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Abstract

The Standard Model of particles physics is an experimentally well-tested theory and

has succeeded in explaining many experimental data with a very high accuracy. However,

there have been reported results of experiments and observations that cannot be explained

by the Standard Model alone, such as the existence of dark matter, the origin of the baryon

asymmetry and so on, which suggests the existence of physics beyond the Standard Model.

In addition, in recent years, the importance of the consistency between phenomenology

and quantum gravity theory has become well appreciated. Revealing the connection

between physics beyond the Standard Model and the ultimate theory is one of the most

important and fundamental problems left in particle physics.

One attractive and powerful direction for investigating models of physics beyond the

Standard Model is to extend the scalar sector. Such extensions occur naturally in models

beyond the Standard Model, and it is important to clarify how the new scalar interactions,

their scalar potentials, and vacuum expectation values are determined in order to give a

constraint on the model from experiments and observations. In particular, a (pseudo-)

Nambu-Goldstone boson is a particle that appears universally in various models, reflecting

the symmetry of the theory. It plays an important role not only in understanding the

theoretical aspects but also in studying phenomenology. This new scalar field could also

be an attractive candidate for dark matter that naturally escapes the severe constraints

of current experiments. In addition to new particle contents, non-perturbative objects in

field theories, such as topological solitons, can also appear in the model of the beyond

Standard Model, which brings richer physics not only to particle physics but also to

cosmology.

In this thesis, we consider a scalar sector extension based on the singlet scalar and

study the physics beyond the Standard Model that results from it, focusing on the dy-

namics of pseudo-Nambu-Goldstone bosons. First, we consider the case where the scalar

sector extension produces a pseudo-Nambu-Goldstone boson dark matter, which can be a

natural scalar dark matter candidate consistent with the current experiments. We inves-

tigate its ultraviolet completion, the relation between this model and inflation, neutrino

oscillations, and other related physics. In proposing of the ultraviolet completed model,

we take into account the conditions obtained from the consistency with quantum gravity

theory, and study the effects on the dark matter physics and the relationship with the

grand unification. For the case of a singlet scalar having a very large vacuum expectation

value. We study the production mechanism of the pseudo-Nambu-Goldstone dark mat-

ter, and discuss the possibility of compatibility with inflation and neutrino oscillations.

Lastly, we investigate the case where the additional scalar field becomes an axion, and

construct an axion string solution with a novel structure. This string is different from the

known axion string, and we discuss its implications to cosmology.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is a well-tested theory. It is formulated

as a chiral gauge theory based on the SM gauge group

GSM := SU(3)C × SU(2)L × U(1)Y ,

and the Higgs mechanism via a Higgs doublet, which was observed in the ATLAS [A+12]

and CMS [C+12] experiments at the Large Hadron Collider (LHC). All the chiral fermions,

quarks and leptons, and the massive vector bosons acquire their mass from the vacuum

expectation value (VEV) of the Higgs boson. The SM have achieved a successful outcome

to explain experimental and observational facts.

However, the SM is not ultimate theory of our universe from the following theoret-

ical and observational reasons, and it may be a low-energy effective field theory of an

ultraviolet (UV) completed theory such as quantum gravity theory/string theory. In the

theoretical aspects, for example, the following puzzles have been left in the SM:

• The absence of the quantum theory of the gravity and the the selection rule of our

universe being unknown

• The initial value problems of our universe

• The origin of the SM gauge group GSM

• Why there is a hierarchy between the electroweak scale and the Planck scale

• The origin of the three generations of quarks and leptons

• The hierarchical structure among Yukawa couplings

• The reason why the charge of the matter field is quantized

In addition to these theoretical mysteries, the following observational results imply the

physics beyond the Standard Model (BSM):

• The source of matter-antimatter asymmetry [A+20a]

• The origin of the neutrino masses and neutrino oscillations

• The θ-parameter in SU(3)C sector being highly suppressed [Bor00, B+06] (Strong

CP problem)

• Unidentified dark sector: 26.8 % and 68.3 % of the total energy density of our

universe being dark matter and dark energy, respectively [A+20a]
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• The anomalies between the SM predictions and experimental results such as the

muon g − 2 [A+21], and flavor anomalies

The construction of a UV completed theory from the SM solving these theoretical and

experimental problems and describing the phenomenology of the BSM is the most impor-

tant task left for particle physics. This task is important not only for the phenomenology

but also for the construction of quantum gravity theory and the revelation of the selec-

tion rule of the vacuum in quantum gravity theory as pointed out in Ref. [Vaf05], where

the consistency conditions of quantum gravity theory gives constraints on the low-energy

effective theory. The classification of the constraints is discussed in the context of the

Swampland Programs. This may bridge the phenomenology to the theory of everything.

In addition to the collider physics, the cosmology and astrophysics give us new hints

to both the bottom-up and top-down approaches. In particular, dark matter is one of

big probes to investigate the BSM. The existence of dark matter has been confirmed

by several astronomical observations such as spiral galaxies [CS00, SR01], gravitational

lensing [MKR10], cosmic microwave background [A+20b], and collision of bullet clus-

ter [RMC+08]. However, the nature of dark matter is still unknown and any standard

model particles cannot play a role of dark matter. Then, identification of dark matter is

important not only for cosmology but also for particle physics. One of the prominent can-

didate is so-called Weakly Interacting Massive Particle (WIMP). The attractive feature of

WIMPs is that the relic abundance is thermally determined through the interactions with

the SM thermal bath in the early universe. The WIMP mass whose interaction is close

the electroweak interaction is predicted in the range of 10 GeV – 100 TeV. Such WIMPs

are basically detectable through non-gravitational interactions. Although WIMPs are

being searched through direct detection, indirect detection and collider production, no

clear signals of WIMPs have been confirmed yet. In particular, recent direct detection

experiments provide a strong upper bound on the elastic scattering cross section between

dark matter and nucleon [A+17a,C+17,A+18,A+20d].

One of powerful approaches investigating the BSM theory is the extension of the scalar

sector. Depending on the charges of additional scalar fields, the dynamics of these scalars

can describe the phenomenology of the BSM and give us interesting probes. In particular,

the Nambu-Goldstone boson (NGB) can generally appear in the low energy region, reflect-

ing the symmetry of the theory. However, since the existence of the massless scalar field is

constrained by experiments and observations such as the fifth force bound and a massive

particle is desirable, we are interested in a pseudo-Nambu-Goldstone boson (pNGB)1,

which is stabilized and has non-vanishing mass by introducing an explicit breaking term,

background fluxes or non-perturbative effects such as the instanton effects.2 As we dis-

1This kind of scalar also appears in the higher dimensional theory with a higher form field, such as

string theory [ADD+10, CGR12]. The extra dimensional components of the higher form fields plays the

role of the NGB-like scalar via compactification and the Chern-Simons term between the higher form

field and the gauge field strength leads the axion interaction in four dimension.
2It is known that a lot of scalar fields appear in the low energy effective field theory through the com-
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cuss in the following chapters, this kind of pNGB can be a natural candidate of WIMPs

escaping the constraints by the direct detections via the nature of its interaction. The

additional scalar field not only provides candidates for new particles such as dark matter,

but also can be a new source of non-perturbative objects in field theories such as topolog-

ical solitons. The existence and dynamics of these solitons and the interactions between

the solitons or those between the solitons and the elementary particles can have new ef-

fects on the cosmological observations and they can make the BSM model detectable by

the current or future experiments.

In this thesis, We consider a scalar sector extension by a SM singlet scalar field,

which can carry other charges such as U(1)B−L or U(1)L. We study the dynamics and

phenomenology of pNGB arising from the spontaneous symmetry breaking of the scalar

potential. First, we investigate the possibilities that this pNGB can be a natural can-

didate of dark matter and propose a UV completed model from the viewpoint of the

consistency with quantum gravity theory. We also study the related topics depending on

the symmetry associated with this new scalar field, for example inflationary scenario in

the scalar extension model and the neutrino oscillations. Then, the construction and the

phenomenology of the topological solition, which is a new type of axion string dressed by

the SM gauge flux, is discussed by introducing an SM singlet scalar field and the second

Higgs doublet to the SM.

Organization of the thesis

The main part of this thesis is based on my five papers [ATT20, ATTY21, ATY21,

AHO+20,AHY21]. The rest parts are organized as follows.

We propose the UV completion of the simple pNGB dark matter model based on a

gauged U(1)B−L symmetry in Chapter 2. This model is motivated by the consistency of

quantum gravity theory and the symmetry of that model is realized as a discrete gauge

symmetry. The pNGB is stabilized by the cubic coupling to another SM singlet scalar

field spontaneously breaking the U(1)B−L symmetry. In return for this UV completion

motivated by the swampland conditions, the pNGB dark matter candidate is not stable

due to the new interactions with the B−L gauge boson and the scalar mass mixing, while

the original simple pNGB dark matter is stabilized by the Z2 sign flip symmetry associated

with the CP-symmetry of the scalar sector. This result means that this pNGB is the

decaying dark matter and the long-livednes gives a strong constraint on the model through

the U(1)B−L breaking scale. We evaluate the life-time of the dark matter candidate and

show the parameter space realizing the current dark matter relic as a thermal relic avoiding

the several experimental constraints.

pactification, which is so called moduli fields. In general, these scalars have a flat direction corresponding

to the continum deformation of the background. In order to stabilize them, higher form background

fluxes [DK07] or non-perturbative effects play the important role to generate the scalar potential.
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In Chapter 3, we further advance the possibility of a connection between the pNGB

dark matter and UV physics that we considered in the previous chapter, and investi-

gate whether the existence of dark matter and the swampland conjecture imply a grand

unification. If the pNGB dark matter model based on the gauged U(1)B−L symmetry

is embedded to the grand unified theory (GUT) with SO(10) gauge group, it is found

that the symmetry breaking pattern via the Pati-Salam gauge group is favored. Some

free parameters in the previous model, U(1)B−L gauge coupling, the gauge kinetic mixing

between U(1)Y and U(1)B−L and the intermediate scale at the U(1)B−L being broken,

are fixed by the unification condition. We discuss that this determined intermediate scale

predicts the pNGB dark matter mass less than O(100) GeV.

In Chapter 4, we study another possibility to the WIMP pNGB dark matter model

in the previous chapters, where the VEV of the symmetry breaking is much larger than

the electroweak scale. In this situation, the interaction of the pNGB is highly suppressed

by the huge VEV due to its derivative coupling, and the pNGB does not realize the dark

matter relic by the freeze-out mechanism. However, it can be a dark matter candidate by

the freeze-in production through the VEV suppressed interaction and we show that the

pNGB with the huge VEV can be a typical candidate of the Feebly Interacting Massive

Paricle (FIMP). In addition to this, we also investigate the possibility that the symmetry

breaking scalar field which mediates the interactions between the pNGB and SM particles

plays the role of the inflaton via using the non-minimal coupling. We discuss the dark

matter relic by taking the direct production from the inflaton decay to the pNGB and

the ordinary freeze-in production into account.

We consider a special type of the pNGB, called Majoron which arises from the spon-

taneous symmetry breaking of the lepton number, and study whether Majoron with TeV-

scale soft breaking mass can be the dark matter candidate in Chapter 5. The VEV of the

SM singlet scalar of the TeV-scale Majoron is highly constrained by the life-time of the

Majoron decaying to two left-handed neutrinos. In addition to this, the Yukawa coupling

between the right-handed neutrinos and this scalar is also restricted by the cosmic-ray

observations via the Majoron decay channel to top quarks. These results show the inter-

actions in the right-handed neutrino sector of the TeV-scale Majoron dark matter scenario

is very feeble and the production of this dark matter candidate seems hard. We discuss

three possible scenarios for the creation of the TeV-scale Majoron dark matter. This

analysis is related to the FIMP pNGB dark matter scenario in Chapter 4.

In Chapter 6, we consider another interesting pNGB appearing in the scalar sector

extension, which is the QCD axion solving the strong CP problem by the Peccei-Quinn

mechanism. We study the topological string in the DFSZ axion model [Zhi80, DFS81]

and construct a new type of soliton solution which has a thin axion string core and the

SM gauge flux surrounds this. Then we also find that the electromagnetic symmetry

can be broken around the string core, and the axion string can be superconducting in

some parameter space. If the axion string becomes superconducting string, the zero mode
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current associated with the breaking of the electromagnetic gauge symmetry travels along

this string. It can be the source of a long-range attractive force between the strings while

the axion exchange force is repulsive. This new attractive force can lead to a string

bound state called Y-shaped junction, and we discuss the possibility of the formation of

this Y-junction in the DFSZ axion model and its cosmological impacts.

Chapter 7 is devoted to the conclusion of this thesis. We summarize our notation and

convention in Appendix A. In Appendix B, we give a brief review of (scalar-) weak gravity

conjecture, which is one of the swampland conjectures. We consider the application to

the anomalous quiver gauge theories and discuss the constraints on the gauge groups. In

Appendix C, we discuss the lepton asymmetry production via the right-handed neutrino

decay with a light flavored scalar. This is a complementary study to the Majoron dark

matter creation in Chapter 5.
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Chapter 2

Pseudo-Nambu-Goldstone dark

matter from gauged U(1)B−L model

2.1 Pseudo-Nambu-Goldstone dark matter model and

UV completion

The direct detection experiments [A+17a, C+17, A+18, A+20d] give the strong con-

straint on the mass and interactins of WIMPs. In order to pursue WIMPs further in the

current situation, we have to consider mechanisms to avoid this severe constraint from

the direct detection experiments. One option is to consider a pseudo-Nambu-Goldstone

boson (pNGB) as dark matter [BMS10,GLT17]. Since all the interactions are written by

derivative couplings in non-linear representation, the scattering amplitude for direct de-

tection vanishes in non-relativistic limit.1 The leading contribution comes from one-loop

level, and the order of the elastic cross section has been evaluated as O(10−48) cm2 at

most [ADG+19, IT18]. Since this magnitude of the elastic cross section is considerably

small, probing pNGB dark matter by future direct detection experiments may be difficult.

However, indirect detection and collider searches are more promising, and there are some

works in this direction [HKL+19, CT19]. In addition, global fitting of the pNGB dark

matter with comprehensive analysis has been done in Ref. [ABD+20].

A pNGB dark matter is an attractive candidate of WIMP, but there are some ques-

tions, such as the origin of the soft breaking mass or the stabilization of this scalar and

the UV completion of this model. From the point of view of consistency with quantum

gravity theory, gauge symmetries are motivated by the conjecture that there is no global

symmetry in quantum gravity [BD88, BS11]. This conjecture implies that the discrete

symmetry Z2 of the pNGB dark matter model should be realized as the gauged discrete

symmetry.

1A pNGB dark matter also appears in the composite Higgs models. In this context, the suppression

of the elastic scattering amplitude has been studied in Refs. [FZFLLH15, BGM+16, BBD+17, BRSW17,

BRSW18,RSW20,Ram20].

6



In this chapter, we propose a model of the pNGB dark matter from a gauged U(1)B−L
symmetry, which is motivated by the quantum gravity consistency. We introduce two

complex scalars with QB−L = +1 and +2, and three right-handed neutrinos for gauge

anomaly cancellation. The pNGB dark matter scenario in Ref. [GLT17] is realized in

the decoupling limit, where the U(1)B−L symmetry breaking scale is taken to be infinity.

In contrast to the original pNGB dark matter scenario, the pNGB decays due to the

new interactions through the heavy particles. This is a result with a scalar sector with

a discrete gauge symmetry. The stability of the pNGB is determined by the breaking

scale of the U(1)B−L symmetry. We show that the pNGB can be long-lived over the

current upper bound of the lifetime from the cosmic-ray observations. We also study the

consistencies with the relic abundance of dark matter, and low energy phenomenology.

The rest of this chapter is organized as follows. We give a brief review of the simple

pNGB dark matter model and show the suppression mechanism of the scattering ampli-

tude in Section 2.2. In Section 2.3, a pNGB is introduced from the U(1)B−L symmetry

breaking. In Section 2.4, the longevity of the pNGB as dark matter is investigated. We

also study the relevant constraints on our pNGB dark matter such as the relic abun-

dance of dark matter, the perturbative unitarity, and the Higgs invisible decay and signal

strength. Section 2.5 is devoted to our summary.

2.2 Brief review of simple pNGB dark matter model

The simple pNGB dark matter model is given by the SM singlet complex scalar ex-

tension [GLT17]. The scalar potential is given by

V(H,S) = −µ
2
H

2
|H|2 − µ2

S

2
|S|2 +

λH
2
|H|4 +

λS
2
|S|4 + λHS|H|2|S|2

− m2

4

(
S2 + S∗2

)
, (2.2.1)

where the second line is the soft breaking mass term, which is introduced so that the pNGB

is stabilized as shown in the following part. This soft term breaks explicitly the U(1)S
phase rotational symmetry of S to Z2 associated with the sign flip of S: Z2 : S 7→ −S.

These scalars are parametrized by

H =
1√
2

(
0

v + h

)
, S =

vs + s+ iχ√
2

, (2.2.2)

and the following stationary conditions are satisfied:

µ2
H = λHv

2 + λHSv
2
s , µ2

S +m2 = λSv
2
s + λHSv

2. (2.2.3)

Using these equations, the mass matrix of the CP-even scalars is given by

M2
e =

(
λHv

2 λHSvvs
λHSvvs λSv

2
s

)
, (2.2.4)
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and the CP-odd scalar, which is the pNGB, obtains the mass m2
χ = m2. The mass

eigenstates of the CP-even scalars (h1, h2) are introduced by(
h

s

)
=

(
cos θ sin θ

− sin θ cos θ

)(
h1

h2

)
, (2.2.5)

and the mixing angle is given by

tan 2θ =
2λHSvvs

λSv2
s − λHv2

. (2.2.6)

The mass eigenvalues are given by

m2
h1

=
1

2

[
λHv

2 + λSv
2
s −

√
(λSv2

s − λHv2)2 + 4λHSv2v2
s

]
, (2.2.7)

m2
h2

=
1

2

[
λHv

2 + λSv
2
s +

√
(λSv2

s − λHv2)2 + 4λHSv2v2
s

]
. (2.2.8)

Using these physical parameters, mass eigenvalues and mixing angle, the scalar quartic

couplings are written as

λH =
cos2 θm2

h1
+ sin2 θm2

h2

v2
, λHS =

sin θ cos θ(m2
h2
−m2

h1
)

vvs
, λS =

sin2 θm2
h1

+ cos2 θm2
h2

v2
s

.

(2.2.9)

Let us consider the interaction Lagrangian. The χ-χ-hi interactions dominant to the

dark matter-SM particle scattering are given by

L 3 1

2

∑
i=1,2

κχχhiχ
2hi, (2.2.10)

κχχh1 = −m
2
h1

sin θ

vs
, κχχh2 =

m2
h2

cos θ

vs
. (2.2.11)

The interactions among CP-even scalars are given by [AT21]

κ111 = 3m2
h1

(
−sin3 θ

vs
+

cos3 θ

v

)
, (2.2.12)

κ112 = (2m2
h1

+m2
h2

) sin θ cos θ

(
sin θ

vs
+

cos θ

v

)
, (2.2.13)

κ122 = (m2
h1

+ 2m2
h2

) sin θ cos θ

(
−cos θ

vs
+

sin θ

v

)
, (2.2.14)

κ222 = 3m2
h2

(
cos3 θ

vs
+

sin3 θ

v

)
, (2.2.15)

with the convention

−L 3 V 3 κ111

3!
h3

1 +
κ112

2!
h2

1h2 +
κ122

2!
h1h

2
2 +

κ222

3!
h3

2. (2.2.16)
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χ χ

h1, h2

f f

q

Figure 2.1: Feynman diagram for the tree-level dark matter scattering with the SM matter.

The interactions among the CP-even scalars and SM fermions become

L 3 −
∑
f

mf

v
hff = −(h1 cos θ + h2 sin θ)

∑
f

mf

v
ff. (2.2.17)

Fig. 2.1 shows the scattering process between the pNGB dark matter χ and SM

fermions f , with the momentum transfer q. Using Eqs. (2.2.11) and (2.2.17), the scatter-

ing amplitude of this process is given by

iM∝ sin θ cos θ

(
m2
h2

t−m2
h2

− m2
h1

t−m2
h1

)
≈ sin θ cos θ

t(m2
h2
−m2

h1
)

m2
h1
m2
h2

−−−→
t→0

0, (2.2.18)

where the Mandelstam variable is defined by t = q2. Due to the momentum dependence of

the amplitude, the pNGB dark matter escape the severe direct detection constraint.2 This

behavior can be understood by the soft pion theorem, which implies the NGB becomes

free particle in the infrared (IR) limit due to the derivative couplings.

The scatterin amplitude (2.2.18) is proportional to t(m2
h2
−m2

h1
), which is character of

the introduction quadratic breaking term. Let me put it another way, the soft breaking

mass term does not change the interactions of the pNGB. If one introduce another type of

breaking term, the amplitude includes the additional term proportional to the breaking

term and it is not possible to say in general that the amplitude vanishs in t→ 0 limit.

The authors of Ref. [GLT17] show the parameter space where the current dark matter

relic is realized as the thermal relic via the freeze-out mechanism.
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QL ucR dcR L eCR H νCR S Φ

SU(3)C 3 3̄ 3̄ 1 1 1 1 1 1

SU(2)L 2 1 1 2 1 2 1 1 1

U(1)Y +1/6 −2/3 +1/3 −1/2 +1 +1/2 0 0 0

U(1)B−L +1/3 −1/3 −1/3 −1 +1 0 +1 +1 +2

Table 2.1: Particle contents and quantum charges.

