +

2J2h

3ω2
C

L−1∑
j=1

σz
jσ

z
j+1,

L∑
j=1

σx
j

 , L−1∑
j=1

σz
jσ

z
j+1

 , (2.64)

where the coefficient C is defined by

C =
∑

m:odd

(e−imωτ/2 − 1)(ei(m−2)ωτ/2 − 1)

m2(m− 2)2π2
+
∑

m:odd

(e−imωτ/2 − 1)(ei(m+2)ωτ/2 − 1)

m2(m+ 2)2π2
. (2.65)

With simple analytical calculation, we obtain the commutator in Eq. (2.64) and the coefficient C
as follows;L−1∑

j=1

σz
jσ

z
j+1,

L∑
j=1

σx
j

 , L−1∑
j=1

σz
jσ

z
j+1

 = −8

 L∑
j=1

σx
j +

L−1∑
j=2

σz
j−1σ

x
j σ

z
j+1

+ 4(σx
1 + σx

L), (2.66)

C =
1

4π
{ωτ(1 + cosωτ) − 2 sinωτ}. (2.67)

When considering SPT phases, the local boundary terms 4(σx
1 + σx

L) are expected to be irrelevant
to topological nature coming from the bulk properties. Thus, by neglecting the boundary terms,
we arrive at the following effective Hamiltonian

Ṽ 2
vV ≃ (g + γ)

L∑
j=1

σx
j + γ

L−1∑
j=2

σz
j−1σ

x
j σ

z
j+1, (2.68)

γ =
4J2h

3πω2
{2 sinωτ − ωτ(1 + cosωτ)}. (2.69)

As described in Section 2.3.1, this Hamiltonian respects the Z2 × Z2-symmetry,

X−1
oddṼ

2
vVX

−1
odd = X−1

evenṼ
2
vVX

−1
even = Ṽ 2

vV, (2.70)

while the original Hamiltonian H(t) does not.
Now, let us discuss what kind of SPT phases are realized in the Z2×Z2 Hamiltonian Ṽ 2

vV given
by Eq. (2.68). Here, we employ the Jordan-Wigner transformation, which maps a spin system to
a fermionic system [114]. The transformation is defined by

αj ≡

∏
k<j

σx
k

σz
j , βj ≡ −

∏
k<j

σx
k

σy
j , (2.71)

where {αi}Li=1 and {βi}Li represent independent Majorana fermions, which satisfy

αi = α†
i , βi = β†

i , {αi, αj} = {βi, βj} = 2δij , {αi, βj} = 0. (2.72)

Under this transformation, the effective Hamiltonian Eq. (2.68) is rewritten by

Ṽ 2
vV ≃

−i(g + γ)
∑
j:odd

αjβj − iγ
∑
j:odd

βj−1αj+1

+

−i(g + γ)
∑

j:even

αjβj − iγ
∑

j:even

βj−1αj+1

 ,
(2.73)

which is equivalent to the Hamiltonian for two decoupled Kitaev chains composed of the odd sites
and the even sites. In each Kitaev chain, the SPT phases under a Z2-symmetry can be classified
by the ratio of the coefficient of the intra-coupling αjβj to that of the inter-coupling βj−1αj+1. In
this case, sgn(|(g + γ)/γ| − 1) determines the SPT phases. When we assume h > 0, Eq. (2.69)
indicates γ > 0 for 0 < ωτ < π and γ < 0 for π < ωτ < 2π. As a result, we obtain the following
relation depending on the sign of γ;
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Figure 2.6: Excitation energies from the ground state to low energy excited states of Heff for
different choice of switching time (a) τ = 1/4 and (b) τ = 3/4, where the period T is set to 1. In
both of the cases, we choose the interaction J = 0.9, the amplitude of the oscillating field h = 0.9,
and the system size L = 8. In the gray regions, a four-fold degeneracy appears in the ground states,
which is a signature of nontrivial SPT phases. The black lines represent the analytically-obtained
topological phase transition points g = 0 and g = −2γ. In the parameter regions shown in both
graphs (a) and (b), the first excited state (blue star) and the second excited state (orange square)
are degenerate.

When 0 < τ < T/2, or equivalently γ > 0,

g < −2γ, 0 < g : topologically trivial phase,

g = −2γ, 0 : topological phase transition point,

−2γ < g < 0 : topologically nontrivial phase.

When T/2 < τ < T , or equivalently γ < 0,

g < 0, −2γ < g : topologically trivial phase,

g = 0, −2γ : topological phase transition point,

0 < g < −2γ : topologically nontrivial phase.

Thus, by properly tuning the parameters J, g, h, τ , we can realize nontrivial topological phases
protected by the Z2 × Z2-symmetry in the Z2-symmetric setup.

In a Kitaev chain under OBC, a robust two-fold degeneracy appears in its ground state if the
system is topologically nontrivial. Since the effective model described by Ṽ 2

vV is equivalent to two
identical Kitaev chains, it has a robust four-fold degeneracy in its ground state if topologically
nontrivial. We numerically examine whether or not this topological nature can appear without
resorting to the high-frequency expansion. We compute the exact effective Hamiltonian for the
coarse-grained stroboscopic dynamics, defined by

H̃eff =
i

2T
log[U(2T )], U(2T ) = T exp

(
−i
∫ 2T

0

H(t)dt

)
, (2.74)

where we choose the branch cut at ±π/(2T ). In Fig. 2.6, we examine the ground-state degeneracy
of H̃eff . While the parameters experiencing the gap opening deviate from the phase transition
points predicted by the high-frequency expansion due to the finite-size effect, we can observe the
robust four-fold degeneracy in nontrivial SPT phases.

2.3.3 Control of SPT phases in quasi-steady states

In the previous section, we have discussed how nontrivial SPT phases are realized by tuning the
parameters J, g, h, τ . In the two decoupled Kitaev chains under the Z2×Z2-symmetry, four distinct
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Figure 2.7: (a) Phase diagram of the effective static model Eq. (2.79) based on the van Vleck
expansion Ṽ 2

vV. The indices (Zodd, Zeven) ∈ Z2 × Z2 represent the Z2 topological numbers of the
Kitaev chains composed of the odd and even sites, respectively. (b) The degeneracy of the ground
states, calculated in terms of the effective Hamiltonian H̃eff . Here, we define the degeneracy for
the n-th excited state with the eigenenergy En by satisfying |En − E0|/|E0| < 0.01. The black
lines are the boundaries of SPT phases obtained by the analytical calculation of Ṽ 2

vV. This result
well reflects the phase diagram based on the van Vleck expansion in (a).

phases are allowed while the previous section has observed two kinds of phases. Here, we provide
a way to engineer all the four distinct phases by the additional drive. Let us consider a Floquet
system with the deviation of the resonant drive, described by

H(t) = H0(t) + Vε(t) + Vint(t) + Vh(t) + Vg, (2.75)

Vε(t) =

0 (0 ≤ t < τ)
πε

2(T − τ)

∑
j:odd

σx
j (τ ≤ t < T ). (2.76)

The additional drive Vε(t) represents the deviation imposed on the resonant drive H0(t), which
changes its rotation angle around the x-axis from π to π(1+ε). We again assume that the deviation
ε and the transverse field g are much smaller than the local energy scale of the other terms, that
is,

ε

λ(T − τ)
,

g

λ
= O((λ/ω)2), λ = max(J, h). (2.77)

Then, with redefining the high-frequency drive by V (t) = Vε(t) + Vint(t) + Vh(t) + Vg, we obtain
the approximate effective Hamiltonian up to the second order;

Ṽ 2
vV ≃ aeven

∑
j:even

σx
j + bodd

∑
j:odd

σz
j−1σ

x
j σ

z
j+1 + aodd

∑
j:odd

σx
j + beven

∑
j:even

σz
j−1σ

x
j σ

z
j+1 (2.78)

=

−iaodd ∑
j:odd

αjβj − ibeven
∑
j:odd

βj−1αj+1

+

−iaeven ∑
j:even

αjβj − ibodd
∑

j:even

βj−1αj+1

 ,
(2.79)

with aodd = g + πε/2T + γ, aeven = g + γ, and bodd = beven = γ. In the second equality, we again
map the system to a fermionic system by the Jordan-Wigner transformation. In the presence of
the deviation Vε(t), the system becomes equivalent to two decoupled Kitaev chains but they are
not identical. The four distinct topological phases are classified by two Z2 topological numbers,
defined by

Zodd =
1 + sgn(|beven| − |aodd|)

2
, Zeven =

1 + sgn(|bodd| − |aeven|)
2

. (2.80)

Figure 2.7 (a) shows the phase diagram of the SPT phases which is analytically obtained from
the second-order van Vleck effective expansion Ṽ 2

vV. The origin (g, ε) = (0, 0) lies at the phase
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boundary of the four distinct phases, and hence we can control the system among all the four SPT
phases by slightly changing the parameters (g, ε) from the origin. These topological characteristics
can be found in the ground-state degeneracy of the exact effective Hamiltonian H̃eff [See Eq. (2.74)].
Figure 2.7 (b) shows the numerical result, showing that the ground state hosts two-fold or four-
fold degeneracy depending on the number of the nonzero Z2 topological numbers. As mentioned
in Section 2.1.2, perturbations to the resonant drive do not harm Floquet prethermalization with
the emergent symmetry. On the contrary, they can be useful for the control of phases of matter.

2.4 Summary and outlook of this chapter

Here, we conclude this chapter and discuss some possible future directions, with providing some
recent developments in this field. In this chapter, we have formulated Floquet prethermalization
in the resonant regime, in which the resonant drive with the local energy scale comparable to the
frequency generates a ZN -symmetry. In contrast to the high-frequency regime, the resonant regime
hosts sufficiently-long intermediate dynamics under the ZN -symmetric van Vleck expansion Ṽ n

vV.
Importantly, the emergent ZN -symmetry is robust as long as the time-periodicity is maintained.
By applying the formalism, we have also provided prethermal disctrete time crystals (pDTCs) and
resonant Floquet engineering, which are inherent in the resonant regime.

Floquet prethermalization in the resonant regime was firstly proposed in Ref. [115], in which
they show the existence of a macroscopic quasi-conserved quantity with an emergent ZN -symmetry
in a certain frame. The formulation presented here reveals the explicit formula for the quasi-
conserved quantity and the frame including higher-order corrections, which respectively corre-
spond to the van Vleck effective Hamiltonian Ṽ n

vV and the kick operator K̃n
vV. The accurate

effective Hamiltonian with the emergent ZN -symmetry enables the detailed analysis of pDTCs
and resonant Floquet engineering. Recently, while the locality of interactions with a bounded
local energy scale and the time-periodicity of the Hamiltonian are essential in these setups, Flo-
quet prethermalization in other nonequilibrium setups, such as long-ranged interacting systems
[116, 117], has been vigorously explored. Interestingly, nonequilibrium systems under resonant
and high-frequency drives with multiple frequencies incommensurate with each other can also host
prethermalization, in which the effective Hamiltonian respects the emergent symmetry more com-
plex than ZN -symmetries [118]. Prethermalization in the high-frequency regime has been also
developed; the existence of the sufficiently-long time scale avoiding heating has been confirmed
in quasi-periodic interacting systems by both numerical and analytical ways [119, 120, 121]. In-
cluding its extension to the resonant regime, we expect that there exists much room for exploring
prethermalization in the resonant regime with some preferable properties coming from the time-
dependence such as the emergent symmetries.

As an application of Floquet prethermalization in the resonant drive, we have provided pDTCs,
in which robust discrete time crystalline behaviors can be observed in the quasi-steady states.
Based on the van Vleck expansion with in the rotating frame, we have shown that the appearance
of pDTCs corresponds to spontaneous breaking of the emergent ZN -symmetry under the van Vleck
effective Hamiltonian Ṽ n

vV. The van Vleck kick operator K̃n
vV is employed for determining the

effective temperature under the effective Hamiltonian. While we provide a one-dimensional model
as the simplest case for pDTCs, it will be significant to further explore the detailed properties
of pDTCs based on the van Vleck effective Hamiltonian, as the experimental developments in
Floquet prethermalization [122, 123] and pDTCs [124]. We also note that, the developments in
Floquet prethermalization will lead to the novel pDTCs. For example, DTC-like behaviors with
nontrivial quasi-periodic oscillations in quasi-steady states have been suggested by the usage of
prethermalization under quasi-periodic drive [118]. We expect a variety of pDTCs accompanied
by novel Floquet prethermalization.

We have dealt with resonant Floquet engineering as the other application of Floquet prether-
malization in the resonant regime. The formalism based on the van Vleck expansion enables the
control of phases of matter with adding a ZN -symmetry. The conventional Floquet engineering
exploiting the high-frequency regime has no constraints on the symmetry of the effective Hamilto-
nian. While the conventional protocol also realizes emergent symmetries in some limited cases only
up to low orders with enabling the control of SPT phases [125, 126], resonant Floquet engineer-
ing allows the robust emergent symmetry respected up to any truncation order for generic cases.
As exemplified in the control of SPT phases, the controlled parameters of both the resonant and
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high-frequency drives enable various phases of matter in symmetric setups. With recent studies
on the error cancellation and the emergent symmetry by modified resonant drives [127, 128, 129],
we expect rapid growth of the control of materials by resonant drives.

2.5 Appendix for this chapter

Rigorous bound in Theorem 2.1.1

Theorem 2.1.1 validates the approximation of the coarse-grained Floquet operator by the van
Vleck expansions. Here, we explicitly provide the upper bound in Theorem 2.1.1. To be precise,
we evaluate the right hand side of the triangle inequality,

||UN
f − e−iK̃n

vVe−iṼ n
vVNT eiK̃

n
vV || ≤ ||UN

f − e−iṼ
n0
FMNT || + ||e−iṼ

n0
FMNT − e−iṼ n

FMNT ||

+||e−iṼ n
FMNT − e−iK̃n

vVe−iṼ n
vVNT eiK̃

n
vV ||, (2.81)

where the upper bound for the first two terms is designated by Eqs. (2.18) and (2.20), originating
from Theorem 1.3.3. Under the assumption of the k-locality and the J-extensiveness on the high-
frequency drive V (t), we evaluate

Dn = ||e−iṼ n
FMNT − e−iK̃n

vVe−iṼ n
vVNT eiK̃

n
vV ||. (2.82)

Upper bound by effective Hamiltonians

The deviation Dn is bounded by

Dn ≤ 2NT
∣∣∣∣∣∣Ṽ n

FM − e−iK̃n
vV Ṽ n

vVe
iK̃n

vV

∣∣∣∣∣∣ , (2.83)

with the following lemma. We can confirm Eq. (2.83) by setting A = −NTṼ n
FM and B =

−NTe−iK̃n
vV Ṽ n

vVe
iK̃n

vV in Eq. (2.84).

Lemma 1. (Bound on the deviation of unitary operators)
For any finite-dimensional hermitian matrices A,B, the inequality∣∣∣∣eiA − eiB

∣∣∣∣ ≤ 2||A−B|| (2.84)

is satisfied.

Proof

For a bounded hermitian operator C and a real number t ∈ R, we calculate the upper bound of
||F (t) − F (0)||, where F (t) is a unitary operator defined by F (t) = exp{i(B + Ct)}. By denoting
F (n)(t) = dnF (t)/dtn,

||F (t) − F (0)|| ≤

∣∣∣∣∣
∣∣∣∣∣
∞∑

n=1

1

n!
F (n)(0)tn

∣∣∣∣∣
∣∣∣∣∣ ≤

∞∑
n=1

|t|n

n!
||F (n)(0)|| (2.85)

is obtained. By using the formula

d

dt
eX(t) =

∫ 1

0

dαeαX(t)

(
d

dt
X(t)

)
e(1−α)X(t), (2.86)

we can evaluate ||F (1)(t)|| as follows:

||F (1)(t)|| ≤
∣∣∣∣∣∣∣∣∫ 1

0

dαeiα(B+Ct)iCei(1−α)(B+Ct)

∣∣∣∣∣∣∣∣ ≤ ||C||. (2.87)
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In a similar way,

||F (2)(t)|| ≤
∫∫ 1

0

α
∣∣∣∣∣∣eiβα(B+Ct)iCei(1−β)α(B+Ct)iCei(1−α)(B+Ct)

∣∣∣∣∣∣ dαdβ
+

∫∫ 1

0

(1 − α)
∣∣∣∣∣∣eiα(B+Ct)iCeiβ(1−α)(B+Ct)iCei(1−β)(1−α)(B+Ct)

∣∣∣∣∣∣ dαdβ
≤ ||C||2 (2.88)

is obtained. By repeating this calculation, ||F (n)(t)|| ≤ ||C||n is satisfied. Therefore, if we assume
||C|| · |t| ≤ 1, we get

||F (t) − F (0)|| ≤
∞∑

n=1

1

n!
||C||n · |t|n ≤ ||C|| · |t|

∞∑
n=1

1

n!
≤ 2||C|| · |t|. (2.89)

This inequality is satisfied also when ||C|| · |t| ≥ 1, because of

||F (t) − F (0)|| = ||ei(B+Ct) − eiB || ≤ ||ei(B+Ct)|| + ||eiB || ≤ 2 ≤ 2||C|| · |t|. (2.90)

Finally, if we substitute C = A−B and t = 1, we obtain the inequality Eq. (2.84). □

Upper bound on the deviation of the effective Hamiltonian

With the usage of Lemma 1, we should evaluate the upper bound of∣∣∣∣∣∣Ṽ n
FM − e−iK̃n

vV Ṽ n
vVe

iK̃n
vV

∣∣∣∣∣∣ =
∣∣∣∣∣∣eiK̃n

vV Ṽ n
FMe

−iK̃n
vV − Ṽ n

vV

∣∣∣∣∣∣ (2.91)

instead of Dn in Eq. (2.82). Here, we employ the locality and the extensiveness. Let J(A) denote
the extensiveness of an operator A, defined by Eq. (1.94). Then, for a series of operators Ai

(i = 1, 2, . . . , n) which are respectively ki-local and Ji-extensive, the extensiveness of the multi-
commutator is bounded from above as follows;

{An, An−1, . . . , A1} ≡ [An, [An−1, . . . , [A2, A1]] . . .], (2.92)

J({An, An−1, . . . , A1}) ≤ J1

n∏
i=2

(2JiKi), (2.93)

where Ki =
∑

m≤i km (See Lemma. 5 in Ref. [28]). With this formula, we obtain the following
theorem dictating the bound of Eq. (2.94).

Theorem 2.5.1. (Relation between the two high-frequency expansions)
We consider a Floquet system satisfying all the assumptions in Theorem 2.1.1. Then, for
the truncation order n smaller than n0 = O((λNT )−1),∣∣∣∣∣∣eiK̃n

vV Ṽ n
FMe

−iK̃n
vV − Ṽ n

vV

∣∣∣∣∣∣ ≤ L{4(n+ 1)λNT}n+2

3kNT

×
{
jmax,n − (jmax,n)n+1

1 − jmax,n
+

(jmax,n)n+1

1 − 4(n+ 1)jmax,nλNT

}
(2.94)

is satisfied when the period T is small enough to satisfy 4jmax,n(n+ 1)λNT < 1, where the
maximal value of the renormalized extensiveness jmax,n is defined as follows:

j(l) ≡
J(K̃

(l)
vV)

(λNT )lJNT (l + 1)l+1
, (2.95)

jmax,n ≡ max{j(l)| 0 ≤ l ≤ n}. (2.96)
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Proof

By using the Baker-Campbell-Hausdorff formula, we obtain

∣∣∣∣∣∣eiK̃n
vV Ṽ n

FMe
−iK̃n

vV − Ṽ n
vV

∣∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣

∞∑
m=0

im

m!
(adK̃n

vV
)mṼ n

FM − Ṽ n
FM

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣∣
∣∣∣∣∣∣

∞∑
m=0

im

m!

n∑
l1,...,lm=0

n∑
l=0

{K̃(l1)
vV , K̃

(l2)
vV , . . . , K̃

(lm)
vV , Ṽ

(l)
FM} − Ṽ n

vV

∣∣∣∣∣∣
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∣∣∣∣∣∣

∞∑
m=0

im

m!

(m+1)(n+1)∑
M=m+1

∑
(l,l1,...,lm)∈Im,M

{K̃(l1)
vV , K̃

(l2)
vV , . . . , K̃

(lm)
vV , Ṽ

(l)
FM} − Ṽ n

vV

∣∣∣∣∣∣
∣∣∣∣∣∣ ,

(2.97)

where the symbol adAB denotes the commutator [A,B]. In the last equality, we recompose the
summation so that every term provides the same order M in λNT . Considering that each l-th

order term K̃
(l)
vV or K̃

(l)
FM gives O((λNT )l+1) contribution, the set Im,M is defined by

Im,M =

{
(l, l1, . . . , lm)

∣∣∣∣∣ 0 ≤ l, li ≤ n,

m∑
i=1

(li + 1) + (l + 1) = M

}
. (2.98)

From the definition of the van Vleck and Floquet-Magnus expansions, low order terms up of the
last right hand side in Eq. (2.97) should vanish up to the (n+ 1)-th order, which results in

[r.h.s of Eq. (2.97)] =

∣∣∣∣∣∣
∣∣∣∣∣∣
 n∑

m=1

(m+1)(n+1)∑
M=n+2

+

∞∑
m=n+1

(m+1)(n+1)∑
M=m+1

 ∑
(l,l1,...,lm)∈Im,M

im

m!
{K̃(l1)

vV , K̃
(l2)
vV , . . . , K̃

(lm)
vV , Ṽ

(l)
FM}

∣∣∣∣∣∣
∣∣∣∣∣∣

≤

 n∑
m=1

(m+1)(n+1)∑
M=n+2

+

∞∑
m=n+1

(m+1)(n+1)∑
M=m+1

 ∑
(l,l1,...,lm)∈Im,M

1

m!

