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Abstract

Recently, studies of non-Hermitian Hamiltonians about how they change conventional phenomena
have been extensively conducted, especially in the context of open systems. For example, non-
Hermiticity trigers the unidirectional visibility [1–3], enhances the sensitivity[4–8], and induces
unusual critical phenomena[9, 10]. On the other hand, one of the oldest works about non-Hermitian
physics was done by Hatano and Nelson, in which they map the pinning problems in type-II super-
conductors into effective non-Hermitian Hamiltonian. Therefore, non-Hermitian physics is closely
related to strongly-correlated electron materials (SCES). However, the connection between the ef-
fective non-Hermitian Hamiltonian of open systems and SCES was utterly unknown. Moreover,
it is also unknown what non-Hermitian phenomena we can observe in equilibrium SECS and, of
course, in non-equilibrium SCES.

Stimulated by the above situation, we elucidate the relationship between SCES and open quantum
systems (OQS), and explore non-Hermitian phenomena in equilibrium and non-equilibrium SCES.
Summaries of the study are shown below:

1. Non-Hermitian Physics in strongly-correlated electron materials [11, 12]. — In this study,
we unveil the equivalence of effective non-Hermitian Hamiltonians in the context of SCES and
OQS by describing the model, which is originally a SCES, as OQS. We also analyze when the
non-Markovian effect in the context of OQS becomes dominant in SCES. Next, we show that the
Kondo effect, which is one of the central and basic problems in SCES, can be understood from the
point of view of non-Hermitian physics.

2. Nonlinear responses in strongly-correlated electron materials [13]. — Motivated by the
recent experimental results about the nonlinear response in SCES, we analyze the correlation effect
on nonlinear response in SCES. Here, we discover the non-Hermitian effect on nonlinear responses,
or to say, in non-equilibrium SCES. We also elucidate that the renormalization effect of mass and
the non-Hermitian effect greatly enhance the nonlinear responses.
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Chapter 1

Introduction

Interaction creates the nonlinearity of systems, materials, and the world and gives scale-interference
and mode-coupling. The scale-interference and the mode-coupling show the decadent behavior
of materials and the world, depending on the time-scale, length-scale, and temperature. Due to
the limit of human capability or computer power, we cannot understand the whole behavior of
interacting many-body systems, which has many modes coupling with each other. However, we can
effectively understand its behavior by focusing on a few dominant modes on a certain scale. The
unfocused modes behave as noise or dissipation, giving fluctuations to the focused modes. When
the dominant modes change, the critical phenomena emerge, and the fluctuations become large.

In strongly-correlated electron systems (SCES), the modes, or to say, the various freedoms,
such as orbitals, spins, and phonons, interfere with each other and show us the rich phases and
functionality. Due to the nonlinearity, in SCES, the phases, functionality, and dominant modes
change depending on temperature and become versatile. On the other hand, many-body systems
with nonlinearity also highly enlarge the Hilbert space of the system, which practically cannot be
block-diagonalized, and annoys theoretical researchers due to its ridiculous complexity. However,
by using a kind of contraction, such as tracing out into the single-particle Hilbert space or time-scale
separation, or using perturbation treatment in an appropriate frame, we can understand much of the
rich phases in SCES. One of the most commonways to understand the physics of SCES is the single-
particle Green functions. The single-particle Green functions fragmentarily hold the information
of the original nonlinearity through the self-energy. The frequency dependence of self-energy
represents the memory effect of the traced-out modes or the difficulty to separate the time-scale
between the focused modes and the traced-out modes. Self-energy also holds non-Hermiticity,
which represents the dissipation of the focused modes, and it is also the vestiges of the original
nonlinearity.

The physics induced by the effective Hamiltonian including non-Hermiticity is now paid a lot of
attention, especially in open systems, such as cold atoms[9, 15–17], photonic crystals[1–8, 18–25],
mechanical systems[26], electrical circuits[27–29], and active matters[30–33]. In open systems, we
trace out the bath which holds large Hilbert space and dissipations, and therefore the system which
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holds the reducedHilbert space has the non-Hermiticity. Non-Hermiticity triggers the unidirectional
visibility[1–3], enhances the sensitivity[4–8], and induces unusual critical phenomena[9, 10]. On
the other hand, one of the oldest works about non-Hermitian physics was done by Hatano and
Nelson[34, 35], in which they map the pinning problems in type-II superconductors into effective
non-Hermitian Hamiltonian. Moreover, the origin of the recent intensive studies on non-Hermitian
physics is the work by H. Shen and L. Fu, which originally tried to approach the topological
phase transition at finite temperature in SCES. Therefore non-Hermitian physics is closely related
to strongly-correlated electron materials (SCES). However, the connection between the effective
non-Hermitian Hamiltonian of open systems and of SCES was completely unknown. Moreover, it
is also unknown what is the non-Hermitian phenomena we can observe both in equilibrium SCES
and , of course in non-equilibrium SCES.

In this thesis, we first prove that the equivalence of the effective non-Hermitian Hamiltonian
in the context of OQS and SCES. Then we show that the Kondo effect seems related to the
emergence of exceptional points at the Fermi surface. Finally, we analyze the non-Hermitian effect
on the nonlinear conductivity in SCES. We show the example for the non-Hermitian phenomena in
equilibrium SCES and in non-equilibrium SCES.

In the following, we briefly explain how we can derive the non-Hermitian Hamiltonian in open
systems. (Sec. 1.1). Then we introduce the linear algebra about the non-Hermitian matrices and
the notion of exceptional points, which is unique in non-Hermitian matrices. (Sec. 1.2). Finally the
organization of this thesis is represented in Sec. 1.5.

1.1 How to introduce the effective non-Hermitian Hamiltonian

In this section, we explain how the effective non-Hermitan Hamiltonian is introduced especially in
OQS.

1.1.1 Open quantum systems

An open system is a system that holds gain and(or) loss of particles and energy and has the bath,
which is unfocused and coupled to the system. All of the phenomena we see in this world are
the phenomena of the open system because we cannot see everything in the world, and this truth
demonstrates the importance of open systems. We first introduce the Nakajima-Zwanzig equation in
open quantum systems[36–39] and derive the quantum master equation and the Lindblad equation
under some approximation.[40, 41] Here, we review the exact master equation of the dynamics of
open quantum systems by using the projection operator P and Q. P is the projection operator on
the Hilbert space, where the system and the bath are disentangled, Pρ = trB[ρ] ⊗ ρB = ρS ⊗ ρB,
and Q = 1 − P. We consider the total system which is an isolated system and includes the system
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Figure 1.1: Schematic picture of open quantum systems.

and the bath. We can describes as

Htot = HS +HB +Hc (1.1.1)
HS =

∑
α

εαS
†
αSα (1.1.2)

HB =
∑
β

εβB
†

βBβ (1.1.3)

Hc =
∑
αβ

λαβ
(
S†αBβ + h.c.

)
, (1.1.4)

where S(†)α are the operators acting on the system and B(†)β are the operators acting on the bath.
We suppose that the oddmoments of the system-bath coupling,Hc, which describes the coupling

between bath and system, vanish. This assumption is justified when the bath operator in the
system-bath coupling changes the particle number or the energy of the bath, because the bath is
under equilibrium and the odd moment of the system-bath coupling, which changes the bath state,
becomes zero. Thus,

trB

[
H I

c (t1) . . .H
I
c (t2n+1)︸                    ︷︷                    ︸

odd power

ρI
B

]
= 0, (1.1.5)

where O I(t) = exp[i(HS ⊗HB)t]O exp[−i(HS ⊗HB)t] is the interaction representation. We usually
suppose the bath is under the thermal equilibrium, which results in ρI

B(t) = ρB. Eq. (1.1.5) leads to
the relation

PL(t1) . . .L(t2n+1)P = 0, (1.1.6)
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where

L(tn)ρ = −i[H I
c (tn), ρ]. (1.1.7)

The dynamics of the disentangled system and its complement can be written as

∂

∂t
Pρ(t) = P

∂

∂t
ρ(t) = PL(t)

(
P + Q

)
ρ(t), (1.1.8)

∂

∂t
Qρ(t) = Q

∂

∂t
ρ(t) = QL(t)

(
P + Q

)
ρ(t). (1.1.9)

Using Eq. (1.1.8), Eq. (1.1.9), and Eq. (1.1.6), we can derive

Qρ(t) = Qρ(t0) +
∫ t

t0
dsQL(s)

(
P + Q

)
ρ(s) (1.1.10)

= Qρ(t0) +
∫ t

t0
dsQL(s)Qρ(t0) (1.1.11)

+

∫ t

t0
dsQL(s)Pρ(s)

+

∫ t

t0
dt1QL(t1)

∫ t1

t0
dt2QL(t2)

(
P + Q

)
ρ(t2)

= G(t, t0)Qρ(t0) +
∫ t

t0
dsG(t, s)QL(s)Pρ(s),

where we introduce the forward propagator

G(t, s) = T exp
[∫ t

s
ds′QL(s′)

]
. (1.1.12)

T describes the chronological time ordering. By inserting Eq.(1.1.11) into Eq.(1.1.8), we can derive
the dynamics of the system, which reads

∂

∂t
Pρ(t) = I(t, t0)Qρ(t0) +

∫ t

t0
dsK(t, s)Pρ(s) (1.1.13)

I(t, t0) = PL(t)G(t, t0)Q (1.1.14)
K(t, s) = PL(t)G(t, s)QL(s)P . (1.1.15)

Eq.(1.1.13) is the exact quantum Master equation by using the projection operator, which is known
as Nakajima-Zwanzig equation.[36–39]

The first term in Eq. (1.1.13) disappears when we assume that the system and the bath are not
entangled in the initial state. When the system-bath coupling Hc is enough smaller than HS, it
is enough to consider up to the second-order of L and then we can derive the quantum Master
equation,

∂

∂t
ρI

S(t) = −
∫ t

t0
dstrB

[
H I

c (t),
[
H I

c (s), ρ
I
S(s) ⊗ ρB

] ]
, (1.1.16)
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Furthermore, if we approximate Pρ(s) → Pρ(t) in Eq. (1.1.13), the dynamics of the system is
determined only by the current state of the system, which is known as the Markov approximation.
The Markov approximation is justified in the limit where the relaxation of the system is much
slower than the relaxation of the bath and the memory of the bath does not matter in the focused
time scale of the system. This limit is realized when the system-bath coupling is enough small or
in the long-time limit when the system almost reaches the steady state. Therefore, we usually take
the long-time limit t0 → −∞ in the Markov approximation. Then, we can get the Redfield master
equation[39], which is written as,

∂

∂t
ρI

S(t) ' −
∫ t

−∞

dstrB

[
H I

c (t),
[
H I

c (s), ρ
I
S(t) ⊗ ρB

] ]
(1.1.17)

= −

∫ ∞

0
dτtrB

[
H I

c (t),
[
H I

c (t − τ), ρ
I
S(t) ⊗ ρB

] ]
(1.1.18)

= −

∫ ∞

0
dτ

∑
αβ

{
Cαβ(τ)[SI

α(t),S
I
β(t − τ)ρ

I
S(t)] − C∗αβ(τ)[S

I
α(t), ρ

I
S(t)S

I
β(t − τ)]

}
,

(1.1.19)
∂

∂t
ρS(t) ' −i[HS, ρS(t)] −

∑
α

[
SI
α,

(
ΛαρS(t) − ρS(t)Λ†α

) ]
, (1.1.20)

where

Cαβ(τ) = trB[BI
α(t)B

I
β(t − τ)ρB] (1.1.21)

Λα =

∫ ∞

0
dτCαβ(τ)SI

β(−τ). (1.1.22)

By using the eigenstate of the system HamiltonianHS |n〉S = εn |n〉S, we can rewrite Eq.(1.1.19) as
follows:

∂

∂t
ρS;mn(t) = −iεmnρS;mn(t) −

∑
pq

Rmn;pqρS;pq(t) (1.1.23)

⇔
∂

∂t
ρI

S;mn(t) = −
∑
pq

Rmn;pq exp[−i(εmn − εpq)t]ρI
S;pq(t) (1.1.24)

⇒ ρI
S;mn(t) ' ρ

I
S;mn(0) −

∑
pq

Rmn;pq
exp[−i(εmn − εpq)t] − 1

i(εmn − εpq)
ρI

S;pq(t), (1.1.25)

where εnm = εn− εm. We note that Rmn;pq can be derived by describing Eq. (1.1.20) in the eigenstate
of the system Hamiltonian. The approximation in Eq.(1.1.25) is justified when R (system-bath
coupling) is small. The second term in Eq.(1.1.25) becomes large when εmn = εpq and therefore we
can just focus on m = p,n = q and m = n, p = q, which is called as "the secular approximation" ,
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and we can write the equation in the Lindblad master equation form as[39],

∂

∂t
ρS(t) ' −i[HS, ρS(t)] −

1
2

∑
m

γm

({
S†mSm, ρS(t)

}
− 2SmρS(t)S†m

)
. (1.1.26)

= −i
(
He f f ρS(t) − ρS(t)H

†

e f f

)
+

∑
m

γmSmρS(t)S†m, (1.1.27)

where γm is the strength of dissipation. In this form, the second term in Eq.(1.1.26) is the
dissipation and the third term is gain and loss. In Eq.(1.1.27), except for the second term, the
dynamics of the density matrix can be described by the effective non-Hermitian Hamiltonian
He f f = HS − i

∑
m γmL

†
mLm. One prescription to describe the dynamics with the effective non-

Hermitian Hamiltonian is postselection.[42] In postselection, we do the measurement on the bath
and just focus on the particular results. In the context of non-Hermitian physics, we usually measure
the number of particle of the bath and focus on the results in which the number does not change
during the dynamics. In this case, the projection operator effectively act on the system in which the
number of particle does not change during the dynamics because the number of particle in the total
system is conserved. This procedure can be described by a projection operator as follows:

ρS → ρ′S = PM ρSPM/tr[PM ρSPM] (1.1.28)

where ρS is the density matrix of the system and PM is the projection operator on the result of the
measurement, M . The dynamics of the projected density matrix of the system under postselection
becomes

ρ′S(t + δt) = ρ′S(t) − i
(
H′e f f ρ

′
S(t) − ρ

′
S(t)H

′†

e f f (1.1.29)

−
∑

m

γmL
′
mρ
′
S(t)L

′†
m

)
(1.1.30)

ρ′S(t + δt) = PN ρS(t + δt)PN/tr[PN ρSPN ] (1.1.31)
O′ = PNOPM . (1.1.32)

where O is an arbitrary operator acting on the system, N is the measurement result at the time t + δt,
and γmL

′
mρ
′
S(t)L

′†
m describes the gain or loss, resulting in a change of the particle number of the

system. When the repeated measurement of the system is performed in a way so that we only focus
on the results where the particle number of the system does not change, the gain and loss modes
disappear due to the projection operators. Thus, the dynamics of the open quantum system under
postselection is described by an effective non-Hermitian Hamiltonian.

1.1.2 Other open systems
In this subsection, we introduce the effective non-Hermitian matrix describing the dynamics in
several system.
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• Photonics
In photonics systems, such as photonic crystal systems, the light (the photon) is sometimes
scattered out of the crystal, which can be thought as loss. (gain is also possible.) The effect
of loss(gain) can be taken into account as the complexity of refractive index n in the Maxwell
equation.[43, 44] After that, by considering the propagating equation as a kind of Schrödinger
equation, we can derive the effective non-Hermitian Hamiltonian which describes the mode
of the light in photonic crystal.[1–8, 18–25]

• Mechanical systems
In mechanical systems, the friction behaves as the loss. We can construct the Schrödinger-like
equation by focusing on the dynamics of the state vector Ψ(t) = (p(t),q(t)), where p(t) is
the momentum and q(t) is the position. At this time, the matrix describing the dynamics of
Ψ(t) becomes a non-Hermitian matrix due to the friction.[26, 45, 46] We note that, in this
procedure, the effective non-Hermitian matrix has the emergent chiral symmetry due to the
relation dq(t)/dt = p(t).[26]

• Active matters
Active matters are the physics of the particles who have self-propelled force( and usually
interact with each other). Because the self-propelled force is a kind of gain of energy, active
matters is also a kind of open system. The dynamics of active matters are often analyzed
with the Toner-Tu equation.[47–50] Although this equation is a non-linear equation, we can
linearize it near the steady state[47] and the dynamics near the steady state is described by an
effective non-Hermitian matrix.[30, 32]

1.1.3 Strongly-correlated electron systems

In SCES, we usually understand the physics through the behavior of a single-particle in an effective
potential describing the many-body interacting system. This philosophy is represented in a self-
energy in the single-particle Green function in SCES. Actually, the single-particle Green functions
determine the measurable physics in SCES. For examples, the imaginary part of the (retarded)
Green functions is the spectral function and can be measured by the angular-resolved photo-
emission spectroscopy(ARPES). Furthermore, we can calculate the response function by using
the Green functions when ignoring the vertex corrections, such as the magnetic susceptibility and
conductivity, which are also measurable quantities. Therefore, under some approximation, the
physics of strongly-correlated electron systems can be understood through the single-particle Green
function.

Moreover, the single-particle Green function GR(ω, k) = 1/(ω − (H0(k) + Σ
R(ω, k))), where

H0 is the non-interacting Hamiltonian and ΣR(ω, k) is the retarded self-energy, is described by
the effective Hamiltonian, H R

e f f (ω, k) = H0(k) + Σ
R(ω, k), which is non-Hermitian because the
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self-energy is usually non-Hermitian due to electron-electron, electron-phonon, impurity scattering
and so on. [51–54]

1.2 Unique properties of non-Hermitian matrix
In this section, we explain the difference of the matrix properties from the conventional Hermitian
case. Important thing is that the left and right eigenvectors are different and they themselves are
non-orthogonal, and there can be non-diagonalizable points, which are called “exceptional point.”

1.2.1 Spectral decomposition of non-Hermitian matrices
Here we focus on the generic square matrices with complex entries, M̂ ∈ Cn×n. Eigenvectors and
eigenvalues satisfies the following equation as:

M̂v = ωv ⇔ (ω1̂ − M̂)v = 0 (1.2.1)

where 1̂ is the unit matrix 1̂ = diag(1,1, . . . ,1︸     ︷︷     ︸
n

), ω is an eigenvalue and v ∈ Cn is an eigenvector.

Therefore, all the possible eigenvalues can be determined from the characteristic polynomial,

pM(ω) ≡ det(ω1̂ − M̂) = 0. (1.2.2)

It is known that, by using the eigenvalues, we can decompose pM(ω) into

pM(ω) =

J∏
j=1
(ω − ω j)

ma
j , (1.2.3)

whereω j , ω j ′ for j , j′ andma
j is called “algebraicmultiplicities”, which represent themultiplicity

of the eigenvalues and satisfies
∑

j ma
j = n.

We also consider the eigenspace of M̂ , which can be defined as

VM(ω j) ≡ Ker(M̂ − ω j 1̂) ≡ span{v j : M̂v j = ω jv j, v j ∈ C
n}. (1.2.4)

Then its dimension mg
j ≡ dimVM(ω j) is called “geometric multiplicity” and satisfies mg

j ≤ ma
j . If M

is Hermitian, mg
j = ma

j is satisfied which is equivalent to that M̂ can be diagonalized with {v j}. On
the other hand, if M is non-Hermitian, it is not ensured. For example, let us consider the following
2 × 2 matrix as,

M̂ =
(
ω 1
0 ω

)
. (1.2.5)

This matrix has the degenerate eigenvalue ω, and the eigenvectors are also doubly degenerate
because VM(ω) ≡ Ker(M̂ − ω1̂) = (1,0)T . In this case, mg

j = 1 < ma
j = 2 , and M cannot be
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diagonalized. M is called 2 × 2 “Jordan block”. We can also generalize Jordan block to arbitrary
n(≥ 1) as,

Ĵn(ω) =

©«

ω 1 0 . . . . . . 0
0 ω 1 0 . . . 0
0 0 ω 1 . . . 0
...

...
...

. . .
...

...

0 0 . . . . . . ω 1
0 0 . . . . . . . . . ω

ª®®®®®®®®®¬n×n

. (1.2.6)

Ĵn(ω) has the n-th degenerate eigenvalue ω and the eigenvector is also n times degenerate because
VM(ω) ≡ Ker(Ĵn(ω) − ω1̂) = (1,0, . . . ,0)T . It is known that an arbitrary square matrix M̂ ∈ Cn×n

can be transformed by using an invertible matrix X̂ ∈ Cn×n into “Jordan normal form”, which is the
direct sum of the Jordan block as,

X̂−1M̂ X̂ =
©«

Ĵk1,1(ω1) O
. . .

O Ĵk
J ,m

g
J

(ωJ)

ª®®®¬n×n

, (1.2.7)

where
∑J

j=1
∑mg

j

p=1 k j,p = n is satisfied. We note that we can uniquely determine X̂ and Jordan normal
form in Eq.(1.2.7) except for the order of the Jordan blocks. By decomposing the Jordan blocks
into the diagonal part and non-diagonal part as

Ĵk j ,p (ω j) = ω j 1̂k j ,p + Ĵ′k j ,p, (1.2.8)

where (Ĵ′k j ,p )ab = δa,b−1. Therefore we finally obtain the spectral decomposition of matrix M̂ as,

X̂−1M̂ X̂ = D̂ + N̂, D̂ =
J⊕

j=1

mg
j⊕

p=1
ω j 1̂k j ,p, N̂ =

J⊕
j=1

mg
j⊕

p=1
Ĵ′k j ,p (1.2.9)

⇔ M̂ = = D̂′ + N̂′, D̂′ =
J⊕

j=1

mg
j⊕

p=1
ω j P̂k j ,p, N̂′ =

J⊕
j=1

mg
j⊕

p=1
N̂k j ,p (1.2.10)

P̂k j ,p = X̂ 1̂k j ,p X̂−1, N̂k j ,p = X̂ Ĵ′k j ,p X̂−1. (1.2.11)

We can also easily derive the following relations as

P̂k j ,p P̂k j ′,p′
= δ j,j ′δp,p′ P̂k j ,p, N̂k j ,p P̂k j ′,p′

= P̂k j ′,p′
N̂k j ,p = δ j,j ′δp,p′ N̂k j ,p (1.2.12)

N̂ (k j ,p−1)
k j ,p

, 0, N̂ k j ,p

k j ,p
= 0. (1.2.13)

Eq.(1.2.12) represent that P̂ is the projection operator and Eq.(1.2.13) shows N̂ is a nilpotent.
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1.2.2 Function of non-Hermitian matrix
After the spectral decomposition, we easily calculate the polynomial of matrix, because it almost
behaves as c-number on its eigenvectors. When the matrix can be diagonalized, it completely
behaves as c-number on its eigenvectors, while the things become a bit complicated when the
Jordan normal form holds Jordan blocks Jn(ω) (n ≥ 2).