2.3 Model

The particle contents and the charge assignments under the gauge group GSM ×
U(1)B−L are shown in Table 2.1. We note that the model is consist of particles in the

ordinary U(1)B−L model and an additional scalar singlet S with QB−L = +1. The gauge

kinetic terms of the new particles charged under U(1)B−L are written as

LK = (DµS)†(DµS) + (DµΦ)†(DµΦ) + νRi /DνR −
1

4
XµνX

µν − sin ε

2
XµνB

µν (2.3.1)

where Dµ = ∂µ + igB−LQB−LXµ is the covariant derivative with the new gauge boson Xµ

associated with the U(1)B−L symmetry. The field strengths for U(1)B−L and U(1)Y are

denoted by Xµν and Bµν , respectively. The last term is the gauge kinetic mixing between

Xµ and Bµ. An extra mass eigenstate Z ′ of neutral gauge bosons is mainly composed

by the new gauge boson Xµ. The detailed calculations of diagonalization of the kinetic

mixing and mass matrix is summarized in Appendix 2.A.

The scalar potential is written as

V (H,S,Φ) = − µ2
H

2
|H|2 − µ2

S

2
|S|2 − µ2

Φ

2
|Φ|2 +

λH
2
|H|4 +

λS
2
|S|4 +

λΦ

2
|Φ|4

+ λHS|H|2|S|2 + λHΦ|H|2|Φ|2 + λSΦ|S|2|Φ|2 −
(
µc√

2
Φ∗S2 + c.c.

)
(2.3.2)

The CP phase of the cubic term is eliminated by the field redefinition of Φ. All the scalar

fields develop VEVs, and they are parametrized by

H =

(
0

(v + h)/
√

2

)
, S =

vs + s+ iηs√
2

, Φ =
vφ + φ+ iηφ√

2
(2.3.3)

In the limit µc → 0, the scalar potential has two independent global U(1) symmetries

associated with the phase rotation of S and Φ, respectively. When µc 6= 0, these U(1)

2Another way is to consider a fermionic dark matter with pseudo-scalar interactions [FL11]. In

this case, since the scattering amplitude at tree level is suppressed by the momentum transfer in non-

relativistic limit due to the spin structure, the leading contribution to the amplitude appears at loop

level [IMN14, ALQ+18, BBS18, AFH19, AFHS20]. This behavior of the amplitude is similar to the pion

exchange potential.
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symmetries are merged to the U(1)B−L symmetry. Therefore, one of NGBs is absorbed

by Xµ, while the other appears as a physical pNGB with the mass proportional to µc.

We note that µc is naturally small in ’t Hooft sense because of the enhanced symmetry

argument. One can intuitively understand that if the scalar Φ gets the VEV vφ , the last

term gives effective mass term µcvφS
2/2 for the pNGB.

By solving stationary conditions for µ2
H , µ

2
S, µ

2
Φ, the mass matrix for the CP-even

scalars in the (h, s, φ) basis is

M2
even =

 λHv
2 λHSvvs λHΦvvφ

λHSvvs λSv
2
s λSΦvsvφ − µcvs

λHΦvvφ λSΦvsvφ − µcvs λΦv
2
φ + µcv2

s

2vφ

 (2.3.4)

This mass matrix is approximately diagonalized by the matrix

U ≈

 1 0 λHΦv
λΦvφ

0 1 λSΦvs
λΦvφ

−λHΦv
λΦvφ

−λSΦvs
λΦvφ

1


 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (2.3.5)

where U(1)B−L symmetry breaking is assumed mainly by vφ. The gauge eigenstates

(h, s, φ) are expressed by the mass eigenstates (h1, h2, h3) ashs
φ

 = U

h1

h2

h3

 (2.3.6)

where the mixing angle θ is given by

tan θ ≈ 2vvs(λHSλΦ − λHΦλSΦ)

v2(λ2
HΦ − λHλΦ)− v2

s(λ
2
SΦ − λSλΦ)

. (2.3.7)

The corresponding mass eigenvalues for hi are approximately evaluated as

m2
h1
≈ λHv

2 − λHΦλS − 2λHSλHΦλSΦ + λΦλ
2
HS

λSλΦ − λ2
SΦ

v2, (2.3.8)

m2
h2
≈ λSλΦ − λ2

SΦ

λΦ

v2
s +

(λΦλHS − λHΦλSΦ)2

λΦ(λSλΦ − λ2
SΦ)

v2, (2.3.9)

m2
h3
≈ λΦv

2
φ. (2.3.10)

We identify h1 as the SM-like Higgs boson with the mass mh1 = 125 GeV.

The mass matrix of the CP-odd scalars in the gauge eigenstates (ηs, ηφ) is written as

M2
odd =

µc

2vφ

(
4v2

φ −2vsvφ
−2vsvφ v2

s

)
(2.3.11)
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This mass matrix can be diagonalized as

tVM2
oddV =

(
m2
χ 0

0 0

)
, m2

χ =
µc(v

2
s + 4v2

φ)

4vφ
(2.3.12)

where the unitary matrix V is given by

V =
1√

v2
s + 4v2

φ

(
2vφ vs
−vs 2vφ

)
. (2.3.13)

The gauge eigenstates (ηs, ηφ) are rewritten by the mass eigenstates (χ, χ̃) as(
ηs
ηφ

)
=

1√
v2
s + 4v2

φ

(
2vφ vs
−vs 2vφ

)(
χ

χ̃

)
. (2.3.14)

where χ̃ is the NGB absorbed by Xµ, and χ corresponds to the pNGB which will be

identified as dark matter.

The following Yukawa interactions are also invariant under the imposed symmetry

LY = −yνijνRiH̃†Lj −
yΦ
ij

2
ΦνCRiνRj + h.c., (2.3.15)

where H̃ := iσ2H∗ with the second component of the Pauli matrices σ2. After the U(1)B−L
symmetry breaking, the right-handed neutrinos obtain the Majorana massMN := yΦvφ/

√
2.

Thus, the small masses for active neutrinos are generated by the type-I seesaw mechanism

as mν ≈ −mDM
−1
N

tmD with the Dirac mass mD := yνv/
√

2. Since the heaviest neutrino

mass is roughly fixed by the neutrino oscillation data as mν ∼ 0.1 eV, the required scale

of the VEV vφ is estimated as

mν ∼
yν2v2

√
2yΦvφ

∼ 0.1 eV → vφ ∼ 4.3× 1014 eV

(
yν2

yΦ

)
(2.3.16)

The scale vφ is large enough as compared to the electroweak scale unless the Dirac Yukawa

coupling yν is considerably small.

2.4 Long-lived dark matter

First of all, we check the cancellation of the scattering amplitude for direct detection

in this model. When vφ is much larger than v and vs, the three-point interactions among

the pNGB and CP-even scalars are expressed as

Lχχhi = −
∑
i=1,2,3

κχχhi
2

χ2hi (2.4.1)
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where each coupling coefficient κχχhi is given by

κχχh1 ≈ −
m2
h1

sin θ

vs
, κχχh2 ≈ +

m2
h2

cos θ

vs
, κχχh3 ≈ +

m2
h3

vs

λSΦvs
λΦvφ

(2.4.2)

We note that these couplings are proportional to the corresponding scalar masses. The

CP-even scalar exchanging scattering amplitudes of the pNGB and SM particles are ex-

pressed as

iM∝ sin θ cos θ

vs

(
− m2

h1

q2 −m2
h1

+
m2
h2

q2 −m2
h2

)
+O(1/vφ), (2.4.3)

where q is the momentum transfer. Due to this structure, the elastic scattering cross

section of dark matter and nucleon is suppressed in the non-relativistic limit. This is

nothing less than the same cancellation mechanism of the pNGB dark matter for the

direct detection [GLT17].3 Therefore, the pNGB derived from the gauged U(1)B−L model

can be a good candidate for dark matter.

It is necessary to examine the longevity of the pNGB to be dark matter, because our

pNGB is unstable. The SM particles are produced by the decays of the pNGB dark matter

candidate, and these particles further decay into the stable particles such as e±, γ, ν, p,

p̄. These cosmic-rays can be signals of dark matter or constrained by observations. In

this paper, following the analysis of gamma rays coming from dwarf spheroidal galaxies

using Fermi-LAT data [BGQS16], we study constraints of our model from a conservative

limit of the dark matter lifetime τDM & 1027 s, or equivalently ΓDM . 6.6× 10−52 GeV in

terms of decay width.

One of possible two body decay channels is χ→ νν through the scalar mixing and the

neutrino heavy-light mixing. The partial decay width is roughly estimated as Γχ→νν .

10−67 GeV. This is small enough to guarantee the dark matter (meta-)stability thanks to

the strong suppression by the small neutrino masses. In addition, the current experimental

upper bound for this channel is much weaker than our estimate, since the observation of

the produced neutrino cosmic-rays is much more difficult than those of charged particles

such as e±, p, p̄. Thus, this decay channel can be safely ignored.

Another two body decay mode χ→ hiZ, depicted in the left panel of Fig. 2.2, becomes

important if it is kinematically allowed for mχ > mhi + mZ . The total decay width for

this channel is computed as

Γ2-body =
∑
i

Γχ→hiZ ≈
g2
B−L

16πm4
Z′
m2
Zm

2
χ sin2 θW sin2 ε

= 5.8× 10−52 GeV

(
mχ

0.5 TeV

)3(
1015 GeV

mZ′

)2(
1015 GeV

vφ

)2(
sin ε

1/
√

2

)2

(2.4.4)

where the mass hierarchy mh1 ,mh2 ,mZ � mχ � mh3 ,mZ′ is applied for this approxi-

mated formula. This two body decay becomes important if there is a large gauge kinetic

3This cancellation mechanism works if and only if the U(1)B−L charge of S is unity.
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χ

Z

hi

Z ′

χ

f

f

hi

Figure 2.2: Feynman diagrams of the dark matter decay [ATT20].

mixing sin ε,4 and is irrelevant for the vanishing gauge-kinetic mixing. Since χ is ηs-like,

the main contribution to this decay channel comes from χ → h2Z where h2 is s-like.

Further suppression due to the scalar mixing is expected for other decay channels, e.g.,

χ → h1Z. A decay process emitting a photon such as χ → hiγ is forbidden due to the

helicity conservation.

One can naively expect that three body decay processes are subdominant if the above

two body decay processes are kinematically allowed. However, three body decays could be

dominant depending on parameters, in particular when the gauge kinetic mixing is small.

There are two possible three body decay processes χ→ Zff̄ and χ→ hiff̄ . The former

is mediated by the heavy CP-even scalar h3, and is possible only when the gauge kinetic

mixing is non-zero as same as the above two body decay process. The decay width is

extremely suppressed by the heavy h3 mass and small scalar mixing, thus this is ignored.

The latter process is mediated by the heavy Z ′ gauge boson as depicted in the right panel

of Fig. 3.3. In the case that mf � mhi ,mχ � mZ′ , the decay width is computed as

Γχ→hiff =
g2
B−LU

2
sim

5
χ

768π3m4
Z′

cos2 ζ

cos2 ε

(
gfV

2
+ gfA

2
)[

1− 8ξi + 8ξ3
i − ξ4

i − 12ξ2
i log ξi

]
(2.4.5)

where ξi := m2
hi
/m2

χ and Usi (i = 1, 2) is the element of the CP-even scalar mixing

matrix in Eq. (2.3.5). The mixing matrix elements are explicitly given by Us1 ≈ − sin θ,

Us2 ≈ cos θ. The coefficients gfV/A are the coupling constants between the heavy gauge

boson Z ′ and vector or axial vector current, which are defined by

LZ′ff = −Z ′µfγµ
[
gfV + gfAγ5

]
f. (2.4.6)

Their expressions in mZ � mZ′ limit are given by

gfV ≈ −g1

(
Qf

EM − T f3
)

tan ε+
gB−L
cos ε

Qf
B−L, (2.4.7)

4A bound on the kinetic mixing sin ε is obtained from the perturbative unitarity if the new gauge

boson mass is lighter than TeV scale [BBDR18]. However this bound is irrelevant to our case since the

new gauge mass is assumed to be much heavier than TeV scale.
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gfA ≈ 0, (2.4.8)

where Qf
EM, T f3 and Qf

B−L corresponds to the electromagnetic charge, the third component

of weak isospin and B − L charge of the fermion f , respectively. The mixing angle ζ is

introduced to diagonalize the gauge boson mass matrix as summarized in Appendix 2.A.

It is useful to take some specific values of the parameters to understand the behavior

of the three body decay width. Here, we consider the two cases, sin ε = 0 and 1/
√

2.

First, when there is vanishing gauge kinetic mixing (sin ε = 0), the total three body decay

width can simply be computed as

Γ3-body

∣∣∣
sin ε→0

=
∑
i

∑
f

Γχ→ff ≈
13

16

g4
B−L

1536π3

m5
χ

m4
Z′

= 5.3× 10−52 GeV

(
mχ

0.5 TeV

)5(
1015 GeV

vφ

)4

(2.4.9)

where we used the relation m2
Z′ ≈ 4g2

B−Lv
2
φ.

The second case is a typical value of non-zero gauge kinetic mixing (sin ε = 1/
√

2).

Then, the total decay width can be evaluated as

Γ3-body

∣∣∣
sin ε→1/

√
2

=
∑
i

∑
f

Γχ→hiff ≈
g2
B−L

768π3

m5
χ

m4
Z′

(
10g2

1 − 8
√

2g1gB−L + 26g2
B−L

)
= 4.1× 10−52 GeV

(
mχ

0.5 TeV

)5(
1015 GeV

mZ′

)2(
1015 GeV

vφ

)2

×
[
1− 2

√
2

5

mZ′

g1vφ
+

13

20

m2
Z′

g2
1v

2
φ

]
(2.4.10)

From the above calculations, one can find that the two body decay width in Eq. (2.4.4)

is proportional to m3
χ, while the three body decay widths in Eq. (2.4.9), (2.4.10) are

proportional to m5
χ. Therefore the three body decay width tends to be dominant when

the dark matter mass mχ is large. Another important point is that the two body decay

width vanishes when there is no gauge kinetic mixing while the three body decay occurs

even in the case.

In our model, there are 10 independent parameters in total, which are relevant to the

decaying pNGB dark matter. These may be chosen to as mχ,mh2 ,mh3 ,mZ′ , sin θ, vs, vφ,

λHΦ ,λSΦ and sin ε. The Yukawa couplings yν and yΦ are irrelevant for the pNGB sector,

and one can always take appropriate Yukawa couplings and right-handed neutrino masses

consistently with the neutrino oscillation data. Only 4 parameters (mχ, sin θ, vs,mh2) are

important for the phenomena of the stable dark matter, which are used in the discussion

in the next section. The other parameters are relevant to the dark matter decay. In our

numerical calculations, we choose the following parameter sets as examples:

mh2 = 300 or 1000 GeV, mh3 = 1013 GeV, mZ′ = 1014 or 1015 GeV,
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Figure 2.3: Allowed regions in the (mχ, vφ) plane [ATT20]. The scalar mass is fixed as

mh2 = 300 GeV for the left panels and mh2 = 1000 GeV for the right panels. The new

gauge boson mass is fixed as mZ′ = 1014 GeV in the upper panels and mZ′ = 1015 GeV

in the lower panels. The orange regions are excluded by the conservative bound of the

dark matter lifetime (τDM & 1027 s). The gray region is disfavored by the perturbative

unitarity bound of the gauge coupling gB−L. The upper light blue region denotes the

parameter space that the VEV vφ becomes larger than the Planck mass MP .

sin θ = 0.1, λHΦ = λSΦ = 10−6, sin ε = 0 or
1√
2
. (2.4.11)

The gauge coupling gB−L and the quartic coupling λΦ are fixed by gB−L ≈ m2
Z′/(4v

2
φ) and

λφ ≈ m2
h3
/v2

φ for a given VEV vφ. The mixing angle sin θ is constrained as sin θ . 0.3 for

mh2 & 100 GeV by the electroweak precision measurements and the direct search of the

second Higgs boson [MLMP15,FGL15]. This constraint can also be applied for our model.

The quartic couplings λHΦ and λSΦ are taken small such that the approximate formulae

Eq. (2.3.8) and (2.3.9) are valid. If these couplings are large, the negative contributions

to the CP-even scalar masses in Eq. (2.3.8) and (2.3.9) become significant and make them

tachyonic. Note that one can take these quartic couplings larger than Eq. (2.4.11) for

smaller VEV vφ. However, we choose as Eq. (2.4.11) for simplicity so that the quartic

couplings retain constant in our numerical calculations.

16



In Fig. 2.3, we show the allowed parameter region from the (meta-)stability constraint

of dark matter in the plane (mχ, vφ). The orange region is ruled out by the cosmic-ray

observation. The perturbative unitarity bound of the U(1)B−L gauge coupling exclude the

lower gray region. The VEV vφ becomes larger than the Planck scale MP = 1.2×1019 GeV

in the upper light blue region.5 One can find from the plots that when the dark matter

mass mχ becomes larger than the threshold of the decay channel χ→ h2ff̄ (mχ & mh2),

the total decay width is enhanced and the bound of the cosmic-ray observations becomes

stronger. The scaling behavior of the orange region is observed as vφ ∝ m
5/4
χ for no kinetic

mixing and vφ ∝ m
5/2
χ for a large kinetic mixing in heavier dark matter mass region. This

follows from the analytic formulae of the total three body decay width in Eqs. (2.4.9)

and (2.4.10). Characteristic threshold behaviors are also seen at mχ ∼ mh2 +mZ , where

mh2 = 300 (1000) GeV is taken in the left (right) panels.

We here comment on the possible four body decay channel. If the dark matter mass

is too small to decay through the above two or three body decay process, the four body

decay process χ → h∗iZ
∗ → ff̄f ′f̄ ′ would be the main decay channel of dark matter.

However, the decay width is too small to be constrained or be signals of dark matter at

present.

Finally, we confirm the consistency of our model with the observed dark matter relic

abundance. For calculations of the dark matter relic abundance, the model is imple-

mented in CalcHEP [BCP13] by using LanHEP [Sem16]. The physical quantities relevant

to dark matter such as thermal relic abundance, all the decay widths, spin-independent

cross section for direct detection are computed by using MicrOMEGAs [BBG+18a]. In

Fig. 2.4, we show the consistency of our pNGB dark matter model with the observed

relic abundance in the plane (mχ, v/vs). The red line represents the parameter space

reproducing the observed thermal relic abundance within 3σ range of the PLANCK data

ΩDMh
2 = 0.120 ± 0.001 [A+20b]. One can see the two resonances in Fig. 2.4 due to

the two Higgs bosons h1 and h2. The purple region is excluded by the measurements

of the Higgs invisible decay [S+19, A+19a] and the signal strength [A+16] and the up-

per gray region is ruled out by the perturbative unitarity bound of the quartic coupling

λS < 8π/3 [CDL15]. The green region is excluded by the gamma-ray observation com-

ing from dwarf spheroidal galaxies where the effective annihilation cross section into bb

defined by 〈σeffvrel〉 := 〈σbb̄vrel〉 (ΩDMh
2/0.120)

2
with the dark matter relative velocity vrel

becomes larger than the current upper bound given by Fermi-LAT [A+17b].6

5If we consider a cosmic string creation after the inflation, the VEV breaking U(1)B−L symmetry is

restricted as vφ < 4× 1015 GeV from the CMB observation, which is discussed in Ref. [CACM16].
6Note that the parameter space excluded by the gamma-ray observation shown in Fig. 2.4 is different

from the previous work [HKL+19]. This is because in the previous work the dark matter abundance

in our galaxy has been assumed to be the observed value (ΩDMh
2 ≈ 0.120) regardless of the thermal

abundance computed at each parameter space. This can occur after thermal production of dark matter

via additional non-thermal dark matter production or entropy production, for instance. On the other

hand in our case, thermal dark matter production is only assumed.
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Figure 2.4: Allowed regions in the (mχ, v/vs) plane [ATT20]. The scalar mass is fixed

as mh2 = 300 GeV for the left panels and mh2 = 1000 GeV for the right panels. The

gauge kinetic mixing is chosen as sin ε = 0 (no kinetic mixing) in the upper panels and

sin ε = 1/
√

2 (maximal mixing) in the lower panels. The red line corresponds to the

thermal dark matter relic abundance consistent with the PLANCK Collaboration [A+20b].

The purple, gray, orange and green regions are excluded by the constraints of the Higgs

invisible decays [S+19, A+19a] and the Higgs signal strength [A+16], the perturbative

unitarity bound on λS [CDL15], the cosmic-ray constraint (τDM & 1027 s) [BGQS16] and

the gamma-ray observation [A+17b], respectively.

These behavior is basically same with the previous work as expected [GLT17]. The

orange region is excluded by the upper bound on the dark matter lifetime τDM & 1027 s

where the VEV is fixed as vφ = 1013 GeV, 1014 GeV, 1015 GeV. One can observe from the

plots that the bound becomes stronger for small vφ and non-zero gauge kinetic mixing

sin ε.
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2.5 Summary

We have studied the pNGB dark matter scenario derived from the gauged U(1)B−L
symmetry. The model is consist of particles in the ordinary U(1)B−L model with an

additional scalar singlet with QB−L = +1. The small neutrino masses have also been

generated via type-I seesaw mechanism as usual. In this model, the pNGB associated with

U(1)B−L symmetry breaking is identified as a dark matter candidate. The interactions of

the new U(1)B−L gauge boson and the scalar mixing have led the decays of the pNGB.

We have shown that the lifetime of the pNGB is long enough to be dark matter. We have

also found the parameter space, which are consistent with the relevant constraints such

as observed relic abundance of dark matter, Higgs invisible decay, Higgs signal strength,

and perturbative unitarity bound of the couplings.

