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Abstract
In this thesis, we introduce our challenges on the ρ resonance study from lattice QCD. Recent

discoveries of exotic hadrons call for the first-principle study of hadron interactions from lattice
QCD. The HAL QCD method enables us to study them from the spacetime dependence of
correlation functions in lattice QCD, but there is a technical issue: the estimation of all-to-all
quark propagators.

To overcome the difficulty, we first employ one of the typical methods to calculate all-to-all
propagators called the hybrid method. We calculate I = 1, 2 ππ interactions and investigate
the behaviors of HAL QCD potentials systematically. We find that the computational cost to
reduce noise contamination from the hybrid method is too large to perform large-scale sim-
ulations. We then seek the better calculation scheme in which both noise contamination and
computational cost are low. As a result, we find that the combination of the one-end trick, the
sequential propagator technique, and the covariant approximation averaging (CAA) can achieve
the requirements.

Using the new calculation scheme, we next investigate the ρ meson resonance appearing in
the I = 1 ππ interaction with large box size and small pion mass enough for the ρ meson to be
a resonance. Thanks to the new scheme, we succeed in the determination of the non-local I = 1

ππ potential at the next-to-next-to-leading order (N2LO) of the derivative expansion for the first
time. The N2LO potential reproduces a typical resonance behavior of the scattering phase shift,
and resonance mass and coupling of the ρ resonance is extracted directly from the pole search
of the S-matrix via the complex-scaled Schrödinger equation. We find that the resonance mass
is consistent with the value in the literature, while the coupling turns out to be somewhat larger.
The latter observation may be attributed to the truncation error of the derivative expansion in a
near-threshold region, where the center-of-mass energy levels cannot cover.

We finally study the laboratory frame formalism of the HAL QCD method with the one-end
trick. The laboratory frame calculation can be applied to reduce systematics appearing in the
resonance study, for example, the truncation error of the derivative expansion and the vacuum
contamination. We calculate the I = 2 ππ S-wave interaction from both the laboratory frame
and center-of-mass frame formalisms and compare those results with each other. The potentials
extracted from the laboratory frame NBS wave function gives consistent phase shifts with that
of the center-of-mass frame as well as values obtained from the Lüshcer’s method.

Our series of studies on the cooperation of the all-to-all propagators and the HAL QCD
method establishes one of the promising ways to study hadronic resonances from lattice QCD.
Furthermore, our calculation scheme can be applied to other interactions like nuclear force. We
also mention future applications of our strategy to both exotic resonances and other interactions
in the last of the thesis.



iii

Contents

List of Publications vii

1 Introduction 1

2 Lattice QCD 5
2.1 Lattice regularization of QCD . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Euclidean action of QCD . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Lattice regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Doubling problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Improvement of lattice actions . . . . . . . . . . . . . . . . . . . . . . 12
2.1.5 Path integral quantization . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Calculation of correlation functions . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Integral of fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Integral of link variables . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Flow of numerical simulations in lattice QCD . . . . . . . . . . . . . . 15

2.3 Hadron masses from lattice QCD . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Extraction of hadron masses . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Quark smearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Hadron-hadron scattering from lattice QCD 19
3.1 Unitarity of S-matrix and scattering phase shift . . . . . . . . . . . . . . . . . 19
3.2 Nambu–Bethe–Salpeter wave function . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Asymptotic behavior of the relative NBS wave function in the center-of-

mass frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 HAL QCD method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Energy-independent non-local potential . . . . . . . . . . . . . . . . . 26
3.3.2 Derivative expansion of the non-local potential . . . . . . . . . . . . . 27
3.3.3 Interaction potential from lattice QCD: case of center-of-mass frame . . 28

Naive method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Time-dependent method . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.4 Interaction potential from lattice QCD: case of laboratory frame . . . . 30



iv

Naive method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Time-dependent method . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.5 Calculations of physical observables . . . . . . . . . . . . . . . . . . . 34
3.4 Lüscher’s finite volume method . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 General solution of the Helmholtz equation in a finite box . . . . . . . 35
3.4.2 Lüscher’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Numerical challenge: All-to-all quark propagator 38
4.1 Appearance of all-to-all propagator . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Estimation of all-to-all propagator . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Noisy estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Hybrid method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Techniques to reduce usage of noisy estimators . . . . . . . . . . . . . . . . . 44
4.3.1 One-end trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.2 Sequential propagator technique . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Covariant approximation averaging (CAA) . . . . . . . . . . . . . . . 46

5 Application of the hybrid method to the HAL QCD method 50
5.1 I = 2 ππ potential in the HAL QCD method with all-to-all propagators . . . . 50

5.1.1 Calculation of correlation functions . . . . . . . . . . . . . . . . . . . 51
Estimation of separated diagram using the hybrid method . . . . . . . . 52
Estimation of connected diagram using the hybrid method . . . . . . . 53
Potential calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.2 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Systematic study on parameter dependence of HAL QCD potential . . 55
Comparison to the conventional result . . . . . . . . . . . . . . . . . . 58

5.2 The HAL QCD potential in I = 1 ππ system with the rho meson bound state . 59
5.2.1 Calculation of correlation functions . . . . . . . . . . . . . . . . . . . 59

Estimation of triangle diagram using the hybrid method . . . . . . . . . 60
Potential calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.2 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Breakdown of naive application of the hybrid method and improvement 61
Physical observables . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Exploration of better calculation scheme . . . . . . . . . . . . . . . . . . . . . 63

6 Emergence of the ρ resonance from the HAL QCD potential in lattice QCD 67
6.1 Calculation of correlation functions by the improved scheme . . . . . . . . . . 67

6.1.1 Separated diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



v

6.1.2 Box diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1.3 Triangle diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.4 Comparison to the result using the hybrid method . . . . . . . . . . . . 71

6.2 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3.1 LO analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.2 N2LO analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.3 Resonance parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Breit-Wigner fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Direct pole search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Comparison to the previous result . . . . . . . . . . . . . . . . . . . . 83

7 I = 2 ππ potential from the laboratory frame NBS wave function 84
7.1 Calculation of correlation functions . . . . . . . . . . . . . . . . . . . . . . . 84
7.2 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3.1 Dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3.2 NBS wave function in the laboratory frame . . . . . . . . . . . . . . . 87
7.3.3 Effective LO potentials . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3.4 Scattering phase shifts . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4 Preliminary application to the I = 1 ππ interaction . . . . . . . . . . . . . . . 91

8 Summary and perspective 93
8.1 Application of the hybrid method . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.2 Study of the ρ resonance with the improved calculation scheme . . . . . . . . . 94
8.3 Laboratory frame HAL QCD method . . . . . . . . . . . . . . . . . . . . . . . 95
8.4 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.4.1 Resonance studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.4.2 Other applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Acknowledgements 99

A Continuum limit of the naive lattice QCD action 100
A.1 Fermion action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.2 Gauge action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B Cubic and tetragonal symmetries 103
B.1 Cubic symmetry group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.2 Tetragonal symmetry group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



vi

C Details of dilution 106
C.1 Color dilution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
C.2 Spinor dilution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
C.3 Time dilution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.3.1 Full dilution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
C.3.2 J-interlace dilution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.4 Space dilution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
C.4.1 s2(even-odd) dilution . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
C.4.2 s4 dilution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
C.4.3 s8 dilution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

D Correlation function of ππ interaction 111
D.1 Pion propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

D.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
D.1.2 Wick contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

D.2 I = 2 ππ S-wave correlation function . . . . . . . . . . . . . . . . . . . . . . 112
D.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
D.2.2 Wick contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Separated diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Connected diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

D.3 I = 1 ππ P-wave correlation function . . . . . . . . . . . . . . . . . . . . . . 114
D.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
D.3.2 Wick contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Separated diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Box diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Triangle diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

E Smeared sink scheme 118
E.1 Point-sink scheme vs smeared-sink scheme . . . . . . . . . . . . . . . . . . . 118
E.2 Effect on the derivative expansion . . . . . . . . . . . . . . . . . . . . . . . . 120

F Laboratory frame calculation: Estimation of systematic uncertainty 121
F.1 Normalization dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
F.2 Timeslice dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
F.3 Final estimation of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 126



vii

List of Publications
Papers related to the thesis

1. Yutaro Akahoshi, Sinya Aoki, and Takumi Doi,
“Emergence of the ρ resonance from the HAL QCD potential in lattice QCD”
Phys. Rev. D 104 054510 (2021) [arXiv:2106.08175[hep-lat]].

2. Yutaro Akahoshi, Sinya Aoki, Tatsumi Aoyama, Takumi Doi, Takaya Miyamoto and
Kenji Sasaki,
“The HAL QCD potential in I = 1 ππ system with the ρ meson bound state”
PTEP 2020, no.7, 073B07 (2020) [arXiv:2004.01356[hep-lat]].

3. Yutaro Akahoshi, Sinya Aoki, Tatsumi Aoyama, Takumi Doi, Takaya Miyamoto, Kenji
Sasaki,
“I = 2 ππ potential in the HAL QCD method with all-to-all propagators”
PTEP 2019, no.8 083B02 (2019) [arXiv:1904.09549[hep-lat]].

Published papers not included in the thesis

1. Kotaro Murakami, Yutaro Akahoshi, and Sinya Aoki,
“S-wave kaon-nucleon potentials with all-to-all propagators in the HAL QCD method”
PTEP 2020, no.9, 093B03 (2020) [arXiv:2006.01383[hep-lat]].

2. Takaya Miyamoto, Yutaro Akahoshi, Sinya Aoki, Tatsumi Aoyama, Takumi Doi, Takaya
Miyamoto, Gongyo Shinya, Kenji Sasaki,
“Partial wave decomposition on the lattice and its applications to the HAL QCD method”
Phys. Rev. D 101, no.7, 074514 (2020) [arXiv:1906.01987[hep-lat]].





1

Chapter 1

Introduction

Understanding hadron interactions is one of the most important challenges in particle and nu-
clear physics. Hadrons are composite particles of the fundamental quarks and gluons, most of
which can be categorized into two families by the quark model [1–3]: baryons made of three
quarks (qqq) and mesons made of one quark and one antiquark (qq̄) [4]. On the other hand,
there are some hadronic states which deviate from the quark model predictions, called "exotic
hadrons". Such exotic states are first discovered by experiments in 2003. For example,X(3872),
the first signal in the charmonium-like X, Y, Z states, is observed in Belle experiment [5]. Many
exotic states have been discovered in experiments since the first observation and various phe-
nomenological models have been proposed to describe them (see, e.g. recent review [6], for
details). Exotic hadrons have also been predicted and discussed theoretically for a long time,
even before the experimental discovery in 2003. The prime example is the light scalar meson
called σ [7]. The investigation of corresponding hadron interactions is important to shed light
on them.

In particle physics, we know that the dynamics of quarks and gluons are described by quan-
tum chromodynamics (QCD). QCD is defined as the SU(3) non-Abelian gauge theory with
fermions and has a striking nature that the interaction becomes strong in low energy. Therefore,
a non-perturbative treatment is mandatory to study low-energy phenomena including hadron
physics from QCD. One sophisticated way to realize it is lattice QCD, whose fundamental for-
mulation is firstly introduced by K. G. Wilson[8]. Lattice QCD has been succeeded in numer-
ical demonstration of the quark confinement[9] and reproduction of the spectroscopy of single
hadrons[10]. From the viewpoint of the quarks and gluons, exotic hadrons, as well as standard
ones, should be understood by QCD in a unified manner. Under these circumstances, the first-
principle study of the hadronic interactions and corresponding resonances becomes one of the
hottest research topics in the lattice QCD community.

Investigating hadron interactions from lattice QCD is, however, not straightforward work,
since the real-time evolutions like particle scatterings is not directly accessed from lattice QCD
on Euclidean spacetime [11]. In such a situation, M. Lüshcer discovers a relation between the
scattering phase shift and the finite-volume energy eigenstates in 1991 [12], and it opens a new
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frontier to study hadron interactions from lattice QCD. At the beginning the formulation is re-
stricted to the elastic scattering of two scalar particles in the center-of-mass frame, it has been ex-
tended to the laboratory frames and multi-channel (inelastic) scattering afterward [13, 14]. The
Lüscher’s finite volume method has been mainly applied to elastic/inelastic meson-meson scat-
terings and some impressive results on corresponding mesonic resonances have appeared [15].
After the discovery of the Lüscher’s method, an alternative approach to study hadron interactions
from lattice QCD, called the HAL QCD method, is proposed [16–18]. The HAL QCD method
enables us to construct energy-independent non-local potentials of hadron interactions from the
spacetime dependence of the correlation function. It has been mainly applied to baryon-baryon
interactions, to which the Lüscher’s method is hard to apply [19]. Recent near-physical point
simulations predict the existence of some nontrivial two-baryon bound states (dibaryons) [20–
22]. Exotic Zc(3900) is also studied in detail, and it is found that this state may not be a particle-
like object but a kinematical effect [23, 24]. Furthermore, the direct comparison between the
HAL QCD result and the experimental data is performed by the ALICE Collaboration, and au-
thors find that the HAL QCD potentials of the proton-Ξ and proton-Ω interactions reproduce
the experimental scattering amplitude well [25]. The study of hadron-hadron interactions from
lattice QCD now enters, therefore, a new stage of a direct comparison with experimental results.

On the other hand, there are some remaining issues in the study of the hadron interactions
from lattice QCD. In the Lüshcer’s method, precise studies are restricted only to the meson-
meson interaction due to the difficulty of the precise determination of two-baryon energy eigen-
states. Furthermore, bias-free analyses on multi-channel scatterings are difficult since it is in-
evitable to introduce some ansatze of the energy dependence of the multi-channel scattering
amplitudes. As regards the HAL QCD method, a mature way to calculate the full contents of
the quark propagator (so-called all-to-all propagator) has not been established yet, while the
problems in the Lüshcer’s method introduced above can be avoided. The enlargement of the
applicability of the HAL QCD method is especially beneficial since it is relatively less biased
and brings the information of the hadron interaction as the potential explicitly. Therefore, it is
mandatory to overcome the problem of the all-to-all propagator in the HAL QCD method.

The all-to-all quark propagator is mathematically an inverse of the large sparse matrix, whose
naive calculation needs over tens or hundreds of years to finish, even when we run it on super-
computers. We then need to reduce the numerical cost by introducing some approximation, and
our mission is to find or invent the all-to-all method with the best compatibility to the HAL
QCD method. The previous work[26, 27] employs one of the famous approximation methods
called the Laplacian-Heaviside (LapH) method (or distillation)[28], which is widely applied to
analyses of the Lüshcer’s method. Authors calculate the HAL QCD potential with and without
the LapH method and find that the LapH method enlarges the non-locality of the potential[26].
The enhancement of the non-locality of the potential is not suitable for our practical calcula-
tion, since we have to approximate the non-locality by small-order truncation of some series
expansion in practice. A more compatible method is desired.
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Under these circumstances, we first investigate another possibility of the all-to-all calcu-
lations to establish the best marriage of the all-to-all propagator and the HAL QCD method.
We employ the hybrid method [29], which relies on the low-mode spectral decomposition and
high-mode stochastic estimation. It is expected not to enlarge the non-locality like the LapH
method. We find that the precise potential can be obtained if the contamination from the high-
mode estimation is suppressed well [30, 31]. On the other hand, the noise reduction needs a lot
of numerical costs and it seems difficult to apply this method to large-scale simulations. We,
therefore, investigate other possibilities with less usage of stochastic estimations and find that
the combination of the three techniques, namely the one-end trick [32], the sequential propaga-
tor [33] and covariant approximation averaging [34]. Some test calculation shows over O(102)

improvements against the case before.
We next apply the new calculation scheme of the all-to-all calculation to the I = 1 ππ P-

wave interaction. This system is the simplest nontrivial system containing a narrow resonance
state, known as the ρ resonance. It is experimentally observed at an energy of mρ ∼ 770

MeV with width Γρ ∼ 150 MeV[4], and its P-wave phase shift is known as a prime example
of the narrow resonance[35, 36] Theoretically, the ρ resonance plays a fundamental role in
understanding many processes in the context of vector meson dominance[37]. It is also known
that the nuclear force at the middle range is phenomenologically understood by exchanges of
the ρ meson, together with π, ω, and σ[38]. In lattice QCD community, this system has been
widely studied [39–47] since it can be simply investigated by the single-channel approximation
and contains a typical numerical difficulty of resonance studies, the all-to-all propagators. As a
result, we succeed in the determination of the non-local potential at the N2LO for the first time
and reproduce the typical resonance structure corresponding to the ρ meson, up to the remaining
truncation error of the approximation of the non-locality [48]. One of the possibilities to reduce
the remaining truncation error is introducing the scattering analysis in the laboratory frame [49],
but the laboratory frame extension of the HAL QCD method has not been verified numerically
yet due to the difficulty of the all-to-all propagator. Using the one-end trick, we numerically
investigate the laboratory frame formalism for the first time and confirm that the potential can
be reasonably obtained by the formalism.

The series of our study establishes one way to treat all-to-all propagators in the framework
of the HAL QCD method. Furthermore, we also complete the laboratory frame formalism of the
HAL QCD method as a byproduct of the all-to-all studies. Those achievements can be widely
applied to further investigations of hadron interactions and may produce many important results
in the future.

This thesis is organized as follows. In Chapter 2, we briefly introduce the basic formulations
of lattice QCD and a typical procedure of its numerical calculation. We introduce the fundamen-
tal concepts to describe the hadron interaction and the ways to study it from lattice QCD, the
HAL QCD method and the Lüshcer’s method, in Chapter 3. Chapter 4 is devoted to introducing
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the problem of the all-to-all propagator and its approximation methods. From Chapter 5, we
discuss the results of our studies. In Chapter 5, studies on the application of the hybrid method
are discussed. We also discuss the new calculation strategy and its first trial here. The main
result of this thesis, the study of the ρ resonance using the new calculation strategy, is discussed
in Chapter 6. Chapter 7 gives the study of the laboratory frame formalism of the HAL QCD
method. Finally, the summary and perspective of our study are presented in Chapter 8.



5

Chapter 2

Lattice QCD

Since the QCD coupling becomes strong in the low-energy region where hadronic phenomena
occur, it is impossible to study them by the perturbation theory. However, the lattice gauge the-
ory, which is first proposed by K. G. Wilson [8], enables us to analyze QCD non-perturbatively
by numerical simulations. In this chapter, we introduce a formulation of lattice QCD and its
typical application to the extraction of hadron masses.

2.1 Lattice regularization of QCD

In the lattice regularization, we define a target theory on a discretized Euclidean spacetime with
a finite volume. It allows the numerical estimation of the path integral. Here we discuss how to
formulate QCD on the lattice Euclidean spacetime in detail. We employ the Einstein convention
for summations of indices unless otherwise stated.

2.1.1 Euclidean action of QCD

Let us begin with the QCD action on the continuum Minkowski spacetime,

SM =

∫︂
d4x ψ̄

(f)
(iγµDµ −m(f))ψ(f) −

∫︂
d4x

1

2g2
tr(FµνF

µν), (2.1)

where an index f represents flavors of quarks (u, d, s, · · · ), and the metric of the Minkowski
spacetime is given as

ηµν = diag(1,−1,−1,−1). (2.2)

Dµ and Fµν are defined as

Dµ = ∂µ + iAµ, (2.3)

Fµν = ∂µAν − ∂νAµ + i [Aµ, Aν ] , (2.4)

with [A,B] ≡ AB −BA. The gauge field Aµ is an element of Lie algebra su(3),

Aµ = Aa
µT

a, (2.5)
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where T a are trace-less Hermitian matrices called generators of Lie group SU(3). The generators
obey

[T a, T b] = ifabcT c, (2.6)

where fabc is a structure constant. Gamma matrices γµ(µ = 0, 1, 2, 3) are 4 × 4 matrices in the
spinor space which satisfy

{γµ, γν} = 2ηµν (2.7)

(γ0)
† = γ0 (2.8)

(γi)
† = −γi (i = 1, 2, 3), (2.9)

with {A,B} ≡ AB +BA. In the Dirac representation, their explicit forms are given as

γ0 =

(︄
1 0

0 −1

)︄
(2.10)

γ1 =

(︄
0 σ1

−σ1 0

)︄
(2.11)

γ2 =

(︄
0 σ2

−σ2 0

)︄
(2.12)

γ3 =

(︄
0 σ3

−σ3 0

)︄
, (2.13)

where 1 is a 2× 2 unit matrix and σi (i = 1, 2, 3) are the Pauli matices. γ5 is defined as

γ5 = iγ0γ1γ2γ3. (2.14)

The action (Eq.(2.1)) is invariant for the following local gauge transformation,

ψ(x) → Ω(x)ψ(x) (2.15)

ψ̄(x) → ψ̄(x)Ω†(x) (2.16)

Aµ(x) → Ω(x)Aµ(x)Ω
†(x)− iΩ(x)∂µΩ

†(x), (2.17)

where Ω(x) is a local gauge transformation matrix.
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Next, let us move on to the Euclidean spacetime. The coordinates in the Euclidean spacetime
x
(E)
µ (µ = 1, 2, 3, 4) are defined by the Wick rotation,

x0 = −ix(E)
4 (2.18)

xi = x
(E)
i (i = 1, 2, 3) (2.19)

∂0 = i∂
(E)
4 (2.20)

∂i = ∂
(E)
i (i = 1, 2, 3). (2.21)

The gauge field and the gamma matrices in the Euclidean spacetime, A(E)
µ and γ(E)

µ , are defined
as

A0 = iA
(E)
4 (2.22)

Ai = A
(E)
i (i = 1, 2, 3) (2.23)

γ0 = γ
(E)
4 (2.24)

γi = iγ
(E)
i . (2.25)

γ
(E)
µ now satisfies

{γ(E)
µ , γ(E)

ν } = 2δµν , δµν = diag(1, 1, 1, 1) (2.26)

(γ(E)
µ )† = γ(E)

µ . (2.27)

Substituting them into the original action Eq.(2.1), we obtain the Euclidean action as

SE ≡ −iSM =
∑︂
f

∫︂
d4x(E) ψ̄

(f)
(γ(E)

µ (∂(E)
µ + iA(E)

µ ) +m(f))ψ(f) +

∫︂
d4x(E) 1

2g2
tr(FµνFµν).

(2.28)
In the following discussion, we consider the Euclidean spacetime unless otherwise stated. We,
therefore, ignore superscripts (E) and describe all Euclidean indices (µ, ν, etc.) as subscripts
since positions of the indices (upper or lower) are no longer meaningful.

2.1.2 Lattice regularization

Now let us discuss the lattice regularization of the Euclidean action introduced above. The
continuous Euclidean spacetime is replaced by a 4D finite lattice which contains |Λ| lattice
points (sites) with an interval (lattice spacing) a,

Λ = {n = (n1, n2, n3, n4) |nµ = 0, 1, 2, ..., Nµ − 1, |Λ| = N1N2N3N4}, (2.29)

and the fields ψ, ψ̄ is defined on each sites. The spacetime coordinates xµ is described by the
dimensionless 4D vector nµ as xµ = anµ. Thanks to this regularization, we can treat QCD as a
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quantum system with finite degrees of freedom. This procedure corresponds to the UV cut-off
with a cut-off parameter 1/a, therefore it is called “lattice regularization”.

The quark part of Euclidean action is discretized by the replacement of derivatives with
differences as

a4
∑︂
n∈Λ

ψ̄(n)

(︄
4∑︂

µ=1

γµ
Uµ(n)ψ(n+ µ̂)− U †

µ(n− µ̂)ψ(n− µ̂)

2a
+mψ(n)

)︄
, (2.30)

here we employ a central difference and only consider a case of a single flavor. Uµ(n) is an
SU(3) matrix called “link variable”, which is transformed by the local gauge transformation as

Uµ(n) → Ω(n)Uµ(n)Ω
†(n+ µ̂). (2.31)

Together with the gauge transformation property of the quark fields,

ψ(n) → Ω(n)ψ(n) (2.32)

ψ̄(n) → ψ̄(n)Ω†(n), (2.33)

the discretized quark action(2.30) is invariant under the local gauge transformation.
The link variable introduced above is a lattice counterpart of the Wilson line (or gauge trans-

porter) [50] in the continuum theory, which is defined as

G(x, y) = P exp

[︃
i

∫︂ y

x

A · dx
]︃
≡ lim

N→∞

N−1∏︂
n=0

[1 + iAµ(x+ n∆x)∆xµ] , (2.34)

where |∆x| = |y−x|
N

. When the lattice spacing a is fine it can be directly related to the gauge
field as

Uµ(n) = eiaAµ(n)
(︂
≈ Pei

∫︁ x+aµ̂
x A·dx

)︂
. (2.35)

In the lattice gauge theory, we treat the link variable Uµ as a fundamental variable instead of the
gauge field Aµ. This treatment makes the gauge part of the path integral well-defined without
any gauge fixing. Therefore the role of the gauge fixing changes. For instance, we need it
to calculate the non-gauge invariant quantities such as smeared hadron propagators (it will be
discussed later).

Next, let us discuss the lattice regularization of the gauge action. The simplest one is the
plaquette action, which is introduced by K. G. Wilson [8],

β

3

∑︂
n∈Λ

∑︂
µ<ν

Re tr(1− Uµν(n)), (2.36)
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where β ≡ 6
g2

. Uµν(n) is the smallest Wilson loop called the plaquette and defined as

Uµν(n) ≡ Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν(n). (2.37)

A schematic figure of the plaquette is given in Fig. 2.1. Generally speaking, we can introduce not

FIGURE 2.1: Schematic figure of the plaquette, Uµν(n).

only the plaquette but also other Wilson loops in the definition of the lattice action, as long as it
correctly reproduces the continuum action. Such an ambiguity is utilized to reduce unnecessary
systematics of the lattice action, as will be discussed later.

In summary, the lattice regularization leads to the following QCD action:

SE = SF + SG, (2.38)

SF = a4
∑︂
n∈Λ

ψ̄(n)

(︄
4∑︂

µ=1

γµ
Uµ(n)ψ(n+ µ̂)− U †

µ(n− µ̂)ψ(n− µ̂)

2a
+mψ(n)

)︄
, (2.39)

SG =
β

3

∑︂
n∈Λ

∑︂
µ<ν

Re tr(1− Uµν(n)). (2.40)

We demonstrate how it reproduces the continuum theory at the limit of a→ 0 in Appendix A. In
practice, however, we cannot use this action as it is due to the doubling problem of the fermion
action. Furthermore, modern lattice simulations commonly employ some improved actions to
reduce discretization errors. We discuss those issues in the following sections.

2.1.3 Doubling problem

To understand the doubling problem, let us consider a free lattice fermion (Eq.(2.39) with Uµ ≡
1),

SF = a4
∑︂
n∈Λ

ψ̄(n)

(︄
4∑︂

µ=1

γµ
ψ(n+ µ̂)− ψ(n− µ̂)

2a
+mψ(n)

)︄
, (2.41)

≡ a4
∑︂

n,m∈Λ

ψ̄(n)D(n|m)ψ(m), (2.42)
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D(n|m) =

(︄
4∑︂

µ=1

γµ
δn+µ̂,m − δn−µ̂,m

2a
+mδn,m1spinor

)︄
1color, (2.43)

where 1spinor and 1color are unit matrices of spinor and color spaces, respectively. In the follow-
ing we call D(n|m) the Dirac operator. To investigate one-particle states this action contains,
we consider the Fourier transformation of the Dirac operator as

D̃(p|q) =
∑︂

n,m∈Λ

e−ip·naD(n|m)eiq·ma (2.44)

=
∑︂

n,m∈Λ

e−ip·na

(︄
4∑︂

µ=1

γµ
δn+µ̂,m − δn−µ̂,m

2a
+mδn,m1spinor

)︄
1colore

iq·ma (2.45)

=
∑︂
n∈Λ

e−i(p−q)·na

(︄
4∑︂

µ=1

γµ
eiq·µ̂a − e−iq·µ̂a

2a
+m1spinor

)︄
1color (2.46)

= |Λ|δp,q(
∑︂
µ

i

a
γµ sin(pµa) +m1spinor)1color (2.47)

≡ |Λ|δp,q1colorD̃(p). (2.48)

Since the one-particle states correspond to the poles of the propagator in the momentum space,

D̃
−1
(p) =

1∑︁
µ

i
a
γµ sin(pµa) +m1spinor

(2.49)

=
m1spinor −

∑︁
µ

i
a
γµ sin(pµa)

m2 + 1
a2

∑︁
µ sin

2(pµa)
, (2.50)

we can study them by the solutions of

m2 +
1

a2

∑︂
µ

sin2(pµa) = 0. (2.51)

Obviously, there is a physical solution p̂µ, which corresponds to the true one-particle state in
the continuum theory. At the same time, there are other solutions whose components are partly
or fully replaced by p̂µ ± π/a due to the periodicity of sin(x). By considering the fact that
each components are restricted to an interval (−π/a, π/a] by the lattice regularization, we can
conclude that there exist 15 additional solutions. Such unphysical one-particle states are called
doublers, and they always appear as long as the simulations are performed with a non-zero lattice
spacing. This difficulty is called the doubling problem.

Nielsen and Ninomiya prove that the doubling problem always occurs when the lattice
fermion action satisfies the following properties[51–53]:

• Translational invariance

• Hermiticity
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• Locality

• Chiral symmetry

• Fermion bilinear

Those conditions are automatically satisfied when one naively applies the lattice regularization
to the continuum fermion action. Therefore, one needs some modifications to avoid the doubling
problem. Here we introduce one of the lattice fermion actions free from the doubling problem
called the Wilson fermion action.

The Wilson fermion action is defined as,

SWilson = a4
∑︂
n∈Λ

ψ̄
(f)

(n)

(︄
4∑︂

µ=1

γµ
Uµ(n)ψ

(f)(n+ µ̂)− U †
µ(n− µ̂)ψ(f)(n− µ̂)

2a
+m(f)ψ(f)(n)

)︄

+ ψ̄
(f)

(n)
4∑︂

µ=1

2ψ(f)(n)− Uµψ
(f)(n+ µ̂)− U †

µ(n− µ̂)ψ(f)(n− µ̂)

2a
.

(2.52)

The first row is the naive lattice fermion action introduced before, and the second row is an
additional term called the Wilson term. This term corresponds to −a

2
ψ̄D2ψ in the continuum

theory and disappears as a → 0. Since the Wilson term explicitly breaks the chiral symmetry,
we can avoid the doubling problem. As before, let us investigate one-particle states in the free
case (U ≡ 1). D̃(p) for the free Wilson fermion is given as,

D̃(p) =
∑︂
µ

i

a
γµ sin(pµa) +m1spinor +

1

a

∑︂
µ

(1− cos(pµa))1spinor. (2.53)

The underlined part comes from the Wilson term. It gives different contributions depending on
the solution of D̃(p) = 0 as

1

a

∑︂
µ

(1− cos(pµa)) →

⎧⎨⎩0 +O(a) (physical pole)

2n
a
+O(a) (doubler),

(2.54)

where n is the number of π/a which appears in the solution pµ. As a result, doubler solutions
correspond to particles with masses of m + 2n

a
. Such particles are decoupled in the continuum

limit since they become infinitely heavy, therefore only the physical particle remains.
Finally, we introduce a dimensionless representation of the Wilson fermion action, which is

useful for actual numerical calculations.

SWilson =
∑︂

n,m∈Λ

ψ̄
′
(n)D(n|m)ψ′(m), (2.55)
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D(n|m) = (ma+ 4)

[︄
1spinor1colorδn,m − κ

±4∑︂
µ=±1

1

2
(1spinor − γµ)Uµ(n)δn+µ̂,m

]︄
, (2.56)

where γ−µ ≡ −γµ and ψ̄′
= a3/2ψ̄, ψ′ = a3/2ψ. κ is a dimenson-less paremeter called “hopping

parameter”, which is related to the fermion mass as κ = 1/2(ma+4). An overall factor (ma+4)

can be absorbed by the fermion fields. By combining it with the gauge action (2.36), we can
perform lattice QCD simulations. Input parameters of the simulations are the inverse coupling
β and the hopping parameter κ. In the rest of this thesis, we describe dimensionful quantities
in the lattice unit (in other words, dimensionless representation using lattice spacing), unless
otherwise stated.