First, we consider a general complex analytic function f (z). Its Taylor expansion is

f (z) =
∞∑

l=0
cl zl . (1.2.14)

Then we can get f (M̂) by utilizing the spectral decomposition as,

f (M̂) =
J∑

j=1

(
f (ω j)P̂j +

mg
j∑

p=1

k j ,p−1∑
l=1

f (l)(ω j)

l!
N̂ l

j,p

)
, (1.2.15)

where P̂j =
∑mg

j

p=1 P̂k j ,p and f (l)(z) = dl f (z)/dzl . Especially we are interested in the case f (z) = ezt ,
because it appears when we consider the time evolution of the system as dv(t)/dt = M̂v ⇒ v(t) =
eM̂tv(0). In that case, remembering f (l)(z) = t lezt , we can obtain,

exp[M̂t] =
J∑

j=1
exp[ω j t]

(
P̂j +

mg
j∑

p=1

k j ,p−1∑
l=1

t l(ω j)

l!
N̂ l

j,p

)
. (1.2.16)

This results tell us that when a non-Hermitian Hamiltonian cannot be diagonalized, which means its
Jordan normal form include Jordan blocks Jn(ω) (n ≥ 2), the dynamics hold the linear-time growth
represented in the second term in Eq.(1.2.16).

1.2.3 Eigenvectors of non-Hermitian matrices
In this subsection, we consider the properties of eigenvectors of general non-Hermitian matrices,
especially about non-orthogonality, and introduce the notion of left and right eigenvectors. First,
we check the orthogonality of eigenvectors of Hermitian matrix. When there are two eigenvector
with the different eigenvalues as M̂v j = ω jv j, M̂v j ′ = ω j ′v j ′, ω j , ω j ′, then v†j ′v j = 0. This is
because

v†j ′M̂v j = ω jv
†

j ′v j = ω j ′v
†

j ′v j ⇒ (ω j − ω j ′)v
†

j ′v j = 0, (1.2.17)

where we used the Hermiticity of M̂ as v†j ′M̂ = (M̂
†v j ′)

† = (M̂v j ′)
† = ω j ′v

†

j ′. Moreover, even if two
eigenvectors have the same eigenvalue and they are not orthogonal as ω j = ω j ′(v j , v j ′), v†j ′v j =

a(|a| < 1), we can construct the new orthogonal basis v′j ′ = (v j ′ − a∗v j)/|v j ′ − a∗v j |, which satisfies
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M̂v′j ′ = ω j ′v
′
j ′, v′†j ′ v j = 0. Therefore, in the Hermitian case, we can construct a orthogonal basis

using the eigenvectors of M̂ .
On the other hand, when M̂ is non-Hermitian, we need to define the left eigenvectors to construct

the orthogonal basis. It means we need also the eigenvectors of M̂† as,

M̂ ṽ j = ω
∗
j ṽ j ⇔ ṽ†j M̂ = ω j ṽ

†

j M̂†. (1.2.18)

By using this left eigenvectors, we can construct non-Hermitian version in Eq.(1.2.17) as,

ṽ†j ′M̂v j = ω j ṽ
†

j ′v j = ω j ′ ṽ
†

j ′v j ⇒ (ω j − ω j ′)ṽ
†

j ′v j = 0. (1.2.19)

Then we can derive ṽ†j ′v j = 0 for ω j , ω j ′ cases, and for ω j = ω j ′ by using the same procedure
as for the Hermitian case. We usually call ṽ j as a left eigenvector and v j as a right eigenvector in
non-Hermitian case. We note that, in general ṽ j , v j while they are same in a Hermitian case. Here
we construct the orthogonality with left and right eigenvectors, which is called “biorthogonality”.

Byusing biorthogonal basis, we can concretely construct the spectral decomposition inEq.(1.2.10)
as,

M̂ =
J∑

j=1

mg
j∑

p=1

(
ω j

k j ,p∑
l=1

r jpl l
†

jpl +

k j ,p−1∑
l=1

r jpl l
†

jp,l+1

)
, (1.2.20)

where r jpl(l jpl) is the right (left) eigenvector of M̂ for l = 1 and otherwise it is not the eigenvector but
it satisfies the orthogonality l†jpl r j ′p′l ′ = δ j,j ′δp,p′δl,l ′, which is called as l-th generalized eigenvector
in the p-th Jordan block with eigenvalue ω j . We note that in general {r jpl}({l jpl}) themselves
are not orthogonal which means r†jpl r j ′p′l ′ , δ j,j ′δp,p′δl,l ′(l†jpl l j ′p′l ′ , δ j,j ′δp,p′δl,l ′). We usually
normalize l†jpl r j ′p′l ′ = δ j,j ′δp,p′δl,l ′ and r†jpl r jpl = 1, which means in general l†jpl l jpl , 1(Actually,
l†jpl l jpl ≥ 1).

To the end of this subsection, we consider the resolvent of a non-Hermitianmatrix. The resolvent
of M̂ is a function C→ Cn×n defined as,

R̂M(z) ≡ (z1̂ − M̂)−1 (1.2.21)

By utilizing the spectral decomposition, we can derive the following expression:

R̂M(z) =
J∑

j=1

( P̂j

z − ω j
+

mg
j∑

p=1

k j ,p−1∑
l=1

N l
jp

(z − ω j)
l+1

)
. (1.2.22)

We note that we can derive inversely P̂j and N̂j =
∑mg

j

p=1 N̂jp from the resolvent as,

P̂j =

∮
Cj

dz
2πi

R̂(z), N̂j =

∮
Cj

dz
2πi
(z − ω j)R̂(z) (1.2.23)
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1.2.4 Exceptional points
Finally, we consider the non-Hermitianmatrix on the parameter space. Although any non-Hermitian
matrix can be written in Jordan normal form, there sometimes exist singular points about the spectral
and nilpotent matrix N̂ in the parameter space, and we call such points as “exceptional points(EPs)”.
In the context of physics, EPs usually means the points where the non-Hermitian matrix cannot be
diagonalized and two or more eigenvectors are coalescent while it can be diagonalized in the other
area. Let us see a simple example shown as,

M̂(κ) =
(
iκ g

g −iκ

)
. (1.2.24)

When M̂(κ) can be diagonalized, the spectrum and the diagonalizing matrix X̂ is

ω±(κ) = ±∆(κ), X̂(κ) =
(
iκ/∆(κ) −g/∆(κ)
g/∆(κ) iκ/∆(κ)

)
, X̂−1(κ) =

(
iκ/∆(κ) g/∆(κ)

−g/∆(κ) iκ/∆(κ)

)
(1.2.25)

where ∆(κ) =
√
g2 − κ2. We can see that, at κ = g, ω±(κ) are degenerate and X̂(κ) (X̂−1(κ))

diverges. This singular point is an exceptional points of M̂(κ). Actually, at this exceptional point,
the eigenvectors are also coalescent.

In the first example, the parameter space is one-dimensional and the exceptional manifold is
zero-dimensional (point). Here we focus on the 2 × 2 non-Hermitian matrix and n-dimensional
parameter space κ ∈ Rn. In general, 2 × 2 non-Hermitian matrix can be written in the following
form:

M̂(κ) = ω0(κ)1̂ +
(
a(κ) + ib(κ)

)
· σ̂, ω±(κ) = ±

√
(|a(κ)|2 − |b(κ)|2) + ia(κ) · b(κ), (1.2.26)

where a(κ) and b(κ) are the real vectors and σ̂ = {σ̂x, σ̂y, σ̂z} is the vector of the Pauli ma-
trix, and ω± is the eigenvalues of M̂ . As in the first example, when κ satisfies that ∆ =√
(|a(κ)|2 − |b(κ)|2) + ia(κ) · b(κ) is zero, the point on the parameter space is an exceptional point.

Here κ must satisfies two conditions, which are |a(κ)|2− |b(κ)|2 = 0 and a(κ) · b(κ) = 0. Therefore,
if there are exceptional points, exceptional points should have a (n − 2) dimensional structure.[53]
However, in the first example, the exceptional point has a zero dimensional structure while the
parameter space dimension is one.

The reason is symmetry. It is known that, if the non-Hermitian matrix has the pseudo-
Hermiticity, the eigenvalues must be real or the pairs of pure imaginary. The pseudo-Hermiticity
can be written as[55–57]

M̂† = η̂M̂ η̂−1. (1.2.27)

For the first example, we can derive η̂ = σ̂x and M̂(κ) has the pseudo-Hermticity. In that case, the
second condition for the emergence of the exceptional points, which is a(κ) · b(κ) = 0, is always
satisfied due to the pseudo-Hermiticity.
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Finally, we introduce the vorticity of exceptional points in the Brillouin zone. Here we consider
M̂(κ) as a Hamiltonian and the Brillouin zone as the periodic parameter space. For the one
dimensional case, we can define the vorticity as[58]

w(ω) ≡

∫ π

−π

dk
2πi

∂k ln[det
(
Ĥ(k) − ω1̂

)
]. (1.2.28)

When we set ω as the degenerate eigenvalue at an exceptional point, the vorticity can be non-
zero. For the one dimensional case, it was shown that when the Hamiltonian has the time-reversal
symmetry and the vorticity is nonzero, there is a skin effect, which means that eigenvectors and
spectrum strongly depend on the boundary condition.

On the other hand, for the two dimensional case, the vorticity is usually defined as[51]

ν(ω) ≡

∮
C

dk
2πi
· ∇k ln[det

(
Ĥ(k) − ω1̂

)
]. (1.2.29)

We note that the phenomena related to this vorticity in two dimension has not been found yet while
the vorticity is related to the skin effect in one dimension.[59, 60]

1.3 Unique phenomena in non-Hermitian system
In this section, we introduce several unique phenomena in non-Hermitian systems. Most phenomena
are related to the exceptional points, and the other phenomena are usually related to the non-
orthogonality of right and left eigenvectors themselves.

1.3.1 Phenomena related to exceptional points

Exceptional points have two distinct properties. One is the singular dispersion around exceptional
points and the other is the coalescence of the eigenvectors. First, we list up the phenomena which
stem from the singular dispersion, and then the phenomena which originate from the coalescence
of the eigenvectors.

Phenomena related to the singular dispersion at exceptional points

• Enhancement of the sensitivity
For example, around the exceptional point of the matrix M̂ in Eq.(1.2.24), the eigenvalues
are E±(κ = g − δκ) = ±

√
2gδκ − δκ2 ' ±

√
2gδκ. Therefore, near the exceptional points,

the eigenvalue has the square-root dependence of δκ. This square-root dispersion is unique
near exceptional points, and gives the higher sensitivity to δκ than the linear dispersion. This
sensitivity enhancement can be utilized for a micro-cavity sensor that detects nanometre-scale
particles. The existence of nanometre-scale particles gives a small perturbation (as δκ) to
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the micro-cavity, resulting in the frequency splitting of the micro-cavity that can be detected.
The square-root dispersion results in larger frequency splitting for a small perturbation and
realizes the higher sensitivity. We note that, in general, around at n-fold exceptional points,
(δκ)1/n can be realized, and higher sensitivity is possible as n is large.[4–8] We note that, in
general, around at n-fold exceptional points, (δκ)1/n can be realized and higher sensitivity is
possible as n is large.

Phenomena related to the coalescence of eigenvectors at exceptional points

• unidirectional transparent
When we consider the Bragg scatterer and solve the Helmholtz equation, the relation between
the forward and backward light at one site and those at the other side can be described by the
non-Hermitian Hamiltonian. At the exceptional points where the Hamiltonian is described
by the size-2 Jordan block, the Hamiltonian becomes a triangular matrix, and therefore,
reflectivity is completely asymmetric. This results in unidirectional transparency.[1, 3]

• asymmetric mode switching
Let us consider a periodically modulated two-mode waveguide. The dynamics of the two-
mode light in the dissipative waveguide can be described by the two by two non-Hermitian
matrix. Because of the space modulation of the waveguide, this non-Hermitian matrix
depends on the position, which is equivalent to the non-Hermitian matrix depending on time
for the light propagating in the waveguide. If the non-Hermitian matrix effectively and slowly
changes in time, the modes of light also slowly change. When the parameter of the non-
Hermitian matrix moves around the exceptional points in time evolution, the final state is only
determined by the circling direction (clockwise or anti-clockwise) and independent from the
initial state. Therefore, by changing the direction in which we insert the light, the circling
direction changes, and the mode of the output light can be switched. [2]

phenomena related to the non-orthogonality

• slowing down of thermalization
When an open quantum system is described by the Lindblad equation and the steady state is
the thermalized state, the relaxation time to the thermalized state is conventionally believed
to be proportional to 1/g, where g is the first Liouvillian gap which means the eigen-
value of the slowest relaxation mode. However, recently, it was shown that the relaxation
time is not only decided by the first Liouvillian gap but also by the non-Hermitian fac-
tor γNH

n = 〈nL |nL〉 〈nR |nR〉 /| 〈nL |nR〉 |
2, which represents the non-orthogonality of left and

right eigenvectors themselves. |nR〉 (|nL〉) is the n-th right (left) eigenvector of the Lindblad
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dynamics.[61, 62] We note that the Lindblad equation can be described by the effective non-
Hermitian matrix in the doubled-Hilbert space where the density matrix is considered as a
vector.[63–66]

1.4 Motivation of this thesis

In 2019, when we started to study non-Hermitian physics, the non-Hermitian physics in strongly-
correlated electron systems was poorly understood, and I had two questions:

• While the unique phenomena related to exceptional points and non-orthogonality were found
in photonics systems, such phenomena had not been found in the condensed matter physics.
Are there phenomena related to the unique properties of non-Hermitian matrices in strongly-
correlated electron systems?

• The relationship between the effective non-Hermitian Hamiltonian in open quantum system
and in strongly-correlated electron systems was not clear. Are they related or not? Moreover,
the condition to derive the effective non-Hermitian Hamiltonian is also different in each
context. Why is the postselection not necessary in strongly-correlated electron systems?

These two questions are the motivation of our works in my Ph.D course.

1.5 Organization of this thesis

In this thesis, we elucidate the relationship between the effective non-Hermitian Hamiltonian in
open quantum systems and strongly-correlated electron systems and search for phenomena related
to exceptional points and non-Hermiticity in strongly-correlated electron systems. In Chapter 2, we
describe the Hubbard model, which is initially the model of strongly-correlated electron systems
and is closed a system, as an open quantum system, and then derive the effective non-Hermitian
Hamiltonian (NHH) in the context of open quantum systems. By performing this procedure, we
elucidate the equivalence of the effective NHH in strongly-correlated electron systems and open
quantum systems and why post-selection is not necessary to derive an effective NHH in the context
of SCES.We also check the importance of non-Markovianity in the dynamics of SCES. In Chapter 3,
we consider the Kondo crossover in f -electron materials from the non-Hermitian point of view. We
give a simple picture of the Kondo crossover with eigenvalues of the effective NHH and numerically
show that the temperature at which exceptional points emerge at the Fermi surface is closely related
to the Kondo temperature. Moreover, we point out that the emergence of exceptional points at the
Fermi surface corresponds to the topological change of the exceptional manifolds in the frequency
space. In Chapter 4, we construct the Green function formalism for the nonlinear response and
analyze the interaction effects: the renormalization effect and the dissipation (non-Hermitian) effect.
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We show that the renormalization effect enhances the nonlinear response much more as it is the
higher-order response. Moreover, we construct the non-Hermitian band index for analyzing the
(non)linear response under the dissipation and show that the non-Hermiticity effectively enhances
lifetime and the new terms that stem from the non-orthogonality of the effective NHH.
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Chapter 2

Equivalence of the effective non-hermitian
Hamiltonians in the context of open
quantum systems and strongly-correlated
electron systems

In this Chapter, we prove that the equivalence of the effective non-Hermitian Hamiltonian in the
context of open quantum systems and strongly-correlated electron systems. We demonstrate that
the NHH describing the Green function is equal to the NHH describing a single particle coupled to
the rest of particles acting as a bath under postselection. For this purpose, we analyze the dynamics
of a single particle in the Hubbard model using the quantum master equation (QME) in the context
of OQS. The equivalence of the NHH in the single-particle spectral function and in the QMEmakes
it possible to study non-Hermitian phenomena in OQS by analyzing certain response functions
without applied postselection. Our analysis furthermore reveals why postselection is not necessary
to observe non-Hermitian phenomena in the context of single-particle Green functions.

2.1 Quantum Master equation for the Hubbard model

First, we derive the QME for the dynamics of a single particle in a strongly correlated material.
Furthermore, we demonstrate that the effective NHH in the context of OQS under postselection
corresponds to that in the single-particle Green function in the context of SCES. We here use the
Hubbardmodel as a prototypical model describing SCES. In order to derive the effective NHH in the
Hubbard model in the context of OQS, we divide the degrees of freedom into a system, describing
a single particle, (k0, σ), at momentum k0 in spin-state σ, and a bath, which includes the rest of the
electrons, see Fig. 2.1. Thus, the total Hubbard Hamiltonian is divided into the Hamiltonian of the
system,HS, the Hamiltonian of the bath,HB, and the coupling between system and bath,Hc. The
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Hamiltonian becomes

Htot =
∑
k,σ

(εk + µc)c
†

kσ
ckσ+U

∑
i

ni↑ni↓ (2.1.1)

= HS +HB +Hc (2.1.2)
HS = (εk0+µc+Unσ̄)c

†

k0σ
ck0σ = ξc†

k0σ
ck0σ (2.1.3)

HB =
∑

(k,σ′),(k0,σ)

(εk + µc)c
†

kσ′
ckσ′ (2.1.4)

+
U
N

∑
σ′

∑
k1,k2,
k3,k4
,(k0,σ)

δk1+k3,k2+k4c†
k1σ′

ck2σ′c
†

k3σ̄′
ck4σ̄′

Hc =
U
N

∑
k1,k2,k3
,k0

δk1+k3,k0+k2

(
c†
k0σ

ck1σc†
k2σ̄

ck3σ̄ + h.c.
)

=
U
N

(
C†σ ⊗ Bσ + h.c.

)
(2.1.5)

Cσ = ck0σ (2.1.6)
Bσ =

∑
k1,k2,k3
,k0

δk1+k3,k0+k2ck1σc†
k2σ̄

ck3σ̄, (2.1.7)

where c(†)
kσ

is an annihilation(creation) operator of an electron in momentum k and spin-direction
σ. εk is the energy dispersion, µc is the chemical potential, U is the Hubbard interaction, and N is
the number of the lattice sites. Note that the coupling between the system and the bath corresponds
to a part of the two-particle interaction and nσ̄ behaves as the constant because it is the conservative
quantity while it is originally the bath operator.

Starting from the von Neumann equation for the density matrix of the full system, d
dt ρ(t) =

−i[H, ρ(t)], we derive the QME for the density matrix of the system in second-order perturbation in
Hc as written in Eq.(1.1.16). Here ρI

S(t) is the density matrix of the system, i.e. the single particle.
The commutators in Eq. (1.1.16) include terms such as1

C†σCσρS(s) ⊗ TrB

[
Bσ(t)B†σ(s)ρB

]
= C†σCσρS(s) ⊗ TrB

[ ∑
k1,k2,k3

δk1+k3,k0+k2ck1σ(t)c
†

k2σ̄
(t)ck3σ̄(t)c

†

k3σ̄
(s)ck2σ̄(s)c

†

k1σ
(s)ρB

]
.

(2.1.8)

This trace over three creation and three annihilation operators including the time evolution by the
full Hamiltonian, only missing the scattering via (k0, σ), appears in the second-order diagram for
the self-energy shown in Fig. 2.2.

1The detailed derivation is written in Appendix. A.
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Figure 2.1: To derive an effective non-Hermitian Hamiltonian for the single-particle dynamics in
the Hubbard model in the context of OQS, we divide the electrons into a system, including only one
particle, and the rest of the particles, acting as bath.

Because the amplitude of a single scattering process via k0 vanishes in the limit of an infinite
large bath, N →∞, the self-energy shown in Fig. 2.2 becomes the exact self-energy in second-order
perturbation in Hc(not U). Even when considering higher-order perturbations in Hc, we find that
the QME still can be described by the self-energy2. Collecting all terms in Eq.(1.1.16), we obtain

∂

∂t
ρI

S(t) =
∫ t

t0
ds

[
−iRe(Sl(t − s))[C†σCσ, ρ

I
S(s)] + iRe(Sg(t − s))[CσC†σ, ρ

I
S(s)]

+Im(Sl(t − s))
(
{C†σCσ, ρ

I
S(s)} − 2CσρI

S(s)C
†
σ

)
+Im(Sg(t − s))

(
{CσC

†
σ, ρ

I
S(s)} − 2C†σρI

S(s)Cσ
)]

(2.1.9)

with

Sl(t) = ΣT
k0
(t)eiξt

Sg(t) = (ΣR
k0
(t) − ΣT

k0
(t)

)
eiξt

where ΣT is the time-ordered self-energy, ΣR is the retarded self-energy, and ξ = εk0+µc+Unσ̄.

2See Appendix. A for (i) brief explanation about the postselection; (ii) detail explanation for the reason why the
quantum master equation can be described by the self-energy; (iii) proof that the gain and loss contribution to the Green
function disappears in general open quantum systems; (iv) correspondence of the effective non-Hermitian Hamiltonians
in the context of open quantum systems and strongly-correlated systems in the periodic Anderson model, which includes
Refs. [11, 39]

19
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𝒌% + 𝒒
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Figure 2.2: Feynman diagram which describes the dynamics of the QME in second-order. The
slashed double lines correspond to full Green function which do not include the scattering to k0.
The black triangle corresponds to the full two-particle vertex, which does not include scattering via
k0.

We see that the time-evolution of the density-matrix of a single particle at (k0, σ) is governed by
the self-energy ΣR/T

k0
(s). However, because Eq. (2.1.9) includes gain and loss terms, i.e. 2CσρI

S(s)C
†
σ

and 2C†σρI
S(s)Cσ, the dynamics cannot be described by an effective NHH alone.

We next fix the particle number of the system, which corresponds to applying postselection.
We restrict the Hilbert space to states where c†

k0σ
ck0σ + c†

k0σ̄
ck0σ̄ = 1. We furthermore assume

the absence of magnetism, which results in c†
k0σ

ck0σ = ck0σc†
k0σ

in the restricted Hilbert space.
Due to these restrictions, the gain and loss terms vanish in Eq. (2.1.9), and the commutators and
anticommutators can be summed up

∂

∂t
ρI PS

S (t) = −i
∫ t

t0
ds

(
Se f f (t − s)ρI PS

S (s) − ρI PS
S (s)S†e f f (t − s)

)
(2.1.10)

Se f f (t − s) = ΣR
k0
(t − s)eiξ(t−s)c†

k0σ
ck0σ, (2.1.11)

where ρ(I) PS
S (t) is the density matrix with applied postselection. By using the Markov approxima-

tion, which means ρS(s) → ρS(t) and t0 → −∞, we find that the density matrix of a single particle
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under postselection can be written as

∂

∂t
ρPS

S (t) = −i
(
He f f ρ

PS
S (t) − ρ

PS
S (t)H

†

e f f

)
(2.1.12)

He f f = H0 + Σ
R
k0
(ξ)c†

k0σ
ck0σ, (2.1.13)

which corresponds to the von Neumann equation with an effective NHH. Thus, the time-evolution of
the density-matrix of a single particle (k0, σ) is given by an effective NHH including the self-energy,
if postselection is applied.3 We note that the frequency dependence of the self-energy has vanished
because of the Markov approximation.