For future prospects, the planned gamma-ray observations such as Cherenkov Tele-

scope Array (CTA) [C+16] and Large High Altitude Air Shower Observatory (LHAASO)

[B+19] can explore the dark matter mass over 100 GeV. In particular, the LHAASO

experiment is already being operated, and can search the dark matter mass region be-

tween 1 TeV and 100 TeV. The upper bound on the dark matter lifetime is expected to

be updated by one order of magnitude as discussed in Ref. [HBL+20]. These upcoming

experiments will be able to explore full parameter space of our gauged U(1)B−L pNGB

dark matter.

Appendix 2.A Gauge kinetic mixing

When the kinetic terms of the U(1)Y and U(1)B−L gauge fields are given by

LGK = −1

4
BµνB

µν − 1

4
XµνX

µν − sin ε

2
BµνX

µν , (2.A.1)

these can be diagonalized as

LGK = −1

4
B̂µνB̂

µν − 1

4
X̂µνX̂

µν , (2.A.2)

by the linear transformation(
Bµν

Xµν

)
=

(
1 − tan ε

0 1/ cos ε

)(
B̂µν

X̂µν

)
=: VGK

(
B̂µν

X̂µν

)
. (2.A.3)

On the other hand, the mass matrix of the neutral gauge bosons is given by

LM =
1

2

(
Bµ W 3

µ Xµ

) sin2 θWm
2
Z̃

− sin θW cos θWm
2
Z̃

0

− sin θW cos θWm
2
Z̃

cos2 θWm
2
Z̃

0

0 0 m2
X


 Bµ

W 3µ

Xµ

 ,

(2.A.4)
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where the following parameters are defined:

sin θW :=
g1√
g2

1 + g2
2

, cos θW :=
g2√
g2

1 + g2
2

, (2.A.5)

m2
Z̃

:=
g2

1 + g2
2

4
v2, m2

X := g2
B−L(v2

s + 4v2
φ). (2.A.6)

In the kinetic term diagonalized base, the mass matrix of the neutral gauge boson M̂2
G is

written as

M̂2
G =

t
ṼGK

 sin2 θWm
2
Z̃

− sin θW cos θWm
2
Z̃

0

− sin θW cos θWm
2
Z̃

cos2 θWm
2
Z̃

0

0 0 m2
X

 ṼGK , (2.A.7)

where ṼGK is given by

ṼGK =

1 0 − tan ε

0 1 0

0 0 1/ cos ε

 . (2.A.8)

The mass matrix M̂2
G can be diagonalized by the unitary matrix

UG =

cos θW − sin θW 0

sin θW cos θW 0

0 0 1


1 0 0

0 cos ζ − sin ζ

0 sin ζ cos ζ

 , (2.A.9)

where the mixing angle ζ is expressed by

tan 2ζ =
−m2

Z̃
sin θW sin 2ε

m2
X −m2

Z̃
(cos2 ε− sin2 θW sin2 ε)

. (2.A.10)

In the limit of m2
Z̃
� m2

X as in our case, we can find that tan 2ζ ≈ − m2
Z

m2
Z′

sin θW sin 2ε�
1. As a result, the gauge eigenstates can be written in terms of the mass eigenstates

(Aµ, Zµ, Z
′
µ) as Bµ

W 3
µ

Xµ

 = ṼGKUG

AµZµ
Z ′µ

 , (2.A.11)

where the gauge bosons Aµ, Zµ and Z ′µ correspond to the photon, the SM-like Z boson

and the new massive gauge boson. The mass eigenvalues are given by

m2
Z =

1

2

M2 −

√
M

4 −
4m2

Z̃
m2
X

cos2 ε

 , m2
Z′ =

1

2

M2
+

√
M

4 −
4m2

Z̃
m2
X

cos2 ε

 , (2.A.12)
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where M
2

is defined by M
2

:= m2
Z̃

(1 + sin2 θW tan2 ε) + m2
X/ cos2 ε. In the limit ε → 0,

these mass eigenvalues are reduced to the usual expressions

m2
Z → m2

Z̃
=
g2

1 + g2
2

4
v2, m2

Z′ → m2
X = g2

B−L(v2
s + 4v2

φ). (2.A.13)

One can see that Eq. (2.A.13) corresponds to the SM Z boson mass.

Finally, we will derive the interactions of these gauge bosons, which are used to evaluate

the decay widths of the pNGB dark matter. The interactions with the dark matter come

from the covariant derivative of S, and its expressions are given by

LZhiχ =
∑
i

gB−L
sin ζ

cos ε

Usi√
1 + v2

s

4v2
φ

Zµ(hi∂
µχ− χ∂µhi), (2.A.14)

LZ′hiχ =
∑
i

gB−L
cos ζ

cos ε

Usi√
1 + v2

s

4v2
φ

Z ′µ(hi∂
µχ− χ∂µhi). (2.A.15)

The couplings between the heavy gauge boson Z ′ and the (axial) vector currents of the

SM fermion f is defined by

LZ′f̄f = −Z ′µf̄γµ
[
gfV + gfAγ5

]
f, (2.A.16)

and the explicit expression of the coefficients are given by

gfV =− g2

2
T f3 sin ζ cos θW + g1(Qf

em − T f3 )(sin ζ sin θW − cos ζ tan ε)

+ gB−LQ
f
B−L

cos ζ

cos ε
, (2.A.17)

gfA =
g2

2
T f3 sin ζ cos θW . (2.A.18)

Appendix 2.B Discrete gauge symmetry

In this appendix, we will give a brief summary of the discrete gauge symmetry. For

simplicity, we use the differential forms for the p-form field. The notation is summarized

in Appendix A.3 and the asymmetric tensor is normalized as ε0123 = +1.

2.B.1 Zk gauge theory

The Zk discrete gauge theory is realized by restricting the gauge configuration as

A1 =
1

k
db, (2.B.1)

with a compact scalar field b ∼ b+ 2π satisfying∫
C

db ∈ 2πZ. (2.B.2)
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In this configuration, the Wilson loop is given by

w(C) = exp

(
i

∫
C

A1

)
= exp

(
i

∫
D=∂C

F2

)
= exp

(
i
1

k

∫
C

db

)
= exp

(
2πin

k

)
, (2.B.3)

where n :=
∫
C
db
2π
∈ Z. This equation shows w(C) becomes the unitary representation of

Zk. Then Zk gauge theory is given by the set of the gauge field and the compact scalar

satisfying Eq. (2.B.1).7 Eq. (2.B.1) is invariant under the gauge transformation

A1 7→ A1 + dθ, b 7→ b+ kθ. (2.B.4)

The action describing the above system is given by

S =

∫
t2

2
(db− kA1) ∧ ∗4(db− kA1), (2.B.5)

which is invariant under the gauge transformation (2.B.4). This is nothing but the

Stückerlberg action of A1 and b.8

2.B.2 Dual picture

In this subsection, we give the dual picture of the Zk gauge theory by using a higher

form field. Let us consider the following 4D action:

S =

∫ [
1

2t2
H3 ∧ ∗4H3 +

s

2
F2 ∧ ∗4F2 + kB2 ∧ F2

]
. (2.B.7)

where the field strengths are given by F2 = dA1, H3 = dB2. The last term of this action

is called as BF coupling and the coefficient is k. The EOMs are obtained as

1

t2
d ∗4 H3 = qF2, sd ∗4 F2 = −qH3, dH3 = dF2 = 0. (2.B.8)

On the other hand, the following action with arbitrary 3-form field h3 and Lagrange

multiplier b are considered:

S =

∫ [
1

2t2
h3 ∧ ∗4h3 +

s

2
F2 ∧ ∗4F2 + h3 ∧ (db− kA1)

]
. (2.B.9)

7The existence of a particle of the unit charge is assumed so that k is not absorbed in the redefinition

of the coupling.
8In the field theory context, this kind of action is realized by the higgsing in the abelian-Higgs model

via U(1) gauge charge k:

|(∂µ − ikAµ)Φ|2 → v2

2
(∂µb− kAµ)2, (2.B.6)

where Φ = v√
2
eib is assumed. This is regarde as the decaoupling limit of the massive scalar field, which

arises from the radial direction of Φ.
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The EOMs of this action are given by

1

t2
∗4 h3 = −(db− qA1) ⇒ 1

t2
d ∗4 h3 = qF2, (2.B.10)

sd ∗4 F2 = −qh3, (2.B.11)

dh3 = 0 ⇒ h3 = dB2 (2.B.12)

From the EOM of φ, h3 is given as h3 = dB2 = H3 by introducing the 2-form field B2

and the action becomes

S =

∫ [
1

2t2
H3 ∧ ∗4H3 +

s

2
F2 ∧ ∗F2 + kB2 ∧ F2

]
, (2.B.13)

which implies the two actions are equivalent. By using the EOM of h3, ∗4h3 = −t2(db−
kA1), we can integrate out h3 and the action reduces to

S =

∫ [
t2

2
(db− kA1) ∧ ∗4(db− kA1) +

s

2
F2 ∧ ∗4F2

]
. (2.B.14)

From these equations, we can find that the string object characterized by the holonomy

(2.B.3), so called Aharonov-Bohm string, couples electrically to B2 as
∫

Σ
B2 with the string

world-sheet Σ.
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Chapter 3

Pseudo-Nambu-Goldstone dark

matter model inspired by grand

unification

3.1 Gauged U(1)B−L pNGB dark matter model and

SO(10) grand unification

In Chapter 2, a pNGB dark matter model is proposed based on GSM×U(1)B−L gauge

groups. Two complex scalars with QB−L = +1 and +2, denoted as S and Φ, and three

right-handed neutrinos due to the gauge anomaly cancellation are introduced. The gauge

symmetry is spontaneously broken via the non-vanishing VEV of the scalar fields S, Φ

and the SM Higgs boson as

GSM × U(1)B−L −→ GSM −→ SU(3)C × U(1)EM. (3.1.1)

The dark matter direct detection cross section is naturally suppressed as the same as other

pNGB dark matter models. The pNGB can decay through the new high scale suppressed

operators, but the pNGB has a lifetime long enough to be a dark matter in the wide range

of the parameter space of the model. The thermal relic abundance of pNGB dark matter

can be fit with the observed value against the constraints on the dark matter decays from

the cosmic-ray observations.

From other viewpoints, the charge quantization of U(1)Y , the gauge anomaly cancel-

lation of GSM, and the almost SM gauge coupling unification even in non-supersymmetric

SM seem to imply the existence of grand unification [GG74]. The unification scale is

expected to be O(1015 − 1018) GeV, where the lower bound comes from the current non-

observation of the nucleon decay [HT20] and the upper bound comes from the Planck

scale. Also, the tiny neutrino masses from the neutrino oscillation data seem to suggest

an intermediate scale O(1010–1014) GeV through a see-saw mechanism [Min77].
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Aµ Ψ16 Φ10 Φ16 Φ126 Φ210

SO(10) 45 16 10 16 126 210

SL(2,C) (1/2, 1/2) (1/2, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Table 3.1: The matter content in the SO(10) model is shown.

In this chapter, we propose an SO(10) pNGB dark matter model in the framework

of grand unified theories (GUTs). Each Weyl fermion in 16 of SO(10) contains one

generation of quarks and leptons, which includes a right-handed neutrino [FM75]. The

SM Higgs and two complex scalar fields S and Φ in Refs. [ATT20, ORS21] are assigned

to a scalar field in 10, 16, and 126 of SO(10), respectively. There are several symmetry

breaking patterns of SO(10) to GSM × U(1)B−L as below,

SO(10) −→ GI −→ GSM × U(1)B−L. (3.1.2)

where GI stands for the intermediate gauge group such as the Pati-Salam gauge group

GPS := SU(4)C×SU(2)L×SU(2)R [PS74] and a left-right gauge group GLR := SU(3)C×
SU(2)L × SU(2)R × U(1)B−L [PSS75,MS78]. We mainly focus on the case of GI = GPS,

but we also consider the possibility for such as GI = GLR, where the cases are not favored

for a pNGB DM model under our assumption and experimental constraints. (For more

information about GUT model building in general, see, e.g., Refs. [Sla81,Yam15].)

We discuss the following three things. First, the value of the gauge kinetic mixing

between U(1)Y and U(1)B−L is a free parameter in e.g., the non-GUT pNGB DM models

[ATT20, ORS21], while that is determined mainly by the GUT gauge group in SO(10)

models. Second, gauge coupling unification can be achieved due to the contribution from

the additional scalar fields that contain a DM candidate. Then the intermediate scale

MI , the unification scale MU , and the gauge coupling constant of U(1)B−L are fixed by

using the renormalization group equations (RGEs) for gauge coupling constants. Third,

the mass of the pNGB in the SO(10) pNGB DM model is limited to be O(10− 100) GeV

from experimental constraints.

This chapter is organized as follows. In Section 3.2, we introduce the SO(10) pNGB

DM model. In Section 3.3, we find gauge coupling unification determines mass scales and

gauge coupling constants of the model. In Section 3.4, the constraints from experiments

are discussed. Section 3.5 is devoted to summary and discussions.

3.2 The model

The model consists of an SO(10) gauge field Aµ, fermions in 16 of SO(10), a real

scalar field in 210 of SO(10), and complex scalar fields in 10, 16 and 126 of SO(10).

The SO(10) gauge field contains GSM and U(1)B−L gauge fields. Each fermion in 16 of

SO(10) corresponds to quarks and leptons. Scalar fields in 10, 16, and 126 of SO(10)
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Ψ16

SO(10) 16

ψ(4,2,1) ψ(4,1,2)

GPS (4,2,1) (4,1,2)

QL L uCR dCR eCR νCR

SU(3)C 3 1 3 3 1 1

SU(2)L 2 2 1 1 1 1

U(1)Y +1/6 −1/2 −2/3 +1/3 +1 0

U(1)B−L +1/3 −1 −1/3 −1/3 +1 +1

Table 3.2: The content of the fermions in the SO(10) model is shown in the GPS =

SU(4)C × SU(2)L× SU(2)R basis, where the fermions belong to (1/2, 0) under SL(2,C).

The U(1)B−L charge QB−L is given by U(1)(⊃ SU(4)/SU(3)) [Yam15].

include the Higgs H, S and Φ, respectively. A scalar field in 210 of SO(10) is responsible

for breaking the SO(10) symmetry to GPS. The matter content in the SO(10) model is

summarized in Table 3.1.1

The Lagrangian is given by

L =
∑

y=10,16,126

(DµΦy)†(DµΦy) +
1

2
t(DµΦ210)(DµΦ210) +

3∑
a=1

Ψ
(a)
16 i/DΨ

(a)
16 −

1

2
tr[FµνFµν ]

−

 ∑
y=10,126

∑
a,b

y(ab)
y Φy

(
Ψ

(a)
16 Ψ

(b)
16

)
y

+ h.c.

− V ({Φx}) (3.2.1)

where Dµ := ∂µ + igAµ, Fµν = ∂µAµ − ∂νAν + ig[Aµ,Aν ]. The scalar potential V ({Φx})
contains quadratic, cubic, and quartic coupling terms, where x = 10,16,126,210.

We consider the following symmetry breaking patterns of SO(10) broken to GPS at

the unification scale MU by the non-vanishing VEV of the scalar field in 210 in SO(10),

further to GSM at the intermediate scale MI by the VEV of the scalar field in 126 in

SO(10), where the MU and MI will be determined by gauge coupling unification using

the renormalization group equations (RGEs) for the gauge coupling constants in the next

section.

SO(10)
〈Φ210〉6=0−−−−−−→ GPS (⊃ GSM × U(1)B−L)

〈Φ126〉6=0−−−−−−→ GSM
〈Φ10〉6=0−−−−−→ SU(3)C × U(1)EM,

(3.2.2)

where the dominant contribution for the symmetry breaking from the VEVs are shown.

The type of symmetry breaking has been already discussed in e.g., Refs. [FM75, AM83,

1In this paper, we introduced a scalar in 10 of SO(10) as a complex scalar. To reproduce the observed

mass spectra of quarks and leptons, it is discussed in e.g., Ref. [BMSV06] that only the real scalar in 10

of SO(10) has some tensions.
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Φ10 Φ16 Φ126

SO(10) 10 16 126

φ(1,2,2) φ(4,1,2) φ′
(10,1,3)

GPS (1,2,2) (4,1,2) (10,1,3)

H S Φ

SU(3)C 1 1 1

SU(2)L 2 1 1

U(1)Y +1/2 0 0

U(1)B−L 0 +1 +2

Table 3.3: The content of scalar fields in the SO(10) model is shown, where the scalars

belong to (0, 0) under SL(2,C); Φ10, Φ16 and Φ126 are complex scalar fields. Here we

assume all unlisted components of GPS have O(MU) masses adn also all unlisted compo-

nents of GSM×U(1)B−L have O(MI) and O(MU) masses, respectively. Other information

is the same as in Table 3.2.

Aµ

SO(10) 45

G′µ Wµ W ′
µ

GPS (15,1,1) (1,3,1) (1,1,3)

Gµ Cµ Wµ Z ′µ

SU(3)C 8 1 1 1

SU(2)L 1 1 3 1

U(1)Y 0 0 0 0

U(1)B−L 0 0 0 0

Table 3.4: The content of gauge fields in the SO(10) model is shown, where the gauge

fields belong to (1/2, 1/2) under SL(2,C); Other information is the same as in Tables 3.2

and 3.3.

BM93,ABM+04,BMSV06,FIK+05,BDLM09,AM13,Fuk13,MNO+15,EGKO18,FHHT19,

CMK19, CPS20]. The field content of fermion, scalar, and gauge bosons are shown in

Tables 3.2, 3.3, and 3.4. (The potential analysis of 210 in SO(10) has already discussed

in e.g., Ref. [CK86]; SO(10) is broken to GPS for appropriate parameter sets.)

3.2.1 Scalar sector

Here we focus on the scalar potential of SM Higgs and pNGB relevant part that

contains scalar fields H, S, Φ belonging to 10, 16, and 126 of SO(10), respectively.
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We assume that the other components of Φ10, Φ16 and Φ126 shown in Table 3.3 have

the intermediate scale or larger masses and they do not contribute SU(2)L × U(1)Y and

U(1)B−L breakings.

From the scalar potential V ({Φx}) in Eq. (3.2.1), we extract the terms that contain

only H, S, Φ:

V (H,S,Φ) = −µ
2
H

2
|H|2 − µ2

S

2
|S|2 − µ2

Φ

2
|Φ|2 +

λH
2
|H|4 +

λS
2
|S|4 +

λΦ

2
|Φ|4

+ λHS|H|2|S|2 + λHΦ|H|2|Φ|2 + λSΦ|S|2|Φ|2 −
(
µc√

2
Φ∗S2 + c.c.

)
. (3.2.3)

The quadratic terms |H|2, |S|2, and |Φ|2 come from (Φ10Φ10)1, (Φ16Φ∗16)1, and (Φ126Φ∗
126

)1,

respectively; the quartic terms |H|4, |S|4, and |Φ|4 come from ((Φ10Φ10)1)2 and |(Φ10Φ10)54|2
|(Φ16Φ16)126|2, and |(Φ126Φ126)2772|2, respectively; the quartic terms |H|2|S|2, |H|2|Φ|2,

and |S|2|Φ|2 come from (Φ10Φ10)1(Φ16Φ∗16)1, (Φ10Φ10)1(Φ126Φ∗
126

)1, and (Φ16Φ∗16)1(Φ126Φ∗
126

)1,

respectively; the cubic term Φ∗S2 comes from Φ∗
126

(Φ16Φ16)126, 2 where the above sub-

script such as 1 and 54 stands for the product representation of SO(10). This potential

is exactly the same as that in Refs. [ATT20,ORS21]. See Appendix 3.A for details.

We assume that the scalar fields H, S, and Φ develop the VEVs, which are parame-

terized by

H =

(
0
v+h√

2

)
, S =

vs + s+ iηs√
2

, Φ =
vφ + φ+ iηφ√

2
, (3.2.4)

where h, s, and φ are CP-even modes, ηs and ηφ are CP-odd modes, and v, vs, and vφ
are the VEVs of H, S, and Φ, respectively. The CP phase of the cubic term Φ∗S2 is

eliminated by the field redefinition of Φ. In the limit µc → 0, there are two independent

global U(1) symmetries associated with the phase rotation of S and Φ. For µc 6= 0, the

U(1) symmetries are merged to the U(1)B−L (or U(1)X) symmetry. Once U(1)B−L is

broken, one of two CP-odd modes is absorbed by the U(1)B−L gauge field denoted as Cµ,

while the other appears as a physical pNGB whose mass is proportional to µc.