2.1.4 Improvement of lattice actions

Practically, available lattice spacings a for the continuum limit are at most a few values, so it is
important to remove the discretization errors as much as possible. The ambiguity of the addition
of terms irrelevant to the continuum limit can be utilized for this purpose. Several improved
lattice actions have been proposed until now, and here we introduce the Wilson-clover fermion
action[54] and Iwasaki gauge action[55] employed in our study.

The Wilson-clover action is defined as,

SF = SWilson + cSWa
5
∑︂
n∈Λ

∑︂
µ<ν

ψ̄(n)
1

2
σµνF̂ µν(n)ψ(n), (2.57)

where SWilson is the Wilson fermion action introduced in the previous section and cSW is a
tunable parameter to remove a leading O(a) discretization error. In this study, we use a non-
perturbatively determined value of cSW. We do not discuss the details of the tuning process
further.

The Iwasaki gauge action [55] is a gauge action consisting of not only the plaquettes but also
1× 2 rectangular loops,

SG =
2

g2

∑︂
n∈Λ

∑︂
µ<ν

(︁
wn,µνRe tr(1− Uµν(n)) + vn,µνRe tr(1− U (1×2)

µν (n))
)︁
, (2.58)

where U (1×2)
µν (n) is a 1 × 2 rectangular loop on a µν plane, and w, v are tunable parameter to

improve the scaling behavior on a. In Refs. [56, 57], it is found that this action can avoid an
unphysical first-order phase transition at zero-temparature observed in the plaquette action.
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2.1.5 Path integral quantization

Now it is time to discuss the path integral quantization of the lattice QCD. The partition function
Z is defined as

Z =

∫︂
D[ψ, ψ̄, Uµ]e

−SE (2.59)

SE = SF + SG (2.60)

D[ψ, ψ̄, Uµ] =
∏︂

n∈Λ,µ

dψ(n)dψ̄(n)dUµ(n). (2.61)

The fermion integrals are Grassmann integrals and integrals of the link variables are defined
by the Haar measure of SU(3). Both kinds of integrals are normalized to unity. Furthermore,
the integrand has an exponentially suppressing factor e−SE , therefore the whole integral is well-
defined. The vacuum expectation value of a certain operator O is defined as

⟨O⟩ = 1

Z

∫︂
D[ψ, ψ̄, Uµ]O[ψ, ψ̄, Uµ]e

−SE . (2.62)

2.2 Calculation of correlation functions

To extract physical quantities such as hadron masses, one needs to calculate correlation functions
corresponding to the target quantities in lattice QCD. In this section, we discuss the procedure
of those calculations step by step.

2.2.1 Integral of fermions

Integrals of fermions can be performed analytically using the Wick contraction formula,

∫︂ N∏︂
k=1

dηkdη̄kηi1 η̄j1 ...ηin η̄jne
η̄lMlmηm = (−)ndet(M)

∑︂
P (1,...,n)

sign(P )(M−1)i1jP1
...(M−1)injPn

,

(2.63)
where ηk, η̄k are Grassmann variables, M is a matrix of N × N , P (1, ..., n) = (P1, ..., Pn) is
permutations of indices (1, ..., n) with a sign of sign(P ). In lattice QCD, η, η̄ and M correspond
to the quark fields ψ, ψ̄ and the Dirac operator −D(n|m), respectively. After the integration of
the fermion fields, correlation functions typically shape into the following form:

⟨O⟩ = 1

Z

∫︂
dU
∏︂
f

det(D(f)(U))fO(U)e
−SG(U) ≡ ⟨fO(U)⟩gauge, (2.64)

where fO(U) is a function of the link variable derived from the Wick contraction and typically
something like

fO(U) = tr
[︁
D−1(U)ΓD−1(U) · · ·

]︁
+ · · · , (2.65)
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where a trace is taken in the color and spinor indices, Γ is a product of gamma matrices, and
D−1 is a quark propagator, an inverse matrix of the Dirac operator.

2.2.2 Integral of link variables

Although the path integral after the Wick contraction is a multi-dimensional integral of the link
variables, its direct calculation is still impossible in practice. Fortunately, the structure of the
integral is an expectation value of fO(U) under the probabilistic distribution,

P (U) =

∏︁
f det(D

(f)(U))e−SG(U)

Z
, (2.66)

and we can apply the Markov chain Monte Carlo (MCMC) method to estimate the expectation
value. The integral can be estimated by the mean value of Monte Carlo samples Ui generated
from P (U) as

⟨fO(U)⟩gauge =
∫︂
dUP (U)fO(U) ≈

1

N

N∑︂
i=1

fO(Ui), (2.67)

up to the statistical error due to the finite number of samples. In modern lattice simulations with
dynamical quarks, the hybrid Monte Carlo (HMC) algorithm, in which samples are updated by
a molecular dynamics evolution, is commonly employed to achieve both good acceptance and
small correlations between samples. Lattice QCD simulations are performed in accordance with
this idea unless there is the so-called sign problem (the sign problem is also one of the hot topics
in the lattice QCD community, but we do not discuss it in this thesis).

2.2.3 Error estimation

The estimation of the statistical error is inevitable in lattice QCD simulation. In the most simple
case where the statistical samples are totally independent, we can estimate the error from the
standard deviation,

δ⟨O⟩ =
√︄

1

N(N − 1)

∑︂
i

(Oi − ⟨O⟩)2, (2.68)

and for a function of the statistical variables, we can apply the formula for the error propagation,

δ⟨f({On})⟩ =
√︄∑︂

n

⟨ ∂f
∂On

⟩2δ⟨On⟩2. (2.69)

However, the samples generated from the Monte Carlo method generally have correlations with
each other and the formulae above cannot be applied. Furthermore, the error propagation may
give wrong error estimations for complicated functions. One of the error estimation methods
we can apply to such cases is the jackknife method, which is commonly used in lattice QCD
simulations. We introduce the jackknife method with bin-size n here.
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Let us consider the estimation of the expectation value of f(O) from N samples of O,
{O1, ...,ON}. To make effectively independent samples, we first divide N samples into Nn ≡
N/n small bins, and calculate Nn different mean values by excluding one of the bins as

Oa =
1

N − n

∑︂
i ̸∈Ia

Oi, (a = 1, ..., Nn), (2.70)

where Ia is a set of sample indices consist of ath bin. Nn samples {Oa} are called jackknife
samples. Then we can estimate a mean value and statistical error by

⟨f(O)⟩ =
1

Nn

Nn∑︂
a=1

f(Oa) (2.71)

δ⟨f(O)⟩ =

⌜⃓⃓⎷(Nn − 1)

Nn

Nn∑︂
a=1

(f(Oa)− ⟨f(O)⟩)2. (2.72)

This formulae are identical to the standard treatment when f(O) = O and bin-size = 1.
The bin-size n is determined as follows. If we apply the jackknife method for correlated

samples, the jackknife error (2.72) converges towards a certain value with an increase of the
bin-size. This is because the bin-size becomes large enough to regard the bins as statistically
independent samples. Therefore the converged error gives a valid estimation for the correlated
data, and the bin-size n can be chosen from values where the error converges.

2.2.4 Flow of numerical simulations in lattice QCD

Here we summarize a procedure of numerical simulations in lattice QCD for the convenience of
readers:

1. Generate gauge configurations {U0, U1, · · ·UN} by the Monte Carlo simulation based on
P (U).

2. Define the target correlation function and specify fO(U) by the Wick contraction.

3. Calculate D−1 and estimate fO(U) for each configurations.

4. Estimate the target correlation function and corresponding physical observables statisti-
cally using, for instance, the jackknife method.

Basically, the first and third steps require a lot of computational resources, and we perform
these calculations on supercomputers. To avoid unnecessary computational costs, it is common
to store configurations and reuse them in other simulations once they are generated. Some
configurations generated before are open to the public. We employ such public configurations
in our calculations.
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2.3 Hadron masses from lattice QCD

In the closing part of this chapter, we discuss a typical application of lattice QCD, namely
the extraction of hadron masses. First, we show how to extract hadron masses from lattice
QCD simulations. Then, we discuss the quark smearing, which is useful to reduce unnecessary
contamination in practice.

2.3.1 Extraction of hadron masses

Let us consider a two-point correlation function (or propagator) of the target hadron,

C(t) = ⟨O(t+ t0)Ō(t0)⟩, (2.73)

where O(t), Ō(t) are the operator which has the same quantum numbers (total spin, total mo-
mentum, isospin, etc.) as the target state and its conjugate operator, respectively. By inserting
the completeness relation 1 =

∑︁
n |n⟩⟨n| in between the operators, we obtain

⟨O(t+ t0)Ō(t0)⟩ =
∑︂
n

⟨O(t+ t0)|n⟩⟨n|Ō(t0)⟩ (2.74)

=
∑︂
n

⟨O(t+ t0)|O, n⟩⟨O, n|Ō(t0)⟩ (2.75)

=
∑︂
n

⟨O(0)|O, n⟩⟨O, n|Ō(0)⟩e−Ent, (2.76)

where |O, n⟩ and En are an nth energy eigenstate and its energy eigenvalue with the same
quantum numbers as O. When t is sufficiently large, excited states are exponentially suppressed
and only the ground state survives,

C(t) → |⟨0|O(0)|O, 0⟩|2e−E0t (t→ ∞). (2.77)

Therefore we can extract the ground state energy from the time dependence of C(t) in a large
t region. If we choose the hadron operator projected onto zero momentum, O(p = 0, t) ≡∑︁

xO(x, t), we can obtain a target hadron mass as the ground state energy. For the extraction of
the hadron mass from the exponential time dependence e−mt, one basically employs exponential
fit of the 2pt function,

C(t) = Ce−mt, (2.78)

where C and m is fit parameters, or with the periodic boundary condition for time direction,
cosh-shape fit

C(t) = C cosh(m(t− T/2)), (2.79)
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where T is a length of the time direction, is employed. A range of fit is determined by referring
the time dependence of the effective mass,

meff(t) ≡ − log

(︃
C(t+ 1)

C(t)

)︃
. (2.80)

This quantity is equivalent to the hadron mass if the correlation function is dominated by the
ground state. Therefore, the time interval where meff(t) shows a plateau behavior is suitable for
the fit.

The choice of the hadron operator O is arbitrary in general, but the common choice is a local
operator based on the quark model. For instance, the pion operators are given as,

π+(x, t) = d̄(x, t)γ5u(x, t) (2.81)

π−(x, t) = ū(x, t)γ5d(x, t) (2.82)

π0(x, t) =
1√
2

(︁
ū(x, t)γ5u(x, t)− d̄(x, t)γ5d(x, t)

)︁
, (2.83)

where u, d are the up and down quark fields, respectively.

2.3.2 Quark smearing

The quark smearing is a way to reduce excited-state contamination in correlation functions,
which is beneficial for precise determinations of hadron masses. In the quark smearing, we
replace the local quark field ψ, ψ̄ by the smeared quark fields ψs, ψ̄s defined as

ψα,a(x, t) → ψs,(α,a)(x, t) =
∑︂
y,b,β

S∗
(α,a)(β,b)(x;y)ψ(β,b)(y, t), (2.84)

ψ̄α,a(x, t) → ψ̄s,(α,a)(x, t) =
∑︂
y,b,β

ψ̄(β,b)(y, t)S(β,b)(α,a)(y;x). (2.85)

S is called a smearing function and several types have ever been proposed. The purpose of the
smearing is to give quark fields some spatial extent as wave packets, and it allows the smeared
operators to overlap physical states strongly. Here we introduce some typical examples of the
smearing.

• Exponential smearing (Tsukuba-type)
Exponential smearing (Tsukuba-type)[58, 59] is the smearing with exponential smearing
function as

S(α,a)(β,b)(x;y) = δαβδabf (|x− y|) (2.86)
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f (|x− y|) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ae−B|x−y| ( 0 < |x− y| < (L− 1)/2 )

1 ( |x− y| = 0 )

0 ( |x− y| ≥ (L− 1)/2 )

(2.87)

Tunable parameters are A and B. Since the smearing function do not include any link
variable, it is not a gauge invariant operation. We need some gauge fixing to use it.

• Jacobi smearing
In the Jacobi smearing[60], the smearing functions is defined as follows:

S(α,a)(β,b)(x;y) = δαβJab(x;y), (2.88)

Jab(x;y) =
N−1∑︂
n=0

κnHn
ab(x;y), (2.89)

where the function H is

H(x;y) =
3∑︂

i=1

(︂
Uj(x, t)δx+aĵ,y + U †

j (x− aĵ, t)δx−aĵ,y

)︂
. (2.90)

Tunable parameters are κ and N . In contrast to the exponential smearing, it does not need
any gauge fixing since the link variable is inserted.
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Chapter 3

Hadron-hadron scattering from lattice
QCD

In this chapter, we discuss how to analyze hadron-hadron scattering from lattice QCD. At
present, there are mainly two methods to study hadron interaction from lattice QCD, the Lüshcer’s
method and the HAL QCD method. Both methods are based on the fundamental quantity called
the Nambu–Bethe–Salpeter (NBS) wave function. In this study, we employ the HAL QCD
method to study hadron interactions. The enlargement of the applicability of the HAL QCD
method is beneficial since it is relatively less-biased than the Lüscher’s method and brings the
interaction potential directly.

This chapter is organized as follows. First, we introduce a general feature of the scatter-
ing S-matrix, a fundamental quantity to analyze scattering processes. We then introduce the
Nambu–Bethe–Salpeter (NBS) wave function and its features. After that, we introduce the basic
formulation of the HAL QCD method in detail. We discuss not only the conventional center-
of-mass frame calculation but also its extension to the laboratory frame. Finally, we briefly
introduce the Lüscher’s finite volume method.

3.1 Unitarity of S-matrix and scattering phase shift

A fundamental quantity to describe scatterings of quantum systems is the S-matrix. The S-matrix
is a unitary operator, which satisfies

SS† = S†S = 1. (3.1)

Here we consider the T-matrix defined as S = 1 + iT , which describe an interacting part of
the scattering processes. By the unitarity relation (3.1), we obtain the following formula on the
T-matrix,

⟨f |T |i⟩ − ⟨f |T †|i⟩ = i⟨f |TT †|i⟩ = i
∑︂
n

⟨f |T |n⟩⟨n|T †|i⟩, (3.2)
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where |i⟩, |f⟩ are initial and final asymptotic states we consider and at the second equality we
insert a completeness relation, 1 =

∑︁
n |n⟩⟨n|. In the following, we consider an elastic scat-

tering of two distinguishable scalar particles with the same mass m and consider Minkowski
spacetime. The asymptotic states in the center-of-mass (CM) frame are given as,

|i⟩ = |k1, k2⟩ (3.3)

|f⟩ = |p1, p2⟩, (3.4)

where four-momenta ki, pi (i = 1, 2) are on-shell as

k1 = (
√
k2 +m2,k) (3.5)

k2 = (
√
k2 +m2,−k) (3.6)

p1 = (
√︁
p2 +m2,p) (3.7)

p2 = (
√︁

p2 +m2,−p). (3.8)

Since the system has a translational invariance, the matrix element of the T-matrix behaves as

⟨p1, p2|T |k1, k2⟩ = T (p,k)(2π)4δ4(p1 + p2 − k1 − k2). (3.9)

Furthermore, we assume there is no stable bound states and we can ignore inelastic scattering.
In that case, elastic two-particle states only contribute to the completeness relation, and the
right-hand side of (3.2) becomes

i
∑︂
n

⟨f |T |n⟩⟨n|T †|i⟩

= i

∫︂
d3q1d

3q2

(2π)62Eq12Eq2

⟨p1, p2|T |q1, q2⟩⟨q1, q2|T †|k1, k2⟩

= i

∫︂
d3q1d

3q2

(2π)62Eq12Eq2

T ∗(q1,q2,p)T (q1,q2,k)(2π)
8δ4(q1 + q2 − k1 − k2)δ

4(p1 + p2 − q1 − q2)

= (2π)4δ4(p1 + p2 − k1 − k2)

×i
∫︂

d3q1d
3q2

(2π)22Eq12Eq2

T ∗(q1,q2,p)T (q1,q2,k)δ
4(q1 + q2 − k1 − k2). (3.10)
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We remove the underlined part since it is a common factor of the both sides of (3.2). A remaining
integral can be partly performed thanks to the delta function as

i

∫︂
d3q1d

3q2

(2π)22Eq12Eq2

T ∗(q1,q2,p)T (q1,q2,k)δ
4(q1 + q2 − k1 − k2)

= i

∫︂
d3q1d

3q2

(2π)22Eq12Eq2

T ∗(q1,q2,p)T (q1,q2,k)δ(Eq1 + Eq2 − 2Ek)δ
3(q1 + q2)

= i

∫︂
d3q

(2π)2(2Eq)2
T ∗(q,p)T (q,k)δ(2Eq − 2Ek)

= i
1

16π2

∫︂
dΩq

∫︂
q2dq

E2
q

T ∗(q,p)T (q,k)
Ek

2k
δ(q − k) (q = |q|, k = |k|)

=
ik

32π2Ek

∫︂
dΩqT

∗(q,p)T (q,k), (3.11)

where we use a formula of δ(f(x)−f(a)) = 1/|f ′(a)|δ(x−a) at the third equality. In summary,
we obtain a formula on T (p,k) as

T (p,k)− T ∗(k,p) =
ik

32π2Ek

∫︂
dΩqT

∗(q,p)T (q,k), (3.12)

with the on-shell condition |q| = |k| = |p|. To see behaviors of the partial wave T-matrix, we
apply the partial wave decomposition to T (p,k) as

T (p,k) = 4π
∞∑︂
l=0

l∑︂
m=−l

Tl(p, k)Ylm(Ωp)Ȳ lm(Ωk). (3.13)

Together with the orthogonality of the spherical harmonics,∫︂
dΩYlm(Ω)Ȳ l′m′(Ω) = δll′δmm′ , (3.14)

we can perform the angular integral of (3.12) as

ik

32π2Ek

(4π)2
∑︂
l,m

∑︂
l′,m′

∫︂
dΩqT

∗
l (q, p)Ylm(Ωp)Ȳ lm(Ωq)Tl′(q, k)Yl′m′(Ωq)Ȳ l′m′(Ωk)

= 4π
∑︂
l,m

ik

8πEk

T ∗
l (k, k)Tl(k, k)Ylm(Ωp)Ȳ lm(Ωk). (3.15)

Therefore we obtain a formula of the partial wave T-matrix from (3.12), (3.13), and (3.14),

Tl(k, k)− T ∗
l (k, k) =

ik

8πEk

T ∗
l (k, k)Tl(k, k). (3.16)
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This formula is satisfied with the parametrization of

Tl(k, k) =
16πEk

k
sin(δl(k))e

iδl(k), (3.17)

where δl(k) is a real parameter depending on l and k. This result means that the whole informa-
tion of the elastic scattering is summarized to the parameter δl(k), which is called the scattering
phase shift. A main task to analyze the particle scattering is, therefore, to extract information of
δl(k) somehow.

3.2 Nambu–Bethe–Salpeter wave function

In non-relativistic quantum mechanics, the scattering phase shift appears as a phase of an asymp-
totic wave function. On the other hand, in quantum field theory, the Nambu–Bethe–Salpeter
(NBS) wave function contains the information of the scattering phase shift. Here we discuss the
definition of the NBS wave function and derive its asymptotic behavior.

3.2.1 Definition

Let us consider an elastic scattering of two distinguishable scalar particles with the same mass
m in Minkowski spacetime. The NBS wave function for this system is defined as

ψk1,k2(x1, x2) = ⟨0|T{φ1(x1)φ2(x2)}|k1, k2⟩in, (3.18)

where φi(x) is scalar field operators (i = 1, 2 is an identifier of two particles) and |k1, k2⟩in
is an asymptotic in-state of two particles with four-momenta k1 and k2. In general, the NBS
wave function can be defined in any frame of reference, but here we are interested in one in
the center-of-mass frame since it is directly related to the scattering phase shift. On the other
hand, the NBS wave function in the laboratory frame also play an important role in practice, as
will be discussed later. The field operators and asymptotic states are transformed under Lorentz
transformation as

U(Λ)φi(x)U
−1(Λ) = φi(x

′) (3.19)

U(Λ)|k1, k2⟩in = |k′1, k′2⟩in, (3.20)

where U(Λ) is a unitary operator which implements Lorentz transformation on the states and
prime symbols represent transformed objects, for example, x′µ = Λµ

νx
ν . Using eqs. (3.18),

(3.19), and (3.20), we can derive the relation between two NBS wave functions in different
frames as

ψk1,k2(x1, x2) = ψk′1,k
′
2
(x′1, x

′
2). (3.21)
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Furthermore, the relation φ(x) = eiP ·xφ(0)e−iP ·x (where P is the energy-momentum operator
and P · x = ηµνP

µxν) implies that the NBS wave function is factorized into a center–of–mass
plane wave and a relative wave function as

ψk1,k2(x1, x2) = ϕk1,k2(x)e
−iWX0+iP·X, (3.22)

where W =
√︁

k2
1 +m2 +

√︁
k2
2 +m2 and P = k1 + k2 are the total energy and momentum,

respectively. The center–of–mass and relative coordinates (X , x) are defined as

X ≡ x1 + x2
2

, x ≡ x1 − x2. (3.23)

Since ηµνP µXν = WX0 − P · X is Lorentz invariant, eqs. (3.21) and (3.22) give a relation
between relative wave functions in different frames as

ϕk1,k2(x) = ϕk′1,k
′
2
(x′). (3.24)

3.2.2 Asymptotic behavior of the relative NBS wave function in the center-
of-mass frame

In the following, we derive an asymptotic form of the relative NBS wave function in the center-
of-mass frame,

ϕk(x, t) = ⟨0|T{φ1(x/2, t/2)φ2(−x/2,−t/2)}|k,−k⟩in. (3.25)

First, we insert a complete set of the asymptotic out states,

1 = |0⟩⟨0|+
∑︂
i

∫︂
d3p

(2π)32Ep

|p, i⟩out out⟨p, i|+ (multiparticle states), (3.26)

into the NBS wave function. The elastic part is given as

ϕelas.
k (x, t) =

∑︂
i

∫︂
d3p

(2π)32Ep

⟨0|φ1(x/2, t/2)|p, i⟩out out⟨p, i|φ2(−x/2,−t/2)|k,−k⟩in.

(3.27)
The first matrix element behaves as

⟨0|φi(x/2, t/2)|p, j⟩out = δij
√
Zeip·x/2−iEpt/2, (3.28)

where Z is a renormalization factor of the field φi, therefore

ϕelas.
k (x, t) =

√
Z

∫︂
d3p

(2π)32Ep

eip·x/2−iEpt/2
out⟨p, 1|φ2(−x/2,−t/2)|k,−k⟩in. (3.29)
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The LSZ reduction formula,

aout,i,pT(O)− T(O)ain,i,p = i(−p2 +m2)T(φi(p)O)/
√︁

2Ep (3.30)

T(O)a†in,i,p − a†out,i,pT(O) = i(−p2 +m2)T(φ†
i (p)O)/

√︁
2Ep (3.31)

φi(p) =

∫︂
d4x

1√
Z
φi(x)e

ip·x, (3.32)

leads us to,

out⟨p, 1|φ2(−x/2,−t/2)|k,−k⟩in =
√
Z(2π)32Eke

+iEkt/2e+ik·x/2δ(p− k)

+
√
Z

e+iq·x/2

m2 − q2 − iϵ
T̂ (p, q, k, k),

(3.33)

where x = (t,x) and q = (−Ep + 2Ek,−p). T̂ is a half off-shell T-matrix defined as

T̂ (p, q, k, k) = i(−p2 +m2)i(−q2 +m2)G(p, q, k, k)i(−k2 +m2)i(−k2 +m2) (3.34)

iG(p, q, k, k)(2π)4δ4(p+ q − 2k) = ⟨0|φ1(p)φ2(q)φ
†
1(k)φ

†
2(k)|0⟩. (3.35)

In summary, the elastic part of the relative NBS wave function behaves as

ϕelas.
k (x, t) = Z

[︄
eik·r +

∫︂
d3p

(2π)32Ep

eip·r−i(Ep−Ek)t
T̂ (p, q, ka, kb)

m2 − q2 − iϵ

]︄

= Z

[︄
eik·r +

∫︂
d3p

(2π)3
eip·r−i(Ep−Ek)t

Ep + Ek

8EpEk

T̂ (p, q, ka, kb)

|p|2 − |k|2 − iϵ

]︄

= Z

[︄
eik·r +

∫︂
d3p

(2π)3
eip·r−i(Ep−Ek)t

Ĥ(p,k)

|p|2 − |k|2 − iϵ

]︄
. (3.36)

In the last equality we define

Ĥ(p,k) ≡ Ep + Ek

8EpEk

T̂ , (3.37)

and rewrite the integrand. In the following, we represent p = |p|, k = |k| unless otherwise
stated. Insert the partial wave decomposition,

Ĥ(p,k) = (4π)
∑︂
lm

Hl(p, k)Ylm(Ωp)Ȳ lm(Ωk) (3.38)

eip·x = (4π)
∑︂
lm

iljl(pr)Ylm(Ωx)Ȳ lm(Ωp) (3.39)

ϕelas.
k (x, t) = (4π)

∑︂
lm

ilϕl(k, r, t)Ylm(Ωx)Ȳ lm(Ωk), (3.40)
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and apply the orthogonality relation of the spherical harmonics, we obtain

ϕl(k, r, t) = Z

[︃
jl(kr)−

1

2π2

∫︂ ∞

0

p2dp
Hl(p, k)jl(pr)e

−i(Ep−Ek)t

k2 − p2 + iϵ

]︃
. (3.41)

The integral in the second term can be estimated by the formula,∫︂ ∞

0

q2dq
jl(qr)

k2 − q2 + iϵ
Fl(q) ≈ −πk

2
Fl(k) [nl(kr) + ijl(kr)] (r ≫ 1), (3.42)

where jl and nl are the spherical Bessel and Neumann function defined as

jl(x) = (−x)l
(︃
1

x

d

dx

)︃l(︃
sin(x)

x

)︃
(3.43)

nl(x) = (−x)l
(︃
1

x

d

dx

)︃l(︃
cos(x)

x

)︃
, (3.44)

and Fl(q) has a property as Fl(−q) = (−1)lFl(q) and does not have any pole on a real axis. In
our case, Fl is given as

Fl(p) = Hl(p, k)e
−i(Ep−Ek)t. (3.45)

Since we consider the elastic scattering, there is no pole on the real axis. Furthermore, from the
partial wave decomposition of Ĥ(q,k) and the property of the spherical harmonics Ylm(Ω−q) =

(−1)lYlm(Ωq), we can show H(−p, k) = (−1)lH(p, k). Therefore, Fl(−q) = (−1)lFl(q)

is actually satisfied. Using the formula (3.42), partial wave NBS wave functions behave at a
sufficiently large r as

ϕl(k, r, t) ≈ Z

[︃
jl(kr) +

1

16πEk

Tl(k, k)(nl(kr) + ijl(kr))

]︃
. (3.46)

The parametrization of the partial wave T-matrix,

Tl(k, k) =
16πEk

k
sin(δl(k))e

iδl(k), (3.47)

and asymptotic behaviors of the spherical Bessel and Neumann functions at a sufficiently large
r,

jl(kr) →
sin(kr − lπ

2
)

kr
(3.48)

nl(kr) →
cos(kr − lπ

2
)

kr
, (3.49)

finally leads to

ϕl(k, r, t) → Zeiδl
sin(kr − lπ

2
+ δl)

kr
. (3.50)
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This form is the same as the asymptotic wave function in the non-relativistic quantum scattering.
Accordingly, we can also show that the NBS wave function satisfies the Helmholtz equation in
the asymptotic region as

(∇2 + k2)ϕelas.
k (x, t) → 0. (3.51)

As a result, we can extract the scattering information δl(k) from the asymptotic NBS wave func-
tion as the non-relativistic scattering theory, although there is no non-relativistic approximation
in our discussion. Incidentally, we haven’t discussed the contribution from the inelastic part of
(3.26), but it can be shown that they are small as long as we consider low-energy scatterings far
below inelastic thresholds.

3.3 HAL QCD method

In this section we introduce the HAL QCD method[16–18] in details. The discussion in the
last section reveals that the NBS wave function contains the scattering information in the same
manner as the non-relativistic quantum scattering. The idea of the HAL QCD method is to
reconstruct interaction potentials via the Schrödinger equation, starting from the NBS wave
function.

3.3.1 Energy-independent non-local potential

We assume that the interaction of particles is short range, namely the interaction disappears at
r = R. Since the NBS wave function asymptotically contains the scattering phase shift, we can
expect that there exists an interaction potential with which the NBS wave function satisfies the
Schrödinger-type equation,

1

2µ
(∇2 + k2)ϕk(x, t) =

∫︂
d3rUt(x,x

′)ϕk(x
′, t), (3.52)

where µ = m/2 is a reduced mass of the system and Ut is the interaction potential. We note that
here the relative time t is fixed and eq.(3.52) is understood as the time-independent Schrödinger
equation. Inversely, the interaction potential can be reconstructed if we know whole set of the
elastic NBS wave functions beforehand:

1. Define a kernel KW by the known NBS wave functions as

KW (x, t) ≡ 1

2µ
(∇2 + k2)ϕk(x, t) (W < Wth), (3.53)

where k = |k| and W = 2
√
k2 +m2, Wth is a threshold of an inelastic scattering. Since

the NBS wave function satisfies the Helmholtz equation at large distances, this kernel goes
to zero at r > R.
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2. Next, define a metric NW,W ′ as

NW,W ′(t) ≡
∫︂
d3xϕ∗

k(x, t)ϕk′(x, t). (3.54)

Generally speaking, this metric is not diagonal since the NBS wave functions are not
orthogonal.

3. From these, we can reconstruct the energy-independent non-local potential as

Ut(x,x
′) ≡

Wth∑︂
W,W ′

KW (x, t)N−1
W,W ′(t)ϕ

∗
k′(x′, t). (3.55)

The subscription t represents a dependence on the relative time separation. The shape
of the potential generally depends on how we define the NBS wave function (relative
time separation, definition of the hadron operator, etc.) and we refer to it as “scheme
dependence”. By construction, this potential satisfies the Schrödinger equation (3.52),

∫︂
d3x′Ut(x,x

′)ϕk(x
′, t) =

Wth∑︂
W ′,W ′′

∫︂
d3x′KW ′(x, t)N−1

W ′,W ′′(t)ϕ
∗
k′′(x′, t)ϕk(x

′, t)

=

Wth∑︂
W ′,W ′′

KW ′(x, t)N−1
W ′,W ′′(t)NW ′′,W (t)

= KW (x, t)

=
1

2µ
(∇2 + k2)ϕk(x, t). (3.56)

The interaction potential is faithful to the scattering phase shift (and therefore to the S-matrix).
Once we reconstruct the potential we can use it to calculate physical observables. The non-local
potential generally depends on the scheme, but the physical observables are independent of it
as long as the complete non-local potential is considered. Therefore, we can choose schemes
convenient for the calculations of physical observables.

3.3.2 Derivative expansion of the non-local potential

The potential defined above can be calculated if we know all NBS wave functions below the
inelastic threshold. In practice, however, it is impossible to reconstruct the complete non-local
potential, since only discretized energy eigenstates can be accessed in lattice QCD. To deter-
mine the non-locality of the potential with restricted energy eigenstates, we employ a derivative
expansion of the non-locality as

U(x,x′) = V (x,∇)δ3(x− x′). (3.57)



28 Chapter 3. Hadron-hadron scattering from lattice QCD

In our study V (x,∇) is given as 1,

V (x,∇) = V0(x) + V2(x)∇2 +O(∇4). (3.58)

We truncate this expansion at a sufficient order of expansion. In our study, we consider the
effective leading order (LO) potential

V LO(x,∇) = V LO
0 (x), (3.59)

and the effective next-to-next-to-leading order (N2LO) potential,

V N2LO(x,∇) = V N2LO
0 (x) + V N2LO

2 (x)∇2. (3.60)

The truncation introduces systematic uncertainty in the HAL QCD method. The physical ob-
servables can be affected by this truncation if the expansion is insufficient to reproduce the
non-locality of the true potential. In general, we cannot know the extent of the non-locality
beforehand, therefore it is better to study how physical observables depend on the truncation.
Furthermore, the convergence of the derivative expansion depends on the scheme we choose. To
utilize the scheme dependence to improve the calculation, one should care about the convergence
of the expansion.