However, in the context of SCES, the Green function is described by an effective NHH without
postselection[11, 52, 53, 67–70]. To clarify the reason why postselection is not necessary in this
context, we will now introduce the retarded Green function in the steady state using the density
matrix form, which is given as GR

OQS(t) = −iΘ(t)Tr
[ (
C(t)C†(0) + C†(0)C(t)

)
ρSS

S ⊗ ρB

]
. Here, ρSS

S

is the density matrix of the system in the long-time limit (steady-state)4 and C(t) = eiHtot tCe−iHtot t .
Combining the density-matrix, ρSS

S , with the creation-operator, C†, we define the density-matrix
describing the single-particle Green function, ρRGF

S = C†ρSS
S + ρ

SS
S C

†. Thus, we can rewrite the
Green function as

GR
OQS(t) = −iΘ(t)Tr

[
CρRGF

S (t)
]
,

where the time evolution of ρRGF
S (t) is given by the QME in Eq. (2.1.9).

When considering a system which includes only a single particle, (k0, σ), ρRGF
S (t) is given by

the following matrix element, |σ〉 〈0|, where |σ〉 = c†
k0,σ
|0〉. Gain and loss terms vanish in the time

evolution for this matrix element, because C† |σ〉 〈0| C = C |σ〉 〈0| C† = 0. Therefore, the QME
can be written as

∂

∂t
ρI RGF

S (t) = −i
∫ t

t0
ds

(
Se f f (t − s)ρI RGF

S (s) − ρI RGF
S (s)S†e f f (t − s)

)
(2.1.14)

3We have shown here that the dynamics of the single-particle Hilbert space is determined by the self-energy of the
single-particle in the total system. The imaginary part of the effective Hamiltonian (corresponding to the imaginary
part of the self-energy) is equivalent to the sum of the gain and loss terms, and it causes a decay of the norm of the
density matrix, ρPS

S
. This decay of the norm means that the possibility of obtaining results, in which gain or loss

(electron-electron scattering) does not occur and the particle number does not change, decreases in time. Therefore, the
imaginary part of the self-energy can be interpreted as the inverse of the lifetime of the quasi-particle, as it is well-known
in the context of the strongly-correlated electron systems. On the other hand, the real part of the self-energy describes
the correction of the energy levels due to the coupling with the bath. Thus, these kinds of two-particle interaction effects
are included in the dynamics of the single-particle Hilbert space and the dynamics is determined by the self-energy.

4Because the total system is isolated, we here suppose that it reaches the equilibrium (steady-state) state. Therefore,
if we consider the exact non-Markovian dynamics, the density matrix of the system is given as ρSS

S
= Pρ

eq
total
P, where

P is the projection operator on the Hilbert space of the system and ρeq
total

is the density matrix of the equilibrium state
of the total system.
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⇒ −iωρRGF
S (ω) − ρRGF

S (t0) = −i
(
He f f (ω)ρ

RGF
S (ω) − ρRGF

S (ω)H†e f f (ω)
)

= −iHe f f (ω)ρ
RGF
S (ω) (2.1.15)

He f f (ω) = H0 + Σ
R
k0
(ω)c†

k0,σ
ck0,σ . (2.1.16)

The equality in Eq. (2.1.15) holds because ρRGF
S is proportional to |σ〉 〈0| and ρRGF

S H
†

e f f becomes
zero. Then, the Green function becomes

GR
OQS(ω) = −iTr

[
CρRGF

S (ω)
]
=

1
ω − ξ − ΣR

k0
(ω)

(2.1.17)

Wehere have demonstrated the following statements: First, theGreen function of a single particle
described as an OQS and its effective NHH is identical to the Green function and its NHH in closed
equilibrium systems. Second, the dynamics of ρPS

S and ρRGF
S are described by the same equations,

Eq. (2.1.10) and Eq. (2.1.14). We can conclude that the effective NHH describing the dynamics
under postselection is identical to the effective NHH describing the Green function in SCES. Thus,
we can analyze non-Hermitian phenomena, which are observable in OQSs under postselection, by
studying the spectral function A(ω) = − 1

π ImGR
OQS(ω) in equilibrium or the nonequilibrium steady

state. While postselection becomes increasingly difficult in large systems, the analysis of spectral
properties remains feasible. We note that non-Hermitian properties may occur in different response
functions than the single-particle spectral function and that the correspondence between the NHH
in the density matrix under postselection and the NHH in the response function depends on the
kind of the postselection. Third, because the density matrix describing the Green functions in
the context of OQS is given by the off-diagonal matrix element, i.e. |↑〉 〈0|, gain and loss terms
vanish in the QME, and postselection is unnecessary to derive an effective NHH. We note that,
even if we consider larger systems, for example a system including (k0,↑) and (k0,↓), gain and loss
contributions in the QME for the Green function vanish 5.

2.2 Dynamics of the Hubbard model in the quantum Master
equation

Finally, we use the above-introduced QME to describe single-particle properties in the Hubbard
model on a 2D square lattice. We furthermore show that the Markov approximation, which ignores
the memory effect of the QME dynamics, fails to describe the full spectral function in the Mott
phase of the Hubbard model in which non-Markovian dynamics plays an important role.

We have shown above that the time-evolution of the density matrix is determined by the self-
energy in the QME. We here use the dynamical mean field theory (DMFT) combined with the
numerical renormalization group (NRG) to calculate an approximate self-energy.[71–73] DMFT

5See the detail in Appendix.A.3
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takes local fluctuations fully into account by self-consistently solving the mean field equations.[71]
The lattice Hamiltonian is thereby mapped onto a quantum impurity model. DMFT neglects
nonlocal fluctuations. To solve the quantum impurity model, we use the NRG, which calculates
low energy properties by iteratively discarding high-energy states. It has been shown that NRG is a
very reliable tool at low temperature.[72, 73]

Using the self-energy obtained by DMFT/NRG in the QME, Eq. (2.1.9), we show the re-
laxation dynamics of the density matrix into the steady state, and demonstrate that the spectral
function calculated by the QME approach is identical with the spectral function directly obtained
by DMFT/NRG.

In Fig. 2.3, we compare the spectral functions calculated by the QME and byDMFT/NRG for the
weak-coupling regime (Fig. 2.3(a)) and the Mott insulator (Fig. 2.3(c)) for k0 = (0.4π,0.4π). We
furthermore include a comparison between the QME approach using theMarkov approximation and
the full dynamics. In the weak-coupling regime, the spectral functions obtained by DMFT and the
QME with and without Markov approximation agree with each other. Figure 2.3(b) shows the time-
evolution of the diagonal elements of the density matrix with and without Markov approximation
in the QME, Eq. (2.1.9). In the weak-coupling regime, memory effects are not important and
therefore the Markov approximation works well. The dynamics without memory effects is given by
an exponential decay as shown in Fig. 2.3(b). We conclude that that the Markov approximation can
describe the full dynamics of the system in the weak-coupling regime, Fig. 2.3(a-b).

In the Mott-insulating phase, shown in Fig. 2.3(c), the non-Markov spectral function does also
agree with the spectral function obtained by DMFT/NRG. On the other hand, the spectral function
calculated with the Markov approximation is nearly zero. In the Mott insulating regime, the Markov
approximation describes strong dissipation due to the strong scattering with the bath electrons and
the resulting spectral function has only a small and wide peak. We note, however, that the integral
over the frequency is unity. Non-Markovian dynamics is essential to correctly describe the strongly
interacting system. Both peaks in the spectral function are described by quasi-particles which
follow non-Markovian dynamics. In Fig. 2.3(d), we show the dynamics of the diagonal elements of
the density matrix comparing between Markovian and non-Markovian dynamics. Both approaches
show a strong decay into the same steady state. Additional to the strong decay of the matrix
element of the density-matrix, the non-Markovian dynamics show a strong oscillatory behavior of
the occupation number.

In the next section, we perform a similar analysis for the periodic Anderson model, showing
that also in this model the spectral function of a small system described as an OQS and its effective
NHH are identical to the Green function and its NHH in closed equilibrium systems.
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2.3 Quantum master equation in the periodic Anderson model
In the previous sections, we have proven in the Hubbard model that the non-Hermitian Hamiltonian
describing the spectral functions is identical to the non-Hermitian Hamiltonian in the quantum
master equation under postselection. Here, we extend our considerations to the periodic Anderson
model(PAM) reading

HPAM =
∑
kσ

(
(εk + µc)c

†

kσ
ckσ + (ε f k + µ f ) f

†

kσ
fkσ + V( f †

kσ
ckσ + h.c.)

)
+U

∑
i

n f
i↑n

f
i↓

(2.3.1)

where c(†)
kσ
, f (†)

kσ
are annihilation (creation) operators of the c- and the f -electrons for momentum

k and spin-direction σ. εc, f is the kinetic energy for the c- and the f -electrons, µc, f the chemical
potentials for the c- and f -electron band,V a local hybridization, andU a density-density interaction
for the f electrons.

As in the Hubbard model, when fixing the particle number and the magnetization of the system
by postselection, we find that the dynamics of the density matrix (under postselection) in the limit of
t0 → −∞ and using the Markov approximation is given by an effective non-Hermitian Hamiltonian
as

∂

∂t
ρPS

S (t) = −i
(
He f f ρ

PS
S (t) − ρ

PS
S (t)H

†

e f f

)
(2.3.2)

where the effective non-Hermitian Hamiltonian is given as

He f f = εc(k0)c†σcσ + V(c†σ fσ + h.c.) +
(
ε f (k0) + Σ

R
)

f †σ fσ (2.3.3)

Σ
R =

ΣR(ξ+) + Σ
R(ξ−)

2
+

h1(Σ
R(ξ+) − Σ

R(ξ−))

2
√

h2
1 + V2

. (2.3.4)

We here have used postselection as (ξ†
±↑
ξ±↑ = ξ

†

±↓
ξ±↓ = 0.5↔ ξ†

±↑
ξ±↑ = ξ±↑ξ

†

±↑
) to derive Eq. (2.3.3).

We suppose that the observation under postselection leads to ξ†
±↑
ξ±↑ + ξ

†

±↓
ξ±↓ = 1 and that there is

no magnetization.
Here, we have derived the effective non-Hermitian Hamiltonian in the context of OQS. The

dynamics is again described by the retarded self-energy. If we ignore the frequency dependence of
the self-energy (ΣR(ξ+) = Σ

R(ξ−) = Σ
R), we see that the effective non-Hermitian Hamiltonian de-

scribing the dynamics in the quantummaster equation and the effective non-Hermitian Hamiltonian
of the spectral function agree with each other.

In the case of non-Markovian dynamics, the time-dependence of the self-energy must be con-
sidered, which makes an analytical comparison between the density matrix under postselection and
the spectral function difficult. Therefore, we numerically compare the non-Markovian dynamics
of the quantum master equation with those of the single-particle Green function calculated by the
DMFT/NRG.
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2.4 Dynamics of the PAM in the quantum Master equation

We here compare the Markovian dynamics and the non-Markovian dynamics in the PAM by
numerical simulations in themetallic phase above theKondo temperature and in theKondo insulating
phase below the Kondo temperature. We here use the self-energy as calculated by dynamical mean-
field theory (DMFT) combined with the numerical renormalization group (NRG) and calculate
the spectral function and the diagonal elements of the density matrix using the quantum master
equation with and withoutMarkov-approximation. Figure 2.4(a) and (c) show the spectral functions
calculated by the DMFT/NRG and the spectral function calculated by the QME, where k0 =

(0.5π,0.5π).
The spectral function calculated by the QME with non-Markovian dynamics agrees with the

spectral function calculated directly from theGreen function. Webelieve that the small discrepancies
between the Green’s function and the non-Markovian dynamics in Fig.2.4 are numerical errors.
These numerical errors arise because of the two Fourier transformations (first, we calculate Σ(t − s)
from Σ(ω) and, second, we calculate GR(ω) from GR(t)) which is necessary to calculate GR(ω)

and because of the the finite time-interval of GR(t). This shows that the real time dynamics of the
spectral function corresponds to the dynamics of the QME under postselection because gain and
loss terms vanish in the spectral function. Therefore, the effective non-Hermitian Hamiltonian in
the spectral function corresponds to the effective non-Hermitian Hamiltonian in the non-Markov
QME under postselection. In Fig. 2.4(a) and (c), the spectral function by the QME using the
Markov approximation in the limit of t0 → −∞ only includes the self-energy atω = ξ± and neglects
the frequency dependence of the self-energy around the Fermi energy. In this case, the effective
Hamiltonian in the QME describes the scattering away from the Fermi energy. Thus, the spectral
function calculated by the QME with Markov approximation includes the particle-hole excitations
at ω = ±U

2 but cannot describe the excitation near the Fermi energy. The peaks at high temperature
in Fig. 2.4(a) are smeared out wider than those at low temperature due to the stronger scattering at
high temperature.

Figures 2.4(b) and (d), show that the relaxation of the diagonal elements form the initial state
ρi = ξ

†
− |0 >< 0|ξ− usingMarkovian and non-Markovian dynamics. In the metallic regime above the

Kondo temperature, Fig. 2.4(b), these elements oscillate but are strongly damped. On the other hand,
in the Kondo-insulating regime below the Kondo temperature, the oscillation persists for a long
time. We believe that this change of the dynamics is related to the Kondo crossover. We note that the
Markov dynamics in Fig. 2.4 does not significantly change between high-temperature metallic state
and low-temperature insulating state. Therefore, we can conclude that the Kondo crossover from
the metallic behavior at high temperature to the insulator at low temperature originates from the
change in the non-Markovian dynamics. We note that the steady states as given by the Markovian
dynamics and the non-Markovian dynamics are equivalent except for the case of the PAM above the
Kondo temperature. This discrepancy might originate from the existence of exceptional manifolds
in the spectral function in the case of the PAM above the Kondo temperature, as shown in [11],
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while in the other cases there are no exceptional manifolds.
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Figure 2.3: Spectral function and the time-evolution of the diagonal elements into the steady state
in the weak-coupling regime and in the Mott insulating phase. The parameters in Fig. (a) and (b)
are as follows: εk = −0.49,µc = −0.2, U = 0.4, and the temperature T = 0.001. The parameters in
Fig. (c) and (d) are as follows; εk = −0.12, t = 0.1, µc = −0.8, U = 1.6,T = 0.00006. The blue,
red and green lines in (a) and (c) show the spectral function as calculated by the Green function,
non-Markov QME (Eq. (2.1.14)), and the Markov QME (Eq. (2.1.12)), respectively. The blue and
the red lines in (b) and (d) show the dynamics of the diagonal elements |0 >< 0| and | ↑><↑ | from
the initial state ρi = | ↑><↑ |. The full lines and the dashed lines correspond to the non-Markovian
dynamics and the Markovian dynamics, respectively.
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Figure 2.4: Spectral functions and matrix elements of the density matrix in the metallic regime at
high temperature and the Kondo insulating phase at low temperature. The parameters in (a) and (b)
are as follows: tc = 1.0, t f = −0.05, µc = 0, µ f = −1.0, U = 2.0, V = 0.36, and the temperature
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functions calculated directly by the Green function, the spectral function using non-Markovian
dynamics and the Markov dynamics. The dashed (full) lines in (b) and (d) show the Markovian
dynamics (non-Markovian dynamics) of the diagonal elements of the density matrix from the initial
state ρi = ξ

†
− |0 >< 0|ξ−.
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Chapter 3

The relationship between the nonhermitian
property and the Kondo effect in f -electron
materials

In this chapter, we study about the non-Hermitian effect of the self-energy in the Kondo regime in 2D
f -electron materials by numerical calculation with DMFT/NRG.We show the relationship between
the appearance of the exceptional points (or exceptional loop) and the transition from a metal to the
Kondo insulator or the heavy fermions in 2D f-electron systems. This means that the appearance
of the exceptional point denotes the transition of the f -electrons from the localized state to the
itinerant state. Although we have found the physical phenomena relating to the exceptional points,
we could not find any physical quantity or phenomena relating to their non-Hermitian topological
number. This problem still remains as an open question.

The rest of this chapter is organized as follows. In Sec3.1, we introduce the models that we use
in this work for 2D. Then we shortly explain about the exceptional points and their non-hermitian
topological numbers in SCES. In Sec3.2, we show the numerical results by DMFT/NRG about the
Kondo temperature and the temperature at which the exceptional points emerge at fermi surface for
each case.
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3.1 Models and Non-Hermitian properties in SCES

To analyze the emergence of exceptional points and the Kondo effect in f -electron materials, we
use the periodic Anderson model,

H=
∑
k

(
(εk + µc)c

†

kσ
ckσ+(ε f k + µ f ) f

†

kσ
fkσ

+(Vl/p)σσ′( f
†

kσ
ckσ′+h.c)

)
+U

∑
i

ni↑ni↓ (3.1.1)

εc/ f = −2tc/ f (cos kx + cos ky) (3.1.2)
Vl = Vδσσ′ (3.1.3)
Vp = V(σ · sin k)

(
sin k = (sin kx, sin ky)

)
(3.1.4)

niσ = f †iσ fiσ (3.1.5)

where c(†)
kσ
, f (†)

kσ
are annihilation (creation) operators of the c- and the f -electrons for momentum

k and spin-direction σ. tc, f are the inter-site hopping strengths for the c- and the f -electrons.
For simplicity, we assume a two-dimensional square lattice. µc/ f are the chemical potentials
for the c- and f -orbitals. Vl/p describe a local and a nonlocal hybridization between the c- and
f -orbitals, respectively. Throughout this chapter, we fix t f = ±0.05tc, µc = 0, µ f = −1.0, U = 2.0
and use tc = 0.8. Using this model, we analyze the relation between the Kondo effect and the
emergence of exceptional points. We will focus on three different cases: t f = −0.05tc with a
local hybridization(Vl , 0 ,Vp = 0), t f = 0.05tc with a local hybridization(Vl , 0 ,Vp = 0), and
t f = −0.05tc with a p-wave hybridization(Vl = 0 ,Vp , 0).

In Figs. 3.1 and 3.2, we show the momentum resolved spectral functions and the Fermi surfaces
for all three states. At high temperature, the f -electrons are localized and do not hybridize with the
c-electrons, as shown in Fig. 3.1(a) and Fig. 3.2(a). Below the Kondo temperature, f -electrons
become itinerant and hybridize with the c-electrons, which results in strong changes in the spectral
function. Figure 3.1(b) shows the spectral function of the Kondo insulator having a gap at the Fermi
energy. Figure 3.1(c) shows the spectral function of the metallic regime with local hybridization,
and Fig. 3.1(d) the spectral function of the p-wave hybridization. Corresponding to these spectral
functions, we show the spectral weight at the Fermi energy in Fig. 3.2. At high temperatures,
Fig. 3.2(a), we only find the c electrons at the Fermi energy. At low temperatures, all three states
have very different Fermi surfaces. The Kondo insulating state, shown in Fig. 3.2(b), has no
spectral weight at the Fermi energy. The heavy-Fermion state, Fig. 3.2(c), shows the Fermi surface
corresponding to the metallic state. Finally, in Fig. 3.2(b), the point-like Fermi surface of the
metallic state with p-wave hybridization is shown.

We employ the DMFT combined with the NRG to calculate the physical properties in these
models. Even though nonlocal fluctuations might not be small in 2D systems and even crucial
for the magnetic state, they might be less important for the Kondo effect and the emergence of
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Figure 3.1: (a)-(d) : Momentum-resolved spectral functions for the Kondo insulator, the heavy-
fermion state, and the metallic state with p-wave hybridization for V=0.4. Fig.3.1(a) shows a
high temperature spectral function, T=0.13 of the Kondo insulator. Fig.3.1(b)-(d) show spectral
functions at low temperatures, for T=0.0005, for the Kondo insulator, the heavy-fermion state, and
the nonlocal hybridization, respectively.

exceptional points. Furthermore, all shown results remain correct in three-dimensional systems,
where nonlocal fluctuations are weaker compared to the 2D system.

Before showing the numerical results, we briefly introduce exceptional points in strongly corre-
lated materials. As mentioned above, the periodic Anderson model is one of the minimal model for
the emergence of the exceptional points. The effective non-Hermitian Hamiltonian which describes
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Figure 3.2: (a)-(d) : Momentum-resolved spectral functions at ω = 0 corresponding to the spectral
functions shown in Fig.3.1. In (d), we have enhanced the visibility of the Fermi surface by changing
the color.

the spectral function can be written by

He f f (k,ω) = H0 + Σ(ω) =

(
εc(k) V(k)
V(k) ε f (k) + Σ(ω)

)
= h01 + h1σ

z + V(k)σx (3.1.6)

h0 = (εc(k) + ε f (k) + Σ(ω))/2 (3.1.7)
h1 = (εc(k) − ε f (k) − Σ(ω))/2 (3.1.8)

E± − h0 = ±
√

h2
1 + V2(k) (3.1.9)

= ±

{( (
εc(k)−ε f (k)−ReΣ(ω)

)2

4
+V2(k)−

(ImΣ(ω))2

4

)
+

i
2

(
ImΣ(ω)

(
εc(k)−ε f (k)−ReΣ(ω)

))} 1
2

, (3.1.10)
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where E± are the eigenvalues of the effectiveHamiltonian. For the systemwith p-wave hybridization,
we use the helical basis, in which V(k) = Vp

√
sin2(kx) + sin2(ky). This effective non-Hermitian

Hamiltonian becomes nondiagonalizable when the following conditions are satisfied:

εc(k) − ε f (k) − ReΣ(ω) = 0 (3.1.11)
ImΣ(ω)/2 = V(k). (3.1.12)

These points (sometimes loops) in the momentum space, for which the non-Hermitian Hamiltonian
cannot be diagonalized, are called ”exceptional points.” Moreover, we can define a winding number
on these points which reads[51],

W =
∮

EP

dk
2πi
· ∇k log detHe f f (k,ω). (3.1.13)

Exceptional points with W , 0 are topologically stable because W does not change unless the
exceptional point is annihilated with another one. We note that, in strongly correlated materials,
the effective non-Hermitian Hamiltonian is introduced for describing the spectral function[53].
Therefore, when (ω − h0) is not small, the spectral weight at the exceptional points is small and
might only have a little effect on observable phenomena. We will thus distinguish exceptional points
with Re(ω− h0) ' 0 from the exceptional points where |Re(ω− h0)| is large. In this chapter, we call
the former "exceptional points (EPs)" and the later "irrelevant exceptional point (iEP)." In short,
iEPs have less spectral weight and therefore are less relevant to physical phenomena than EPs.