∣∣∣∣∣∣{K̃(l1)
vV , K̃

(l2)
vV , . . . , K̃

(lm)
vV , Ṽ

(l)
FM}

∣∣∣∣∣∣ .
(2.99)

Since Ṽ
(l)
FM represents the Floquet-Magnus expansion under the NT -periodic Hamiltonian Ṽ (t)

with k-locality and J-extensiveness, we can apply Theorem 1.3.2, which gives the following bound
on the extensiveness;

J(Ṽ
(l)
FM) ≤ (λNT )l

l + 1
l! · J. (2.100)

Under the k-locality of Ṽ (t), the definition of the van Vleck expansion [See Eqs. (2.10)-(2.14)]

dictates that the l-th order terms Ṽ
(l)
vV and K̃

(l)
vV are at-most (l + 1)k-local. Thus, by using Eq.

(2.93) for the indices (l, l1, . . . , lm) ∈ Im,M , we obtain∣∣∣∣∣∣{K̃(l1)
vV , K̃

(l2)
vV , . . . , K̃

(lm)
vV , Ṽ

(l)
FM}

∣∣∣∣∣∣ ≤ LJ({K̃(l1)
vV , K̃

(l2)
vV , . . . , K̃

(lm)
vV , Ṽ

(l)
FM})

≤ LJ(Ṽ
(l)
FM)

m∏
i=1

2J(K̃
(li)
vV )k

l + 1 +

i∑
j=1

(lj + 1)




≤ LJ · (λNT )ll!(2k)m

[
m∏
i=1

J(K̃
(li)
vV )

]
M !

(M −m)!
. (2.101)

As a dimensionless quantity, we define renormalized extensiveness j(l) by

j(l) ≡
J(K̃

(l)
vV)

(λNT )lJNT (l + 1)l+1
, (2.102)
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which corresponds to Eq. (2.95). As a result, noting that the indices (l, l1, . . . , lm) satisfy 0 ≤ l ≤ n,
0 ≤ li ≤ n, and l + 1 +

∑
i(li + 1) = M , Eq. (1.95) leads to∣∣∣∣∣∣{K̃(l1)

vV , K̃
(l2)
vV , . . . , K̃

(lm)
vV , Ṽ

(l)
FM}

∣∣∣∣∣∣ ≤ LJ · (λNT )ll!(2k)m

[
m∏
i=1

(λNT )liJNT (li + 1)li+1j(li)

]
m!MCm

≤ LJ · (λNT )l+
∑

i li+m(n+ 1)l

[
m∏
i=1

(n+ 1)li+1jmax,n

]
m!2M

≤ 2LJ · {2(n+ 1)λNT}M−1(jmax,n)mm!, (2.103)

where jmax,n is the maximal value of {j(l)}nl=0, defined by Eq. (2.96). By substituting this into
Eq. (2.99), when the truncation order n is small enough to satisfy n < n0 ≤ 1/(16λNT ) and
n < 1/(4jmax,nλNT )−1 under the assumption of the sufficiently-small local energy scale λNT ≪ 1,
we arrive at 1

[r.h.s. of Eq. (2.99)] ≤ 2LJ

 n∑
m=1

(m+1)(n+1)∑
M=n+2

+

∞∑
m=n+1

(m+1)(n+1)∑
M=m+1

 ∑
(l,l1,...,lm)∈Im,M

{2(n+ 1)λNT}M−1(jmax,n)m

≤ 2LJ

(
n∑

m=1

∞∑
M=n+2

+

∞∑
m=n+1

∞∑
M=m+1

)
|Im,M |{2(n+ 1)λNT}M−1(jmax,n)m

≤ 2LJ

(
n∑

m=1

∞∑
M=n+2

+

∞∑
m=n+1

∞∑
M=m+1

)
{4(n+ 1)λNT}M−1(jmax,n)m

=
2LJ{4(n+ 1)λNT}n+1

1 − 4(n+ 1)λNT

{
jmax,n − (jmax,n)n+1

1 − jmax,n
+

(jmax,n)n+1

1 − 4(n+ 1)jmax,nλNT

}
≤ L

3kNT
{4(n+ 1)λNT}n+2

{
jmax,n − (jmax,n)n+1

1 − jmax,n
+

(jmax,n)n+1

1 − 4(n+ 1)jmax,nλNT

}
. (2.104)

This completes the proof of Theorem 2.5.1. □
As discussed below, the renormalized extensiveness of the kick operator, jmax,n, is typically

bounded from above by a value of O(1) independent of any parameter other than n, e.g. the
system size L. Thus, with Theorem 2.5.1, we obtain the approximate difference between the
Floquet operator by the van Vleck expansion and that of the Floquet-Magnus expansion,

||e−iṼ n
FMNT − e−iK̃n

vVe−iṼ n
vVNT eiK̃

n
vV || ≤ 2L

3k
{4(n+ 1)λNT}n+2

×
{
jmax,n − (jmax,n)n+1

1 − jmax,n
+

(jmax,n)n+1

1 − 4(n+ 1)jmax,nλNT

}
= O((λNT )n+2)L. (2.105)

We hereby employ the upper bounds of ||UN
f − e−iṼ

n0
FMNT || and ||e−iṼ

n0
FMNT − e−iṼ n

FMNT ||, and
the triangle inequality Eq. (2.81). Finally, this verifies the validity of the approximation of the
coarse-grained Floquet operator by the van Vleck expansion,∣∣∣∣∣∣UN

f − e−iK̃n
vVe−iṼ n

vVNT eiK̃
n
vV

∣∣∣∣∣∣ = e−O(1/(λNT ))L+O((λNT )n+2)L, (2.106)

which reproduces Eq. (2.7) in Theorem 2.1.1.

Renormalized extensiveness of kick operators

Finally, we evaluate the upper bound of j(l) defined by Eq. (2.95), which measures the renormalized

extensiveness of the l-th order term of the kick operator K̃
(l)
vV. This determines the difference

1The symbol |Im,M | represents the number of the indices (l, l1, . . . , lm) that satisfy 0 ≤ l ≤ n, 0 ≤ li ≤ n, and
l +

∑
i li = M −m− 1. By neglecting the restriction l, li ≤ n, it is bounded by

|Im,M | ≤M−1 CM−m−1 ≤ 2M−1.
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between the van Vleck and the Floquet-Magnus expansions as described by Eq. (2.94) in Theorem
2.5.1 via the maximal value jmax,n = max{j(l)|0 ≤ l ≤ n}.

Here, we derive the upper bound under the k-locality and the J-extensiveness of the high-
frequency drive in the rotating frame Ṽ (t), based on the assumptions in Theorem 2.1.1. To this
end, we use Eq. (2.93) and the following inequalities;∣∣∣∣∣∣

∑
m ̸=0

eimωt/N

m

∣∣∣∣∣∣ ≤ π, (2.107)

∣∣∣∣∣∣
∑
m̸=0

eimωt/N

ms

∣∣∣∣∣∣ ≤
∑
m ̸=0

1

|m|s
= 2ζ(s), for s ∈ N\{1}. (2.108)

Here, ζ(s) is the zeta function. The first inequality is derived from the fact that

∑
m̸=0

eimωt/N

m
=

{
0 if ωt/N = 0 mod 2π

i(π − α) if ωt/N = α (∈ (0, 2π)) mod 2π.
(2.109)

We also note that, for a scalar function f(t) bounded by |f(t)| ≤ F = Const. and a JO-extensive

operator O(t), the operator Ō ≡
∫ T

0
f(t)O(t)dt has extensiveness J(Ō) bounded from above as

J(Ō) ≤ FJOT, Ō =

∫ T

0

f(t)O(t)dt. (2.110)

This can be derived from the definition of the extensiveness [See Eq. (1.94)] and the inequality

∑
X:i∈X

||ōX || =
∑

X:i∈X

∣∣∣∣∣
∣∣∣∣∣
∫ T

0

f(t)oX(t)dt

∣∣∣∣∣
∣∣∣∣∣ ≤

∫ T

0

|f(t)|
∑

X:i∈X

||oX(t)||dt ≤ FJOT, (2.111)

for each site i ∈ Λ, where O(t) and Ō are decomposed by their supports X ⊂ Λ as O(t) =∑
X⊂Λ oX(t), and Ō =

∑
X⊂Λ ōX .

For the lowest order, the kick operator Eq. (2.12) is rewritten in the following form,

K̃
(0)
vV =

i

ωT

∫ NT

0

∑
m ̸=0

eimωt/N

m

 Ṽ (t)dt. (2.112)

By using a series of the above inequalities, we obtain

J(K̃
(0)
vV ) ≤ 1

ωT

∫ NT

0

∣∣∣∣∣∣
∑
m̸=0

eimωt/N

m

∣∣∣∣∣∣ Jdt ≤ 1

2
JNT, (2.113)

and hence the renormalized extensiveness by Eq. (2.95) satisfies

j(0) =
J(K̃

(0)
vV )

JNT
≤ 1

2
. (2.114)

We can also discuss the first order term K̃
(1)
vV given by Eq. (2.13) as follows,

K̃
(1)
vV =

−i
2ω2T 2

∫∫ NT

0

dt1dt2

∑
m̸=0

eimωt1/N

m2

 [Ṽ (t1), Ṽ (t2)]

+
−i

2ω2T 2

∫∫ NT

0

dt1dt2

∑
m ̸=0

eimω(t1+t2)/N

m

∑
n ̸=0

e−inωt2/N

n

 [Ṽ (t1), Ṽ (t2)].

(2.115)
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This gives the upper bound of J(K̃
(1)
vV ), which can be described by

J(K̃
(1)
vV ) ≤ 1

2(ωt)2
π2J([Ṽ (t1), Ṽ (t2)]) · (NT )2 +

1

2(ωt)2
2ζ(2)J([Ṽ (t1), Ṽ (t2)]) · (NT )2

≤ 1

3
(λNT )(JNT ). (2.116)

This inequality results in the renormalized extensiveness j(1) ≤ 1/12. In a similar way, by using

ζ(3) = π3/25.79... < π3/24, we can obtain the second order results as J(K̃
(2)
vV ) ≤ 47(λNT )2JNT/96

and j(2) ≤ 47/2592. To summarize these results, the maximal value jmax,n appearing in Theorem
2.5.1 has the following bounds for low orders;

jmax,0 ≤ 1

2
, jmax,1 ≤ 1

2
, jmax,2 ≤ 1

2
. (2.117)

In general, the l-th order term of the kick operator K̃
(l)
vV can be decomposed into the inverse

Fourier transformation of 1/ms and the (l + 1)-tuple commutators of Ṽ (ti) like Eqs. (2.112) and
(2.115). Thus, by using Eqs. (2.93), (2.107), (2.108), and (2.110), we can obtain the upper bounds

of J(K̃
(l)
vV) and thereby jmax,n for any order in principle. We note that the bounds obtained in this

way are universal, which depend only on the locality and the extensiveness but not on the detail
of models.
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Chapter 3

Emergent non-Markovianity in
dissipative Floquet systems

In this chapter, we focus on dissipative Floquet many-body systems, affected by the coupling
between the system and the external bath. Since Floquet-ETH predicts heating to trivial infinite-
temperature states in generic closed Floquet many-body systems, dissipative Floquet many-body
systems are expected to host various nontrivial physics with overcoming the heating problem.
While this expectation matches the intuition that dissipation suppresses heating caused by energy
absorption from periodic drives, it is too difficult to find such intriguing phenomena because of the
competition of periodic drives, dissipation, and interactions.

Here, we consider generic dissipative Floquet many-body systems in the high-frequency regime,
where the local energy scale of both the Hamiltonian and the dissipation is much smaller than the
frequency. In the high-frequency regime, we can analytically understand them with a perturbation
theory in the same manner of the high-frequency expansion in closed Floquet systems. They are
important also in terms of the correspondence of closed Floquet systems with static systems. In
the closed cases, Floquet systems in the high-frequency regime cannot host phenomena inherent in
nonequilibrium, but such a correspondence is nontrivial in dissipative cases. We clarify that dissi-
pative Floquet many-body systems generally break this correspondence with static counterparts,
interpreted as emergent non-Markovianity in stroboscopic dynamics. This gives the possibility of
unique phenomena even in the high-frequency regime.

3.1 Dissipative Floquet systems

3.1.1 Setups

We first introduce how dissipative Floquet systems are described. Throughout this chapter, we
assume Markovianity, dictating that the state at time t, ρ(t), is determined by that just before
infinitesimal time, ρ(t − δt). Combining with the time periodicity, dissipative Floquet systems
under Markovianity obeys Floquet-Lindblad equation as follows:

∂tρ(t) = L(t)ρ(t), L(t) = L(t+ T ), (3.1)

L(t)ρ = −i[H(t), ρ] +
∑
i

Li(t)ρLi(t)
† − 1

2
{Li(t)

†Li(t), ρ}. (3.2)

Since this is a linear differential equation in a state ρ(t), we can apply Floquet theory as well as
closed Floquet systems with replacing |ψ(t)⟩ → ρ(t) and H(t) → iL(t).

Description of dissipative Floquet systems by Floquet-Lindblad equation is valid when the
relaxation time of the external bath is much smaller than the time scale of changes in the system and
the periodic drive. Then, the bath forgets the history of {ρ(t)}t (referred to as no memory time),
resulting in Markovianity and Floquet-Lindblad equation. While Floquet-Lindblad equation is
derived only from the time-periodicity, Markovianity and the CPTP (complete-positivity and trace-
preserving) property [130, 131, 132, 133], it can be derived also by considering the Hamiltonian
Htot(t) = H(t) +Hbath(t) +Hc(t) including the bath terms and the coupling terms and applying

63



64CHAPTER 3. EMERGENT NON-MARKOVIANITY IN DISSIPATIVE FLOQUET SYSTEMS

some approximations such as Markov and the rotating-wave approximations [132, 133, 134, 135,
136]. Experimentally, artificial quantum systems such as cold atoms and cavity-atom systems in
approximate vacuum are expected to provide ideal platforms for dissipative Floquet systems under
Markovianity [137, 138].

Dissipative Floquet systems with Floquet-Lindblad formalism have been contributed to various
nonequilibrium phenomena, such as nonequilibrium steady states [139, 140], heat engines [141, 142],
and discrete time crystals [143, 144, 145, 146, 147, 148]. However, despite the applicability of
Floquet theory, investigation of dissipative Floquet many-body systems has been quite restricted
when compared to closed systems. While a state |ψ⟩ is given in a dL-dimensional Hilbert space,
a state ρ for dissipative systems is defined in a d2L-dimensional system, giving the complexity of
dissipative systems. Non-unitarity of the time evolution is also the difficulty of dissipative systems.
Thus, exploring universal behaviors in dissipative Floquet many-body systems is difficult due to the
competition of dissipation, periodic drives, and interactions, but important to seek for nontrivial
nonequilibrium phenomena that overcome the heating problem.

3.1.2 Dissipative Floquet systems in the high-frequency regime

As Floquet theory is applicable also to dissipative cases, generic dissipative Floquet systems can
be analyzed by the Floquet operator Uf or the effective Lindbladian Leff defined by

Uf = T exp

(∫ T

0

L(t)dt

)
, (3.3)

Leff =
1

T
logUf . (3.4)

They determine the stroboscopic dynamics as well as closed cases:

ρ(mT ) = (Uf )mρ(0) = eLeffmT ρ(0), m = 0, 1, 2, . . . . (3.5)

In general, it is difficult to obtain the Floquet operator or the effective Lindbladian due to the larger
dimension compared to closed cases in addition to the time-ordered product and the logarithm of
operators.

Hereafter, we focus on dissipative Floquet systems in the high-frequency regime for the following
two reasons. The first reason is the availability of the high-frequency expansion as well as closed
systems. We can discuss generic dissipative Floquet systems in a unified way with the perturbation
theory in ||L(t)||/ω. Note that the high-frequency expansions in Chapter 1 are derived only with
the fact that H(t) is linear and time-periodic but not using the hermiticity, and hence those for
dissipative systems are derived in the same manner. The Floquet-Magnus expansion Ln

FM, defined
by

Ln
FM =

n∑
i=0

L(i)
FM, L(0)

FM =
1

T

∫ T

0

L(t)dt, (3.6)

L(1)
FM =

1

2T

∫ T

0

dt1

∫ t1

0

dt2[L(t1),L(t2)], (3.7)

L(2)
FM =

1

6T

∫ T

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 ([L(t1), [L(t2),L(t3)]] + [L(t3), [L(t2),L(t1)]]) , (3.8)

approximately provides the effective Lindbladian Leff up to the order of (||L(t)||/ω)n. Generic m-th

order term L(m)
FM is obtained by replacing H(t) → iL(t) and H

(m)
FM → iL(m)

FM in the Floquet-Magnus
expansion for closed systems [See Eqs. (1.27)-(1.29)]. As well as closed cases, the high-frequency
expansion enables to analyze Floquet systems as static systems with capturing the time-dependency

via higher-order terms L(m)
FM (m ≥ 1). In fact, Ref. [149] confirms that the stroboscopic dynamics

of local observables is well reproduced by Ln
FM in the high-frequency regime. Refs. [136, 150]

consider a wide class of dissipative Floquet systems with time-independent dissipation, and clarify
generic steady states up to the first order with the usage of the high-frequency expansion.

The second reason why the high-frequency regime of dissipative Floquet systems is focused on
lies in the correspondence of closed Floquet systems with closed static systems, which is directly
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related to the aim of this chapter. In closed cases, as discussed in the last of Section 1.3.4, Floquet
systems in the high-frequency regime always have counterparts in closed static systems. This is
because they are approximately described by the Floquet-Magnus expansion Hn

FM, which is a static
local Hamiltonian. Then, there appears a natural but important question for dissipative cases:

Do dissipative Floquet systems in the high-frequency regime have counterparts in dissipative static
systems ?

Tackling this problem will lead to comprehension on what kind of nontrivial steady states unique
to Floquet systems is possible.

Aim of this chapter

We aim to resolve the above problem, the correspondence of dissipative Floquet systems in the high-
frequency regime with static counterparts. Let us discuss the detail of the problem. We consider
dissipative systems under Markovianity. In static cases, a state ρ(t) obeys a time-independent
Lindblad equation,

∂tρ(t) = Lρ(t), (3.9)

Lρ = −i[H, ρ] +
∑
i

LiρL
†
i −

1

2
{L†

iLi, ρ}, (3.10)

with a Hermitian operator H. The form of L, called a Liouvillian, is derived from the requirement
that the time evolution operator eLt becomes a CPTP map for any t ≥ 0, and essential to describe
dissipative static systems under Markovianity [131]. We refer to it as as Liouvillianity of L, that
(or whether) L is a Liouvillian given by Eq. (3.10). In Floquet cases, their dynamics dominated
by a time-periodic Liouvillian L(t) is approximately described by the static operator Ln

FM, given
by the Floquet-Magnus expansion. Thus, the problem of interest is interpreted as:

Is the Floquet-Magnus expansion Ln
FM, which approximately describes dissipative Floquet systems

in the high-frequency regime, a Liouvillian ?

In other words, we analyze Liouvillianity of the Floquet-Magnus expansion Ln
FM for generic systems

throughout this chapter, and thereby we aim to clarify whether or not dissipative Floquet systems
in the high-frequency regime have static counterparts described by a static Liouvillian.

3.2 Liouvillianity behavior in noninteracting and interact-
ing models

Hereafter, we consider Liouvillianity of the Floquet-Magnus expansion to clarify the correspondence
of dissipative Floquet systems with static systems. To this goal we begin with introducing some
mathematical tools to judge Liouvillianity in Section 3.2.1. With these tools, we clarify that the
behavior of Liovillianity depends on the presence of interactions. Thus, we discuss noninteracting
cases and interacting cases respectively in Sections 3.2.2 and 3.2.3.

3.2.1 Method for judging Liouvillianity

We first introduce the Frobenius basis and the doubled Hilbert space representation. After that,
we discuss how to judge Liouvillianity. We also derive generic properties of Liouvillianity of each
order term in the Floquet-Magnus expansion.

Frobenius basis.—We denote a set of d × d matrices by Md and assume a state ρ ∈ Md. We
define the Frobenius inner product ⟨A,B⟩F and the Frobenius norm ||A||F by

⟨A,B⟩F ≡ Tr[A†B], ||A||F ≡
√

⟨A,A⟩F, (3.11)

for A,B ∈ Md. The Frobenius basis {Fj ∈ Md}d
2

j=1 is a complete orthonormal set (CONS) for Md

based on the Frobenius inner product and the Frobenius norm, satisfying

⟨Fj , Fk⟩F = δjk,
∀j, k = 1, 2, . . . , d2, (3.12)

Fd2 = Id/
√
d. (3.13)
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Here, Id denotes the d-dimensional identity matrix. Using the condition ⟨Fj , Fd2⟩F = δjd2 , we
immediately obtain

Tr[Fj ] = 0, j = 1, 2, . . . , d2 − 1. (3.14)

For the simplest case with d = 2, we can choose

F1 = σx/
√

2, F2 = σy/
√

2, F3 = σz/
√

2, F4 = I2/
√

2 (3.15)

as the Frobenius basis.