3.3.3 Interaction potential from lattice QCD: case of center-of-mass frame

Now let us consider the extraction of the interaction potential from lattice QCD. In this subsec-
tion, we first consider a case of the center-of-mass frame. We consider Euclidean spacetime in
the following.

Naive method

In order to extract the potential, we need to calculate the NBS wave function beforehand. In
lattice QCD, the NBS wave function are encoded in a correlation function defined as

F (x1, x2) = ⟨φ1(x1)φ2(x2)J (0)⟩, (3.61)

where φi is a hadron operator and J (0) is a source operator, which has the same quantum
numbers as the target two hadron system. The part φ1(x1)φ2(x2) is called a sink operator, whose
choice determines the scheme of the NBS wave function. A typical choice is local operators of
the target two hadrons putting on the same timeslice (it is called “equal-time local-sink scheme”).
In our study, however, we choose some non-typical schemes to reduce systematical uncertainty,
as discussed later.

1In general we can include not only terms with even powers of ∇ but also ones with odd powers. A fact that we
do not include odd-power terms here can be regarded as the scheme of the potential.



3.3. HAL QCD method 29

By inserting the complete set of the scattering states in lattice QCD, we obtain

F (x1, x2) =
∑︂
n

⟨φ1(x1)φ2(x2)|Wn⟩⟨Wn|J (0)⟩+ (inelastic)

=
∑︂
n

AnϕWn(x, t)e
−WnT + (inelastic), (3.62)

where x, t are the relative space-time coordinates between two operators at sink, and T is the
center-of-mass imaginary time. An = ⟨Wn|J (0)|0⟩ is an overlapping factor. Therefore we can
extract the lowest NBS wave function by taking T ≫ 1,

F (x1, x2) → A0ϕW0(x, t)e
−W0T (T ≫ 1). (3.63)

The effective leading-order potential, U(x,x′) = V (x)δ(x−x′), can be obtained at a sufficiently
large T as

V LO
t (x) =

1
2µ
(∇2 + k20)F (x1, x2)

F (x1, x2)
, (3.64)

where k0 =
√︁
W 2

0 /4−m2. Although we can calculate the potential by this naive method,
we use a cleverer method called a time-dependent method [61] in practice. We introduce the
time-dependent method next.

Time-dependent method

In the time-dependent method [61], we first define a normalized correlation function (we call it
“R-correlator”) as

R(x, t, T ) ≡ F (x1, x2)

C1(T )C2(T )
, (3.65)

where F is a correlation function introduced above and Ci(T ) =
∑︁

x,y⟨φi(x, T )φ̄i(y, 0)⟩ is a
two-point function of the target hadrons. From eq. (3.62), the R-correlator behaves as

R(x, t, T ) =
∑︂
n

BnϕWn(x, t)e
−∆WnT + (inelastic) (3.66)

∆Wn = Wn − 2m, (3.67)

when T is large enough. The energy shift ∆Wn satisfies the following equation:

(∆Wn)
2 = (Wn − 2m)2

= W 2
n − 4mWn + 4m2

= 4(k2n +m2)− 4mWn + 4m2

= 4k2n − 4m(Wn − 2m)

= 4k2n − 4m∆Wn,
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∴ ∆Wn =
k2n
m

− (∆Wn)
2

4m
. (3.68)

Since T derivatives of the R-correlator gives a factor of −∆Wn, we can show that the R-
correlator satisfies

∴

[︃
∇2

m
− ∂

∂T
+

1

4m

∂2

∂T 2

]︃
R(x, t, T ) =

∫︂
d3x′Ut(x,x

′)R(x′, t, T ), (3.69)

when the inelastic contributions are negligible. The effective LO potential is given as

V LO
t =

[︂
∇2

m
− ∂

∂T
+ 1

4m
∂2

∂T 2

]︂
R(x′, t, T )

R(x′, t, T )
. (3.70)

The first advantage of this method is that we can use smaller timeslices to obtain the potential
since we only need to suppress the inelastic contributions, rather than the elastic excited states.
It enables us to calculate the correct potentials of systems whose signals are buried by noises at
large timeslices, like two-baryon scatterings. At the same time, all elastic states are included in
this method thanks to the replacement of the k2n by the combination of the time derivatives.

3.3.4 Interaction potential from lattice QCD: case of laboratory frame

The extraction of the HAL QCD potential from the laboratory frame NBS wave function has not
developed well until now, since the conventional center-of-mass approach has been enough to
calculate physical observables correctly. Recently, however, the need for the laboratory frame
calculation gradually increases. For example, the recent ρ resonance study, which will be dis-
cussed in Chap. 6, reveals that P-wave scattering phase shifts can deviate from correct values in
the low-energy region not covered by the center-of-mass frame when the non-locality of the po-
tential is happened to be large. Moreover, in analyses of hadron systems with the same quantum
number as a vacuum (e.g. the I = 0 S-wave ππ interaction corresponding to the σ resonance),
introducing non-zero total momenta is a promising way to reduce contamination from the vac-
uum state. In this subsection, we introduce the formulation of the laboratory frame approach.
We continuously consider Euclidean spacetime here. The numerical calculation based on this
formulation, which is one of our achievements, will be discussed in Chap. 7.

First let us recall the relation between the NBS wave functions in laboratory and center-of-
mass frame. As already discussed, the relative NBS wave function in the laboratory frame is
related to the center-of-mass counterpart by the Lorentz transformation as

ϕk1,k2(x) = ϕk∗1 ,k
∗
2
(x∗), (3.71)

where k∗ = k∗
1 = −k∗

2 and W ∗ = 2
√
k∗2 +m2. In this subsection, we represent center-of-mass

quantities with starred symbols (∗). Relative coordinates in the laboratory and center-of-mass
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frames are related as

x∗4 = γ(x4 − iv · x∥), x∗
∥ = γ(x∥ + ivx4), x∗

⊥ = x⊥, (3.72)

where ∥ and ⊥ represent vector components parallel and perpendicular to the direction of the
total momentum, respectively. The velocity is determined from P∗ = γ(P − vW ) = 0 as
v = P/W , where W is the total energy in the laboratory frame, while the total energy in the
center-of-mass frame W ∗ is related to W by

W ∗2 = W 2 −P2. (3.73)

The interaction potential is defined in the center-of-mass frame through the Schrödinger–type
equation as

1

2µ
(∇∗2 + k∗2)ϕk∗1 ,k

∗
2
(x∗, x∗4) =

∫︂
d3y∗Ux∗4(x∗,y∗)ϕk∗1 ,k

∗
2
(y∗, x∗4). (3.74)

By combining eqs. (3.24), (3.72) and (3.74), we can rewrite the Schrodinger–type equation in
terms of the laboratory frame quantities as

1

2µ
(∇2

⊥ + γ2(∇∥ + iv∂x4)2 + k∗2)ϕk1,k2(x, x
4)

=
∑︂
i

V i
γ(x4−iv·x∥)

(︁
x⊥, γ(x∥ + ivx4)

)︁ (︁
∇2

⊥ + γ2(∇∥ + iv∂x4)2
)︁i
ϕk1,k2(x, x

4),
(3.75)

where we have applied the derivative expansion Ux∗4(x∗,y∗) =
∑︁

i V
i
x∗4(x∗) (∇∗2)

i
δ(x∗ − y∗).

To extract meaningful potential from this equation, x4 = 0 is required since x∗
∥ becomes complex

with non-zero x4. We also fix x∥ to specify the scheme of the potential via x∗4, since x∗4 depends
on x∥. In this thesis, we take x∥ = 0 and thus obtain the equal–time scheme potential.

Naive method

In lattice simulations, we put the system in a box of size L × L × L with periodic boundary
conditions in the laboratory frame. We define a correlation function as

FP(x1, x2) = ⟨φ1(x1)φ2(x2)J P(0)⟩, (3.76)

where J P(0) creates two-particle states with total momentum P at T = 0, which is quantized
as P = 2π

L
ntotal (ntotal ∈ Z3). This correlation function can be written as

FP(x1, x2) = eiP·X
∑︂
n

AP,nϕWn(x)e
−WnT + (inelastic contributions) (3.77)

→ eiP·XAP,0ϕW0(x)e
−W0T , (T ≫ 1), (3.78)
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where AP,n = ⟨Wn|J P(0)|0⟩. Therefore, we can extract the NBS wave function of the lowest
energy state at a large T , same as the center-of-mass approach. Note that these relative NBS
wave functions have a periodicity depending on P = 2π

L
ntotal as

ϕW (x+mL, x4)eiπntotal·m = ϕW (x, x4) (ntotal,m ∈ Z3), (3.79)

which can be derived from (3.22) together with the periodicity of coordinates xi (i = 1, 2). The
calculations of derivatives (e.g. ∇∥ at x∥ = 0) are implemented by taking this periodicity into
account. The effective LO potential in the equal–time scheme is obtained at a sufficiently large
T as

V LO
x∗4=0(x

∗
⊥) =

(∇2
⊥ + γ2(∇∥ + iv∂x4)2 + k∗20 )FP(x1, x2)

2µFP(x1, x2)

⃓⃓⃓⃓
x4=0,x∥=0

, (3.80)

where we set x4 = 0 and x∥ = 0 after taking derivatives in the right–hand side. The relative
momentum k∗20 is obtained by k∗20 = W ∗2

0 /4−m2 = (W 2
0 − P 2) /4−m2.

Time-dependent method

As the case of the center-of-mass frame, the time-dependent method is available for the labora-
tory frame approach, even though it becomes more involved. We define the R-correlator in the
laboratory frame as

R(x, x4, X4) =
e−iP·XFP(x1, x2)

C1(X4)C2(X4)
, (3.81)

where Ci(X
4) (i = 1, 2) are certain hadron two-point functions and a factor e−iP·X removes

the plane wave factor eiP·X in (3.76). Since hadrons basically have momenta in the laboratory
frame, a normalization by a free lowest energy is one natural choice. For example, if the source
operator forms like J P(0) =

∑︁
x,y e

iP·xφ̄1(x, 0)φ̄2(y, 0), then the normalization is done by
C1(T ) =

∑︁
x,y e

iP·(y−x)⟨φ1(x, T )φ̄1(y, 0)⟩ and C2(T ) =
∑︁

x,y⟨φ2(x, T )φ̄2(y, 0)⟩. We note
that we can choose an another normalization, e.g. using hadron masses like the center-of-mass
case. The difference of those normalizations is only the definition of the energy shift, therefore
they give the same result in principle. In practice, however, some difference may appear due
to the systematics like the discretization error. Since the involved calculation of the laboratory
frame formalism may cause such systematics, we check it explicitly in our numerical simulation.
It will be discussed in Chap. 7 and Appendix F.

To extract the potential we calculate the following parts beforehand:

G(x, x4, X4) =
(︁
(∂X4 −W0,free)

2 −P2
)︁
R(x, x4, X4), (3.82)

E(x, x4, X4) =
1

4m

[︁
∂2X4 − 2W0,free∂X4 +W 2

0,free −P2 − 4m2
]︁
G(x, x4, X4), (3.83)

L⊥(x, x
4, X4) = ∇2

⊥G(x, x
4, X4), (3.84)

L∥(x, x
4, X4) =

(︁
−(∂X4 −W0,free)∇∥ + iP∂x4

)︁2
R(x, x4, X4), (3.85)
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where W0,free is a free lowest energy expected by the source operator. At a large X4 where the
inelastic contributions can be neglected, we have

G(x, x4, X4) ≃
∑︂
n

B′
nW

∗2
n φWn(x, x

4)e−(Wn−W0,free)X
4

(3.86)

E(x, x4, X4) ≃
∑︂
n

B′
nW

∗2
n

k∗2n
m
φWn(x, x

4)e−(Wn−W0,free)X
4

(3.87)

L⊥(x, x
4, X4) ≃

∑︂
n

B′
nW

∗2
n ∇2

⊥φWn(x, x
4)e−(Wn−W0,free)X

4

(3.88)

L∥(x, x
4, X4) ≃

∑︂
n

B′
nW

∗2
n γ2n(∇∥ + ivn∂x4)2φWn(x, x

4)e−(Wn−W0,free)X
4

, (3.89)

where B′
n is an overlapping factor in the normalized correlation function, the center-of-mass

energy of W ∗2
n = W 2

n −P2 = 4(k∗2n +m2) and the boost factor of γ2n = W 2
n

W ∗2
n

.
By combining these and eq. (3.75), we obtain(︃

L⊥ + L∥

m
+ E

)︃
(x, x4, X4)

⃓⃓⃓⃓
x4=0,x∥=0

≃
∑︂
i

V i
x∗4=0

(︁
x∗
⊥ = x⊥,x

∗
∥ = 0

)︁
×

(︁
(∇∗2)iG(x, x4, X4)

)︁⃓⃓
x4=0,x∥=0

(3.90)

at a large X4, where the operation of starred-Laplacians to G is understood as

(∇∗2)iG(x, x4, X4) =
∑︂
n

B′
nW

∗2
n

(︁
∇2

⊥ + γ2n(∇∥ + ivn∂x4)2
)︁i
φWn(x, x

4)e−(Wn−W0,free)X
4

.

(3.91)
Note that we can put V i outside a summation over n for elastic states in (3.90) only at x∗4 = 0,
since the scheme of the potential depends on n as long as x∗4 = γn(x

4 − ivn · x∥) ̸= 0. For
example, the effective LO potential is given by

V LO
x∗4=0(x⊥) =

(︁
L⊥ + L∥ +mE

)︁
(x, x4, X4)

mG(x, x4, X4)

⃓⃓⃓⃓
⃓
x4=0,x∥=0

. (3.92)

This procedure is more complicated than the conventional time-dependent method, since we
need to sum over n without knowing not only k∗2n in (3.87) but also the Lorentz factors γ2n and
velocities vn in (3.89), by combining several terms as shown above. In principle, the potential
does not depend on the normalization discussed above since their difference is just a defini-
tion of the energy shift. In practice, however, the normalization dependence can appear due to
the statistical correlation between the numerator and denominator of the R-correlator and other
systematics on lattice simulations.
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3.3.5 Calculations of physical observables

Once the potential is extracted, we can calculate physical observables by solving the Schrödinger
equation. If the interaction disappears within a half of the lattice box size, the infinite-volume
Schrödinger equation is valid since the extracted potential is not affected by the periodicity. To
solve the infinite volume Schrodinger equation, the extracted potentials are fitted by some fit
function in practice. Furthermore, the interaction potential can be immediately applied to other
model calculations of hadron phenomena.

Finally, let us summarize possible systematics appearing in the HAL QCD method. The most
important one is the truncation error of the derivative expansion. Generally speaking, the effec-
tive potentials depend on a choice of source operators. In other words, they implicitly depend
on discrete energy levels included in their determination due to the truncation of the derivative
expansion. Therefore, systematic errors in the derivative expansion for physical observables de-
pend on the magnitude of non-locality in the true potential as well as on the difference between
the energy region relevant for physical observables and that employed to determine the effective
potentials. To see the truncation effect of a target observable explicitly, we need to calculate
the observable by several source operators (and their combinations) and see the dependence on
them.

In addition to the derivative expansion, there is another source of systematics, namely the
mixing of the higher partial waves. Since lattice QCD simulation is performed in a finite-volume
box, the rotational invariance reduces to cubic (or, in the laboratory frame, some hexahedral) in-
variance. Therefore, the scattering states in lattice QCD belong to irreducible representations
of the reduced symmetry group. In terms of the basis of the continuum O(3) group, those irre-
ducible representations are mixtures of partial waves, therefore the scattering analysis in lattice
QCD suffers from the partial wave mixing in general. The details of the relation between irre-
ducible representations and partial waves appearing in our study are summarized in Appendix B.
In the HAL QCD method, such contamination appears as non-smooth behavior of the r depen-
dence of the potential, and the fit procedure can be affected. Fortunately, most of the non-smooth
behavior can be removed by the effective partial wave decomposition recently introduced [62],
except for the small r region of the potential. The remaining contamination should be treated
appropriately if it is not negligible.

3.4 Lüscher’s finite volume method

In this section, we briefly introduce another way to study hadron scatterings from lattice QCD,
the Lüscher’s finite volume method[12]. This method is also based on the asymptotic behavior
of the NBS wave function. In contrast to the HAL QCD method, however, it focuses on the
asymptotic region to extract the scattering information.
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3.4.1 General solution of the Helmholtz equation in a finite box

Let us consider the scattering of two distinguishable scalar particles in the center-of-mass frame
in a L× L× L finite box with a periodic boundary condition. The relative NBS wave function
in the center-of-mass frame satisfies the periodicity,

ϕelas.
k (x+mL, t) = ϕelas.

k (x, t) (m ∈ Z3), (3.93)

and the Helmholtz equation,

(∇2 + k2)ϕelas.
k (x, t) → 0 (|x| > R), (3.94)

in the asymptotic region. The radial NBS wave function behaves as

ϕlm(k, r, t) ≈ blm(k, t) [cos(δl(k))jl(kr) + sin(δl(k))nl(kr)] , (3.95)

with some coefficients of blm.
On the other hand, we can construct a general solution of the Helmholtz equation which

satisfies (3.93),

ϕL,k(r) =
∑︂
l,m

vlm(k)Glm(r, k) (3.96)

Glm(r, k) =
√
4πYlm(∇)G(r, k) (3.97)

G(r, k) =
1

L3

∑︂
n∈Z3

e−i 2π
L
n·r

(2π
L
n)2 − k2

, (3.98)

where Ylm(r) = rlYlm(Ωr). The partial wave decomposition of G(r, k) is given as

G(r, k) =
1

4π
n0(kr) +

∑︂
l,m

glm(k)jl(kr)Ylm(Ωr), (3.99)

glm =
1

L3

∑︂
p∈Γ

(ip/k)l

p2 − k2
Ȳ lm(Ωp), (3.100)

where Γ = {p|p = 2π
L
n, n ∈ Z3}, and it leads to

Glm(r, k) = −(−k)l+1

4π

[︄
Ylm(Ωr)nl(kr) +

∑︂
l′,m′

Mlm,l′m′Yl′m′(Ωr)jl′(kr)

]︄
. (3.101)

3.4.2 Lüscher’s formula

Since the asymptotic NBS wave function obeys the periodicity, it must be expressed by the basis
of Glm(r, k). On the other hand, we know that the asymptotic behavior of the wave function,
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eq. (3.95). By combining them, we obtain the following relations between vlm and δ(k):

blm cos(δl(k)) =
∑︂
l′m′

vl′m′
(−1)l

′

4π
kl

′+1Ml′m′,lm(k, L) (3.102)

blm sin(δl(k)) = vlm
(−1)l

4π
kl+1. (3.103)

Finally we obtain a equation of vlm by removing blm as

∑︂
l′m′

vl′m′
(−1)l

′

4π
kl

′+1 (cot(δl′(k))δl′lδm′m +Ml′m′,lm(k, L)) = 0. (3.104)

In order for a non-trivial coefficient vlm to exist, the matrix part of (3.104) must satisfy

det [cot(δl′(k))δl′lδm′m +Ml′m′,lm(k, L)] = 0, (3.105)

where the determinant is considered in the space of l,m. M is a function of (k, L), which is
numerically calculable. The final equation is so-called Lüscher’s formula [12]. This equation
gives scattering energies allowed in a periodic box as {k1, k2, ...}, where det[cot(δ(ki))1 +

M(ki)] = 0 (i = 1, 2, ...), when we know the scattering phase shift δl(k) beforehand. In lattice
QCD, however, we first know energies of scattering states from the correlation functions, then
we inversely use the Lüscher’s formula to specify corresponding δl(k). If the single-channel
approximation is valid and there is no significant partial wave mixing, the equation gives a one-
to-one correspondence between energies of lattice QCD (k) and scattering phase shifts at those
energies (δl(k)). For example, the Lüscher’s formula becomes

cot δ0(k) =
4π

k

1

L3

∑︂
p∈Γ

1

p2 − k2
, (3.106)

for the single-channel S-wave scattering in the center-of-mass frame. It is no longer a matrix
equation since we only consider a subspace of l = 0,m = 0.

The extension to the laboratory frame is achieved by the similar discussion outlined above [13].
We consider the general solution of the Helmholtz equation which satisfy a modified periodicity
called “d-periodicity”,

ϕ(x) = (−1)d·nϕ(x+ γ⃗nL), (3.107)

where d = PL/2π and γ⃗n = γn∥ + n⊥. The relative NBS wave function boosted back to the
center-of-mass frame satisfies this periodicity as well. From the relation between the coefficients
of relative NBS wave function and the general solution, we obtain the similar formula as (3.104),
and for the single-channel S-wave scattering it reduces to

cot δ0(k) =
4π

k

1

γL3

∑︂
p∈Pd

1

p2 − k2
, (3.108)
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where
Pd = {p|p =

2π

L
γ⃗−1(m+

1

2
d), m ∈ Z3}, (3.109)

with a short-hand notation γ⃗−1n = γ−1n∥ + n⊥.
In contrast to the HAL QCD method, this method needs explicit extraction of the energy

eigenstates. Therefore analyses of systems suffering from the so-called signal-to-noise ratio
problem are generally difficult. Furthermore, in cases of multi-channel scatterings or of the
existence of non-negligible partial wave mixings, the inverse problem becomes ill-defined since
we only have a single equation (3.104) for multiple unknown values. In order to avoid the ill-
defined setting, it is mandatory to introduce some parametrizations for the energy dependence
of the T-matrix with some ansatze to replace the inverse problem with the optimization problem.
The physical quantities are read off from the ansatz functions with optimized parameters. One
should be careful about the choice of the ansatze and should estimate the systematic uncertainty
coming from it.
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Chapter 4

Numerical challenge: All-to-all quark
propagator

As already discussed in Chap. 2, calculations of correlation function contain inversions of the
Dirac operator. In typical lattice QCD simulations, it is not a hard task since one only needs
so-called “point-to-all” quark propagators, which are parts of a whole inverse of D. On the
other hand, some systems which allow quark annihilation/creation processes require full infor-
mation of the inverse matrix, so-called the “all-to-all” propagator. The all-to-all propagator costs
higher than the point-to-all propagator by a factor of the lattice volume. Therefore, it is practi-
cally impossible to calculate it exactly. One of the main purposes of our study is to establish a
satisfactory scheme to treat the all-to-all propagator in the HAL QCD method.

In this chapter, we introduce basic concepts of the all-to-all propagators. We first discuss
how the all-to-all propagator appears in lattice QCD calculations by considering some examples
of calculations appearing in our study. Then, we introduce one of the fundamental techniques to
estimate the all-to-all propagator, the noisy estimator. This technique is very important since it
is the foundation of several improved methods. After that, we introduce the hybrid method[29],
which is an improved version of the noisy estimator. In the last part of this chapter, we discuss
three techniques to establish a more suitable strategy of all-to-all estimations in the HAL QCD
method, namely the one-end trick [32], sequential propagator technique [33], and the covariant
approximation averaging (CAA) [34]. A detailed discussion on how to combine those building
blocks will be presented in the following chapter.

4.1 Appearance of all-to-all propagator

First let us consider a simple example, namely a calculation of the pion two-point function. The
pion two-point function is defined as

C(t) =
∑︂
t0

∑︂
x,y

⟨π+(x, t+ t0)π
−(y, t0)⟩, (4.1)
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where pion operators are given as π+ = d̄γ5u and π− = ūγ5d. This correlation function is
estimated by the Wick contraction and the Monte Carlo simulation as

C(t) ≈ 1

N

∑︂
i

∑︂
t0

∑︂
x,y

tr
[︁
γ5D

−1[Ui](x, t+ t0|y, t0)γ5D−1[Ui](y, t0|x, t+ t0)
]︁
, (4.2)

where N is the number of Monte Carlo samples and the trace is taken in the color and spinor
spaces. We also show the Ui dependence of the quark propagators explicitly. As seen in Eq.(4.2),
coordinates x,y, t0 are summed over, and t is arbitrary to extract the pion mass from the time
dependence of C(t). Therefore, we need whole information of the quark propagator, namely
D−1[Ui](x, t|y, t0) for arbitrary x, t, y, and t0 (and abbreviated indices of color and spinor) to
estimate this correlation function. We call this “all-to-all propagator” since it naively represents
a propagation of a quark from arbitrary points to another arbitrary points.

Fortunately, in some cases correlation functions have symmetries such as a translational
invariance, we can avoid a full calculation of the all-to-all propagator 1 . In the case of the
pion 2pt function above, we do not necessarily need for the summation of (y, t0) thanks to the
translational invariance, and the correlation function reduces to

C(t) ≈ 1

N

∑︂
i

∑︂
x

tr
[︁
γ5D

−1[Ui](x, t+ t0|x0, t0)γ5D
−1[Ui](x0, t0|x, t+ t0)

]︁
, (4.3)

with some fixed coordinates (x0, t0). Quark propagators with fixed column indices are called
“point-to-all” propagators and obtained by solving the following linear equation:

Da,α|b,β(x|y)ψb,β(y) = ηa,α(x), (4.4)

here we show all indices explicitly for convenience. A source vector ηa,α(n) is chosen to specify
the fixed column indices of point-to-all propagators as

ηa,α(x) = δaa0δαα0δxx0 , (4.5)

where zero-subscripted indices are fixed. Obviously, the solution behaves as

ψb,β(y) = D−1
b,β|c,γ(y|z)ηc,γ(z) = D−1

b,β|a0,α0
(y|x0). (4.6)

Since the trace of the color and spinor indices is required, we repeatedly solve the linear equation
with 3× 4 different combination of indices of a0, α0. Furthermore, the “all-to-point” propagator
D−1[Ui](x0, t0|x, t+ t0) can be immediately obtained from the point-to-all propagator by using

1Strictly speaking, such invariance is valid up to statistical errors of Monte Carlo simulations. Therefore the
summation of (y, t0) in Eq. (4.2) is still a meaningful operation to reduce the statistical fluctuation by assuming
the invariance, as long as the numerical cost of this summation is feasible. Statistical improvement based on
the invariance of the observable is sometimes useful, and the covariant approximation averaging is one of those
improvement techniques.
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the γ5-Hermiticity of the Dirac operator. Therefore, inversions of 12 times are enough in our
example.

Furthermore, in some cases, we can also avoid the all-to-all propagator by choosing source
operators which do not induce any all-to-all estimations. In above example of the pion two-point
function, we can choose another source operator (called “wall source”) as

π−(t0) =
∑︂
z1,z2

ū(z1, t0)γ5d(z2, t0). (4.7)

In this operator, each quarks are projected to zero-momentum. As a result, it can overlap the
ground state as well as the zero-momentum pion operator in Eq.(4.2). We note that this operator
needs the gauge fixing since it is not gauge invariant. The correlation function with this source
operator is then given as

C(t) ≈ 1

N

∑︂
i

∑︂
x,z1,z2

tr
[︁
γ5D

−1[Ui](x, t+ t0|z1, t0)γ5D−1[Ui](z2, t0|x, t+ t0)
]︁
, (4.8)

and the propagators can be obtained by solving the linear equations (4.4) with source vectors

ηa,α(x) = δaa0δαα0δtt0 . (4.9)

As the case of the point-to-all propagator, it is enough to solve it with 3×4 different combination
of indices of (a0, α0). The wall source can be basically applied to systems consists of zero-
momentum quarks (and hadrons).

In summary, many lattice QCD simulations can be performed without all-to-all propagators
thanks to the symmetry or the choice of operators. However, there are some cases where esti-
mations of the all-to-all propagators are unavoidable. A typical example is I = 1 ππ P-wave
system, which is the main target in our study. To understand the situation, let us consider a part
of the I = 1 ππ correlation function, namely the box diagram contribution given as

(−)
∑︂

x,y1,y2

e−ip·y1eip·y2 tr
[︁
D−1(x+ r, t|x, t)γ5D−1(x, t|y2, t0)

× γ5D
−1(y2, t0|y1, t0)γ5D

−1(y1, t0|x+ r, t)γ5
]︁
.

(4.10)

(Details of this diagram will be discussed later.) In this calculation, pion operators in the source
part are projected onto p = (0, 0,±2π/L) to construct the source operator in T−

1 representation
of the cubic group, whose leading partial wave is l = 1 (P-wave). Furthermore, to extract the
spatial dependence of the NBS wave function, the sink coordinates r is taken arbitrarily, with
a summation of the center-of-mass coordinates x. Although we can ignore the sum of x by
considering the translational invariance of the center-of-mass coordinates, all-to-all propagators
are still remaining and there is no room to improve. Naively, the all-to-all propagator can be
obtained by solving the linear equation (4.4) Nvol times more than the case of the point-to-all
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propagator, but it is practically impossible. To understand its difficulty, let us estimate how
long the all-to-all calculation takes using an actual calculation time. In our study using gauge
configurations on the 323 × 64 lattice with the pion mass mπ ≈ 0.41 GeV, it takes about two
seconds to solve the single linear equation (4.4) using a supercomputer. To obtain the all-to-all
propagator exactly in this case, it takes 2 sec. × 3× 4× 323 × 64 = 50331648 sec. ≈ 583 days.
Moreover, we need to calculate the all-to-all propagators over O(100) Monte Carlo samples
repeatedly to estimate the correlation function. As a result, it takes over hundred years to finish
the calculation even if we use supercomputers. Therefore some approximation techniques are
mandatory to investigate systems requiring the all-to-all propagator.

4.2 Estimation of all-to-all propagator

In this section, we introduce one of the important ideas to estimate all-to-all propagator, called
the noisy estimator. We then discuss the dilution technique to reduce the statistical fluctuation
attributed to the noisy estimator. The hybrid method, which is the improved version of the noisy
estimator, is also explained.

4.2.1 Noisy estimator

Noisy estimator enables us to calculate an inverse matrix within a low computational cost in
return for additional contamination. Let us consider a “noise vector” η, which satisfies the
following conditions,

⟨⟨ηm ⊗ η†n⟩⟩ = δmn, (4.11)

|ηn|2 = 1, (4.12)

where ⊗ represents a tensor product, n is an index of a vector space we considered (For the Dirac
operator in lattice QCD it corresponds to the color, spinor and spacetime indices, (a, α, x)), and a
double bracket represents a expectation value on a probability distribution from which the noise
vector is sampled. For example, a Z4 noise vector, whose components are randomly chosen from
{±1,±i}, satisfies those conditions. This condition indicates that an average over Nr samples
of noise vectors, η[r](r = 0, ..., Nr − 1), is an unbiased estimator of a unit matrix as

1 ≈ 1

Nr

Nr−1∑︂
r=0

η[r] ⊗ η†[r]. (4.13)
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Using solutions of linear equations Mψ[r] = η[r], therefore, we can approximate the inverse
matrix M−1 as

M−1 =M−1 · 1 ≈M−1

(︄
1

Nr

Nr−1∑︂
r=0

η[r] ⊗ η†[r]

)︄
≈ 1

Nr

Nr−1∑︂
r=0

ψ[r] ⊗ η†[r]. (4.14)

Since we estimate the unit matrix with finite Nr samples, additional noise contamination is
introduced here. This method is noisy because it relies on delicate cancellations in the O(1)

fluctuations over many samples. One naive way to reduce the noise contamination is to increase
Nr, but we cannot take Nr so much since it is directly related to the number of inversions. There
is, however, a clever way utilizing the property of the noise vector (4.12), called “dilution”[29].
The property (4.12) guarantees the diagonal part of the estimated unit matrix to be equal to 1,
therefore the noise contamination only appears in the off-diagonal part of the estimated unit
matrix. In such a situation, it is expected that replacing a part of off-diagonal elements to zero
improves the signal since they must disappear statistically at Nr → ∞. The dilution gives a
systematic way to achieve such zero replacements. First of all, we “dilute” the noise vector η[r]
in some set of elements (i) such that

η[r] =

Ndil−1∑︂
i=0

η
(i)
[r] . (4.15)

Then, by using η(i)[r] (we call them “diluted vectors”) we estimate the inverse matrix as

M−1 ≈ 1

Nr

Nr−1∑︂
r=0

Ndil−1∑︂
i=0

ψ
(i)
[r] ⊗ η

(i)†
[r] , (4.16)

where ψ(i)
[r] = M−1η

(i)
[r] . To see what happens in Eq.(4.16), let us rewrite the original estimation

(Eq.(4.14)) in terms of the diluted vectors:

M−1

(︄
1

Nr

Nr−1∑︂
r=0

η[r] ⊗ η†[r]

)︄
=

1

Nr

Nr−1∑︂
r=0

M−1

[︄
Ndil−1∑︂
i=0

η
(i)
[r] ⊗ η

(i)†
[r] +

∑︂
i ̸=j

η
(i)
[r] ⊗ η

(j)†
[r]

]︄
. (4.17)

The second term of Eq.(4.17) only contains a contributions to the off-diagonal part, and the dilu-
tion explicitly replaces it to zero. Figure 4.1 shows 50×50 unit matrices estimated by 10 sample
average as 1

10

∑︁9
i=0 η[i] ⊗ η†[i] (left) and 10 diluted vectors generated by a single noise sample as∑︁9

i=0 η
(i)
[0] ⊗ η

(i)†
[0] (right). Horizontal and vertical axis correspond to the row and column of the

estimated matrix, respectively, and the color of each element represents an absolute value of it.
In the estimation of the dilution technique, we find that most of the off-diagonal part are exactly
zero (= white), while the estimation by the noise average contains non-zero contamination in all
off-diagonal elements. Instead, the dilution allows O(1) contamination near the diagonal part.
Such remaining contamination comes from a remnant off-diagonal contributions in the first term
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of Eq.(4.17), which can be reduced by finer dilutions (= increasing of Ndil) and statistical im-
provements (= increasing ofNr). The limit of the full dilution, where we have one diluted vector
for each component of noise vector, results in the exact all-to-all propagator in a finite number
of steps, because of the property (4.12). Since the exact all-to-all propagator is only reproduced
at Nr → ∞ statistically, the dilution procedure is expected to be better than the increasing of Nr

to achieve statistical improvement. Authors of Ref.[29] actually confirm that the expectation is
true even with simple dilutions in their study.