In Fig. 3.3, we show an example of the temperature dependence of the self-energy calculated by
DMFT/NRG. The model with local hybridization, V=0.36, is shown in Fig. 3.3(a) and (b). Because
Eq.(3.1.12) is independent of the momentum for a system with local hybridization, Eq.(3.1.12) can
be satisfied for all k in the BZ and therefore EPs and iEPs can emerge at ω where the imaginary
part of the self-energy crosses the black line. For the emergence of EPs which have strong spectral
weight, additionally Re(ω − h0) ' 0 must be fulfilled. Because ε f /εc =const in our model, the
momentum dependence vanishes in Re(w − h0)=0. Thus, the condition for the emergence of an EP
can be written as εcw/(εc + ε f ) − µ = γw − µ =ReΣ(ω), where γ is a constant. In Fig. 3(b) and (d),
this condition is fulfilled when the black line intersects with ReΣ(ω). We note that even in a model
where ε f /εc is not constant, the momentum dependence of Re(ω − h0) is small, because usually ε f

is much smaller than εc . Thus, we see in Fig. 3 that the condition Re(w − h0)=0 can be fulfilled at
the Fermi energy.

For the system with nonlocal hybridization, shown in Fig. 3.3(c) and (d), Eq.(3.1.12) can be
satisfied at ω, where the absolute value of the imaginary part of the self-energy is smaller than the
black line, because the strength of the hybridization depends on the momentum. Therefore, EPs
and iEPs can appear more easily in this case as we will show in the next section.
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Figure 3.3: (a)-(d) : The temperature dependence of the imaginary and the real part of the
self-energy calculated by DMFT/NRG. (a) and (b) show the results for the local hybridization with
V=0.36 and t f = −0.05tc. (c) and (d) show the results for the nonlocal hybridization with V=0.36
and t f = −0.05tc. The black lines in (a) and (c) describe the condition ImΣ(ω)/2 = max|V(k)| and
the black lines in (b) and (d) describe the conditions of Eq.(3.1.11) and ω − Re(h0) = 0

3.2 Relation between Kondo temperature and TEP in f -electron
materials

In Fig. 3.4 (a)-(c), we show the magnetic moment of the f -electrons (contribution of the f -electron
to the magnetic susceptibility, T χz

f (T)). Around the Kondo temperature, the magnetic moment
changes from 0.25 at high temperatures to 0 at low temperatures, which corresponds to the Kondo
screening. The magnetic susceptibility in Fig. 3.4 (a)-(c) is thereby calculated by applying a tiny
magnetic field to the system and calculating the induced magnetic polarization of the f -electrons.
We here estimate the Kondo temperature as the temperature where the magnetic moment crosses
T χ = 0.125 in Fig. 3.4 (a)-(c) and include an arrow at these temperatures. We note that this
screening is a crossover occurring over a finite temperature range. Thus, the Kondo temperature can
also only be determined approximately within the temperarure region where themagnetic moment is

34



screened. For the metallic system with local hybridization shown in Fig.3.4(b), the screening occurs
more slowly compared to the other cases. In this system, the Fermi surface does not vanish below the
Kondo temperature so that scattering around the Fermi surface can occur and the imaginary part of
the self-energy at the Fermi energy, which prevent the screening of the f -electrons, decreases only
slowly with lowering the temperature. Thus, the screening in Fig. 3.4(b) occurs slowly. Although
the system with non-local hybridization shown in Fig. 3.4(c) and (f) also has a Fermi surface, it is
almost point-like and therefore it induces much less scattering, resulting in a fast screening.

Besides analyzing the Kondo screening, we can use the self-energies obtained by DMFT/NRG,
to analyze the emergence of EPs in the spectrum and the temperature at which the EPs appear at
the Fermi energy. We show these EPs in Fig. 3.4 (g)-(i), where we plot iEPs with large eigenvalue
Re(ω − h0) as black dots and EPs with Re(ω − h0) ' 0 as colored dots corresponding to the colors
of the hybridization shown in Fig. 3.4 (a)-(c). We see that EPs with Re(ω − h0) ' 0 appear only
in a narrow temperature region for the system with the local hybridization and below a certain
temperature for the system with nonlocal hybridization. In Fig. 3.4(e), EPs appear in a wider
temperature range than in Fig. 3.4(d) because the self-energy changes only slowly when lowering
the temperature. Finally, in Fig. 3.4(f), EPs can emerge below a certain temperature, because
of the momentum dependence of the hybridization, which makes it easier to satisfy Eq. (3.1.12).
Furthermore, in Fig. 3.4(f), EPs appear also far from ω = 0. This is possible because, for the
system with the nonlocal hybridization, the conditions for the emergence of EPs can be satisfied
more easily. However, the emergence of EPs far from ω = 0 seems to be irrelevant to the Kondo
effect because the Kondo effect stems from the scattering around the Fermi surface.

Comparing the temperature at which EPs with Re(ω − h0) ' 0 appear and the temperature in
which the magnetic moment of the f -electron is screened, we see that both temperatures match
very well. Thus, we conclude that the Kondo temperature is closely related to the temperature
where EPs emerge at the Fermi energy. When lowering the temperature, the self-energy at the
Fermi energy changes very strongly around the Kondo temperature, which results in a situation in
which Eq. (3.1.11) and (3.1.12) can be easily fulfilled at the Fermi energy. For the system with the
p-wave hybridization, the EPs start to emerge at the Kondo temperature when the absolute value of
the imaginary part of the self energy becomes smaller than the hybridization strength.

In Fig. 3.4 (d)-(f), we can also see many iEPs with large Re(ω − h0), which appear at almost all
temperatures. These iEPs are mainly related to the imaginary part of the self-energy away from the
Fermi energy, particularly in the Hubbard bands, which are nearly temperature independent and are
irrelevant to the Kondo effect.

Figures 3.4 (g)-(i) show the Fermi surface at the temperature at which EPs appear at the Fermi
energy for the systems with local hybridization and for the system with p-wave hybridization. For
the system with the local hybridization, EPs appear only at TEP and form a closed loop in the BZ.
We note that it is not possible to define a vorticity at ω = 0 for this closed loop, which is different
from the symmetry-protected exceptional ring in systems with chiral symmetry[26, 67, 74, 75].
Therefore, we believe that this loop of exceptional points will change into isolated EPs connected
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by bulk Fermi arcs when taking into account a momentum-dependent self-energy. For the system
with the p-wave hybridization, EPs appear as isolated points at the Fermi energy in the spectrum
and have nonzero vorticity, and are thus topologically protected. These EPs change their position
in the BZ satisfying Eq.(3.1.11) when changing the temperature, and finally merge and disappear
at zero temperature.

3.3 Extension of the exceptional manifolds to ω-space
For the emergence of exceptional points, two equations (Eq.(3.1.11) and Eq.(3.1.12)) must be satis-
fied. Thus, in a d-dimensional model (2-dimensional momentum space in this chapter), exceptional
points will generally form (d-2) dimensional manifolds. The dimension of the exceptional mani-
fold might be higher, if additional symmetries do exist. For example, in 2D systems with chiral
symmetry[67], one of the two conditions for EPs, such as Eq. (3.1.11) and (3.1.12), is always
satisfied which leads to (d-1) dimensional exceptional manifolds. Besides the spatial dimension,
the effective Hamiltonian in strongly-correlated systems also depends on the frequency, ω, because
the self-energy depends on the frequency. Thus, the inclusion of frequency will increase the di-
mension of the exceptional manifolds. Previous studies have only focused on the Fermi energy,
ignoring the frequency dependence of the exceptional manifolds. We note that a frequency depen-
dent effective Hamiltonian occurs in situations when focusing on a subsystem and integrating out
the rest of the total system, even though the full system is described by a frequency-independent
Hamiltonian[39, 76, 77]. Because we here focus on the one-particle Green function, the effective
Hamiltonian depends on the frequency.

In Fig. 3.5, we show the exceptional manifolds for the local and the nonlocal hybridization
and different temperatures in the (k,ω)-space. Until now, we have focused only on exceptional
points close to the Fermi energy. Fig. 5(a) shows the exceptional loops in the system with
local hybridization for a temperature above the Kondo temperature. As described above, in the
system with local hybridization, Eq.(3.1.11) and Eq.(3.1.12) do not depend on the momentum and
thus exceptional manifolds are loops in the momentum space. At temperatures above the Kondo
temperature, we find one loop above the Fermi energy and one loop below the Fermi energy.
Lowering the temperature towards the Kondo temperarure, these exceptional loops move towards
the Fermi energy. At the Kondo temperature, these exceptional loops merge at the Fermi energy.

We note that by extending our considerations to the (k,ω)-space, we are able to define and
calculate the vorticity of these loops by

ν =

∮
EP

dk′

2πi
· ∇k ′log detHe f f (k,ω), (3.3.1)

where k′ is defined on the plane which is perpendicular to the tangent vector of the exceptional loop.
The line integral is done in mathematical positive direction. We then define the direction of the
exceptional loops, shown in Fig. 3.5, so that the vorticities defined in Eq.(3.3.1) become 1/2. Further

36



details are explained in Appendix B.1. We note that when considering a momentum dependent
self-energy, these loops become distorted. Thus, looking at the Fermi energy, the exceptional
manifold will appear as points.

Fig. 5(b)-(d) show the exceptional manifolds for the system with nonlocal hybridization. Fig.
3.5(b) and (c) show these exceptional points in (k,ω)-space at high temperatures. Including the
ω-space, these exceptional points form closed loops. Furthermore, we show in Fig. 3.5(c) a
magnification of (b) around the Fermi energy, which demonstrates the absence of exceptional points
at the Fermi energy for high temperatures. When lowering the temperature, one closed loop of EPs
is formed above ω = 0 and one closed loop is formed below ω = 0. At the Kondo temperature,
these loops touch and merge at ω = 0 to a single 1D exceptional manifold as shown in Fig. 3.5(d).

We conclude that the crossover from localized to itinerant f -electrons in the system with local
hybridization goes hand in handwith themerging and vanishing of two exceptional loops at the Fermi
energy. In the system with nonlocal hybridization, different exceptional loops in the (k,ω)-space
change their topology at the Kondo temperature and generate EPs at the Fermi energy.
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Figure 3.4: (a)-(f) : Comparison between the Kondo insulator, the heavy-fermion state, and
the metallic state with p-wave hybridization for different strengths of V . (a)-(c) show the local
susceptibility. The colors in (a)-(c) correspond to different V . The arrows describe the estimated
Kondo temperature for each case. In (a) and (c), the green, skyblue, orange and red plot respectively
correspond to V = 0.36,0.4,0.44,0.5. In (b), the green, skyblue, orange and red plot respectively
correspond to V = 0.4,0.44,0.5,0.55. (d)-(f) show the temperature and the frequency dependence
of the emergence of the iEPs and the EPs. The iEPs are drawn as black dots. In (d) and (f), the cross,
point, triangle, and square dots are for V = 0.36,0.4,0.44,0.5. In (e), the cross, point, triangle, and
square dots correspond to V = 0.4,0.44,0.5,0.55. The EPs are drawn as color plots. We use the
same color as in (a)-(c). The arrows describe the Kondo temperature estimated from (a)-(c). (g)-(i)
show momentum-resolved spectral functions at the Fermi energy around TEP. (g) corresponds to
V=0.36, T=0.0035 shown in (a) and (d). (h) corresponds to V=0.4, T=0.0007 shown in (b) and
(e). (i) corresponds to V=0.36,T=0.0025 shown in (c) and (f). The parameters are U=2, tc=0.8,
t f =-0.04, µc=0, µ f =-1.0. In (g) and (f), exceptional points form a closed loop in the BZ, highlighted
as a green line. In (i), we included exceptional points with vorticity ±1/2 as red and blue points.
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Figure 3.5: Exceptional points ofHe f f (kx, ky,ω) in the system with local hybridization for (a) and
with nonlocal hybridization for (b)-(d). The parameters are Vl = 0.4,t f /tc = −0.05,T = 0.016 in
(a),Vp = 0.4,t f /tc = −0.05,T = 0.016 in (b) and (c), and Vl = 0.4,t f /tc = −0.05,T = 0.002 in
(d). (c) is a magnification of the exceptional manifold shown in (b) close to the Fermi energy. The
vorticities in (a) are calculated by Eq.(3.3.1).
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Chapter 4

Effects of renormalization and
non-Hermiticity on nonlinear responses in
strongly-correlated electron systems

In Chapter 4, we first give an analytical derivation of nonlinear responses using the Green function
methods at finite temperature. Then, we discuss the difficulties of considering dissipation using
conventional methods, such as the reduced density matrix method. We reveal that the relaxation
time approximation leads to severe limitations when considering optical responses. Finally, we
demonstrate that correlation effects, such as the renormalization of the band structure and different
lifetimes in orbitals or sublattices, can significantly enhance nonlinear responses and even change
the sign of the nonlinear conductivity.

4.1 Background

Nonlinear responses in condensed matter theory have attained great interest because of their rich
information about the symmetries of materials and their various functionalities. For example, the
breaking of the inversion symmetry in a material can be detected by measuring the second harmonic
generation of the electric susceptibility[78–80]. Moreover, in non-centrosymmetric materials, the
shift current and non-reciprocal(rectification) current can occur in nonlinear responses[81, 82].
It is extensively studied due to its application in solar cells, photodetectors, and high-frequency
rectification devices[83–87].

Although nonlinear responses in condensed matter systems have many possible applications, the
magnitude of the nonlinear response, which is usually small, poses a significant obstacle for most
applications. Thus, much effort has been put into enhancing the amplitude of the nonlinear response.
It has been proposed that the shift current can be magnified in Dirac systems[81, 84, 88, 89] and
that superconducting fluctuations can enhance the nonreciprocity[90–92]. Another possibility to
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enhance nonlinear responses might be correlation effects. A strong high-harmonic generation has
been revealed in strongly-correlated electron systems both in experiments[93, 94] and numerical
calculations[95–99]. A nonlinear Hall effect, which is almost 103 times as large as the ab-initio
calculation result, has been measured in the Weyl-Kondo semimetal candidate Ce3Bi4Pd3[100].
Moreover, it has been suggested from a Hartree-analysis that the strong Coulomb interaction
may enhance nonreciprocity[101]. Although these works show that correlation effects give large
nonlinear responses, a systematic analysis of strong correlation effects on nonlinear responses is
still missing.

In this chapter, we first derive a formalism based on Green functions for calculating the nonlinear
response at finite temperature and formulate a diagrammaticmethod to use them. Wenote that Parker
et al.[102] have derived a similar diagrammatic method for nonlinear responses focusing on the zero
dissipation limit and João et al.[103] have introduced a diagrammatic method based on Keldysh
Green functions. Neglecting vertex corrections, we can derive equations based on the single-
particle Green function, including correlation effects via the self-energy. Because there are many
methods available to calculate the self-energy of correlated materials, the here derived formalism
makes it easy to analyze correlation effects on nonlinear responses. Next, we discuss difficulties of
including the dissipation effect in conventional methods, such as the reduced density matrix(RDM)
method[104–108]. In these methods, dissipation is often introduced phenomenologically by using
the relaxation time approximation(RTA). We reveal that the RTA breaks the gauge invariance and is
only justified in the DC limit, the high-frequency limit, and at high-temperatures, while dissipation
is appropriately included in the Green function method.

Furthermore, while the RDM method for nonlinear responses mainly focuses on noninteracting
systems, we demonstrate that it is possible to include correlation effects into the RDM using Green
functions. By including correlation effects into the RDM, we are able to retrieve the equations of
the Green function method in the DC limit. Finally, we use our Green function formalism to analyze
correlation effects on nonlinear responses. Notably, we look at the impact of the renormalization
of the band structure and the effect of different lifetimes on the nonlinear response functions. We
show that renormalization effects can enormously enhance the nonlinear response. Considering a
renormalization uniform in all orbitals, the renormalization factor z(< 1) enhances the n-th order
response by a factor of z−(n−1). Furthermore, we study the effect of different lifetimes in different
orbitals using the non-Hermitian band-index of the effective non-Hermitian Hamiltonian describing
the single-particle Green function. We show that the occurrence of different lifetimes can not only
enhance terms already existing in the Hermitian case but also creates novel non-Hermitian terms
in the nonlinear response function originating in the coalescence of several bands. Our framework
can be applied to most correlated electron systems, such as heavy fermions, magnetic systems,
Mott insulators, etc. However, we note that it cannot be directly used for systems with strong
spatial fluctuations because we ignore vertex corrections and the momentum dependence of the
self-energy. On the other hand, by using the Nambu formalism, we can also expand our framework
to superconducting systems.
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The rest of this chapter is organized as follows: In Section 4.2, we derive the Green function
formalism for the nonlinear response at finite temperature. Next, we discuss the difficulties of
including the dissipation in the RDM method in Section 4.5. We reveal that the RTA under an AC
electric field is a severe approximation, although it is often used in previous works. In Section 4.6,
we extend the RDM method to interacting systems by using Green functions. Finally, we analyze
correlation effects, such as the renormalization of the band structure and the occurrence of different
lifetimes in different orbitals, on the nonlinear response in Section 4.7.

4.2 Nonlinear response using the Green function method
In this section, we introduce the Matsubara formalism to express nonlinear response functions by
Green functions, which are common and easy to handle in the context of correlated systems at finite
temperature. Throughout this chapter, we set the Planck constant and the lattice constant to unity,
h̄ = a = 1. We also set the electron charge q = 1 in the numerical calculations.

We here use the velocity gauge, in which the effect of electric fields is described in the Hamil-
tonian as

H(k) → H(k−qA(t)) = H(k)+
∞∑

n=1

1
n!

n∏
i=1

(
−qAαi (t)∂αi

)
H(k), (4.2.1)

where q is the charge of the electron and αi is a direction in the momentum space. In this chapter, we
suppose that there is no magnetic field and we use the Coulomb gauge A(x, t) = A(t). We note that
there is another choice of gauge, namely the length gauge. Under the length gauge, electric fields
can be described by the dipole Hamiltonian, and it is often used in the semi-classical Boltzmann
equation and the RDM. It is known that both gauges give the same results for noninteracting systems
when calculating exactly[106].

The action of the system in the imaginary time is given as

S[A] =
∫ β

0
dτ

[∑
k,a

{
ψ̄a,k∂τψa,k +H(k−qA(−iτ))

}
+Hint

]
(4.2.2)

=

∫ β

0
dτ

[∑
k,a

{
ψ̄a,k∂τψa,k +H(k) +

∞∑
n=1

(−1)n

n!

n∏
i=1

(
Aαi (−iτ)

)
Ĵα1...αn(k)

}
+ Hint

]
(4.2.3)

Ĵα1...αn(k) = qn∂α1 . . . ∂αnH(k) (4.2.4)

where ψ̄a,ψa are fermionic creation and annihilation operators which construct the HamiltonianH ,
a is the orbital index, A(t) is the vector potential, Ĵα1...αn(k) = qn∂α1 . . . ∂αnH(k) and Hint is the
interaction part of the Hamiltonian. In this chapter, we suppose that there is only a local interaction.
We note that for general nonlocal interactions, the interaction part of the Hamiltonian also depends
on the vector potential.
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The partition function with applied electric field is written in the path integral formalism as

Z[A] =
∫
Dψ̄Dψ exp

[
−S[A]

]
. (4.2.5)

The expectation value of the current is

〈Jα(τ)〉 =
δ

Z[A]δAα(−iτ)
Z[A], (4.2.6)

which can be written using response functions as

〈Jα(τ)〉 =
∫

dτ′K1
αβ(τ, τ

′)Aβ(−iτ′)

+

∫
dτ′

∫
dτ′′K2

αβγ(τ τ
′, τ′′)Aβ(−iτ′)Aγ(−iτ′′)

+ . . . , (4.2.7)

where

Kn
αα1...αn(τ1, . . . , τn) =

1
Z[A]

( n∏
i=1

δ

δAαi (−iτi)

) δ

δAα(−iτ)
Z[A]

���
A=0

. (4.2.8)

The results for the response functions in imaginary time are explicitly written in the Appendix C.1.
After Fourier transformation to Matsubara frequencies, the current is given as

〈Jα(iωn)〉 = K (1)αβ(iωn; iωn)Aβ(iωn)

+
∑
ωm,ωl

K (2)αβγ(iωn; iωm, iωl)Aβ(ωm)Aγ(ωl)δ(ωn−ωm−ωl)

+ . . . (4.2.9)

The frequency before the semicolon in the response function K (n)αβ(iωn; iωn, . . .) represents the
frequency of the output response, and the frequencies after the semicolon represent the frequencies
of the input forces, i.e. of the vector potentials.

Analytical continuation and using E(ωi) = iωiA(ωi) finally yields

〈Jα(ω)〉 = K (1)αβ (ω;ω)Aβ(ω)

+

∫
dω1

∫
dω2K (2)αβγ(ω;ω1,ω2)Aβ(ω1)Aγ(ω2)δ(ω−ω12)

+ . . . (4.2.10)
= σ

(1)
αβ (ω)E

β(ω)

+

∫
dω1σ

(2)
αβγ(ω;ω1,ω2)E β(ω1)Eγ(ω2)δ(ω−ω12)

+ . . . (4.2.11)
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σ
(n)
αβ...(ω; {ωs}) = K (n)αβ...(ω; {ωi})/

( n∏
s=1

iωi
)
, (4.2.12)

whereω12 = ω1+ω2. The first- and second-order conductivities can be expressed via single-particle
Green functions as

σ
(1)
αβ (ω1;ω1)

= −
1
ω1

∫ ∞

−∞

dω
2π

f (ω)
∑
k

{
Tr

[
Jαβ(k)

(
GR(ω, k) − GA(ω, k)

) ]
+ Tr

[
Jα(k)GR(ω+ω1, k)Jβ(k)

(
GR(ω, k)−GA(ω, k)

)
+Jα(k)

(
GR(ω, k)−GA(ω, k)

)
Jβ(k)GA(ω−ω1, k)

]}
(4.2.13)

σ
(2)
αβγ(ω1 + ω2;ω1,ω2)

=
1

ω1ω2

∫ ∞

−∞

dω
2πi

f (ω)
∑
k

{
1
2

Tr
[
Jαβγ

(
GR(ω) − GA(ω)

) ]
+ Tr

[
JαβGR(ω+ω2)Jγ

(
GR(ω)−GA(ω)

)
+ Jαβ

(
GR(ω)−GA(ω)

)
JγGA(ω−ω2)

]
+

1
2

Tr
[
JαGR(ω+ω12)Jβγ

(
GR(ω)−GA(ω)

)
+ Jα

(
GR(ω)−GA(ω)

)
JβγGA(ω−ω12)

]
+ Tr

[
JαGR(ω+ω12)JβGR(ω+ω2)Jγ

(
GR(ω)−GA(ω)

)
+ JαGR(ω+ω1)Jβ

(
GR(ω)−GA(ω)

)
JγGA(ω−ω2)

+ Jα
(
GR(ω)−GA(ω)

)
JβGA(ω−ω1)JγGA(ω−ω12)

]
+

[
(β,ω1) ↔ (γ,ω2)

]}
, (4.2.14)

where Jαβ... is the matrix representation of Ĵαβ..., GR/A(ω, k) is the retarded/advanced Green
function, and f (ω) is the Fermi distribution function. [(β,ω1) ↔ (γ,ω2)] means a term in which
the index and the variable have been replaced by the other set. Further details of the derivation
are given in the Appendix C.1 and C.2. Throughout this chapter, we omit the k-index of the
Green function and the velocity operator, Jαβ.... Furthermore, we ignore vertex corrections in
the many-particle Green functions, which allows us to express the conductivity as a product of
single-particle Green functions. This approximation is also commonly used in the semi-classical
Boltzmann equation and the RDM formalism. The results above are consistent with the results in
[102], and [103]. Especially, in the dissipationless limit, the results are consistent with1 Eqs.(26)

1We note that the results in [102] seem to include a typo in Eq. (B18) where 1/(ω − εab) should be changed to
1/(ω − εba) in the third term in Eq. (43).
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and (43) in ref. [102]. The detail is written in Appendix C.4. The here presented procedure to derive
the nonlinear optical conductivity can be summarized into a diagrammatic method, which is written
in the next section in Chapter. 4.3. We note that this diagrammatic method is a generalization of
the diagrammatic method at zero temperature in Parker et al.[102] to nonlinear response functions
using real-frequencies at finite temperature.