The scalar fields H, S, Φ have five modes; three of them are CP-even scalar modes

and the other two are CP-odd modes. The mass matrix for the CP-even scalars in the

(h, s, φ) basis is given by

M2
even =

 λHv
2 λHSvvs λHΦvvφ

λHSvvs λSv
2
s λSΦvsvφ − µcvs

λHΦvvφ λSΦvsvφ − µcvs λΦv
2
φ + µcv2

s

2vφ

 . (3.2.5)

2When we take into account the nonvanishing VEV of Φ210, quadratic terms |H|2, |S|2, and

|Φ|2 and the cubic term Φ∗S2 also come from (Φ10Φ10)1(Φ210Φ210)1, (Φ16Φ
∗
16)1(Φ210Φ210)1,

(Φ126Φ
∗
126

)1(Φ210Φ210)1, Φ16Φ16Φ126Φ210, respectively. Therefore, each coefficient such as µc in

Eq. (3.2.3) should be regarded as the total value including all the corresponding terms such as Φ16Φ16Φ126

and Φ16Φ16Φ126Φ210.
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Since the matrix is real and symmetric, it can be diagonalized by a real orthogonal

matrix. As discussed in Chapter 2, the gauge eigenstates (h, s, φ) are related with the

mass eigenstates (h1, h2, h3) as hs
φ

 = Ue

h1

h2

h3

 , (3.2.6)

where the approximate form of the real orthogonal matrix and its mixing angle are given

by

Ue ≈

 1 0 λHΦv
λΦvφ

0 1 λSΦv
λΦvφ

−λHΦv
λΦvφ

−λSΦv
λΦvφ

1


 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 , (3.2.7)

tan 2θ ≈ 2vvs(λHSλΦ − λHΦλSΦ)

v2(λ2
HΦ − λHλΦ)− v2

s(λ
2
SΦ − λSλΦ)

. (3.2.8)

The masses of (h1, h2, h3) are given by

m2
h1
≈ λHv

2 − λ2
HΦλS − 2λHSλHΦλSΦ + λΦλ

2
HS

λSλΦ − λ2
SΦ

v2, (3.2.9)

m2
h2
≈ λSλΦ − λ2

SΦ

λΦ

v2
s +

(λΦλHS − λHΦλSΦ)2

λΦ(λSλΦ − λ2
SΦ)

v2, (3.2.10)

m2
h3
≈ λΦv

2
φ. (3.2.11)

The mass eigenstate h1 is identified as the SM-like Higgs boson with the mass mh1 ≈
125 GeV, h2 is a light CP-even scalar, and h3 is a heavy CP-even scalar.

The mass matrix of the CP-odd scalars in the gauge eigenstates (ηs, ηφ) is given by

M2
odd =

µc
2vφ

(
4v2

φ −2vsvφ
−2vsvφ v2

s

)
. (3.2.12)

The gauge eigenstates (ηs, ηφ) are related with the mass eigenstates (χ, χ̃) as(
ηs
ηφ

)
= Uo

(
χ

χ̃

)
, (3.2.13)

where the real orthogonal matrix is given by

Uo =
1√

v2
s + 4v2

φ

(
2vφ vs
−vs 2vφ

)
. (3.2.14)

By using the 2× 2 real orthogonal matrix Uo, the mass eigenvalues of (χ, χ̃) are given by

m2
χ =

(v2
s + 4v2

φ)µc

4vφ
, (3.2.15)

m2
χ̃ = 0. (3.2.16)

The χ̃ is the NGB absorbed by the U(1)B−L gauge boson Cµ, and χ is the pNGB identified

as dark matter in the paper.
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3.2.2 Gauge sector

The gauge kinetic term of the SO(10) can be canonically normalized at the unification

scaleMU as in Eq. (3.2.1). In general, the kinetic-mixing term of multiple U(1) symmetries

are allowed for the case of at least two abelian groups because a field strength itself

is gauge-invariant for abelian groups, while that is not gauge-invariant for non-abelian

groups. So, in the energy scale MI < µ < MU , there is the gauge kinetic mixing of GPS.

At the scale µ = MI , there are two U(1)s, i.e. U(1)Y and U(1)B−L although one of the

U(1)s, which is the U(1)B−L, is broken at the scale. It is generated by threshold corrections

or via RGE flows. In SO(10) models, SO(10)/(SU(3)C × SU(2)L) contains U(1)Y and

U(1)B−L as two independent U(1)s, while they are not orthogonal. In fact, U(1)Y is

orthogonal to U(1)X(⊂ SO(10)/SU(5)); U(1)B−L is orthogonal to U(1)R(⊂ SU(2)R).

Therefore, it is expected that the kinetic mixing parameter between U(1)Y and U(1)B−L
denoted as ε is non-zero at classical level.

To determine the value of the kinetic mixing parameter between U(1)Y and U(1)B−L,

we focus on the kinetic terms of the gauge fields. First, from Eq. (3.2.1), the gauge kinetic

term of SO(10) is given by

Lgauge = −1

2
tr [FµνFµν ] . (3.2.17)

Next, the gauge kinetic terms of GPS are given by

Lgauge 3 −
1

2
tr
[
G′µνG

′µν]− 1

4
W a
µνW

aµν − 1

4
W ′a
µνW

′aµν , (3.2.18)

where G′µν , W
a
µν , and W ′a

µν stand for the field strengths of SU(4)C , SU(2)L, and SU(2)R,

respectively; the gauge kinetic terms and mass terms of SO(10)/GPS are omitted at MU .

The gauge coupling constants are running from MU to MI . Third, the SU(3)C×SU(2)L×
U(1)R × U(1)B−L are given by

Lgauge 3 −
1

2
tr [GµνG

µν ]− 1

4
W a
µνW

aµν − 1

4
B′µνB

′µν − 1

4
C ′µνC

′µν , (3.2.19)

where Gµν , B
′
µν and C ′µν stand for the field strength of SU(3)C(⊂ SU(4)C), U(1)R(⊂

SU(2)R), and U(1)B−L(⊂ SU(4)C/SU(3)C), respectively; the gauge kinetic terms and

mass terms of SU(4)C/(SU(3)C ×U(1)B−L) and SU(2)R/U(1)R are omitted at MI . Fur-

ther, by using the following GL(2,R) transformation

U(1)Y
U(1)B−L

:

(
Bµ

Cµ

)
=

(
1 − tan ε

0 1
cos ε

)(
B′µ
C ′µ

)
=: UGK

(
B′µ
C ′µ

)
:
U(1)R
U(1)B−L

, (3.2.20)

we can change the basis of U(1)s from U(1)R × U(1)B−L to U(1)Y × U(1)B−L;

−1

4
B′µνB

′µν − 1

4
C ′µνC

′µν = −1

4
BµνB

µν − 1

4
CµνC

µν − sin ε

2
CµνB

µν , (3.2.21)
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where Bµν and Cµν stand for the field strength of U(1)Y and U(1)B−L, respectively; ε is

the kinetic mixing parameter between U(1)Y and U(1)B−L. In the case, since the U(1)Y
generator is given by the following linear combination of U(1)R and U(1)B−L

IY =

√
3

5
I3R +

√
2

5
IB−L. (3.2.22)

Due to the orthogonality, the kinetic mixing parameter ε at µ = MI is given by

ε = − tan−1

√
2

3
. (3.2.23)

The Lagrangian for the electro-magnetic neutral part of the SU(2)L×U(1)Y ×U(1)B−L
gauge fields including mass terms generated by the VEVs of the spontaneous SU(2)L ×
U(1)Y and U(1)B−L breaking scalar fields is given by

L = −1

4
BµνB

µν − 1

4
W 3
µνW

3µν +
1

2
m2
Z̄ZµZ

µ

− 1

4
CµνC

µν +
1

2
m2
CCµC

µ − sin ε

2
CµνB

µν , (3.2.24)

where Zµ = cos θWW
3
µ−sin θWBµ is the usual Z boson, θW is the Weinberg angle tan θW :=

g1/g2; g1 and g2 stand for the U(1)Y and SU(2)L coupling constants, respectively. The

mass parameters are given by

m2
Z̄ =

g2
1 + g2

2

4
v2, m2

C = g2
B−L(v2

s + 4v2
φ), (3.2.25)

where gB−L is the gauge coupling constant of U(1)B−L.

To discuss the physical implications of U(1)B−L gauge boson, we requires both diago-

nalizing the field strength terms and the mass terms. The following discussion is done in

the same manner as Section 2.A. First, we diagonalize the kinetic term in Eq. (3.2.24) by

using the following GL(2,R) transformation:

U(1)Y
U(1)B−L

:

(
Bµ

Cµ

)
=

(
1 − tan ε

0 1
cos ε

)(
B̂µ

Ĉµ

)
= UGK

(
B̂µ

Ĉµ

)
, (3.2.26)

where B̂µ and Ĉµ stand for the gauge fields of the U(1)Y and “U(1)B−L” in the phys-

ical basis. The transformation is exactly the same as that in Eq. (3.2.20). That is,

“U(1)B−L” can be identified as U(1)X(⊂ SO(10)/SU(5)). Then, the gauge kinetic terms

in Eq. (3.2.24) become

LGK = −1

4
B̂µνB̂

µν − 1

4
Ŵ 3
µνŴ

3µν − 1

4
ĈµνĈ

µν . (3.2.27)

Next, we consider the physical eigenstate via an O(3) rotation by diagonalizing the mass

terms that arise after both U(1)B−L and SU(2)L ×U(1)Y breaking. One mass eigenstate
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is massless corresponding to the photon Aµ, while the other two denoted Z and Z ′ receive

masses. The mass terms of the neutral gauge boson in terms of (Bµ,W
3
µ , Cµ) is given by

Lmass =
1

2

(
Bµ W 3

µ Cµ

) sin2 θWm
2
Z̄

− sin θW cos θWm
2
Z̄

0

− sin θW cos θWm
2
Z̄

cos2 θWm
2
Z̄

0

0 0 M2
C


 Bµ

W 3µ

Cµ

 .

(3.2.28)

By using GL(2,R) transformation in Eq. (3.2.26), we change the basis whose kinetic term

is diagonalized as below:

Lmass =
1

2

(
B̂µ W 3

µ Ĉµ

)
t
ŨGK

 sin2 θWm
2
Z̄

− sin θW cos θWm
2
Z̄

0

− sin θW cos θWm
2
Z̄

cos2 θWm
2
Z̄

0

0 0 M2
C


× ŨGK

 B̂µ

W 3µ

Ĉµ

 , (3.2.29)

where

ŨGK :=

1 0 − tan ε

0 1 0

0 0 1
cos ε

 . (3.2.30)

The above mass matrix is a real symmetric matrix. In fact, it can be diagonalized by

using a real orthogonal matrix:

UG =

cos θW − sin θW 0

sin θW cos θW 0

0 0 1


1 0 0

0 cos ζ − sin ζ

0 sin ζ cos ζ

 , (3.2.31)

where the mixing angle ζ is given by

tan 2ζ =
−2m2

Z sin θW sin ε cos ε

m2
C −m2

Z(cos2 ε− sin2 θW sin2 ε)
. (3.2.32)

From the above, we find the masses of Aµ, Zµ, and Z ′µ as

m2
A = 0, (3.2.33)

m2
Z =

1

2

M2 −

√
M

4 − 4m2
Z̄
m2
C

cos2 ε

 , (3.2.34)

m2
Z′ =

1

2

M2
+

√
M

4 − 4m2
Z̄
m2
C

cos2 ε

 , (3.2.35)
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where M
2

is given by

M
2

:= m2
Z̄

(
1 + sin θW tan2 ε

)
+

m2
C

cos2 ε
. (3.2.36)

In this section, we find that the gauge kinetic mixing ε in Refs. [ATT20, ORS21] is

regarded as the mixing angle. In Appendix 3.B, we will show this more explicitly.

3.3 Gauge coupling constants

To determine such as the U(1)B−L breaking scale, i.e., intermediate scale MI , and

magnitude of the gauge coupling constant of the U(1)B−L, we discuss the RGEs for gauge

coupling constants running among the electroweak scale mZ , the intermediate scale MI ,

and the unification scale MU .

The RGE for the gauge coupling constant αi(µ) := g2
i (µ)/4π at one-loop level is given

in e.g., Refs. [Sla81,Yam15] by

d

d log(µ)
α−1
i (µ) = − bi

2π
, (3.3.1)

where i stands for a gauge group G; e.g., 4C stands for the gauge coupling constant of

SU(4)C , and the beta function coefficient is given by

bi = −11

3

∑
Vector

T (RV ) +
2

3

∑
Weyl

T (RF ) +
1

6

∑
Real

T (RS), (3.3.2)

where Vector, Weyl, and Real stand for real vector, Weyl fermion, and real scalar fields,

respectively. Since the vector bosons are gauge bosons, they belong to the adjoint repre-

sentation of the Lie group G: T (RV ) = C2(G). C2(G) is the quadratic Casimir invariant of

the adjoint representation of G, and T (Ri) is a Dynkin index of the irreducible representa-

tionRi ofG. Note that when the Lie groupG is spontaneously broken into its Lie subgroup

G′, it is convenient to use the irreducible representations of G′. (For the Dynkin index and

the branching rules, see e.g., Refs. [Yam15,MP81] or calculated by using appropriate com-

puter programs such as Susyno [Fon12], LieART [FK15,FKS20], and GroupMath [Fon21].

For the RGEs at the two-loop level, see, e.g., Refs. [MV83,MV84,MV85].)

Let us consider the RGEs for gauge coupling constants in the pNGB dark matter

model shown in Tables 3.2, 3.3, and 3.4. For the energy scale between MZ < µ < MI

and MI < µ < MU , we use the RGEs for the gauge coupling constants of GSM and GPS,

respectively. In the following calculation, we assume that there is only one intermediate

scale MI and one unification scale MU , which should be recognized as effective scales.

We can obtain the beta function coefficients of the gauge coupling constants of GSM

and GPS by using the generic RGE in Eq. (3.3.2) and the matter content of the model
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given in Tables 3.2, 3.3, and 3.4. The beta function coefficients of GSM in MZ < µ < MI

are given by b3C

b2L

b1Y

 =

 −7

−19/6

+41/10

 , (3.3.3)

where i = 3C, 2L, 1Y stand for SU(3)C , SU(2)L, U(1)Y , respectively, and we took the

SU(5) normalization for U(1)Y . (The values of bi are the same as the ordinary SM.) The

beta function coefficients of GPS in MI < µ < MU are given byb4C

b′2L
b2R

 =

−22/3

−3

+13/3

 , (3.3.4)

where i = 4C, 2L, 2R stand for SU(4)C , SU(2)L, SU(2)R, respectively. To distinguish

the beta function coefficient of the SU(2)L in GSM and that in GPS, we use unprimed and

primed, and the same notation is used below.

To solve the above RGEs, we need to set the initial conditions at µ = mZ . The gauge

coupling constants must satisfy the matching conditions between GSM and GPS at µ = MI

and also the matching condition between GPS and SO(10) at µ = MU . They are listed

below.

• The input parameters for the three SM gauge coupling constants at µ = mZ =

91.1876± 0.0021 GeV are given in Ref. [Z+20]:

α3C(mZ) = 0.1181± 0.0011, α2L(mZ) =
αEM(MZ)

sin2 θW (mZ)
, α1Y (mZ) =

5αEM(MZ)

3 cos2 θW (mZ)
,

(3.3.5)

where the experimental values of the EM gauge coupling constant αEM and the

Weinberg angle are given as

α−1
EM(MZ) = 127.955± 0.010, sin2 θW (mZ) = 0.23122± 0.00003. (3.3.6)

• The matching conditions between GSM and GPS at µ = MI are given by

α3C(MI) = α4C(MI), α2L(MI) = α′2L(MI), α−1
1Y (MI) =

3

5
α−1

2R(MI) +
2

5
α−1

4C(MI),

(3.3.7)

where they are determined by the normalization conditions of the generators of GPS

and GSM. (See e.g., Ref. [Moh02] at one-loop level; Refs. [DKP93a, DKP93b] at

two-loop level.)
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• The matching condition at the unification scale MU is given by

α4C(MU) = α′2L(MU) = α2R(MU). (3.3.8)

By using the RGEs of GSM and GPS and the matching conditions at µ = MI and MU ,

we can obtain MI and MU as

MI = mZ exp

[
A1B3 − A3B1

A2B3 − A3B2

]
,

MU = mZ exp

[(
A1B3 − A3B1

A2B3 − A3B2

)
+

(
A1B2 − A2B1

A3B2 − A2B3

)]
, (3.3.9)

where

A1 = α−1
3C(mZ)− α−1

2L (mZ), A2 =
b3C − b2L

2π
, A3 =

b4C − b′2L
2π

,

B1 =
5

3

(
α−1

3C(mZ)− α−1
1Y (mZ)

)
, B2 =

5

3

b3C − b1Y

2π
, B3 =

b4C − b2R

2π
. (3.3.10)

The gauge coupling constants such as α4C(MU) and α′2L(MU) are also expressed by the Z

boson mass mZ , the gauge coupling constants at µ = mZ and the beta function coefficients

of GSM and GPS bis. (The detail analysis is given in Appendix 3.C.)

By substituting bi in Eqs. (3.3.3) and (3.3.4) and the parameters at µ = mZ in

Eqs. (3.3.5) and (3.3.6) into the expressions of MI and MU in Eq. (3.3.9), we find the

values of the MI and MU as

MI = (1.261± 0.242)× 1011 GeV, MU = (2.057± 0.688)× 1016 GeV. (3.3.11)

Note that we ignore such as mass splitting at the intermediate and unification scales, so

the uncertainty must be larger. The values of the model parameters at µ = MI are given

by

α−1
4C(MI) = 31.92± 0.23, α′−1

2L (MI) = 40.19± 0.10, α−1
2R(MI) = 54.20± 0.26. (3.3.12)

We also find the gauge coupling constants of U(1)B−L and U(1)R at µ = MI

gB−L(MI) = 0.3843± 0.0009, gR(MI) = 0.4815± 0.0011, (3.3.13)

by using gB−L(MI) =
√

3π
2
α4C(MI) and gR(MI) =

√
4πα2R(MI). Since the standard

normalization of U(1)B−L is not the same as that of “U(1)B−L”(⊂ SU(4)C/SU(3)C), the

modified normalization factor is used. The unified gauge coupling constants at µ = MU

is given by

α−1
U = 45.92± 0.50. (3.3.14)

The energy dependence of the gauge coupling constants αi(µ) in the SO(10) pNGB model

is plotted in Fig. 3.1.
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Figure 3.1: The gauge coupling constants αi vs the energy scale µ for the SM (the left

figure) and the SO(10) pNGB model (the right figure) are shown [ATTY21]. The left

figure shows the energy dependence of three gauge coupling constants of SU(3)C , SU(2)L,

and U(1)Y , α3C , α2L, and α1Y in all the energy ranges µ = [mZ ,MH ], where MH =

1019 GeV. The right figure shows α3C , α2L, and α1Y in the energy ranges µ = [mZ ,MI ];

α4C , α2L, α2R in the energy ranges µ = [MI ,MH ], where the value of α3C is fixed as the

central value α3C(mZ) = 0.1181 [Z+20].

As the same as the usual GUT models, nucleon can decay via the so-called lepto-

quark gauge bosons. The proton lifetime via the gauge bosons is roughly estimated as

τ ≈M4
U/α

2
Um

5
p [NFP07,Moh02,Z+20], where mp is the proton mass and the gauge boson

masses are assumed to be MU . From the values of MU and αU given in Eqs. (3.3.11) and

(3.3.14), the proton lifetime τ ≈ 1.1 × 1037 years is predicted. It is far from the current

constraint τ(p→ e+π0) > 2.4×1034 years at 90% CL [T+20]; MU > (4.3−4.8)×1015 GeV

for 40 . α−1
U . 50. There is contribution for the proton decay modes via colored scalar

fields shown in Table 3.3. The color triplet component of Φ10 has assumed to haveO(MU),

so the contribution for the proton decay via the Yukawa coupling constant y
(ab)
10 of the

term Φ10

(
Ψ

(a)
16 Ψ

(b)
16

)
10

in Eq. (3.2.1) is small. Color non-singlet components of Φ126 have

assumed to O(MI), so the contribution for the proton decay via the Yukawa coupling

constant y
(ab)

126
of the term Φ∗

126

(
Ψ

(a)
16 Ψ

(b)
16

)
126

in Eq. (3.2.1) can be larger than the current

experimental bounds. This leads to an upper bound of the values of y
(ab)

126
in the model.