In lattice QCD, there are typical schemes to split the noise vector into the diluted vectors
along the color, spinor, and spacetime indices. The dilutions we employ in our study are sum-
marized in Appendix C.

FIGURE 4.1: Comparison between the naive stochastic estimation of unit matrix and its modification
with the dilution. (Left) Estimation by 10 independent sample average. (Right) Estimation by 10 diluted
vectors generated by a single noise sample. Axis correspond to the row and column of the matrix and
colors of elements represent their absolute values.

4.2.2 Hybrid method

The hybrid method combines a low-mode spectral decomposition and the noisy estimator. The
low-mode part of the propagator contributes a lot to low-energy physical observables and the hy-
brid method can improve the signal in lattice QCD simulations. We explain its basic formulation
in this section.

First, let us consider the spectral decomposition of an hermitian matrix M . Since eigenvec-
tors of the hermitian matrix are orthogonal and form a complete set, we can decompose M by
the eigenvectors v(i) and eigenvalues λi as

M =
Nmax−1∑︂

i=0

λiv
(i) ⊗ v(i)†, (4.18)
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where Nmax is a rank of M . The inverse matrix is also given as

M−1 =
Nmax−1∑︂

i=0

1

λi
v(i) ⊗ v(i)†. (4.19)

In lattice QCD, M = γ5D = H with the Dirac operator which satisfy the γ5-Hermiticity.
However, it is impossible to calculate all eigenstates in practice. We therefore only consider a
low-mode part of the matrix as

H−1
low =

Neig−1∑︂
i=0

1

λi
v(i) ⊗ v(i)†, (4.20)

whereNeig is the number of the low-modes. The missing high-mode part is covered by the noisy
estimator as

H−1
high =

1

Nr

Nr−1∑︂
r=0

Ndil−1∑︂
j=0

ψ
(j)
[r] ⊗ η

†(j)
[r] , (4.21)

where the solutions ψ(j)
[r] are given as

ψ
(j)
[r] = H−1P1η

(j)
[r] , (4.22)

with a projection operator onto the high-mode subspace P1 = 1−
∑︁Neig−1

j=0 v(j) ⊗ v†(j).
In summary, the whole propagator is estimated as

D−1 = H−1γ5 =
(︁
H−1

low +H−1
high

)︁
γ5 ≡

1

Nr

Nr−1∑︂
r=0

Nhl−1∑︂
i=0

u
(i)
[r] ⊗ w

†(i)
[r] γ5, (4.23)

where “hybrid lists” u(i)[r] , w
(i)
[r] are defined as

w
(i)
[r] = {v

(0)

λ0
, ...,

v(Neig−1)

λNeig−1

, η
(0)
[r] , ..., η

(Ndil−1)
[r] } (4.24)

u
(i)
[r] = {v(0), ..., v(Neig−1), ψ

(0)
[r] , ..., ψ

(Ndil−1)
[r] } (4.25)

Nhl = Neig +Ndil. (4.26)

4.3 Techniques to reduce usage of noisy estimators

As will be discussed in the next chapter, it is revealed that the hybrid method costs a lot of
computational resources and it is not suitable to perform large-scale simulations. The most time-
consuming part is the suppression of the noise contamination coming from the noisy estimators.
One possibility to improve the situation is to reduce insertions of the noisy estimators as many
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as possible. In this section, we introduce effective techniques to achieve less usage of the noisy
estimator. How to combine those techniques will be explained in Chap.6.

4.3.1 One-end trick

The one-end trick[32] enables us to estimate a combination of two all-to-all propagators with a
space summation by using a single noisy estimator.

Let us consider a combination of quark propagators given by∑︂
y

eip·yD−1(x1, t1|y, t0)ΓD−1(y, t0|x2, t2), (4.27)

where D−1
f is a quark propagator, Γ is some product of gamma matrices, and xi = (xi, ti) are

arbitrary. Such a structure typically appears at the source side of correlation functions including
meson operators, e.g., the pion 2pt function with the zero-momentum projected source as dis-
cussed before. Naively, it needs two stochastic estimations for each, since each of them contains
two all-to-all propagators. The one-end trick, however, utilize the γ5-Hermiticity of the Dirac
operator to estimate that structure with a single noise insertion as follows.∑︂

y

eip·yD−1(x1|y, t0)ΓD−1(y, t0|x2)

=
∑︂
y,z

eip·yD−1(x1|y, t0)δy,zΓD−1(z, t0|x2)

≈
∑︂
y,z

eip·yD−1(x1|y, t0)

(︄
1

Nr

Nr−1∑︂
r=0

η[r](y)η
†
[r](z)

)︄
ΓD−1(z, t0|x2)

=
1

Nr

Nr−1∑︂
r=0

(︄∑︂
y

D−1(x1|y, t0)η[r](y)eip·y
)︄(︄∑︂

z

γ5D
−1(x2|z, t0)γ5Γ†η[r](z)

)︄†

,

(4.28)

where we insert the stochastic estimator δy,z ≈ 1
Nr

∑︁Nr−1
r=0 η[r](z)η

†
[r](y) in the second line and

use the γ5-Hermiticity in the last line. We define ”one-end vectors“ as

ξp,t0[r](x) ≡
∑︂
y

D−1(x|y, t0)η[r](y)eip·y (4.29)

χΓ,t0[r](x) ≡
∑︂
y

D−1(x|y, t0)γ5Γ†η[r](y), (4.30)

then the final expression becomes

∑︂
y

D−1(x1, t1|y, t0)ΓD−1(y, t0|x2, t2) ≈
1

Nr

Nr−1∑︂
r=0

ξp,t0[r](x1, t1)⊗ χ†
Γ,t0[r]

(x2, t2)γ5. (4.31)
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The one-end vectors ξ and χ are obtained by solving the linear equation Dξ = ηeip·y and
Dχ = γ5Γ

†η, respectively. The dilution technique for noise reduction can be combined as well.

4.3.2 Sequential propagator technique

Let us consider a chain of two quark propagators as∑︂
y

D−1(x, t|y, t′)ΓD−1(y, t′|x0, t0), (4.32)

where x0, t0 are fixed and x, t, t′ are arbitrary and Γ is some product of gamma matrices. The
sequential propagator technique [33] is a way to calculate such a chain of quark propagators
without any noisy estimator in a case where we have one of the quark propagators in some way.
Here we assume that we have already solved the linear equations and obtained the point-to-all
propagators as

ψ(x, t) = D−1(x, t|x0, t0). (4.33)

By putting those solutions as source vectors of another linear equation,

D(x, t; z)ϕ(z) = Γψ(x, t)δt,t′ , (4.34)

we can obtain the chain of two propagators as a solution of the equation,

ϕ(x, t) =
∑︂
y

D−1(x, t|y, t′)Γψ(y, t′) (4.35)

=
∑︂
y

D−1(x, t|y, t′)ΓD−1(y, t′|x0, t0). (4.36)

As seen, although D−1(x, t|y, t′) is all-to-all, we can calculate it without any noisy estimator by
considering the combination of two propagators. This method has also a good compatibility with
meson operators as the one-end trick. Of course, we sometimes need to take x0, t0 arbitrarily,
requiring an another all-to-all propagator. In such a case, we can employ the one-end trick or
can combine the sequential propagator and other all-to-all technique like the hybrid method.

4.3.3 Covariant approximation averaging (CAA)

The covariant approximation averaging[34] is a way to reduce statistical error using covariant
symmetry of the target correlation function with minimal increase of its computational cost.

Let us consider an expectation value of an operator O[U ](x, y), which has a symmetry prop-
erty under a transformation g ∈ G as

⟨Og[U ](x, y)⟩ = ⟨O[U g](x, y)⟩, (4.37)
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where U g(x) = U(xg) and Og[U ](x, y) = O[U ](xg, yg). If the operator is covariant under the
transformation, for each Monte Carlo samples it satisfies

Og[U ](x, y) = O[U g](x, y), (4.38)

then there is a trivial identity,∑︂
g∈G

Og[U ](x, y) =
∑︂
g∈G

O[U g](x, y), (4.39)

for a set of transformations g with the number of elements NG. Using this property, we can
define an averaged operator OG[U ] as

OG[U ] =
1

NG

∑︂
g∈G

Og[U ] =
1

NG

∑︂
g∈G

O[U g], (4.40)

whose expectation value is identical to the original one, since any transformed configurations
U g are regarded as different Monte Carlo samples with the same probability as U with an action
invariant under g. The statistical error of OG decreases by a factor of 1/

√
NG, although its

computational cost naively increases by a factor of NG. Such an improvement itself is very
powerful and has been widely applied in many lattice QCD simulations. On the other hand,
in cases where calculations of O[U ] is numerically expensive, the factor NG increase of its
numerical cost is not acceptable. The covariant approximation averaging solves this problem by
introducing approximation for O.

In order to reduce numerical costs of transformed operators, authors introduce an approxi-
mation for O, which is called O(appx). Using O(appx) and the original O, an improved estimator
for O is defined by

O(imp) = O −O(appx) +
1

NG

∑︂
g

O(appx)g. (4.41)

Since the second and third terms cancel with each other after taking an expectation value and
using the covariance of O(appx), the improved estimator is unbiased,

⟨O(imp)⟩ = ⟨O⟩. (4.42)

On the other hand, the standard deviation of the improved estimator behaves as

σ(imp) ≈ σ

[︃
2∆r +

1

NG

− 2∆r

NG

+Rcorr

]︃1/2
, (4.43)

Rcorr =
1

N2
G

∑︂
g ̸=g′

rcorrgg′ , (4.44)
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where

rg =
⟨∆O∆O(appx)g⟩

σσ
(appx)
g

, (4.45)

rcorrgg′ =
⟨∆O(appx)g∆O(appx)g′⟩

σ
(appx)
g σ

′(appx)
g

, (4.46)

∆r = 1− rg=I , (4.47)

with σX =
√︁
⟨(∆OX)2⟩ and ∆OX = OX − ⟨OX⟩. The error reduction by a factor of 1/

√
NG

can be achieved if ∆r ≪ 1 and Rcorr ≪ 1 are satisfied. Authors summarize the conditions
on O(appx) and the choice of the transformation g ∈ G to achieve an appropriate statistical
improvement as follows 2 :

1. O(appx) is covariant under G.

2. O(appx) is strongly correlated with original O, i.e. ∆r ≪ 1.

3. The computational cost of O(appx) is much smaller than O.

4. The transformation g ∈ G is chosen to give small positive correlation among {O(appx)g},
i.e. Rcorr ≪ 1/NG.

There are two typical choices of O(appx), namely the low-mode averaging (LMA) and the all-
mode averaging (AMA).

• Low-mode averaging (LMA): O(appx) is estimated by the low-mode quark propagator as

O(LMA) = O[D−1
(low)], D−1

(low) =

Neig−1∑︂
i=0

1

λi
v(i) ⊗ v(i)†γ5, (4.48)

where λi, v(i) are low-modes of H = γ5D. This approximation is good for low-mode
dominant observables since it discard the high-mode part.

• All-mode averaging (AMA): In the AMA, O(appx) is estimated as

O(AMA) = O[D−1
(all)], (4.49)

D−1
(all)η =

Neig−1∑︂
i=0

1

λi
v(i) ⊗ v(i)†γ5η +H−1P1γ5η, (4.50)

where η is a source vector of linear equation and P1 is the projection operator into the
high-mode subspace, as already introduced in the hybrid method. The form of D−1

(all) is
similar to the hybrid method, but in the AMA the noisy estimator is not introduced in the

2The first condition is not necessary if we introduce randomness in the choice of the transformation, g ∈ G.
Moreover, the final condition can be neglected if the cost of constructing O(appx) is negligible.
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high-mode part in general. Instead, the spatial position of the source vector is transformed
by the symmetry transformation g ∈ G and averaged.



50

Chapter 5

Application of the hybrid method to the
HAL QCD method

At the beginning of my research, there are a few studies on the application of the all-to-all prop-
agator to the HAL QCD method [26, 27]. In those studies, authors apply the LapH method [28],
one of the famous techniques to treat all-to-all propagators in lattice QCD. The LapH method is
based on the low-mode truncation using eigenstates of a gauge covariant Laplacian, and there-
fore all quark fields are automatically smeared. Since the HAL QCD method is sensitive to the
locality of sink operators via a spatial dependence of the NBS wave function (which is one of the
scheme dependence, as already discussed), authors investigate how the automatically smeared
sink operator affects the behavior of the HAL QCD potential. As a result, authors report that
the quark smearing due to the LapH method has a broad spatial extent and it enlarges the non-
locality of the HAL QCD potential. The higher-order determination of the derivative expansion
is mandatory to reproduce correct physical observables, but it is numerically expensive. Further-
more, to reduce the non-locality attributed to the LapH method, one needs a lot of eigenstates,
which are also too expensive to calculate.

Under these circumstances, we employ another all-to-all technique, the hybrid method[29].
The hybrid method is free from the non-locality problem since it does not discard any high-
mode information, and therefore it can be more suitable to the HAL QCD method than the LapH
method. On the other hand, it additionally introduces the noisy estimators and corresponding
errors, then we study how such noise contamination affects the HAL QCD potentials and how
to reduce it. In this chapter, we introduce a series of our research on the hybrid method[30, 31].

5.1 I = 2 ππ potential in the HAL QCD method with all-to-all
propagators

In this section, we show the first study, the elastic I = 2 ππ S-wave interaction [30]. The main
purpose of this study is to understand how the HAL QCD potential is affected by the introduction
of the hybrid method. We study several combinations of tunable parameters in the hybrid method
and obtain useful insights for the appropriate choice of the parameters. Moreover, we compare
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our result with one obtained from the wall source to clarify the effect of the hybrid method. The
hybrid method enables us to take the smeared source with zero-momentum projection. As a
result, it reproduces the consistent phase shift at an earlier timeslice than the conventional wall
source, while the statistical error becomes larger.

5.1.1 Calculation of correlation functions

First, let us introduce details of estimation of correlation functions using the hybrid method. We
define pion correlation functions as

C(t) =
∑︂
x,y,t0

⟨π+(x, t+ t0)π
−(y, t0)⟩, (5.1)

F I=2
ππ,P=0(r, t) =

∑︂
x,t0

⟨π+(x+ r, t+ t0)π
+(x, t+ t0)J

I=2,A+
1

ππ (t0)⟩, (5.2)

where the source operator is defined as

J I=2,A+
1

ππ (t0) =
∑︂
y1,y2

π−
local/smear(y1, t0)π

−
local/smear(y2, t0), (5.3)

and pion operators are defined as

π+(x, t) = d̄(x, t)γ5u(x, t), (5.4)

π−(x, t) = ū(x, t)γ5d(x, t). (5.5)

πlocal/smear at the source part represents a pion operator constructed by local or smeared quark
fields. We note that in this study we only consider the center-of-mass frame. We compare our
result to the conventional wall source calculation, whose definition is given as

J I=2,A+
1

ππ (t0) = π−
wall(t0)π

−
wall(t0), (5.6)

with
π−
wall =

∑︂
x,y

ū(x, t)γ5d(y, t). (5.7)

As discussed before, the wall source is free from the estimations of the all-to-all propagator.
The correlation function Eq.(5.2) can be written as the summation of the separated diagram

and the connected diagram, as shown in Fig.5.1. Details of the Wick contraction are explained
in AppendixD. In the following we discuss how those diagrams can be estimated by using the
hybrid method.
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connected diagram

FIGURE 5.1: Representative diagrams appearing in the I = 2 ππ correlation function. Gray arrows
represent quark propagations and paired qq combinations correspond to each pion operators. In this
cartoons, we show the source operators on the right hand side.

Estimation of separated diagram using the hybrid method

The contribution from the separated diagram is given as

(+)
∑︂

y1,y2,x,t0

tr
[︁
D−1(x+ r, t+ t0|y1, t0)γ5D

−1(y1, t0|x+ r, t+ t0)γ5
]︁

× tr
[︁
D−1(x, t+ t0|y2, t0)γ5D

−1(y2, t0|x, t+ t0)γ5
]︁
.

(5.8)

The quark propagator can be estimated by the hybrid method as

D−1 = H−1γ5 ≈
Nhl−1∑︂
i=0

u(i) ⊗ w†(i)γ5, (5.9)

w
(i)
[r] = {v

(0)

λ0
, ...,

v(Neig−1)

λNeig−1

, η
(0)
[r] , ..., η

(Ndil−1)
[r] } (5.10)

u
(i)
[r] = {v(0), ..., v(Neig−1), ψ

(0)
[r] , ..., ψ

(Ndil−1)
[r] } (5.11)

Nhl = Neig +Ndil. (5.12)

Then, by inserting this representation for all quark propagators in Eq. (5.8), we obtain

(+)
∑︂

y1,y2,x,t0

∑︂
i,j,k,l

O
(i,j)
[r,s] (r+ x, t+ t0)O

(j,i)
[s,r](y1, t0)O

(k,l)
[p,q] (x, t+ t0)O

(l,k)
[q,p] (y2, t0), (5.13)

where we define “hybrid operator” O(i,j) as

O
(i,j)
[r,s] (x, t) =

∑︂
b,β

w
†(i)
[r] bβ(x, t)u

(j)
[s] bβ(x, t). (5.14)

(i, j, k, l) are indices of the hybrid list and (r, s, p, q) are identifiers of independent noise vec-
tors. Since the summation of (i, j) is closed within two hybrid operators O(i,j)

[r,s] (r+ x, t +

t0)O
(j,i)
[s,r](y1, t0) (and same for (k, l)), computational cost scales as O(N2

hl) in this diagram. The
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hybrid operator is dense matrix with indices (i, j) on each lattice sites. Our numerical simulation
is parallelized by dividing the spacetime sites on different MPI processes, then the further par-
allelization on the contraction of the hybrid indices is difficult. Typically Nhl takes O(102) and
the contraction is the most time-consuming part of our simulation. To accelerate the contraction,
we employ the BLAS routines for matrix operations.

To perform the noise average, one needs to estimate the diagrams by other sets of noise
vectors (identified as, e.g., r′, s′, p′, q′) and average them. However, it requires more inversions,
which are the second time-consuming part of the simulation. Alternatively, one can reduce noise
contamination without additional costs for inversions by averaging permutated noise vectors
((r, s, p, q) → (P (r), P (s), P (p), P (q)) with some permutation operation P ).

Estimation of connected diagram using the hybrid method

The connected diagram is given as

(−)
∑︂

y1,y2,x,t0

tr
[︁
D−1(x+ r, t+ t0;y1, t0)γ5D

−1(y1, t0;x, t+ t0)

× γ5D
−1(x, t+ t0;y2, t0)γ5D

−1(y2, t0;x+ r, t+ t0)γ5
]︁
.

(5.15)

As the case of the separated diagram, we can rewrite it in terms of the hybrid operator as

(−)
∑︂

y1,y2,x,t0

∑︂
i,j,k,l

O
(i,j)
[r,s] (r+ x, t+ t0)O

(j,k)
[s,p] (y1, t0)O

(k,l)
[p,q] (x, t+ t0)O

(l,i)
[q,r](y2, t0). (5.16)

At a glance it looks similar to the separated diagram, but the combination of the hybrid indices
i, j, k, l (together with r, s, p, q) is different. In this case the summation is not closed in a part
of the diagram, therefore its computation scales worse than the separated diagram. Naively its
scaling is expected as O(N4

hl), but we can reduce it to O(N3
hl) by dividing the calculation into

two steps: the first step is a construction of the matrix M (i,k) =
∑︁

j O
(i,j)O(j,k), which scales

O(N3
hl); the second is calculation of trace of a matrix product like

∑︁
i,kM

(i,k)M ′(k,i), whose
scaling is O(N2

hl).

Potential calculation

Once we obtain the correlation functions, we can calculate the interaction potential as discussed
in Chap.3. The time-dependent HAL QCD method reads[61][︃

∇2

mπ

− ∂

∂t
+

1

4mπ

∂2

∂t2

]︃
R(r, t) =

∫︂
d3r′U(r, r′)R(r′, t), (5.17)
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as long as t is large enough to suppress inelastic contributions in R(r, t) ≡ F I=2
ππ (r, t)/C(t)2.

The effective LO potential, we study in detail here, is given by

V LO(r) =

[︂
∇2

mπ
− ∂

∂t
+ 1

4mπ

∂2

∂t2

]︂
R(r, t)

R(r, t)
. (5.18)

5.1.2 Numerical setup

We employ the 2+1 flavor full QCD configuration generated by the CP-PACS+JLQCD Collab-
oration[63, 64] on a 163×32 lattice, with the Wilson-Clover fermion action[54] and the Iwasaki
gauge action[55]. The parameters of lattice actions are summarized in Table5.1. The simulations
are performed with a periodic boundary condition for all spacetime directions.

TABLE 5.1: Parameters of the gauge configuration

β κud κs cSW a [fm] mπ[MeV] mρ[MeV]
1.83 0.1376 0.1371 1.7610 0.1214 870 1229

As regards the hybrid method, we use a single noise vector for each propagator, and the
noise vectors are generated by Z4 random noises. We employ full color and spinor dilution for
all cases, and take some different combinations of time and space dilutions. We also take some
different values of Neig to see dependence on it. The parameter setups used in this study is
summarized in Table5.2, and details of dilutions can be found in AppendixC. Statistical errors
are estimated by the jackknife method with bin-size 1 except for case 5a, where the bin-size is
6.

For the quark smearing, we employ the exponential smearing (Tsukuba-type) introduced in
Chap.2 with the Coulomb gauge fixing. Smearing parameters are chosen as A = 1, B = 0.47

to achieve an early plateau of the pion mass. As seen in Fig.5.2, the smeared source actually
suppresses the inelastic contamination in comparison to the local source result.
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FIGURE 5.2: Effective mass of pion with local (blue circles) and smeared (red triangles) source operators.
The horizontal lines gives the extracted pion mass, together with their statistical errors as light color bands.



5.1. I = 2 ππ potential in the HAL QCD method with all-to-all propagators 55

Our numerical calculation is based on the lattice QCD codeset Bridge++[65]. All numeri-
cal calculations are performed in Cray XC40 in YITP, with a flat MPI parallelization of 2048
processes.

TABLE 5.2: Setups for the hybrid method. Neig is the number of low eigenmodes for the all-to-all
propagator, and the number of the noise vector for high eigenmodes is 1 for all cases. Color and spinor
dilutions are always used.

time dilution space dilution Neig Source Nconf

case 1 full none 100 point 20
case 2 full s2 (even/odd) 100 point 20
case 3 16-interlace s2 (even/odd) 100 point 20
case 4 16-interlace s2 (even/odd) 100 smear 20
case 5 16-interlace s4 100 smear 20
case 5a 16-interlace s4 100 smear 60
case 6 16-interlace s2 (even/odd) 200 point 20
case 7 16-interlace s2 (even/odd) 484 smear 20

5.1.3 Results

Systematic study on parameter dependence of HAL QCD potential

Firstly, let us briefly discuss how the HAL QCD potential depends on the parameters of the hy-
brid method. Figure5.3 (Left) shows the effective LO potential obtained in case 1 at t = 6. The
I = 2 ππ interaction is entirely repulsive. We observe that the data points have large statistical
errors, which come from the additional noise contamination of the hybrid method. Furthermore,
the large contamination mainly comes from the Laplacian term of Eq.(5.18) as seen in Fig.5.3
(Left). It suggests that for the HAL QCD method noise reduction along the spatial direction
is almost mandatory, and it is intuitively understandable since the potential is extracted from
the spatial dependence of the correlation function. Next, we investigate how the space dilution
improves the potential. In Fig.5.3 (Right), we show two potentials with different parameter
choices, namely case 1 and 2. The fluctuation of the potential data drastically decreases as ex-
pected if we employ space dilution. Furthermore, we find that the J-interlace time dilution can
compensate the increase of Nhl without any additional contamination as long as we consider a
small timeslice region of t < J/2.

The noise reduction can also be achieved by increasing Neig since it reduces the relative
segment of the propagator estimated by the noisy estimator. Figure5.4(Left) shows the Neig de-
pendence of the potential by comparing case 3 and case 6, and we can see that the statistical
fluctuation indeed decreases. We also compare the effects of space dilution and increasing Neig

with the same computational cost (= sameNhl) in Fig.5.4(Right). In this comparison, we observe
that the increasing Neig is slightly advantageous. Note that the improvement by increasing Neig
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FIGURE 5.3: (Left) The potential from the hybrid method with parameters of case 1 at t = 6 (blue
circles). We also show its breakdown to three contributions, the Laplacian (red triangles), the first time
derivative (green squares), and the second time derivative (yellow diamonds). (Right) Dependence of the
potential on space dilutions at t = 6.

strongly depends on the lattice simulation setup, therefore we can generally say that it is prefer-
able to optimize Neig as many as the cost for the eigenmode calculation remains subdominant.
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FIGURE 5.4: (Left) Neig dependence of the potential between Neig = 100 (blue) and Neig = 200
(red). (Right) A comparison of the potential between case 5, (16-interlace, s4, smear) with Neig = 100
(blue), and case 7, (16-interlace, s2, smear) with Neig = 484 (red), in keeping the leading numerical cost
dominated by Nhl = Neig +Ndil = 868 remaining.

Finally, we investigate the effect of the quark smearing. We find that the smearing allows
the early time saturation as seen in Fig.5.5, but we must introduce a finer space dilution to keep
statistical error comparable, as shown in Fig.5.6.
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FIGURE 5.5: (Left) Dependence of the potential on t in case2 (full, s2, 100, point). (Right) The same
one in case5 (16-interlace, s4, 100, smear).
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FIGURE 5.6: (Left) A comparison of the potential between the smeared source (case4) (blue circles) and
the point source (case3) (red triangles) with 16-interlace time and s2 space dilution at t = 6. (Right)
A comparison between the smeared source with 16-interlace time and s4 space dilution (case5) (blue
circles) and the point source with 16-interlace time and s2 space dilution (case3)(red triangles) at t = 6.
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From those studies, we obtain a general guideline for the parameter choice of the hybrid
method. It is summarized as follows:

1. A finer spatial dilution should be used to reduce contamination to the HAL QCD potential.

2. A J-interlace time dilution can be used for the potential to be extracted at t < J/2, to
reduce computational cost.

3. It is better to increase Neig as many as possible within reasonable computational cost.

4. Quark smearing accumulates noise contamination, therefore additional spatial dilution is
mandatory.

Comparison to the conventional result

Using the best parameter choice, we compare our result to the conventional HAL QCD calcula-
tion. In Figure5.7(Left), we compare our potential and that obtained with the wall source. Those
potentials are almost consistent with each other, although our potential has larger statistical er-
rors. To calculate the scattering phase shift, we fit our potential using the 2-Gaussian shape,
V (r) = a0e

−r2/a21 + a2e
−r2/a23 . We also confirm that k cot δ(k) shown in Fig.5.7(Right) agrees

with the result of the Lüscher’s method [26], as well as the wall source result. The important
observation here is that we obtain correct physical observable at an earlier timeslice thanks to the
smeared source. It is an advantageous feature achieved by introducing the all-to-all propagator.
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FIGURE 5.7: (Left) A comparison of the I = 2 ππ potentials, one from the hybrid method (blue circles)
and the other from the wall quark source (red triangles). (Right) k cot δ0(k) as a function of k2. Blue
(red) bands correspond to the results from the HAL QCD method with the hybrid method (with the wall
quark source). Black bands in the right figure correspond to the results from Lüscher’s method [26].
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5.2 The HAL QCD potential in I = 1 ππ system with the rho
meson bound state

In this section, we discuss the second application of the hybrid method to the elastic I = 1

ππ P-wave interaction [31]. This study aims to verify that the combination of the HAL QCD
method and the hybrid method allows reasonable calculations of diagrams involving the quark
creation/annihilation. In this study, we employ the same gauge configuration as the I = 2

ππ study, where the ρ meson appears as a deeply bound state. Although this setup is quite
unphysical, it reduces the computational cost and we can still investigate our primal interest,
whether the hybrid method can appropriately treat the quark creation/annihilation diagrams.

5.2.1 Calculation of correlation functions

The correlation function of the elastic I = 1 ππ P-wave interaction is defined as

F (r, t) =
∑︂
x,t0

⟨(ππ)I=1,Iz=0(r, t+ t0)J
T−
1

ππ (t0)⟩. (5.19)

We employ the time-shifted sink operator

(ππ)I=1,Iz=0(r, t) =
1√
2

∑︂
x

{π+(r+ x, t+∆t)π−(x, t)−π−(r+ x, t+∆t)π+(x, t)}. (5.20)

As discussed later, the non-zero time shift ∆t ̸= 0 may reduce the noise contamination coming
from the quark creation/annihilation diagram. The source operator is chosen as the ρ-type,

J T−
1

ρ;I=1,Iz=0(t0) =
∑︂
x

ρ̄03(x, t), (5.21)

where ρ03 = ūγ3u − d̄γ3d. The correlation function eq. (5.19) is estimated by the triangle
diagrams shown in Fig.5.8. Let us discuss the estimation of the diagram next.
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FIGURE 5.8: Representative diagram contributing to the correlation function with ρ-type source operator.
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Estimation of triangle diagram using the hybrid method

The contribution of the triangle diagram is given as

(−)
∑︂
x,z,t0

tr
[︁
D−1(x+ r, t+t0+∆t;x, t+t0)γ5D

−1(x, t+t0; z, t0)γ3D
−1(z, t0;x+ r, t+t0+∆t)γ5

]︁
.

(5.22)
Inserting the propagators estimated by the hybrid method, we can rewrite it as

(−)
∑︂
i,j,k

∑︂
x,t0

O
(i,j)
[r,s] (x+ r, t+ t0 +∆t)O

(j,k)
3[s,p](t0)O

(k,i)
[p,r] (x, t+ t0), (5.23)

where

O
(i,j)
3[r,s](t) ≡

∑︂
x

w
†(i)
[r] (x, t)γ5γ3u

(j)
[s] (x, t), O

(i,j)
[r,s] (x, t) ≡ w

†(i)
[r] (x, t)u

(j)
[s] (x, t). (5.24)

Potential calculation

We study the effective LO potential,

V LO
∆t (r) =

[︃
∇2

mπ

− ∂

∂t
+

1

4mπ

∂2

∂t2

]︃
R(r, t,∆t)

R(r, t,∆t)
. (5.25)

In the P-wave interaction, however, the NBS wave function is not rotationally invariant due to the
angular dependence of spherical harmonics. In such a case, we can rewrite the above definition
to improve signals by the rotational invariance of the potential as [66]

V LO
∆t (r) =

∑︁
g∈Oh

R†(gr, t,∆t)

[︃
∇2

mπ

− ∂

∂t
+

1

4mπ

∂2

∂t2

]︃
R(gr, t,∆t)∑︁

g∈Oh
R†(gr, t,∆t)R(gr, t,∆t)

, (5.26)

where the g ∈ Oh is an element of the cubic rotation group Oh. We employ this improved
definition in this study instead of the original one.