If we take the DC limit ω1,ω2 → 0, the first and second-order conductivities become

σ
(1)
DC;αβ =

∫ ∞

−∞

dω
2π

{(
−
∂ f (ω)
∂ω

)
ReTr

[
JαGR(ω)JβGA(ω)

]
− 2 f (ω)ReTr

[
Jα

∂GR(ω)

∂ω
JβGR(ω)

]}
(4.2.15)

σ
(2)
DC;αβγ

= −2
∫ ∞

−∞

dω
2π

{(
−
∂ f (ω)
∂ω

)
Im

(
Tr

[
Jα

∂GR(ω)

∂ω
JβGR(ω)JγGA(ω)

]
+

1
2

Tr
[
Jα

∂GR(ω)

∂ω
JβγGA(ω)

] )
− f (ω)Im

(
Tr

[
Jα

∂

∂ω

(∂GR(ω)

∂ω
JβGR(ω)

)
JγGR(ω)

]
+

1
2

Tr
[
Jα

∂2GR(ω)

∂ω2 JβγGR(ω)
] )}

+ (β↔ γ) (4.2.16)

Interaction effects can be taken into account by including the retarded/advanced self-energy ΣR/A(ω)

into the Green function, GR(ω) = 1/(ω − H − ΣR/A(ω)). Throughout this chapter, we ignore the
momentum dependence of the self-energy. Including the momentum dependence of the self-energy,
we should also consider vertex corrections in order to satisfy theWard-Takahashi identities. We note
that the momentum-dependence of the self-energy can become significant for certain phenomena
in strongly correlated materials and, in these cases, must be included in the considerations about
nonlinear responses. We also note that we can recover the physical unit by substituting ω → h̄ω
and multiply an for n-th order nonlinear conductivity.

Finally, setting Σ(ω) = iγ/2 and taking the limit γ → 0, we can perform the frequency integrals
and further simplify the results which are summarized in the Appendix C.4 .

4.3 Diagrammatic formalism for nonlinear response at finite
temperature

Parker et al . have introduced a diagrammatic method for nonlinear responses in Ref. [102], and
João et al.[103] introduced a diagrammatic method using Keldysh Green functions. In this section,
with the results from the previous section in mind, we construct an extension to this diagrammatic
method for finite temperatures using real frequencies, which is summarized in table 4.1. Each
diagram for the N-th order response function includes N incoming photons and one vertex for an
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Component Diagram Value

(Classical)
Photon
Propagator

(𝜶,𝝎𝟏) 1

Electron
Propagator
(Retarded)

𝝎
GR(ω)

Electron
Propagator
(Advanced) 𝝎

GA(ω)

Distribution
Function

(
GR(ω) − GA(ω)

)
f (ω)

One-Photon
Input Vertex

(𝜶,𝝎𝟏)

𝝎′

𝝎" +𝝎𝟏
1

iω1
Jα

Two-Photon
Input Vertex

(𝜶,𝝎𝟏)
𝝎′

𝝎" +𝝎𝟏 +𝝎𝟐(𝜷,𝝎𝟏)
1

iω1
1

iω2
Jαβ

One-Photon
Output Ver-
tex

𝝎−𝝎𝟏

(𝜶,𝝎𝟏)
𝝎

Jα

Table 4.1: Objects to construct Feynman diagrams for nonlinear electromagnetic perturbations in
a crystal at finite temperature – A new vertex with N incoming photons will appear in a diagram
of the N-th order response function. The input vertex can appear with any number of photons with
a coefficient (−iωi)

−1 for each photon. The right(left)-handed arrows represent retarded(advanced)
Green functions. The direction of the arrow changes at the distribution function object and the
output vertex, but not at the input vertices. We note that the input can occur at the same place as
the output, such as in the first term of Eq. (4.3.1) and Eq. (4.3.2). In that case, the value for the n-th
order vertex becomes

∏n−1
i

1
iωi
Jα1...αn
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outgoing photon. For each incoming photon a coefficient (iωi)
−1 is multiplied. The frequencies of

the input vertices need to sum up to the output frequency. Furthermore, each diagram includes one
object corresponding to the distribution function. Finally, retarded and advanced Green functions
are used to connect all vertices in a single loop. The difference of our results to the results by
Parker et al .[102] is the presence of the distribution function and the distinction between the
retarded and advanced Green functions. For calculating the N-th order response, we construct all
distinct diagrams using these rules. We then can easily evaluate the diagrams tracing the objects
anticlockwise starting from the output vertex.

For example, the linear optical conductivity can be described using diagrams as

σ
(1)
αβ (ω;ω1)

=

(𝜷,𝝎𝟏)

(𝜶,𝝎𝟏)

+
(𝜷,𝝎𝟏) 𝝎 + 𝝎𝟏

(𝜶,𝝎𝟏) +

(𝜷,𝝎𝟏)

𝝎 − 𝝎𝟏

(𝜶,𝝎𝟏)

= −
1
ω1

∫ ∞

−∞

dω
2π

f (ω)
∑
k

{
Tr

[
Jαβ(k)

(
GR(ω, k)−GA(ω, k)

) ]
+ Tr

[
Jα(k)GR(ω+ω1, k)Jβ(k)

(
GR(ω, k)−GA(ω, k)

)
+ Jα(k)

(
GR(ω, k)−GA(ω, k)

)
Jβ(k)GA(ω−ω1, k)

]}
, (4.3.1)

48



The diagrams for the second-order optical conductivity are given as

σ
(2)
αβγ(ω;ω1,ω2)

=
(𝜷,𝝎𝟏)

(𝜸,𝝎𝟐)

(𝜶,𝝎𝟏+𝝎𝟐)

+
(𝜸,𝝎𝟐) 𝝎 + 𝝎𝟐

(𝜷,𝝎𝟏)

(𝜶,𝝎𝟏+𝝎𝟐)
+

𝝎−𝝎𝟐 (𝜷,𝝎𝟏)

(𝜶,𝝎𝟏+𝝎𝟐)

(𝜸,𝝎𝟐)

+
(𝜷,𝝎𝟏) 𝝎 + 𝝎𝟏 +𝝎𝟐

(𝜸,𝝎𝟐)

(𝜶,𝝎𝟏+𝝎𝟐)
+

(𝜷,𝝎𝟏)

𝝎 − 𝝎𝟏 −𝝎𝟐

(𝜶,𝝎𝟏+𝝎𝟐)

(𝜸,𝝎𝟐)

+
(𝜷,𝝎𝟏) 𝝎 + 𝝎𝟏

(𝜶,𝝎𝟏+𝝎𝟐)

(𝜸,𝝎𝟐)

𝝎 + 𝝎𝟏 +𝝎𝟐 +

(𝜷,𝝎𝟏)

𝝎 + 𝝎𝟐

(𝜶,𝝎𝟏+𝝎𝟐)

(𝜸,𝝎𝟐)

𝝎 − 𝝎𝟏

+

(𝜷,𝝎𝟏)
𝝎 − 𝝎𝟐

(𝜶,𝝎𝟏+𝝎𝟐)

(𝜸,𝝎𝟐)

𝝎 − 𝝎𝟏 −𝝎𝟐

+
(
(β,ω1) ↔ (γ,ω2)

)
. (4.3.2)

4.4 Models used in this Chapter

In this chapter, we use the following two models to numerically confirm our general results. In this
section, We introduce the effective Hamiltonian He f f = H0 + Σ

R, which includes the dissipation
effect.

4.4.1 Monolayer TMD materials with a spin-dependent dissipation

This model is commonly used to describe transition metal dichalcogenide(TMD) monolayers. The
effective non-Hermitian Hamiltonian, which can again be understood as the non-Hermitian matrix
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describing the retarded single-particle Green function, can be written as[87, 119]

He f f =
∑
k,s

(ε(k) − µ − iη − iΓs) c
†

k,sck,s

+
∑
k,s,s′

g(k) · σss′c
†

k,sck,s′ (4.4.1)

ε(k) = 2t
(
p cos(k · a1)+cos(k · a2)+cos(k · (a1+a2))

)
(4.4.2)

gx(k) =
α1
2

[
sin(k · (a1 + a2)) + sin(k · a2)

]
(4.4.3)

gy(k) = −
α1
√

3

[
sin(k · a1)+

sin(k · (a1+a2))−sin(k · a2)

2

]
(4.4.4)

gz(k) =
2α2

3
√

3

[
sin(k · a1)+sin(k · a2)−sin(k · a1+a2)

]
(4.4.5)

where c(†)
k,s is the annihilation(creation) operator for a conduction electron whose momentum is k

and spin is s. µ is the chemical potential, Γ↑/↓ = ±Γ is the spin-dependent dissipation, p is the effect
of the strain[87] and σ are the Pauli matrices and g represents the spin-orbit coupling. The lattice
vectors are a1 = (1,0) and a2 = (−1/2,

√
3/2). We set Γs = 0 except for Chapter. 4.7.2.

4.4.2 One-dimensional Rice-Mele model with sublattice-dependent dissipa-
tion

We start from the Hermitian 1D Rice-Mele model, but assume that the dissipation depends on the
sublattice. Such an effective non-HermitianHamiltonian can also be derived from the non-Hermitian
matrix describing the single-particle Green function. The effective non-Hermitian Hamiltonian
reads[101]

He f f (k) =
∑
a,b

ψ†a

(
τ0iη+τxt cos k+τyδt sin k+τz(∆ + iΓ)

)
ab
ψb, (4.4.6)

where ψ(†)A/B describes the annihilation (creation) operator in sublattice A/B, τ represents the Pauli
matrices, η is the average of the dissipation strength at each sublattice, t is an intra-lattice hopping,
δt is an inter-lattice hopping, ∆ is the difference of the chemical potential between the sublattices,
and Γ is the difference of the dissipation strength at each sublattice.

4.5 Difficulties describing dissipation effects in the reduced den-
sity matrix formalism

Having introduced the Green function technique based on a path integral derivation to calculate
nonlinear transport, we can comparewith different approaches and approximationsmade to calculate
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the nonlinear response. The semi-classical Boltzmann equation and the RDM method are often
used to calculate nonlinear responses. In these methods, the dissipation is usually introduced by the
relaxation time approximation(RTA). In this section, we briefly introduce the RDMmethod. Being
able to compare it with the Green function method, we can pinpoint the problems accompanying the
RTA and explain in what situation RTA is justified. We note that the results by the semi-classical
Boltzmann equation can also be obtained by the RDM results[102] so that we here consider only
the RDM method. We briefly introduce the Boltzmann equation approach to nonlinear transport in
the Appendix C.5.

4.5.1 Reduced Density Matrix Formalism

When ignoring two-body correlations, we can write the total density matrix of the lattice system
as the tensor product of the reduced density matrices ρtot(t) =

∏
k ⊗ρk(t). We can now describe

the dynamics of the density matrix for each momentum k under the electric field by using the
von-Neumann equation, which reads

d
dt
ρk(t) = −i

[
H, ρk(t)

]
− (ρ(t) − ρ(0))/τ (4.5.1)

H = H0 +HE (4.5.2)
HE = −qE · r, r = −i∇k, (4.5.3)

where we introduce the effect of dissipation by using the RTA, −(ρ(t) − ρ(0))/τ, and ρ(0) describes
the equilibrium state without the electric field. In the RDM formalism, we use the length gauge and
describe the dynamics with the dipole Hamiltonian in Eq. (4.5.3). The density matrix under the
velocity gauge can be obtained by using the transformation ρE = UρAU†, U = exp[−iqA(t) · r],
where ρE/A is the density matrix under the length/velocity gauge. We note again that results
obtained by the length gauge are equivalent to those obtained under the velocity gauge without
dissipation[106]. The recurrence equation of the n-th order density matrix ρ(n)(t) about the electric
field can be written as

dρ(n)(t)
dt

= −i[H0, ρ
(n)(t)] − i[HE, ρ

(n−1)(t)] − γρ(n)(t)

= −iLρ(n)(t) + qE(t) · ∇ρ(n−1)(t) − γρ(n)(t) (4.5.4)

F.T.⇔ ρ
(n)
k
(ω) =

iqE µ(ωn)

ω − L + iγ
∇µρ

(n−1)
k
(ω − ωn), (4.5.5)

where −iLρ = −i[H0, ρ], γ = 1/τ, ωn describes the frequency of the electric field which leads to
the n-th order density matrix ρ(n), E(ωn) is the Fourier component of E(t) and F .T . means Fourier
transformation. In the length gauge, the current operator J can be written as,

J = q Ûr = −iq[r,H] = q∇kH, (4.5.6)
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and, therefore, the n-th order conductivity can be calculated by

σ
(n)
α;{αi}
(ω; {ωi}) =

∑
k

Tr
[
Jαρ

(n)
k
(ω)/(

∏
i

Eαi (ωi))

]
.

(4.5.7)

Detailed expressions can be found in Ref. [105, 109]. We note that the equations of the RDMmethod
using RTA can be derived from the Green function technique in the DC-limit and in the dissipation-
free limit for ωi � εnm, γ. Details about this correspondence are given in the Appendix C.4. The
RDM method introduced here is exact except for the RTA, and therefore, the necessary conditions
we have listed above are caused by the RTA.

4.5.2 Velocity gauge vs Length gauge under the relaxation time approxima-
tion

In an isolated system without dissipation, physical quantities calculated by the velocity and length
gauge are the same, which has been shown in Ref. [106]. In this subsection, we show that this
correspondence between both gauges breaks down when using the RTA. The density matrix in each
gauge can be written as [106]

ρE (t) = UρA(t)U†, U = exp[−iA(t) · r] (4.5.8)

ρ
(n)
E (t) = ρ

(n)
A (t) +

n∑
l=1
(

l∏
m=1
−iAαm(t))[rαl, [rαl−1, . . . [rα1, ρ

(n−l)]]]

= ρ
(n)
A (t) − iA(t) · [r, ρ(n−1)

A (t)] − . . . , (4.5.9)

where ρE (t) is the density matrix under the length gauge, ρA(t) is the density matrix under the
velocity gauge, and ρ(n)(t) represent the density matrix with the n-th order perturbation by the
electric fields. By applying the RTA, the density matrices under both gauges change as ρ(n)E/A(t) →

ρ
(n)
E/A(t)e

−γt when n ≥ 1. The equality in Eq. (4.5.9) for the n = 1-order density matrix using the
RTA becomes

ρ1
E (t)e

−γt ?
= ρ

(1)
A (t)e

−γt − iA(t) · [r, ρ(0)A ] (4.5.10)

However, because ρ(0)A does not include dissipation, the equality in Eq. (4.5.10) has to break down.
One possible strategy to avoid this breakdown is to ignore the dissipation in the system and

instead include photon dissipation or adiabatic switching as A(t) → A(t)e−γt . In this case, the
equality in Eq. (4.5.9) holds true. However, it gives different results from the RTA, especially in the
regime ωi � γ [107]. When substituting A(t) → A(t)e−γt , we do not consider the dissipation and
scattering of electrons in the system. Thus, a current must not occur because there is no mechanism
to change the momentum of electrons, k → k′, and to induce a non-equilibrium steady-state
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state. Therefore, when including dissipation of electrons by applying the RTA, a breakdown of the
equality between the velocity gauge and the length gauge is inevitable. We note that, in the Green
function method, this breakdown does not occur when we use GR(ω) = 1/(ω − H + iγ/2) and
GA(ω) = 1/(ω − H − iγ/2) because it just supposes that the dissipation is constant in the absence
of an electric field.

4.5.3 Problems of the relaxation time approximation in an AC electric field
In this part, we introduce the dissipation into the RDM method without using the RTA and show
under which conditions the RTA is a good approximation. This analysis reveals the problems of
using the RTA in an AC electric field. Finally, we compare the RDM using the RTA with the Green
function formalism numerically.

The easiest way to introduce the dissipation microscopically is to couple the system with
a dissipative bath. For the sake of simplicity, we consider the single-band case and the coupling
HamiltonianHc = λ(ψ

†

k
B+h.c.), whereB(†) is the annihilation(creation) operator in the dissipative

bath. In that case, the dynamics of the system can be described by the quantum master equation,
which reads

d
dt
ρI
k(t) = −

∫ t

t0
dsTrB

( [
H I

c (t), [H
I
c (s), ρ

I
k(s) ⊗ ρB]

] )
(4.5.11)

where ρB is the density matrix of the bath and TrB corresponds to the trace over the bath degrees
of freedom. The operators are in the interaction representation,

O I(t) = T← exp[i
∫ t

t0
dt′H(t′)]OT→ exp[−i

∫ t

t0
dt′H(t′)], (4.5.12)

where H(t) = HS(t) ⊗ HB, HS(t) = H0 − qE(t) · r is the system Hamiltonian, HB is the bath
Hamiltonian, T→(←) represents the (anti-)time ordering operator. Although we take here the length
gauge, the correspondence between the length and the velocity gauge holds exactly in this formula-
tion as we will show in the next section. Equation (4.5.11) includes the dissipation term, the energy
shift term, and the gain and loss terms which describe the dynamics of a particle leaving or entering
the system. Here, we suppose that a particle that leaves the system loses the information about the
acceleration due to the electric fields, and the electric fields do not accelerate the particles in the
bath. Under this assumption, the gain and loss terms do not affect the dynamics of ρ(n) (n , 0), and
therefore, they do not affect the conductivity. Now, we focus on the dissipation term and ignore the
energy shift term. Then, Eq. (4.5.11) can be rewritten as

d
dt

(
ρI
k(t)

) (n)
= −λ2

∫ t

t0
dsRe

[{
iGl

B(t − s)ψ†I
k
(t)ψ I

k(s), ρ
I
k(s)

}] (n)
, (4.5.13)

where Gl
B(t − s) = −iTrB

[
B I(t)B†I(s)ρB

]
and {O, ρ} = Oρ + ρO†.
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Now, we use the Markov approximation to simplify Eq. (4.5.13), in which we take the limit
t0 → −∞ and approximate ρI

k
(s) ' ρI

k
(t). The Markov approximation is justified when λτB � 1,

where τB is the relaxation time of the bath and GB(t − s) ∝ exp[−(t − s)/τB]. Under the Markov
approximation, Eq. (4.5.13) can be rewritten as

d
dt
ρk(t) = −i[H, ρk(t)] − λ2

(∫ ∞

0
d(t − s)Re

[{
iGl

B(t − s)ψ†
k
U′(t, s)ψkU′†(t, s), ρk(t)

}])
(4.5.14)

U′(t, s) = T→ exp
[
−i

∫ t

s
dt′(H0 − qEeiω0t ′ · r)

]
. (4.5.15)

Finally, we consider in what situation we can derive the RTA from Eq. (4.5.14). RTA should
be a good approximation to describe transport when the integral in Eq. (4.5.14) becomes time-
independent, thus, when U′(t, s) becomes a function of (t − s) or is constant. We see that in the DC
limit ω0 → 0 or when the temperature of the bath is infinite and GB(t − s) ∝ δ(t − s), or when ω0 is
large enough so that qE · r/ω0 can be ignored, the integral

(∫
d(t − s) ∼

)
becomes a constant and

Eq. (4.5.1) can be derived from Eq. (4.5.14).
After having analyzed the validness of the RTA, we will now directly compare the linear and

nonlinear(photogalvanic) optical conductivity calculated by the Green function method with the
RDM using the RTA for a simple model. For this purpose, we use a model describing two-
dimensional transition metal dichalcogenides(TMD) in which nonlinear optical response has been
discussed in the literature [87, 110, 111]. Details about how to perform the numerical calculations
is given in Appendix C.6.

The numerical results of the optical conductivity by the RDM method using the RTA and by
the Green function method are shown in Fig. 4.1. For the linear optical conductivity, the results
of both methods agree with each other over the full frequency range. On the other hand, for the
nonlinear optical conductivity, the results only match in the DC limit, and for large frequencies,
ωi � γ, as has been discussed above. We thus find that while RTA is a good approximation for the
linear optical conductivity, it leads to severe problems for the nonlinear optical conductivity except
in the DC limit and for ωi � γ. Again, we note that the RTA supposes that all non-equilibrium
states decay equally by γ. On the other hand, the Green function method only assumes that the
dissipation is constant in the absence of an electric field. The RTA is a more severe approximation,
which affects nonlinear responses. We note that the relaxation time in most materials is usually
about 1 ∼ 100[ps][112]. Thus, when analyzing a Terahertz laser as input force, ωiτ ∼ 1, and the
error of the RTA becomes large.

4.5.4 Gauge invariance with the dissipation in quantum master equation
formalism

In this section, we analyze the correspondence between the length gauge and the velocity gauge in
the quantum master equation in Eq. (4.5.14) in the main text. By using Eq. (4.5.8), we can describe
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Figure 4.1: Comparison between the RDM method using RTA (blue) and the Green function
method (red) for the linear (left panel) and nonlinear (right panel) optical conductivities, which
is the photogalvanic effect. The parameters for the monolayer TMD model are t = 0.5, µ = 0.7,
p = 0.7, α1 = 0.08, α2 = 0.06, δ = 0.7, γ = 0.05, T = 0.02.