Doubled Hilbert space representation.—The doubled Hilbert space representation enables to
represent linear operators on Md by a matrix by associating a state ρ ∈ Md to a d2-dimensional
vector [151, 152]. Let {|s⟩}ds=1 denote a basis for the d-dimensional Hilbert space, and then a state
ρ is given by ρ =

∑
s,s′ ρss′ |s⟩ ⟨s′|. We can designate the state ρ by the d2-dimensional vector

|ρ) =
∑

ss′ ρss′ |s⟩⊗ |s′⟩ by the one-to-one correspondence ρ↔ |ρ). The representation of the state
by |ρ) is called the doubled Hilbert space representation, since |ρ) is defined on a system twice as
large as the original system. In the doubled system for |ρ), the system designated by |s⟩ (or |s′⟩)
is called a real system (or a fictitious system). When considering linear operators on Md, they
should be written by a d2-dimensional matrix. In fact, an action AρB (A,B ∈ Md) is written as
A⊗BT ∈ Md2 due to the following correspondence:

AρB ↔ (A⊗BT) |ρ) , A,B ∈ Md. (3.16)

For instance, a Liouvillian L given by Eq. (3.10) is given by the d2-dimensional matrix

L = −i(H ⊗ I − I ⊗HT) +
∑
i

[
Li ⊗ L∗

i −
1

2
(L†

iLi ⊗ I + I ⊗ LT
i L

∗
i )

]
(3.17)

in the doubled Hilbert space representation, where we simply write the correspondence by the
equality hereafter.

Judgment of Liouvillianity.—Now, let us discuss how to judge Liouvillianity of the Floquet-
Magnus expansion, described by a d2-dimensional matrix in the doubled Hilbert space represen-

tation. By expanding the Lindblad operators with the Frobenius basis as Li =
∑d2−1

j=1 cijFj with
cij ∈ C (Note that Fd2 ∝ Id gives no contribution), we obtain

L = −i(H ⊗ I − I ⊗HT) +

d2−1∑
j,k=1

ajk

[
Fj ⊗ F ∗

k − 1

2
(F †

kFj ⊗ I + I ⊗ FT
j F

∗
k )

]
(3.18)

from Eq. (3.17), where ajk ≡
∑

i cijc
∗
ik (j, k = 1, 2, . . . , d2 − 1) gives a (d2 − 1)-dimensional

positive-semidefinite (all the eigenvalues are non-negative) matrix with the hermiticity ajk = a∗kj .
Conversely, when a linear operator on Md is given in the form of Eq. (3.18) with a hermitian

positive-semidefinite matrix [ajk]d
2−1

j,k=1, we can obtain a Liouvillian of Eq. (3.17) by the spectral
decomposition ajk ≡

∑
i cijc

∗
ik. Thus, we obtain the following condition: L is a Liouvillian if

and only if L has the form of Eq. (3.18) with a hermitian matrix H ∈ Md and a hermitian

positive-semidefinite matrix [ajk]d
2−1

j,k=1 ∈ Md2−1.

Let us turn to how to judge whether the Floquet-Magnus expansion Ln
FM is a Liouvillian. While

it is difficult to know whether generic matrices in Md2 can be decomposed in the form of Eq. (3.18),
we can do that in the case of the Floquet-Magnus expansion by the following theorem.
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Theorem 3.2.1. (Form of the Floquet-Magnus expansion)

Each m-th order term of the Floquet-Magnus expansion, L(m)
FM , is always written in the

form of

L(m)
FM = −i(H(m) ⊗ I − I ⊗ (H(m))T) +

d2−1∑
j,k=1

a
(m)
jk

[
Fj ⊗ F ∗

k − 1

2
(F †

kFj ⊗ I + I ⊗ FT
j F

∗
k )

]
(3.19)

where H(m) ∈ Md and [a
(m)
jk ]d

2−1
j,k=1 ∈ Md2−1 are hermitian. The n-th order Floquet-Magnus

expansion, Ln
FM =

∑n
m=0 L

(m)
FM , is also written in the form of

Ln
FM = −i(Hn ⊗ I − I ⊗ (Hn)T) +

d2−1∑
j,k=1

anjk

[
Fj ⊗ F ∗

k − 1

2
(F †

kFj ⊗ I + I ⊗ FT
j F

∗
k )

]
(3.20)

where Hn ∈ Md and [anjk]d
2−1

j,k=1 ∈ Md2−1 are hermitian.

We can derive Eq. (3.20) by using the fact that the time-periodic Liouvillian L(t) is given by
the form of Eq. (3.2). Since the derivation is done in a similar way of Ref. [153], we provide it
in Appendix for this chapter (See Section 3.5). Equation (3.20) soon follows from Eq. (3.19) by

giving Hn =
∑n

m=0H
(m) and anjk =

∑n
m=0 a

(m)
jk .

By multiplying F †
j ⊗ FT

k (j, k ̸= d2) to Eq. (3.20) from the left and taking its trace, we can
pick up the matrix elements as

anjk = Tr[(F †
j ⊗ FT

k )Ln
FM], (3.21)

where we use the orthonormality of the Frobenius basis Eqs. (3.12) and (3.13). While the form of
Eq. (3.20) is the same as that of a Liouvillian, Eq. (3.18), we note that the positive-semidefiniteness
of [anjk] is not ensured here. In other words, we obtain the necessary and sufficient condition for
the Floquet-Magnus expansion being a Liouvillian as the following theorem says [154].

Theorem 3.2.2. (Judging Liouvillianity of the Floquet-Magnus expansion)
For the Floquet-Magnus expansion Ln

FM, the following relation is satisfied:

Ln
FM is a Liouvillian ⇔ [anjk]d

2−1
j,k=1 ∈ Md2−1 is positive-semidefinite, (3.22)

where the hermitian matrix [anjk]d
2−1

j,k=1 is given by

anjk = Tr[(F †
j ⊗ FT

k )Ln
FM]. (3.23)

Thus, in order to judge Liouvillianity of the Floquet-Magnus expansion, we should confirm that

all the eigenvalues of the matrix [anjk]d
2−1

j,k=1 is non-negative. When we consider an L-site system
having f degrees of freedom at each site, the dimension of [anjk] exponentially grows with the

system size as d2 − 1 = f2L − 1. It is nontrivial that we can rigorously evaluate Liouvillianity for
generic systems including interacting cases. In fact, Ref. [154], which provides the way of judging
Liouvillianity without specifying the usage of the Frobenius basis, gives an analysis on Liouvillianity
of the Floquet-Magnus expansion, but it is limited to noninteracting cases, essentially equivalent
to the case L = 1. Here, we aim to understand the behavior of Liouvillianity for generic Floquet
systems both in noninteracting cases and interacting cases.

Generic properties about Liouvillianity.—Before discussing Liouvillianity of the Floquet-Magnus
expansion, we derive a generic property of each m-th order term and reconsider the structure of the

problem. As each m-th order term L(m)
FM is given by Eq. (3.19), we can diagnose its Liouvillianity

by

L(m)
FM is a Liouvillian ⇔ [a

(m)
jk ]d

2−1
j,k=1 ∈ Md2−1 is positive-semidefinite, (3.24)
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with a
(m)
jk = Tr[(F †

j ⊗ FT
k )L(m)

FM ], as well as the Floquet-Magnus expansion. Then, we derive the
following theorem on Liouvillianity of each m-th order term.

Theorem 3.2.3. (Liouvillianity of each order term)
Each m-th order term of the Floquet-Magnus expansion satisfies the following proposition:

(a) L(0)
FM (= L0

f ) is always a Liouvillian.

(b) L(m)
FM (m ≥ 1) is a Liouvillian if and only if

[a
(m)
jk ] =

[
Tr[(F †

j ⊗ FT
k )L(m)

f ]
]

= Od2−1, (3.25)

where Od (∈ Md) represents a zero matrix with the size d.

Proof

From Eq. (3.2), the time-periodic Liouvillian L(t) is also written in the form of

L(t) = −i(H(t) ⊗ I − I ⊗H(t)T) +

d2−1∑
j,k=1

ajk(t)

[
Fj ⊗ F ∗

k − 1

2
(F †

kFj ⊗ I + I ⊗ FT
j F

∗
k )

]
(3.26)

where the T -periodic matrices H(t) ∈ Md and [ajk(t)] ∈ Md2−1 are hermitian. Since the zeroth
order term is given by the time-average of L(t), we obtain

a
(0)
jk =

1

T

∫ T

0

ajk(t)dt. (3.27)

The hermitian matrix [a
(0)
jk ] becomes positive-semidefinite since [ajk(t)] is positive-semidefinite, and

hence L(0)
FM is always a Liouvillian. On the other hand, using the fact that each order term L(m)

FM

is composed of m-tuple comutators, each m-th order term is traceless, Tr
[
L(m)
FM

]
= 0, for m ≥ 1.

We can calculate the trace in another way using Eq. (3.19), and this results in

Tr
[
L(m)
FM

]
= −1

2

d2−1∑
j,k=1

a
(m)
jk (Tr[F †

j Fk⊗I]+Tr[I⊗FT
j F

∗
k ]) = −d·

d2−1∑
j=1

a
(n)
jj = −d·Tr

(
[a

(m)
jk ]

)
. (3.28)

Therefore, [a
(m)
jk ] is also traceless, and hence the summation of the eigenvalues of [a

(m)
jk ] is zero.

Since all of the eigenvalues of hermitian positive-semidefinite matrices cannot be negative, [a
(m)
jk ] is

positive-semidefinite if and only if [a
(m)
jk ] = O. Using the condition for Liouvillianity, we complete

the proof of the theorem. □

This theorem says that any higher order term L(m)
FM cannot be a Liouvllian except for special

cases where L(m)
FM gives no dissipation. Since we use the fact that the zeroth-order term is given

by the time-average and that higher-order terms are composed of commutators, this result is also
valid for the van Vleck expansion and the Schrieffer-Wolff expansion other than the Floquet-Magnus
expansion.

We note that this theorem brings an essential difference from closed cases to the problem of

interest. In closed cases, any order term of the Floquet-Magnus expansion H
(m)
FM , given by Eq.

(1.28) is always a Hamiltonian (i.e. a hermitian operator), thereby making the Floquet-Magnus

expansion Hn
FM =

∑n
m=0H

(m)
FM a Hamiltonian. On the other hand, in dissipative cases, in the

Floquet-Magnus expansion Ln
FM =

∑n
m=0 L

(m)
FM , only the zeroth-order becomes a Liouvillian while

the other terms cannot be Liouvillians in general. That makes Liouvillianity of the Floquet-Magnus
expansion nontrivial in contrast to closed systems.
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3.2.2 Liouvillianity in noninteracting models

To understand how Liouvillianity of the Floquet-Magnus expansion behaves, we begin with non-
interacting cases. For simplicity, we focus on dissipative systems under a binary drive, described
by

L(t) =

{
L1 (0 ≤ t < τ)

L2 (τ ≤ t < 2τ = T ),
(3.29)

and then the Floquet operator is given by Ueff = exp(L2τ) exp(L1τ) ≡ exp(Leff · 2τ). By using
the Baker-Campbell-Hausdorff formula, we can directly calculate the Floquet-Magnus expansion
as follows:

L(0)
FM =

1

2
(L1 + L2), L(1)

FM =
τ

4
[L2,L1], (3.30)

L(2)
FM =

τ2

24
[L2 − L1, [L2,L1]], L(3)

FM =
τ3

48
[L1, [L2, [L1,L2]]], . . . (3.31)

Since noninteracting cases can be captured by models with single site, we consider a single-spin
system with S = 1/2. We provide two models and show that they have different behaviors of
Liouvillianity; one always shows breakdown of Liouvillianity of Ln

FM while the other preserves
Liouvillianity of Ln

FM in a finite parameter region.
Noninteracting model showing Liouvillianity breaking.—We first consider a single-spin system

with S = 1/2, described by the time-periodic Hamiltonian

LA(t)ρ =

{
−ih[σz, ρ] (0 ≤ t < τ)

γ1(σxρσx − ρ) (τ ≤ t < 2τ).
(3.32)

Here, h ∈ R represents the magnetic field in the z-direction, and γ1 > 0 is the dephasing in the
x-direction. Assuming the high-frequency regime indicates hτ, γ1τ ≪ 1. By using the formula Eqs.
(3.30)-(3.31), we obtain the Floquet-Magnus expansion in the doubled Hilbert representation as
follows:

L2
FM = − ih

2

{
1 +

(γ1τ)2

3

}
(σz ⊗ I − I ⊗ σz) +

γ1
2

(σx ⊗ σx − I ⊗ I)

−γ1hτ
2

(σy ⊗ σx − σx ⊗ σy) − γ1(hτ)2

3
(σx ⊗ σx + σy ⊗ σy). (3.33)

Remembering that the Frobenius basis for the dimension d = 2 is given by Eq. (3.15), we can

calculate the matrix a2jk = Tr[(F †
j ⊗ FT

k )L2
FM] based on Eq. (3.23). This results in

[a2jk] = γ1

 1 − α
(2)
A α

(1)
A 0

α
(1)
A α

(2)
A 0

0 0 0

 , (3.34)

where α
(1)
A = −hτ and α

(2)
A = 2(hτ)2/3 are the first- and the second-order contributions. Substi-

tuting α
(1)
A = α

(2)
A = 0 (α

(2)
A = 0) into Eq. (3.34) reproduces the matrix [a0jk] ([a1jk]).

Let us evaluate Liouvillianity of the Floquet-Magnus expansion Ln
FM, or equivalently, judge

the positive-semidefiniteness of [anjk] based on Theorem 3.2.2. The zeroth-order L0
FM is always

a Liouvillian since [a0jk] is positive-semidefinite. This result is rather trivial due to Theorem

3.2.3. On the other hand, for the first-order, the matrix [a1jk] always has a negative eigenvalue

(1 −
√

1 + 4(hτ)2)γ1/2 ≃ −γ1 (hτ)
2

= O((hτ)2). Thus, the first-order expansion L1
FM cannot

be a Liouvillian regardless of parameters h, γ1 ̸= 0, which we refer to as Liouvillianity break-
ing. In a similar manner, for the second-order, the matrix [a2jk] always has a negative eigenvalue

(1 −
√

1 + 4(hτ)2/3 + 16(hτ)4/9)γ1/2 ≃ −γ1(hτ)2/3 = O((hτ)2). As a result, L2
f always breaks

Liouvillianity.
To summarize, this noninteracting model always shows Liouvillianity breaking of the Floquet-

Magnus expansion when we consider higher-order terms coming from the time-dependency of
L(t). This originates from the inevitable negative eigenvalues of [anjk]. We note that, for the



70CHAPTER 3. EMERGENT NON-MARKOVIANITY IN DISSIPATIVE FLOQUET SYSTEMS

first-order in this model, it is difficult to observe the effects of Liouvillianity breaking since the
negative eigenvalue ∼ (hτ)2 is small when we consider its accuracy. For the higher-orders n ≥ 2,
Liouvillianity breaking of Ln

FM is non-negligible due to the negative eigenvalues ∼ (hτ)2.
Noninteracting model preserving Liouvillianity.—We introduce another noninteracting model

showing behaviors different from the above model. Let us consider the time-periodic Liouvillian

LB(t)ρ =

{
γ2(σ̃xzρσ̃xz − ρ) (0 ≤ t < τ)

γ1(σxρσx − ρ) (τ ≤ t < 2τ),
(3.35)

with σ̃xz = (σx + σz)/
√

2. This model is purely driven by dephasing terms γ1, γ2 > 0. Up to the
second-order, we obtain the matrix [a2jk] as

[a2jk] =

 γ2/2 + γ1 + α
(2)
B γ2 0 γ2/2 + α

(2)
B γ1

0 0 0

γ2/2 + α
(2)
B γ1 0 γ2/2 − α

(2)
B γ2

 (3.36)

with α
(2)
B = (γ1τ)(γ2τ)/6. Here, the first-order contribution a

(1)
jk disappears as a

(1)
jk = 0, exempli-

fying the case where L(1)
FM becomes a Liouvillian in Theorem 3.2.3. The zeroth- and the first-order

expansions L0
FM and L1

FM are Liouvillians under any choice of the parameters γ1, γ2, τ . For the
second-order, the smallest eigenvalue of [a2jk] is the smaller one of 0 and

γ1 + γ2
2

− 1

6

√
γ21γ

2
2τ

2(γ21τ
2 + γ22τ

2 + 12) + 9 (γ21 + γ22). (3.37)

This suggests that the second-order expansion L2
FM becomes a Liovillian in the finite parameter

range 0 < τ ≤ τmax, where τmax is given by

τmax =

6
(√

1 + (γ21 + γ22) / (2γ1γ2) − 1
)

γ21 + γ22

1/2

> 0. (3.38)

This behavior, preservation of Liouvillianity of Ln
FM, is confirmed also when we consider higher-

orders n ≥ 3, while the threshold τmax depends on the order.
Non-universal behavior in noninteracting models.—In the above discussion, we discover two

different behaviors of noninteracting cases:

1. Liouvillianity breaking of Ln
FM (n ≥ 1).

2. Liouvillianity preservation of Ln
FM in a finite parameter range.

This difference comes from the structures of the matrix [anjk]. In the first case, the higher order

terms [a
(m)
jk ] (m ≥ 1) appear in the different block from [a

(0)
jk ] [See Eq. (3.34)]. This can be

interpreted as that the zero eigenvalue of [a
(0)
jk ] is perturbed by higher-order terms, resulting in

the negative eigenvalues of [anjk] (n ≥ 1). On the other hand, in the second case, the zeroth-

order term [a0jk] and the higher-order terms [a
(m)
jk ] (m ≥ 1) are closed within the same block

[See Eq. (3.36)]. Since the positive eigenvalues of [a0jk] are shifted by the higher-order terms,
the positive-semidefiniteness of [anjk] is maintained. This is why preservation of Liovillianity is
observed. Although we focus on two specific models, generic noninteracting models are expected
to show these behaviors since the matrix [anjk] should be either closed or not with the increasing
order n. Thus, noninteracting models have non-universal behaviors of Liouvillianity of the Floquet-
Magnus expansion, in that they can either break or preserve it depending on the model.

3.2.3 Liouvillianity in interacting models

Here, we discuss few-body and many-body interacting models and how they behaves in contrast
to noninteracting models. We consider an L-site spin chain with S = 1/2, and the dimension d
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becomes 2L. Then, the Frobenius basis is composed of 4L matrices in M2L . We use a set of labels
J = {⃗j = (j1, j2, . . . , jL) | jl = 0, 1, 2, 3 (l = 1, 2, . . . , L)}, and we can choose {Fj⃗}j⃗∈J given by

Fj⃗ =

L∏
l=1

F̃jl , F̃0 = I2/
√

2, F̃1 = σx/
√

2, F̃2 = σy/
√

2, F̃3 = σz/
√

2, (3.39)

as the Frobenius basis for M2L . The matrix Fj⃗=0⃗ corresponds to Fd2 , having the nonzero trace in

Eq. (3.13), and the others Fj⃗ ̸=0⃗ are traceless corresponding to Eq. (3.14).
Interacting model showing Liouvillianity breaking.— We begin with the model analysis based

on the following time-periodic Liouvillian

LC(t)ρ =

{
−iJz

∑
l[σ

z
l σ

z
l+1, ρ] ≡ LC1ρ (0 ≤ t < τ)

γ
∑

l(σ
x
l ρσ

x
l − ρ) ≡ LC2ρ (τ ≤ t < 2τ),

(3.40)

where LC1 and LC2 are respectively Ising interactions and dephasing. Here, we assume the periodic
boundary condition σα

L+1 = σα
1 (α = x, y, z), but it is not essential. The zeroth-order expansion

L0
FM = (LC1 + LC2)/2 = −iJz

2

∑
l

(σz
l σ

z
l+1 ⊗ I − I ⊗ σz

l σ
z
l+1) +

γ

2

∑
l

(σx
l ⊗ σx

l − I) (3.41)

is trivially a Liouvillian as a result of Theorem 3.2.3. Note that we employ the doubled Hilbert space
representation, and then linear operators on M2L are represented as non-hermitian Hamiltonians
on a 2L-site spin system.