5.2.2 Numerical setup

We employ the same gauge configuration as the I = 2 ππ interaction. The details are already
discussed in Sect.5.1. In this configuration, the ρ meson appears as the deeply bound state with
a relative energy mρ − 2mπ ≈ −510 [MeV].

The numerical setup are summarized in Table5.3 and 5.4. In case 1a and 1b, we average
over 4 × 3! = 24 different noise samples (3! = 6 samples for each set using the permutation
of r, s, p). The parameters of case 1a, 1b in Tab.5.4 is an improved choice after observing that
the calculation with the same parameters in the I = 2 ππ calculation (case 0 in Tab.5.4) is
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TABLE 5.3: Numerical setup for the calculations.

Source Scheme Nconf Stat. error
case 0 point equal-time (∆t = 0) 20 jackknife with bin–size 1
case 1a smear different-time (∆t = 1) 20 jackknife with bin–size 1
case 1b smear different-time (∆t = 1) 60 jackknife with bin–size 6

TABLE 5.4: Setups for the hybrid method in our calculation. Neig is the number of low eigenmodes for
the all-to-all propagator. Color and spinor dilutions are always used.

time dilution space dilution Neig

case 0 16-interlace s2 100
case 1a, 1b (src-to-sink) 16-interlace s4 100

case 1a, 1b (sink-to-sink) 4-interlace s8× s2 100

too noisy to obtain the reasonable potential, which will be briefly discussed later. As regards the
smearing, we continuously employ the exponential smearing (Tsukuba-type) to remove inelastic
contamination as early as possible. Values of the smearing parameters are the same as the I = 2

ππ study.
This calculation is performed on Cray XC40 in YITP and HOKUSAI Big-Waterfall in

RIKEN, with a flat MPI parallelization of 2048 processes.

5.2.3 Results

Breakdown of naive application of the hybrid method and improvement

We first consider the calculation with the same parameters as the case 3 in the I = 2 ππ calcula-
tion, since they give a precise potential at t < 8 (see Fig.5.4 (Left)). Figure 5.9 (Left) shows the
potential at t = 6. As seen, the resultant potential is extremely noisy and we cannot reproduce
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FIGURE 5.9: (Left) The potential at t = 6 in case 0 (the same setup as case 3 in Ref. [30]). (Right) The
potential at t = 6 in case 1a.
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any information from it. We suspect that this large fluctuation is caused by noise contamination
from the sink-to-sink propagator because of the absence of the equal-time quark propagation in
the I = 2 case.

To suppress such contamination, we additionally employ the following three noise reduc-
tions:

• Non-zero relative time (∆t ̸= 0) scheme for avoiding the equal-time propagation at the
sink operator.

• Finer spatial dilution in an estimation of the sink-to-sink propagator.

• Average over the increased number of noise vectors.

The potential after the additional noise reduction (case 1a) at t = 6 is shown in Fig.5.9 (Right).
Thanks to the noise reductions, the statistical fluctuation drastically reduces 1. The interaction
shows a strong attraction without a repulsive core, which suggests that the existence of the
bound state corresponding to the ρ meson. We also observe some non-smooth behavior in a
short-distance part of the potential. It probably comes from higher partial wave contaminations
(in this case l = 3), as already observed in previous HAL QCD studies.

Physical observables

To extract the physical observables, we fit the potential by using the 3-Gaussian shape as

V (r) = a0e
−r2/a21 + a2e

−r2/a23 + a4e
−r2/a25 . (5.27)

Since our potential happens to have a long tail structure, we consider the nearest-neighbor finite
volume effect of the periodic boundary condition in the fit,

V (r)PBC = V (r) +
∑︂

n∈{(0,0,±1),(0,±1,0),(±1,0,0)}

V (r+ Ln). (5.28)

The fit result is given as a red line in Fig.5.10 (Left). We then calculate the ground state energy
by using the Gaussian expansion method(GEM) [67] and obtain the binding energy as

Ebind = 668± 24stat

(︄
+69

−151

)︄
sys(time dep.)

MeV, (5.29)

where the first error is statistical, and the second error is the systematic one estimated by the
potential at different timeslices, t = 5, 6, 7. Since we expect that the ρ meson appears as a
deeply bound state around Ebind = |mρ − 2mπ| ≈ 515 MeV, the result is roughly consistent
within a large systematic error.

1In this study, we do not specify which noise reduction contributes the most since it needs many calculations
with other setups. Instead, we focus on increasing the statistics to extract information of the ρ meson.
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FIGURE 5.10: (Left) Fitting result at t = 6. Blue points are the original data, and red line shows
the fitting result. Green line is the fitting result curve with the centrifugal potential term with l = 1,
Vc(r) = 1

mπ

1·2
r2

. (Right) A difference between k3 cot δ1(k) and −k2
√
−k2 around the intersection for

each jackknife sample, together with k2 corresponding to the binding energy obtained by the Gaussian
expansion method (blue solid star). It can be seen that all samples satisfy the physical pole condition and
have a discontinuity, which typically appears for a deeply-bound system.

Finally, in order to verify the extracted negative energy state is a physical bound pole, we
study the behavior of the k3 cot δ1(k) in a negative energy region. The P-wave physical bound
state condition is given as

d

dk2

[︂
k3 cot δ1(k)− (−k2

√
−k2)

]︂⃓⃓⃓
k2=−κ2

b

< 0. (5.30)

Figure5.10(Right) shows the behavior of our k3 cot δ1(k) − (−k2
√
−k2) around the negative

energy pole. It indicates that our result indeed satisfies the physical pole condition.
In summary, we confirm that our potential can reproduce a physical pole corresponding to

the ρ meson if we sufficiently reduce the noise contamination coming from the estimation of the
equal-time quark propagation.

5.3 Exploration of better calculation scheme

The series of our study using the hybrid method reveals that the precise potentials can be ob-
tained if the noise contamination is sufficiently removed. On the other hand, we also find unfa-
vorable points for applications to large-scale simulations. The first bottleneck is that it consumes
a lot of memory space in numerical calculations. The hybrid lists w(i)(x), u(i)(x) typically have
Nhl ∼ O(102) elements together with the color, spinor and spacetime indices. Furthermore, the
hybrid operators O(i,j)(x) which are constructed in contraction procedures costs more, namely
N2

hl ∼ O(104) elements in addition to the spacetime index x. The larger lattice size we em-
ploy, the more memory space the operators consume. One possible remedy is to enlarge the
parallelization of the computation so as to compress the local volume of spacetime index x in
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each MPI process. However, it is sometimes difficult in practice due to the restriction of com-
putational resources. Too much parallelization may also lead to a worse performance due to the
busy communications between the MPI processes. The second concerning point is the existence
of dense matrix products on each lattice site. As discussed, the hybrid operator is a Nhl × Nhl

complex dense matrix. Since we divide the lattice volume by MPI parallelization, we need to
perform the products of the hybrid operator without any MPI parallelization. Furthermore, our
calculation scales O(N3

hl) in some diagrams, and it easily explodes by increasing Nhl. It may be
partly improved by introducing, for example, the BLAS routine or some thread parallelization,
but it is preferable to reduce such index contractions in the first place. In addition to the numeri-
cal issues above, the hybrid method itself is very noisy in the HAL QCD method. Therefore we
have to consume a lot of computational resources to reduce the noise contamination by repeat-
ing calculations with different combinations of noise vectors or taking finer dilutions within the
restriction of the memory usage and calculation time.

Motivated by those issues, we try to establish a better calculation scheme for large-scale
simulations by considering not only the hybrid method but also other numerical techniques in
lattice QCD. Required features of the new calculation scheme are:

1. Small memory usage

2. Few additional index contractions which cannot be parallelized

3. Less noise contamination

Those conditions are not independent of each other, and the smartest way to achieve them si-
multaneously is to reduce the number of insertion of the noisy estimator in some way. Indeed,
it leads to the fewer appearance of the noise indices (i, j, · · · ), and their contraction is expected
to scale as less than O(N3

hl). Intermediate calculations like dense matrix products in the hybrid
method also disappear, as well as we do not need to put huge intermediate data on memory space.
The noise contamination from the noisy estimator also decreases in the first place. Fortunately,
we find that the techniques we introduce in Chap.4 and their combinations can achieve the fewer
usage of the noisy estimator, inspired by the previous work on the Lüshcer’s method [68].

To understand the situation, let us consider the I = 2 ππ calculation for example. As
discussed before, the separated diagram and connected diagram contribute to the correlation
function and they are given as

(+)
∑︂

y1,y2,x,t0

tr
[︁
D−1(x+ r, t+ t0|y1, t0)γ5D

−1(y1, t0|x+ r, t+ t0)γ5
]︁

× tr
[︁
D−1(x, t+ t0|y2, t0)γ5D

−1(y2, t0|x, t+ t0)γ5
]︁
,

(5.31)
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and

(−)
∑︂

y1,y2,x,t0

tr
[︁
D−1(x+ r, t+ t0|y1, t0)γ5D

−1(y1, t0|x, t+ t0)

× γ5D
−1(x, t+ t0|y2, t0)γ5D

−1(y2, t0|x+ r, t+ t0)γ5
]︁
,

(5.32)

respectively. Within the framework of the hybrid method, we have to introduce 4 noisy estima-
tors to calculate each diagrams. As you notice, however, both of them have the source structures
to which we can apply the one-end trick like

· · ·
∑︂
y

D−1(x1, t1|y, t0)ΓD−1(y, t0|x2, t2) · · · . (5.33)

Applying the one-end trick for each pion operators in the source part, we can calculate traces of
the separated diagram as∑︂

y

tr
[︁
D−1(x, t|y, t0)γ5D−1(y, t0|x, t)γ5

]︁
(5.34)

≈
∑︂
i

∑︂
y,z

tr
[︁
D−1(x, t|y, t0)η(i)(y)⊗ η(i)†(z)γ5D

−1(z, t0;x, t)γ5
]︁

(5.35)

=
∑︂
i

∑︂
y,z

tr
[︂
D−1(x, t|y, t0)η(i)(y)⊗

(︁
D−1(x, t|z, t0)η(i)(z)

)︁†]︂
(5.36)

=
∑︂
i

ξ
(i)†
t0 (x, t) · ξ(i)t0 (x, t), (5.37)

where a dot symbol represents an inner product of the color and spinor indices and we do not
consider noise average here. At the end of the day, the separated diagram can be calculated as

(+)
∑︂
x,t0

∑︂
i,j

|ξ(i)t0[r]
(x+ r, t+ t0)|2 |ξ(j)t0[s]

(x, t+ t0)|2. (5.38)

The same discussion leads

(−)
∑︂
x,t0

∑︂
i,j

(︂
ξ
(i)†
t0[r]

(x+ r, t+ t0) · ξ(j)t0[s]
(x+ r, t+ t0)

)︂ (︂
ξ
(j)†
t0[s]

(x, t+ t0) · ξ(i)t0[r]
(x, t+ t0)

)︂
,

(5.39)
for the connected diagram. The insertions of the noisy estimators now decrease from 4 to 2 in
both diagrams. The scaling of the contraction is reduced to at most O(N2

dil), where Ndil is the
number of elements of indices (i, j).

Figure5.11 shows a comparison of the I = 2 ππ potentials obtained by the hybrid method
and the one-end trick. We can see that their entire behavior agrees with each other, and the noisy
behavior observed in the case of the hybrid method is drastically reduced by the one-end trick.
As regards the computational cost, an elapsed time to obtain the potential in Fig.5.11 reduces
by a factor of ∼ 1/8 in comparison to the hybrid method, together with ∼ 1/7 times smaller
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FIGURE 5.11: Effective LO potentials of I = 2 ππ S-wave interaction obtained by using the hybrid
method (blue) and the one-end trick (red).

statistical errors on average over different r. This fact indicates that an approximately ×392(=

8 × 72) statistical improvement is achieved thanks to the one-end trick. We get confidence for
the new scheme in this test calculation, then move on to the I = 1 ππ interaction with a more
realistic situation where the ρ meson appears as a resonance state. This is the next result of this
thesis.
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Chapter 6

Emergence of the ρ resonance from the
HAL QCD potential in lattice QCD

In this chapter, we discuss our recent result on the ρ resonance[48]. We employ the new cal-
culation scheme to handle all-to-all propagators and study a more realistic situation, where the
ρ meson appears as a resonance. The new scheme allows us to determine the non-local I = 1

ππ interaction at the next-to-next-to-leading order (NNLO) in the derivative expansion for the
first time. The extracted potential reproduces a typical resonant behavior corresponding to the ρ
resonance, although there is still a remaining truncation error of the derivative expansion.

6.1 Calculation of correlation functions by the improved scheme

The correlation functions for the I = 1 ππ P-wave interaction are defined as

C(t− t0) =
∑︂
x,y

eip·ye−ip·x⟨π+(x, t)π−(y, t0)⟩, (6.1)

F I=1
ππ,P=0(r, t− t0) =

∑︂
t0

⟨(ππ)I=1,Iz=0(r, t)J
T−
1

I=1,Iz=0(t0)⟩, (6.2)

where we only consider the center-of-mass frame. We employ the smeared-sink operator in this
study,

(ππ)I=1,Iz=0(r, t) =
1√
2
{π+

smear(r+ x, t)π−
smear(x, t)− π−

smear(r+ x, t)π+
smear(x, t)}. (6.3)

The reason why we choose this operator is discussed in Appendix E. The source operators are
chosen as

J T−
1

ρ,I=1,Iz=0(t0) = ρ03(t0), (6.4)

J T−
1

ππ,I=1,Iz=0(t0) = (ππ)I=1,Iz=0(p3, t0), (6.5)
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where p3 = (0, 0, 2π/L) is a back-to-back relative momentum of two pion operators. (ππ)I=1,Iz=0(p, t)

and ρ03 are defined as

ρ03(t) =
∑︂
z

1√
2

(︁
ū(z, t)γ3u(z, t)− d̄(z, t)γ3d(z, t)

)︁
(6.6)

(ππ)I=1,Iz=0(p, t) =
1√
2

∑︂
y1,y2

e−ip·y1eip·y2
(︁
π−(y1, t)π

+(y2, t)− π+(y1, t)π
−(y2, t)

)︁
,(6.7)

The effective LO potentials are obtained as before,

V LO
i (r) =

∑︁
g∈Oh

R†
i (gr, t)

[︃
∇2

mπ

− ∂

∂t
+

1

4mπ

∂2

∂t2

]︃
Ri(gr, t)∑︁

g∈Oh
R†

i (gr, t)Ri(gr, t)
, (6.8)

where Ri (i = ρ, ππ) are normalized correlation functions with different source operators
J i(t0) (i = ρ, ππ). We also determine the effective N2LO potential UN2LO(r, r′) = (V N2LO

0 +

V N2LO
2 ∇2)δ(r− r′) by solving the following linear equations [69]:(︄

1 ∇2Rρ(r, t)/Rρ(r, t)

1 ∇2Rππ(r, t)/Rππ(r, t)

)︄(︄
V N2LO
0 (r)

V N2LO
2 (r)

)︄
=

(︄
V LO
ρ (r)

V LO
ππ (r)

)︄
. (6.9)

We study the systematics of the derivative expansion by those effective potentials.
The correlation function with the ππ-type source consists of the separated diagram and box

diagram. The ρ-type source induces the triangle diagram, as introduced before. Figure 6.1
summarizes representative diagrams appearing in the correlation functions, and the techniques
utilized in the evaluations of quark propagator are shown by different colors and symbols. The
details of the Wick contraction are given in Appendix D. Here we focus on details of numerical
evaluation of each diagram based on the new calculation scheme.

separated diagram box diagram triangle diagram

FIGURE 6.1: Representative diagrams appeared in this study. Blue solid, orange dashed and green dotted
lines are calculated with the one-end trick, sequential propagator and point-to-all propagator, respectively.
Statistical improvement by the CAA is also employed for green dotted lines.
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6.1.1 Separated diagram

The separated diagram in Fig. 6.1 is written in terms of quark propagators as

Gsep
x;t0(r, t) = (+)

∑︂
y1,y2

eipz·y1e−ipz·y2tr
[︁
D−1(x+ r, t|y1, t0)γ5D

−1(y1, t0|x+ r, t)γ5
]︁

× tr
[︁
D−1(x, t|y2, t0)γ5D

−1(y2, t0|x, t)γ5
]︁
.

(6.10)

By using the one-end trick twice, we obtain

Gsep
x;t0(r, t) = (+)

∑︂
i,j

(︂
χ
(i)†
γ5,t0[r]

(x+ r, t) · ξ(i)pz ,t0[r]
(x+ r, t)

)︂(︂
χ
(j)†
γ5,t0[s]

(x, t) · ξ(j)−pz ,t0[s]
(x, t)

)︂
,

(6.11)
where i, j are indices for dilutions and r, s distinguish independent noise vectors. In practice,
the coordinate x is averaged over the whole space to reduce the statistical fluctuation,

Gsep
t0 (r, t) =

1

L3

∑︂
x

Gsep
x;t0(r, t). (6.12)

6.1.2 Box diagrams

The box diagram shown in Fig. 6.1 is given as

Gbox
x;t0

(r, t) = (−)
∑︂
y1,y2

eipz·y1e−ipz·y2tr[D−1(x+ r, t|y1, t0)γ5D
−1(y1, t0|y2, t0)γ5

×D−1(y2, t0|x, t)γ5D−1(x, t|r+ x, t)γ5].

(6.13)

We first insert the one-end trick to a summation of y2,

(−)
∑︂
i

∑︂
y1

eipz·y1tr[D−1(x+ r, t|y1, t0)γ5ξ
(i)
−pz ,t0[r]

(y1, t0)χ
(i)†
γ5,t0[r]

(x, t)D−1(x, t|r+ x, t)γ5].

(6.14)

An another all-to-all propagator D−1(x+ r, t|y1, t0) is exactly calculated by the sequential
propagator technique[33], where we solve a linear equation

(Dζ) (x) = eipz·xγ5ξ
(i)
−pz ,t0[r]

(x, t)δt,t0 , (6.15)

whose solution ζ gives

ζ
(i)
pz,−pz,t0[r]

(x, t) =
∑︂
y1

D−1(x, t|y1, t0)γ5ξ
(i)
−pz ,t0[r]

(y1, t0)e
ipz·y1 . (6.16)
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Substituting Eq. (6.16) into Eq. (6.14), we obtain

Gbox
x;t0

(r, t) = (−)
∑︂
i

χ
(i)†
γ5,t0[r]

(x, t)H−1(x, t|r+ x, t)ζ
(i)
pz,−pz,t0[r]

(r+ x, t), (6.17)

where H−1 is an inverse of the hermitized Dirac operator H = γ5D.
To increase statistics of the box diagrams, we employ the covariant approximation averaging

(CAA) for x, which is given by

Gbox,imp
x0;t0 (r, t) = Gbox,exact

x0;t0 (r, t)−Gbox,relaxed
x0;t0 (r, t) +

1

NG

∑︂
x′

Gbox,relaxed
x′;t0

(r, t), (6.18)

where NG is the number of a summation over x′. Here Gbox,exact/relaxed is defined as

G
box,exact/relaxed
x0;t0 (r, t)

= (−)
∑︂
i

[︄
1

L3

∑︂
x

Nlow∑︂
n

1

λn
χ
(i)†
γ5,t0[r]

(x, t)v(n)(x, t)v(n)†(x+ r, t)ζ
(i)
pz,−pz,t0[r]

(r+ x, t)

+ χ
(i)†
γ5,t0[r]

(x0, t)H
−1
high,exact/relaxed(x0, t|r+ x0, t)ζ

(i)
pz,−pz,t0[r]

(r+ x0, t)

]︄
,

(6.19)

where λn and v(n) are the n-th eigenvalue and eigenvector of H , Nlow is the number of eigen-
modes used, while H−1

high,exact/relaxed is an inverse of H projected onto the high-mode subspace
with a tight/relaxed stopping condition. Since χ and ζ are already solved with tight precision, we
only relax a precision of the sink-to-sink propagator (green dotted line in Fig. 6.1). Furthermore,
we averaged over all x in the low-mode part to maximize statistics. In comparison to the hybrid
method, the insertion of the noise vectors decreases from 4 to 1, even though we give up the full
spatial average of x. A fewer spatial average is, however, not a severe problem in practice when
we choose uncorrelated (= spatially distant) coordinates as many as possible for the averaging.

6.1.3 Triangle diagram

A triangle diagram shown in Fig. 6.1 is written as

Gtri
x;t0

(r, t) = (−)
∑︂
y

tr[D−1(r+ x, t|y, t0)γ3D−1(y, t0|x, t)γ5D−1(x, t|r+ x, t)γ5]. (6.20)

Using the one-end trick at the source part, we obtain

Gtri
x;t0

(r, t) = (−)
∑︂
i

χ
(i)†
γ3,t0[r]

(x, t)H−1(x, t|r+ x, t)ξ
(i)
0,t0[r]

(r+ x, t). (6.21)
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As in the case of the box diagram, we employ the CAA for x, which gives an improved triangle
diagram as

Gtri,imp
x0;t0 (r, t) = Gtri,exact

x0;t0 (r, t)−Gtri,relaxed
x0;t0 (r, t) +

1

NG

∑︂
x′

Gtri,relaxed
x′;t0

(r, t), (6.22)

where

G
tri,exact/relaxed
x0;t0 (r, t)

= (−)
∑︂
i

[︄
1

L3

∑︂
x

Nlow∑︂
n

1

λn
χ
(i)†
γ5,t0[r]

(x, t)v(n)(x, t)v(n)†(x+ r, t)ξ
(i)
0,t0[r]

(r+ x, t)

+ χ
(i)†
γ5,t0[r]

(x0, t)H
−1
high,exact/relaxed(x0, t|r+ x0, t)ξ

(i)
0,t0[r]

(r+ x0, t)

]︄
.

(6.23)

The difference between the triangle and box diagram is only the combination of the one-end
vectors. In comparison to the hybrid method, the insertion of the noise vectors decreases from 3
to 1.

6.1.4 Comparison to the result using the hybrid method

Before moving on to the details of the ρ resonance study, we briefly discuss the comparison
between the hybrid method and the new scheme in terms of the I = 1 ππ interaction. Figure6.2
shows the effective LO potential of I = 1 ππ system at t = 5 with the ππ type source operator,
obtained by the two different all-to-all treatments with the CP-PACS/JLQCD configurations
introduced before. As seen in Fig. 6.2, the fluctuating behavior seen in the hybrid method
is drastically suppressed by the new treatment. In this test calculation, about ×100 statistical
improvement is achieved on average. This improvement enables us to study the ρ resonance in
details.

FIGURE 6.2: Comparison between the effective LO potentials at mπ ≈ 870 MeV, obtained by the hybrid
method (blue) and the new strategy (red)
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6.2 Simulation details

We employ (2+1)-flavor full QCD configurations generated by the PACS-CS Collaborations [70]
on a 323 × 64 lattice with the Iwasaki gauge action[55] and a non-perturbatively improved
Wilson-clover action[54]. The paramters of the lattice actions and corresponding hadron masses
are shown in Table 6.1. Since the ρ meson mass is above two-pion threshold, the ρ meson
appears as a resonance [39]. The calculations are performed in the center-of-mass frame only,
with the periodic boundary condition for all spacetime directions.

TABLE 6.1: Parameters of the gauge configuration in this study

β κud κs cSW a [fm] mπ[MeV] mρ[MeV]
1.90 0.13754 0.13640 1.715 0.0907 411 892

Table 6.2 and 6.3 show general setups and parameters of the one-end trick and the CAA,
respectively. We employ smeared quark operators qs(x, t) =

∑︁
y f(x− y)q(y, t) at the sink

with the Coulomb gauge fixing, in order to improve signals of potentials at short distance. A
smearing function f is given by

f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ae−B|x| ( 0 < |x| < R )

1 ( |x| = 0 )

0 ( |x| ≥ R ),

(6.24)

withA = 1.0, B = 1.0, R = 3.5. As discussed in Appendix E, these parameters make potential
smoother without worsening the convergence of the derivative expansion. For the one-end trick,
we generate a single Z4 noise vector for each insertion. To suppress the stochastic noises, we
employ a dilution technique [29] in color, spinor, and space indices. We take space s2 dilution
and s4 dilution [31] in the ππ-type source and the ρ-type source, respectively. Color and spinor
indices are fully diluted. As regards the CAA, we exactly calculate a low-mode part using 300
eigenmodes, and a high-mode part is estimated by an average over loosely solved solutions on
64 different spatial points x = (x0 + 8l, y0 + 8m, z0 + 8n) mod 32, with l, n,m ∈ {0, 1, 2, 3}.
Tight and relaxed solutions are obtained with 1.0×10−24 and 9.0×10−6 for the squared residue,
respectively. We randomly choose the reference point x0 = (x0, y0, z0) for each configuration
to remove unnecessary systematics.

TABLE 6.2: Numerical setup for the calculation.

Source type Scheme Nconf (#. of time slice ave.) Stat. error
ππ-type equal-time, smeared-sink 100 (64) jackknife with bin–size 5
ρ-type equal-time, smeared-sink 200 (64) jackknife with bin–size 10
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TABLE 6.3: Setups for the one-end trick and the CAA in this study. Neig is the number of low eigen-
modes. Color and spinor dilutions are always used.

Source type One-end trick CAA
Noise vector Space dilution Neig # of averaged points

ππ-type Z4 noise s2 (even-odd) 300 64
ρ-type Z4 noise s4 300 64
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FIGURE 6.3: Effective mass of a pion (blue circles) and the fit result by a cosh function at t =
[tmin, tmax] = [14, 29] (cyan solid line with bands).

Figure 6.3 shows an effective mass of a pion obtained by an average of 200 configurations
(×64 time slice average). A fit to the pion propagator at t = [tmin, tmax] = [14, 29] with a
cosh function gives mπ = 413.5(1.4) MeV. We also check a tmin dependence of the effective
mass, and the dependence is negligible compared with statistical errors as far as tmin ≥ 13.
Therefore we confirm that a ground state saturation in C(t) is achieved at t = 13. A possible
leading inelastic contribution for two pions in this setup comes from a P-wave KK state with
energy WKK = 2

√︁
m2

K + (2π/L)2 ≈ 1530 MeV in non-interacting case, while the two-pion
ground state energy is reported asE0 = 914(11) MeV in Ref. [39]. We therefore expect inelastic
contributions in our correlation functions are suppressed at t ≈ 1/[WKK − E0] ≈ 3.5. These
considerations suggest that inelastic contributions inR(r, t) become negligible at t ≥ 13, so that
potentials can be reliably extracted at t ≥ 13. Hereafter, we show results at t = 14 and 18 for
ρ-type source and ππ-type source, respectively.

As already discussed, the reduced rotational symmetry introduces higher partial wave con-
tamination in lattice QCD simulations. This leads to systematic uncertainties in the HAL QCD
potential appearing as multi-valued structures of potentials as a function of r. In this study, we
address this issue by performing the approximated partial wave decomposition recently intro-
duced to lattice QCD [62]. In practice, we remove the dominant l = 3 contamination when
we evaluate the potential at r = [2, 14.8]. The remaining contamination in a short-range part,
to which the partial wave decomposition cannot be reliably applied, is treated as the systematic
uncertainty as will be discussed later.
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The numerical simulation in this study is performed on the HOKUSAI Big-Waterfall in
RIKEN and the Oakforest-PACS in Joint Center for Advanced HighPerformance Computing
(JCAHPC).

6.3 Result

6.3.1 LO analysis

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
r [fm]

4000

3000

2000

1000

0

1000

2000

3000

V
LO

(r)
+

V c
(r)

 [M
eV

]

potential (rho source, partial wave dec.) t=14
potential (pipi source, partial wave dec.) t=18

FIGURE 6.4: (Left) Effective LO potentials. Blue and red points show the results from the ρ-type source
and the ππ-type source, respectively. Inset shows an enlarged view of potentials. (Right) Improved
potentials obtained by the partial wave decomposition with the P-wave centrifugal term, Vc(r) =

1
2µ

1·2
r2

.

Figure 6.4 (Left) show the results for effective LO potentials without the partial wave decom-
position. We observed that the potentials are attractive at all distances. Fig. 6.4 (Right) represents
potentials with the P-wave centrifugal term after the partial wave decomposition, which become
much smoother. The potentials with the centrifugal term have an attractive pocket at short dis-
tances and a potential barrier around r = 0.5 fm, which is characteristic for the existence of
a resonance. We also notice that potentials depends on the choice of source operators. This
observation suggests a presence of non-negligible higher-order contributions in the derivative
expansion.

To calculate physical observables, we fit LO potentials with a sum of Gaussian terms given
by

V (r) = a0e
−(r−a1)2/a22 + a3e

−(r−a4)2/a25 + a6e
−(r−a7)2/a28 . (6.25)

For the fit, we utilize data obtained by the partial wave decomposition at r = [2, 14.8] as already
mentioned, combined with the original lattice data at r ≤ 2. We also remove data at very short
distances (r = 0, 1) since they suffer from large discretization errors. The remaining systematic
uncertainties caused by non-smoothness at short distances are estimated by differences among
three different fit results: a result using all allowed data (Fit), a result removing data at r ≤ 0.3

fm which deviate more than 1σ upward from Fit (Fit−), and a result removing data at r ≤ 0.3
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FIGURE 6.5: (Left) Fit result with the ρ-type source. Inset shows an enlarged view of them. (Right) The
same plot with the ππ-type source. Both results are obtained with all allowed data points.
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FIGURE 6.6: Systematic uncertainty in the fit of the potential at short distances. (Left) Three fit results
with the ρ-type source. Red and blue points show data used in Fit− and Fit+, respectively, and magenta
and green lines are results of Fit− and Fit+. We also show the fit result with all allowed data (Fit) by a
cyan line for a comparison. (Right) The same plot with the ππ-type source.
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FIGURE 6.7: Phase shifts at the LO analysis. Blue (orange) band shows the ρ-type (ππ-type) source
result. Statistical errors are given by dark color bands, whereas systematic errors estimated by three
different fits at short distances are represented by light color bands. The previous finite-volume results by
the PACS-CS Collaboration [39] are also given by navy stars for comparison.

fm which deviate more than 1σ downward from Fit (Fit+). The fit results using all allowed
data (Fit) are shown in Figure 6.5, and three fit results are compared in Figure 6.6. We estimate
systematic errors for physical observables by differences among fit results, taking the result
using all allowed data as a central value.

Figure 6.7 shows scattering phase shifts obtained by the effective LO potentials, where
systematic errors are shown by light color bands on top of statistical errors by dark color
bands. Shown together is the previous result reported in Ref. [39], in which authors perform
the Lüscher’s finite-volume analysis using the same gauge configuration. The phase shift ob-
tained with the ρ-type source crosses 90 degrees around

√
s ≈ 870 MeV, while it only reaches

around 130 degrees as the energy increases. On the other hand, the phase shift with the ππ-type
source crosses 90 degrees at much higher energy, around

√
s ≈ 1050 MeV, with a much broader

width. These behaviors are probably caused by truncation errors of the derivative expansion for
the LO potential. Since the ρ-type source strongly overlaps the ρ resonance state, which corre-
sponds to the ground state in our calculation, the resultant phase shift reproduces the resonance
structure relatively well. On the other hand, the ππ-type source mainly overlaps P-wave ππ
scattering states far above the ρ resonance state in our setup, then it is difficult to capture the
resonance structure correctly.