Eq. (4.5.13) under the velocity gauge as

d
dt
ρAk(t) + i[qE · r, ρAk(t)]

= −i[H0(k − qA) − qE · r, ρAk(t)]

− λ2
∫ t

t0
ds

(
Re

[{
iGl

B(t−s)ψ†
k
Ũ(t, s)ψk, ρAk(s),Ũ†(t, s)

}) (n)
(4.5.16)

Ũ(t, s) = T→U−1(t) exp[−i
∫ t

s
dt′(H0 − qE(t′) · r)]U(s) (4.5.17)

where {O1, ρ,O1} = O1ρO2 + O
†

2 ρO
†

2 . If we can show that T→Ũ(t, s) = exp[−i
∫ t

s H0(k − qA(t))],
the second term on the right side in Eq. (4.5.16) can be written in the interaction representation in
the velocity gauge Hamiltonian and the gauge invariance holds true in the open system. This can
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be verified by calculating the s- and t-derivative of Ũ(t, s) as

∂

∂t
Ũ(t, s) = U−1(t)

{
−iqE(t) · r − i

(
H0(k) − qE(t) · r

)}
× exp[−i

∫ t

s
dt′(H0 − qE(t′) · r)]U(s)

= U−1(t)
(
−iH0(k)

)
exp[−i

∫ t

s
dt′(H0 − qE(t′) · r)]U(s)

= −iH0(k − qA(t))Ũ(t, s) (4.5.18)
∂

∂s
Ũ(t, s) = Ũ(t, s)

(
iH0(k − qA(s))

)
(4.5.19)

Ũ(t, t) = 1. (4.5.20)

We use the relation U−1(t)H0(k)U(t) = H(k − qA(t)) to derive Eq. (4.5.18) and Eq. (4.5.19).
From the equality in Eq. (4.5.18), Eq. (4.5.19), and Eq. (4.5.20), we can identify Ũ(t, s) =
T→ exp[−i

∫ t
s dt′H0(k − qA(t′))]. Therefore, the correspondence between the length gauge and

the velocity gauge holds true in the quantum master equation, while it is broken when introducing
the RTA at finite frequency.

4.6 Extension of the reduced density matrix formalism to inter-
acting system

Having derived the Green function method for nonlinear responses, we are able to extend the RDM
method to interacting systems, mainly in the DC limit, and reproduce the results of the Green
function method. For free electron systems, we use ρ(0)

k
=

∑
n f (εn(k)) |n〉 〈n|. However, when

we consider interacting systems, the pole of the Green function includes the information of the
quasi-particle’s energy level, and therefore, the density matrix can be written as

ρ
(0)
k
=

∫
dω
2πi

∑
n

|n〉 〈n|
(
GA

n (ω)−GR
n (ω)

)
f (ω) (4.6.1)

=

∫
dω
2πi

∑
αβ

|α〉 〈β |
(
GA(ω)−GR(ω)

)
αβ

f (ω),

(4.6.2)

where |α〉 , 〈β| are states of an arbitrary basis, and ()αβ represent the elements of the Green function
in this basis. We note that we again omit the momentum-dependence of the Green function. Here,
we can choose a momentum-independent basis, ∂α |α〉 = 0. In this case, the correction of the
density matrix by the electric fields only affects the Green function matrices because f (ω) does not
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depend on k. Therefore, the density matrix corrected by n-th order electric fields can be written as(
ρ
(n)
k

)
αβ
=

∫
dω
2πi

n∑
l=0

(
GR(l)(ω)

( (
GR(0)(ω)

)−1
−

(
GA(0)(ω)

)−1
)

f (ω)GA(n−l)(ω)
)
αβ
. (4.6.3)

Although we need the Green function corrected by the n-th order of the electric field, we can easily
derive an equation for this using the RDM method. Here, we note that in Chapter.2[12], we have
shown that the dynamics of the matrix elements ρG

k,α
(0) = |k, α〉 〈0| corresponds to the retarded

Green function GR(k), which reads

GR
αβ(t) = −iθ(t)Tr

[(
ψα(t)ψ

†

β + ψ
†

βψα(t)
)
ρ
(0)
k

]
(4.6.4)

= −iTr
[
ψαρ

G
β (t)

]
, (4.6.5)

where ρG
kβ
(0) = ψ†βρ

(0)
k
+ ρ
(0)
k
ψ†β = |k, β〉 〈0| and the dynamics of ρG can be described[12] as

d
dt
ρGI
k (t) = −

∫ t

t0
dsiΣRI(t − s)ρGI

k (s) (4.6.6)

d
dt
ρG
k (t) = −i[H0 +HE, ρ

G
k (t)] −

∫ t

t0
dsiΣR(t−s)

( ∞∑
n=0

(
iq(t−s)E · r

)n

n!

)
ρG
k (s) (4.6.7)

ρ
G(n)
k
(ω) =

iqE
ω − (H0 + ΣR(ω))

{(
1 −

∂ΣR

∂ω

)
∇ρG(n−1)

k
(ω)+

∞∑
m=2

1
m!

∂mΣR

∂ωm (−iqE · ∇)
mρ

G(n−m)
k

(ω)
}
.

(4.6.8)

To deriveEq. (4.6.7), we approximateU′(t, s) ' exp[−iH0(t−s)] exp[−iqE ·r(t−s)] in the dissipation
term, which should correspond to ignoring the vertex correction. By using this equation, GR(1)(ω)

(the first-order correction of an electric field to the single-particle Green function) can be derived
as (

GR(1)(ω)
)
αβ
= iE µ

(
GR(0)(ω)

(
1 −

∂ΣR

∂ω

)
GR(0)(ω)JµGR(0)(ω)

)
αβ

= −iE µ
(∂GR(0)

∂ω
JµGR(0)(ω)

)
αβ
, (4.6.9)

By inserting Eq. (4.6.9) into Eq. (4.6.3), we can derive the equation for the linear conductivity
as given by the path integral method in Eq. (4.2.15). We can also calculate the higher-order DC
conductivity in the same way. We note that using the RDM methods might be easier than the path
integral methods for higher-order DC conductivities. However, in the AC case, it is hard to derive
an equation equivalent to Eq. (4.6.8) so that the path integral method should be used.
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4.7 Correlation effects on the nonlinear response
Finally, we use the Green function formalism and analyze the effect of renormalization and different
lifetimes in different orbitals, which have not been considered in previous studies. We reveal that
both effects can enhance the nonlinear conductivity.

4.7.1 Renormalization effect
Intuitively, the renormalization effect seems to be a disadvantage for obtaining a large conductivity
because it decreases the Fermi velocity. However, as the density of states might be enhanced by the
renormalization at the Fermi surface, one should properly analyze how the renormalization affects
the linear and the nonlinear conductivities.

First, we analyze the simple case where ΣR(ω) ' ΣR
0 + αω1. Under this approximation, the

Green function can be written as

GR−1
(ω) = ω −H0 − Σ

R(ω) ' (1 − α)ω −H ′0
≡ G′R

−1
(Z−1ω), (4.7.1)

where Z−1 = 1 − α, H ′0 = H0 + Σ
R
0 , and G′R−1

(ω) = ω − H ′0. We can now analyze the effect of
the renormalization on the conductivities calculated by the Green function method. By the variable
transformation Z−1ω→ ω′ and Z−1ωi → ω′i , the functions which appear in the linear and nonlinear
conductivities change as follows

GR/A(ω) = G′R/A(ω′) (4.7.2)
f (ω) ' θ(−ω) = θ(−ω′) ' f (ω′) (4.7.3)
∂ f (ω)
∂ω

' δ(ω) = Z−1δ(ω′) =
∂ f (ω′)
∂ω′

(4.7.4)

∂GR(ω)

∂ω
= Z−1 ∂GR(ω′)

∂ω′
(4.7.5)

dω = Zdω′
1
ωi
=

Z−1

ω′i
, (4.7.6)

where the equality in Eq. (4.7.3) and (4.7.4) are justified at zero temperature. By inserting the above
equations into Eq. (4.2.14) and Eq. (4.2.16), we can derive σ(2) = Z−1σ′(2) in both the AC and the
DC case, where σ′ is the conductivity described by ω′,ω′i,G

′R/A(ω′), which includes the energy
shift by ΣR

0 . We note that we should compare the renormalized conductivity σ(n)(ω; {ωi}) with
σ′(n)(ω′; {ω′i}) = σ

′(n)(Z−1ω; {Z−1ωi}) in the AC case. In the optical conductivity, the interband
contribution becomes large when ωi ' εnm. In order to focus on the same interband transition, we
set the frequency Z−1ω for the renormalized band. We can generalize this analysis for higher order
conductivities and find

σ(n)(ω; {ωi}) ' Z−(n−1)σ′(n)(ω′; {ω′i}). (4.7.7)
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By remembering that Z−1 > 1 holds for correlated systems around the Fermi energy, we conclude
that the renormalization effect enhances the higher-order nonlinear conductivity more strongly,
while it does not affect the linear conductivity.

Using the Green function technique, we can easily confirm our general discussion above by
calculating the linear and the nonlinear optical conductivity for the monolayer TMD model. The
results for these calculations using an unrenormalized band (Z = 1) and a renormalized band
(Z = 0.2) are shown in Fig. 4.2. As we have derived analytically, the numerical results confirm that
the nonlinear optical response is strongly enhanced by the renormalization effect, while the linear
optical response is not enhanced. We note that the renormalized nonlinear optical conductivity is
not as strongly enhanced as predicted (Z−1σ′(2)(0;−ω,ω)) in Fig. 4.2, which can be attributed to a
finite temperature, T = 0.02, where the Fermi-function does not correspond to the step-function.

4.7.2 Different lifetimes in different orbitals

In this section, we analyze the effect of different lifetimes in different orbitals, which is not considered
within the RTA. We note that there is the study by Kaplan et al . [113, 114], where the authors
analyze the effect of different lifetimes on the nonlinear response, assuming that the conventional
band-index representation is justified.

When using the RTA, the non-Hermitian (dissipation) term is described by the identity matrix.
Therefore, the eigenvectors are the same as that of the Hermitian Hamiltonian. However, when
different lifetimes are present in different orbitals, as in a material consisting of strongly correlated
electrons coupled to weakly correlated electrons, the eigenvectors are distinct from the Hermitian
case. The eigenvectors are then determined by the effective non-Hermitian Hamiltonian, which de-
scribes the single-particle Green function. In that case, the conventional band-index representation
breaks down, and one should use a non-Hermitian band-index. In this section, we first derive the
non-Hermitian band-index and then analyze its effect.

4.7.2.1 Band index representation using an effective non-Hermitian Hamiltonian

In this chapter, we suppose that the effective non-Hermitian Hamiltonian can be diagonalized. We
note that, in general, there are situations when a non-Hermitian Hamiltonian cannot be diagonalized,
which generates novel and interesting phenomena[4, 7, 10, 11, 23, 51]. For a non-Hermitian
Hamiltonian, its left eigenstates are different from its right eigenstates, while in the Hermitian case
they correspond to each other by Hermitian conjugation. By describing the left and right eigenstates
as 〈nL | H = εn 〈nL | , H |nR〉 = εn |nR〉, the following equations are satisfied:

〈nL |mR〉 = 〈nR |mL〉 = δnm (4.7.8)
1 =

∑
n

|nR〉 〈nL | =
∑

n

|nL〉 〈nR | , (4.7.9)
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Figure 4.2: Renormalization effect on the linear and nonlinear optical conductivity for themonolayer
TMDmodel – The upper figures show the linear optical conductivity, and the lower figures show the
second-order nonlinear optical conductivity(Photogalvanic effect) using an unrenormalized (blue
lines) and a renormalized (red lines) band. In the right figures, we use input frequencies normalized
by the renormalizion factor. The parameters are t = 0.5, µ = 0.7, p = 0.7, α1 = 0.08, α2 = 0.06,
δ = 0.7, γ = 0.05, T = 0.02, Z = 1 or 0.2. The details about how to perform the numerical
calculations are written in Appendix C.6.
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where 〈nR | = (|nR〉)
† and |mL〉 = (〈mL |)

†. We note that 〈nR | , 〈nL | and 〈nR |mR〉 , δnm. In
Eq. (4.7.8) and (4.7.9), we can construct the orthonormal basis by the left and right eigenstate, and
we represent the Green functions by the band index as

Hnm(k) ≡ 〈nL | H(k) |mR〉 = δnmεm (4.7.10)

GR
nm(ω, k) ≡ 〈nL |GR(ω, k) |mR〉 =

δnm

(ω − εm)
(4.7.11)

GA
nm(ω, k) ≡ 〈nR |GR(ω, k) |mL〉 =

δnm

(ω − ε∗m)
, (4.7.12)

whereH = H0+Σ
R includes the lifetime of the particles and is thus a non-Hermitian operator. In the

following, we consider the effect of non-Hermiticity on the conductivity through the non-Hermitian
band-index representation.

4.7.2.2 Non-Hermitian effect on the conductivity

First, we consider the linear conductivity using the non-Hermitian band-index representation, which
reads,

K
(1)
αβ (ω1) =

∑
n,m

{∫ ∞

−∞

dω
2π

Im
[
J nn

LR;αβGR
n (ω)

]
f (ω)

+

∫ ∞

−∞

dω
2πi

[
J nm

LR;αGR
m(ω + ω1)J

mn
LR;βGR

n (ω) − J
nm

RR;αGR
m(ω + ω1)J

mn
LL;βGA

n (ω)

+J nm
RR;αGR

m(ω)J
mn

LL;βGA
n (ω − ω1) − J

nm
RL;αGA

m(ω)J
mn

RL;βGA
n (ω − ω1)

]
f (ω)

}
,

(4.7.13)

where Jmn
AB;i = 〈mA | Ji |nB〉. In the DC-limit, this becomes

σ
(1)
DC;αβ = 2

∫ ∞

−∞

dω
2π

(
−
∂ f (ω)
∂ω

)
Re

[
J nm

RR;αGR
m(ω)J

mn
LL;βGA

n (ω)
]

− f (ω)Re
[
J nm

LR;α
∂GR

m(ω)

∂ω
Jmn

LR;βGR
n (ω)

]
. (4.7.14)

In the non-Hermitian band-index representation, four different types of velocity operators appear,
which are JLL,JLR,JRL,JRR. We note that the conventional velocity operator in the Hermitian
case corresponds to JLR and JRL . JLL and JRR are unique in the Fermi surface contribution to
transport in a non-Hermitian system. In order to compare to the conventional results, we can write
JLL/RR by JLR as

J nm
LL =

∑
l

J nl
LR 〈lL |mL〉 (4.7.15)

J nm
RR =

∑
l

J lm
LR 〈nR |lR〉 (4.7.16)
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By using this relation, the Fermi surface term in Eq. (4.7.14) can be rewritten as

Re
[
J nm

RR;αGR
m(ω)J

mn
LL;βGA

n (ω)
]

= Re
[
〈nL |nL〉 〈nR |nR〉 J

nm
LR;αGR

m(ω)J
mn

LR;βGA
n (ω)

]
+Re

[
〈lL |nL〉 〈nR |l′R〉 J

lm
LR;αGR

m(ω)J
ml ′

LR;βGA
n (ω)

]
. (4.7.17)

We note that the term including ∂ f (ω)/∂ω is called as "the Fermi surface term." The first term is
the conventional term multiplied by the factor γNH;n ≡ 〈nL |nL〉 〈nR |nR〉. We can easily show that
γNH;n ≥ 1 is always satisfied. (See appendix C.7.) Therefore, we reveal that, when the system
is described by a non-Hermitian Hamiltonian, with different lifetimes in different orbitals, the
conventional Fermi surface term can be enhanced by the factor γNH;n. The second term is unique
in the non-Hermitian band-index representation, which describes the mixture of eigenstates in the
decay dynamics. We call this term "band-coalescent term" in this chapter. For the second-order
conductivity, we perform the same analysis and find∑

l,m,n

γNH;nJ
nl

LR;α
∂GR

l (ω)

∂ω
J lm

LR;βGR
m(ω)J

mn
LR;γGA

n (ω)

+
∑
l,m,n

∑
k,k ′(,n)

〈k′L |nL〉 〈nR |kR〉 J
kl

LR;α
∂GR

l (ω)

∂ω
J lm

LR;βGR
m(ω)J

mk ′
LR;γGA

n (ω), (4.7.18)

where the first term is the conventional term with non-Hermitian factor and the second term
describes the band-coalescent term for nonlinear conductivity. Finally, we numerically check these
results and how the non-Hermiticity changes the conventional terms and the band-coalescent terms
by explicitly calculating the linear and nonlinear conductivity for two different models, including
orbital(sublattice) dependent lifetimes. First, we show the results for the one-dimensional non-
Hermitian Rice-Mele model, in which the dissipation depends on the sub-lattice. Here, we note that
Γ denotes the difference of the dissipation strength at each sublattice. The upper panels in Fig. 4.3
show the Γ-dependence of the linear and nonlinearDC-conductivity in the non-HermitianRice-Mele
model. We see that the conventional conductivity with the non-Hermitian factor is dominant for the
linear conductivity, while the band-coalescent term is dominant for the nonlinear conductivity. We
note that the band-coalescent term can be determined by subtracting the conventional term from the
total conductivity.

Next, we analyze the monolayer TMD model with uniaxial strain and spin-dependent scattering
rates, where Γ↑/↓ = ±Γ. The lower panels in Fig. 4.3 show that the conventional conductivity with
the non-Hermitian factor is dominant for the linear conductivity, while the band-coalescent term
prevails for the nonlinear conductivity. Notably, the sign of the nonlinear conductivity changes due
to the non-Hermitian effect, and the absolute value is strongly enhanced. We note that the small
spike in the conventional term of the nonlinear Hall conductivity originates from numerical errors
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due to exceptional points. The non-Hermitian band-index is very sensitive in parameter regions,
including exceptional points, where the non-Hermitian Hamiltonian cannot be diagonalized.

Although we have analyzed the effect of different lifetimes in orbitals(sublattices) in two specific
models, it seems to be clear that the non-Hermitian effect on nonlinear responses is highly model-
dependent. Our results, however, suggest that non-Hermiticity due to a difference of lifetimes
in orbitals(sublattices) can strongly enhance nonlinear transport. This enhancement of nonlinear
responses should also become important for correlated materials, where the self-energy depends on
the orbital and atom.
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Figure 4.3: Γ-dependence of the linear and non-linear conductivities in the non-Hermitian Rice-
Mele model and the the monolayer TMD materials under uniaxial strain – The upper figures show
the linear conductivity and the non-reciprocal conductivity in the 1D Rice-Mele model, and the
lower figures depict the linear conductivity and the non-linear Hall conductivity in the monolayer
TMD model under uniaxial strain. The blue lines represent the original terms (also appearing in
the Hermitian model) now modified by the non-Hermitian factor as in Eq. (4.7.18). The red lines
describe the total conductivitywhich is the sum of the conventional term with non-Hermitian factor
and the band-coalescent term.. The parameters are t = 1.0, δt = 0.3, ∆ = 0.3, η = 0.05, T = 0.02
for the 1DRice-Mele model, and t = 0.5, µ = 0.7, p = 0.7, α1 = 0.08, α2 = 0.06, δ = 0.7, η = 0.05,
T = 0.02 for the monolayer TMD model. The normalization coefficients are σ(1)xx (Γ = 0) = 0.0801,
σ
(2)
xxx(Γ = 0) = −0.0160 in the Rice-Mele model and σ(1)xx (Γ = 0) = 36.21, σ(2)yxx(Γ = 0) = 1.417 in

the monolayer TMD model.
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Chapter 5

Conclusion

In this thesis, we have investigated the non-Hermitian physics in strongly-correlated electron sys-
tems. We have especially focused on the relationship between OQS and SCES from the non-
Hermitian point of view, and the phenomena induced by the unique properties in non-Hermitian
systems, such as exceptional points and the non-orthogonality.

In Chapter 2, by analyzing the Hubbard model as an OQS, we have proved that the effective
NHH appearing in the context of OQS and equilibrium Green functions are identical. We have
demonstrated that the spectral function of a single particle described as an OQS is given by the same
non-Hermitian Hamiltonian describing the density matrix of the particle under postselection. Thus,
non-Hermitian phenomena that have been analyzed in the dynamics of a system under postselection
can also be studied by analyzing spectral functions both in OQS and SCES without postselection.
We have also shown that postselection is not necessary to derive a NHH from the spectral function,
because off-diagonal elements govern the dynamics of the spectral function, and gain and loss
contributions automatically vanish. In the process of deriving the QME for a single particle, we
have succeeded in showing that Feynman diagrams, e.g., representing the self-energy, describe the
non-Markovian dynamics of a fermionic system coupled to a fermionic bath. This technique might
also be applied to other systems, such as QuBits coupled to fermionic baths. Finally, we have
demonstrated the importance of non-Markovian dynamics to describe the dynamics in the strongly
correlated regime.

In Chapter 3, we have shown a relation between the Kondo temperature and the emergence of
exceptional points at the Fermi energy in f -electron materials. Particularly, we have studied the
Kondo insulator and the metallic state with a local hybridization, and the semimetallic state with
a p-wave hybridization in the 2D periodic Anderson model by DMFT/NRG. Around the Kondo
temperature, f -electrons change from localized to itinerant when lowering the temperature. Thus,
the emergence of EPs at the Fermi surface is a sign for the crossover between localized and itinerant
f -electrons. We have also shown that the exceptional manifolds have a onemore higher dimensional
structure when considering the ω-dependence of the effective Hamiltonian. For the system with
the local hybridization, there are exceptional loops above and below ω = 0 in the (k,ω)-space
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at high temperature, which merge and disappear around the Kondo temperature. For the p-wave
hybridization, there are four exceptional loops each above and below ω = 0 in the (k,ω)-space at
high temperature, which merge and change their topology around the Kondo temperature. Contrary
to the system with local hybridiation, these exceptional manifolds at the Fermi energy are stable for
a wide range of temperatures below the Kondo temperature and these EPs are connected by bulk
Fermi arcs.

We can naturally expect that the relation between the emergence of exceptional points at the
Fermi energy and the Kondo temperature hold for three-dimensional systems because the DMFT
results become more accurate for higher dimensions. Because the band structure of the 3D system
can be understood by stacking 2D systems, the 3D f-electron material should host robust exceptional
rings in the case of a momentum dependent hybridization and exceptional surfaces in the case of a
local hybridization at the Fermi energy.

In Chapter 4, we have constructed a formalism based on the Green functions to calculate the
nonlinear response at finite temperature and generally analyze the impact of correlations on nonlinear
response. By using a formalism based on the Green functions, correlations and electron scattering
can be easily included via the self-energy. Previous studies on nonlinear response mainly focused
on noninteracting systems using the semi-classical Boltzmann equation and the reduced density
matrix formalism. In these methods, dissipation, which is necessary for the generation of a current,
is introduced phenomenologically by the RTA. We reveal that the RTA is justified for nonlinear
optical response only in the DC limit and in the free limit ωi � γ, εnm, while the RTA seems to be
a good approximation for the linear optical conductivity. We note that although Parker et al .[102]
have also derived the Green function formalism for noninteracting systems, they consider mostly
photon decay ωi → ωi + iγ and neglect correlations and electron scattering.