For the first-order, we obtain the following Floquet-Magnus expansion,

L1
FM = L0

FM +
Jzγτ

2

∑
l

{
σx
l ⊗ σy

l (σz
l−1 + σz

l+1) − σy
l (σz

l−1 + σz
l+1) ⊗ σx

l

}
. (3.42)

We compute the matrix elements [a1
j⃗k⃗

] for j⃗, k⃗ ∈ J\{⃗0}. By properly changing the order of the

basis, we arrive at the (4L − 1)-dimensional hermitian matrix,

[a1
j⃗k⃗

] =

 L⊕
l=1

2L−1γ

 1 α
(1)
C α

(1)
C

α
(1)
C 0 0

α
(1)
C 0 0


l

⊕O4L−3L−1, (3.43)

with the first-order contribution α
(1)
C = −Jzτ . The basis of the 3×3 matrices (· · · )l is composed of

j⃗ = (. . . 0, jl = 1, 0 . . .), (. . . 0, 2, jl = 3, 0 . . .), (. . . 0, jl = 3, 2, 0 . . .). Here, the component 1 in (· · · )l
comes from the two-body term σx

l ⊗σx
l in L(0)

FM [See Eq. (3.41)], and α
(1)
C comes from the three-body

terms σx
l ⊗ σy

l σ
z
l±1 and σy

l σ
z
l±1 ⊗ σx

l in L(1)
FM. [See Eq. (3.42)]. Due to the block-diagonalization,

we can exactly obtain all the eigenvalues of the matrix [aj⃗k⃗], whose size is exponentially large in

the system size L. The smallest eigenvalue of [aj⃗k⃗] is γ · 2L−2{1 −
√

1 + 8(Jzτ)2} ≃ −γ(Jzτ)22L,

which is always negative. Therefore, the first-order Floquet-Magnus expansion L1
FM cannot be a

Liouvillian regardless of the parameters Jz, γ, τ , indicating Liouvillianity breaking. Note that its
order (Jzτ)2 is small considering the truncation order n = 1 in this case.

As well, the second-order is calculated as

L2
FM = L1

FM − γ(Jzτ)2

3

∑
l

{σx
l ⊗ σx

l (I + σz
l−1σ

z
l+1) + σx

l (I + σz
l−1σ

z
l+1) ⊗ σx

l

+σy
l (σz

l−1 + σz
l+1) ⊗ σy

l (σz
l−1 + σz

l+1)}, (3.44)

and then, the matrix [a2
j⃗k⃗

] becomes

[a2
j⃗k⃗

] =


L⊕

l=1

2L−1γ


1 − 2α

(2)
C α

(1)
C α(1) −α(2)

C

α
(1)
C α

(2)
C α

(2)
C 0

α
(1)
C α

(2)
C α

(2)
C 0

−α(2)
C 0 0 0


l

⊕O4L−4L−1, (3.45)
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with the second-order contribution α
(2)
C = 2(Jzτ)2/3. Here, the first three components of the basis

of (· · · )l are the same as those for Eq. (3.43), and the fourth is j⃗ = (. . . 0, 3, jl = 1, 3, 0 . . .). The

components α
(2)
C appearing in the lower right of α

(1)
C in (. . .)l originate from the four-body terms in

L(2)
FM. The matrix [a2

j⃗k⃗
] always has negative eigenvalues, and the smallest one is numerically given

by

λmin/[γ · 2L−1(Jzτ)2] ≃
3∑

m=0

Cm(Jzτ)m, (3.46)

C0 = −0.667, C1 = 0.0197, C2 = −3.08, C3 = 2.84,

with the root mean square error 3.25 × 10−4 in 0 < Jzτ < 0.5 (Although we can obtain its
analytical formula, it is too complicated). Thus, the second-order Floquet-Magnus expansion L2

FM

shows Liouvillianity breaking with the non-negligible order O((Jzτ)2).
Universal behaviors of Liouvillianity in interacting models ?—In the above discussion, we obtain

that the interacting model LC(t) show Liouvillianity breaking of the Floquet-Magnus expansion
Ln
FM for n = 1, 2. What should be tackled next is to examine whether or not the Liouvillianity

breaking behavior is common with generic interacting systems. For instance, we consider another
model LD(t) given by

LD(t)ρ =

{
−iJx

∑
l[σ

1
l σ

1
l+1, ρ] ≡ LD1ρ (0 ≤ t < τ)

γ
∑

l(σ
−
l ρσ

+
l − 1

2{σ
+
l σ

−
l , ρ}) ≡ LD2ρ (τ ≤ t < 2τ = T ),

(3.47)

with σ±
l = (σx

l ± iσy
l )/2, which is composed of Ising interactions and dissipation making the

down-spin state preferable. The resulting non-positive-semidefinite matrix [a1
j⃗k⃗

] , given by

[a1
j⃗k⃗

] =

 L⊕
l=1

γ · 2L−3


2 2i −i(Jxτ) −i(Jxτ)

−2i 2 −(Jxτ) −(Jxτ)
i(Jxτ) −(Jxτ) 0 0
i(Jxτ) −(Jxτ) 0 0


l

⊕O4L−4L−1, (3.48)

has a structure similar to Eqs. (3.43) and (3.45), showing Liouvillianity breaking of L1
FM.

We note that the structure of the matrices [an
j⃗k⃗

] appearing in the interacting models is common

with that in the noninteracting case LA(t) with Liouvillianity breaking, in that the zeroth-order and
the higher-order contributions are not closed in the same block. In contrast to the noninteracting
case, higher-order contributions in [an

j⃗k⃗
] are connected to many-body terms in Ln

FM for interacting

systems. In the next chapter, we clarify that this connection holds for generic interacting systems
and results in the universal structure of the matrix [an

j⃗k⃗
], which gives Liouvillianity breaking in

generic interacting systems.

3.3 Liouvillianity breaking in generic interacting models

Here, we generalize the result of the interacting models in the previous section, and provide the
main assertion in this chapter, saying that the Floquet-Magnus expansion Ln

FM (n ≥ 1) cannot be
a Liouvillian in generic interacting systems.

We first specify the setup for generic dissipative Floquet systems with interactions. We consider
an L-site lattice Λ, where each site has f degrees of freedom. The time-periodic Liouvillian
L(t) = L(t+ T ) is given by

L(t) = −i(H(t) ⊗ I − I ⊗H(t)T) +
∑
i

[
Li(t) ⊗ Li(t)

∗ − 1

2
(Li(t)

†Li(t) ⊗ I + I ⊗ Li(t)
TLi(t)

∗)

]
(3.49)

in the doubled Hilbert space representation. By regarding L(t) as a non-hermitian Hamiltonian
on a 2L-site lattice Λd = {1, 2, . . . , 2L}, we extend the notions of locality and extensiveness for
Hamiltonians to Liouvillians (See Definition 1.3.1). The locality k for a Liouvillian is defined by

L(t) is k-local ⇔ H(t) and Li(t) respectively have at-most k-body and (k/2)-body interactions.
(3.50)
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This immediately means that L(t) in the doubled Hilbert space representation has at-most k-body
interactions. We decompose a Liouvillian by L(t) =

∑
X⊂Λd

L|X(t), where L|X(t) denotes the
terms of L(t) nontrivially acting on a domain X ⊂ Λd in the doubled Hilbert space representation.
We define the extensiveness of a Liouvillian by

L(t) is J -extensive ⇔
∑

X:X∋i

||L|X(t)|| ≤ J , ∀i ∈ Λd, (3.51)

which is the natural extension of Eq. (1.94). Under the finite extensiveness J , we obtain the
bounded local energy scale ||L(t)||/L ≤ 2J .

The locality (the extensiveness) of a Liouvillian assumes the locality (the bounded local energy
scale) of the Hamiltonian and the dissipation, which is expected to be physically reasonable. For
example, when we consider the model LC(t) composed of Ising interactions and dephasing dissi-
pation, we obtain the locality k = 2 and the extensiveness J = 2|Jz| + γ. Thus, we adopt the
k-locality and the J -extensiveness as natural assumptions for generic interacting systems.

To discuss Liouvillianity of the Floquet-Magnus expansion, we should consider the matrix
[anjk] = Tr[(F †

j ⊗ FT
k )Ln

FM]. Here, the Frobenius basis for MfL is designated by

J = {⃗j = (j1, . . . , jL) | jl = 0, 1, . . . , f − 1}. (3.52)

The Frobenius basis is composed of Fj⃗ =
∏L

l=1 F̃jl with F̃0 = If/
√
f and F̃j (j ̸= 0) given by the

Frobenius basis for Mf other than F̃0. Judgment of Liouvillianity can be done by the positive-
semidefiniteness of the (f2L − 1)-dimensional matrix [an

j⃗k⃗
]⃗j,⃗k∈J\{0⃗}. When we assume the locality

and the extensiveness, we can obtain the following generic property of this matrix.

Theorem 3.3.1. (Bound on the matrix elements a
(m)

j⃗k⃗
)

For a k-local and J -extensive Liouvillian L(t), the matrix elements a
(m)

j⃗k⃗
= Tr[(F †

j⃗
⊗

FT
k⃗

)L(m)
FM ] are bounded by ∣∣∣a(m)

j⃗k⃗

∣∣∣ ≤ (2kJT )m

m+ 1
J ·m! · fL. (3.53)

Proof

We consider a
(m)

j⃗k⃗
for fixed j⃗, k⃗ ̸= 0⃗, and let X ∈ Λd be a domain where Fj⃗ ⊗ F ∗

k⃗
nontrivially acts.

Let us define A
(m)

j⃗k⃗
by

A
(m)

j⃗k⃗
=
∑
j⃗′ ,⃗k′

a
(m)

j⃗′k⃗′

(
Fj⃗′ ⊗ F ∗

k⃗′

)
, (3.54)

where
∑

j⃗′ ,⃗k′ represents the summation over j⃗′, k⃗′ such that Fj⃗′ ⊗ F ∗
k⃗′ nontrivially acts only on

the domain X (there exist at-most (f2 − 1)|X| terms). Then, A
(m)

j⃗k⃗
is the unique term nontrivially

acting just on X in L(m)
f , and hence we obtain

||A(m)

j⃗k⃗
|| ≤ J (m), (3.55)

where J (m) is the extensiveness of the i-th order term L(m)
FM from the definition of the extensiveness.

We note that the bound on the extensiveness of H
(m)
FM in the Floquet-Magnus effective Hamiltonian,

given by Theorem 1.3.2 in Section 1.3.4, is derived without using the hermiticity of H
(m)
FM . This

results in the same bound for the non-hermitian Hamiltonian L(m)
FM given by

J (m) ≤ (2kJ T )m

m+ 1
J ·m!. (3.56)

Using the Schwartz inequality for the Frobenius inner product and the Frobenius norm, we arrive
at ∣∣∣a(m)

j⃗k⃗

∣∣∣ =
∣∣∣〈(Fj⃗ ⊗ F ∗

k⃗

)
, A

(m)

j⃗k⃗

〉
F

∣∣∣ ≤ ∣∣∣∣∣∣(Fj⃗ ⊗ F ∗
k⃗

)∣∣∣∣∣∣
F
·
∣∣∣∣∣∣A(m)

j⃗k⃗

∣∣∣∣∣∣
F
. (3.57)
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Figure 3.1: (a) Possible local terms appearing in L(t) or L(0)
FM under the locality k = 2. (b,c)

Possible local terms appearing in L(t) and L(1)
FM and L(2)

FM under the locality k = 2, respectively. In
(a,b,c), red rectangles (closed within either the real or the fictitious system) represent local terms
caused by the Hamiltonian H(t), while blue ellipses (connecting the two systems) originate from
the dissipation Li(t). Local terms with gray backgrounds, involving both the real and the fictitious
systems, appear as nonzero components in [an

j⃗k⃗
]. (d) Generic form of the matrix [an

j⃗k⃗
] in few-body

or many-body systems with local interactions. It reflects the spread of local interactions seen in
(a), (b), and (c).

Since the Frobenius norm || · ||F is related to the operator norm || · || by ||A||F ≤
√

rankA · ||A||,
we obtain ∣∣∣a(m)

j⃗k⃗

∣∣∣ ≤√rank
(
A

(m)

j⃗k⃗

)
·
∣∣∣∣∣∣A(m)

j⃗k⃗

∣∣∣∣∣∣ ≤ (2kJT )m

m+ 1
J ·m! · fL. □ (3.58)

This theorem says that the matrix elements a
(m)

j⃗k⃗
generally decay with the increasing order m up

to 1/(2kJ T ) = O(ω/J ), as the m-th order term L(m)
FM is suppressed. Thus, in generic interacting

systems, Liouvillianity of L(m)
FM is determined by whether a

(0)

j⃗k⃗
can remain positive-semidefinite

under perturbations of non-positive-semidefinite matrices a
(m)

j⃗k⃗
(m ≥ 1), as well as noninteracting

systems.

However, unlike noninteracting cases, the locality of interactions strongly restricts the form of
the matrix [an

j⃗k⃗
] in interacting cases. Let us consider a k-local Liouvillian L(t). When we divide

Λd into L-site real and fictitious systems, H(t) ⊗ I and I ⊗ H(t)T in L(t) give at-most k-body
interactions closed within real or fictitious systems. On the other hand, the term Li(t) ⊗ Li(t),
originating from the dissipation, appears as at-most k-body interactions bridging the real and the

fictitious systems [See Fig. 3.1 (a)]. The zeroth-order term L(0)
FM, given by the time-average of

L(t), involves at-most k-body interactions as well as L(t). For the first-order, the commutator
[L(t1),L(t2)] in Eq. (3.7) gives at-most (2k − 1)-body interactions coming from local terms in

L(t) with overlaps on at-least one site. In general, the m-th order term L(m)
FM contains at-most

{(m+ 1)k −m}-body interactions originating from the m-tuple commutators of L(t).

Next, we examine how this locality constraint on L(m)
FM affects the form of [an

j⃗k⃗
]. Let nj⃗ denote

the number of l satisfying jl ̸= 0 for j⃗ ∈ J . Then, Eq. (3.20) dictates that nonzero an
j⃗k⃗

ensures

the existence of a (nj⃗ + nk⃗)-body term Fj⃗ ⊗ F ∗
k⃗

in Ln
FM, involving both the real and the fictitious

systems [See Figs. 3.1 (a)-(c)]. Since Ln
FM =

∑n
m=0 L

(m)
FM contains at-most {(n + 1)k − n}-body

interactions, the locality constraint results in

an
j⃗k⃗

= 0 if (nj⃗ + nk⃗) > {(n+ 1)k − n}. (3.59)

We rearrange the labels of the Frobenius basis j⃗ ∈ J in the ascending order of the locality nj⃗ , and
then we obtain the following block-diagonalized form:[

an
j⃗k⃗

]
= Adn ⊕Of2L−dn−1, Adn ∈ Mdn . (3.60)
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The basis of the nontrivial part Adn
is composed of j⃗ ∈ J that satisfies 1 ≤ nj⃗ ≤ (n+ 1)k−n, and

the number of such j⃗ gives its dimension dn. The dimension dn is bounded by

dn ≤ LC(n+1)k−n · (f2)(n+1)k−n ∼ (f2L)(n+1)k−n

{(n+ 1)k − n}!
, (3.61)

which is usually much smaller than the whole size f2L when nk ≪ L. Furthermore, Eq. (3.59)
also indicates that the nontrivial part Adn

becomes the triangular form,

Adn =

(
Ãen B̃

B̃† Odn−en

)
, Ãen ∈ Men : hermitian, (3.62)

where we assume dn ≤ f2L − 1. Here, the dimension en is the number of j⃗ ∈ J such that nj⃗
exceeds ⌈(n+ 1)k/2 − n/2⌉ (⌈x⌉: the ceil function), having the upper bound,

en ≤ LC⌈(n+1)k/2−n/2⌉ · 4⌈(n+1)k/2−n/2⌉. (3.63)

When the interactions are neighboring (The ranges of interactions of H(t) and Li(t) are respectively
k and k/2), the size dn and en respectively reduce to O((f2)(n+1)k−nL) and O((f2)⌈(n+1)k/2−n/2⌉L)
since the Floquet-Magnus expansion Ln

FM also involves neighboring interactions whose range is at-
most (n+ 1)k − n sites. Finally, we summarize the generic form as follows.

Theorem 3.3.2. (Generic form of [an
j⃗k⃗

])

For a k-local time-periodic Liouvillian L(t), the matrix [an
j⃗k⃗

] has the generic form

[an
j⃗k⃗

] =

(
Ãen B̃

B̃† Odn−en

)
⊗Of2L−dn−1 (3.64)

when the order n is smaller than L/k.

The triangular form of the matrix [an
j⃗k⃗

] can be attributed to the spread of local interactions in

the Floquet-Magnus expansion. In fact, each m-th order contribution [a
(m)

j⃗k⃗
] (m ≤ n) appears in

the upper left triangular of the nontrivial part satisfying nj⃗ + nk⃗ ≤ (m + 1)k −m, and spreads

from the upper left to the lower right with increasing m [See Fig. 3.1 (d)]. Thus, the matrix [an
j⃗k⃗

]

generally has a structure where the zeroth-order and the higher-order contributions are not closed
within the same block, which is common with the interacting models LC(t) and LD(t) discussed in
the previous section. Intuitively, the higher-order terms perturb the zero eigenvalues in the block

where [a
(0)

j⃗k⃗
] does not appear, and can shift them negative as discussed in the previous section.

Here, we conclude more rigorously with employing the following theorem derived by technique of
the Schur complements (See Theorem 1.11 in Ref. [155]).

Theorem. Let A denote a hermitian square matrix represented by

A =

(
Ã B̃

B̃† O

)
, (3.65)

with hermitian square matrices Ã = Ã†. Then, the number of positive (negative) eigenvalues of A,
denoted by p(A) (n(A)), satisfies

p(A) ≥ rank(B̃), n(A) ≥ rank(B̃). (3.66)

With the usage of this theorem, we rigorously conclude that the matrix [an
j⃗k⃗

] with the triangular

form always becomes non-positive-semidefinite as long as B̃ ̸= 0 1. Finally, we obtain the following
generic result on Liouvillianity of the Floquet-Magnus expansion.

1We show some trivial exceptions for this result. The first example is a commutative Liouvillian L(t) [153],
which satisfies [L(t1),L(t2)] = 0 for any t1 and t2. In this case, we obtain the exact Floquet-Magnus expansion
by Ln

FM = L0
FM at any order n, preserving the Liouvillianity. The second example is a time-periodic Liouvillian

with time-independent Lindblad operators Li(t) = Li. The first-order van Vleck expansion L1
vV does not break

Liouvillianity since the first-order term L(1)
vV does not include dissipation. For higher-order expansions, Liouvillianity

breaking takes place in general.
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Remark. (Liouvillianity breaking in generic interacting systems)
In generic few-body or many-body dissipative Floquet systems with local interactions, de-
scribed by a time-periodic Liouvillian L(t), the Floquet-Magnus expansion Ln

FM (n ≥ 1)
cannot be a Liouvillian (Liouvillianity breaking).

This result answers the question delivered as the aim of this chapter, “Do dissipative Floquet
systems in the high-frequency regime have static counterparts described by a Liouvillian ?”, in
Section 3.1.2. We clarify that, in generic interacting cases, dissipative Floquet systems in the
high-frequency regime are approximately described by a static operator Ln

FM that cannot be a
Liouvillian. This implies the breakdown of the correspondence between Floquet systems in the
high-frequency regime and static systems under dissipation in contrast to closed cases, where
Floquet systems in this regime are described by a static Hamiltonian.

3.4 Conclusions and outlook of this chapter

Here, we conclude this chapter and provide possible future directions. In this chapter, we con-
sider dissipative Floquet systems described by a time-periodic Liouvillian L(t). While dissipative
Floquet systems are expected to host unique nonequilibrium many-body phenomena with overcom-
ing Floquet-ETH or the heating problem, there are hardly such universal many-body phenomena
found due to the difficulty of the analysis by the competition of dissipation, periodic drive, and
interactions. We focus on the high-frequency regime, which can be addressed by the perturbation
theory in a unified way, and tackle the fundamental question whether or not dissipative Floquet
systems in the high-frequency regime correspond to static dissipative systems. As closed Floquet
systems in the high-frequency regime cannot host unique nonequilibrium phenomena due to the
correspondence with closed static systems, this question is of importance in that it determines the
identity of dissipative Floquet systems in the high-frequency regime.

With the usage of the Floquet-Magnus expansion, the question is interpreted as whether the
Floquet-Magnus expansion Ln

FM is a static Liouvillian or not. The main assertion in this chapter is
that the Floquet-Magnus expansion universally shows Liouvillianity breaking in generic interacting
systems, while noninteracting systems can either preserve or break its Liouvillianity depending on
models. Liouvillianity breaking in generic interacting systems can be attributed to the spread of
local interactions lying in the Floquet-Magnus expansion with the increasing order. As a result,
we clarify that dissipative Floquet systems can host phenomena having no static counterparts
even in the high-frequency regime as opposed to closed cases. We also note that Liouvillianity
breaking of the Floquet-Magnus expansion can be regarded as emergent non-Markovianity in the
stroboscopic dynamics. The Liouvillianity of L(t) means that the time evolution microscopically
reflects Markovianity. Nevertheless, when we focus on the stroboscopic dynamics, the dynamics
effectively looks non-Markov due to Liouvillainity breaking of Ln

FM.
Next, we show some possible future directions. First, it should be interesting to clarify what

kind of non-Markovian dynamics is realized in dissipative Floquet systems. Liouvillianity breaking
is the signature of non-Markovian dynamics. For instance, Ref. [156] confirms that finite memory
time unique to non-Markovian dynamics effectively appears in noninteracting dissipative Floquet
systems under Markovianity, with the numerical calculation of the effective Lindbladian Leff [Eq.
(3.4)]. Thus, identifying the effective non-Markovian dynamics by some ways such as memory time
will be necessary to further characterize interacting dissipative Floquet systems. Second, as one
of the most promising directions, we should seek for what kind of phenomena can be brought by
Liouvillianity breaking. While we clarify that the stroboscopic dynamics is described by a static
operator different from a Liouvillian, it is still unclear how this affects steady states, dynamics,
and observables. For instance, in contrast to closed cases where we can employ the knowledge of
time-independent Hamiltonians for Floquet systems, dissipative Floquet systems fail to have some
properties of time-independent Liouvillians, such as the existence of steady states and the validity
of the trajectory method (See Section 3.5 for the detail). Uncovering phenomena brought by
these properties will contribute to the comprehension on the essential difference between Floquet
systems and static systems. We expect that this direction will also lead to Floquet engineering in
dissipative Floquet systems. Liouvillianity breaking in generic interacting systems implies that we
can engineer steady states or dynamics which are not reproducible in static dissipative systems.
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3.5 Appendix for this chapter

Proof of Theorem 3.2.1

Here, we prove Theorem 3.2.1 for each m-th order term L(m)
FM in a way similar to Ref. [153].