6.3. Result 77

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
r [fm]

3000

2500

2000

1500

1000

500

0

500

1000

m
2 V

N2 L
O

2
(r)

 [M
eV

]

VN2LO
2

VN2LO
2  (using partial wave dec.)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
r [fm]

3000

2500

2000

1500

1000

500

0

500

1000

m
2 V

N2 L
O

2
(r)

 [M
eV

]

VN2LO
2  (using partial wave dec.)

fit result

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
r [fm]

6000

5000

4000

3000

2000

1000

0

1000

2000

V
N2 L

O
0

(r)
 [M

eV
]

VLO t = 14
VLO t = 18
VN2LO

0 , Fit
VN2LO

0 , Fit +

VN2LO
0 , Fit

FIGURE 6.8: Effective N2LO potentials. (Upper left) V N2LO
2 determined from raw data (blue circles)

and data obtained with the partial wave decomposition (red triangles). (Upper right) The fit result (cyan
band) using the decomposed data (red triangles). (Lower) V N2LO

0 obtained by three fit results , Fit(cyan),
Fit−(magenta) and Fit+(green). Shown together are the effective LO potentials for a comparison.
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6.3.2 N2LO analysis

By solving Eq.(6.9), the effective N2LO potentials are obtained as

V N2LO
2 (r) =

V LO
ρ (r)− V LO

ππ (r)

∇2Rρ(r)/Rρ(r)−∇2Rππ(r)/Rππ(r)
(6.26)

V N2LO
0 (r) = V LO

ρ (r)− V N2LO
2 (r)∇2Rρ(r)/Rρ(r). (6.27)

In Fig. 6.8 (upper left), we show V N2LO
2 obtained from raw data (blue points) and improved

data by the partial wave decomposition (red points). The partial wave decomposition signifi-
cantly reduces fluctuations of V N2LO

2 , as seen in the figure. A singular behavior around r ≈ 0.5

fm is caused by a vanishing denominator of V N2LO
2 in Eq.(6.26). In the fit of V N2LO

2 , we as-
sume that the N4LO and higher order terms in the derivative expansion can be neglected. This
assumption leads us to employ a smooth fit function (same as the LO potentials) and utilize data
points satisfying 1 − 2µV N2LO

2 > 0. The fit result is shown by a cyan band in Fig. 6.8 (upper
right). Since significant non-smooth behavior is not observed for V N2LO

2 at short distances, sys-
tematic errors associated with removals of data mentioned before are not included in the analysis
for V N2LO

2 . V N2LO
0 (r) is then determined by the fit results of Vρ,∇2Rρ/Rρ and V N2LO

2 through
Eq. (6.27). We estimate systematic errors of V N2LO

0 (r) at short distances through those of V LO
ρ

and ∇2Rρ/Rρ. Figure 6.8 (lower) shows the resultant V N2LO
0 , together with effective LO poten-

tials, V LO
ρ and V LO

ππ , for a comparison. As expected, there exists a large difference between V LO
ρ,ππ

and V N2LO
0 in Fig. 6.8 (lower).

To obtain the N2LO phase shifts, we solve the radial Schrödinger equation with the N2LO
potential, (︃

d2

dr2
− l(l + 1)

r2
− 2µV0(r)− k2

1− 2µV2(r)

)︃
ϕ = 0. (6.28)

The N2LO phase shifts and k3 cot δ1/
√
s are shown in Figure 6.9, together with the LO results

and the previous finite-volume result. As seen in Fig. 6.9, except for the region s < 0.75 GeV2

(
√
s < 870 MeV), the N2LO phase shifts and k3 cot δ1/

√
s become roughly consistent with the

finite-volume results. The remaining deviation observed in the low-energy region can also be un-
derstood from the truncation error of the derivative expansion. In this study, the calculations are
performed only in the center-of-mass frame, whose energy levels on the current lattice volume
do not cover the low-energy region near the ππ threshold. Therefore, the N2LO approximation
in this study could suffer from the large truncation error of the derivative expansion in such a
low-energy region. The detailed investigation is left for future studies.

In the last of this section, let us discuss the N2LO interaction from a different point of
view. At first sight, it is difficult to understand the relation between the effective N2LO po-
tential V N2LO

0 , V N2LO
2 and the resultant phase shift. To make the situation more transparent, we

convert our N2LO potential UN2LO = V N2LO
0 + V N2LO

2 ∇2 to an energy-dependent local form
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FIGURE 6.9: The N2LO phase shifts (left) and k3 cot δ1/
√
s (right), together with LO results (left fig-

ure) and previous finite-volume result by the PACS-CS Collaboration [39] (both figure) for comparisons.
Large statistical errors at s > 0.9 GeV2 in k3 cot δ1/

√
s (right) are mainly caused by a divergent behavior

of cot δ at the phase shift around 180 degrees.

V N2LO(r; k) as [69]

V N2LO(r; k) =
V N2LO
0 − k2V N2LO

2

1−mπV N2LO
2

. (6.29)

Figure 6.10 shows this energy-dependent local potentials with the centrifugal term at several
energies: near threshold (

√
s = 830 MeV), near the ground state energy in the center-of-mass

frame (
√
s = 910 MeV), and at higher energy (

√
s = 1050 MeV). We also show V LO

ρ for
comparison. At low energy, the attractive pocket of V N2LO(r; k) is weaker than that of V LO

ρ . It
makes the N2LO phase shifts smaller than the LO phase shift with ρ-type source. Around the
CM ground state energy, V N2LO(r; k) and V LO

ρ are almost identical since V LO
ρ is almost saturated

by the ground state. At high energy, a difference between V N2LO(r; k) and V LO
ρ becomes large

in all ranges. The significant improvement by the N2LO analysis for the phase shifts at high
energies can be understood from this difference.

6.3.3 Resonance parameters

We extract the resonance mass mρ and effective coupling between the ρ resonance and ππ scat-
tering states, gρππ, from the N2LO potential. We employ two different procedures for the ex-
traction, namely the Breit-Wigner fit and direct pole search of the S-matrix. In this section, we
briefly discuss both procedures and compare our result to the previous finite-volume result.

Breit-Wigner fit

The Breit-Wigner fit is a conventional way to extract the resonance parameters from the narrow
peak structure. We fit k3 cot δ1(k)/

√
s by using the following parametrization,

k3 cot δ1(k)√
s

=
6π

g2ρππ
(m2

ρ − s), (6.30)
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FIGURE 6.10: Energy-dependent local N2LO potentials. (Upper left) near threshold (
√
s = 830 MeV).

(Upper right) near the CM frame ground state energy (
√
s = 910 MeV). (Lower left) larger energy

(
√
s = 1050 MeV). For a comparison, we show the effective LO potential with ρ-type source.



6.3. Result 81

where mρ and gρππ are fit parameters corresponding to a resonance mass and a ρ→ ππ effective
coupling, respectively. Our fit result is shown in Fig. 6.11 and it gives

mρ = 888(19)(+6
−2) MeV, (6.31)

gρππ = 13.4(2.6)(+0.8
−0.0), (6.32)

where the first errors are statistical and the second ones are systematic errors associated with the
short-range behavior of V N2LO

0 .
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FIGURE 6.11: The Breit-Wigner fit for the N2LO phase shifts k3 cot δ1(k)/
√
s (blue points). The green

band represents the fit with statistical errors and a range of the energy used in the fit. We also show data
and Breit-Wigner fit of PACS-CS (2011) [39] by the black points and the dashed line, respectively, for a
comparison.

Direct pole search

Theoretically, a resonance state is defined as a pole of the S-matrix on the second Riemann
sheet, which provides us another method to extract resonance parameters in the HAL QCD
method. To access the S-matrix in complex energy region, we solve the Schrödinger equation
with arguments rotated by r → reiθ, k → ke−iθ[71–73], which reads(︃

d2

dr2
− l(l + 1)

r2
− 2µe2iθV0(e

iθr)− k2

1− 2µV2(eiθr)

)︃
ϕ = 0. (6.33)

The regular solution ϕ to this equation behaves at long distances as

ϕ→ i

2

[︂
Jl(ke

−iθ)ĥ
−
l (kr)− J ∗

l (ke
−iθ)ĥ

+

l (kr)
]︂
, (6.34)
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FIGURE 6.12: A comparison of N2LO resonance parameters from the direct pole search (blue circle) and
the Breit-Wigner fit (red triangle). Vertical and horizontal axes represent the coupling gρππ and the mass
mρ, respectively. Statistical (systematic) errors are represented by solid (dashed) bars. Shown together is
the result from PACS-CS (2011) [39] (black star). Errors for PACS-CS (2011) are statistical only.

where ĥ
±
l (z) = n̂l(z) ± iĵl(z) are the Riccati-Hankel functions and Jl is the Jost function for

the angular momentum l. The S-matrix on the complex ke−iθ can therefore be obtained as

sl(ke
−iθ) =

J ∗
l (ke

−iθ)

Jl(ke−iθ)
, (6.35)

from which we can search a pole position kpole = |kpole|e−iθpole by changing an input θ and k.
The resonance mass and the decay width are extracted from the pole position

√
spole as

√
spole = 2

√︂
k2pole +m2

π = mρ − iΓρ/2, (6.36)

where the decay width is related to the coupling constant gρππ as

gρππ =

√︄
6πΓρm2

ρ

k3ρ
, kρ :=

√︂
m2

ρ/4−m2
π. (6.37)

The direct pole search gives

mρ = 886(17)(+4
−1) MeV, (6.38)

Γρ/2 = 22(8.6)(+4.5
−0.0) MeV, (6.39)

gρππ = 12.7(2.9)(+0.7
−0.0), (6.40)

where the first errors are statistical while the second ones are systematic errors.
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Comparison to the previous result

Let us compare our N2LO results with the previous result using the finite-volume method [39].
We summarize mρ and gρππ in Fig. 6.12. While mρ’s are consistent with each other in all
three cases, effective couplings in our study are about twice as large as the previous one. This
discrepancy can be clearly seen as a difference in slopes of k3 cot δ1/

√
s data at s < 0.9 GeV2

in Fig. 6.11, which directly correspond to the coupling as −6π/g2ρππ. In particular, a significant
disagreement between the previous result and ours at s ≈ 0.75 GeV2 is the main source of the
discrepancy for the slope. We note that the lowest energy level is obtained in the laboratory
frame with P = (0, 0, 2π/L), which cannot be covered by the center-of-mass frame calculation.

This observation gives us an important lesson for the study of P-wave resonances by the
HAL QCD method with the center-of-mass frame. If the non-locality of the potential happens
to be large, the truncation errors could be large near the threshold. While a resonance mass is
likely to be reproduced relatively well as long as the resonance appears in the energy region
covered by the center-of-mass frame, the decay width (the effective coupling) may suffer from
larger systematics since it is determined by the wide energy dependence around the resonance.
To control this, we have some possible options:

1. Tuning lattice parameters such as a box size so as to cover a wide energy range even in
the center-of-mass frame.

2. Determine the width by the support of the finite-volume method in the laboratory frame.

3. Perform the HAL QCD method with a combination of both the center-of-mass and labo-
ratory frames.

The first option can be performed if the resonance mass is roughly guessed beforehand, but it is
practically difficult for searches of unknown resonances. The second one is better than the first
one, although it is only applicable to systems with good S/N ratios. The additional introduction
of model dependence in coupled channel analysis is not preferable as well. The third one sounds
to be the best, but it is highly nontrivial in practice since we have never performed the laboratory
frame calculation in the HAL QCD method. Motivated by this result in part, we perform the first
numerical study of the laboratory frame formalism. We discuss this topic in the next chapter.
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Chapter 7

I = 2 ππ potential from the laboratory
frame NBS wave function

From the ρ resonance study, we obtain an important lesson that the laboratory frame calculation
may reduce the truncation error in the derivative expansion in certain cases. Furthermore, the
study on the light scalar σ resonance in I = 0 ππ S-wave interaction requires the vacuum sub-
traction, which can also be achieved by introducing some non-zero total momenta. Although the
formulation of the laboratory frame calculation has already been introduced[49], its numerical
calculation has not been performed yet since the non-zero momentum projection of the hadron
operators generally needs the all-to-all propagator. It is, however, now possible within a reason-
able computational cost thanks to the new calculation scheme.

In this chapter, we discuss a numerical verification of the laboratory frame formulation. We
study the elastic I = 2 ππ S-wave interaction as a first trial. Since the formulation contains
involving numerical derivatives and their combinations, our prime interest is whether we can
extract a precise HAL QCD potential from such a complicated calculation. Moreover, the energy
eigenstates in the laboratory frame take different values from those in the center-of-mass frame,
then we can see the systematics of the derivative expansion. We briefly mention a preliminary
application to the I = 1 ππ interaction in the last part.

7.1 Calculation of correlation functions

The correlation functions are defined as

Cp(X
4) =

∑︂
x,y

⟨π+(x, X4)π
+
smear(p, 0)⟩, (7.1)

Fπ+π+,P(x, x
4, X4) =

∑︂
X

e−iP·X⟨Tπ+(X + x/2)π+(X − x/2)J π+π+(P, 0)⟩, (7.2)
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where the pion operator π± is given as before. In this study, we take three different source
operators as

J π+π+ (P = (0, 0, 0), 0) = π+
smear(p1 = 0, 0)π+

smear(p2 = 0, 0) (7.3)

J π+π+ (P = (0, 0, 1), 0) = π+
smear(p1 = ez, 0)π

+
smear(p2 = 0, 0) (7.4)

J π+π+ (P = (0, 0, 2), 0) = π+
smear(p1 = ez, 0)π

+
smear(p2 = ez, 0), (7.5)

where we describe momenta in unit of 2π/L and π+(p, 0) is defined as

π+(p, 0) =
∑︂
y

π−(y, 0)e+ip·y. (7.6)

Those source operators overlap to the I = 2 ππ S-wave states with total momenta P =

(0, 0, n) (n = 0, 1, 2), respectively. We employ the exponential smearing in all source oper-
ators. The correlation functions above can be estimated by using the one-end trick as discussed
in Chap.5, except for the existence of relative time shifts and additional exponential factor e−iP·X

in the sink parts. Treatments of those additional features are almost trivial, therefore we do not
discuss them in details here.

In this thesis, we basically refer to the results obtained by the R-correlators with the free
lowest energy normalization:

RP=0(x, x
4, X4) =

Fπ+π+,0(x, x
4, X4)

C0(X4)2
(7.7)

RP=ez(x, x
4, X4) =

Fπ+π+,ez(x, x
4, X4)

C0(X4)Cez(X
4)

(7.8)

RP=2ez(x, x
4, X4) =

Fπ+π+,2ez(x, x
4, X4)

Cez(X
4)2

. (7.9)

The other normalization is studied to see the systematics, which is discussed in Appendix F. As
a reminder, we summarize the formula necessary for the extraction of the effective LO potential
again. We first estimate the following building blocks:

G(x, x4, X4) =
(︁
(∂X4 −W0,free)

2 −P2
)︁
RP(x, x

4, X4), (7.10)

E(x, x4, X4) =
1

4m

[︁
∂2X4 − 2W0,free∂X4 +W 2

0,free −P2 − 4m2
]︁
G(x, x4, X4), (7.11)

L⊥(x, x
4, X4) = ∇2

⊥G(x, x
4, X4), (7.12)

L∥(x, x
4, X4) =

(︁
−(∂X4 −W0,free)∇∥ + iP∂x4

)︁2
R(x, x4, X4), (7.13)
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TABLE 7.1: Numerical setup for the calculation. Momenta in the source operators are shown in unit of
2π/L.

Source Nconf (#. of time slice ave.) Stat. error
case 1 π̄(0, 0, 1)π̄(0, 0, 0) 399 (64) jackknife with bin–size 21
case 2 π̄(0, 0, 1)π̄(0, 0, 1) 399 (64) jackknife with bin–size 21
CM π̄(0, 0, 0)π̄(0, 0, 0) 399 (16) jackknife with bin–size 21

where the derivatives are numerically estimated by the central differences. By combining these,
the effective LO potential in the time-dependent method is obtained by

V LO
x∗4=0(x⊥) =

(︁
L⊥ + L∥ +mE

)︁
(x, x4, X4)

mG(x, x4, X4)

⃓⃓⃓⃓
⃓
x4=0,x∥=0

. (7.14)

We use the standard time-dependent method in the case of P = 0 instead of the complicated
formulae above.

7.2 Numerical setup

We employ 2+1 flavor full QCD configurations generated by PACS-CS Collaborations [70] on a
323 × 64 lattice. The lattice actions and their parameters are basically same as the configuration
used in the ρ resonance study, except for the hopping parameters (κud, κs) = (0.13700, 0.13640).
This choice of the hopping parameters leads to the pion mass at mπ ≈ 700 MeV. The pion
mass is somewhat large, but it is convenient for our purpose since the computational cost of
matrix inversions becomes cheap. The periodic boundary condition is employed in all spacetime
directions as before. The general setups are given in Table 7.1. Correlation functions with non-
zero total momenta (zero total momentum) are evaluated by 399 × 64 timeslices (399 × 16
timeslices) gauge configurations, and statistical errors are estimated by the jack-knife method
with bin-size 21. The parameters of the exponential smearing are taken as A = 1.2, B = 0.30.
As regards the one-end trick, we generate a single Z4 noise vector for each insertion. We employ
the dilution technique [29] in color, spinor, and spatial indices. Color and spinor indices are fully
diluted, and s2 (even-odd) dilution [31] is taken for the spatial index. The numerical simulation
is performed on Oakforest-PACS in Joint Center for Advanced HighPerformance Computing
(JCAHPC).
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FIGURE 7.1: (Left) Effective energies of pion with |p| = 0 (orange square), |p| = 2π/L (red triangle)
and |p| = 4π/L (blue circle). Fit results using a cosh shape and corresponding fit ranges are shown
as bands. (Right) Comparison between extracted energies and continuum dispersion relation, E(p) =√︂
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π,fit + p2. For mπ,fit, we use the fit result of 2pt correlation function with |p| = 0 (green band in the
bottom of the left figure).

7.3 Result

7.3.1 Dispersion relation

Since our formulation relies on the continuum dispersion relation, we first check a behavior of a
pion dispersion relation. Figure 7.1 shows effective energies of a single pion with momenta p =

(0, 0, n) (n = 0, 1, 2) and comparison to the continuum dispersion relation E(p) =
√︁
m2

π + p2.
We use the fit result of a pion propagator with |p| = 0 for mπ in the continuum dispersion
relation. We obtain good plateaus thanks to the quark smearing, and as you can see in Fig. 7.1
(Right), energy levels with non-zero momenta do not deviate from the continuum dispersion
relation up to |p| = 4π/L. Therefore we confirm that we can reliably utilize the continuum
dispersion relation in this study.

7.3.2 NBS wave function in the laboratory frame

Let us first consider the spatial dependence of the Fπ+π+,P(x, x
4, X4). Figure 7.2 (Left) shows

the effective energies obtained by the X4 dependence of
∑︁

x Fπ+π+,P(x, x
4 = 0, X4), together

with corresponding non-interacting energy levels as horizontal lines. We observe that all ef-
fective energies reach a plateau at around X4 = 10, and they are slightly larger than the non-
interacting energies. It indicates that Fπ+π+,P(x, x

4, X4) in our study is almost dominated by
the ground states after X4 = 10 and the interaction is repulsive. In Fig.7.2 (Right), we show
x⊥ dependence of Fπ+π+,P(x⊥,x∥ = 0, x4 = 0, X4) at X4 = 16. The smaller number of data
in the laboratory frame is due to the fixed x∥ = 0, which is mandatory to fix the scheme of the
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NBS wave function. As expected from the effective energies, they show typical behaviors for
the repulsive force, namely a monotonic increase. Furthermore, we observe that the NBS wave
function in case 2 is similar to the center-of-mass wave function. This behavior is understand-
able since the lowest energy of case 2 is almost the same as the center-of-mass ground state, as
seen in Fig.7.2 (left).
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7.3.3 Effective LO potentials
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FIGURE 7.3: Comparison of all effective LO potentials. Inset shows an enlarged view of the potentials.

Figure7.3 shows the effective LO potential obtained by the time-dependent method at X4 =

16. The potential show repulsive behaviors as expected, and three results with different momenta
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FIGURE 7.4: Decomposition of the effective LO potential in case 1 (Left) and case 2 (Right). A dotted
line represents an expected relative energy in non-interacting case.

are almost consistent except for a short distance. We observe that the laboratory frame calcu-
lations have larger statistical errors and non-smooth behaviors than the center-of-mass case.
Typically, the non-zero momentum calculation of the correlation function is noisier than the
zero-mom calculation since the statistical improvement by the translational invariance is re-
duced. Indeed, the NBS wave functions in the laboratory frame themselves are noisier than the
center-of-mass one (see Fig.7.2 (right)), even though the statistics is four times more. Moreover,
there can be another noise source in the laboratory frame, namely high-order (4th) X4 deriva-
tive terms in the time-dependent method. To estimate values of 4th-order X4 derivatives with a
fixed X4 using the numerical difference, we need the information of X4 ± 1, 2. The correlation
function generally becomes noisy at a large X4, therefore the higher-order X4 derivatives in-
clude noisier data. The non-smooth behaviors can be understood by the partial wave contents of
the irreducible representation of the cubic group. In the laboratory frame calculation, the cubic
rotation is no longer the symmetry of the system, since the box shape changes by the Lorentz
contraction. In our calculation, the box shape becomes rectangular with size L×L× γL (γ is a
boost factor) in the center-of-mass frame, then the rotational symmetry reduces to a subgroup of
the cubic symmetry which keeps the rectangle invariant. The irreducible representation A+

1 of
the reduced symmetry contains contributions from l = 0, 2, ..., and therefore our calculation is
suffered from l = 2 waves in contrast to the center-of-mass frame, where leading contamination
comes from l = 4 waves. The difference observed in the short distance may be understood in
terms of a discretization error. Since the laboratory frame calculation has a lot of numerical
derivatives, there is more accumulated discretization error than the center-of-mass calculation.
The discretization error mainly appears as the short-distance part around the origin, then the
difference is significant there.

Next, to see how the time-dependent method works in details, we decompose the potentials

into the Laplacian part ((
L⊥+L∥)
mG

) and the energy part (mE
mG

) and see each components individu-
ally. Figure7.4 shows total and each components in the same plots. As seen, each component
has a non-zero deviation from zero at large distances, but those shifts cancel with each other
in total. Since the shift values are consistent with expectations from the non-interacting energy
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levels, the cancellation is strong evidence of the validity of the time-dependent method.
Although we need larger statistics than the conventional center-of-mass calculation, we con-

firm that the precise potential can be extracted from the laboratory frame NBS wave function.

7.3.4 Scattering phase shifts

Finally, let us consider the behavior of physical observables, the scattering phase shifts δ0(k)
and k cot δ0(k). To calculate the phase shifts, we fit the effective LO potentials by a 4-Gaussian
shape,

V (r) = a0e
−(r/a1)2 + a2e

−(r/a3)2 + a4e
−(r/a5)2 + a6e

−(r/a7)2 . (7.15)

Fit results are shown in Fig. 7.5. Details of the estimation of systematic uncertainty are given in
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FIGURE 7.5: Fit results of the potentials. Original data (blue points) and corresponding fit results (red
lines) are shown.

Appendix F. The resultant scattering phase shifts are summarized in Figure 7.7 (Left). As you
can see, the phase shifts obtained by the laboratory frame calculations (blue and orange bands)
give consistent phase shifts with the center-of-mass calculation (red band), as expected from the
agreement of the LO potentials.

We also compare our result to values obtained by the Lüscher’s method. The energy shifts
needed for the analysis are extracted by single exponential fits of the time dependence of the
R-correlators. Figure 7.6 shows effective energy shifts and corresponding fit results. Once
we obtain the energy shifts, kn cot δ0(kn) is obtained by the Lüscher’s formula as discussed in
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Chap.3,

kn cot δ0(kn) = 4π
1

γnL3

∑︂
p∈Pd

1

p2 − k2n
, (7.16)

where kn is a relative momentum in the center-of-mass frame. All values of k cot δ0(k) are
summarized in Fig. 7.7 (Right), together with a value in the literature [74]. As seen, we confirm
that the phase shifts obtained by the HAL QCD method are consistent with those by the finite-
volume method. It indicates that the LO approximation is valid in the energy region we consider
here. This result also supports the validity of our calculation.
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7.4 Preliminary application to the I = 1 ππ interaction

In the last part of this chapter, we briefly discuss a preliminary result on the I = 1 ππ interaction
using the laboratory frame formalism. As mentioned before, we expect that this application
gives a deeper understanding of the systematics observed in the ρ resonance study.
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In this calculation, we employ gauge configurations at mπ ≈ 410 MeV, same as the ρ reso-
nance study. We employ the ρ-type source with a total momentum P = (0, 0, 2π/L) as

J A−
2

ρ,I=1,Iz=0(t0) = ρ0p,3(t0), (7.17)

J E−

ρ,I=1,Iz=0(t0) = ρ0p,1(t0), (7.18)

where ρ0p,i is defined as

ρ0p,i(t) =
∑︂
z

eip·z
1√
2

(︁
ū(z, t)γiu(z, t)− d̄(z, t)γid(z, t)

)︁
. (7.19)

Those operators belongs to the irreducible representations A−
2 and E−, whose lowest energies

are reported as 863 MeV and 911 MeV in this setup, respectively [39]. The lowest energy state
of A−

2 is interesting in particular, since this is what we want, the missing near-threshold state.
Furthermore, the lowest energy of E− is almost identical to the center-of-mass lowest energy
and we can perform a consistency check by those results. Here we do not discuss a calculation
of the correlation function in detail since it is almost the same as the center-of-mass case except
for the relative time shift and insertions of exponential factors.

At present, we obtain a LO potential similar to V LO
ρ using the source operator (7.18) as

seen in Fig. 7.8 (Compare Fig. 6.4 (Left) in Chap. 6), although the statistical error is too large
to compare them quantitatively. We may positively say that the laboratory frame formalism
can also be applied to more involved systems, in which the all-to-all treatment is mandatory.
On the other hand, we fail to extract the potential by using a source operator belonging to A−

2

representation (7.17). A possible reason is that the relative wave function is proportional to
x∥ via the spherical harmonics of Y10 and the restriction of x∥ = 0 in our formalism set the
wave function zero automatically. To avoid this, we have to give up the time-dependent method
and fix x∥ ̸= 0. In that case, however, the scheme of the potential cannot be the same as
the center-of-mass frame. Therefore the combination to the center-of-mass calculation needs
some assumption to the weak scheme dependence of the potential, but this is a highly nontrivial
statement. Further studies are required.

FIGURE 7.8: I = 1 ππ interaction from the laboratory frame.
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Chapter 8

Summary and perspective

In this thesis, we introduce our works using the combination of the all-to-all propagator and
the HAL QCD method and its application to the ρ resonance. This chapter is devoted to the
summary and perspective of our study. We first summarize the results shown in this thesis section
by section, then we present the prospects of our study, together with some latest preliminary
calculations.

8.1 Application of the hybrid method

The first series of our study focuses on applications of the hybrid method, one of the methods to
estimate the all-to-all propagator. This method is expected to be more suitable for the HAL QCD
method than the LapH method. In those studies, we perform simulations on the 163 × 32 lattice
with the pion mass of mπ ≈ 0.89 GeV, and study ππ interactions with the isospin I = 1, 2. The
study of I = 2 ππ interaction reveals that the potential with practical precision can be obtained
by the hybrid method as long as the additional noise contamination is sufficiently removed. An
important benefit by the all-to-all propagator, namely the early-time suppression of the inelastic
contamination using the optimized source operator, is actually observed. We also obtain an
important guiding principle for the parameter choice of the hybrid method. We then calculate the
I = 1 ππ P-wave interaction with the same parameter choice as the I = 2 ππ interaction, but we
find that the resultant potential is too noisy. Since the I = 1 ππ calculation newly allows quark
creation/annihilation diagrams, we suspect that this structure enlarges the noise contamination
of the hybrid method. We employ the time-separated sink operator and additionally introduce
finer space dilution in the estimation of sink-to-sink propagator with an increased noise average
to reduce this contamination. We find that the additional noise reduction gives a reasonable
precision of the potential. The extracted interaction is strongly attractive and we obtain the
physical bound state pole corresponding to the ρ meson.

In summary, we find that using the hybrid method only is not preferable in the HAL QCD
method. One positive achievement is that the optimized source operator with quark smearing and
momentum projection seems to lead to better time saturation behavior than the naive method.
This observation is also related to a new direction of our research, application of all-to-all tech-
niques to the baryon-baryon interaction as mentioned later. Another important aspect of those
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studies is that they trigger the discussion on the new calculation scheme. Those studies identify
the origin of the noisy behavior and indicate the right direction of improvements.

As a side note, there is still a possibility to use the hybrid as a part of the new calculation
scheme. The guiding principle we obtained can be useful to optimize the parameters in such a
case.

8.2 Study of the ρ resonance with the improved calculation
scheme

Motivated by the success of the improved calculation scheme, we move on to the more realistic
simulation of the ρ meson, which is the main result of this thesis. The ρ resonance is simple to
calculate and is physically important, therefore it is ideal for the first step. We employ full QCD
gauge configurations on the 32 × 64 lattice at the pion mass of mπ ≈ 0.41 GeV and determine
the HAL QCD potential at the N2LO of the derivative expansion. As the previous result using
the Lüscher’s method with the same gauge configurations is available, we study the systematics
of the derivative expansion by comparisons to it. In the LO analysis, the resultant LO potentials
are attractive in all ranges and depend on the choice of the source operators. The phase shifts
obtained by them deviate from the previous result, which indicates that the LO approximation
is not enough for this system. We then investigate the effective N2LO potential. Thanks to the
improved scheme, we succeed in determining the effective N2LO potential in the I = 1 ππ

system for the first time. The N2LO potential differs from the LO potentials largely, and the
phase shift becomes roughly consistent with the previous result. We also extract the mass and
coupling of the ρ resonance using the N2LO potential. We find that the mass is consistent with
the previous study, but the effective coupling deviates from it. We suspect that the main source of
this deviation is a truncation error of the derivative expansion in a near-threshold region, which
the center-of-mass energy levels cannot cover.

In conclusion, we can positively say that the typical structure of the ρ resonance is repro-
duced by the HAL QCD potential, thanks to the improved scheme on the all-to-all estimations.
This fact opens a new frontier of the HAL QCD method, namely the resonance studies which re-
quire all-to-all propagators. On the other hand, it is newly revealed that potentials of P-wave (or
higher partial wave) systems may suffer from the lack of the near-threshold information in the
center-of-mass frame calculation when the non-locality of potentials is happened to be large. It
indicates that we need to care about the convergence of the derivative expansion more in certain
situations. Techniques to estimate all-to-all propagators developed in our study may also help to
study the convergence of the expansion since they allow a wider choice of source operators.
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8.3 Laboratory frame HAL QCD method

One of the possible remedies to reduce the truncation error of the derivative expansion in the
near-threshold region is to introduce the laboratory frame calculation in the N2LO (or higher)
analysis. Moreover, to investigate the hadronic system which has the same quantum number as
the vacuum, e.g. I = 0 ππ S-wave system, the laboratory frame calculation may play a crucial
role to remove the vacuum contamination. The basic formulation of the extraction of the HAL
QCD potential from the laboratory frame NBS wave functions is proposed before, but it has not
been applied to actual simulations since it generally needs all-to-all propagators induced from
spatial summations in the momentum projection. Under these circumstances, we study I = 2 ππ

interaction by the laboratory frame formulation for the first time. The one-end trick enables us to
construct source operators with some total momenta. We employ full QCD gauge configurations
on the 32× 64 lattice at the pion mass of mπ ≈ 0.70 GeV and study the effective LO potentials
of I = 2 ππ S-wave interaction with total momenta P = 2π/L(0, 0, n) (n = 0, 1, 2). We
find that the NBS wave functions in the laboratory frame behave similarly to the center-of-mass
counterpart with somewhat larger statistical error. The extracted potential are consistent with
each other except for short distances. We compare our new result to both the conventional
center-of-mass HAL QCD result and results obtained by the Lüshcer’s method, and we confirm
consistency among them.

As a result, we confirm that the laboratory frame formulation of the HAL QCD method can
be applied to practical simulations. It suggests a new possibility to calculate the interaction
potential. This formalism may be applied to both the vacuum subtraction and the determination
of the non-locality. Furthermore, the result implies that the I = 2 ππ interaction holds a small
non-locality, which is consistent with the observation in the previous LapH application to the
I = 2 ππ system at mπ ≈ 0.87 GeV[26].