We comment on proton decay via a colored Higgs scalar or lepto-quark scalar denoted

as S1 in Ref. [DFG+16], which belongs to (3,1, 1/3) under GSM. In the following, we

omit Clebsch-Gordan coefficients for simplicity. When the lepto-quark scalar S1 has di-

quark and quark-lepton couplings, there are proton decay modes such as p → e+π0, and

the proton lifetime is roughly estimated as τ ≈ m4
LQ/(|y|2|z|2m5

p), where mLQ is a lepto-

quark mass, y and z represent generic values of relevant Yukawa coupling constants of the

lepto-quark with the quark-lepton and quark-quark pairs, respectively. For example, for

the lepto-quark with the intermediate scale mass mLQ = MI and the universal Yukawa
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Group GI Scalars at µ = MI bj
log10(M/1[GeV])

MI MU

α−1
U

GPS

(1,2,2)10
(4,1,2)16

(10,1,3)126

b4Cb′2L
b2R

 =

− 22
3

−3

+ 13
3

 11.10± 0.08 16.31± 0.15 45.92± 0.50

GPS ×D

(1,2,2)10
(4,2,1)16
(4,1,2)16

(10,1,3)126
(10,3,1)126

b4Cb′2L
b2R

 =

 −4

+ 13
3

+ 13
3

 13.71± 0.03 15.22± 0.04 40.82± 0.13

GLR

(1,2,2, 0)10
(1,1,2, 1)16
(1,1,3, 2)126


b′3C
b′2L
b2R
bB−L

 =


−7

−3

− 13
6

+ 23
4

 8.57± 0.06 16.64± 0.13 46.13± 0.41

GLR ×D

(1,2,2, 0)10
(1,1,2, 1)16
(1,2,1, 1)16
(1,1,3, 2)126

(1,3,1,−2)126


b′3C
b′2L
b2R
bB−L

 =


−7

− 13
6

− 13
6

+ 15
2

 10.11± 0.04 15.57± 0.09 43.38± 0.30

Table 3.5: The values of MI , MU , and α−1
U for several matter contents and symmetry

breaking patterns are summarized. The top of the table corresponds to the present SO(10)

pNGB model. The first, second, and third columns represent the intermediate scale group

GI , the matter content for scalar sector at µ = MI , the beta function coefficients bj of

GI , respectively. The fourth and fifth columns show the values of MI , MU , and α−1
U . The

subscript in the second column stands for each SO(10) representation.

coupling constants |y| = |z|, we obtain a constraint for the Yukawa coupling constants

|y| = |z| . 4.2 × 10−6 from the current constraint τ(p → e+π0) > 2.4 × 1034 years at

90% CL. To apply this for the current model, for the scalar field S1 in 10 of SO(10),

which belongs to (6,1,1) under GPS, the mass of the lepto-quark scalar is the unification

scale mass mLQ = MU and the Yukawa coupling constants are roughly expected as |y| =
|z| ≈ |y(11)

10 |. The current constraint τ(p → e+π0) > 2.4 × 1034 years at 90% CL leads to

|y(11)
10 | . 0.68. To realize the mass of up quark, y

(11)
10 is roughly O(10−5), so it is consistent

with the current constraint, where the actual values of the Yukawa coupling constants

depend on how to realized the observed quark and lepton masses. Next, for the scalar

fields S1(10,1,3) and S1(1,1,3) in 126 of SO(10), which belongs to (10,1,3) and (6,1,1)

under GPS. The lepto-quark scalar S1(10,1,3) and S1(6,1,1) have the intermediate scale mass

MI and the unification scale mass MU , respectively. For S1(10,1,3), the Yukawa coupling

couplings are given by |y| = 0 and |z| ≈ |y126|, so the proton decay mediated by S1(10,1,3)

does not occur. Therefore, this does not lead to any constraint for y
(ab)

126
. For S1(6,1,1),

the Yukawa coupling couplings are given by |y| = |z| ≈ |y126|. the current constraint

τ(p → e+π0) > 2.4 × 1034 years at 90% CL leads to |y(11)

126
| . 0.68 as the same as S1 in
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10 of SO(10). In the above discussion, we assumed S1(10,1,3) does not mix with S1(6,1,1),

but they have the same quantum numbers, so it depends on the structure of the scalar

potential, they can be mixed in general. Even when the mixing parameter denoted as ε

between S1(10,1,3) and S1(6,1,1) is about the ratio of the masses ε ≈MI/MU ≈ 6.1× 10−6,

the current constraint τ(p→ e+π0) > 2.4× 1034 years at 90% CL leads to the constraint

for the first generation Yukawa coupling constant |y(11)

126
| . 1.7 × 10−3. (For ε = 1,

|y(11)

126
| . 4.2× 10−6.)

Further, we comment on the relation between neutrino masses and the Yukawa cou-

pling constants y
(ab)

126
of the cubic term Φ16Φ16Φ126. Since the right-handed neutrino

masses are given by M
(ab)
N = y

(ab)

126
vφ, we obtain 2.1 × 108 GeV . M

(11)
N = y

(11)

126
vφ .

1.4 × 1011 GeV for 1.7 × 10−3 . y
(11)

126
. 0.68 and vφ = MI . From the Type-I see-saw

mechanism, the light neutrino mass is roughly m
(11)
ν ≈ |y(11)

10 v|2/M (11)
N when we ignore

the off-diagonal part of M
(ab)
N . Therefore, 4.4 × 10−8 eV . m

(11)
ν . 2.9 × 10−5 eV for

1.7× 10−3 . y
(11)

126
. 0.68, |y(11)

10 | ≈ 10−5 and v ≈ 246 GeV. The proton decay constraints

only a part of the Yukawa coupling constants y
(ab)

126
, so it is expected that the observed

neutrino masses can be reproduced, but to perform it properly, we need to investigate

how to reproduce the observed quark and charged lepton masses. We leave it for a future

study.

Up to this point, we only consider the specific symmetry breaking pattern, SO(10)

broken to GI = GPS at µ = MU in Eq. (3.1.2). We comment on other cases GI = GPS×D,

GLR, GLR×D discussed in e.g., Refs. [DKP93a,DKP93b,BK15,FHHT19], where D stands

for a discrete Z2 left-right exchange symmetry [CMP84b,CMP84a]. (Note that the same

analysis in SO(10) GUT models whose matter content is slightly different from the present

model has been already discussed in e.g., Refs. [DKP93a, DKP93b] by using two-loop

RGEs [Jon82] and the corresponding matching condition [Hal81, CMG+85].) To realize

the appropriate symmetry breaking patterns, we need different SO(10) breaking Higgs

fields; each GI = GPS, GPS×D, GLR, GLR×D is realized by the VEV of a scalar field in

e.g., 210, 54, 45, 210 of SO(10), respectively.

The values of MI , MU , and α−1
U for several matter contents and symmetry breaking

patterns are summarized in Table 3.5, which are estimated by using each analytical solu-

tion shown in Appendix 3.C. Substituting the values of MU and α−1
U for the GPS×D and

GLR × D cases into τ ≈ M4
U/α

2
Um

5
p, rapid proton decay is expected. For the GLR case,

the proton decay via lept-quark gauge bosons is consistent with the current experimental

constraints, but the pNGB cannot be identified as dark matter because pNGB decays too

rapidly or the observed relic abundance cannot be reproduced.
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3.4 Long-lived pNGB as dark matter candidate

The dark matter lifetime should be longer than the age of the universe, 1017 s at least.

The bound on dark matter lifetime becomes stronger depending on dark matter decay

channels due to the constraint of cosmic-ray observations. In particular, the bound from

gamma-ray observations is strong as roughly τχ & 1027 s for two body decays [BGQS16].

Since the dark matter lifetime is proportional to the power of the VEV vφ, it becomes

longer for larger vφ. The evaluation of dark matter lifetime without GUT has been

studied in Refs. [ATT20,ORS21], and it has turned out that the VEV should roughly be

vφ & 1013 GeV in order to be consistent with the gamma-ray observations if three body

decays χ→ hiff and Zff can occur. Since in the current GUT pNGB model the kinetic

mixing sin ε and the VEV vφ are fixed to be sin ε = −
√

2/5 and vφ ≈ 1011 GeV by the

requirement of the gauge coupling unification, the three body decays should kinematically

be forbidden. Therefore we consider the mass region mχ . O(100) GeV and estimate

dominant four body decay channels.

Before proceeding to four body decays, we comment on the two body decay channel

χ→ νν, which is possible even in the case mχ . O(100) GeV. Similarly to the U(1)B−L
model in the previous paper [ATT20], this process occurs via the scalar mixing given by

Eq. (3.2.14) and the mixing between the left-handed and right-handed neutrinos after the

electroweak symmetry breaking. The decay width for this channel is calculated as

Γνν =
mχ

64π

v2
s

v4
φ

∑
i

m2
νi

= 5× 10−59 GeV
( mχ

100 GeV

)( vs
1 TeV

)2
(

1011 GeV

vφ

)4∑
i

( mνi

0.1 eV

)2

, (3.4.1)

where mνi is the small neutrino mass eigenvalues. Eq. (3.4.1) roughly corresponds to

the lifetime τνν = O(1034) s, which is too small to be observed in neutrino cosmic-rays

[PR08, CGIT10] because of the suppression by the small neutrino mass squared m2
νi

.

Note that since the scale of the VEV in the GUT pNGB model is vφ ≈ 1011 GeV which

is much smaller than the previous analysis [ATT20], the order of the lifetime for this

channel is much shorter. However it is still too long to be detectable by experiments and

observations.

The four body decay processes χ→ fff ′f ′ mediated by hi, Z, Z
′ can occur as shown

in Fig. 3.2. Note that if f and f ′ are identical particles, additional diagrams exist due

to interference. We numerically evaluated the decay width for all the four body decay

processes using CalcHEP [BCP13], and furthermore we took into account three body decay

processes when these are kinematically possible. The results are shown in Fig. 3.3 in (mχ,

vφ) plane where the second Higgs mass is fixed to be mh2 = 70 GeV (left) and 130 GeV

(right). The orange region below the solid, dashed and dot-dashed lines are the region

where the dark matter lifetime is shorter than the conservative bound τχ = 1027 s for the
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Figure 3.2: The Feynman diagrams for the four body decays χ → ff̄f ′f̄ ′ are

shown [ATTY21].

Figure 3.3: Parameter space in the (mχ, vφ) plane where the second Higgs mass is fixed

to be mh2 = 70 GeV in the left and 130 GeV in the right [ATTY21]. The orange region is

excluded by the bound of the gamma-ray observations (τχ = 1027 s) for sin θ = 10−1, 10−2

and 10−3.

Higgs mixing angle sin θ = 10−1, 10−2, 10−3, respectively.3 The horizontal black dotted

line denotes vφ = MI = 1011.10 GeV. The most part of the region in the plots is dominated

by the four body decays except for the region mχ & 60 GeV in the left panel where the

three body decay χ→ h2ff can open up. One can read off the upper bound of the dark

matter mass mχ for a given mixing angle sin θ.

Fig. 3.4 shows the parameter space in (mχ, mh2) plane for the Higgs mixing angle

sin θ = 10−1, 10−2 and 10−3 where vφ = MI . The region mχ & mh2 is strongly constrained

by three body decay χ→ h2ff while the other region is constrained by four body decays.

In particular, if the second Higgs mass is degenerate with the SM-like Higgs boson (mh1 ≈
mh2), the four body decay width can be small and the constraint is weaken. This is because

3The actual bound on the dark matter lifetime for four body decays is weaker than τχ & 1027 s since

the energy of the emitted gamma rays is softer than two body decays.
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Figure 3.4: Parameter space in (mχ, hh2) plane, where the VEV is fixed to be vφ =

MI [ATTY21]. The orange region is excluded by the bound of the gamma-ray observations

(τχ = 1027 s) for sin θ = 10−1, 10−2 and 10−3.

Figure 3.5: Parameter space thermally reproducing the observed relic abundance consis-

tent with some other observations [ATTY21]. The red line represents the parameter space

reproducing the correct thermal relic abundance Ωχh
2 ≈ 0.12. The orange and green re-

gion are excluded by gamma-ray observations coming from the dark matter decay and

annihilations, respectively. The purple region are excluded by the constraints of the Higgs

invisible decay h1 → χχ and the Higgs signal strength. The gray region is perturbative

unitarity bound λS > 8π/3.

the effective coupling χ-f -f ′ mediated by h1 and h2 becomes small when mh1 ≈ mh2 .

Thermal relic abundance of dark matter is calculated using MicrOMEGAs [BBG+18b].

The results are shown in Fig. 3.5, where the other parameters are fixed to be mh2 =

70 GeV, sin θ = 0.05 in the left panel and mh2 = 130 GeV and sin θ = 0.05 the right

panel. The red line denotes the parameter space which can reproduce the observed relic

abundance of dark matter Ωχh
2 ≈ 0.12 [A+20b]. The purple region is excluded by the

constraints of the Higgs invisible decay and Higgs signal strength [S+19,A+19a], and the

gray region is excluded by the perturbative unitarity bound λS < 8π/3 [CDL15]. The
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green and orange region are ruled out by the constraints of the gamma-ray observations for

dark matter annihilations [A+17b] and four body decays [BGQS16], respectively. One can

see that the thermal relic abundance can be consistent with all the constraints when the

dark matter mass is rather close to the resonances mχ . mhi/2. This is the characteristic

due to the requirement from the gauge coupling unification in the current GUT pNGB

model.

We comment on the allowed parameter space mχ . mhi/2. For the second Higgs mass

rather heavier than the SM-like Higgs mass, the constraint of the gamma-ray observations

can be avoided only if the dark matter mass is light enough mχ . 35 GeV as can be seen

from Fig. 3.4. On the other hand, this mass region cannot be consistent with the thermal

relic abundance of dark matter since it is far from the Higgs resonances. Therefore the

mass region mh2 & mh1 is completely excluded as long as thermal production mechanism

of dark matter is assumed. For more precise calculations in the region mχ . mhi/2, the

effect of the early kinetic decoupling from the SM thermal bath should be taken into

account [BBGH17, Abe20]. If this effect is included, one can expect that the red line in

Fig. 3.3 is shifted slightly upward.

3.5 Summary

In this chapter, we proposed an SO(10) pNGB dark matter model in the framework of

GUTs. Each Weyl fermion in 16 of SO(10) contains one generation of quark and leptons.

The SM Higgs and two complex scalar fields H, S and Φ in the previous gauged U(1)B−L
pNGB dark matter model are embedded into scalar fields in 10, 16, and 126 of SO(10).

Assuming a symmetry breaking pattern of SO(10) to GPS at µ = MU , and further to

GSM at µ = MI , the intermediate and unified scales MI and MU , the gauge coupling

constants of U(1)B−L, and the kinetic mixing parameter of between U(1)Y and U(1)B−L
are determined by solving the RGEs with appropriate matching conditions such as gauge

coupling unification at µ = MU .

The dark matter lifetime without GUT has analyzed in Refs. [ATT20, ORS21]. It

suggests that the VEV should roughly be the VEV of Φ vφ & 1013 GeV in order to be

consistent with the gamma-ray observations if three body decays χ→ hiff and Zff are

possible. In the current GUT pNGB model, the kinetic mixing and the VEV are fixed

to be sin ε = −
√

2/5 and vφ ≈ 1011 GeV, respectively. To satisfy the constraint from

the gamma-ray observations, the pNGB dark matter mass must be mχ . O(100) GeV to

forbid the three body decays kinematically. In the mass region, the dominant contribution

for dark matter decay channels comes from four body decay channels χ → ff̄f ′f̄ ′. We

find that the thermal relic abundance can be consistent with all the constraints when the

dark matter mass is rather close to the resonances mχ . mhi/2.

42



Appendix 3.A Scalar potential of pNGB dark matter

model from SO(10) GUT

First, let us devote the scalar potential in the gauged U(1)B−L model (3.2.3) to four

parts as follows:

V (H,S,Φ) = −µ2
H

2
|H|2 − µ2

S

2
|S|2 − µ2

Φ

2
|Φ|2

+λH
2
|H|4 + λS

2
|S|4 + λΦ

2
|Φ|4

+λHS|H|2|S|2 + λHΦ|H|2|Φ|2 + λSΦ|S|2|Φ|2

−
(
µc√

2
Φ∗S2 + c.c.

)
. (3.A.1)

The first lightgreen line is quadratic couplings, the second lightskyblue line is scalar self

couplings, the third lightsalmon line is scalar mixing couplings and the fourth lightgold-

enrod line is qubic couplings of Φ and S generating the effective soft breaking mass term

S in the low-energy region.

On the other hand, he scalar potential V(Φ10,Φ16,Φ126) is given as4

V(Φ10,Φ16,Φ126) =− µ2
10

2

(
Φ10Φ10

)
1
− µ2

16

2

(
Φ16Φ∗16

)
1
− µ2

126

2

(
Φ126Φ∗126

)
1

+
λ

(1)
10

2

(
Φ10Φ10

)
1

(
Φ10Φ10

)
1

+
λ

(2)
10

2

(
Φ10Φ10

)
54

(
Φ10Φ10

)
54

+
λ

(1)
16

2

(
Φ16Φ16

)
126

(
Φ16Φ16

)∗
126

+
λ

(2)
16

2

(
Φ16Φ16

)
10

(
Φ16Φ16

)∗
10

+
λ

(3)
16

2

(
Φ16Φ16

)
10

(
Φ16Φ16

)
10

+
λ

(3)∗
16

2

(
Φ16Φ16

)∗
10

(
Φ16Φ16

)∗
10

+
λ

(1)

126

2

(
Φ126Φ126

)
2772

(
Φ126Φ126

)∗
2772

+
λ

(2)

126

2

(
Φ126Φ126

)
4125

(
Φ126Φ126

)∗
4125

+
λ

(3)

126

2

(
Φ126Φ16

)
1050

(
Φ126Φ126

)∗
1020

+
λ

(4)

126

2

(
Φ126Φ126

)
54

(
Φ126Φ126

)∗
54

+
λ

(5)

126

2

(
Φ126Φ126

)
4125

(
Φ126Φ126

)
4125

+
λ

(5)∗
126

2

(
Φ126Φ126

)∗
4125

(
Φ126Φ126

)∗
4125

+
λ

(6)

126

2

(
Φ126Φ126

)
54

(
Φ126Φ126

)
54

+
λ

(6)∗
126

2

(
Φ126Φ126

)∗
54

(
Φ126Φ126

)∗
54

+ λ10,16
(
Φ10Φ10

)
1

(
Φ16Φ∗16

)
1

+ λ
(1)

10,126

(
Φ10Φ10

)
1

(
Φ126Φ∗126

)
1

+ λ
(2)

10,126

(
Φ10Φ10

)
54

(
Φ126Φ126

)
54

+ λ
(2)∗
10,126

(
Φ10Φ10

)∗
54

(
Φ126Φ126

)∗
54

+ λ16,126
(
Φ16Φ∗16

)
1

(
Φ126Φ∗126

)
1

4The singlet of the tensor product is able to be read from Ref. [Yam15].
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−
(
µc√

2

(
Φ126

)∗(
Φ16Φ16

)
126

+
µ∗c√

2

(
Φ126

)(
Φ16Φ16

)∗
126

)
−
(
µ′c√

2

(
Φ10

)(
Φ16Φ16

)
10

+
µ′∗c√

2

(
Φ10

)(
Φ16Φ16

)∗
10

)
. (3.A.2)

The scalar potential of the guaged U(1)B−L model (3.2.3) or (3.A.1) is embeded in the

following parts:

V(Φ10,Φ16,Φ126) 3 −µ2
10

2

(
Φ10Φ10

)
1
− µ2

16

2

(
Φ16Φ∗16

)
1
− µ2

126

2

(
Φ126Φ∗

126

)
1

+
λ

(1)
10

2

(
Φ10Φ10

)
1

(
Φ10Φ10

)
1

+
λ

(2)
10

2

(
Φ10Φ10

)
54

(
Φ10Φ10

)
54

+
λ

(1)
16

2

(
Φ16Φ16

)
126

(
Φ16Φ16

)∗
126

+
λ

(1)

126

2

(
Φ126Φ126

)
2772

(
Φ126Φ126

)∗
2772

+λ10,16
(
Φ10Φ10

)
1

(
Φ16Φ∗16

)
1

+λ
(1)

10,126

(
Φ10Φ10

)
1

(
Φ126Φ∗

126

)
1

+λ16,126
(
Φ16Φ∗16

)
1

(
Φ126Φ∗

126

)
1

−
(
µc√

2

(
Φ126

)∗(
Φ16Φ16

)
126

+ µ∗c√
2

(
Φ126

)(
Φ16Φ16

)∗
126

)
−
(
µ′c√

2

(
Φ10

)(
Φ16Φ16

)
10

+
µ′∗c√

2

(
Φ10

)(
Φ16Φ16

)∗
10

)
. (3.A.3)

We note that Φ10, Φ16 and Φ126 are complex scalar fields.

Appendix 3.B Kinetic mixing as mass mixing

As discussed in the main part of this chapter, the gauge kinetic mixing in Refs. [ATT20,

ORS21] is regarded as the mixing angle. In this appendix, we will show this explicitly.

The scalar fields in Refs. [ATT20,ORS21] are embedded into the scalars of SO(10) shown

in Table 3.3 as

Φ10 ⊃ φ(1,2,2) ⊃ φ(1,2,1/2) = H, (3.B.1)

Φ16 ⊃ φ(4,1,2) ⊃ φ(1(+3),1,−1/2) = S, (3.B.2)

Φ126 ⊃ φ(10,1,3) ⊃ φ(1(+6),1,−1) = Φ. (3.B.3)

Here we will consider the following two symmetry breaking pattern:

GPS → GSM, GPS → GLR → GSM. (3.B.4)
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3.B.1 GPS → GSM

First, let us consider the following symmetry breaking pattern

SU(4)C × SU(2)R
〈φ(10,1,3)〉6=0, 〈φ(4,1,2)〉6=0
−−−−−−−−−−−−−−−−→ SU(3)C × U(1)Y , (3.B.5)

using minimal scalar fields Eqs. (3.B.1)–(3.B.3). This breaking pattern is suitable for the

pNGB dark matter model embedding into an SO(10) GUT model because the interme-

diate scale can be large enough to make the dark matter candidate long-lived.