Theorem. (Form of each m-th order term)

Each m-th order term of the Floquet-Magnus expansion, L(m)
FM , is always written in the

form of

L(m)
FM = −i(H(m) ⊗ I − I ⊗ (H(m))T) +

d2−1∑
j,k=1

a
(m)
jk

[
Fj ⊗ F ∗

k − 1

2
(F †

kFj ⊗ I + I ⊗ FT
j F

∗
k )

]
(3.67)

where H(m) ∈ Md and [a
(m)
jk ]d

2−1
j,k=1 ∈ Md2−1 are hermitian.

Proof

The time-periodic Liouvillain L(t), given by Eq. (3.2), satisfies the following conditions at each
time t:

Tr(L(t)[ρ]) = 0, (L(t)[ρ])† = L(t)[ρ†], ∀ρ. (3.68)

The first condition represents that the time evolution operator is trace-preserving, and the second
one represents that L(t) is hermiticity-preserving. Then, the sum, difference, and product of L(t)
satisfy the same properties. For example,

(L(t1)L(t2)[ρ])† = L(t1)[(L(t2)[ρ])†] = L(t1)L(t2)[ρ†] (3.69)

is obtained. Each m-th order term of the Floquet-Magnus expansion L(m)
FM , composed of m-tuple

multi-commutators of L(t), possesses the same properties:

Tr(L(m)
FM [ρ]) = 0, ∀ρ, (3.70)

(L(m)
FM [ρ])† = L(m)

FM [ρ†], ∀ρ. (3.71)

We show that linear operators satisfying Eqs. (3.70) and (3.71) result in Eq. (3.67). The
structure theorem [157] says that a linear operator satisfying Eq (3.71) is always given by

L(m)
FM [ρ] =

∑
i

xiXiρX
†
i , xi ∈ R, Xi ∈ Md. (3.72)

By expanding Xi ∈ Md by the Frobenius basis as Xi =
∑d2

j=1 tijFj , we arrive at

L(m)
FM [ρ] =

d2∑
j,k=1

a
(m)
jk FjρF

†
k , a

(m)
jk =

∑
i

xitijt
∗
ik = (a

(m)
kj )∗, (3.73)

with the hermitian matrix [a
(m)
jk ]d

2−1
j,k=1. Using the fact Fd2 = Id/

√
d and definingM (m) ≡ (a

(m)
d2d2/2d)Id+∑d2−1

j=1 a
(m)
jd2 Fj result in

L(m)
FM [ρ] = M (m)ρ+ρ(M (m))†+

d2−1∑
j,k=1

a
(m)
jk FjρF

†
k = i[Im(M (m)), ρ]+{Re(M (m)), ρ}+

d2−1∑
j,k=1

a
(m)
jk FjρF

†
k .

(3.74)
In the last equality, we have defined two hermitian matrices Re(M) = (M +M†)/2 and Im(M) =
(M −M†)/2i. Then,

Tr(L(m)
FM [ρ]) = Tr[{Re(M (m)), ρ}] +

d2−1∑
j,k=1

a
(m)
jk Tr[FjρF

†
k ] = Tr

2Re(M (m)) +

d2−1∑
j,k=1

a
(m)
jk F †

kFj

 ρ
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should be zero regardless of ρ from Eq. (3.70). Therefore, Re(Mn) is given by

Re(M (m)) = −1

2

d2−1∑
j,k=1

a
(m)
jk F †

kFj , (3.75)

where the hermiticity of Re(M (m)) is ensured by Eq. (3.73). Finally, by defining H(m) =
−Im(M (m)) and using the doubled Hilbert space representation, we obtain Eq. (3.67) □.

As discussed in Section 3.2.1, the Floquet-Magnus expansion LFM is also written in the same

form. By expanding the hermitian term Hn by the Frobenius basis as Hn =
∑d2−1

j=1 hnj Fj (The

j = d2 component is irrelevant in the commutator), we obtain

Ln
FM = −i

d2−1∑
j=1

hnj (Fj ⊗ I − I ⊗ FT
j ) +

d2−1∑
j,k=1

anjk

[
Fj ⊗ F ∗

k − 1

2
(F †

kFj ⊗ I + I ⊗ FT
j F

∗
k )

]
. (3.76)

While the matrix elements anjk are given by Tr[(F †
j ⊗ FT

k )Ln
FM], we can also extract the effective

Hamiltonian terms Hn from Eq. (3.76). We multiply (Fj ⊗ I) from the left and take the trace
with assuming the hermiticity of Fj (This is satisfied in generic spin systems):

Tr[(Fj ⊗ I)Ln
FM] = −ihnj TrI − 1

2

∑
j′k′

anj′k′Tr[FjFk′Fj′ ] · TrI. (3.77)

We obtain the effective Hamiltonian terms Hn =
∑

j h
n
j Fj , characterized by the coefficients

hnj =
i

d
Tr[(Fj ⊗ I)Ln

FM] +
i

2

∑
j′k′

Tr[(F †
j′ ⊗ FT

k′)Ln
FM] · Tr[FjFk′Fj′ ]. (3.78)

We emphasize that Theorem 3.2.1 is proven only using the fact that L(m)
FM is given by the

integrals of polynomial functions of the Liouvillian L(t). Therefore, other types of high-frequency
expansions such as the van Vleck expansion and the Schrieffer-Wolff expansion [158] also satisfy
this theorem, and we can check their Liouvillianity in the same way.

Properties of the Floquet-Magnus expansion breaking Liouvillianity

Here, we discuss generic properties of the Floquet-Magnus expansion Ln
FM in the presence of

Liouvillianity breaking. In closed cases, the Floquet-Magnus expansion Hn
FM is always a static

Hamiltonian, and hence we can employ all the conventional methods for closed static systems. For
instance, when we apply ETH of the static Hamiltonian Hn

FM, we can predict prethermalization
in Floquet systems. Floquet engineering for controlling phases of matter considers topological
phases or ordered phases under the static Hamiltonian Hn

FM. Clarifying the difference between
the Floquet-Magnus expansion breaking Liouvillianity and a static Liouvillian is important to
understand what kind of conventional methods or what kind of novel properties are possible in
Floquet systems.

We employ the spectral decomposition of the hermitian matrix [anjk], which results in anjk =∑d2−1
i=1 x̃it̃ij t̃

∗
jk (x̃i ∈ R). By substituting this into Eq. (3.20) and defining L̃i =

∑d2−1
j=1

√
|x̃i|t̃ijFj ,

we obtain

Ln
FMρ = −i[Hn, ρ] +

∑
i

si

(
L̃iρL̃

†
i − {L̃†

i L̃i, ρ}
)
, si = sgn(x̃i) = ±1, (3.79)

and the approximate time evolution operator eL
n
FMmT . Thus, the Floquet-Magnus expansion break-

ing Liouvillianity is different from a static Liouvillian in that it has some negative signs si in dis-
sipative terms. We note that this difference does not necessarily mean that the Floquet-Magnus
expansion is unphysical. Liouvillianity of L is equivalent to that the time evolution operator eLt

becomes a CPTP map for any t ≥ 0. On the other hand, the approximate one eL
n
FMmT is valid

solely at discrete time t = mT , thereby imposing weaker constraints on Ln
FM.
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With the usage of Eq. (3.79), we obtain the trace-preserving property,

Tr
[
eL

n
FMmT ρ

]
= Tr[ρ], ∀ρ ∈ Md. (3.80)

The approximate dynamics satisfies the conservation of probability as well as that under a static
Liouvillian. However, Eq. (3.79) implies that the Floquet-Magnus expansion can break two impor-
tant generic notions of a static Liouvillian, the existence of nonequilibrium steady states (NESS)
and the validity of the trajectory method.

Existence of NESS.— It is proven from Eq. (3.10) that any static Liouvillian L has at-least
one eigenstate with zero eigenvalue, and that all the eigenvalues of L have non-positive real parts.
Then, the right-eigenstates with zero eigenvalue are called nonequilibrium steady states (NESS)
ρNESS, which appear after sufficiently long-time dynamics due to the other vanishing eigenstates.
The existence of NESS is proven with the usage of Liouvillianity, Eq. (3.10), and hence it is
nontrivial whether it holds under Eq. (3.79) breaking Liouvillianity. Using Eq. (3.79), we can
show that Ln

FM has a left-eigenstate with zero eigenvalue, described by

(Ln
FM)†[Id] = Od. (3.81)

This ensures that Ln
FM has also a right-eigenstate with zero eigenvalue, which survives after long-

time dynamics. However, eigenvalues of Ln
FM do not always have non-positive eigenvalues, and

hence Ln
f which breaks Liouvillianity does not ensure the existence of NESS in general.

In our models Lα(t) (α = A,B,C,D), NESS becomes ill-defined under Ln
FM (n ≥ 1) when the

frequency is comparable to the energy scale, although such an anomalous effect is not physically
accessible. However, we expect that, when the NESS of the Liouvillian L0

f is degenerated or the

Liouvillian gap ∆ = min{Reλ ̸= 0 | λ : eigenvalue of L0
f} is small enough, NESS will disappear in

the high-frequency regime. While such a situation where some eigenstates become divergent might
be unphysical, we expect some anomalous behaviors related to Liouviilianity breaking around that
situation.

Validity of trajectory method.— Next, we discuss the validity of trajectory method, with which
we can efficiently calculate the nonequilibrium dynamics [159]. In static Liouvillian systems, the
Lindblad equation is rewritten as

∂tρ = −i(Heffρ− ρH†
eff) +

∑
i

LiρL
†
i (3.82)

with a non-hermitian Hamiltonian Heff = H − (i/2)
∑

i L
†
iLi. A single trajectory dynamics is

a stochastic dynamics composed of non-unitary time evolution under Heff and quantum jumps
by Li. Let us assume the initial state ρ0 = |ψ0⟩ ⟨ψ0| and consider the dynamics of |ψ0⟩ for
infinitesimal duration δt. Up to the first order of δt, the state is stochastically updated by
exp(−iHeffδt) |ψ0⟩ /

√
1 − p with the probability 1−p (non-hermitian dynamics) or by Li |ψ0⟩ /

√
pi

with the probability pi (quantum jumps). Here, the propabilities pi and p are given by pi =

⟨ψ0|L†
iLi|ψ0⟩ and p = 1 −

∑
i pi respectively. A series of states |ψ(t)⟩ obtained by repeating

this procedure m times up to t = mδt is called a trajectory. By taking the statistical ensemble
of |ψ(t)⟩ ⟨ψ(t)| over many trajectories with small δt, we can reproduce the density operator ρ(t)
obeying the Lindblad equation Eq. (3.82). We note that all the eigenvalues of Heff have nonpositive
imaginary parts, indicating that the non-unitary time evolution by Heff is always lossy. The lost
probability due to this non-unitary dynamics corresponds to the probabilities of quantum jumps
by Li.

On the other hand, if Ln
FM breaks Liouvillianity, the corresponding non-hermitian Hamiltonian

becomes Heff = H − (i/2)
∑
siL

†
iLi (si = ±1) where some of {si} are −1. Thus, Heff can

have eigenvalues with positive imaginary parts, and then stochastic dynamics composed of the
non-hermitian Hamiltonian time evolution and quantum jumps becomes ill-defined (some of the
probabilities pi become negative). This represents the breakdown of the trajectory method in the
absence of Liouvillianity for Ln

f . Each trajectory of the dissipative dynamics is also often in the
context of realizing non-hermitian physics under Heff [160]. The Floquet-Magnus expansion Ln

FM

which breaks Liouvillianity can provide broader non-hermitian Hamiltonians compared to static
Liouvillians, maybe leading to one of the advantages in Floquet systems.



80CHAPTER 3. EMERGENT NON-MARKOVIANITY IN DISSIPATIVE FLOQUET SYSTEMS



Chapter 4

Exact Floquet quantum
many-body scars under Rydberg
blockade

In the previous chapters, we explore Floquet many-body systems that violate some assumptions of
Floquet-ETH or the heating problem to find nontrivial phenomena. Chapter 2 considers long-lived
quasi-steady states which appear before the trivial steady states, and Chapter 3 deals with dissi-
pative systems which violate the isolation assumed in Floquet-ETH. On the other hand, Floquet-
ETH is an empirical law numerically and experimentally confirmed in closed nonintegrable Floquet
many-body systems, and hence it has been still a significant task to seek for nontrivial steady states
when all the assumptions of Floquet-ETH are satisfied.

In this chapter, we explore closed nonintegrable Floquet systems, expected to satisfy Floquet-
ETH. Here, using quantum many-body scars (QMBS) in static systems, we find a series of Floquet
setups rigorously violating Floquet-ETH. We consider a periodically-driven one-dimensional chain
under Rydberg blockade, and prove the existence of athermal Floquet eigenstates, dubbed Floquet
QMBS eigenstates. Our model becomes a counterexample to Floquet-ETH, giving the possibility
of nontrivial phenomena even in nonintegrable Floquet systems.

4.1 Periodically-driven model under Rydberg blockade

4.1.1 Setups

The aim of this chapter is to construct nonintegrable counterexamples to Floquet-ETH. In other
words, we will find a series of nonintegrable time-periodic Hamiltonian H(t), such that there exists
a eigenstate of the Floquet operator Uf = U(T ), denoted by |ε⟩, satisfying

⟨ε|O|ε⟩ ≠
1

dim(H)
Tr[O] (4.1)

for a certain local operator O. The right hand side is the expectation value of infinite temperature
states ρ∞ = I/dim(H), and this inequality indicates the breakdown of Floquet-ETH (See Section
1.3.3 for the detail). Since counterexamples to ETH are referred to as hosting quantum many-body
scars (QMBS), we call their Floquet versions Floquet QMBS.

For simplicity, we first consider a binary drive described by the following Hamiltonian H(t) =
H(t+ T ):

H(t) =

{
H1 0 ≤ t < T1

H2 T1 ≤ t < T1 + T2 = T.
(4.2)

In that case, the Floquet operator Uf is given by

Uf = e−iH2T2e−iH1T1 . (4.3)

81
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For the binary drive, what distinguishes Floquet systems from static systems is to assume the
incommutability

[H1, H2] ̸= 0. (4.4)

In order to construct nonintegrable Floquet models showing Floquet QMBS, we take a strategy in
which we employ two different static Hamiltonians H1 and H2 showing static QMBS.

To achieve the above strategy, we first consider static QMBS that can be candidates for the
binary drive. Here, we focus on the PXP model realized on a one-dimensional system under
Rydberg blockade as the first candidate, and construct other static models inequivalent to the PXP
model, named the PY4P model and the PZ4P model. Following this strategy for Floquet QMBS,
the rest of this chapter is organized as follows. In Section 4.1.2, we discuss some properties of one-
dimensional systems under under Rydberg blockade, which are platforms of both the PXP model
and the time-periodic model showing Floquet QMBS. In Sections 4.1.3 and 4.1.4, we introduce
some static models for the binary drive. The construction of Floquet QMBS begins from Section
4.2. We consider the binary drive composed of different static Hamiltonians hosting QMBS, and
mainly focus on two key ingredients for the model to be a nontrivial counterexample to Floquet-
ETH, “nonintegrability” and “existence of eigenstates inequivalent to infinite-temperature states.”
In Section 4.3, we generalize the result, and construct generic time-periodic drives other than the
binary drive, which host Floquet QMBS.

4.1.2 Preliminary: One-dimensional system under Rydberg blockade

First, we discuss one-dimensional systems under Rydberg blockade. We consider a L-site chain
where each site has two degrees of freedom |↑⟩ and |↓⟩ under OBC. Throughout this chapter,
we consider Rydberg atoms, which have been developed as programmable quantum simulators
[161, 162]. Then, the two states |↑⟩ and |↓⟩ respectively represent the Rydberg state and the
ground state, where the former is a highly-excited state with a large quantum number n ∼ 100.
The dimension of the whole Hilbert space HL is 2L. In Rydberg atom systems, two atoms in
Rydberg states feel the van der Waals repulsive interactions Vij ∼ C/|ri − rj |6 (C > 0), which
are controllable by arranging the atom-atom distance with the optical lattice. In the limit of
the extremely strong repulsive interactions, pairs of neighboring atoms in Rydberg states are
prohibited, referred to as Rydberg blockade. In other words, some configurations which include
adjacent excited atoms |↑↑⟩ are excluded from the whole Hilbert space HL. In one-dimensional
systems under Rydberg blockade, we consider such a constrained Hilbert space HRyd,L instead of
the whole one HL.

Both the PXP model and the time-periodic models showing QMBS are defined on the con-
strained space HRyd,L. Before going to QMBS and Floquet QMBS, we briefly discuss some
properties of HRyd,L. Let DL denote the dimension of HRyd,L, giving the number of possible
configurations prohibiting adjacent pairs of ↑. Under OBC, the number of such configurations
satisfies the following recursive relation:

D1 = 2, D2 = 3, DL+2 = DL+1 + DL. (4.5)

This is nothing but the definition of the Fibonacci sequence, and hence we obtain

DL =
1√
5

{
ϕL+2 − (1 − ϕ)L+2

}
, ϕ =

1 +
√

5

2
. (4.6)

Next, with the dimension DL, we derive some properties of infinite temperature states ρ∞, which
are determined only from the constrained Hilbert space HRyd,L.

Local observables

The expectation value of a certain observable O at infinite temperature is given by

⟨O⟩T=∞ ≡ 1

DL
TrHRyd,L

[O] =
1

DL

∑
σ⃗∈KL

⟨σ⃗|O|σ⃗⟩ , (4.7)

where KL represents a set of classical spin configurations of an L-site chain which includes no
adjacent excited states |↑↑⟩. The basis {|σ⃗⟩} is composed of eigenstates of Pauli z operators,
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satisfying σz
i |σ⃗⟩ = σi |σ⃗⟩ with σ⃗ = (σ1, . . . , σL) ∈ KL. Here, we focus on the expectation values of

the Pauli operators σx
i and σz

i , and that of the domain wall density Db = (1 − σz
2b−1σ

z
2b)/2.

Since the operator σx
i has only off-diagonal elements in the basis {|σ⃗⟩}σ⃗∈KL

, we obtain

⟨σx
i ⟩T=∞ =

1

DL

∑
σ⃗∈KL

⟨σ⃗|σx
i |σ⃗⟩ = 0. (4.8)

Let us consider the expectation value of σz
i , which is diagonal in the basis {|σ⃗⟩}σ⃗∈KL

. When we
fix the i-th site’s state by |↑⟩ ( or |↓⟩ ), the number of possible configurations of the other sites
excluding neighboring ↑↑ is Di−2 × DL−i−1 ( or Di−1 × DL−i ). This results in the following
expectation value for finite and infinite systems:

⟨σz
i ⟩T=∞ =

1

DL

∑
σ⃗∈KL

⟨σ⃗|σz
i |σ⃗⟩ =

Di−2DL−i−1 −Di−1DL−i

DL
, lim

L→∞

〈
σz
L/2

〉
T=∞

= − 1√
5
. (4.9)

In a similar way, we obtain the expectation value of the domain wall density Db by counting the
possible configurations σ⃗ as follows:

⟨Db⟩T=∞ =
1

DL

∑
σ⃗∈KL

⟨σ⃗|Db|σ⃗⟩ =
D2b−3D2Lb−2b + D2b−2D2Lb−2b−1

D2Lb

, lim
Lb→∞

〈
DLb/2

〉
T=∞ =

2√
5ϕ
.

(4.10)
Here, Lb ≡ L/2 represents the number of pairs in the system.

We rigorously derive expectation values of some local observables in infinite temperature states,
⟨σx

i ⟩T=∞, ⟨σz
i ⟩T=∞, and ⟨Db⟩T=∞. These values are important to confirm the inequivalence be-

tween eigenstates and infinite temperature states. We will see that the Floquet operator of the
model has some eigenstates |ε⟩ with the expectation values ⟨ε|O|ε⟩ (O = σx

i , σ
z
i , Db), different from

those at infinite temperature.