Possible issues appearing in this formalism are, for example, worse statistical errors than
the center-of-mass calculations or sensitivity to the discretization error through the dispersion
relation and the use of many derivatives. Furthermore, the condition to fix x∥ = 0 in the time-
dependent method may restrict the applicability of this formalism when we consider higher
partial waves whose spherical harmonics depend on x∥, as also briefly mentioned later.

8.4 Perspective

Our new calculation scheme can be applied to not only resonant systems but also other hadronic
scatterings, therefore we expect that there exist many applications in the future. We discuss
possible applications expected in near future as the closing part of this thesis.
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8.4.1 Resonance studies

Our prime motivation is to shed light on hadronic resonances discovered and predicted. Since
we confirm that our calculation scheme can capture the typical ρ resonance up to systematics of
the derivative expansion, we are now trying to investigate other resonant systems. One example
is the scalar resonance in the light quark sector, so-called σ and κ resonance.

The σ resonance appears in I = 0 ππ S-wave channel and is known that it is very broad and
light. This state is first predicted theoretically and its nature has been discussed for a very long
time. Some lattice QCD calculations have also been performed [75–78] until now. The technical
issue is that the I = 0 ππ S-wave channel needs the all-to-all propagator and has the same quan-
tum number as the vacuum state, which introduces unwanted vacuum contamination in lattice
QCD. The vacuum subtraction can be achieved by subtracting a time-independent term from the
correlation function in some ways or by performing the laboratory frame calculations, where the
vacuum cannot mix due to the vanishing total momentum. We are challenging to calculate the
correlation function of this system since we can now treat both the all-to-all propagator and the
laboratory frame. At this moment, we observed that the laboratory frame formalism seems to
avoid the vacuum mixing, but we need more statistics to extract physical information.

The κ resonance is expected to appear as a broad resonance near the threshold of I = 1/2

Kπ S-wave channel, but it is still “need confirmation” status in the Particle Data Group summary
table [4]. It has also been discussed for a long time together with other scaler resonances like
σ, and it is important to study this state in detail from lattice QCD. Its numerical simulation is
relatively easy since it does not couple to the vacuum state. In our test calculation, however,
the resultant NBS wave function has a node structure and the potential becomes singular at that
point. This behavior may be attributed to the singular behavior of the NBS wave function due
to the OPE as mentioned in Chap. 6 and Appendix E, but we have to investigate it carefully to
find its origin and some possible remedies to avoid it. Both σ and κ are expected to belong to
a scalar nonet of SU(3) flavor symmetry, therefore the numerical simulation on SU(3) limit can
also bring valuable implications on them.

Applications to the charmed hadron interaction may also be important since many exotic
resonances, e.g. the so-called X, Y, Z states, have been observed in experiments. To compare
lattice QCD result to experiments, the large-scale simulation with physical hadron masses is
mandatory. It may require more improvements of our all-to-all calculation scheme as well as
improvements of computational codes.

The study on the meson-baryon interactions and baryon resonances, where the advantage of
the HAL QCD method may appear more clearly, is now ongoing by a similar methodology.

The detailed study on the remaining systematics of the derivative expansion found in our ρ
resonance study is another important task. As already discussed in Chap.7, we are now trying to
extract the I = 1 ππ P-wave interaction using the laboratory frame. At this moment we obtain
a LO potential similar to V LO

ρ if we employ the source operator belongs to the E− irreducible
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representation of the tetragonal group. On the other hand, we fail to extract the potential from
the A−

2 source operator, whose ground state is the near-threshold energy level we want. Further
studies are required.

8.4.2 Other applications

The all-to-all propagator allows the smeared source operator with momentum projection. There-
fore, the techniques in our study can bring some improvements in the determination of hadron
interactions. Application to the baryon-baryon interactions is especially important to avoid an
explosion of statistical errors due to the signal-to-noise ratio problem. Furthermore, the mo-
mentum projection allows us to study important interactions, e.g. the P-wave NN interaction.
We can also study the systematics of the derivative expansion in more details by combining
different source operators. Motivated by those issues, we are now working on the application
of the one-end trick to baryon interactions. The one-end trick introduced in this thesis assumes
applications to meson operators, but its extension to the baryon operator exists as well [79]. We
apply this extension to the NN interaction and find that we can calculate the potential reason-
ably with some technical modification. At the same time, we find that the LO potential obtained
by the smeared NN source operator is happened to be slightly different from the conventional
one with the wall NN source, which may come from the non-locality of the potential. To study
the origin of the difference, we study the ΞΞ interaction, whose non-locality is discussed in de-
tail before [69]. In this case, we obtain slightly different potential from that of the wall source
as in the case of NN interaction, but the scattering length obtained by the potentials seems to
be consistent with each other as seen in Fig.8.1 (right). By combining the previous result of
the N2LO study, the wall source seems to be somewhat better than the smeared source, but this
conflicts with our intuition since the inelastic contamination in the smeared source is expected to
be well-suppressed in general. At this moment we still do not understand the superiority of the
wall source, but we expect that our understanding of the systematics of the HAL QCD potential
as well as the nature of hadron interactions advances in the near future in collaboration with the
supercomputer Fugaku.
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FIGURE 8.1: Preliminary results on ΞΞ interaction using the one-end trick. (Left) Effective LO potential
of S-wave ΞΞ spin-singlet channel. (Right) k cot δ in comparison to the wall source result. Black line
shows mean values of k cot δ obtained by the wall source.
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Appendix A

Continuum limit of the naive lattice QCD
action

In this appendix, we explicitly show that the lattice action (2.30) and (2.36) introduced in Chap. 2
reproduces the continuum action at the limit of a→ 0.

A.1 Fermion action

Let us consider the lattice fermion action (eq. (2.30) in Chap. 2),

SF = a4
∑︂
n∈Λ

ψ̄
(f)

(n)

(︄
4∑︂

µ=1

γµ
Uµ(n)ψ

(f)(n+ µ̂)− U †
µ(n− µ̂)ψ(f)(n− µ̂)

2a
+m(f)ψ(f)(n)

)︄
.

(A.1)
Since we consider the limit of a → 0, we can utilize the exponential representation of the link
variables and its expansion as

Uµ(n) = eiaAµ(n) = 1 + iaAµ(n) +O(a2) (A.2)

U †
µ(n− µ̂) = e−iaAµ(n−µ̂) = 1− iaAµ(n) +O(a2). (A.3)

Furthermore, the fermion fields are expanded as

ψ(f)(n± µ̂) = ψ(f)(n)± a∂µψ
(f)(n) +O(a2). (A.4)

By combining those equations, we can expand the difference operator of eq. (A.1) in terms of
the lattice spacing a as

1

2a
{(1 + iaAµ(n))(ψ

(f)(n)+a∂µψ
(f)(n))− (1− iaAµ(n))(ψ

(f)(n)− a∂µψ
(f)(n)) +O(a2)}

=
1

2a

(︁
2aiAµ(n)ψ

(f)(n) + 2a∂µψ
(f)(n) +O(a2)

)︁
= (∂µ + iAµ(n))ψ

(f)(n) +O(a).

(A.5)
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Therefore, at the limit of a→ 0 we obtain

a4
∑︂
n∈Λ

ψ̄
(f)

(n)

(︄
4∑︂

µ=1

γµ
Uµ(n)ψ

(f)(n+ µ̂)− U †
µ(n− µ̂)ψ(f)(n− µ̂)

2a
+m(f)ψ(f)(n)

)︄

→
∫︂
d4xψ̄

(f)
(
∑︂
µ

γµ(∂µ + iAµ) +m(f))ψ(f),

(A.6)

where we replace the summation a4
∑︁

n∈Λ to the integral
∫︁
d4x when we take the continuum

limit. The final form is identical to the continuum fermion action.

A.2 Gauge action

Next, let us consider the Wilson gauge action (eq. (2.36) in Chap. 2),

SG =
2

g2

∑︂
n∈Λ

∑︂
µ<ν

Re tr(1− Uµν(n)) (A.7)

=
1

g2

∑︂
n∈Λ

∑︂
µ̸=ν

tr(1− Uµν(n)), (A.8)

where the second equality is obtained by utilizing Uµν = U †
νµ. The second form is more useful

to see the continuum limit. By using the Baker-Campbell-Hausdorff formula,

eAeB = eA+B+ 1
2
[A,B]+..., (A.9)

we can evaluate the plaquette in terms of the gauge field Aµ(x) as

Uµν(n) = eiaAµ(n)eiaAν(n+µ̂)e−iaAµ(n+ν̂)e−iaAµ(n)

=

exp

[︃
iaAµ(n) + iaAν(n+ µ̂)− a2

2
[Aµ(n), Aν(n+ µ̂)] + a3B1 + a4C1 + ...

]︃
× exp

[︃
−iaAµ(n+ ν̂)− iaAµ(n)−

a2

2
[Aµ(n+ ν̂), Aµ(n)] + a3B2 + a4C2 + ...

]︃

=

exp

[︃
iaAµ(n) + iaAν(n+ µ̂)− iaAµ(n+ ν̂)− iaAµ(n)

− a2

2
[Aµ(n), Aν(n+ µ̂)]− a2

2
[Aµ(n+ ν̂), Aµ(n)]

+ [iaAµ(n) + iaAν(n+ µ̂),−iaAµ(n+ ν̂)− iaAµ(n)] + a3B + a4C + ...

]︃
.

(A.10)

By inserting the expansion of gauge fields with shifts as

Aµ(n+ ν̂) = Aµ(n) + a∂νAµ(n) +O(a2), (A.11)
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into the exponent of eq.(A.10), we obtain

Uµν(n) = exp
[︁
ia2∂µAν(n)− ia2∂νAµ(n)− a2[Aµ(n), Aν(n)] + a3B′

µν + a4C ′
µν + ...

]︁
= exp

[︁
ia2Fµν(n) + a3B′

µν + a4C ′
µν + ...

]︁
. (A.12)

Although we do not explicitly estimate the O(a3) or higher order contributions B′
µν , C

′
µν , they

should have structures like B′
µν = iB

′a
µνT

a, C ′
µν = iC

′a
µνT

a since the plaquette Uµν(n) belongs
to SU(3). In the discussion of the continuum limit, details of the coefficients B′a

µν , C
′a
µν is not

important, therefore we do not discuss any more. By inserting eq.(A.12) into the Wilson gauge
action, we obtain

SG =
1

g2

∑︂
n∈Λ

∑︂
µ̸=ν

tr(1− Uµν(n))

=
1

g2

∑︂
n∈Λ

∑︂
µ̸=ν

tr(−ia2Fµν(n)− a3B′ − a4C ′ +
a4

2
F 2
µν(n) +O(a5)). (A.13)

(A.14)

Since the generator of SU(3) T a is trace-less, trFµν = trB′
µν = trC ′

µν = 0 is held. Therefore, at
the limit of a→ 0, the Wilson gauge action reproduces the continuum gauge action as

SG → 1

2g2

∫︂
d4xtrF 2

µν . (A.15)
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Appendix B

Cubic and tetragonal symmetries

In this appendix, we summarize the rotational symmetry properties of lattice QCD simulations.

B.1 Cubic symmetry group

Lattice QCD simulations are performed in a finite spatial box, therefore the continuum rotational
symmetry of the system reduces to the symmetries which keep the box invariant. In the center-
of-mass frame, the reduced symmetry group is called the cubic group, denoted by Oh. The
cubic group consists of 48 components: 10 rotations around x, y, z axis, 8 rotations around the
threefold axis, 6 rotations around the twofold symmetry axis, and their 24 parity partners. We
schematically show typical rotations in Figure B.1. There are 10 irreducible representations in

FIGURE B.1: Representative rotations in the cubic symmetry group. (Left) rotation around z-axis. (Mid-
dle) rotation around twofold symmetry axis. (Right) rotation around threefold symmetry axis.

the cubic group Oh: 1 dimensional representations A±
1 and A±

2 ; 2 dimensional representation
E±; and 3 dimensional representations T±

1 , T±
2 . Superscripts represent parity property. The

energy eigenstates obtained in lattice QCD belong to those irreducible representations. In the
scattering analysis in lattice QCD, the relation between irreducible representations of Oh and
representations of continuum rotational group O(3) is important to extract a certain partial wave
component. By using the group theory, we obtain the relation summarized in Tab. B.1. For
example, to analyze some S-wave (l = 0) scattering in lattice QCD, we have to study energy
eigenstates belonging to A+

1 irreducible representation.
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TABLE B.1: Relation between partial waves and irreducible representations of the cubic group.

Partial wave rep. Cubic irrep.
l = 0 A+

1

l = 1 T−
1

l = 2 E+, T+
2

l = 3 T−
1 , A

−
2 , T

−
2

l = 4 A+
1 , E

+, T+
1 , T

+
2

The projection of operators into a certain irreducible representation is achieved by acting the
following projection:

P
(Γ)
j =

nΓ

N

∑︂
g∈G

Γ∗
jj(g)R(g), (B.1)

where R(g) is some representation of the group Oh, Γ(g) is a target irreducible representation
with dimension nΓ, N is a rank of Oh. Sometimes the traced projection is utilized as well,

P (Γ) =
∑︂
j

nΓ

N

∑︂
g∈G

Γ∗
jj(g)R(g) =

nΓ

N

∑︂
g∈G

χ∗(g)R(g), (B.2)

where χ(g) is the character of g ∈ Oh. For instance, when we consider the operator which
transforms under the cubic group as

O → UR(g)OU †
R(g), (B.3)

the projected operator is given as

OΓ
j = P

(Γ)
j O =

nΓ

N

∑︂
g∈G

Γ∗
jj(g)UR(g)OU †

R(g). (B.4)

B.2 Tetragonal symmetry group

In the laboratory frame calculation, the shape of the box changes due to the Lorentz contrac-
tion when the system is boosted back to the center-of-mass frame, and therefore the reduced
symmetry group becomes smaller than the cubic group. Let us consider the case of our study,
where total momenta are along with the z-axis. In that case, the box changes to a rectangular
of L × L × γL with a boost factor γ. The symmetry group of such a rectangular is called the
tetragonal symmetry group, denoted by D4h. This symmetry group consists of 16 components:
4 rotations around ez; 4 rotations around ex, ey, ex + ey, ex − ey; and those multiplied by the
reflection with respect to the (x, y)-plane. We show schematic figures of typical rotations in
Figure B.2.

There are 10 irreducible representations in the tetragonal group D4h: 1 dimensional repre-
sentations A±

1 , A±
2 , B±

1 , B±
2 ; and 2 dimensional representation E±. The relation between those

irreducible representations and the partial wave components is summarized in Tab. B.2. The
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FIGURE B.2: Representative rotations in the tetragonal symmetry group. (Left) rotation around z-axis.
(Middle) rotation around y-axis. (Right) rotation around ex − ey.

TABLE B.2: Relation between partial waves and irreducible representations of the tetragonal group. The
coefficient in front of the irrep names represents multiplicity of appearance.

Partial wave rep. Tetragonal irrep.
l = 0 A+

1

l = 1 A−
2 , E

−

l = 2 A+
1 , B

+
1 , B

+
2 , E

+

l = 3 A−
2 , B

−
1 , B

−
2 , 2E

−

projection of the operator can be done as the cubic group.
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Appendix C

Details of dilution

In this appendix, we summarize details of the dilution we employ in our study. To utilize the
dilution technique, we need to determine the rules to split a single noise vector into diluted
vectors as

ηaα(x, t) =

Ndil−1∑︂
i=0

η(i)aα(x, t). (C.1)

Since the noise vector generally has indices of color, spinor, and spacetime, we can consider a
lot of splitting rules by combining the different kinds of indices. In the following, we introduce
splitting rules of each kind of indices: color, spinor, time, and space. We combine them in
practice.

C.1 Color dilution

As the color index consists of just three components, we employ a full dilution in this index as

η =
2∑︂

i=0

η
(i)
color, (C.2)

where each diluted vector only contains information of one of three color components as

(η
(i)
color)aα(x, t) = 0 (if i ̸= a). (C.3)

C.2 Spinor dilution

The spinor index is also fully diluted as

η =
3∑︂

i=0

η
(i)
spinor, (C.4)

where η(i)spinor satisfies
(η

(i)
spinor)aα(x, t) = 0 (if i ̸= α). (C.5)
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In our study, we always employ color and spinor dilution.

C.3 Time dilution

For time dilution, we employ not only the full dilution but also the interlaced one.

C.3.1 Full dilution

The full time dilution is almost trivial as the case of color and spinor indices. It is defined as

η =
Nt−1∑︂
i=0

η
(i)
t , (C.6)

where Nt is the time extent of considering lattice box and η
(i)
t contains information of each

timeslices as
(η

(i)
t )aα(x, t) = 0 (if i ̸= t). (C.7)

C.3.2 J-interlace dilution

In contrast to the full dilution, J-interlace dilution is somewhat non-trivial. In this dilution, we
define the diluted vector η(i)t−J int as

η =
Nt−1∑︂
i=0

η
(i)
t−J int, (C.8)

with
(η

(i)
t−J int)aα(x, t) = 0 (if i ̸= t mod J). (C.9)

We show a schematic figure in the case of 4-interlace dilution with full time extent of Nt = 8.

FIGURE C.1: schematic figure of 4-interlace dilution with Nt = 8.
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C.4 Space dilution

The space dilution is the most non-trivial one in comparison with other kinds of dilution. In our
study, we employ s2(even-odd), s4, s8 dilutions and their combination.

C.4.1 s2(even-odd) dilution

The s2 (even-odd) dilution splits the noise vector into two diluted vectors by considering the
evenness and oddness of summations of spatial coordinates, nx + ny + nz.

η = η
(0)
s2 + η

(1)
s2 , (C.10)

with
η
(i)
s2 ̸= 0, if nx + ny + nz = i mod 2, (C.11)

A schematic picture is shown in Fig. C.2.

FIGURE C.2: Schematic picture of the s2(even-odd) dilution

C.4.2 s4 dilution

s4 dilution is taken so that the discretized Laplacian refer as independent diluted vectors as
possible. It splits the noise vector into 4 diluted vectors as

η =
3∑︂

i=0

η
(i)
s4 , (C.12)

The splitting rule is defined as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
η
(0)
s4 ̸= 0 if (nx, ny, nz) = (even,even,even) or (odd,odd,odd)
η
(1)
s4 ̸= 0 if (nx, ny, nz) = (odd,even,even) or (even,odd,odd)
η
(2)
s4 ̸= 0 if (nx, ny, nz) = (even,odd,even) or (odd,even,odd)
η
(3)
s4 ̸= 0 if (nx, ny, nz) = (odd,odd,even) or (even,even,odd)

. (C.13)
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A schematic picture is shown in Fig. C.3.

FIGURE C.3: Schematic picture of the s4 dilution

C.4.3 s8 dilution

The s8 dilution enables us to refer totally different diluted vectors in the discretized Laplacian.

η =
7∑︂

i=0

η
(i)
s8 (C.14)
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The rule for splitting is defined as

η(0) ̸= 0 if

⎧⎨⎩(nx, ny, nz) = (odd,odd,odd) and nx + ny + nz = 1 mod 4

(nx, ny, nz) = (even,even,even) and nx + ny + nz = 2 mod 4

η(1) ̸= 0 if

⎧⎨⎩(nx, ny, nz) = (odd,odd,odd) and nx + ny + nz = 3 mod 4

(nx, ny, nz) = (even,even,even) and nx + ny + nz = 0 mod 4

η(2) ̸= 0 if

⎧⎨⎩(nx, ny, nz) = (odd,even,even) and nx + ny + nz = 1 mod 4

(nx, ny, nz) = (even,odd,odd) and nx + ny + nz = 2 mod 4

η(3) ̸= 0 if

⎧⎨⎩(nx, ny, nz) = (odd,even,even) and nx + ny + nz = 3 mod 4

(nx, ny, nz) = (even,odd,odd) and nx + ny + nz = 0 mod 4

η(4) ̸= 0 if

⎧⎨⎩(nx, ny, nz) = (even,odd,even) and nx + ny + nz = 1 mod 4

(nx, ny, nz) = (odd,even,odd) and nx + ny + nz = 2 mod 4

η(5) ̸= 0 if

⎧⎨⎩(nx, ny, nz) = (even,odd,even) and nx + ny + nz = 3 mod 4

(nx, ny, nz) = (odd,even,odd) and nx + ny + nz = 0 mod 4

η(6) ̸= 0 if

⎧⎨⎩(nx, ny, nz) = (even,even,odd) and nx + ny + nz = 1 mod 4

(nx, ny, nz) = (odd,odd,even) and nx + ny + nz = 2 mod 4

η(7) ̸= 0 if

⎧⎨⎩(nx, ny, nz) = (even,even,odd) and nx + ny + nz = 3 mod 4

(nx, ny, nz) = (odd,odd,even) and nx + ny + nz = 0 mod 4

. (C.15)

See Fig. C.4 for a schematic figure of the s8 dilution.

FIGURE C.4: Schematic picture of the s8 dilution
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Appendix D

Correlation function of ππ interaction

In this appendix, we summarize definitions of correlation functions calculated in our study.
Details on Wick contractions are explained as well.

D.1 Pion propagator

D.1.1 Definition

We define pion 2pt functions (pion propagator) as

Cp(t− t0) =
∑︂
x,y

eip·ye−ip·x⟨π+(x, t)π−
local/smear(y, t0)⟩, (D.1)

where pion operators are defined as

π+(x, t) = d̄(x, t)γ5u(x, t), (D.2)

π−(x, t) = ū(x, t)γ5d(x, t). (D.3)

πlocal/smear at the source part represents a pion operator constructed by local or smeared quark
fields. The source timeslice t0 is averaged to improve the statistics in practice. The momentum
projection of pion operators is done by the spatial summation with the exponential factor. There-
fore, this correlation function contains single pion energies with spatial momentum p, Eπ(p),
as

Cp(t− t0) = Ce−Eπ(p)(t−t0) + · · · , (D.4)

where C is an overlapping constant and ellipsis is the excited states contributions. In the contin-
uum world, Eπ(p) is given as a dispersion relation of pion,

Eπ(p) =
√︁
m2

π + p2, (D.5)

but in the lattice world it deviates from the continuum relation due to the finite lattice spac-
ing. The formulation of the HAL QCD method is based on the continuum dispersion relation,
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therefore in some cases involving non-zero momentum insertions (e.g. the laboratory frame
calculations) it is better to check the deviation explicitly.

D.1.2 Wick contraction

After the Wick contraction, the correlation function becomes∑︂
x,y

eip·ye−ip·x⟨tr
[︁
D−1(x, t;y, t0)γ5D

−1(y, t0;x, t)γ5
]︁
⟩gauge, (D.6)

where ⟨ ⟩gauge is a remaining path integral of gauge fields (Monte-Carlo simulations), and the
trace is taken over the color and spinor indices. We also note that we ignore a flavor identification
of quark propagators since we only consider the cases where up and down quark have the same
mass, mu = md.

D.2 I = 2 ππ S-wave correlation function

D.2.1 Definition

The most general definition of the correlation function for I = 2 ππ S-wave interaction is given
as

F I=2
ππ,P(x, x

4, X4 −X4
0 ) =

∑︂
X

e−iP·X⟨Tπ+(X + x/2)π+(X − x/2)Jπ+π+(P, X4
0 )⟩, (D.7)

where X = (X, X4) and x = (x, x4) are the center-of-mass and relative coordinates between
sink pions, P is a total momentum of the two-pion system. The source operator is defined as

Jπ+π+

(︁
P, X4

0

)︁
=
∑︂
y,z

eip1·yeip2·zπ−
local/smear

(︁
y, X4

0

)︁
π−
local/smear

(︁
z, X4

0

)︁
, (D.8)

with P = p1 + p2. This source operator overlaps to states which have an isospin I = 2, Iz = 2,
partial wave l = 0, and total momentum P. The correlation function contains the NBS wave
functions ϕ as

F I=2
ππ,P(x, x

4, X4 −X4
0 ) =

∑︂
n

AnϕWn(x, x
4)e−Wn(X4−X4

0 ) + · · · , (D.9)

where An = ⟨n|Jπ+π+(P, 0)⟩ is an overlapping factor of the elastic n-th state, Wn is the energy
of the n-th elastic state, and the ellipsis is the inelastic contribution.
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D.2.2 Wick contraction

Next, let us consider the estimation of the correlation function introduced above. After the Wick
contraction, the correlation function is rewritten by the summation of the two types of diagrams.
Representative Wick contraction diagrams is shown in FigureD.1.
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connected diagram

FIGURE D.1: Representative diagrams appearing in the I = 2 ππ correlation function. Gray arrows
represent quark propagations and paired qq combinations correspond to each pion operators. In this
cartoons, we show the source operators on the right hand side.

There are two types of diagram, one without any quark exchange between two pions (we call
it “separated diagram”), the other with a single quark exchange (we call it “connected diagram”).
Both types have the other contribution with flipped spatial coordinates of sink pions, but we do
not discuss them since they can be immediately estimated from the representatives.

Separated diagram

The separated diagram corresponds to the following Wick contraction:

⟨d̄γ5u(X + x/2)d̄γ5u(X − x/2)ūγ5d(y, X
4
0 )ūγ5d(z, X

4
0 )⟩, (D.10)

where we abbreviate summation and exponential factors. After integrating quark fields, it be-
comes

(+)⟨tr
[︁
D−1(X+ x/2, X4 + x4/2;y, X4

0 )γ5D
−1(y, X4

0 ;X+ x/2, X4 + x4/2)γ5
]︁

× tr
[︁
D−1(X− x/2, X4 − x4/2; z, X4

0 )γ5D
−1(z, X4

0 ;x,X− x/2, X4 − x4/2)γ5
]︁
⟩gauge,
(D.11)

where ⟨ ⟩gauge is a remaining path integral of gauge fields (Monte-Carlo simulations), and the
trace is taken over the color and spinor indices.
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Connected diagram

The Wick contraction of the connected diagram is

⟨d̄γ5u(X + x/2)d̄γ5u(X − x/2)ūγ5d(y, X
4
0 )ūγ5d(z, X

4
0 )⟩, (D.12)

and by performing quark integrals, we obtain

(−)⟨tr
[︁
D−1(X+ x/2, X4 + x4/2;y, X4

0 )γ5D
−1(y, X4

0 ;X− x/2, X4 − x4/2)

× γ5D
−1(X− x/2, X4 − x4/2; z, X4

0 )γ5D
−1(z, X4

0 ;X+ x/2, X4 + x4/2)γ5
]︁
⟩gauge.
(D.13)

D.3 I = 1 ππ P-wave correlation function

D.3.1 Definition

The correlation function for the I = 1 ππ P-wave interaction is defined as

F I=1
ππ,P=0(r, t− t0) =

∑︂
t0

⟨(ππ)I=1,Iz=0(r, t)J
T−
1

I=1,Iz=0(t0)⟩, (D.14)

where we only consider the center-of-mass frame, P = 0. In our study, the sink operator is
chosen as

(ππ)I=1,Iz=0(r, t) =
1√
2
{π+(r+ x, t+∆t)π−(x, t)− π−(r+ x, t+∆t)π+(x, t)}, (D.15)

with fixed ∆t for the application of the hybrid method, and

(ππ)I=1,Iz=0(r, t) =
1√
2
{π+

smear(r+ x, t)π−
smear(x, t)− π−

smear(r+ x, t)π+
smear(x, t)}, (D.16)

for the ρ resonance study. The coordinate x is fixed somewhere, but the NBS wave function is
independent of it due to the translational invariance. Both choices are suitable for the reduction
of systematics in each calculation and are discussed in detail in the main part. As regards the
source operator, we can choose two different types of the source operator as

J T−
1

ρ,I=1,Iz=0(t0) = ρ03(t0), (D.17)

J T−
1

ππ,I=1,Iz=0(t0) = (ππ)I=1,Iz=0(p3, t0), (D.18)
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where p3 = (0, 0, 2π/L) is a back-to-back relative momentum of two pion operators, (ππ)I=1,Iz=0(p, t)

and ρ03 are defined as

ρ03(t) =
∑︂
z

1√
2

(︁
ū(z, t)γ3u(z, t)− d̄(z, t)γ3d(z, t)

)︁
(D.19)

(ππ)I=1,Iz=0(p, t) =
1√
2

∑︂
y1,y2

e−ip·y1eip·y2
(︁
π−(y1, t)π

+(y2, t)− π+(y1, t)π
−(y2, t)

)︁
,(D.20)

Those operators overlap to states which has an isospin I = 1, Iz = 0, partial wave l = 1, and
total momentum P = 0. In the study of the hybrid method, we only consider the ρ type source
of Eq. (D.18), since it is expected that this source strongly overlaps a bound state corresponding
to the ρ meson. On the other hand, the ρ resonance study employs both types to determine
the non-local potential at the next-to-next-to-leading order of approximation of the derivative
expansion.

D.3.2 Wick contraction

Representative Wick contraction diagrams is shown in FigureD.2 and D.3.
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box diagram

FIGURE D.2: Representative diagrams contributing to the correlation function with ππ-type source op-
erator.

<latexit sha1_base64="eA6cC+Yke2w6+xndKmHxhmczT1M=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWw2k3btZhN2N0Ip/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAqujet+O4W19Y3NreJ2aWd3b/+gfHjU0kmmGDZZIhLVCahGwSU2DTcCO6lCGgcC28Hobua3n1BpnsgHM07Rj+lA8ogzaqzUCPvlilt15yCrxMtJBXLU++WvXpiwLEZpmKBadz03Nf6EKsOZwGmpl2lMKRvRAXYtlTRG7U/mh07JmVVCEiXKljRkrv6emNBY63Ec2M6YmqFe9mbif143M9GNP+EyzQxKtlgUZYKYhMy+JiFXyIwYW0KZ4vZWwoZUUWZsNiUbgrf88ippXVS9q6rXuKzUbvM4inACp3AOHlxDDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kDyeGM7g==</latexit>

d

<latexit sha1_base64="qri4HcI4MBjED4KvouvuYkuumBE=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuiG5cV7AOmQ8lkMm1oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7yL0nTDnTxnW/ncra+sbmVnW7trO7t39QPzzqapkpQjtEcqn6IdaUM0E7hhlO+6miOAk57YWTu8LvPVGlmRSPZprSIMEjwWJGsLGSP5DWLLIoGtYbbtOdA60SryQNKNEe1r8GkSRZQoUhHGvte25qghwrwwins9og0zTFZIJH1LdU4ITqIJ+vPENnVolQLJV9wqC5+juR40TraRLayQSbsV72CvE/z89MfBPkTKSZoYIsPoozjoxExf0oYooSw6eWYKKY3RWRMVaYGNtSzZbgLZ+8SroXTe+q6T1cNlq3ZR1VOIFTOAcPrqEF99CGDhCQ8Ayv8OYY58V5dz4WoxWnzBzDHzifPzGtkTI=</latexit>

d
<latexit sha1_base64="k9OxXNv9uJlv+1nWW3d/WChKjbo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUSPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwB46WM/w==</latexit>u

<latexit sha1_base64="eA6cC+Yke2w6+xndKmHxhmczT1M=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWw2k3btZhN2N0Ip/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAqujet+O4W19Y3NreJ2aWd3b/+gfHjU0kmmGDZZIhLVCahGwSU2DTcCO6lCGgcC28Hobua3n1BpnsgHM07Rj+lA8ogzaqzUCPvlilt15yCrxMtJBXLU++WvXpiwLEZpmKBadz03Nf6EKsOZwGmpl2lMKRvRAXYtlTRG7U/mh07JmVVCEiXKljRkrv6emNBY63Ec2M6YmqFe9mbif143M9GNP+EyzQxKtlgUZYKYhMy+JiFXyIwYW0KZ4vZWwoZUUWZsNiUbgrf88ippXVS9q6rXuKzUbvM4inACp3AOHlxDDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kDyeGM7g==</latexit>

d

<latexit sha1_base64="qri4HcI4MBjED4KvouvuYkuumBE=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuiG5cV7AOmQ8lkMm1oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7yL0nTDnTxnW/ncra+sbmVnW7trO7t39QPzzqapkpQjtEcqn6IdaUM0E7hhlO+6miOAk57YWTu8LvPVGlmRSPZprSIMEjwWJGsLGSP5DWLLIoGtYbbtOdA60SryQNKNEe1r8GkSRZQoUhHGvte25qghwrwwins9og0zTFZIJH1LdU4ITqIJ+vPENnVolQLJV9wqC5+juR40TraRLayQSbsV72CvE/z89MfBPkTKSZoYIsPoozjoxExf0oYooSw6eWYKKY3RWRMVaYGNtSzZbgLZ+8SroXTe+q6T1cNlq3ZR1VOIFTOAcPrqEF99CGDhCQ8Ayv8OYY58V5dz4WoxWnzBzDHzifPzGtkTI=</latexit>

d<latexit sha1_base64="3tqX1dd/b35Zclmgh9Nk0UoC24s=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6rLoxmUF+4A2lMl00g6dZMLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM49zL0nSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61jUo14y2mpNLdgBouRcxbKFDybqI5jQLJO8HkLvc7T1wboeJHnCbcj+goFqFgFK3U6ytr5lmSDqo1t+7OQVaJV5AaFGgOql/9oWJpxGNkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rM0phE3fjZfeUbOrDIkodL2xUjm6u9ERiNjplFgJyOKY7Ps5eJ/Xi/F8MbPRJykyGO2+ChMJUFF8vvJUGjOUE4toUwLuythY6opQ9tSxZbgLZ+8StoXde+q7j1c1hq3RR1lOIFTOAcPrqEB99CEFjBQ8Ayv8Oag8+K8Ox+L0ZJTZI7hD5zPH0txkUM=</latexit>

u

triangle diagram

FIGURE D.3: Representative diagram contributing to the correlation function with ρ-type source operator.