The covariant derivative of GPS gauge group acts on S and Φ as

DµS = ∂µS + ig4G
′3,a
µ I

SU(4)C
3(−4),a

S + igB−LEµQ
S
B−LS + i

gR√
2
W ′+
µ I

SU(2)R
+ S + igRW

′3
µ I

SU(2)R
3 S

= ∂µS + ig4G
′3,a
µ I

SU(4)C
3(−4),a

S + i
gR√

2
W ′+
µ I

SU(2)R
+ S + igB−LEµS −

igR
2
W ′3
µ S, (3.B.6)

DµΦ = ∂µΦ + ig4G
′3,a
µ I

SU(4)C
3(4),a Φ + igB−LEµQ

Φ
B−LΦ + i

gR√
2
W ′+
µ I

SU(2)R
+ Φ + igRW

′3
µ I

SU(2)R
3 Φ

= ∂µΦ + ig4G
′3,a
µ I

SU(4)C
3(4),a Φ + i

gR√
2
W ′+
µ I

SU(2)R
+ Φ + 2igB−LEµΦ− igRW ′3

µ Φ, (3.B.7)

where Eµ is the gauge field associated with U(1)B−L ⊂ SU(4)C and gB−L is the gauge

coupling constant given by gB−L =
√

3
8
g4. The B − L charge comes from the diagonal

component of SU(4) denoted by

QB−L =

√
8

3
I
SU(4)C
15 , I

SU(4)C
15 =

√
3

8
diag(1/3, 1/3, 1/3,−1). (3.B.8)

G′3,aµ and G′3,aµ are color charged vector boson with the representation 3(4) and 3(−4)

of SU(3)C × U(1)B−L belonging to 15 of SU(4)C respectively. (For the details of the

branching rules and the tensor products, see Ref. [Yam15].) These scalars are assumed

to develop the following VEVs,

〈S〉 =
vs√

2
, 〈Φ〉 =

vφ√
2
, (3.B.9)

and these gives the mass terms of the gauge fields

LSU(4)C×SU(2)R,mass =G′3,a†µ M2
3,abG

′3,bµ +G′3,a†µ M2
3,abG

′3,bµ +
g2
R

4
(v2
s + 2v2

φ)W ′−
µ W ′+µ

+
1

2

(
v2
s

4
+ v2

φ

)(
2gB−LEµ − gRW ′3

µ

)2
, (3.B.10)

where the mass matrices for the color charged vector bosons G′3,aµ and G′3,aµ are defined

by

M2
3,ab =

g2
4v

2
φ

2
tr
[(
I
SU(4)C
3(4),a

)†
I
SU(4)C
3(4),b

]
, M2

3,ab =
g2

4v
2
s

2
tr
[(
I
SU(4)C
3(−4),a

)†
I
SU(4)C
3(−4),b

]
. (3.B.11)
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The last term of Eq. (3.B.10) leads the mass mixing between U(1)B−L ⊂ SU(4)C and

U(1)R ⊂ SU(2)R, and the massless direction becomes U(1)Y in the SM gauge group.

From this term, the massive vector boson C ′µ and the orthogonal massless gauge boson

B′µ are introduced by (
B′µ
C ′µ

)
=

(
cos ε sin ε

− sin ε cos ε

)(
W ′3
µ

Eµ

)
, (3.B.12)

where the mixing angle is defined by

sin ε =
gR√

g2
R + 4g2

B−L

, cos ε =
2gB−L√
g2
R + 4g2

B−L

, (3.B.13)

and the mass of C ′µ becomes m2
C′ = (g2

R+4g2
B−L)(v2

s/4+v2
φ). In this basis, the Lagrangian

is

L 3 −1

4
W a
µνW

aµν − 1

4
B′µνB

′µν − 1

4
C ′µνC

′µν +
1

2
m2
C′C

′
µC
′µ (3.B.14)

If the color charged vector bosons are dropped, the covariant derivative is rewritten by

using these bosons as

Dµ 3 ig1B
′
µ + igC′C

′
µ

(
QB−L

2
− sin2 εQY

)
, (3.B.15)

where the hypercharge is defined by

QY = I
SU(2)R
3 +

QB−L

2
, (3.B.16)

and the couplings are given by

g1 =
2gRgB−L√
g2
R + 4g2

B−L

, gC′ =
√
g2
R + 4g2

B−L. (3.B.17)

Correspondence between the pNGB model [ATT20, ORS21] and the SO(10)

pNGB model

We will discuss the kinetic mixing in the GUT model. First, from Eq. (3.B.12), B′µ is

written by using (W ′3
µ , Eµ) as B′µ = W ′3

µ / cos ε + sin εEµ/ cos ε, and the field redefinition

by cos ε leads the canonically normalized gauge kinetic terms. The massive direction of

broken U(1) symmetry does not change in this rewriting. Then Let us introduce new

fields after the rescaling by(
B′µ
C ′µ

)
=

(
1 sin ε

0 cos ε

)(
Bµ

Cµ

)
,

(
Bµ

Cµ

)
=

(
1 − tan ε

0 1/ cos ε

)(
B′µ
C ′µ

)
, (3.B.18)
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Gauged U(1)B−L model [ATT20] pNGB in SO(10) GUT

GSM × U(1)B−L GPS

QY QY = I
SU(2)R
3 + QB−L

2

QB−L QB−L =
√

8
3
I
SU(4)C
15

Bµ Bµ in Eq. (3.B.18)

B̂µ B′µ in Eq. (3.B.12)

Xµ Cµ in Eq. (3.B.18)

X̂µ C ′µ in Eq. (3.B.12)

g1 g1 = 2gRgB−L/
√
g2
R + 4g2

B−L

gB−L gB−L =
√

3
8
g4

g2 gL

Dµ = ∂µ + igsG
a
µI

SU(3)C
a + ig2W

a
µI

SU(2)L
a Dµ = ∂µ + igsG

a
µI

SU(3)C
a + igLW

a
µI

SU(2)L
a

+ig1QYBµ + igB−LQB−LXµ +ig1QYBµ + igB−LQB−LCµ

kinetic mixing

gauge kinetic mixing of Bµ and Xµ: ε gauge kinetic mixing of Bµ and Cµ: ε

= free parameter = mixing angle ε of (W ′3
µ , Eµ) 7→ (B′µ, C

′
µ)

in Eq. (3.B.14)

Table 3.6: The correspondence table of the kinetic mixing and the gauge fields between

the gauged U(1)B−L model [ATT20,ORS21] and SO(10) GUT model.

so that the massive direction does not change but the massless component is replaced.

The relation between (W ′3
µ , Eµ) and (Bµ, Cµ) is given by(

W ′3
µ

Eµ

)
=

(
cos ε 0

sin ε 1

)(
Bµ

Cµ

)
. (3.B.19)

The U(1)B−L×U(1)R gauge sector in the Lagrangian (3.B.14) is rewritten by using these

fields as

L 3 −1

4
W a
µνW

aµν − 1

4
BµνB

µν − 1

4
CµνC

µν − sin ε

2
BµνC

µν +
1

2
m2
CCµC

µ, (3.B.20)

with M2
C = g2

B−L(v2
s + 4v2

φ), and the covariant derivative is given by

Dµ 3 igB−LEµQB−L + igRW
′3
µ I

SU(2)R
3 = igB−LCµQB−L + ig1BµQY , (3.B.21)

where Eqs. (3.B.16) and (3.B.17) are used. Eqs. (3.B.20) and (3.B.21) are parts of the

Lagrangian of the gauged U(1)B−L pNGB model, and the gauge kinetic mixing is naturally

regarded as the mixing angle coming from the GUT inspired symmetry breaking. The

correspondence is summarized in Table 3.6.
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3.B.2 GPS → GLR → GSM

If the adjoint Higgs bosons φ(15,1,1) and φ(1,1,3) are introduced in addition to the scalars

Eqs. (3.B.1)–(3.B.3), these VEVs break the Pati-Salam gauge symmetry as

SU(4)C
〈φ(15,1,1)〉6=0−−−−−−−−→ SU(3)C × U(1)B−L, SU(2)R

〈φ(1,1,3)〉6=0−−−−−−−→ U(1)R. (3.B.22)

By this breaking pattern, the covariant derivative of GPS reduces to that of SU(3)C ×
SU(2)L × U(1)R3 × U(1)B−L as

Dµ = ∂µ + igsG
a
µI

SU(3)C
a + igB−LEµQB−L + igLW

a
µI

SU(2)L
a + igRW

′3
µ I

SU(2)R
3 , (3.B.23)

where the B −L charge is defined by Eq. (3.B.8) and the gauge couplings are introduced

by gs = g4, gC =
√

3
8
g4. The VEVs of S and φ (3.B.9) break the residual gauge symmetry

as

SU(3)C × SU(2)L × U(1)R × U(1)B−L → GSM, (3.B.24)

and lead the mass term for the gauge bosons

LU(1)R3×U(1)B−L,mass =
1

2

(
v2
s

4
+ v2

φ

)(
2gB−LEµ − gRW ′3

µ

)2
, (3.B.25)

which is same to the last term of Eq. (3.B.10). In this breaking pattern, the charged

gauge bosons become massive via the VEV of the adjoint Higgs fields.

The mixing angle ε and correspondence between the mixing angle and kinetic mixing

are same in the previous discussions.

Appendix 3.C RGEs for gauge coupling constants

Here we analyze the RGEs for gauge coupling constants of GSM and GI = GPS, GLR,

and SO(10) in the pNGB dark matter model. (For the RGE analysis, see e.g., Ref. [Moh02].)

The RGE for the gauge coupling constants given in Eq. (3.3.1) can be solve as

α−1
i (µ1) = α−1

i (µ0)− bi
2π

log

(
µ1

µ0

)
. (3.C.1)

when the beta function coefficients bi are constant in the energy range µ0 < µ < µ1. In

the following, we apply the solution for GSM, and GI = GPS, GLR cases.

In the following, we find the intermediate scale MI and MU can be described by using

the gauge coupling constants of GSM at µ = mZ and the beta function coefficients of

GSM and GI(= GPS, GLR). Therefore, all the gauge coupling constants such as the unified

gauge coupling constant αU can be analytically solved if they exist.
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3.C.1 GI = GPS case

We list up the RGEs ofGSM andGPS inmZ < µ < MI andMI < µ < MU , respectively,

and the matching conditions at µ = MI ,MU .

mZ < µ < MI

For mZ < µ < MI , the RGEs of the gauge coupling constants of GSM = SU(3)C ×
SU(2)L × U(1)Y are given by

α−1
3C(µ) = α−1

3C(mZ)− b3C

2π
log

(
µ

mZ

)
,

α−1
2L (µ) = α−1

2L (mZ)− b2L

2π
log

(
µ

mZ

)
,

α−1
1Y (µ) = α−1

1Y (mZ)− b1Y

2π
log

(
µ

mZ

)
. (3.C.2)

µ = MI

The matching conditions between GSM and GPS = SU(4)C × SU(2)L × SU(2)R at

µ = MI are given as

α−1
4C(MI) = α−1

3C(MI),

α′−1
2L (MI) = α−1

2L (MI),

α−1
2R(MI) =

5

3
α−1

1Y (MI)−
2

3
α−1

3C(MI). (3.C.3)

MI < µ < MU

For MI < µ < MU , the RGEs of the gauge coupling constants of GPS are given by

α−1
4C(µ) = α−1

4C(MI)−
b4C

2π
log

(
µ

MI

)
= α−1

3C(mZ)− b3C

2π
log

(
MI

mZ

)
− b4C

2π
log

(
µ

MI

)
,

α′−1
2L (µ) = α′−1

2L (MI)−
b′2L
2π

log

(
µ

MI

)
= α−1

2L (mZ)− b2L

2π
log

(
MI

mZ

)
− b′2L

2π
log

(
µ

MI

)
,

α−1
2R(µ) = α−1

2R(MI)−
b2R

2π
log

(
µ

MI

)
=

5

3
α−1

1Y (mZ)− 2

3
α−1

3C(mZ)−
(

5

3

b1Y

2π
− 2

3

b3C

2π

)
log

(
MI

mZ

)
− b2R

2π
log

(
µ

MI

)
.

(3.C.4)

µ = MU

For µ = MU , the matching condition between GPS and SO(10) at µ = MU is given by

α−1
4C(MU) = α′−1

2L (MU) = α−1
2R(MU), (3.C.5)
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where

α−1
4C(MU) = α−1

3C(mZ)− b3C

2π
log

(
MI

mZ

)
− b4C

2π
log

(
MU

MI

)
,

α′−1
2L (MU) = α−1

2L (mZ)− b2L

2π
log

(
MI

mZ

)
− b′2L

2π
log

(
MU

MI

)
,

α−1
2R(MU) =

5

3
α−1

1Y (mZ)− 2

3
α−1

3C(mZ)−
(

5

3

b1Y

2π
− 2

3

b3C

2π

)
log

(
MI

mZ

)
− b2R

2π
log

(
MU

MI

)
.

(3.C.6)

MI and MU

From the matching condition in Eq. (3.C.5), we can analytically solve the intermediate

scale MI and unification scale MU as

MI = mZ exp

[
A1B3 − A3B1

A2B3 − A3B2

]
,

MU = mZ exp

[(
A1B3 − A3B1

A2B3 − A3B2

)
+

(
A1B2 − A2B1

A3B2 − A2B3

)]
, (3.C.7)

where

A1 = α−1
3C(mZ)− α−1

2L (mZ), A2 =
b3C − b2L

2π
, A3 =

b4C − b′2L
2π

,

B1 =
5

3

(
α−1

3C(mZ)− α−1
1Y (mZ)

)
, B2 =

5

3

b3C − b1Y

2π
, B3 =

b4C − b2R

2π
. (3.C.8)

3.C.2 GI = GLR case

We list up the RGEs of GSM and GI = GLR in mZ < µ < MI and MI < µ < MU ,

respectively, and the matching conditions at µ = MI ,MU .

mZ < µ < MI

For mZ < µ < MI , the RGEs of the gauge coupling constants of GSM = SU(3)C ×
SU(2)L × U(1)Y are given by

α−1
3C(µ) = α−1

3C(mZ)− b3C

2π
log

(
µ

mZ

)
,

α−1
2L (µ) = α−1

2L (mZ)− b2L

2π
log

(
µ

mZ

)
,

α−1
1Y (µ) = α−1

1Y (mZ)− b1Y

2π
log

(
µ

mZ

)
. (3.C.9)
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µ = MI

The matching conditions between GSM and GLR = SU(3)C × SU(2)L × SU(2)R ×
U(1)B−L at µ = MI are given as

α′−1
3C (MI) = α−1

3C(MI),

α′−1
2L (MI) = α−1

2L (MI),

α−1
2R(MI) =

5

3
α−1

1Y (MI)−
2

3
α−1
B−L(MI). (3.C.10)

Note that unlike the above GI = GPS case, the gauge coupling constants of GLR at µ = MI

cannot be determined only by using those of GSM at µ = MI . To fix them, we need to

use the matching conditions of the gauge coupling constants at µ = MU .

MI < µ < MU

For MI < µ < MU , the RGEs of the gauge coupling constants of GLR are given by

α′−1
3C (µ) = α′−1

3C (MI)−
b′3C
2π

log

(
µ

MI

)
= α−1

3C(mZ)− b3C

2π
log

(
MI

mZ

)
− b′3C

2π
log

(
µ

MI

)
,

α′−1
2L (µ) = α′−1

2L (MI)−
b′2L
2π

log

(
µ

MI

)
= α−1

2L (mZ)− b2L

2π
log

(
MI

mZ

)
− b′2L

2π
log

(
µ

MI

)
,

α−1
2R(µ) = α−1

2R(MI)−
b2R

2π
log

(
µ

MI

)
,

α−1
B−L(µ) = α−1

B−L(MI)−
bB−L
2π

log

(
µ

MI

)
. (3.C.11)

µ = MU

For µ = MU , the matching condition between GLR and SO(10) at µ = MU is given by

α′−1
3C (MU) = α′−1

2L (MU) = α−1
2R(MU) = α−1

B−L(MU), (3.C.12)

where

α′−1
3C (MU) = α−1

3C(mZ)− b3C

2π
log

(
MI

mZ

)
− b′3C

2π
log

(
MU

MI

)
,

α′−1
2L (MU) = α−1

2L (mZ)− b2L

2π
log

(
MI

mZ

)
− b′2L

2π
log

(
MU

MI

)
,

α−1
2R(MU) =

5

3
α−1

1Y (mZ)− 2

3
α−1
B−L(MI)−

5

3

b1Y

2π
log

(
MI

mZ

)
− b2R

2π
log

(
MU

MI

)
,

α−1
B−L(MU) = α−1

B−L(MI)−
bB−L
2π

log

(
MU

MI

)
. (3.C.13)
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MI and MU

From the matching condition in Eq. (3.C.12), we can analytically solve the interme-

diate scale MI and unification scale MU as

MI = mZ exp

[
C1D3 − C3D1

C2D3 − C3D2

]
,

MU = mZ exp

[(
C1D3 − C3D1

C2D3 − C3D2

)
+

(
C1D2 − C2D1

C3D2 − C2D3

)]
, (3.C.14)

where

C1 = α−1
3C(mZ)− α−1

2L (mZ), C2 =
b3C − b2L

2π
, C3 =

b′3C − b′2L
2π

,

D1 = α−1
2L (mZ)− α−1

1Y (mZ), D2 =
b2L − b1Y

2π
, D3 =

b′2L − 3b2R+2bB−L
5

2π
. (3.C.15)
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Chapter 4

Non-thermal production of

pseudo-Nambu-Goldstone dark

matter and inflation

4.1 Feeble interaction in pNGB dark matter model

and inflationary scenario

As we discussed in Chapters 2 and 3, one of the ways naturally evading the severe

constraints from direct detection is to identify a pNGB as dark matter. In these cases, it is

found due to the nature of NGB that all couplings of dark matter are inversely proportional

to the VEV associated with the symmetry breaking, and then highly suppressed if the

VEV is large enough.

Such a large VEV may in fact be connected to generate the small neutrino masses in

the framework of Majoron models where the right-handed neutrino Majorana masses are

induced by the large VEV [CMP80,CMP81,GR81,GMS10,MY10,QS14]. In this case, the

pNGB is identified as Majoron. In order to make the canonical seesaw mechanism work

with O(1) Yukawa couplings, the VEV should be as large as O(1014) GeV. Therefore

from this viewpoint, it is motivated to consider the pNGB as FIMPs (Feebly Interacting

Massive Particles) produced by freeze-in mechanism [AIM06, AIM07, HJMRW10] with

extremely suppressed interactions, e.g., due to a large VEV. In the framework of freeze-in

mechanism, dark matter is assumed to be never thermalized with the SM particles. A

typical magnitude of FIMP coupling for reproducing the relic abundance observed by the

PLANCK Collaboration [A+20b] is O(10−11) for dimensionless couplings [HJMRW10].

In this chapter, we calculate the dark matter relic abundance via Higgs portal in the

pNGB dark matter model [GLT17] with large symmetry breaking scale, and study in

detail the freeze-in parameter space consistent with the observations. In addition, we

examine if successful inflation can occur through the non-minimal coupling to gravity

53



where the field associated with the symmetry breaking is identified as the inflaton. That

implies the inflaton also necessarily induces the pNGB dark matter relic, which would

significantly modify the relevant parameter space.

The rest part is organized as follows. In Section 4.2, we briefly review the pNGB

model in this chapter’s notation in the non-linear representation. In Section 4.3, the relic

abundance of pNGB dark matter via the Higgs portal freeze-in is calculated, including

the thermal mass of the Higgs boson which is important to evaluate the reaction rates of

relevant processes. We also derive the Boltzmann equations for the pNGB FIMP, evaluate

the time evolution of the dark matter yield, and show some parameter sets consistent

with the present relic abundance observed by experiments. In Section 4.4, we examine

the possibility that the radial component of symmetry breaking scalar plays an role of

the inflaton. The allowed parameter space is identified taking into account the direct

production of the pNGB dark matter from the inflaton decay. Section 4.5 is devoted to

our summary.

4.2 Simple pNGB dark matter model

In the simple pNGB model, the SM is extended with a complex singlet scalar Φ1, and

the Lagrangian is given by

L = LSM + |∂µΦ|2 − V(H,Φ), (4.2.1)

where the scalar potential including the SM Higgs doublet H is given by

V(H,Φ) = − µ2
H

2
|H|2 +

λH
2
|H|4 − µ2

Φ

2
|Φ|2 +

λΦ

2
|Φ|4 + λHΦ|H|2|Φ|2

− m2

4

(
Φ2 + Φ∗2

)
. (4.2.2)

The last term is the soft-breaking mass term which is introduced in order to generate the

mass of pNGB. We do not consider the origin of this term (UV completion of the model).

The Higgs doublet H and the singlet scalar Φ are assumed to develop non-vanishing VEVs

and are parametrized as

H =
1√
2

(
0

v + h

)
, Φ =

vφ + φ√
2

eiχ/vφ , (4.2.3)

where we have dropped the would-be NG modes in H (the unitary gauge). Note that

the pNGB χ is stable due to a remnant Z2 symmetry after the spontaneous symmetry

breaking, thus it can be a dark matter candidate. The stationary conditions of the VEVs

v and vφ impose the following relations between the parameters in the scalar potential

µ2
H = λHv

2 + λHΦv
2
φ, µ2

Φ = λΦv
2
φ + λHΦv

2 −m2. (4.2.4)

1In this chapter, Φ denotes the singlet scalar producing the pNGB, which is written as S in the

previous chapters.
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Using these relations, the masses of the scalar fields are evaluated in the following two

phases:

• The electroweak symmetry is unbroken, 〈H〉 = (0, 0) and 〈Φ〉 = vφ/
√

2. In this

phase, only the components of Φ acquire the masses as

m2
φ = λΦv

2
φ, m2

χ = m2. (4.2.5)

• The electroweak symmetry is spontaneously broken, 〈H〉 = (0, v/
√

2) and 〈Φ〉 =

vφ/
√

2. In this phase, the physical component of H is massive and the mass eigen-

values of the scalar fields are given by

m2
h1

=
1

2

[
λHv

2 + λΦv
2
φ −

√
(λΦv2

φ − λHv2)2 + 4λ2
HΦv

2v2
φ

]
, (4.2.6)

m2
h2

=
1

2

[
λHv

2 + λΦv
2
φ +

√
(λΦv2

φ − λHv2)2 + 4λ2
HΦv

2v2
φ

]
, (4.2.7)

m2
χ = m2. (4.2.8)

The lighter CP-even scalar h1 is identified as the SM-like Higgs boson with the mass

125 GeV. The mass eigenstates are introduce as(
h

φ

)
=

(
cos θ sin θ

− sin θ cos θ

)(
h1

h2

)
, tan 2θ =

2λHΦvvφ
λΦv2

φ − λHv2
. (4.2.9)

Note that the mixing can safely be ignored in our setup with a large hierarchy

between the VEVs (v � vφ).