After having established the Green function formalism, we have analyzed the renormalization
effect and the impact of different lifetimes in a multi-orbital system as common correlation effects,
which are not considered in previous studies. We demonstrate that the enhancement generated by
the renormalization effect increases with the order of the nonlinear response. When considering
a single-band model, the renormalization coefficient z(< 1) enhances the n-th order response by
a factor of z−(n−1). Thus, the nonlinear response is more strongly increased than linear transport.
Finally, we have analyzed systems with different lifetimes, which commonly occur in materials
where strongly correlated electrons couple to weakly interacting. The effect of different lifetimes
can be analyzed by the band index of the non-Hermitian Hamiltonian. It causes the enhancement
of terms that can also be derived in the Hermitian case and the emergence of a new term in
which several bands coalesce. We have analyzed these non-Hermitian effects on the conductivity
in two specific models. In both models, the conventional term with the non-Hermitian factor is
dominant for the linear conductivity, while the band-coalescent term is dominant for the nonlinear
conductivity. The non-Hermitian effect can enhance the (non)linear conductivity and can even
change the sign, although it depends on the model. Although the non-Hermitian band-index is not
well-defined at exceptional points, where the non-Hermitian factor γNH diverges, different lifetimes
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might give rise to novel transport. For example, in photonic crystals, the emergence of exceptional
points induces non-reciprocal transport[2, 3, 18, 115]. It should be possible to observe related
phenomena in correlated materials. However, these questions are left for future works.
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Appendix A

Appendix for the Chapter.2

A.1 Correspondencebetween theperturbation approach inNakajima-
Zwanzig equation and the diagram approach in the Green
function method

In this section, we confirm that the dynamics in Eq. (1.1.16) is described by the self-energy.
First, we confirm this result for the second order perturbation about the interaction Hc, which

corresponds to a second order process inL. We note that any odd order perturbation term disappears
because of Eq. (1.1.6). The second order term of K(t) reads,

K2(t, s) = PL(t)L(s)P . (A.1.1)

Applying this to the Hubbard model in the main text, we obtain

K2(t, s)ρS(s) = −trB

[
Hc(t),

[
Hc(s), ρI

S(s) ⊗ ρB
] ]
,

(A.1.2)

which becomes

−

∫ t

0
dstrB

[
C†σ(t) ⊗ Bσ(t),

[
Cσ(s) ⊗ B†σ(s), ρ

I
S(s) ⊗ ρB

] ]
+h.c.

We here have used that the bath is in equilibrium so that [HB, ρB] = 0 is satisfied. Performing the
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commutators in the above expression, we find the following terms(
C†σ(t)Cσ(s)ρ

I
S(s) − Cσ(s)ρ

I
S(s)C

†
σ(t)

)
⊗ trB

[
Bσ(t)B†σ(s)ρB

]
=

(
C†σCσρ

I
S(s) − Cσρ

I
S(s)C

†
σ

)
⊗

(
iΣT

2 (t − s)eiξ(t−s)
)

(A.1.3)(
ρI

S(s)C
†
σ(s)Cσ(t) − Cσ(t)ρ

I
S(s)C

†
σ(s)

)
⊗ trB

[
ρBBσ(s)B†σ(t)

]
=

(
ρI

S(s)C
†
σCσ − Cσρ

I
S(s)C

†
σ

)
⊗

(
iΣT

2 (t − s)eiξ(t−s)
)†

(A.1.4)(
Cσ(t)C†σ(s)ρ

I
S(s) − C

†
σ(s)ρ

I
S(s)Cσ(t)

)
⊗ trB

[
B†σ(t)Bσ(s)ρB

]
=

(
CσC

†
σρ

I
S(s) − C

†
σρ

I
S(s)Cσ

)
⊗

(
i(ΣR

2 (t − s) − ΣT
2 (t − s))eiξ(t−s)

)†
(A.1.5)(

ρI
S(s)Cσ(s)C

†
σ(t) − C

†
σ(t)ρ

I
S(s)Cσ(s)

)
⊗ trB

[
ρBB

†
σ(s)Bσ(t)

]
=

(
ρI

S(s)CσC
†
σ − C

†
σρ

I
S(s)Cσ

)
⊗

(
i(ΣR

2 (t − s) − ΣT
2 (t − s))eiξ(t−s)

)
(A.1.6)

We note that terms such as trB[Bσ(t)B
†
σ(s)ρB] can be visualized as shown in Fig. A.1 and

correspond to the ΣT
2 (t − s) (time-ordered self-energy) in second-order. This correspondence is

shown in more detail in S3.
Using

Sl(t) = ΣT (t)eiξt

Sg(t) = (ΣR(t) − ΣT (t)
)
eiξt,

we can describe the quantum Master equation in second order using the self-energy, which reads

∂

∂t
ρI

S(t) =
∫ t

0
ds (A.1.7)

×

[
−iSr

l (t − s)[C†σCσ, ρ
I
S(s)]

+ iSr
g(t − s)[CσC†σ, ρ

I
S(s)]

+ Si
l (t − s)

(
{C†σCσ, ρ

I
S(s)} − 2CσρI

S(s)C
†
σ

)
+ Si

g(t − s)
(
{CσC

†
σ, ρ

I
S(s)} − 2C†σρI

S(s)Cσ
)]

Sl(t) = Sr
l (t) + iSi

l (t) (A.1.8)
Sg(t) = Sr

g(t) + iSi
g(t). (A.1.9)
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We also confirm the forth order term of K(t) which corresponds to the forth order Feynman
diagrams. The forth order term of K(t) can be written as,

K4(t) =
∫ t

0 dt1
∫ t1

0 dt2
∫ t2

0 dt3
(
PL(t)L(t1)L(t2)L(t3)P

−PL(t)L(t1)PL(t2)L(t3)P

The first term on the right-hand side corresponds to a forth order Feynman diagram. The other
terms can be described by improper Feynman diagrams, such as shown in Fig. A.2. The projection
operator, Q, in Eq. (1.1.13) removes all improper Feynman diagrams from K. Higher order terms,
Kn, can be described in the same way by higher-order terms of the self-energy. Therefore, we can
conclude that the self-energy describes the dynamics of the master equation.

In the main text, we use the dynamical mean field theory to calculate the self-energy, which is
then used in the master equation. We calculate ΣT in dynamical mean field theory by calculating∑

k ′,q n(k′ + q,ω)(1 − n(k′,ω))(1 − n(k0 + q,ω))∑
k ′,q(1 − n(k′ + q,ω))n(k′,ω)n(k0 + q,ω)

= ΣT (ω)/(ΣR(ω) − ΣT (ω)) (A.1.10)

Eq. (A.1.10) is satisfiedwhen the equilibrium state of the bath is described by ρB =
∑

n |n〉 〈n| e−βεn/
∑

n e−βεn .

A.2 Self-energy in density matrix representation

In this section, we further clarify why trB

[
Bσ(t)B

†
σ(s)ρB

]
an similar terms arising in Eq. (1.1.13)

correspond to the self-energy. The single-particle Green’s function GT
k0
(t, s) for t > s is defined as

GT
k0
(t, s) = trtotal

[
ck0(t)c

†

k0
(s)ρtotal

]
, (A.2.1)

where ck0(t) = eiHtck0e−iHt . Splitting the Hamiltonian into a free part and the interaction, H =
H0 + Hint , we can use the interaction representation and write

e−iHt = e−iH0tS(t)

S(t) = T exp
[
−i

∫ t

0
dsHint(s)

]
eiHt = S−1(t)eiH0t

S(t, s) = T exp
[
−i

∫ t

s
ds1Hint(s1)

]
= S(t)S−1(s)

H ′B = QHintQ

Hc = PHintQ + QHintP

Hint = H
′
B +Hc

SB(t) ≡ T exp
[
−i

∫ t

0
dsH ′B(s)

]
.
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By using these relations, we can write

GT
k0
(t, s) = trtotal

[
S−1(t)cI

k0
(t)S(t − s)cI†

k0
(s)S(s)ρtot

]
(A.2.2)

'

∫ ∫
ds1ds2trtotal

[
S−1

B (t)c
I
k0
(t)SB(t − s2)H

I
c (s2) × SB(s2 − s1)H

I
c (s1)SB(s1 − s)cI†

k0
(s)SB(s)ρtot

]
(A.2.3)

=

∫ ∫
ds1ds2G0T

k0
(t, s2)trB

[
B(s2)B

†(s1)ρB

]
G0T

k0
(s1, s) (A.2.4)

=

∫ ∫
ds1ds2G0T

k0
(t, s2)Σ

T (s2 − s1)G0T
k0
(s1, s). (A.2.5)

When deriving Eq.(A.2.3) from Eq.(A.2.2), we have used second order perturbation in Hc. In
this equation, ΣT is the 0th order term in Hc, but exact in H ′B. We thus have shown that
trB

[
Bσ(t)B

†
σ(s)ρB

]
in Eq.(9) in the main text corresponds to the self-energy.

A.3 Spectral function in the case of larger system
When considering a system which includes the Hilbert space spanned by c(†)

k0,↑
and c(†)

k0,↓
, additional

terms such as U
N

∑
q

(
c†
k0σ

ck0+qσc†
k+qσ̄

ck0σ̄ + h.c.
)
and U

N
∑

q

(
c†
k0σ

ck0+qσc†
k0σ̄

ck0−qσ̄ + h.c.
)
appear

in the coupling Hamiltonian HC . This leads to additional gain and loss modes, which can be
described by the two-particle self-energy, which is however ignored in this paper for simplicity. We
can write down the quantum master equation for the density operator of the spectral function,

ρSF(t) = a(t) |↑〉 〈0| + b(t) |2〉 〈↓| ,

where |0〉 is the unoccupied system and |2〉 = c†
k0,↑

c†
k0,↓
|0〉. The quantum master equation becomes

∂

∂t

(
a(t)
b(t)

)
=

∫ t

t0
ds ×(

Se f f (t−s)+2Si
g(t−s) −2Si

l (t−s)
−2Si

g(t−s) Se f f (t−s)+2Si
l (t−s)

) (
a(s)
b(s)

)
,

Thus, the spectral function is given as

∂

∂t
Tr

[
C↑ρ

SF(t)
]
=

∂

∂t
(
a(t) + b(t)

)
(A.3.1)

=

∫ t

t0
dsSe f f (t − s)

(
a(s) + b(s)

)
.

In this case, the dynamics of ρSF originally includes gain and loss modes. However, when
calculating the trace for the spectral function, the gain and loss terms disappear. We finally can
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derive the spectral function by Fourier transformation

A↑↑(ω) =
1
π

Tr
[
CρSF

S (ω)
]
= i/π(ω − ξ − ΣR(ω)), (A.3.2)

where we use a(0)+b(0) = 1 as initial condition. Therefore, even when we consider a larger system,
the gain and loss modes appearing in the dynamics of ρSF cancel in the spectral function, whose
dynamics is described by an effective non-hermitian Hamiltonian, He f f (ω) = H0 + Σ

R(ω). This
statement holds generally in OQS.

A.4 Spectral function in the steady state of open quantum sys-
tems

Here, we verify that gain and loss terms in the quantumMaster equation do not affect the dynamics of
the spectral function. Therefore, the spectral function can be described by an effective non-hermitian
Hamiltonian, which is identical to the effective non-hermitian Hamiltonian in the quantum Master
equation under postselection.

We suppose that the density matrix in the steady state is given as ρSS =
∑

n an |n〉 〈n| and that
odd powers of the coupling Hamiltonian vanish when tracing out the bath, which can be written as
TrB[B

2m+1ρB] = 0. B is a fermionic operator of the coupling Hamiltonian on the Hilbert space
of the bath. Furthermore, we suppose the absence of gain and loss modes such as ψαρψ†β(α , β),
where α and β correspond to an internal quantum numbers such as spin or orbital, and ψα is the
fermionic annihilation operator of an electron in state α.

In general, the density matrix of a fermionic system can be written as

ρ(t) =
∑

sα,s′α,sβ,s′β,···=0,1
Dsα,s′α,sβ,s′β,...(t)

×ψ
†(sα)
α ψ

†(sβ)
β . . . |0〉 〈0| . . . ψ

(s′β)
β ψ

(s′α)
α (A.4.1)

=
∑
n,n′

Dn,n′(t) |n〉 〈n′| , (A.4.2)

where n(′) = (s(′)α , s
(′)

β , . . . ) and s(′)α represents the occupation number of a particle in state α.

We consider the spectral function Aαα(t) = Tr[(ψα(t)ψ†α + ψ†αψα(t))ρSS], which can be written
using ρSF = (ψ†αρSS + ρSSψ

†
α). The density matrix of the spectral function and its initial condition
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can be written using m = (sβ, sγ, . . . )

ρSF(t) =
∑

m

Bm(t)ψ†α |m〉 〈m| (A.4.3)∑
m

Bm(0) = 1 (A.4.4)

⇒ Aαα(t) = Tr
[
ψαρ

SF(t)
]
=

∑
m

Bm(t). (A.4.5)

We consider now the contribution to ∂
∂t

∑
m Bm(t) from the gain and loss terms Sl

β(t − s)ψβρSF(s)ψ†β
(β , α). It is important to see that the (non-hermitian) counterpart, −1

2 Sl
β(t − s){ψ†βψβ, ρ

SF(s)},
must exist for each gain and loss term, because of the conservation of probability in the dynamics
of the quantum master equation. By defining ψ†α |m1〉 〈m1 | = ψ

†
αψ
†

β |m2〉 〈m2 | ψβ, we can rewrite
this part of the master equation for the spectral function as

Sl
β(t − s)

[
ψβψ

†
α |m1〉 〈m1 | ψ

†

β −

{
ψ†βψβ,ψ

†
α |m1〉 〈m1 |

}
2

]
= Sl

β(t − s)
[
ψ†α |m2〉 〈m2 | − ψ

†
α |m1〉 〈m1 |

]
. (A.4.6)

If we take the trace, Tr[ψα ∼], the contribution of the loss term and the counterpart vanish. The
arguments above hold true for any (β,m) and for the gain terms. We note that to derive Eq. (A.4.6),
we have to consider the commutation relation betweenHc and ψ†α.

On the other hand, gain and loss terms including Sg(l)
α vanish because ψαρSFψ†α = ψ

†
αρ

SFψα = 0
as is written in the main text. The spectral function Aαα is not affected by Sl/g

β and can be described
only by the non-hermitian term SR

α . Therefore, the spectral function of a general fermionic OQS
can be described by an effective non-hermitian Hamiltonian without postselection.

Although we here have assumed that gain and loss modes such as ψαρψ†β(α , β) do not exist,
we show in Section. 2.3 that the spectral function in the periodic Anderson model(PAM) is also
only described by a non-hermitian Hamiltonian. In the PAM, such gain and loss terms appear due
to the hybridization between the conduction- and the f -electrons.
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Figure A.1: Second order Feynman diagram
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Figure A.2: Improper forth order Feynman diagram
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Appendix B

Appendix for the Chapter.3

B.1 definition of the vorticity in momentum-frequency space
Here, we explain the details of the definition of the vorticity in the (k,ω)-space. In (2+1) dimensional
systems, exceptional points form a loop in the (k,ω)-space. In order to define the vorticity of the
exceptional loop, we set up the plane in the (k,ω)-space to which the tangent vector of the loop is
the normal vector ( see Fig. B.1). We calculate the vorticity by doing the following line integral in
mathematical positive direction,

ν =

∮
EP

dk′

2πi
· ∇k ′log detHe f f (k,ω), (B.1.1)

where k′ is defined on the plane as shown in Fig.B.1.
However, the sign of the integral still depends on the orientation of the plane, which depends on

the direction of the tangent vector. Therefore, we choose the direction of the tangent vector so that
the integral in Eq. (B.1.1) becomes 1/2. This uniquely defines a direction for the exceptional loop
in the (k,ω)-space, which is shown in Fig. 3.5. To define the vorticity in this way, we need to define
a plane perpendicular to the exceptional manifold. Thus, it is necessary that the dimension of the
exceptional manifold is (d − 2), where d is the dimension of the (k,ω)-space. By using Eq.(3.1.11)
and (3.1.12), we see that exceptional points can merge and disappear only if their tangent vectors
are antiparallel, when two loops touch. We note that in systems whose Hamiltonian is described
by a larger than 2 by 2 matrix, e.g. a system including more than two orbitals, exceptional points
generated by different pairs of eigenvalues can touch with arbitrary direction without merging.
Furthermore, we note that a similar definition might be used to analyze 2-dimensional exceptional
manifolds in (3 + 1)-dimensional systems.
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exceptional ring

tangent vector

normal plane

𝝂 = 𝟏/𝟐

Figure B.1: Visualization of the tangent vector, normal plane, and the vorticity.
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Appendix C

Appendix for the Chapter.4

C.1 Derivation of the Matsubara formalism

In this section, we derive the conductivities using Green’s function in Eq. (4.2.13) and Eq. (4.2.14)
starting from Eq. (4.2.8) and Eq. (4.2.12). The first- and second-order response functions in the
imaginary time are written as

K
(1)
αβ (τ, τ1)

=
1

Z[A]
δ

δAβ(−iτ1)

δ

δAα(−iτ)
Z[A]|A=0 (C.1.1)

= − < ψ̄µ(τ)J
µν
α ψν(τ)ψ̄λ(τ1)J

λη
β ψη(τ1) >

+ < ψ̄µ(τ)J
µν
αβ ψν(τ) > δ(τ−τ1) (C.1.2)

= −δ(τ−τ1)Tr
[
JαβG(0)

]
− Tr

[
JαG(τ−τ1)JβG(τ1−τ)

]
(C.1.3)

K
(2)
αβγ(τ, τ1, τ2)

=
1

Z[A]
δ

δAγ(τ2)

δ

δAβ(τ1)

δ

δAα(τ)
Z[A]|A=0 (C.1.4)

= δ(τ−τ1)δ(τ−τ2)Tr
[
JαβγG(0)

]
+δ(τ−τ1)Tr

[
JαβG(τ − τ2)JγG(τ2 − τ)

]
+δ(τ−τ2)Tr

[
JαγG(τ − τ1)JβG(τ1 − τ)

]
+δ(τ1−τ2)Tr

[
JαG(τ − τ1)JβγG(τ1 − τ)

]
+Tr

[
JαG(τ−τ2)JγG(τ2−τ1)JβG(τ1−τ)

]
+Tr

[
JαG(τ−τ1)JβG(τ1−τ2)JγG(τ2−τ)

]
(C.1.5)
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where we have used Wick’s theorem to derive Eq. (C.1.3) and Eq. (C.1.5) from Eq. (C.1.2) and
Eq. (C.1.4). When calculating conductivities for correlated systems, Eq. (C.1.3) and Eq. (C.1.5)
are exact except for vertex corrections. Correlations are included via the self-energy in the single-
particle Green’s function in imaginary time, G. We note that physical quantities obtained within the
length gauge correspond to those from the velocity gauge when calculating exactly[106]. Therefore,
taking the length gauge, we can derive the same results.

After Fourier transformation, we can derive the linear and second-order nonlinear response
function in the Matsubara frequency as

K
(1)
αβ (iωm; iωm)

= −
1
β

∑
ωl

Tr
[
JαβG(iωl) + JαG(iωl+iωm)JβG(iωl)

]
(C.1.6)

K
(2)
αβγ(iωs(= iωn + iωm); iωn, iωm)

=
1
β

∑
ωl

{
1
2

Tr
[
JαβγG(iωl)

]
+
(
Tr

[
JαβG(iωm+iωl)JγG(iωl)

]
+

1
2

Tr
[
JαG(iωn+iωm+iωl)JβγG(iωl)

]
+Tr

[
JαG(iωn+iωm+iωl)JβG(iωm+iωl)JγG(iωl)

] )
+
(
(β, iωn) ↔)γ, iωm)

)}
, (C.1.7)

where ωl = (2l + 1)π/β are Fermionic Matsubara frequencies and ωm = 2mπ/β,ωn = 2nπ/β are
Bosonic Matsubara frequencies, which originate from the photons.

C.2 Analytic continuation of the nonlinear response function

We can calculate the (non-)linear response in real frequency by using analytic continuation. By
considering the paths in the complex frequency plane shown in Fig. C.1, the (non-)linear response
functions can be written as
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Re(𝜔)
Im(𝜔)

…
…

C1

C3

C2

C4 Im(𝜔) = −𝑖𝜔! ± 𝑖𝛿

The poles of 
Fermi distribution function

The poles of 
The Green functions

Im(𝜔) = ±𝑖𝛿

Re(𝜔)
Im(𝜔)

…
…

…
…

C1

C3

C5

C2

C4

C6

𝜔 = −𝑖𝜔! ± 𝑖𝛿

𝜔 = −𝑖(𝜔"+𝜔!) ± 𝑖𝛿

Figure C.1: Paths in the complexω-plane for the analytic continuation of the linear and second-order
nonlinear response functions – By constructing the paths, which surround the poles of the Fermi
distribution function and avoid the poles of the Green’s functions, we can derive Eq. (C.2.3) and
Eq. (C.2.4) from Eq. (C.1.6) and Eq. (C.1.7).