In this calculation, there are new types of Wick contractions, namely box and triangle di-
agrams. Those diagrams contain a single quark creation/annihilation and they need all-to-all
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propagators as already discussed. Naively, we can also consider another type of diagram called
“disconnected diagram”, in which quarks are totally annihilated in the source part and recreated
in the sink part. Those disconnected contributions, however, are canceled due to the degeneracy
of the up and down quark masses and we do not need to consider them here. As in the case
of I = 2, there are some other contributions with flipped sink/source pions, but in the follow-
ing we only focus on the representatives since others can be immediately estimated from the
representatives or can be estimated similarly.

Separated diagram

The representative of the separated diagram corresponds to the following Wick contraction:

⟨d̄γ5u(x+ r, t)ūγ5d(x, t)ūγ5d(y1, t0)d̄γ5u(y2, t0)⟩, (D.21)

After integrating quark fields, it becomes

(+)⟨tr
[︁
D−1(x+ r, t;y1, t0)γ5D

−1(y1, t0;x+ r, t)γ5
]︁

× tr
[︁
D−1(x, t;y2, t0)γ5D

−1(y2, t0;x, t)γ5
]︁
⟩gauge,

(D.22)

where the trace is taken on the color and spinor indices.

Box diagram

The Wick contraction of the representative box diagram is

⟨d̄γ5u(x+ r, t)ūγ5d(x, t)ūγ5d(y1, t0)d̄γ5u(y2, t0)⟩, (D.23)

and we obtain

(−)⟨tr
[︁
D−1(x+ r, t;x, t)γ5D

−1(x, t;y2, t0)

× γ5D
−1(y2, t0;y1, t0)γ5D

−1(y1, t0;x+ r, t)γ5
]︁
⟩gauge.

(D.24)

Triangle diagram

The Wick contraction of the representative triangle diagram is

⟨d̄γ5u(x+ r, t)ūγ5d(x, t)d̄γ5d(z, t0)⟩, (D.25)

and we obtain

(−)⟨tr
[︁
D−1(x+ r, t;x, t)γ5D

−1(x, t; z, t0)γ3D
−1(z, t0;x+ r, t)γ5

]︁
⟩gauge. (D.26)
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Details of estimations of those diagrams in our studies will be discussed in the main part.
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Appendix E

Smeared sink scheme

In this appendix, we discuss properties of the smeared-sink scheme in details.

E.1 Point-sink scheme vs smeared-sink scheme

To see why we need the smeared-sink scheme for the I = 1 ππ potential, let us compare
potentials between the point-sink scheme and the smeared-sink scheme. Figure E.1 (left) shows
the potentials obtained from the ππ-type source with Nconf = 18 (× 64 timeslice average).
While the potential in the point-sink scheme shows large non-smooth and scattered behavior at
small r, which makes a potential fit difficult, such behavior is absent for the potential in the
smeared-sink scheme. If we calculate the potential in the point-sink scheme without including
box diagrams, such non-smooth behavior does not appear (Fig. E.1 (right)). Therefore, it is
probably caused by box diagrams, which contain quark creation/annihilations.

We suspect that this non-smooth and scattered structure is related to a singular behavior of
the NBS wave function at short distances, caused by quark creation/annihilations. According to
the argument by the operator product expansion[82–86], the sink operator strongly couples to
the ρ-type operator at short distance, whose mass dimension is lower than the ππ-type operator
by 3, therefore the NBS wave function behaves as ψW (r) ∼ 1

r3
Yl=1,m=0(Ωr) at short distances.

This implies that the NBS wave function is highly localized and singular around the origin.
Indeed, in the point-sink scheme this is the case as seen in Fig.E.2 (Left). Since data available at
short distances are restricted on a discretized space, it is difficult to extract a potential smoothly
from such a localized wave function by a discretized Laplacian. In the smeared-sink scheme,
on the other hand, such a singular structure of the NBS wave function is much milder as seen
in Fig.E.2 (Right), so that the potential reconstructed from discrete data is smoother at short
distances. We also expect similar behaviors of HAL QCD potentials at short distances for other
systems which allow quark creation/annihilations.
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FIGURE E.1: A comparison in I = 1 ππ potential between two schemes at t = 14. (Left) The effective
LO potentials from the ππ-type source operator. Blue (red) points show data in the point-sink (smeared-
sink) scheme. (Right) Those from the NBS wave function without box diagrams.

z [fm]

1.2 0.6 0.0
0.6

1.2

y [
fm

]

1.2
0.6

0.0
0.6

1.2
0.010

0.005

0.000

0.005

0.010

NBS wave function at x = 0 (point sink)

z [fm]

1.2 0.6 0.0
0.6

1.2

y [
fm

]

1.2
0.6

0.0
0.6

1.2

20
10
0
10
20

NBS wave function at x = 0 (smeared sink)
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scheme (Right).
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E.2 Effect on the derivative expansion

The previous HAL QCD study with the LapH method [26] has revealed that the LapH sink-
smearing significantly enhances non-localities of HAL QCD potentials, which makes the deriva-
tive expansion less reliable. Therefore we would like to check whether our sink-smearing
scheme is free from such a problem. For this purpose, we calculate I = 2 ππ potential in
both point-sink and smeared-sink schemes and compare LO phase shifts.

Calculations of NBS wave functions in both schemes are performed using the one-end trick
with full color/spin dilution and s2 space dilution for a single Z4 noise. We employ Nconf = 10

(×64 timeslice average) gauge configurations and statistical errors are estimated by the jackknife
method with bin-size 1.

Figure E.3(left) shows effective LO potentials at t = 14. Potentials between two schemes
show different behaviors only at small r, which however do not affect phase shifts in a low-
energy region, as plotted in Fig. E.3 (right). Thus our smeared-sink scheme does not enhance
non-locality of the I = 2 ππ potential in this energy region. Since a energy range relevant for
the ρ resonance in this study is well covered by

√
s < 1200 MeV, we expect that non-locality of

the I = 1 ππ potential is not enhanced by the smeared-sink scheme, either.
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(Left) Effective LO potentials. Blue (red) points show data in the point-sink (smeared-sink) scheme.
(Right) Corresponding phase shifts.
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Appendix F

Laboratory frame calculation: Estimation
of systematic uncertainty

In this appendix, we discuss estimation of the systematic uncertainty of the scattering phase shift
shown in Chap. 7. We investigate two aspects of the potential: normalization dependence and
X4 dependence. In the former investigation, we consider another time-dependent method using
a mass normalization. The R-correlators are defined as

RP=ez(x, x
4, X4) =

Fπ+π+,ez(x, x
4, X4)

C0(X4)2
(F.1)

RP=2ez(x, x
4, X4) =

Fπ+π+,2ez(x, x
4, X4)

C0(X4)2
, (F.2)

and the building blocks of the potential are modified to

G(x, x4, X4) =
(︁
(∂X4 − 2m)2 −P2

)︁
RP(x, x

4, X4), (F.3)

E(x, x4, X4) =
1

4m

[︁
∂2X4 − 4m∂X4 −P2

]︁
G(x, x4, X4), (F.4)

L⊥(x, x
4, X4) = ∇2

⊥G(x, x
4, X4), (F.5)

L∥(x, x
4, X4) =

(︁
−(∂X4 − 2m)∇∥ + iP∂x4

)︁2
RP(x, x

4, X4). (F.6)

The LO potential is obtained by,

V LO
x∗4=0(x⊥) =

(︁
L⊥ + L∥ +mE

)︁
(x, x4, X4)

mG(x, x4, X4)

⃓⃓⃓⃓
⃓
x4=0,x∥=0

. (F.7)

As mentioned before, it is expected to give the same potential up to some systematics. Inversely,
we can see the systematics from the difference between the two normalizations.

In the latter investigation, we compare potentials at X4 = 16± 1. In the following, we show
both dependence and the final estimation of uncertainty of the phase shift.
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F.1 Normalization dependence

First, let us see results using two different normalizations in the time-dependent method. Fig-
ure F.1 shows the normalization dependence of the effective LO potentials with non-zero total
momenta, together with the center-of-mass result for a comparison. We observe a slight shift
between the central values of the LO potential, although they are consistent statistically. Fur-
thermore, we find that the shift behavior mainly comes from the energy term (see Figure F.2 and
F.3). The estimation of k2m involves discretized derivatives and dispersion relation, so the energy
term suffers from the discretization error. We suspect the slight shift is the manifestation of the
discretization error.
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FIGURE F.1: Normalization dependence of the potential in the case 1 (Left) and case 2 (Right). We also
show the center-of-mass result (black points) for comparison.
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FIGURE F.2: Normalization dependence of the Laplacian (left) and energy term (right) in the case 1.
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FIGURE F.3: Normalization dependence of the Laplacian (left) and energy term (right) in the case 2.

At first sight, it is not a problem within the statistics, but we observe that it affects the fit
of the potential at a long distance in practice. To reduce the systematics as possible, we only
use data at r < 13 in the potential fit since the long-range data is zero consistent. As seen in
Fig. F.4, however, the remaining normalization dependence appears systematically as a weaker
repulsive force for the 2m normalization. We, therefore, take this dependence into account in
the estimation of the systematic uncertainty.
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FIGURE F.4: Normalization dependence of the scattering phase shift at X4 = 16 in the case 1 (left) and
case 2 (right).

F.2 Timeslice dependence

Next, let us discuss the X4 dependence of the potential. Figures F.5 and F.6 show the LO poten-
tial atX4 = 16±1 in each total momentum sectors. As you can see, the potentials are consistent
statistically, but the central values somewhat fluctuate. Such fluctuations can also affect the fit.
We show the time dependence of the phase shift obtained by theW0,free normalization in Fig. F.7.
The resultant phase shift fluctuates, so we also consider this dependence in the estimation of the
systematics.
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FIGURE F.5: X4 dependence of the potential obtained from two normalizations using W0,free (left) and
2m (right) in the case 1. The center-of-mass result at X4 = 16 is shown as black points for a comparison.
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FIGURE F.6: X4 dependence of the potential obtained from two normalizations using W0,free (left) and
2m (right) in the case 2.
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FIGURE F.7: X4 dependence of the scattering phase shift using W0,free normalization at X4 = 16 in
the case 1 (left) and case 2 (right). Almost the same X4 dependence is observed in the case of 2m
normalization.
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F.3 Final estimation of uncertainty

Finally, let us discuss the final estimation of the systematic uncertainty. Since we observe both
normalization dependence and X4 dependence in the scattering phase shift, we estimate the
systematic uncertainty by the difference of maximum and minimum of those data. Figure F.8
shows the final estimation of uncertainty of the scattering phase shift. Color bands include both
statistical and systematic uncertainty. In the main text, we discuss consistency among different
results including this systematic uncertainty.
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FIGURE F.8: Final estimation of uncertainty of the scattering phase shift. Color bands include both
statistical and systematic uncertainty.



126

Bibliography

[1] M. Gell-Mann, Phys. Lett. 8, 214 (1964).

[2] G. Zweig, (1964).

[3] G. Zweig, “An SU(3) model for strong interaction symmetry and its breaking. Version 2”,
in DEVELOPMENTS IN THE QUARK THEORY OF HADRONS. VOL. 1. 1964 - 1978
(Feb. 1964), pp. 22–101.

[4] P. Zyla et al., PTEP 2020, 083C01 (2020).

[5] S. K. Choi et al., Phys. Rev. Lett. 91, 262001 (2003).

[6] Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, Prog. Part. Nucl. Phys. 107, 237
(2019).

[7] J. R. Pelaez, Phys. Rept. 658, 1 (2016).

[8] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).

[9] M. Creutz, Phys. Rev. D 21, 2308 (1980).

[10] S. Durr et al., Science 322, 1224 (2008).

[11] L. Maiani and M. Testa, Physics Letters B 245, 585 (1990).

[12] M. Luscher, Nucl. Phys. B 354, 531 (1991).

[13] K. Rummukainen and S. A. Gottlieb, Nucl. Phys. B 450, 397 (1995).

[14] M. T. Hansen and S. R. Sharpe, Phys. Rev. D 86, 016007 (2012).

[15] R. A. Briceno, J. J. Dudek, and R. D. Young, Rev. Mod. Phys. 90, 025001 (2018).

[16] N. Ishii, S. Aoki, and T. Hatsuda, Phys. Rev. Lett. 99, 022001 (2007).

[17] S. Aoki, T. Hatsuda, and N. Ishii, Prog. Theor. Phys. 123, 89 (2010).

[18] S. Aoki, Prog. Part. Nucl. Phys. 66, 687 (2011).

[19] S. Aoki and T. Doi, Front. in Phys. 8, 307 (2020).

[20] Y. Lyu, H. Tong, T. Sugiura, S. Aoki, T. Doi, T. Hatsuda, J. Meng, and T. Miyamoto, Phys.
Rev. Lett. 127, 072003 (2021).

[21] T. Iritani et al., Phys. Lett. B 792, 284 (2019).

[22] S. Gongyo et al., Phys. Rev. Lett. 120, 212001 (2018).

https://doi.org/10.1016/S0031-9163(64)92001-3
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevLett.91.262001
https://doi.org/10.1016/j.ppnp.2019.04.003
https://doi.org/10.1016/j.ppnp.2019.04.003
https://doi.org/10.1016/j.physrep.2016.09.001
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevD.21.2308
https://doi.org/10.1126/science.1163233
https://doi.org/https://doi.org/10.1016/0370-2693(90)90695-3
https://doi.org/10.1016/0550-3213(91)90366-6
https://doi.org/10.1016/0550-3213(95)00313-H
https://doi.org/10.1103/PhysRevD.86.016007
https://doi.org/10.1103/RevModPhys.90.025001
https://doi.org/10.1103/PhysRevLett.99.022001
https://doi.org/10.1143/PTP.123.89
https://doi.org/10.1016/j.ppnp.2011.07.001
https://doi.org/10.3389/fphy.2020.00307
https://doi.org/10.1103/PhysRevLett.127.072003
https://doi.org/10.1103/PhysRevLett.127.072003
https://doi.org/10.1016/j.physletb.2019.03.050
https://doi.org/10.1103/PhysRevLett.120.212001


Bibliography 127

[23] Y. Ikeda, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, T. Inoue, T. Iritani, N. Ishii, K. Murano,
and K. Sasaki, Phys. Rev. Lett. 117, 242001 (2016).

[24] Y. Ikeda, J. Phys. G 45, 024002 (2018).

[25] S. Acharya et al., Nature 588, 232 (2020).

[26] D. Kawai, S. Aoki, T. Doi, Y. Ikeda, T. Inoue, T. Iritani, N. Ishii, T. Miyamoto, H. Nemura,
and K. Sasaki, PTEP 2018, 043B04 (2018).

[27] D. Kawai, EPJ Web Conf. 175, 05007 (2018).

[28] M. Peardon, J. Bulava, J. Foley, C. Morningstar, J. Dudek, R. G. Edwards, B. Joo, H.-W.
Lin, D. G. Richards, and K. J. Juge, Phys. Rev. D 80, 054506 (2009).

[29] J. Foley, K. Jimmy Juge, A. O’Cais, M. Peardon, S. M. Ryan, and J.-I. Skullerud, Comput.
Phys. Commun. 172, 145 (2005).

[30] Y. Akahoshi, S. Aoki, T. Aoyama, T. Doi, T. Miyamoto, and K. Sasaki, PTEP 2019,
083B02 (2019).

[31] Y. Akahoshi, S. Aoki, T. Aoyama, T. Doi, T. Miyamoto, and K. Sasaki, PTEP 2020,
073B07 (2020).

[32] C. McNeile and C. Michael, Phys. Rev. D 73, 074506 (2006).

[33] G. Martinelli and C. T. Sachrajda, Nucl. Phys. B 316, 355 (1989).

[34] E. Shintani, R. Arthur, T. Blum, T. Izubuchi, C. Jung, and C. Lehner, Phys. Rev. D 91,
114511 (2015).

[35] P. Estabrooks and A. Martin, Nuclear Physics B 95, 322 (1975).

[36] S. D. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S. M. Flatté, J. H. Friedman,
T. A. Lasinski, G. R. Lynch, M. S. Rabin, and F. T. Solmitz, Phys. Rev. D 7, 1279 (1973).

[37] U.-G. Meissner, Physics Reports 161, 213 (1988).

[38] R. Machleidt and I. Slaus, J. Phys. G 27, R69 (2001).

[39] S. Aoki et al., Phys. Rev. D 84, 094505 (2011).

[40] X. Feng, K. Jansen, and D. B. Renner, Phys. Rev. D 83, 094505 (2011).

[41] C. B. Lang, D. Mohler, S. Prelovsek, and M. Vidmar, Phys. Rev. D 84, [Erratum: Phys.Rev.D
89, 059903 (2014)], 054503 (2011).

[42] J. J. Dudek, R. G. Edwards, and C. E. Thomas, Phys. Rev. D 87, [Erratum: Phys.Rev.D
90, 099902 (2014)], 034505 (2013).

[43] D. J. Wilson, R. A. Briceno, J. J. Dudek, R. G. Edwards, and C. E. Thomas, Phys. Rev. D
92, 094502 (2015).

[44] C. Alexandrou, L. Leskovec, S. Meinel, J. Negele, S. Paul, M. Petschlies, A. Pochinsky,
G. Rendon, and S. Syritsyn, Phys. Rev. D 96, 034525 (2017).

https://doi.org/10.1103/PhysRevLett.117.242001
https://doi.org/10.1088/1361-6471/aa9afd
https://doi.org/10.1038/s41586-020-3001-6
https://doi.org/10.1093/ptep/pty032
https://doi.org/10.1051/epjconf/201817505007
https://doi.org/10.1103/PhysRevD.80.054506
https://doi.org/10.1016/j.cpc.2005.06.008
https://doi.org/10.1016/j.cpc.2005.06.008
https://doi.org/10.1093/ptep/ptz078
https://doi.org/10.1093/ptep/ptz078
https://doi.org/10.1093/ptep/ptaa087
https://doi.org/10.1093/ptep/ptaa087
https://doi.org/10.1103/PhysRevD.73.074506
https://doi.org/10.1016/0550-3213(89)90035-7
https://doi.org/10.1103/PhysRevD.91.114511
https://doi.org/10.1103/PhysRevD.91.114511
https://doi.org/https://doi.org/10.1016/0550-3213(75)90048-6
https://doi.org/10.1103/PhysRevD.7.1279
https://doi.org/https://doi.org/10.1016/0370-1573(88)90090-7
https://doi.org/10.1088/0954-3899/27/5/201
https://doi.org/10.1103/PhysRevD.84.094505
https://doi.org/10.1103/PhysRevD.83.094505
https://doi.org/10.1103/PhysRevD.89.059903
https://doi.org/10.1103/PhysRevD.89.059903
https://doi.org/10.1103/PhysRevD.87.034505
https://doi.org/10.1103/PhysRevD.87.034505
https://doi.org/10.1103/PhysRevD.92.094502
https://doi.org/10.1103/PhysRevD.92.094502
https://doi.org/10.1103/PhysRevD.96.034525


128 Bibliography

[45] C. Andersen, J. Bulava, B. Hörz, and C. Morningstar, Nucl. Phys. B 939, 145 (2019).

[46] M. Werner et al., Eur. Phys. J. A 56, 61 (2020).

[47] M. Fischer, B. Kostrzewa, M. Mai, M. Petschlies, F. Pittler, M. Ueding, C. Urbach, and
M. Werner, (2020).

[48] Y. Akahoshi, S. Aoki, and T. Doi, Phys. Rev. D 104, 054510 (2021).

[49] S. Aoki, in 37th International Symposium on Lattice Field Theory (Jan. 2020).

[50] M. E. Peskin and D. V. Schroeder, in An Introduction To Quantum Field Theory (1995).

[51] H. Nielsen and M. Ninomiya, Nuclear Physics B 185, 20 (1981).

[52] H. Nielsen and M. Ninomiya, Nuclear Physics B 193, 173 (1981).

[53] L. H. Karsten, Physics Letters B 104, 315 (1981).

[54] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B 259, 572 (1985).

[55] Y. Iwasaki, Nucl. Phys. B 258, 141 (1985).

[56] S. Aoki et al., Nucl. Phys. B Proc. Suppl. 106, 263 (2002).

[57] S. Aoki et al., Phys. Rev. D 72, 054510 (2005).

[58] T. Yamazaki, K.-i. Ishikawa, Y. Kuramashi, and A. Ukawa, Phys. Rev. D 86, 074514
(2012).

[59] T. Iritani et al., JHEP 10, 101 (2016).

[60] C. R. Allton, C. T. Sachrajda, R. M. Baxter, S. P. Booth, K. C. Bowler, S. Collins, D. S.
Henty, R. D. Kenway, B. J. Pendleton, D. G. Richards, J. N. Simone, A. D. Simpson, B. E.
Wilkes, and C. Michael, Phys. Rev. D 47, 5128 (1993).

[61] N. Ishii, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, K. Murano, H. Nemura, and K.
Sasaki, Phys. Lett. B 712, 437 (2012).

[62] T. Miyamoto, Y. Akahoshi, S. Aoki, T. Aoyama, T. Doi, S. Gongyo, and K. Sasaki, Phys.
Rev. D 101, 074514 (2020).

[63] S. Aoki et al., Phys. Rev. D 65, 094507 (2002).

[64] S. Aoki et al., Phys. Rev. D 73, 034501 (2006).

[65] S. Ueda, S. Aoki, T. Aoyama, K. Kanaya, H. Matsufuru, S. Motoki, Y. Namekawa, H.
Nemura, Y. Taniguchi, and N. Ukita, J. Phys. Conf. Ser. 523, 012046 (2014).

[66] K. Murano, N. Ishii, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, H. Nemura, and K.
Sasaki, Phys. Lett. B 735, 19 (2014).

[67] E Hiyama, Y Kino, and M Kamimura, Progress in Particle and Nuclear Physics 51, 223
(2003).

https://doi.org/10.1016/j.nuclphysb.2018.12.018
https://doi.org/10.1140/epja/s10050-020-00057-4
https://doi.org/10.1103/PhysRevD.104.054510
https://doi.org/https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/https://doi.org/10.1016/0370-2693(81)90133-7
https://doi.org/10.1016/0550-3213(85)90002-1
https://doi.org/10.1016/0550-3213(85)90606-6
https://doi.org/10.1016/S0920-5632(01)01683-8
https://doi.org/10.1103/PhysRevD.72.054510
https://doi.org/10.1103/PhysRevD.86.074514
https://doi.org/10.1103/PhysRevD.86.074514
https://doi.org/10.1007/JHEP10(2016)101
https://doi.org/10.1103/PhysRevD.47.5128
https://doi.org/10.1016/j.physletb.2012.04.076
https://doi.org/10.1103/PhysRevD.101.074514
https://doi.org/10.1103/PhysRevD.101.074514
https://doi.org/10.1103/PhysRevD.65.094507
https://doi.org/10.1103/PhysRevD.73.034501
https://doi.org/10.1088/1742-6596/523/1/012046
https://doi.org/10.1016/j.physletb.2014.05.061
https://doi.org/https://doi.org/10.1016/S0146-6410(03)90015-9
https://doi.org/https://doi.org/10.1016/S0146-6410(03)90015-9


Bibliography 129

[68] A. Abdel-Rehim, C. Alexandrou, J. Berlin, M. Dalla Brida, J. Finkenrath, and M. Wagner,
Comput. Phys. Commun. 220, 97 (2017).

[69] T. Iritani, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, H. Nemura,
and K. Sasaki, Phys. Rev. D 99, 014514 (2019).

[70] S. Aoki et al., Phys. Rev. D 79, 034503 (2009).

[71] B. G. Giraud, K. Kato, and A. Ohnishi, J. Phys. A 37, 11575 (2004).

[72] J. Aguilar and J. M. Combes, Commun. Math. Phys. 22, 269 (1971).

[73] E. Balslev and J. M. Combes, Commun. Math. Phys. 22, 280 (1971).

[74] K. Sasaki, N. Ishizuka, M. Oka, and T. Yamazaki, Phys. Rev. D 89, 054502 (2014).

[75] T. Blum et al., Phys. Rev. D 104, 114506 (2021).

[76] D. Guo, A. Alexandru, R. Molina, M. Mai, and M. Döring, Phys. Rev. D 98, 014507
(2018).

[77] R. A. Briceno, J. J. Dudek, R. G. Edwards, and D. J. Wilson, Phys. Rev. D 97, 054513
(2018).

[78] R. A. Briceno, J. J. Dudek, R. G. Edwards, and D. J. Wilson, Phys. Rev. Lett. 118, 022002
(2017).

[79] J. J. Wu, W. Kamleh, D. t. Leinweber, R. D. Young, and J. M. Zanotti, J. Phys. G 45,
125102 (2018).

[80] I. Kanamori and H. Matsufuru, in Computational Science and Its Applications – ICCSA
2018 (2018), pp. 456–471.

[81] T. Amagasa et al., J. Phys. Conf. Ser. 664, 042058 (2015).

[82] S. Aoki, J. Balog, and P. Weisz, JHEP 05, 008 (2010).

[83] S. Aoki, J. Balog, and P. Weisz, JHEP 09, 083 (2010).

[84] S. Aoki, J. Balog, and P. Weisz, New J. Phys. 14, 043046 (2012).

[85] S. Aoki, J. Balog, and P. Weisz, Prog. Theor. Phys. 128, 1269 (2012).

[86] S. Aoki, J. Balog, T. Doi, T. Inoue, and P. Weisz, Int. J. Mod. Phys. E 22, 1330012 (2013).

https://doi.org/10.1016/j.cpc.2017.06.021
https://doi.org/10.1103/PhysRevD.99.014514
https://doi.org/10.1103/PhysRevD.79.034503
https://doi.org/10.1088/0305-4470/37/48/004
https://doi.org/10.1007/BF01877510
https://doi.org/10.1007/BF01877511
https://doi.org/10.1103/PhysRevD.89.054502
https://doi.org/10.1103/PhysRevD.104.114506
https://doi.org/10.1103/PhysRevD.98.014507
https://doi.org/10.1103/PhysRevD.98.014507
https://doi.org/10.1103/PhysRevD.97.054513
https://doi.org/10.1103/PhysRevD.97.054513
https://doi.org/10.1103/PhysRevLett.118.022002
https://doi.org/10.1103/PhysRevLett.118.022002
https://doi.org/10.1088/1361-6471/aaeb9e
https://doi.org/10.1088/1361-6471/aaeb9e
https://doi.org/10.1007/978-3-319-95168-3_31
https://doi.org/10.1007/978-3-319-95168-3_31
https://doi.org/10.1088/1742-6596/664/4/042058
https://doi.org/10.1007/JHEP05(2010)008
https://doi.org/10.1007/JHEP09(2010)083
https://doi.org/10.1088/1367-2630/14/4/043046
https://doi.org/10.1143/PTP.128.1269
https://doi.org/10.1142/S0218301313300129

	List of Publications
	Introduction
	Lattice QCD
	Lattice regularization of QCD
	Euclidean action of QCD
	Lattice regularization
	Doubling problem
	Improvement of lattice actions
	Path integral quantization

	Calculation of correlation functions
	Integral of fermions
	Integral of link variables
	Error estimation
	Flow of numerical simulations in lattice QCD

	Hadron masses from lattice QCD
	Extraction of hadron masses
	Quark smearing


	Hadron-hadron scattering from lattice QCD
	Unitarity of S-matrix and scattering phase shift
	Nambu–Bethe–Salpeter wave function
	Definition
	Asymptotic behavior of the relative NBS wave function in the center-of-mass frame

	HAL QCD method
	Energy-independent non-local potential
	Derivative expansion of the non-local potential
	Interaction potential from lattice QCD: case of center-of-mass frame
	Naive method
	Time-dependent method

	Interaction potential from lattice QCD: case of laboratory frame
	Naive method
	Time-dependent method

	Calculations of physical observables

	Lüscher's finite volume method
	General solution of the Helmholtz equation in a finite box
	Lüscher's formula


	Numerical challenge: All-to-all quark propagator
	Appearance of all-to-all propagator
	Estimation of all-to-all propagator
	Noisy estimator
	Hybrid method

	Techniques to reduce usage of noisy estimators
	One-end trick
	Sequential propagator technique
	Covariant approximation averaging (CAA)


	Application of the hybrid method to the HAL QCD method
	I=2 ππ potential in the HAL QCD method with all-to-all propagators
	Calculation of correlation functions
	Estimation of separated diagram using the hybrid method
	Estimation of connected diagram using the hybrid method
	Potential calculation

	Numerical setup
	Results
	Systematic study on parameter dependence of HAL QCD potential
	Comparison to the conventional result


	The HAL QCD potential in I=1 ππ system with the rho meson bound state
	Calculation of correlation functions
	Estimation of triangle diagram using the hybrid method
	Potential calculation

	Numerical setup
	Results
	Breakdown of naive application of the hybrid method and improvement
	Physical observables


	Exploration of better calculation scheme

	Emergence of the ρ resonance from the HAL QCD potential in lattice QCD
	Calculation of correlation functions by the improved scheme
	Separated diagram
	Box diagrams
	Triangle diagram
	Comparison to the result using the hybrid method

	Simulation details
	Result
	LO analysis
	N2LO analysis
	Resonance parameters
	Breit-Wigner fit
	Direct pole search
	Comparison to the previous result



	I=2 ππ potential from the laboratory frame NBS wave function
	Calculation of correlation functions
	Numerical setup
	Result
	Dispersion relation
	NBS wave function in the laboratory frame
	Effective LO potentials
	Scattering phase shifts

	Preliminary application to the I=1 ππ interaction

	Summary and perspective
	Application of the hybrid method
	Study of the ρ resonance with the improved calculation scheme
	Laboratory frame HAL QCD method
	Perspective
	Resonance studies
	Other applications


	Acknowledgements
	Continuum limit of the naive lattice QCD action
	Fermion action
	Gauge action

	Cubic and tetragonal symmetries
	Cubic symmetry group
	Tetragonal symmetry group

	Details of dilution
	Color dilution
	Spinor dilution
	Time dilution
	Full dilution
	J-interlace dilution

	Space dilution
	s2(even-odd) dilution
	s4 dilution
	s8 dilution


	Correlation function of ππ interaction
	Pion propagator
	Definition
	Wick contraction

	I=2 ππ S-wave correlation function
	Definition
	Wick contraction
	Separated diagram
	Connected diagram


	I=1 ππ P-wave correlation function
	Definition
	Wick contraction
	Separated diagram
	Box diagram
	Triangle diagram



	Smeared sink scheme
	Point-sink scheme vs smeared-sink scheme
	Effect on the derivative expansion

	Laboratory frame calculation: Estimation of systematic uncertainty
	Normalization dependence
	Timeslice dependence
	Final estimation of uncertainty

	Bibliography