These are the same to results in the linear representation shown in Section 2.2. The

difference of the representation appears in the interaction Lagrangian shown below.

In this chapter, we mainly use the non-linear representation for the fluctuations of Φ

field as given in Eq. (4.2.3). The same physics is obtained also in the linear representation.

The Lagrangian in the broken phase of Φ contains

L 3 1

2

[
(∂µφ)2 −m2

φφ
2
]

+
1

2

(
1 +

φ

vφ

)2[
(∂µχ)2 −m2

χv
2
φ sin2

(
χ

vφ

)]
− λΦ

8
φ4 − λΦvφ

2
φ3 − λHΦ

2
|H|2

(
vφ + φ

)2
. (4.2.10)

The interaction terms of pNGB dark matter χ are originated from the scalar kinetic term

and the U(1) soft-breaking mass term in this representation.2

2The contact interaction of the pNGB in the scalar potential appears in the linear representation.

However, the contribution is cancelled by the tree-level scattering mediated by the massive mode φ in the

IR limit and gives the same amplitude to that in the non-linear representation. The explicit calculation

is shown in Chapter 5.
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4.3 PNGB Production via Freeze-in

In this section, we discuss how the pNGB dark matter relics are produced via the

freeze-in mechanism and the parameter set consistent with the observations. We assume

that the relic abundance of dark matter is determined in the radiation dominant era of

the universe, in which the Hubble parameter H and entropy density s are given as the

functions of the temperature T as

H =

√
π2

90
g∗
T 2

MP

, s =
2π2

45
gS∗ T

3, (4.3.1)

where g∗ and gS∗ denote the total numbers of effective massless degrees of freedom con-

tributing to the energy and entropy densities, respectively [KT90], and MP is the reduced

Planck mass MP = 1/
√

8πGN = 2.4× 1018 GeV (GN is the gravitational constant).

4.3.1 Boltzmann equations

We are interested in the case that both of dark matter χ and the CP-even scalar φ

(' h2) are never thermalized with the SM particles. This is achieved by tiny values of

quartic couplings λHΦ and λΦ, roughly speaking, λHΦ, λΦ . 10−6. From the theoretical

side, a radiative correction to the |Φ|4 term would imply its lower bound, λΦ & λ2
HΦ/16π2.

With these feeble couplings, both of φ and χ become the FIMPs, and the Boltzmann

equations for the number densities nφ and nχ are given by

dnφ
dt

+ 3Hnφ = CH†H↔φφ + Cχχ↔φφ + CH†H↔φ + Cχχ↔φ, (4.3.2)

dnχ
dt

+ 3Hnχ = Cφφ↔χχ + CH†H↔χχ + Cφ↔χχ, (4.3.3)

where CA↔B in the right-hand side denotes the collision term corresponding to the process

A↔ B. Here the broken phase of Φ is assumed and the scalars in the dark sector interact

with the SM only through the Higgs doublet. The explicit form of collision terms is

Cij...↔ ab... =

∫ ∏
i

dΠifi
∏
a

dΠa(1 + fa) (2π)4δ4

(∑
i

pi −
∑
a

pa

)
|Mij...→ ab...|2

−
∫ ∏

a

dΠafa
∏
i

dΠi(1 + fi) (2π)4δ4

(∑
a

pa −
∑
i

pi

)
|Mab...→ ij...|2,

(4.3.4)

where fx is the distribution function of particle x, dΠx is the Lorentz-invariant phase

space expressed as dΠx = d3px
(2π)32Epx

, and MX denotes the amplitude of the process X.

Since dark matter is produced by the freeze-in mechanism from the SM thermal bath,

the magnitude of distribution functions is tiny for φ and χ. Thus the O(f 2
φ,χ) terms can

be dropped in the above equations. This approximation is valid as long as the distribution
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functions fφ,χ are not close to the equilibrium one before the abundance is frozen. The

Boltzmann equations are thus reduced to

dnφ
dt

+ 3Hnφ = CH†H→φφ + CH†H→φ −
∫
dΠφ fφ(pφ) 2mφ

(
Γφ→H†H + Γφ→χχ

)
, (4.3.5)

dnχ
dt

+ 3Hnχ = CH†H→χχ + 2

∫
dΠφ fφ(pφ) 2mφΓφ→χχ, (4.3.6)

where the decay widths are given by

Γφ→H†H =
λ2
HΦmφ

8πλΦ

√
1− 4m2

H

m2
φ

, Γφ→χχ =
λΦmφ

32π

√
1− 4m2

χ

m2
φ

. (4.3.7)

Note that we have used the relation m2
φ = λΦv

2
φ in the above equations and the SM Higgs

doublet contains real four components, leading to the difference of numerical factors. The

mass parameter mH for the H field will be discussed in the next section. Introducing the

net dark matter number density nD = nχ + 2Brφ→χχnφ, the Boltzmann equation for nD
is recast as

dnD
dt

+ 3HnD = CH†H→χχ + 2Brφ→χχ
(
CH†H→φφ + CH†H→φ

)
, (4.3.8)

where Brφ→χχ is the branching ratio defined by Brφ→χχ = Γφ→χχ/(Γφ→H†H +Γφ→χχ). The

collision terms are written by using the thermally averaged cross sections and the number

density of the SM Higgs doublet in thermal bath, neq
H . Then we obtain

dnD
dt

+ 3HnD = 2
[
〈σH†H→χχvrel〉+ 2Brφ→χχ 〈σH†H→φφvrel〉+ Brφ→χχ 〈σH†H→φvrel〉

]
(neq

H )2.

(4.3.9)

The first term in the right-hand side denotes the dark matter production directly from

the thermal bath, and the second and third terms are the contributions from the decays

of φ produced from the thermal bath. The thermally averaged cross sections are explicitly

calculated as

〈σH†H→χχvrel〉 (neq
H )2 =

λ2
HΦT

4

256π5

∫ ∞
2x̄χ

dz
√
z2 − 4x2

χ

√
z2 − 4x2

H

z4K1(z)

(z2 − x2
φ)2 + x2

φγ
2
φ

, (4.3.10)

〈σH†H→φφvrel〉 (neq
H )2 =

λ2
HΦT

4

256π5

∫ ∞
2x̄φ

dz
√
z2 − 4x2

φ

√
z2 − 4x2

H

(z2 + 2x2
φ)2 + x2

φγ
2
φ

(z2 − x2
φ)2 + x2

φγ
2
φ

K1(z),

(4.3.11)

〈σH†H→φvrel〉 (neq
H )2 =

λ2
HΦm

3
φT

16π3λΦ

K1(xφ)

√
1− 4m2

H

m2
φ

, (4.3.12)

where we have defined the integral variable z :=
√
s/T for the Mandelstam s variable,

the dimensionless parameters xi := mi/T and γi := Γi/T for a particle i with the mass

mi and the total decay width Γi. vrel denotes the relative velocity of the initial states
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given by vrel = 2

√
λ(s,m2

H ,m
2
H)

s
with the kinematic function λ(x, y, z) = x2 +y2 + z2−2xy−

2yz − 2zx. In the integrals, the lower limits are given by x̄χ,φ = max[xχ,φ, xH ] and K1(z)

is the modified Bessel function of second kind of order 1. Here thermal bath particles

are assumed to obey the Maxwell-Boltzmann distribution.3 Note that the integrand in

Eq. (4.3.10) contains the factor z4 due to the derivative coupling of pNGB dark matter.

This behavior implies that even if the portal coupling λHΦ is large, the dark matter

reaction rate with the SM is suppressed in lower energy than mφ and the usual freeze-out

does not work in the case of the hierarchical VEV vφ � v (mφ � mh).

4.3.2 Thermal mass of the Higgs boson

The one-loop effect of bath particles leads to the mass corrections quadratically scaling

by the temperature, which are called thermal masses. Including thermal mass corrections

gives important effects for collision terms (reaction rates) and hence for the evaluation of

relic abundance of dark matter. The detailed calculation of thermal mass for the SM Higgs

boson is summarized in Appendix 4.A. The electroweak gauge bosons, all SM fermions,

and all components of H including the NGBs eaten by the gauge bosons contribute to

the thermal mass, which is given by

∆h =

(
g2

1

16
+

3g2
2

16
+
y2
t

4
+
λH
4

)
T 2, (4.3.13)

where gY and g2 are the gauge couplings of U(1)Y and SU(2)L, and yt is the top Yukawa

coupling which is dominant over the other Yukawa couplings. Including this thermal

contribution, the mass of the SM Higgs boson is given by

m2
H = m2

h1
+ ∆h, (4.3.14)

which plays a role of regulator in the reaction rates in the Boltzmann equations.

4.3.3 IR freeze-in (TR � mφ)

When the reheating temperature of the universe, TR, is higher than the heavy mediator

mass mφ, the final abundance of dark matter is determined independently of the reheating

temperature. This is so-called the IR freeze-in [HJMRW10]. The analytic formula of the

dark matter yield YD = nD/s derived from Eq. (4.3.9) is approximately given by

Y IR
D ≈

405
√

10

(2π)5

Brφ→χχλ2
HΦMP

gS∗ g
1/2
∗ λΦmφ

√
1− 4m2

h

m2
φ

. (4.3.15)

The result is found to be independent of the dark matter mass because the dominant

production process comes from the φ decay around T ∼ mφ, as shown in the following

3Quantum statistical distributions may give a small factor difference in numerical calculations [LT19].
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Figure 4.1: (Left): Evolution of the reaction rates for three processes Eqs. (4.3.10)–

(4.3.12). (Right): Evolution of the dark matter yield determined by solving the Boltzmann

equation. The red solid, dot-dashed dark blue and dashed brown lines denote the results

using our formula (4.3.9), the public code MicrOMEGAs with and without the thermal mass

effect for the SM Higgs boson, respectively. The black horizontal line corresponds to the

correct dark matter abundance for mχ = 1 MeV. These figures are from Ref. [ATY21].

part. In the limit where the scalar VEV and the mass of φ are much larger than the masses

of the SM Higgs boson and dark matter, the factor of quartic couplings Brφ→χχλ2
HΦ reduces

to

Brφ→χχλ2
HΦ ≈

λ2
Φλ

2
HΦ

λ2
Φ + 4λ2

HΦ

≈

λ2
HΦ for λΦ � λHΦ

λ2
Φ

4
for λΦ � λHΦ

. (4.3.16)

Thus combining the IR freeze-in relic Eq. (4.3.15) and the yield corresponding to the

observed value Y obs.
D = 4.4 × 10−7 (mχ/MeV)−1 [A+20b] with g∗ ∼ gS∗ ∼ 100, we obtain

the following relations(
λΦ

10−8

)
≈
(

λHΦ

2× 10−9

)2(
mχ

1 MeV

)(
1010 GeV

mφ

)
for λΦ � λHΦ, (4.3.17)(

λΦ

7× 10−11

)
≈
(

1 MeV

mχ

)(
mφ

1010 GeV

)
for λΦ � λHΦ. (4.3.18)

The evolution of the reaction rates including the thermal mass effects is shown in the

left panel of Fig. 4.1 where we choose the following parameter set

λφ = 7× 10−11, λHΦ = 10−7, mχ = 1 MeV, mφ = 1010 GeV, (4.3.19)

as a benchmark. This is chosen so that the parameter relation Eq. (4.3.18) is realized.

Note that the portal coupling should satisfy λHΦ . 10−6 in order for the dark sector

particles not to enter into the thermal bath. When the temperature cools down to the

mediator mass scale T ∼ mφ, a number of on-shell φ are resonantly produced. As a result
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Figure 4.2: (Left): Contours reproducing the observed relic abundance in the (mχ, λΦ)

plane where the mediator mass is fixed to be mφ = 104 GeV (1013 GeV) in the purple

(red) line. The solid, dashed and dotted lines correspond to λHΦ = 10−10, 10−11 and

10−12, respectively. The gray parts of the red lines are excluded by the criterion vφ > MP .

(Right): The purple region can realize the observed relic abundance via the UV freeze-in

in the (mφ, λHΦ) plane. Each contour reproduces the abundance for a specific parameter

set. The solid, dashed and dot-dashed red lines correspond to TR = 1012 GeV, 108 GeV

and 104 GeV, respectively. The green region, mφ ≥ 10−3MP , is excluded (see the text).

These figures are from Ref. [ATY21].

the magnitude of the reaction rate for the process H†H → χχ rapidly increases as can be

seen in Fig. 4.1.

For the same benchmark parameter set, the evolution of the dark matter yield is shown

in the right panel of Fig. 4.1, assuming the vanishing initial conditions of the dark sector

Yχ(T = TR) = Yφ(T = TR) = 0. (4.3.20)

We also show for comparison the results calculated by the public code MicrOMEGAs [BBG+18b]

with and without the thermal mass effect for the SM Higgs boson.4 As obvious from the

plot, the thermal mass effect gives an impact on the evolution of the dark matter yield,

in particular when the temperature is T & mφ. Including thermal mass also affects the

final dark matter abundance, while its impact is not so large and only gives a few factor

difference. One can see from the plot that the yield of dark matter rapidly grows at

T ∼ mφ due to the resonant production of φ, and then the evolution is almost frozen

afterwards.

The purple and red lines in the left panel of Fig. 4.2 show the contours in the (mχ,

λΦ) plane reproducing the dark matter relic abundance observed by the PLANCK Col-

laboration [A+20b]. The reheating temperature is assumed to be much higher than the

mediator mass scale (TR � mφ). As can be seen in the plots, for a larger mφ the lines

4In the current version of MicrOMEGAs, full thermal mass effects are not implemented. However it is

possible to include the thermal mass only for the Higgs boson by hand without difficulty.
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simply shift to the right (purple to red), namely the direction of heavier dark matter

mass which compensates a smaller yield Y IR
D . The behavior of the lines change around

λΦ ∼ λHΦ as explained in Eqs. (4.3.17) and (4.3.18). While one can take a heavier dark

matter mass mχ if a larger mediator mass mφ is chosen, there is an upper bound on mχ if

the criterion for the VEV vφ < MP is taken into account. As we will discuss in the next

section, a feeble value of the scalar self-coupling, typically λΦ & O(10−12) is suitable for

φ being the inflaton.

4.3.4 UV freeze-in (TR � mφ)

When mφ is much larger than the reheating temperature, the dark matter relic abun-

dance is determined by the portal coupling λHΦ and the reheating temperature TR. This

is so called the UV freeze-in discussed in Refs. [HJMRW10,EKU15]. For T < TR � mφ,

only the H†H → χχ process is effective for the dark matter production (see the left

panel of Fig. 4.1). In the H†H → χχ reaction rate (4.3.10), we can safely assume

mφ �
√
s� mh,mχ since the modified Bessel function regarded as the window function

with a cut-off T and the large s contribution is dominant due to the s5/2 behavior of the

integrand. Thus the reaction rate is approximated by

〈σH†H→χχv̄〉 (neq
H )2 ≈ λ2

HΦT

512π5

∫ ∞
0

ds
s5/2

m4
φ

K1(
√
s/T ) =

3λ2
HΦT

8

2π5m4
φ

. (4.3.21)

By integrating the Boltzmann equations for the dark sector using this approximation, the

pNGB dark matter yield is evaluated as

Y UV
D ≈ 135

√
10λ2

HΦMPT
3
R

4π8gS∗ g
1/2
∗ m4

φ

. (4.3.22)

Combining with the observed value Y obs.
D = 4.4× 10−7 (mχ/MeV)−1 with g∗ ∼ gS∗ ∼ 100,

we obtain the following relation5(
λHΦ

10−6

)2

≈
(

1 MeV

mχ

)(
mφ

105 GeV

)4(
104 GeV

TR

)3

. (4.3.23)

The right panel of Fig. 4.2 shows the parameter space where the dark matter relic

can be realized by the UV freeze-in, which is denoted by the purple region. The purple

solid, dashed and dot-dashed lines denote mφ = 100TR, 10TR and TR (the UV freeze-in

(4.3.22) is valid for mφ � TR). The red lines show the contours in the (mχ, λHΦ) plane

reproducing the dark matter relic for various given reheating temperatures. Note that the

green colored region mφ ≥ 10−3MP is excluded by the conditions vφ ≤MP and λΦ ≤ 10−6,

the latter of which is required for the dark sector not being thermalized.

5For a heavier pNGB dark matter case, the broader parameter space in the (mφ, λHΦ) plane has been

discussed in Ref. [AHO+20].
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4.4 Inflation

In the previous section, we have seen the pNGB dark matter relic abundance realized

via feeble scalar couplings, where the radial component φ of the symmetry breaking

scalar plays a role of the mediator of pNGB production. In this section, we investigate

the possibility that φ also plays another important role, namely, the inflaton.6

4.4.1 Inflation dynamics and constraints

The inflation gives a plausible solution for the flatness and horizon problems in the

universe. A successful inflation scenario can occur in our model if a non-minimal coupling

between the complex scalar Φ and gravity is introduced. Then the Lagrangian relevant

for the inflation dynamics is given by

L√−g = −M
2
P

2
R− ξ|Φ|2R+ gµν(∂µΦ)∗(∂νΦ)− V(Φ), (4.4.1)

where R is the Ricci scalar and ξ is the so-called non-minimal coupling constant. During

the inflation era, the scalar potential is assumed to be dominated by the field value of Φ,

thus V(Φ) ≈ λΦ|Φ|4/2 ≈ λΦφ
4/8, and the |Φ|2 part can be written as |Φ|2 ≈ φ2/2 with

the non-linear representation Φ = (vφ + φ) eiχ/vφ/
√

2.

The non-minimal coupling is removed by the conformal transformation,

gµν → gµν = Ω−2ĝµν with Ω =

√
1 +

ξφ2

M2
P

, (4.4.2)

where ĝµν corresponds to the metric in the Einstein frame. As a result of this transfor-

mation7, the Lagrangian becomes

L̂√−ĝ = −M
2
P

2
R̂+

ĝµν

2
(∂µϕ) (∂νϕ) +

ĝµν

2
(∂µχ̂) (∂νχ̂)− V̂(ϕ), (4.4.4)

where ϕ and χ̂ are the canonically normalized fields satisfying the differential equations

dϕ

dφ
=

√
M2

PΩ2 + 6ξ2φ2

M2
PΩ4

,
dχ̂

dχ
= Ω−1. (4.4.5)

6Some different types of models are studied in the literature, e.g. [BMSV14,ENTT14] about possible

common origins of the inflaton and dark matter.
7In D-dimentional spacetime, the Ricci scalar is transformed under the Weyl rescaling gMN = ewĝMN

as

RD = e−w
[
R̂D − (D − 1)∇̂2

Mw −
(D − 1)(D − 2)

4
(∂Mw)2

]
, (4.4.3)

where ∇̂2
M = 1√

−ĝ∂M
√−ĝĝMN∂N .
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Figure 4.3: Inflation potential with the non-minimal coupling ξ = 10−2 10−1, and

1 [ATY21].

If ξ � 1, which is similar to the case of the Higgs inflation [BS08b], the differential

equation is simplified and the explicit expressions of ϕ and V̂(ϕ) are obtained. However

in the present pNGB model with feeble couplings, we will show later that a smaller ξ is

favored for successful inflation. The shape of the scalar potential is numerically evaluated

and shown in Fig. 4.3 where the non-minimal coupling is fixed to be ξ = 10−2, 10−1, 1.

The flat part of the potential gets longer for a smaller value of ξ.

While one cannot write down the explicit form of the scalar potential V̂(ϕ), the slow-

roll parameters are expressed in terms of φ,

εV :=
M2

P

2

(
V̂ϕ
V̂

)2

=
8M4

P

φ2[M2
P + ξ (1 + 6ξ)φ2]

, (4.4.6)

ηV := M2
P

V̂ϕϕ
V̂

=
4M2

P [3M4
P +M2

P ξ (1 + 12ξ)φ2 − 2ξ2 (1 + 6ξ)φ4]

φ2 [M2
P + ξ (1 + 6ξ)φ2]

2 , (4.4.7)

where V̂ϕ := ∂V̂/∂ϕ and V̂ϕϕ := ∂2V̂/∂ϕ2. Using the slow-roll approximation, the spectral

index ns and the tensor-to-scalar ratio r are given by

ns = 1− 6εV + 2ηV , r = 16εV . (4.4.8)

The e-folding number N∗ between the time of horizon exit (t∗) and the end of inflation

(tend) is given by

N∗ =

∫ tend

t∗

Hdt ≈ −1

M2
P

∫ φend

φ∗

dϕ

dφ

V̂
V̂ϕ
dφ =

(1 + 6ξ) (φ2
∗ − φ2

end)

8M2
P

− 3

4
log

(
M2

P + ξφ2
∗

M2
P + ξφ2

end

)
,

(4.4.9)

where φ∗ and φend are the field values at t∗ and tend, respectively. Defining tend as the

time giving the slow-roll parameter ε = 1 in Eq. (4.4.6), φend satisfies

φ2
end =

M2
P

2

√
1 + 32ξ + 192ξ2 − 1

ξ (1 + 6ξ)
. (4.4.10)
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Figure 4.4: (Left): Contours in the (ξ, λΦ) plane for successful inflation where N∗ is fixed

as N∗ = 50 and 60. (Right): Predictions for the spectral index (ns) and the tensor-to-

scalar ratio (r) where the non-minimal coupling ξ is taken as ξ = 1, 0.1, 0.03, 0.01 and

0.005. The blue and light blue regions are allowed by the PLANCK observation at 1σ

and 2σ confidence level, respectively. These figures are from Ref. [ATY21].