Entanglement entropy

For a certain pure state |ψ⟩, whether or not it is thermal can be detected by its entanglement
entropy. To see the similarity and difference between the eigenstates |ε⟩ and (thermal) infinite
temperature states in terms of entanglement, we hereby introduce the entanglement entropy of
the infinite temperature states. The infinite temperature state of the L-site system is given by
ρ∞ = IDL

/DL. Let the left half (the right half) of the system A (B), and then we define the
entanglement entropy at infinite temperature S∞ by

S∞ ≡ −TrA[ρA∞ log ρA∞] = −TrB [ρB∞ log ρB∞], (4.11)

ρA∞ ≡ TrB [ρ∞], ρB∞ ≡ TrA[ρ∞]. (4.12)

This definition is chosen so that it can be operationally equivalent to the entanglement entropy for
pure states, and we note that the entanglement entropy is not available for generic mixed states
and other partitions A,B. From the above definition, we obtain the reduced density matrix as

ρA∞ =
1

DL

DL/2−1

∑
σ⃗∈K↑

|σ⃗⟩ ⟨σ⃗| + DL/2

∑
σ⃗∈K↓

|σ⃗⟩ ⟨σ⃗|

 . (4.13)

Here, we define K↑ (K↓) by a set of configurations of L/2 sites having ↑ (↓) at the right edge. Using
the equations |K↑| = DL/2−2 and |K↓| = DL/2−1, we obtain S∞ as follows:

S∞ = −
DL/2−2DL/2−1

DL
log

(DL/2−1

DL

)
−

DL/2−2DL/2−1

DL
log

(DL/2−1

DL

)
. (4.14)

In particular, when we focus on the thermodynamic limit L→ ∞, it obeys the volume law described
by

lim
L→∞

S∞

L
=

1

2
log ϕ. (4.15)

Thus, infinite temperature states, which are thermal, have the volume-law entanglement entropy
S∞ ∼ O(L). We will numerically calculate the entanglement entropy of all the eigenstates of the
Floquet operator, and compare them with infinite temperature states.
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4.1.3 Preliminary: Static PXP model

To construct a periodically-driven model showing Floquet QMBS, we employ multiple static models
showing static QMBS, inequivalent to each other. Here, we introduce the PXP model as the first
candidate of the static models [46]. We assume the even system size L and OBC. As briefly
discussed in Section 1.3.2, the PXP model is given by

HPXP =

L−1∑
i=2

Pi−1σ
x
i Pi+1 + σx

1P2 + PL−1σ
x
L, Pi = (I − |↑⟩ ⟨↑|)i, (4.16)

defined on the constrained Hilbert space HRyd,L. For the later discussion, we focus on the exact
QMBS eigenstates of the PXP model. We can rigorously derive some eigenstates of the PXP model
as follows [47].

Theorem 4.1.1. (Exact QMBS eigenstates of the PXP model [47])
Let us define four matrix product states |Γx

αβ⟩ (α, β = 1, 2) by

|Γx
αβ⟩ =

∑
σ⃗∈KL

u⃗†αB
σ1Cσ2 . . . BσL−1CσL u⃗β |σ⃗⟩ (4.17)

B↑ =
√

2

(
0 0 0
1 0 1

)
, B↓ =

(
1 0 0
0 1 0

)
, (4.18)

C↑ =
√

2

 1 0
0 0
−1 0

 , C↓ =

 0 −1
1 0
0 0

 , (4.19)

u⃗1 =
1√
2

(
1
1

)
, u⃗2 =

1√
2

(
1
−1

)
. (4.20)

Then, these four states become exact eigenstates of the PXP Hamiltonian HPXP as

HPXP |Γx
11⟩ = 0, HPXP |Γx

12⟩ =
√

2 |Γx
12⟩ ,

HPXP |Γx
22⟩ = 0, HPXP |Γx

21⟩ = −
√

2 |Γx
21⟩ .

(4.21)

While the original proof of this theorem is given in Ref. [47], we provide another simple proof
in Appendix of this chapter (See Section 4.5). In Eq. (4.17), we can replace the summation over
KL by the one over all the configurations of σ⃗, since configurations which include neighboring up
states ↑↑ have no contribution due to B↑C↑ = O and C↑B↑ = O.

With the numerical calculation of the level statistics, the PXP model is considered to be
nonintegrable [46], thereby expected to satisfy ETH. Nevertheless, as discussed later, the four
eigenstates |Γx

αβ⟩ are inequivalent to thermal equilibrium states in terms of some local observable,
which indicates the breakdown of ETH. These four eigenstates, having athermal properties, |Γx

αβ⟩
are called exact QMBS eigenstates while other typical eigenstates are thermal as expected from
ETH.

4.1.4 Static PY4P model and PZ4P model

In order to realize Floquet QMBS, we prepare another static model H2 showing static QMBS,
which is inequivalent to the PXP model in that [HPXP, H2] ̸= 0 is satisfied. Although there exist
various types of static QMBS, a tactless choice without considering the property of the PXP model
leads to the satisfaction of Floquet-ETH. As promising candidates for realizing Floquet-QMBS with
the breakdown of Floquet-ETH, we construct two static models, dubbed the PY4P model and the
PZ4P models.

PY4P model

We first introduce the PY4P model, showing static QMBS. We assume that the number of the
sites L is a multiple of 4. Then, the PY4P Hamiltonian, defined on the constrained Hilbert space
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HRyd,L, is given by

HPY4P =

L−1∑
i=2

ciPi−1σ
y
i Pi+1 + σy

1P2 + PL−1σ
y
L, (4.22)

ci =
√

2 cos

(
iπ

2
− π

4

)
. (4.23)

This model possesses quadruple lattice-periodicity, different from the PXP model. In a similar way
to the PXP model, we derive exact eigenstates of the PY4P model as follows.

Theorem 4.1.2. (Exact QMBS eigenstates of the PY4P model)
We define four states |Γy

αβ⟩ (α, β = 1, 2) by

|Γy
αβ⟩ =

∑
σ⃗

v⃗†αB
σ1Cσ2 . . . BσL−1CσL v⃗β |σ⃗⟩ , (4.24)

v⃗1 =
1√
2

(
1
i

)
, v⃗2 =

1√
2

(
1
−i

)
, (4.25)

where Bσ and Cσ are given by Eqs. (4.18) and (4.19). Then, these are exact eigenstates of
the PY4P Hamiltonian HPY4P, that is,

HPY4P |Γy
11⟩ = 0, HPY4P |Γy

12⟩ =
√

2 |Γy
12⟩ ,

HPY4P |Γy
22⟩ = 0, HPY4P |Γy

21⟩ = −
√

2 |Γy
21⟩ .

(4.26)

Proof

We provide the proof of Eq. (4.26). Let us consider the projection to the constrained Hilbert space
HRyd,L, given by

PRyd,L =

L−1∏
i=1

(1 − |↑↑⟩ ⟨↑↑|)i,i+1 . (4.27)

In the constrained Hilbert space, each term of the PY4P Hamiltonian is represented by

PRyd,LPi−1σ
y
i Pi+1PRyd,L = iPRyd,L(1 − |↑⟩ ⟨↑|)i−1(|↓⟩ ⟨↑| − |↑⟩ ⟨↓|)i(1 − |↑⟩ ⟨↑|)i+1PRyd,L

= iPRyd,L(|↓⟩ ⟨↑| − |↑⟩ ⟨↓|)iPRyd,L. (4.28)

in the bulk. The edge terms σy
1P2 and PL−1σ

y
L give the same results. Thus, we should show that

the four states |Γy
αβ⟩ are the eigenstates of the PY4P Hamiltonian in the constrained Hilbert space,

given by

PRyd,LHPY4PPRyd,L =

L∑
i=1

ciPRyd,Lσ
y
i PRyd,L, ci =

√
2 cos

(
iπ

2
− π

4

)
. (4.29)

On the other hand, the four states |Γy
αβ⟩ given by Eq. (4.24) can be written in the following

form:

|Γy
αβ⟩ = v⃗†αB

′
1C

′
2 . . . B

′
L−1C

′
Lv⃗β , (4.30)

B′
i =

(
|↓⟩i 0 0√
2 |↑⟩i |↓⟩i

√
2 |↑⟩i

)
, C ′

i =

 √
2 |↑⟩i − |↓⟩i
|↓⟩i 0

−
√

2 |↑⟩i 0

 . (4.31)

Considering the relations B↑C↑ = 0 and C↑B↑ = 0 from Eqs. (4.18) and (4.19), the states |Γy
αβ⟩ do

not include ↑↑, which ensures PRyd,L |Γy
αβ⟩ = |Γy

αβ⟩. Let us compute the action of PRyd,Lσ
y
i PRyd,L



86CHAPTER 4. EXACT FLOQUETQUANTUMMANY-BODY SCARS UNDER RYDBERG BLOCKADE

on |Γy
αβ⟩. For an odd integer i, we obtain

PRyd,Lσ
y
i PRyd,L |Γy

αβ⟩ = PRyd,Lv⃗
†
αB

′
1 . . . C

′
i−1(σy

i B
′
iC

′
i+1)B′

i+2 . . . C
′
Lv⃗β

= PRyd,Lv⃗
†
αB

′
1 . . . C

′
i−1F

y
i,i+1B

′
i+2 . . . C

′
Lv⃗β , (4.32)

F y
i,i+1 =

(
0 i |↑↓⟩i,i+1

−i |↑↓⟩i,i+1 −
√

2 |↓↓⟩i,i+1

)
= Y B′

iC
′
i+1 −BiỸ C

′
i+1, (4.33)

Y =
1√
2

(
0 −i
i 0

)
, Ỹ =

1√
2

 0 −i 0
−i 0 −2i
0 2i 0

 . (4.34)

In a similar way, for an even integer i,

PRyd,Lσ
y
i PRyd,L |Γy

αβ⟩ = PRyd,Lv⃗
†
αB

′
1 . . . C

′
i−2(B′

i−1σ
y
i C

′
i)B

′
i+1 . . . C

′
Lv⃗β

= PRyd,Lv⃗
†
αB

′
1 . . . C

′
i−2F̃

y
i−1,iB

′
i+1 . . . C

′
Lv⃗β , (4.35)

F̃ y
i−1,i =

( √
2i |↓↓⟩i−1,i i |↓↑⟩i−1,i

−i |↓↑⟩i−1,i 0

)
= −B′

i−1Ỹ C
′
i −B′

i−1C
′
iY (4.36)

is obtained. When the size of the system L is a multiple of 4, the alternately varying coefficients
{ci}Li=1 (c1 = c5 = . . . = 1, c2 = c6 = . . . = −1, c3 = c7 = . . . = −1, c4 = c8 = . . . = 1) lead to

the cancellation of the middle terms in
∑L

i=1 ciPRyd,Lσ
y
i PRyd,L |Γy

αβ⟩ under the expansion of F y
i,i+1

and F̃ y
i−1,i by Eqs. (4.33) and (4.36). As a result, we arrive at

PRyd,LHPY4PPRyd,L |Γy
αβ⟩ = PRyd,Lv⃗

†
α(Y B′

1C
′
2 . . . B

′
L−1C

′
L −B′

1C
′
2 . . . B

′
L−1C

′
LY )v⃗β

=
1√
2

{
(−1)α−1 − (−1)β−1

}
|Γx

αβ⟩ , (4.37)

where we have used the fact that the vectors v⃗α (α) [See Eq. (4.25)] are eigenvectors of Y [See Eq.
(4.34)] with eigenvalues (−1)α−1. This completes the proof of Eq. (4.26). □

The PY4P Hamiltonian HPY4P is related to the PXP Hamiltonian HPXP by a unitary trans-
formation as follows:

HPY4P = UZHPXPU†
Z , HPXP = −UZHPY4PU

†
Z , UZ = exp

(
−iπ

4

L∑
i=1

ciσ
z
i

)
. (4.38)

Thus, properties of the PXP model as a static QMBS are inherited to the PY4P model, including
ithe nonintegrability, the violation of ETH, and the anomalously long athermal oscillation from a
Z2-ordered state.

PZ4P model

We introduce another static model dubbed the PZ4P model. The PZ4P Hamiltonian under OBC
is defined by

HPZ4P = −
√

2

(
L−1∑
i=2

ciPi−1QiPi+1 +Q1P2 + PL−1QL

)
, (4.39)

Qi = Ii − Pi = (1 + σz
i )/2, (4.40)

where the coefficient ci is given by Eq. (4.23). As well as the PY4P model, it has the following
four eigenstates which satisfy

HPZ4P |Γz
11⟩ = 0, HPZ4P |Γz

12⟩ =
√

2 |Γz
12⟩ ,

HPZ4P |Γz
22⟩ = 0, HPZ4P |Γz

21⟩ = −
√

2 |Γz
21⟩ ,

(4.41)
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where the four eigenstates |Γz
αβ⟩ (α, β = 1, 2) are given by

|Γz
αβ⟩ =

∑
σ⃗

w⃗†
αB

σ1Cσ2 . . . BσL−1CσLw⃗β |σ⃗⟩ , w⃗1 =

(
1
0

)
, w⃗2 =

(
0
1

)
. (4.42)

The derivation is done in the same way as that for the PY4P model. While the PXP model and
the PY4P model are referred to as static QMBS, the PZ4P model is not due to its integrability. It
has a macroscopic number of conserved quantities {σz

i }Li=1, satisfying [σz
i , HPZ4P] = 0. Although

the PZ4P model is a trivial model in terms of QMBS, the four eigenstates |Γz
αβ⟩ gives properties

similar to |Γx
αβ⟩ and |Γy

αβ⟩. Thus, we refer to |Γz
αβ⟩ as the exact QMBS eigenstates. The PZ4P

model can provide a variety of nontrivial Floquet QMBS when combined with the PXP model and
the PY4P model, as we will discuss later in Section 4.3.

4.1.5 Local observables in the exact QMBS eigenstates

Let us calculate expectation values of some local observables in the exact QMBS eigenstates |Γν
αβ⟩

(ν = x, y, z). The results are used to confirm that the PXP model and the PY4P model vio-
late ETH, giving static QMBS. In addition, they are also necessary for rigorously concluding the
violation of Floquet-ETH in the periodically-driven model.

To compute local observables, we first introduce the block description, where the b-th block is
composed of the (2b − 1)-th and the 2b-th sites for b = 1, 2, . . . , Lb (Lb = L/2). Each block has
three states l =↑↓, o =↓↓, r =↓↑, while ↑↑ is excluded by Rydberg blockade. Then, the exact
QMBS eigenstates are rewritten in the following form,

|Γν
αβ⟩ =

∑
s⃗

(u⃗να)†As1 . . . AsLb u⃗νβ |s⃗⟩ , (4.43)

Al =

(
0 0

0 −
√

2

)
, Ao =

(
0 −1
1 0

)
, Ar =

( √
2 0

0 0

)
, (4.44)

with u⃗xα = u⃗α, u⃗yα = v⃗α, and u⃗zα = w⃗α. The vector s⃗ = (s1, . . . , sLb
) designates the basis of each

block by sb = l, o, r. The relation ArAl = 0 indicates the exclusion of ↑↑.
We consider a local observable Ob, acting on the b-th block, and its expectation value. Then,

we define

F s =
∑

s′=l,o,r

(Ob)ss′A
s′ . (4.45)

The matrix elements ⟨Γν
αβ |Ob|Γν

α′β′⟩ can be computed by

⟨Γν
αβ |Ob|Γν

α′β′⟩ =
∑
s⃗

{(u⃗να)†As1 . . . AsLb u⃗νβ}∗{(u⃗να′)†As1 . . . F sb . . . AsLb u⃗νβ′}

= (U⃗ν
αα′)†(EAA)bEAF (EAA)Lb−b−1(U⃗ν

ββ′), (4.46)

EAA ≡
∑
s

(As)∗ ⊗As =


2 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 2

 , (4.47)

EAF ≡
∑
s

(As)∗ ⊗ F s, U⃗ν
αα′ ≡ (u⃗να)∗ ⊗ u⃗να′ . (4.48)

The norm and the overlap of {|Γν
αβ⟩}α,β=1,2 are evaluated by setting Ob = Ib, which results in

⟨Γν
11|Γν

11⟩ = ⟨Γν
22|Γν

22⟩ =
1

2
(3Lb + 1), ⟨Γν

12|Γν
12⟩ = ⟨Γν

21|Γν
21⟩ =

1

2
(3Lb − 1), (4.49)

⟨Γν
11|Γν

12⟩ = ⟨Γν
11|Γν

21⟩ = ⟨Γν
22|Γν

12⟩ = ⟨Γν
22|Γν

21⟩ = ⟨Γν
12|Γν

21⟩ = 0, ⟨Γν
11|Γν

22⟩ = 1 (4.50)

for even Lb and ν = x, y, z. Thus, under the renormalization by |Γ̃ν
αβ⟩ ≡ |Γν

αβ⟩ /|| |Γν
αβ⟩ ||, the four

eigenstates |Γ̃ν
αβ⟩ (α, β = 1, 2) become orthonormal with one another.
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Here, we focus on the Pauli operators σx
i , σz

i and the domain wall density Db. The Pauli x [z]
operator for the b-th block is represented by Ob = σx

2b−1 + σx
2b = (|l⟩ ⟨o| + |r⟩ ⟨o| + h.c.)b [Ob =

σx
2b−1 + σx

2b = −2(|o⟩ ⟨o|)b]. Using Eqs. (4.45)-(4.50), their matrix elements in the renormalized

eigenstates |Γ̃x
αβ⟩, which include their expectation values, are given by

lim
L→∞

L∑
i=1

⟨Γ̃x
αβ |σx

i |Γ̃x
α′β′⟩ =

1√
2
{(−1)α−1 − (−1)β−1}δαα′δββ′ , (4.51)

lim
L→∞

1

L

L∑
i=1

⟨Γ̃x
αβ |σz

i |Γ̃x
α′β′⟩ = −1

6
δαα′δββ′ , (4.52)

in the thermodynamic limit. The matrix elements in |Γ̃ν
αβ⟩ for ν = y, z are computed in the same

way. On the other hand, the domain wall density, given byDb = (1−σz
2b−1σ

z
2b)/2 = (|l⟩ ⟨l|+|r⟩ ⟨r|)b,

has the following matrix elements,

lim
Lb→∞

⟨Γ̃ν
αβ |Db|Γ̃ν

α′β′⟩ =
2

3
δαα′δββ′ , ν = x, y, z. (4.53)

We compare these results with the infinite-temperature values in Section 4.2.2. We focus on the
PXP model HPXP and one of the renormalized exact QMBS eigenstates, |Γ̃x

11⟩, which has zero en-
ergy ⟨Γ̃x

11|HPXP|Γ̃x
11⟩ = 0. On the other hand, when the thermal state ρβ = e−βHPXP/Tr[e−βHPXP ]

has zero energy with satisfying Tr[HPXPρβ ] = 0, the temperature 1/β should be infinite due

to Tr[HPXP] = 0. Then, ETH predicts that the eigenstate |Γ̃x
11⟩ should be indistinguishable

from the infinite temperature state ρ∞ in any local observable. However, considering the infinite-
temperature results Eqs. (4.9) and (4.10), the eigenstate |Γ̃x

11⟩ has expectation values different from
those of ρ∞ in the local observables σx

i and Db, suggesting the breakdown of ETH. In the same
way, the PY4P model also possesses eigenstates which are distinguishable from the corresponding
thermal states, exemplifying a static model violating ETH, referred to as QMBS.

4.2 Exact Floquet quantummany-body scars (Floquet QMBS)

In this section, we construct a periodically-driven model composed of static Hamiltonians showing
QMBS, and prove that it shows Floquet QMBS, exemplifying a counterexample to Floquet-ETH.

We consider a L-site chain, where L is a multiple of 4. Based on the strategy in Section 4.1.1,
we focus on the following time-periodic Hamiltonian,

H(t) =

{
HPXP 0 ≤ t < T1

HPY4P T1 ≤ t < T1 + T2 = T,
(4.54)

defined on the constrained Hilbert space HRyd,L. The Floquet operator is written by

Uf = e−iHPY4PT2e−iHPXPT1 . (4.55)

Here, T1 and T2 are arbitrary except for the case where either one of them is zero (there is no need
for fine-tuning of them).

We specify the symmetries underlying in the model. First, the model has an inversion symmetry
I, which maps each i-th site to the (L − i + 1)-th site. Since both the PXP and PY4P models
are invariant under I, the Floquet operator satisfies [I, Uf ] = 0, which dictates that Uf can be
block-diagonalized in the eigenvalues of I = ±1. Second, a nonlocal chiral symmetry C, designated
by

CUfC† = U†
f , C =

(∏
i

σz
i

)
eiHPY4PT2 , (4.56)

is also respected. The chiral symmetry C makes the spectrum of quasienergy {ε} symmetric to
ε = 0. In addition, in the case of T1 = T2, the model also respects a time-reversal symmetry
(TRS), described by

UZU
∗
fU

†
Z = U†

f , UZ = exp

(
−iπ

4

L∑
i=1

ciσ
z
i

)
, (4.57)
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Figure 4.1: (a) Level statistics of the PXP model (the yellow line) and the periodically driven
model (the red and blue lines). In the Floquet case, it rapidly approaches a value close to 0.6
(T1 = 9.5, T2 = 0.5) or 0.53 (T1 = T2 = 5, with TRS) as the system size grows. Both results
imply the nonintegrability of the driven model. (b)-(d): Entanglement entropy per length for each
Floquet eigenstate of a different system size (b) L = 8, (c) L = 12, and (d) L = 20. We use
T1 = 9.5 and T2 = 0.5 as the parameters. The blue (lower solid) lines, representing the mean
values of entanglement entropy, approach the red (upper solid) lines which denote the one at
infinite temperature as the system size increases. The four marked states designated by the arrows
(two points are degenerated at ε = 0) remain low-entangled since they are exact scar eigenstates
of the periodically driven model within the embedded subspace S.