K
(1)
αβ (iωm; iωm) = (

∮
up+C1

+

∮
C2+C3

+

∮
C4+low

)
dω
2πi

f (ω)Tr
[
JαβG(ω) + JαG(ω + iωm)JβG(ω)

]
(C.2.1)

=

∫ ∞

−∞

dω
2πi

f (ω)

{
Tr

[
Jαβ

(
GR(ω) − GA(ω)

)]
+ Tr

[
JαGR(ω + iωm)Jβ

(
GR(ω) − GA(ω)

)]
+Tr

[
Jα

(
GR(ω) − GA(ω)

)
JβGA(ω − iωm)

]}
(C.2.2)

⇔ K (1)αβ (ω1;ω1) =

∫ ∞

−∞

dω
2πi

f (ω)

{
Tr

[
Jαβ

(
GR(ω)−GA(ω)

)]
+ Tr

[
JαGR(ω+ω1)Jβ

(
GR(ω)−GA(ω)

) ]
+Tr

[
Jα

(
GR(ω)−GA(ω)

)
JβGA(ω−ω1)

]}
(C.2.3)
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K
(2)
αβγ(iωn + iωm; iωn, iωm)

= −(

∮
up+C1

+

∮
C2+C3

+

∮
C4+c5

+

∮
C6+low

)
dω
2πi

f (ω)
{1

2
Tr

[
JαβγG(iωn)

]
+

1
2

Tr
[
JαG(ω + iωn + iωm)JβγG(ω)

]
+ Tr

[
JαβG(ω + iωm)JγG(ω)

]
+Tr

[
JαG(ω + iωn)JβG(ω + iωn + iωm)JγG(ω) +

(
(iωn, β) ↔ (iωm, γ)

)]}
(C.2.4)

= −

∫ ∞

−∞

dω
2πi

f (ω)
∑
k

{
1
2

Tr
[
Jαβγ

(
GR(ω) − GA(ω)

) ]
+Tr

[
JαβGR(ω+iωm)Jγ

(
GR(ω)−GA(ω)

)
+ Jαβ

(
GR(ω)−GA(ω)

)
JγGA(ω−iωm)

]
+

1
2

Tr
[
JαGR(ω+iωnm)Jβγ

(
GR(ω)−GA(ω)

)
+ Jα

(
GR(ω)−GA(ω)

)
JβγGA(ω−iωnm)

]
+Tr

[
JαGR(ω+iωnm)JβGR(ω+iωm)Jγ

(
GR(ω)−GA(ω)

)
+JαGR(ω+iωn)Jβ

(
GR(ω)−GA(ω)

)
JγGA(ω−iωm)

+Jα
(
GR(ω)−GA(ω)

)
JβGA(ω−iωn)JγGA(ω−iωnm)

]
+
[
(β,ω1) ↔ (γ,ω2)

]}
(C.2.5)

⇔ K (2)αβγ(ω1 + ω2;ω1,ω2)

= −

∫ ∞

−∞

dω
2πi

f (ω)
∑
k

{
1
2

Tr
[
Jαβγ

(
GR(ω) − GA(ω)

) ]
+Tr

[
JαβGR(ω+ω2)Jγ

(
GR(ω)−GA(ω)

)
+ Jαβ

(
GR(ω)−GA(ω)

)
JγGA(ω−ω2)

]
+

1
2

Tr
[
JαGR(ω+ω12)Jβγ

(
GR(ω)−GA(ω)

)
+ Jα

(
GR(ω)−GA(ω)

)
JβγGA(ω−ω12)

]
+Tr

[
JαGR(ω+ω12)JβGR(ω+ω2)Jγ

(
GR(ω)−GA(ω)

)
+JαGR(ω+ω1)Jβ

(
GR(ω)−GA(ω)

)
JγGA(ω−ω2)

+Jα
(
GR(ω)−GA(ω)

)
JβGA(ω−ω1)JγGA(ω−ω12)

]
+
[
(β,ω1) ↔ (γ,ω2)

]}
, (C.2.6)

where up(low)means the path in the complex plane surrounding the upper(lower) plane, and f (ω) is
the Fermi distribution. We use the relation

∮
C

dω
2πi f (ω)A(ω) = − 1

β

∑
n A(iωn), where

∮
C corresponds

to the path integral only around the poles of the Fermi distribution function, while avoiding the
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poles of A(ω). Using the definitions of the response functions for real frequencies

σ
(1)
αβ (ω1;ω1) = K (1)αβ (ω1;ω1)/iω1 (C.2.7)

σ
(2)
αβγ(ω1 + ω2;ω1,ω2) = −K (2)αβγ(ω1 + ω2;ω1,ω2)/ω1ω2,

(C.2.8)

we can derive Eq. (4.2.13) and (4.2.14) in the main text.

C.3 DC-limit
In this section, we explicitly perform the DC-limit (ωi → 0) and derive Eq. (4.2.15) and Eq. (4.2.16)
starting from Eq. (4.2.13) and Eq. (4.2.14). We thereby show that performing the DC-limit under
the velocity gauge does not yield any artificial divergence.

When ωi is small enough, in the sense that βωi � 1 and τωi � 1 (τ is the inverse of the
imaginary part of GR−1

(ω)), we can expand the single-particle Green’s function as follows:

Ga(ω+ω1) ' Ga(ω) +
∂Ga

∂ω
ω1 (C.3.1)

Ga(ω+ω1+ω2) ' Ga(ω) +
∂Ga

∂ω
(ω1+ω2) +

∂2Ga

∂ω2 ω1ω2

(C.3.2)

f (ω + ω1) − f (ω) '
∂ f (ω)
∂ω
(ω1), (C.3.3)

where a = R, A (retarded and advanced Green’s function). By using this expansion, Eq. (4.2.13)
becomes

σ
(1)
αβ (ω1) =

1
ω1

∫
dω
2π

(
A0(ω)+A1(ω)ω1

)
+ O(ω2

1) (C.3.4)

A0(ω) =

∫
dk
(2π)d

f (ω)Tr
[
Jαβ

(
GR(ω) − GA(ω)

)
+JαGR(ω)JβGR(ω) − JαGA(ω)JβGA(ω)

]
(C.3.5)

A1(ω) =

∫
dk
(2π)d

{∂ f (ω)
∂ω

Tr
[
JαGR(ω)JβGA(ω)

]
+ f (ω)

(
Tr

[
Jα

∂GR(ω)

∂ω
JβGR(ω) + JαGA(ω)Jβ

∂GA(ω)

∂ω

]}
. (C.3.6)

We here have used

−

∫
dω
2π

f (ω)
(
JαGR(ω+ω1)JβGA(ω) − JαGR(ω)JβGA(ω−ω1)

)
=

∫
dω
2π

(
f (ω+ω1)− f (ω)

)
JαGR(ω+ω1)JβGA(ω) (C.3.7)
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to derive Eq. (C.3.6). If A0(ω) would be finite after the integration, the conductivity diverges at
ω1 → 0 even when 1/τ > 0. However, by using the identity, ∂αGR/A(ω) = GR/A(ω)JαGR/A(ω),
Eq. (C.3.5) can be rewritten as

A0(ω) = f (ω)
∫

dk
(2π)d

∂β

{
Jα

(
GR(ω) − GA(ω)

)}
= 0. (C.3.8)

Therefore, A0(ω) becomes zero at ω1 → 0, an artificial divergence does not occur, and we can
derive Eq. (4.2.15) using GA = (GR)∗.

We perform the same procedure for the second-order conductivity. By using the ωi expansion
in Eq. (C.3.1-C.3.3), Eq. (4.2.14) becomes

σ
(2)
αβγ(ω1 + ω2;ω1,ω2)

=
1

ω1ω2

∫
dω
2π

(
A0(ω) + (A1(ω)ω1+A′1(ω)ω2) + A2(ω)ω1ω2

)
+ O(ω2

1,ω
2
2,ω

3
i ) (C.3.9)
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A0(ω) = f (ω)
∫

dk
(2π)d

{1
2

Tr
[
Jαβγ

(
GR(ω) − GA(ω)

)]
+

1
2

Tr
[
JαGR(ω)JβγGR(ω) − JαGA(ω)JβγGA(ω)

]
+
(
Tr

[
JαβGR(ω)JγGR(ω) − JαβGA(ω)JγGA(ω)

]
+Tr

[
JαGR(ω)JβGR(ω)JγGR(ω)

]
−Tr

[
JαGA(ω)JβGA(ω)JγGA(ω)

] )
+ (β↔ γ)

}
= f (ω)

∫
dk
(2π)d

∂γ∂β

{
Jα

(
GR(ω)−GA(ω)

)}
= 0 (C.3.10)

A1(ω) = f (ω)
∫

dk
(2π)d

∂βTr
[
Jα

∂GR(ω)

∂ω
JγGR(ω)

]
+
∂ f (ω)
∂ω

∫
dk
(2π)d

∂βTr
[
JαGR(ω)JγGA(ω)

]
+ c.c.

= 0 (C.3.11)
A′1(ω) = A1(ω; β↔ γ) = 0 (C.3.12)

A2(ω) =

∫
dk
(2π)d

{(∂ f (ω)
∂ω

) (
Tr

[
Jα

∂GR(ω)

∂ω
JβGR(ω)JγGA(ω)

]
+

1
2

Tr
[
Jα

∂GR(ω)

∂ω
JβγGA(ω)

] )
− f (ω)Im

(
Tr

[
Jα

∂

∂ω

(∂GR(ω)

∂ω
JβGR(ω)

)
JγGR(ω)

]
+

1
2

Tr
[
Jα

∂2GR(ω)

∂ω2 JβγGR(ω)
] )

+(β↔ γ)

}
(C.3.13)

In the same way as for the linear conductivity, A0(ω), A1(ω), A′1(ω) can be written in the form of an
integration over a total derivative and thus become zero. Therefore, we can determine A2(ω) as the
second-order DC-conductivity.
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C.4 Weak-scattering limit in the Green’s function method

When considering the weak-scattering limit whereGR(ω) = 1/(ω−H−iγ/2) and γ � 1/β,ω1, εnm,
we can perform the frequency integration by using

∫
dωA(ω, {ωi}{εm})(GR

n (ω) − GA
n (ω)) f (ω)

' −2πiA(εn ± iγ/2, {ωi}{εm}) f (εn ± iγ/2)
' −2πiA(εn ± iγ/2, {ωi}{εm}) f (εn), (C.4.1)

where A(ω, {ωi}{εm}) is a product of Green’s functions and velocities, and the sign takes ± when
A(ω, {ωi}{εm}) is an analytical function in the upper/lower plane of the complex ω-space. The
plane is chosen such that A(ω, {ωi}{εm}) is analytic. Other poles than ω = εn ± iγ/2 can be ignored
because GR

n (ε) − GA
n (ε) ' 0 at those due to the assumption γ � 1/β,ω1, εnm. Then we can derive

the linear and nonlinear optical conductivities as

σ
(1)
αβ (ω1;ω1) '

i
ω1

∑
k

{
J nn
αβ f (εn) +

J nm
α J

mn
β

ω1 − εmn + iγ
fnm

}
(C.4.2)

σ
(2)
αβγ(ω1 + ω2;ω1,ω2)

' −
1

ω1ω2

∑
k

{
1
2

(
J nn
αβγ fn +

J nm
α J

mn
βγ

ω12 − εmn + iγ
fnm

)
+
J nm
αβ J

mn
γ

ω2 − εmn + iγ
fnm

+
J nm
α J

ml
β J

ln
γ

{
(ω1 − εml + iγ) fnl + (ω2 − εln + iγ) fml

}
(ω12 − εmn + iγ)(ω2 − εln + iγ)(ω1 − εml + iγ)

+
(
(β,ω1) ↔ (γ,ω2)

)
(C.4.3)

where J nm = 〈n| J |m〉 and GR
n (ω) = 〈n|G

R(ω) |n〉 = 1/(ω − εn + i/2τ), εnm = εn − εm, and
fnm = f (εn) − f (εm). We also use the approximation (ωi − εnl)/(ωi − εnl + iγ) ' 1 to derive
Eq. (C.4.3). We note that these equations diverge in the DC-limit, where the assumption γ � ωi

is not satisfied. These results correspond to the results by the RDM method with RTA under the
velocity gauge. Under the assumption γ � ωi, we can regard (ω1+ iγ)/ω1 ' 1 and derive the same
results by the RDM methods under the length gauge from Eq. (C.4.2) and Eq. (C.4.3).

Finally, we analyze the DC-limit by first taking the limit ωi → 0 and assuming ω � γ. Then
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we can derive the DC conductivity as

σ
(1)
αβ;DC =

∑
k

{
τJ nn

α J
nn
β

(
−
∂ f
∂ω

)���
εn
−
J nm
α J

mn
β

(εnm + iγ)2
fnm

}
(C.4.4)

σ
(2)
αβγ;DC

= −
∑
k

{
τ2

2

(
J nn
α J

nn
β J

nn
γ

∂2 fn
∂ε2

n
+J nn

α J
nn
βγ

(
−
∂ f (εn)

∂εn

))
+

iτJ nm
α J

mn
β

(εnm + iγ)2

(
J nn
γ

∂ f (ω)
∂ω

���
εn
−Jmm

γ

∂ f (ω)
∂ω

���
εm

)
+J nm

α J
ml
β J

ln
γ

( fl
(εlm + iγ)2(εnl + iγ)2

+
fn

(εnm + iγ)2(εnl + iγ)2
+

2 fn
(εnm + iγ)3(εnl + iγ)

)
+

1
2
J nm
α J

mn
βγ

fn
(εnm + iγ)2

+
(
β↔ γ

)}
(C.4.5)

The first terms, which are proportional to τ for σ(1) and proportional to τ2 for σ(2), represent the
Drude term. The other terms for the second-order conductivity represent the Berry curvature dipole
term and the Fermi sea terms.

C.5 Semi-classical Boltzmann equation

In the semi-classical Boltzmann treatment, transport phenomena are analyzed by calculating the
distribution function for particles near equilibrium[112, 116–118]. The effect of the vector potential
is taken into account as

H(p) → H(k(p, t)) = H(p − qA(x, t)). (C.5.1)

By taking the Coulomb gauge A(x, t) = A(t), the translational symmetry is preserved, and the
following equations are satisfied:

Ûk = −q
∂A(t)
∂t
= qE (C.5.2)

∂

∂pα
=

∂

∂kα
,

∂

∂t
= Ûk · ∇k = qE · ∇k . (C.5.3)

where p is the wavenumber of the particle without the electric field, E the electric field described
by the vector potential A, and q is the wavenumber under the electric field. Considering the change
of the eigenstates and the band velocity induced by the vector potential up to the first order of the
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vector potential, we find

|n(p)〉 → |ñ(k(t))〉 ' |n(p)〉−i
∑
n′,n

|n′(p)〉 〈n′(p)| ∂∂t n(k(t))〉

εn − εn′
(C.5.4)

vnα(k(t)) = 〈ñ|
∂H

∂kα
|ñ〉

'
∂εn(p)

∂pα
− i

∑
n′,n

( 〈n(p)| ∂H∂qα |n
′(p)〉 〈n′(p)|qE · ∇k |n(p)〉

εn − εn′
− c.c.

)
= v0

nα(p) − q
(
E ×Ωn(p)

)
α
, (C.5.5)

Ωn(k) = ∇k ×An, An = −i 〈unk |∇unk〉 (C.5.6)

where |n〉 is the eigenstate of the Hamiltonian without the vector potential, εn(p) is the eigenvalue,
and H(p) |n(p)〉 = εn(p) |n(p)〉 holds. By taking into account the correction of the band velocity,
we obtain the semi-classical equation of motion, which reads,

Ûkn = qE(t), Ûrn =
∂εn(p)

∂ p
− qE(t) ×Ωn(p) (C.5.7)

Finally, the distribution function in the Boltzmann formalism with applied electric field using the
relaxation time approximation(RTA) is given by the following equation

dfn(t)
dt
=
∂ fn(t)
∂t
+ Ûk · ∇k fn(t) = −

fn(t) − f (0)n

τ
(C.5.8)

which can be solved as

f (t) = f (0)(t) + f (1)(t) + f (2)(t) + . . . (C.5.9)

⇒ τ
∂ f (m)n (t)
∂t

+ f (m)n (t) = −qτE(t) · ∇k f (m−1)
n (t),

where f (0)n = 1/(1 + exp[βεn(k)]) is the Fermi distribution function, β is the inverse of the temper-
ature, and f (m) represent the m-th order non-equilibrium perturbative distribution function for the
electric field.

The first and second order term of the distributation function become

f (1)n (ω,α) =
−qτ

1 − iωτ
Eα∂α f (0)n (C.5.10)

f (2)n
(
(ω1, β), (ω2, γ)

)
=

−qτE β∂β

1 − i(ω1+ω2)τ
f (1)n (ω2, γ) +

(
(ω1, β) ↔ (ω2, γ)

)
=

(qτ)2EαE β∂α∂β f (0)n

(1 − i(ω1+ω2)τ)(1 − iω2τ)
+

(
(ω1, β) ↔ (ω2, γ)

)
(C.5.11)
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By combining the recurrence relation in Eq. (C.5.9) with the velocity corrected by the electric field
in Eq. (C.5.5), we can derive the second order nonlinear conductivity as

σ
B(2)
αβγ (ω1 + ω2;ω1,ω2) = q3

∑
n,k

{ ∂εn

∂pα
τ2∂β∂γ f0

(1 − iω12τ)(1 − iω2τ)
+

τ

2(1 − iω2τ)
εαβµΩnµ∂γ f0

+
(
(ω1, β)+↔ (ω2, γ)

)}
(C.5.12)

σ
B(2)
DC;αβγ = q3

∑
n,k

{ ∂εn

∂pα
τ2∂β∂γ f0 + τεαβµΩnµ∂γ f0 +

(
β↔ γ

)}
(C.5.13)

Then, we compare our results with the semi-classical Boltzmann treatment. For the sake of
comparison, we set the self-energy in the Green’s function as GR(ω) = 1/(ω − H + i/2τ) =
1/(ω − H + iγ/2). In this case, the Green’s function can be diagonalized with the eigenvalue
of the free Hamiltonian, and therefore, the nonlinear conductivity calculated by the semi-classical
Boltzmann treatment can be written using Green’s functions. First, we focus on the Green’s function
representation of σB(2)

DC;αβγ in the DC limit, which reads

σ
B(2)
DC;αβγ = −

∑
n,m(,n),k

∫
dω
2πi

{1
2
J nn
α

(∂GR
n (ω)

∂ω

)
J nn
βγ GA

n (ω)
(
−
∂ f (ω)
∂ω

)
+J nn

α GR
n (ω)J

nn
β GR

n (ω)J
nn
γ GA

n (ω)
∂2 f (ω)
∂ω2

+J n
α

∂GR
n (ω)

∂ω
J nm
β GR

m(ω)J
mn
γ GA

n (ω)
(
−
∂ f (ω)
∂ω

)
+J nm

α

(∂GR
m(ω)

∂ω

)
Jmn
β GR

n (ω)J
nn
γ GA

n (ω)
(
−
∂ f (ω)
∂ω

)
+

(
β↔ γ

)}
,

(C.5.14)

where J nm = 〈n| J |m〉 and GR
n (ω) = 〈n|G

R(ω) |n〉 = 1/(ω − εn + i/2τ). We use q∂αJ nn
β =

J nn
αβ + (J

nm
α J

mn
β + J nm

β J
mn
α )/(εnm) to derive Eq. (C.5.14). Here, we suppose that βγ is small

and GR
n (ω)G

A
n (ω) = 1/((ω − εn)

2 + γ2/4) ' 2πδ(ω − εn)/γ is justified. Then, doing the frequency
integration in Eq. (C.5.14), we can obtain the original result Eq. (C.5.13).

This Green’s function representation of the Boltzmann equation Eq. (C.5.14) can be directly
derived from the original Green’s function method shown in the main text, Eq. (4.2.14), by ignoring
the Fermi sea terms and the interband transitions Jmn(m , n) except for the second and third term
in Eq. (C.5.14), which is justified when εnmτ � 1.

Next, we consider the AC case. We can recover a finite frequency ωi from the DC limit in
Eq. (C.5.14), which can be derived from Eq. (4.2.14) under the following assumptions:

• approximate ωi ' ωi + iγ which is justified in the limit ωiτ � 1

• approximate f (ω + ωi) − f (ω) ' (∂ f (ω)/∂ω)ωi and
(
∂ f (ω)/∂ω

)
−

(
∂ f (ω − ωi)/∂ω

)
'

(∂2 f (ω)/∂ω2)ωi which is justified when βωi � 1.
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• approximate GR(ω+ω12)−GR(ω+ω2) ' (∂GR(ω+ω2)/∂ω)ω1 and 1/(ω2−εnm) ∼ 1/(−εnm)

which is justified when ωi � εnm (εnm = εn − εm).

Therefore, in the case of AC electric fields, there are severe approximations. Thus, the semi-classical
Boltzmann equation is applicable at high temperatures or when the frequencyωi is very small so that
the above conditions are satisfied. We note that we can also derive Eq. (C.5.12) from Eq. (4.2.14)
by supposing γ → 0, which corresponds to the condition ωi � γ for the RDM method. We note
that taking the DC limit in this situation leads to a diverging conductivity. Moreover, the relaxation
time in most materials is usually about 1 ∼ 100[ps][112]. Thus, when analyzing a Terahertz laser
as input force, ωiτ ∼ 1, the conditions are not fulfilled. On the other hand, for a DC electric field
in which ωi = 0, the only condition for the semi-classical Boltzmann treatment are εnmτ � 1 and
βγ � 1.

We note that, by considering higher-order corrections of the eigenstates by the electric field
in Eq. (C.5.5), we can derive a more precise semi-classical Boltzmann equation. In this way, it
is possible to get rid of the approximation εnmτ � 1 and to include the Fermi sea terms in the
Boltzmann equation. The other approximations listed above, however, remain necessary due to the
relaxation time approximation.

C.6 Details of the numerical calculations
In this section, we write in detail how to numerically calculate the results shown in the figures
of the main text. The codes used for the numerical calculations in this paper are published on
https://github.com/YoshihiroMichishita/Test_Codes/.

C.6.1 Green’s function method
Here, we describe the procedure of how to perform the numerical calculation using the Green’s
function method.

• A tight-binding Hamiltonian,H(k), describing the single-electron part of the model, such as
Eq. (4.4.6) or Eq. (4.4.1), must be obtained.

• Starting from this tight-binding Hamiltonian, current operators Jαβ... can be calculated by
Eq. (4.2.4).

• For accounting for correlation effects, self-energies must be calculated. In this paper, we have
used the dynamical mean-field theory[71].

• UsingH(k) and the self-energies, retarded and advanced Green’s functions can be calculated.

• Having these Green’s functions and current operators, one can use the Green’s function
formalism to calculate nonlinear response in strongly correlated systems.
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To calculate the effect of renormalization of the band structure, we set ΣR(ω) = −(1/Z−1)ω−ΣR
0 ,

where ΣR
0 is the real-part of the self-energy at ω = 0. Then, one can analyze the renormalization

effects on the linear response and the nonlinear response. We note that, when calculating the optical
conductivity for a small input frequency (ωi), one should do the momentum integration before
the frequency (ω) integration. Furthermore, one should use Eqs. (C.3.6), (C.3.10), (C.3.11), and
(C.3.12).

C.6.2 RDM methods using the RTA
When using the RDM for calculating the (non)linear conductivity, one first needs to diagonalize the
free Hamiltonian H(k). Using the eigenvectors, one calculates the velocity operators for different
bands and calculates the (non)linear conductivity by Eqs. (82) in Ref. [106].

C.7 Proof that γNH ≥ 1
The left and right eigenvectors 〈nL |, |nR〉 can be described as |nR〉 = (a1, . . . ,al)

T and 〈nL | =

(b1, . . . , bl). Then, the following quantity must be larger than zero. Therefore, the non-Hermitian
factor γNH must be larger than one:

〈nR |nR〉 〈nL |nL〉 − 〈nL |nR〉 〈nR |nL〉

=
(∑

s

|as |
2
) (∑

s

|bs |
2
)
− |

∑
s

(asbs)|
2

≥

(∑
s

|as |
2
) (∑

s

|bs |
2
)
−

(∑
s

|as | |bs |
)2

=
∑
s,t

(
|as | |bt | − |at | |bs |

)2
/2 ≥ 0 (C.7.1)

⇔ γNH;n = 〈nR |nR〉 〈nL |nL〉 /〈nL |nR〉 〈nR |nL〉 ≥ 1
(C.7.2)
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