This comes from the fact that the PY4P model is unitarily equivalent to the PXP model [See Eq.
(4.38)].

Floquet-ETH is believed to be valid for nonintegrable systems, dictating that any eigenstate
of the Floquet-operator becomes equivalent to infinite temperature states. Thus, in the following
subsections, we examine the nonintegrablity of the model and explore the existence of athermal
eigenstates of the Floquet operator, so that the model can be regarded as a nontrivial example
rigorously violating Floquet-ETH.

4.2.1 Spectrum and entanglement as a signature of nonintegrablity

Here, we numerically confirm that the Floquet system described by the Hamiltonian Eq. (4.54) is
nonintegrable. As discussed in Section 1.3.3, we compute the level spacing ratio

rn = min

(
sn
sn+1

,
sn+1

sn

)
, sn = εn+1 − εn. (4.58)

from the quasienergy spectrum {εn}n, determined by the Floquet operator Uf . Considering the
inversion symmetry I, we pick up the eigenstates |ε⟩ in the inversion-plus sector, satisfying I |ε⟩ =
|ε⟩, and compute rn from them. The level statistics {rn}n determines whether or not the model is
integrable.

Figure 4.1 shows the numerical results calculated by the exact diagonalization for finite-size
systems. The red solid line shows the spectrally-averaged value r = ⟨rn⟩ in the case of T1 = 9.5,
T2 = 0.5 without TRS. As the system size L increases, it approaches the Circular Unitary Ensemble
(CUE) value 0.6, supporting that the model is nonintegrable. On the other hand, the time-reversal
symmetric case with T1 = T2 = 5, has the average r approaching 0.53, as described by the blue solid
line. This is the Circular Orthogonal Ensemble (COE) value, which ensures the nonintegrability
of systems with TRS.

We also demonstrate the nonintegrability in terms of entanglement entropy of each Floquet
eigenstate. Entanglement entropy of a given state |ψ⟩ is defined by

S[ψ] = −TrA[ρA log ρA], ρA = TrB |ψ⟩ ⟨ψ| , (4.59)

where the subsystem A (B) represents the left (right) half of the system. We numerically compute
entanglement entropy for all the eigenstates of the Floquet operator by the exact diagonalization.
Figures 4.1 (b)-(d) show the results for the different system size L = 8, 12, 20. Each yellow point
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shows quasienergy and entanglement entropy of each eigenstate |ε⟩, and the averaged value of the
entanglement entropy is represented by the blue solid line. We see that, with the increasing system
size, almost all the eigenstates become featureless in terms of entanglement entropy with approach-
ing the infinite temperature value computed in Section 4.1.2 (the red solid line). This behavior,
showing the volume law of entanglement entropy, is consistent with other generic nonintegrable
systems. We note that there exist four eigenstates which do not obey the volume law, designated
by the black arrows in Figs. 4.1 (b)-(d). As discussed later, these are the exact Floquet QMBS
eigenstates which are inequivalent to infinite temperature states.

Based on the above calculation of the level statistics, the Floquet system H(t), described by Eq.
(4.54), is nonintegrable. Thus, by showing that this nonintegrable model has athermal eigenstates,
it is proven to be a nontrivial counterexample to Floquet-ETH in contrast to trivial ones which
are integrable or localized. We show this, with referring to it as the exact Floquet QMBS.

4.2.2 Exact Floquet QMBS eigenstates

Now, we prove the existence of athermal eigenstates of the Floquet operator Uf , indicating the
violation of Floquet-ETH. In addition, we also discuss the real-time dynamics of the model. We
show that it shows thermal or athermal steady states depending on the initial states accompanied
by the exact Floquet QMBS eigenstates, while other generic nonintegrable models always show
relaxation to infinite temperature regardless of the initial states.

Existence of the exact Floquet QMBS eigenstates

Let us derive the exact Floquet QMBS eigenstates by using the properties of the PXP and the
PY4P models in Sections 4.1.3 and 4.1.4. We define the four-dimensional embedded subspace S
by

S = span({|Γx
11⟩ , |Γx

12⟩ , |Γx
21⟩ , |Γx

22⟩}). (4.60)

Within the subspace S, thermalization does not take place under exp(−iHPXPT1) by its definition.
On the other hand, using Eqs. (4.17) and (4.24), we obtain

|Γy
11⟩ =

1

2
(|Γx

11⟩ + i |Γx
12⟩ − i |Γx

21⟩ + |Γx
22⟩),

|Γy
12⟩ =

1

2
(i |Γx

11⟩ + |Γx
12⟩ + |Γx

21⟩ − i |Γx
22⟩),

|Γy
21⟩ =

1

2
(−i |Γx

11⟩ + |Γx
12⟩ + |Γx

21⟩ + i |Γx
22⟩),

|Γy
22⟩ =

1

2
(|Γx

11⟩ − i |Γx
12⟩ + i |Γx

21⟩ + |Γx
22⟩).

(4.61)

Since this transformation is invertible, the subspace S is identical to the one spanned by {|Γy
αβ⟩}α,β=1,2.

Thus, thermalization does not take place in the subspace S also under exp(−iHPY4PT2), and hence
we can conclude the absence of thermalization in the subspace S under the Floquet operator Uf .

The above discussion shows that the dynamics under the Floquet operator Uf is completely
closed within the embedded subspace S. As obtained from Eqs. (4.49) and (4.50), the renor-
malized exact QMBS eigenstates |Γ̃x

αβ⟩ (α, β = 1, 2) become orthonormal with each other in the
thermodynamic limit, giving an orthonormal basis of the subspace S. By using this basis and the
relation Eq. (4.61), we obtain the matrix representation of the Floquet operator restricted to S,

Uf |S =


p qr qr∗ 1 − p
−q pr −(1 − p)r∗ q
−q −(1 − p)r pr∗ q

1 − p −qr −qr∗ p

 , (4.62)

p =
1 + cos

√
2T2

2
, q =

sin
√

2T2
2

, r = e−i
√
2T1 , (4.63)

Thus, the Floquet operator Uf has four eigenstates |ε⟩S within the subspace S. Equation (4.53)
suggests that the domain wall density Db is diagonal within S, ensuring the following relation

lim
Lb→∞

⟨ε|Db|ε⟩S =
2

3
̸= 2√

5ϕ
= 0.542 . . . , (4.64)
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for all the four eigenstates |ε⟩S ∈ S. Considering the deviation from the infinite temperature value

2/(
√

5ϕ) [See Eq. (4.10)], the four eigenstates |ε⟩S are distingushable from infinite temperature
states in terms of a local observable Db. Thus, we rigorously show that the model violates Floquet-
ETH in spite of its nonintegrability, which is the main result of this chapter. We call the four special
eigenstates |ε⟩S “the exact Floquet QMBS eigenstates.”

Let us discuss the detailed properties of the exact Floquet QMBS eigenstates. The explicit
form of them can be obtained by diagonalizing the Floquet operator within S, given by Eq. (4.62).
Two of them have the following simple form:

|Γ0⟩ = |Γx
11⟩ + |Γx

22⟩ , (4.65)

|Γ′
0⟩ = sin

T1√
2

cos
T2√

2
(|Γx

11⟩ − |Γx
22⟩) + i sin

T2√
2

(eiT1/
√
2 |Γx

12⟩ − e−iT1/
√
2 |Γx

21⟩). (4.66)

Both of the two have the quasienergy ε = 0, and are invariant under the nonlocal chiral symmetry
operation C [See Eq. (4.56)]. The other two athermal eigenstates are too complex to write down.
Instead, from the chiral symmetry C, we can mention that they are related to each other by C and
have quasienergy with the opposite sign.

All the four exact Floquet scar eigenstates appear in Fig. 4.1 (b)-(d) as the four marked low-
entangled states. As discussed above, the two of them, lying in ε ̸= 0, appear symmetrically with
respect to ε = 0. Since each of the Floquet scar eigenstates is a superposition of the four states
|Γx

αβ⟩ with bond dimension 2, they are represented by matrix product states with at-most bond
dimension 8 using the direct sum of matrices. Thus, their entanglement entropy per length decays
with O(1/L), which implies the nonthermal behavior of them. This result also corresponds to the
numerical result [See Fig. 4.1 (b)-(d)].

Dynamics in and out of the embedded subspace

Floquet-ETH is a sufficient condition for the system relaxing to infinite temperature states from
any initial state. Thus, the violation of Floquet-ETH in the model implies that it can relax to
or avoid such trivial steady states depending on initial states. Here, we analyze the dynamics for
initial states in and out of the embedded subspace S, and clarify that the former case shows a
persistent motion with avoiding trivial steady states.

First, let us consider the dynamics within the embedded subspace S. Once the initial state
|ψ(t)⟩ is in S, the state evolving under the Hamiltonian H(t) remains in S. The stroboscopic
dynamics is given by

|ψ(nT )⟩ = (Uf |S)n |ψ(0)⟩ ∈ S, |ψ⟩ ∈ S. (4.67)

Here, the Floquet operator Uf |S is given by Eq. (4.62) with the orthonormal basis {|Γ̃x
αβ⟩} in

the thermodynamic limit. For any local observable O, its expectation value can be computed by
⟨ψ(0)|(Uf |†S)nO|S(Uf |S)n|ψ(0)⟩ with the matrix elements in the restricted subspace S, denoted by
O|S . For instance, from Eqs. (4.51), the total magnetization in the x-direction, limL→∞

∑
i σ

x
i ,

is given by diag(0,
√

2,−
√

2, 0) and shows a persistent oscillation in general, while the local Pauli
operator σz

i and the domain-wall density Db remain constant since they are proportional to identity
in S. On the other hand, concerning the microscopic dynamics, generic initial states in S, different
from |Γ0⟩, show some persistent motion since |Γ0⟩ is the unique simultaneous eigenstate of HPXP

and HPY4P in S. We show typical real-time dynamics in Fig. 4.2 (a).
Next, we demonstrate the dynamics outside of the embedded subspace S. Following the non-

integrability of the model, generic initial states are expected to relax to infinite temperature, and
we numerically confirm it by ED [See Fig. 4.2 (b), (c)]. We consider two different initial states

|ψ1⟩ ≡ |↓↓ . . .⟩ and |ψ2⟩ ≡ PRyd,L |−⟩⊗L
/
√
DL with |−⟩ = (|↑⟩− |↓⟩)/

√
2 and the projection to the

constrained Hilbert space PRyd,L. They have an exponentially small overlap with S in the system
size, and have energy under the PXP Hamiltonian HPXP, given by

⟨ψ1|HPXP|ψ1⟩ = 0, ⟨ψ2|HPXP|ψ2⟩ = −2L/
√

5ϕ. (4.68)

By solving the energy conservation

⟨ψ|HPXP|ψ⟩
⟨ψ|ψ⟩

=
Tr[HPXPe

−βHPXP ]

Tr[e−βHPXP ]
(4.69)
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Figure 4.2: (a) Real-time dynamics of total x spin
∑

i σ
x
i under the initial states within S at

T1 = 9.5, T2 = 0.5. The states |Γx
12⟩ and |Γy

12⟩ show a persistent oscillation. (b) Real-time
dynamics under the initial state |ψ1⟩, which is at infinite temperature under HPXP. The red lines
represent the values at infinite temperature. (c) Real-time dynamics under the initial state |ψ2⟩,
which is at finite temperature βeff under HPXP. The lower solid yellow lines represent the finite-
temperature-equilibrium values under HPXP [βeff is obtained by numerically solving Eq. (4.69)].
The Floquet drive breaks such a feature of the initial state, and makes the observable approach
the values at infinite temperature (the upper solid red lines).

in terms of β, the initial state |ψ1⟩ (|ψ2⟩) corresponds to infinite temperature β = 0 (finite tem-
perature β > 0) under the PXP Hamiltonian HPXP. Figure 4.2 (b) and (c) show the dynamics
at T1 = 9.5 and T2 = 0.5, which we choose so that pre-equilibration under an effective static
Hamiltonian in the high-frequency regime can be avoided (See Section 1.3.4). The model shows
thermalization to infinite temperature regardless of initial states outside of the embedded subspace
in contrast to the static PXP model and the PY4P model, where the system relaxes to thermal
states with a certain temperature depending on its initial states.

Local conserved quantities in the embedded subspace

To summarize the behavior of the model showing Floquet-QMBS, any initial state spanned by the
exact Floquet QMBS eigenstates avoids thermalization while the other initial states experience
the relaxation to trivial infinite temperature states as well as conventional nonintegrable Floquet
systems. Here, we aim to understand the dynamics within the embedded subspace S in terms of
emergent local conserved quantities.

Let us reconsider the PXP Hamiltonian and the PY4P Hamiltonian in the embedded subspace.
The PXP model is proven to have an extensive number of conserved quantities when restricted to
the embedded subspace [163], and we show that the PY4P model also does in a similar way. We
employ the block description provided in Section 4.1.5, where the b-th block is composed of the
(2b− 1)-th and 2b-th sites. In the PY4P Hamiltonian [See Eq. (4.22)], the nontrivial terms acting
on the b-th and (b+ 1)-th blocks, hyb,b+1, are given by

hyb,b+1 = (−1)b(P2b−1σ
y
2bP2b+1 + P2bσ

y
2b+1P2b+2)

= i(−1)b(|o⟩ ⟨r| − |r⟩ ⟨o|)b(I − |l⟩ ⟨l|)b+1 + i(−1)b(I − |r⟩ ⟨r|)b(|o⟩ ⟨l| − |l⟩ ⟨o|)b+1

≡ h
y,(2)
b,b+1 + h

y,(1)
b,b+1, (4.70)

h
y,(1)
b,b+1 = i(−1)b(|o⟩ ⟨r| − |r⟩ ⟨o|)b + i(−1)b(|o⟩ ⟨l| − |l⟩ ⟨o|)b+1 (4.71)

h
y,(2)
b,b+1 = i(−1)b{|rl⟩ (⟨ol| + ⟨ro|) − h.c.}b,b+1, (4.72)

for the bulk b = 2, 3, . . . , Lb − 1. The terms h
y,(1)
b,b+1 and h

y,(2)
b,b+1 respectively represent one-body
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noninteracting terms and two-body interacting terms in the block description. The boundary
terms of the PY4P Hamiltonian is also computed as

σy
1P2 = i(|o⟩ ⟨l| − |l⟩ ⟨o|)1, PL−1σ

y
L = −i(|r⟩ ⟨o| − |o⟩ ⟨r|)Lb

. (4.73)

Using these results, the PY4P Hamiltonian is written in the following form:

HPY4P =

Lb−1∑
b=2

h
y,(2)
b,b+1 +

Lb∑
b=1

h
y,(1)
b (4.74)

h
y,(1)
b = i(−1)b(|o⟩ ⟨r| + |l⟩ ⟨o| − h.c.)b. (4.75)

From the matrix elements of As (s = l, o, r) in Eq. (4.44), we can confirm ArAl = 0 and AoAl +
ArAo = 0. As a result, we obtain

HPY4P |Γν
αβ⟩ =

Lb∑
b=1

h
y,(1)
b |Γν

αβ⟩ (4.76)

for α, β = 1, 2 and ν = x, y, z, where we have used Eq. (4.24). In addition, as discussed in Section
4.1.4, the PY4P Hamiltonian is completely closed within the embedded subspace S spanned by
|Γν

αβ⟩, and hence this equation gives the PY4P Hamiltonian restricted to S,

HPY4P|S =

Lb∑
b=1

h
y,(1)
b , h

y,(1)
b = i(−1)b(|o⟩ ⟨r| + |l⟩ ⟨o| − h.c.)b. (4.77)

Since each term h
y,(1)
b is closed in each block, the PY4P Hamiltonian has an extensive number of

local conserved quantities {hy,(1)b }Lb

b=1 within the subspace S.
In a similar way, according to Ref. [163], the PXP Hamiltonian also has a macroscopic number

of local conserved quantities {hx,(1)b }Lb

b=1 within the same subspace S, as described by

HPXP|S =

Lb∑
b=1

h
x,(1)
b , h

x,(1)
b = (|o⟩ ⟨l| + |o⟩ ⟨r| + h.c.)b (4.78)

in S. Based on the conserved quantities, we can reinterpret the dynamics of the model showing
Floquet-QMBS. Within the embedded subspace S, the Floquet operator Uf = e−iHPY4PT2e−iHPXPT1

becomes equivalent to

Uf |S =

Lb∏
b=1

(
e−iT2h

y,(1)
b e−iT1h

x,(1)
b

)
. (4.79)

due to Eqs. (4.77) and (4.78). This indicates that the model emergently possesses a macroscopic

number of local conserved quantities {−i log(exp(−iT2hy,(1)b ) exp(−iT1hx,(1)b ))}b within S as well
as integrable systems. Therefore, any state in S does not experience thermalization to infinite
temperature. On the other hand, in the other states out of S, such local conserved quantities
do not appear like conventional nonintegrable systems, leading to thermalization to trivial steady
states.

We also note that the emergent local conserved quantities in S make the nonlocal chiral sym-
metry C local. To be precise, the nonlocal operator C defined by Eq. (4.56) can be rewritten
by

C =

(∏
i

σz
i

)
exp

(
i
∑
b

h
y,(1)
b T2

)
, (4.80)

within the embedded subspace S using Eq. (4.77). This suggests that the two Floquet QMBS
eigenstates which are related to each other by C possess the same entanglement entropy, while
other pairs outside of S do not due to the nonlocality of C. We can confirm this signature of the
conserved quantities from Figs. 4.1 (b)-(d), in which the pair of the Floquet QMBS eigenstates
having nonzero quasienergy symmetrically appears in the entanglement spectrum.
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4.3 Generalized time-periodic models for Floquet QMBS

In the above discussion, we construct a model under binary drive, which rigorously shows Floquet
QMBS. Here, we generalize the binary drive to generic time-periodic models by combining the
PXP, PY4P, and PZ4P models. First, we consider the following time-independent Hamiltonian on
the constrained Hilbert space:

Ha⃗ = a⃗ · H⃗, H⃗ = (HPXP, HPY4P, HPZ4P), (4.81)

with a⃗ ∈ R3. While the PY4P model is unitarily equivalent to the PXP model, this generalized
static model is no longer equivalent to either the PXP, PY4P, or PZ4P models. With the polar
display a⃗ = |⃗a|(sin θ cosφ, sin θ sinφ, cos θ), we can compose four exact QMBS eigenstates by

|Γa⃗
αβ⟩ =

∑
σ⃗

u⃗a,†α Bσ1Cσ2 . . . BσL−1CσL u⃗aβ |σ⃗⟩ , (4.82)

u⃗a1 =

(
cos(θ/2)

eiφ sin(θ/2)

)
, u⃗a2 =

(
−e−iφ sin(θ/2)

cos(θ/2)

)
. (4.83)

By using the action of the PY4P Hamiltonian on the embedded subspace S, given by Eq. (4.37),
and the similar relations for the PXP model [See Eq. (4.100)] and the PZ4P model, we obtain

Ha⃗ |Γa⃗
αβ⟩ =

∑
σ⃗

u⃗a,†α

{
(⃗a · Σ⃗)Dσ⃗ −Dσ⃗ (⃗a · Σ⃗)

}
u⃗aβ |σ⃗⟩ , (4.84)

in which we define Σ⃗ = (σx, σy, σz)/
√

2 and Dσ⃗ = Bσ1Cσ2 . . . BσL−1CσL . Considering the fact

that the vectors u⃗aα (α = 1, 2) are eigenvectors of the 2 × 2 matrix a⃗ · Σ⃗, we confirm that the four
states |Γa⃗

αβ⟩ (α, β = 1, 2) are the exact eigenstates of the generalized Hamiltonian Ha⃗ as follows:

Ha⃗ |Γa⃗
αβ⟩ =

1√
2

{
(−1)α−1 − (−1)β−1

}
|Γa⃗

αβ⟩ . (4.85)

Now, we give the generalized time-periodic Hamiltonian for Floquet QMBS as follows:

H(t) = a⃗(t) · H⃗, a⃗(t+ T ) = a⃗(t) ∈ R3. (4.86)

Since it is composed of a series of nonintergable static Hamiltonians such as HPXP and HPY4P, the
time-periodic model also becomes nonintegrable in general. Since |Γa⃗

αβ⟩ is represented by a linear
combination of {|Γx

αβ⟩} for arbitrary a⃗, the dynamics under H(t) is closed within the subspace
spanned by {|Γx

αβ⟩}α,β=1,2. Therefore, this generalized Floquet model has at-least four Floquet
eigenstates |ε⟩ in the embedded subspace S, indicating the breakdown of Floquet-ETH. Using the
fact that {u⃗aα}α=1,2 is a complete orthonormal basis of C2, the static Hamiltonian Ha⃗ always has
the following eigenstates,

|Γ0⟩ ≡ |Γa⃗
11⟩ + |Γa⃗

22⟩ =
∑
σ⃗

Tr [Bσ1Cσ2 . . . BσL−1CσL ] |σ⃗⟩ , (4.87)

with zero eigenvalue independent of a⃗. This means that we can obtain the exact description for
one of the Floquet QMBS eigenstates by

Uf |Γ0⟩ = |Γ0⟩ , Uf = T exp

(
−i
∫ T

0

Ha⃗(t)dt

)
. (4.88)

While the Floquet QMBS eigenstate |Γ0⟩ is invariant during the dynamics, any initial state in the
subspace spanned by the other three Floquet QMBS eigenstates show persistent oscillation since
the Hamiltonians Ha⃗(t) for different time t do not have simultaneous eigenstates other than |Γ0⟩
in general.
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4.4 Discussion and conclusion for this chapter

Before concluding this chapter, we briefly discuss how to realize the time-periodic Hamiltonian
Eq. (4.54), which hosts Floquet QMBS, in experiments. As discussed in Section 1.3.2, the PXP
Hamiltonian can be realized in Rydberg-atom experiments, where the Rabi oscillation takes place
under the strong repulsive atom-atom interactions [45]. Once the PXP Hamiltonian is realized,
the time-periodic model H(t) is also realizable by implementing the potential with quadruple
periodicity of the lattice:

HZ4
=

L∑
i=1

ciσ
z
i , ci =

√
2 cos

(
iπ

2
− π

4

)
. (4.89)

Then, using the unitary equivalence Eq. (4.38), the Floquet operator for the binary drive is

Uf = e−iHPY4PT2e−iHPXPT1

= e−iHZ4 (π/4)e−iHPXPT2e−i(−HZ4 )(π/4)e−iHPXPT1 . (4.90)

Thus, switching of the PXP Hamiltonian and the potential enables the realization of the time-
periodic model. We can realize the PZ4P model in a similar setting since the potential Qi =
(|↑⟩ ⟨↑|)i = (1 + σz

i )/2 becomes equivalent to each term Pi−1QiPi+1 in the constrained Hilbert
space HRyd,L. This is confirmed by the relation

PRyd,LHPZ4PPRyd,L =

L∑
i=1

ciPRyd,LQiPRyd,L, (4.91)

with the projection to the constrained Hilbert space PRyd,L. Thus, the time-periodic models
for Floquet QMBS, including the generalized versions Eq. (4.86), can be realized in Rydberg
atoms. While our model does not require the fine-tuning of the parameters T1, T2, or a(t) in
Eqs. (4.54) and (4.86), what seems to be difficult is to prepare the initial state in the embedded
subspace S. However, considering that the states in the embedded subspace S are equivalent to
the well-known topologically nontrivial state under certain symmetries called the Affleck-Kennedy-
Lieb-Tasaki state [47, 163], there are some proposals for preparing such low-entangled states in
AMO experiments, such as the dissipative preparation [164].

In summary, we have constructed a nonintegrable model which hosts Floquet QMBS, driven
by uniformly imposed Hamiltonians on the constrained Hilbert space prohibiting adjacent pairs of
excited Rydberg states. We have rigorously shown that the model violates Floquet-ETH with the
fact that instantaneous Hamiltonians share a subspace immune to thermalization although their
QMBS eigenstates do not correspond to one another. We note that the violation of Floquet-ETH
results in the initial-state-dependent behavior of relaxation; The initial states in the embedded
subspace generally show persistent oscillation avoiding the heating. On the other hand, the entan-
glement spectrum of Floquet eigenstates and the real-time dynamics of the model indicate that
any initial state outside of the embedded subspace is thermalized to infinite temperature.

Finally, we provide some future directions for Floquet QMBS with discussing recent progress in
QMBS. Throughout this chapter, we focus on the PXP-type static models, which are realized under
Rydberg blockade, and construct Floquet QMBS based on their properties. While such PXP-type
Hamiltonians are experimentally feasible in Rydberg atoms, they have only a few QMBS eigenstates
rigorously found, which have not been directly observed yet. Recent studies have revealed a series
of static QMBS, such as models with local constraints by local projections [51, 163, 165, 166] and
models relying on algebraic structures [52, 167, 168, 169, 170, 171]. In the latter case, there exist
a series of exact QMBS eigenstates composing a tower-like structure. It will be interesting to seek
for the interplay between various static QMBS and Floquet systems, e.g. whether we can find
some Floquet-intrinsic dynamics dependent on initial states, which emerges from the algebraic
structures of the Floquet operator Uf instead of static Hamiltonians. It should be of interest to
find out the relation between special scar states in static systems [See Section 1.3.2] and Floquet
QMBS. In the PXP models, there exist some special initial states such as |Z2⟩ = |↑↓ . . .⟩ showing
long-lived athermal oscillation, other than the exact QMBS eigenstates [45, 46, 47, 48, 172, 173].
Although the Floquet systems discussed here do not show such an anomalous oscillation other
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than the exact Floquet QMBS eigenstates [See Section 4.5], recent theoretical and experimental
studies have reported athermal behaviors from some special initial states in other time-periodic
models [174, 175, 176]. It is also important to clarify what kind of Floquet systems has special
initial states with long-lived athermal oscillation and how the special states are related to the exact
Floquet QMBS eigenstates, in parallel to static systems.

We also introduce recent developments in Floquet QMBS. In terms of the exact Floquet QMBS
eigenstates, Ref. [177] have reported a periodically-driven model rigorously showing Floquet
QMBS, composed of PXP-type but integrable instantaneous Hamiltonians. Since it is realized
by the quasienergy degeneracy modulo 2π/T , they call it “Floquet-intrinsic QMBS.” As Floquet
QMBS, the Hilbert space shattering [54, 178] has attracted much interest, which is realized in local
random unitary circuits with macroscopic conserved quantities. Ref. [54, 178] has reported that lo-
cality of interactions and the conservation of macroscopic charge and dipole moment prevent some
initial states from relaxing to infinite temperature. Ref. [54] also suggests that a large number of
exact Floquet QMBS eigenstates in the model, immune to thermalization under the presence of
the locality and the macroscopic symmetries, may be applicable to quantum information storage.
While Floquet QMBS is originally introduced to find out counterexamples to Floquet-ETH and
the resulting nontrivial dynamics in interacting Floquet systems, now it may be time to seek for
intriguing or useful condensed matter properties of Floquet many-body systems such as response
and robustness upon Floquet QMBS.

4.5 Appendix for this chapter

Exact QMBS eigenstates of the PXP model

Here, we prove Theorem 4.1.1, dictating that the PXP Hamiltonian HPXP has four eigenstates
|Γx

αβ⟩ (α, β = 1, 2) satisfying

HPXP |Γx
11⟩ = 0, HPXP |Γx

12⟩ =
√

2 |Γx
12⟩ ,

HPXP |Γx
22⟩ = 0, HPXP |Γx

21⟩ = −
√

2 |Γx
21⟩ .

(4.92)

See Eq. (4.16) for HPXP and Eq. (4.17) for |Γx
αβ⟩ respectively. We take a strategy different from

the original way provided in Ref. [47, 163], but in a similar way to the PY4P model in Section
4.1.4.

Proof

We consider the PXP Hamiltonian PRyd,LHPXPPRyd,L =
∑L

i=1 PRyd,Lσ
x
i PRyd,L, where PRyd,L =∏L−1

i=1 (1 − |↑↑⟩ ⟨↑↑|)i,i+1 denotes the projection to the constrained Hilbert space HRyd,L. This
representation is nothing but the result of perturbation theory where Rabi oscillation takes place
under strong repulsive interactions causing Rydberg blockade (See Section 1.3.2).

As well as Eqs. (4.30) and (4.31) for the PY4P model, the four states |Γx
αβ⟩ given by Eq. (4.17)

can be written in the following form:

|Γx
αβ⟩ = u⃗†αB

′
1C

′
2 . . . B

′
L−1C

′
Lu⃗β , (4.93)

B′
i =

(
|↓⟩i 0 0√
2 |↑⟩i |↓⟩i

√
2 |↑⟩i

)
, C ′

i =

 √
2 |↑⟩i − |↓⟩i
|↓⟩i 0

−
√

2 |↑⟩i 0

 . (4.94)

We apply PRyd,Lσ
x
i PRyd,L to |Γx

αβ⟩ with the relation PRyd,L |Γx
αβ⟩ = |Γx

αβ⟩. We obtain

PRyd,Lσ
x
i PRyd,L |Γx

αβ⟩ = PRyd,Lu⃗
†
αB

′
1 . . . C

′
i−1F

x
i,i+1B

′
i+2 . . . C

′
Lu⃗β , (4.95)

F x
i,i+1 =

(
0 − |↑↓⟩i,i+1

|↓↑⟩i,i+1 −
√

2 |↓↓⟩i,i+1

)
= XB′

iC
′
i+1 −B′

iX̃C
′
i+1, (4.96)

X =
1√
2

(
0 1
1 0

)
, X̃ =

1√
2

 0 1 0
−1 0 −2
0 −2 0

 . (4.97)
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for an odd integer i, and obtain

PRyd,Lσ
x
i PRyd,L |Γx

αβ⟩ = PRyd,Lu⃗
†
αB

′
1 . . . C

′
i−2F̃

x
i−1,iB

′
i+1 . . . C

′
Lu⃗β , (4.98)

F̃ x
i−1,i =

( √
2 |↓↓⟩i−1,i − |↓↑⟩i−1,i

|↑↓⟩i−1,i 0

)
= B′

i−1X̃C
′
i −B′

i−1C
′
iX. (4.99)

for an even integer i. Finally, when the system size L is even, we arrive at

PRyd,LHPXPPRyd,L |Γx
αβ⟩ = PRyd,Lu⃗

†
α(XB′

1 . . . C
′
L −B′

1 . . . C
′
LX)u⃗β

=
1√
2

{
(−1)α−1 − (−1)β−1

}
|Γx

αβ⟩ , (4.100)

where we have used Eq. (4.20) for the vectors u⃗α (α = 1, 2). Thus, the four states |Γx
αβ⟩ are exact

eigenstates of the PXP Hamiltonian. □

Dynamics of Z2 scar states

As introduced in Section 1.3.2, the static PXP model can show anomalously-long athermal oscil-
lation from some special initial states such as Zn-ordered states |Zn⟩. Although it has been still
unclear whether or not this behavior gives rigorous violation of ETH in the thermodynamic limit,
the approximate relation to the exact static QMBS is pointed out [47]. From the unitarily equiva-
lence, the PY4P model also shows such an athermal oscillation from the same special initial states.
Here, we examine the Floquet dynamics from such special initial states found in the static mod-
els, and explore the possibility of special athermal behaviors related to the exact Floquet QMBS
eigenstates.

We consider the binary drive,

H(t) =

{
HPXP 0 ≤ t < T1

HPY4P T1 ≤ t < T1 + T2 = T,
(4.101)

which shows Floquet QMBS as discussed in Section 4.2. Here, instead of the embedded subspace
S, rigorously avoiding the thermalization, we consider the Z2-ordered state |Z2⟩ = |↑↓↑↓ . . .⟩ as
an initial state. Figure 4.3 (a) shows the corresponding dynamics of the domain wall density and
the Pauli Z operator under the PY4P Hamiltonian HPY4P, or equivalently the above binary model
with T1 = 0. As far as we can numerically simulate, the static model shows a long-lived oscillation
with avoiding the thermalization to the corresponding equilibrium states. The similar behavior
from the Z2-ordered initial state is also observed for the PXP model both in experiments [45] and
numerical simulations [46, 172].

Let us discuss what happens if we add time-periodic modulation like Eq. (4.54), where the
instantaneous static Hamiltonians show the above anomalous long-lived athermal behaviors from
|Z2⟩. Figures 4.3 (b) and (c) show the numerical results for the periodically-driven model with
(b) T1 = 9.5, T2 = 0.5 (c) T1 = 0.95, T2 = 0.05. First, we identify the athermal behavior observed
in (c). In the case of T1 = 0.95, T2 = 0.05, the frequency of the binary drive, given by ω =
2π/(T1 + T2) = 2π, is relatively larger than the local energy scale of the Hamiltonian H(t), given
by O(1). Thus, the system lies in the high-frequency regime which hosts pre-thermalization,
justifying the description by the Floquet-Magnus expansion [See Section 1.3.4]. Up to the lowest
order in the period T , the static effective Hamiltonian for the model is given by the time-averaged
one over one period,

Heff =
T1

T1 + T2
HPXP +

T2
T1 + T2

HPY4P +O(T ). (4.102)

This static model is unitarily equivalent to the PXP model, and hence show anomalous long-lived
athermal behavior from the initial state |Z2⟩. The long-lived oscillation in Fig. 4.3 (c) originates
from the static model Heff, which is not inherent in Floquet systems.

On the other hand, in the case of T1 = 9.5, T2 = 0.5 corresponding to Fig. 4.3 (b), the local
energy scale of the system is larger than the frequency, where the system is deeply affected by the
time-dependency. As shown in Fig. 4.3 (b), both the domain-wall density DLb/2 and the Pauli
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Figure 4.3: Real-time dynamics under the special initial state |Z2⟩ = |↑↓↑↓ . . .⟩: (a) under the
static PY4P Hamiltonian, or equivalently at T1 = 10, T2 = 0; (b) under the binary drive at
T1 = 9.5, T2 = 0.5; and (c) under the binary drive at T1 = 0.95, T2 = 0.05. (a) Both the domain-
wall density and the Pauli Z operator show long-lasting oscillations without approaching their
thermal equilibrium values at the temperature T = ∞. (b) The observables rapidly approach
those of the infinite temperature due to the drive. (c) Athermal behaviors of the observables
are observed as in the static case in spite of the existence of the drive. These are brought by
pre-equilibration under an effective static Hamiltonian in the high-frequency regime of Floquet
systems.

operator σz
L/2 with the initial state |Z2⟩ quickly relax to the values of infinite temperature states

as well as other usual initial states. This behavior is also confirmed by the entanglement spectrum
of the Floquet eigenstates {|ε⟩} [See Figs. 4.1 (b)-(d)]. In the static models showing QMBS such
as HPXP, there exist a large number of low-entangled eigenstates, which are distinguishable from
volume-law entangled thermal equilibrium states, other than the exact QMBS eigenstates such as
|Γx

αβ⟩. The special initial state |Z2⟩ (and also other scar states) has a large overlap with these low-
entangled eigenstates, thereby leading to the long-lived athermal oscillation in the static models
[47]. However, when we focus on the entanglement spectrum of the Floquet eigenstates in Figs. 4.1
(b)-(d), only the four Floquet QMBS eigenstates in the embedded subspace S are low-entangled.
This suggests that all the other Floquet eigenstates, having volume-law entanglement entropy,
are indistinguishable from infinite temperature states. Considering that the initial state |Z2⟩ is a
superposition of the four Floquet QMBS eigenstates and a comparably large number of Floquet
eigenstates equivalent to infinite temperature, the system shows relaxation to infinite temperature
even under the preparation of |Z2⟩.

Thus, we can conclude that some special scar states having long-lived oscillations vanish in
the periodically-driven case. This indicates that the exact Floquet QMBS eigenstates have no
relationship with anomalously long athermal behavior in contrast to the static models, where such
an athermal behavior is also dubbed “quantum many-body scars.”



Chapter 5

Conclusion

In this thesis, we have focused on nonequilibrium phenomena in periodically-driven or Floquet
many-body systems. As introduced in Chapter 1, isolated Floquet many-body systems generally
suffer from trivial steady states at infinite temperature predicted by Floquet-ETH or the heating
problem. Motivated by recent developments of novel nonequilibrium phenomena and their appli-
cations, such as discrete time crystals (DTCs) and Floquet engineering, we have aimed to find
out nontrivial dynamics or steady states in Floquet many-body systems with avoiding Floquet-
ETH. Based on the assumptions in Floquet-ETH, we have explored Floquet many-body systems
in quasi-steady states, those breaking the isolation, and those directly violating Floquet-ETH.

In Chapter 2, we have explored quasi-steady states in Floquet systems under resonant drive,
giving the effective Hamiltonians for their coarse-grained stroboscopic dynamics. Floquet systems
in the regime can host unique nonequilibrium phenomena such as DTCs and anomalous Floquet
topological phases, while those in the high-frequency regime cannot. Motivated by this, we have
extended the van Vleck expansion to the resonant regime, and have shown that Floquet systems
effectively acquire an emergent ZN -symmetry up to any perturbation order when the resonant drive
realizes a ZN -symmetry operation. Furthermore, the emergent ZN -symmetry is robust against any
local perturbation that does not break the time-periodicity. As the applications of quasi-steady
states with the emergent symmetry, we have proposed a way to analyze DTCs in quasi-steady states
(prethermal DTCs, pDTCs) and Floquet engineering in the resonant regime (resonant Floquet
engineering). In particular, in the latter case, we can simultaneously control phases of matter
and symmetries of the system, enabling us to realize and control symmetry-protected topological
phases even when the required symmetries are absent in the original system.

In Chapter 3, we have explored dissipative Floquet interacting systems, and in particular we
have discussed the high-frequency regime.One of the central questions in dissipative Floquet sys-
tems is whether those in the high-frequency regimes have static counterparts, since isolated Floquet
systems cannot host unique nonequilibrium phenomena in the high-frequency regime. Focusing on
the Floquet-Magnus expansion for the time-periodic Liouvillians, we have proven that the gener-
ator for the stroboscopic dynamics cannot be a Liouvillian in generic interacting systems. This
implies that dissipative Floquet interacting systems cannot have no counterparts in static systems
even in the high-frequency regime unlike isolated Floquet systems, which we call Liouvillianity
breaking. While noninteracting systems can either preserve or break Liouvillianity depending on
model, Liouvillianity breaking is a universal phenomenon caused by interactions, and hence we
expect novel dynamics or steady states in dissipative Floquet interacting systems.

In Chapter 4, we have proposed Floquet quantum many-body scars (QMBS) realized under
Rydberg blockade. Floquet-ETH or the heating problem is a conjecture for nonintegrable Floquet
systems giving the sufficient condition of thermalization. It is of great importance to ask wherer
there exists a nonintegrable counterexample to Floquet-ETH, which can avoid trivial infinite-
temperature steady states. By extending the static QMBS, which provides counterexamples to
static ETH, we have composed a periodically-driven model which rigorously violates Floquet-
ETH. We have first extended the PXP model, and have constructed the Floquet models composed
of static Hamiltonians hosting the static QMBS. Exploiting the overlap of the embedded subspace
avoiding thermalization, we have delivered the exact Floquet eigenstates inequivalent to infinite-
temperature states, suggesting the violation of Floquet-ETH. Accompanied by the breakdown of
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Floquet-ETH, the models show either thermalization to trivial steady states or persistent oscillation
depending on their initial states. Our proposal, dubbed Floquet QMBS, will elucidate nontrivial
dynamics and steady states in Floquet many-body systems without local conserved quantities.

Although each of Chapters 2,3, and 4 has dealt with different Floquet setups, all the topics
have been devoted to understanding nontrivial dynamics and steady states in Floquet many-body
systems beyond Floquet-ETH or the heating problem. As well as several future tasks discussed in
each chapter, it is also a fundamental and interesting issue to further seek for what kind of phases
of matter can exist upon (quasi-)steady states with resonant drives, dissipation, or Floquet-QMBS.
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Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional
bose gas. Nature Physics, 8:325–330, 2012. URL https://doi.org/10.1038/nphys2232.

[38] Adam M. Kaufman, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schit-
tko, Philipp M. Preiss, and Markus Greiner. Quantum thermalization through en-
tanglement in an isolated many-body system. Science, 353:794–800, 2016. URL
https://science.sciencemag.org/content/353/6301/794.

[39] Luca D’Alessio, Yariv Kafri, Anatoli Polkovnikov, and Marcos Rigol. From quantum chaos
and eigenstate thermalization to statistical mechanics and thermodynamics. Advances in
Physics, 65:239–362, 2016. URL https://doi.org/10.1080/00018732.2016.1198134.

[40] Takashi Mori, Tatsuhiko N Ikeda, Eriko Kaminishi, and Masahito Ueda. Thermaliza-
tion and prethermalization in isolated quantum systems: a theoretical overview. Jour-
nal of Physics B: Atomic, Molecular and Optical Physics, 51:112001, 2018. URL
https://doi.org/10.1088/1361-6455/aabcdf.

[41] J. M. Deutsch. Eigenstate thermalization hypothesis. Rep. Prog. Phys., 80:082001, 2018.
URL https://doi.org/10.1088/1361-6633/aac9f1.

[42] Giulio Biroli, Corinna Kollath, and Andreas M. Läuchli. Effect of rare fluctuations on
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icity breaking from quantum many-body scars. Nature Physics, 14:745–749, 2018. URL
https://doi.org/10.1038/s41567-018-0137-5.

[47] Cheng-Ju Lin and Olexei I. Motrunich. Exact quantum many-body scar states
in the rydberg-blockaded atom chain. Phys. Rev. Lett., 122:173401, 2019. URL
https://link.aps.org/doi/10.1103/PhysRevLett.122.173401.

[48] Wen Wei Ho, Soonwon Choi, Hannes Pichler, and Mikhail D. Lukin. Pe-
riodic orbits, entanglement, and quantum many-body scars in constrained mod-
els: Matrix product state approach. Phys. Rev. Lett., 122:040603, 2019. URL
https://link.aps.org/doi/10.1103/PhysRevLett.122.040603.

[49] Maksym Serbyn, Dmitry A. Abanin, and Zlatko Papić. Quantum many-body
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