On the other hand, φ∗ is numerically evaluated, giving the amplitude of the scalar

power spectrum at the horizon exit observed by the Planck Collaboration [A+20c]: As =

V̂(ϕ(φ∗))/ (24π2M4
P εV (φ∗)) = 2.10 × 10−9. From these relations, the non-minimal cou-

pling ξ and the scalar self-coupling λΦ for successful inflation can be read. The contour

of the e-folding number N∗ on the (ξ, λΦ) plane is shown in the left panel of Fig. 4.4

where N∗ = 50 and 60. When the non-minimal coupling ξ is small enough (ξ . 10−3),

the dependence on λΦ disappears. This region has the same behavior as the φ4 chaotic

inflation.

The predictions for the spectral index ns and the tensor-to-scalar ratio r at the pivot

scale k∗ = 0.002 Mpc−1 are shown in the right panel of Fig. 4.4 where N∗ is taken to be

between 50 and 60. The blue and light blue regions represent the 1σ and 2σ confidence

levels observed by the Planck Collaboration [A+20c]. It can be found that the lower

bounds for the non-minimal coupling are required

ξ & 0.02 (N∗ = 50), ξ & 0.0055 (N∗ = 60), (4.4.11)

for the scenario consistent with the observation.

In the left panel of Fig. 4.4, the solid (dotted) part of each contour represents the

parameter region consistent (inconsistent) with the PLANCK observation at 2σ confidence

level, when combined with the lower bounds of ξ obtained in the right panel. We find

that the self-coupling λΦ should be in the range λΦ & 10−12 in the pNGB dark matter

model with large symmetry breaking, if the inflation is induced by the coupling ξ.
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4.4.2 pNGB production from inflaton

There is another important physical implication of the possibility that the radial scalar

component φ plays the role of inflaton in the pNGB dark matter model. That is the

direct production process of dark matter χ from the inflaton decay, which is inevitable

because of the interaction between φ and χ. In this section, we investigate the parameter

space consistent with the inflationary scenario discussed above and the dark matter relic

abundance taking into account both the freeze-in and inflaton-induced dark matter.

As discussed in Refs. [Tak08, GP11], the number density of the inflaton induced χ

particle is estimated as

ninf
χ ≈

ρrh

mφ

Γφ→χχ√
3H(TR)

, (4.4.12)

where ρrh and H(TR) are the energy density of radiation and the Hubble rate at the

reheating temperature TR. We here define the reheating temperature TR at which the

Hubble rate is equal to the decay width of the inflaton to the SM sector (H(TR) ≈
Γφ→H†H), and then

T 2
R ≈

3
√

10

8π2g
1/2
∗

λ2
HΦ

λΦ

MPmφ

√
1− 4m2

h

m2
φ

. (4.4.13)

Note that the effective degrees of freedom g∗ in the right-hand side also depends on the

temperature in general. Using the explicit form of the decay widths and the reheating

temperature (4.4.13), we obtain the pNGB dark matter yield directly produced from the

inflaton as

Y inf
χ ≈

(
9
√

10

2048π2

)1/2
g

3/4
∗ λ

3/2
Φ M

1/2
P

gS∗ λHΦm
1/2
φ

(
1− 4m2

χ

m2
φ

) 1
2
(

1− 4m2
h

m2
φ

)− 1
4

. (4.4.14)

As previously, we impose the portal coupling satisfies λHΦ . 10−6 such that dark matter

does not get into the SM thermal bath.

We here comment on the comparison between the three contributions of pNGB dark

matter yields, Y IR
D , Y UV

D and Y inf
χ . Typical behaviors are shown in Fig. 4.5 as the functions

of the mediator mass mφ, which behaviors are evaluated by MicrOMEGAs for λHΦ = 10−7

and 10−11. The reheating temperature is given by Eq. (4.4.13) in the left panel, while it

is treated as a free parameter in the right panel (see the detail in the next subsection).

The IR and UV freeze-in productions are effective in the smaller and larger mφ regions,

respectively. These freeze-in yields are smoothly connected in the gray region where

TR . mφ . 100TR, which is denoted by the purple dashed line. Since Y IR
D ∝ m−1

φ and

Y inf
χ ∝ m

−1/2
φ , the IR freeze-in is dominant for a lighter mediator. Further, Y IR

D becomes

equal to Y inf
χ at mφ = meq. It is easy to find from Eqs. (4.3.15), (4.4.13) and (4.4.14)

that meq . 10−2 TR, and then the inflaton-induced yield necessarily becomes dominant
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Figure 4.5: Comparisons of the pNGB dark matter yields, Y IR
D (red), Y UV

D (green) and

Y inf
χ (blue) for λHΦ = 10−7 and λΦ = 10−11 [ATY21]. The reheating temperature is

given by Eq. (4.4.13) in the left panel and a free parameter in the right panel, chosen as

TR = 1010 GeV. The IR and UV freeze-in are smoothly connected in the gray region,

typically TR . mφ . 100TR.

in the left side of the gray band. On the other hand, the UV freeze-in abundance takes

the value Y UV
D /Y inf

χ ' 10−3λ2
HΦ/λΦ around mφ = TR. This ratio is much smaller than 1

due to the constraints λHΦ . 10−6 and λΦ & 10−12 as we explained from the cosmological

arguments. Since Y UV
D ∝ m

−5/2
φ , the UV freeze-in contribution is always subdominant

compared to the inflaton decay.

4.4.3 Dark matter abundance

Fig. 4.6 shows the parameter space realizing the correct dark matter relic abundance

in the (mχ, λΦ) plane taking into account the pNGB production from the freeze-in and

inflaton decay. The portal coupling is chosen as λHΦ = 10−7, 10−8 and 10−9 and the

mediator mass is mφ = 104 GeV, 106 GeV and 108 GeV. The purple line represents the

parameters reproducing the dark matter abundance only by the freeze-in contribution.

The gray region represents the parameter space where the inflaton induced dark matter

abundance is larger than 10 % of the observed value. In order to be consistent with the

inflation observables at 2σ confidence level as discussed in the previous subsection, the

scalar self-coupling has to satisfy λΦ & 10−12 and the lower orange region is excluded by

this condition.

The behavior of the purple lines in the most of panels can be understood by the IR

freeze-in as discussed in Section 4.3.3, except the right-bottom one. The region λΦ & 10−9

of that plot corresponds to the intermediate state between the IR and UV freeze-in,

namely TR ∼ mφ, while the contribution to the relic from the inflaton decay is eventually

dominant in this region. In case that the reheating temperature determined by the inflaton

decay is much lower than the mediator mass mφ, since the reheating temperature scales
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Figure 4.6: Parameter space in the (mχ, λΦ) plane where the reheating of the universe is

assumed to occur via the perturbative inflaton decay into the SM sector [ATY21]. The

purple lines reproduce the correct relic abundance of dark matter only by the freeze-

in production. The gray regions represent the parameter space that the dark matter

abundance created by the inflaton decay is larger than 10 % of the observed value. The

lower orange region cannot be consistent with the inflation observables at 2σ confidence

level.
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Figure 4.7: Parameter space in the (mχ, λΦ) plane where the correct relic abundance

of dark matter is realized by the non-thermal production (the freeze-in and the inflaton

decay). The portal coupling is chosen as λHΦ = 10−7 (left) and λHΦ = 10−9 (right). The

freeze-in production is dominant in the red region and the inflaton decay dominant in the

blue region. The lower orange region is not consistent with the inflation observables as in

Fig. 4.6. In the green region, the scalar VEV becomes trans-Planckian.

as TR ∝ λHΦλ
−1/2
Φ m

1/2
φ which can be seen in Eq. (4.4.13), it finds that the self-coupling

goes as λΦ ∝ m
2/3
χ to reproduce the correct relic abundance from Eq. (4.3.23) for the UV

freeze-in. This behavior has been numerically checked in our computation.

Fig. 4.7 shows the parameter space in the (mχ, λΦ) plane realizing the correct dark

matter relic abundance via both contributions from the freeze-in and inflaton induced

productions. The red and blue regions mean the abundance is dominated by the freeze-

in and the inflaton, respectively. The red dot-dashed line denotes mφ = TR. In the

green region, the singlet scalar VEV (vφ) becomes trans-Planckian, where the low-energy

field description is not valid.8 When the dark sector scalars φ and/or χ are heavy, the

inflaton decay tends to be the dominant process for the dark matter creation. A physical

implication of Fig. 4.7 is that in the pNGB dark matter model with large symmetry

breaking, the dark matter should be lighter than MeV–GeV if the freeze-in production

is assumed to be dominant. A heavier dark matter is also possible if taking the inflaton

induced contribution into account.

In the above analysis, we have assumed that the reheating of the universe simply

occurs via the inflaton perturbative decay to the Higgs field. However if there exists some

other decay modes of the inflaton, the reheating temperature generally takes a different

value. In this situation, the inflaton induced dark matter is estimated by

Y inf
χ ≈ 3

√
30

128π2

g
1/2
∗ λΦMP

gS∗ TR

√
1− 4m2

χ

m2
φ

, (4.4.15)

8When one considers graviton loop effect, its form may be m2

16π2M2
P

where m is a typical scale in low-

energy theory. Therefore the low-energy perturbative description is violated above mP ' 4πMP . If one

imposes the condition vφ < mP in Fig. 4.7, the green excluded region is relaxed by 4π.
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Figure 4.8: Same plots as Fig. 4.7 while the reheating temperature is taken to be a free

parameter [ATY21]. The portal coupling is chosen as λHΦ = 10−7 (left) and 10−9 (right),

and the reheating temperature is TR = 1010 GeV (above) and 1014 GeV (below).
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which is independent of the Higgs portal coupling λHΦ and almost independent of mφ for a

relatively heavy φ. The pNGB abundance from the UV freeze-in is also implicitly changed

since the parameter dependence of TR is modified from Eq. (4.4.13) to a free parameter,

though the formula of Y UV
D is still valid. In the same fashion in Fig. 4.7, we draw the

parameter space realizing the correct dark matter abundance via both of freeze-in and

inflaton decay (Fig. 4.8). We find in almost all allowed regions the freeze-in production is

dominant. This comes from the fact that the inflaton induced abundance Eq. (4.4.15) is

almost insensitive to mφ. Compared with Fig. 4.7, a heavier dark matter is possible up

to O(10− 100) GeV with a higher reheating temperature.

4.5 Summary

The pNGB dark matter model has been originally motivated from the fact that the

strong constraint of direct detection can naturally be evaded even when it is a WIMP with

sufficiently large couplings with the SM particles. On the other hand, the pNGB dark

matter can also be regarded as a natural FIMP candidate if the VEV of the symmetry-

breaking scalar is large enough. That is because all couplings of the pNGB are suppressed

by the large VEV due to its NG property.

We have studied the model parameters for which the dark matter relic is reproduced

by the feeble couplings of pNGB, taking into account the effect of thermal mass of the

Higgs field. The dark matter relic abundance is mainly determined by the mediator mass

and a smaller coupling of λΦ and λHΦ when the reheating temperature of the universe is

larger than the mediator mass. On the contrary, the abundance depends on the reheating

temperature if it is not large as the mediator mass. These feature are similar to typical

FIMPs.

We have also investigated the possibility that the radial component of the symmetry-

breaking scalar Φ plays a role of the inflaton. Introducing the non-minimal coupling of

Φ to gravity, the flat potential is understood by the rescaling, and the parameter space

consistent with the observations has been explored. We have found that the scalar self

coupling is tiny λΦ & 10−12 and the non-minimal coupling should be ξ & 10−2, which

are rather different from the Higgs inflation scenario. Furthermore, it is important the

inflaton decay into the pNGB is unavoidable. We have examined the allowed parameter

regions taking into account both of the freeze-in and the inflaton decay. Combining these

requirements for the dark matter relic and the successful inflation, it is found that the

pNGB FIMP dark matter should be lighter than a few GeV when the freeze-in contribution

is assumed to be dominant. A heavier pNGB dark matter with O(101−2) GeV mass is

possible if the inflaton-induced contribution comes to be effective and/or the reheating

process depends on some other dynamics.

In the present model, since the pNGB dark matter is stable due to the Z2 symmetry:

χ 7→ −χ coming from the CP invariance of the scalar potential, one may feel there
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is no detectable signals from the pNGB dark matter with feeble couplings. However

if the remnant symmetry is not exact as easily expected in a UV completion of the

model [ATT20], the pNGB can decay into lighter SM particles. Even if its couplings

are highly suppressed by the large VEV, some signals may be detectable in cosmic-ray

observations. That is left for future study.

Appendix 4.A Thermal mass contribution

Referring to [KP14], we summarize the derivation of thermal mass and its formula in

the high temperature era.

We consider a field variable decomposed to the background configuration σ and its

fluctuation ρ, and integrate out the latter. Then the one-loop effective potential for the

background σ is given by

VTeff(σ) = V0(σ) + V1(σ) + VT1 (σ;T ), (4.A.1)

where V0(σ) is the classical potential for σ, and V1(σ), VT1 (σ) are the one-loop contribu-

tions. According to Refs. [DJ74, Wei74], the effective potential is evaluated on R3 × S1

with the radius 1/T in order to take the thermal effect into account.

The effective potential for a real scalar is expressed as

V1B(σ) =

∫
d3k

(2π)3

Ek

2
, VT1B(σ;T ) =

T 4

2π2
JB(M/T ), (4.A.2)

where E2
k = k2 + M2, and M denotes the ρ mass in the σ background. The mass M is

typically given by M2 = M(σ)2 = m2
b + λ

2
σ2 for the ρ mass mb and the scalar self quartic

coupling λ. The function JB(y) is given by

JB(y) =

∫ ∞
0

dx x2 log
(

1− e−(x2+y2)1/2
)
. (4.A.3)

In the high-temperature region corresponding to y � 1, the function JB(y) is approxi-

mately written as

JB(y) ≈ −π
4

45
+
π2

12
y2 − π

6
y3 − y4

32
log

(
y2

aB

)
, (4.A.4)

with aB = π2e3/2−2γE and γE is the Euler constant. The y2 term contributes to the

thermal mass.

For a Dirac fermion, the one-loop effective potential is given by

V1F (σ) = −4

∫
d3k

(2π)3

Ek

2
, VT1F (σ;T ) = −2T 4

π2
JF (M/T ), (4.A.5)

with

JF (y) = −
∫ ∞

0

dx x2 log

(
1 + e−(x2+y2)1/2

)
. (4.A.6)
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The mass in the σ background is typically given by using a Yukawa coupling g as M =

M(σ) = mf + g σ√
2
, for the fermion mass mf . As in the bosonic case, the function JF (y)

is approximately written as

JF (y) ≈ 7π4

360
− π2

24
y2 − y4

32
log

(
y4

aF

)
, (4.A.7)

with aF = 16π2e3/2−2γE in the high-temperature region corresponding to y � 1.

The thermal mass is defined from the one-loop effective potential VT1 (σ;T ) as

∆ :=
∂2VT1
∂σ2

∣∣∣∣
σ=0

. (4.A.8)

Using the above formulae, the thermal mass contributions of particle i are given by ∆B = gi
T 4

2π2
π2

12
M2(σ)′′

T 2 = giT
2M2(σ)′′

24
for bosons

∆F = −gi T
4

2π2

(−π2

24

)M2(σ)′′

T 2 = giT
2M2(σ)′′

48
for fermions

(4.A.9)

where gi is the degrees of freedom of the particle i and the prime means the derivative

with respect to σ.

For the SM Higgs boson, there are three sources of thermal mass; electroweak gauge

bosons, quarks and leptons, and Higgs scalar. Applying the above result to the SM, the

thermal mass contributions are found

∆gauge
h =

g2
1

16
T 2 +

3g2
2

16
T 2, (4.A.10)

∆fermion
h =

T 2

12

[
y2
e + y2

µ + y2
τ + 3

(
y2
u + y2

d + y2
c + y2

s + y2
t + y2

b

)]
≈ y2

t

4
T 2, (4.A.11)

∆scalar
h =

λH
4
T 2. (4.A.12)
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Chapter 5

TeV-scale majorogenesis

5.1 Tev-scale Majoron dark matter and feeble inter-

actions

Some cosmic-ray observations are known to suggest the existence of leptophilic TeV-

scale dark matter. That motivates us to consider a TeV-scale Majoron dark matter,

whose mass scale is heavier than those in previous works. The heavy Majoron can decay

to neutrinos, which requires the SM singlet scalar VEV is around the unification scale.

It can also decay to heavy quarks such as the top quark, and that imposes strong upper

bound on the Yukawa couplings between the Majoron and the right-handed neutrinos.

The Majoron interactions are too small to realize the dark matter relic abundance via

the thermal freeze-out mechanism [ABD+20]. Hence the creation of Majoron dark matter

(dubbed as Majorogenesis) at TeV scale should be realized in a way other than the freeze-

out mechanism, such as the freeze-in production [HJMRW10].

In this chapter, we investigate the Majorogenesis for TeV-scale Majoron. We then

consider the following three scenarios; (A) introducing explicit Majoron masses, (B) using

the interaction with the SM Higgs doublet (C) using the resonant production from non-

thermal right-handed neutrinos. All of these scenarios are found to have the parameter

space compatible with the tiny Yukawa coupling and the dark matter relic abundance.

This chapter is organized as follows. In Section 5.2, we discuss the Majoron model and

its phenomenological constraints from heavy Majoron dark matter decays. In Section 5.3,

we show the difficulty of creating the heavy Majoron in the reference model, and then

consider three ways to realize the TeV-scale Majorogenesis. In each case, we will evalu-

ate the Majoron relic abundance and show the parameter space realizing the TeV-scale

Majorogenesis. Section 5.4 is devoted to summarizing our results and discussing future

work.
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5.2 Majoron dark matter

5.2.1 The model

First of all, we consider the reference Majoron model for the following discussion. We

introduce a new SM-singlet complex scalar which has the Yukawa coupling to right-handed

neutrinos. The Lagrangian for the right-handed neutrinos νRi are written as

LN = iνRi/∂νRi −
fij
2

ΦνcRiνRj − yν†αi LαH̃νRi + h.c. (5.2.1)

where the right-handed neutrinos and the new scalar Φ have the lepton number +1 and

−2, respectively.1 The neutrino Yukawa coupling yναi gives the Dirac mass mD = yνv/
√

2

after the electroweak symmetry breaking, where v is the electroweak VEV v ≈ 246 GeV.

In addition, the new Yukawa coupling with Φ gives the Majorana mass MN = fvφ/
√

2.

Thus, the small masses for active neutrinos are generated by the type-I seesaw mechanism

as (mν)αβ ≈ −(mD)αi(M
−1
N )ij(

tmD)jβ. We use Geek indices α, β, . . . for the generation of

the SM leptons and Latin indices i, j, . . . for the generation of the right-handed neutrinos

here.

The scalar potential in the model is written as

V(H,Φ) = VH(H)− µ2
Φ

2
|Φ|2 +

λΦ

2
|Φ|4 − m2

4

(
Φ2 + Φ∗2

)
, (5.2.2)

where VH is the Higgs potential in the SM (shonw in Eq. (A.2.2)) and the coupling between

Φ and H will be taken into account in Section 5.3.3. The last quadratic term proportional

to m2 is the soft-breaking term to generate the pNGB mass. This term breaks the U(1)L
symmetry of the scalar potential into Z2, which corresponds to Φ 7→ −Φ.2 For the

potential stability, the quartic coupling satisfies λΦ > 0. The scalar field develops a VEV

vφ, and is parametrized as

Φ =
vφ + φ+ iχ√

2
. (5.2.3)

The stationary conditions are solved as µ2
Φ = λΦv

2
φ − m2, and the scalar masses in the

U(1)L breaking vacuum are given by

m2
φ = λΦv

2
φ, m2

χ = m2. (5.2.4)

The CP-odd component χ is a pNGB called as the Majoron, whose mass is given by the

soft-breaking parameter m. In the following parts of this chapter, we will see that this

Majoron can be a dark matter candidate.

1The NGB from this complex scalar field is eaten if the symmetry is gauged such as the gauged

U(1)B−L.
2The total Lagrangian with this soft-breaking term is invariant under the Z4 symmetry, which is the

residual discrete symmetry of the global U(1)L.
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Figure 5.1: The Feynman diagrams for the dark matter decay processes [AHO+20]. (left):

χ→ νανβ. (right): χ→ tt. The internal lines in the loop represent the active and heavy

neutrinos.

In general, the Yukawa matrix fij in Eq. (5.2.1) can be diagonalized into fiδij by the

redefinition of the right-handed neutrinos and the diagonal couplings fi are taken to be

real. The Majorana fermion in this mass basis is denoted by Ni = νRi + νcRi, in which

we denote the redefined right-handed neutrino as νRi. The Lagrangian is rewritten using

these Majorana fermions as

LN =
i

2
Ni/∂Ni −

MNi

2
NiNi −

fi

2
√

2
φNiNi −

ifi

2
√

2
χNiγ5Ni

− Y ν†
αi LαH̃PRNi + h.c., (5.2.5)

where Y ν
αi is the neutrino Yukawa matrix in the right-handed neutrino mass basis and

PR/L is the chirality projection. An important point is that the flavor changing off-

diagonal interaction between the Majoron and the right-handed neutrinos such as χN1N2

disappears in the mass diagonal basis.

5.2.2 Decaying dark matter

In this subsection, we see features of the TeV-scale Majoron and the phenomenological

constraints as the dark matter candidate. The Majoron is assumed to be lighter than the

lightest right-handed neutrino to prevent it from decaying into the right-handed neutrinos.

Otherwise, the Yukawa coupling f is required to be highly suppressed and/or the VEV

vφ must be huge due to astrophysical constraints.

The massive Majoron is unstable due to its interaction with right-handed neutrinos and

the neutrino Yukawa couplings. The main decay channels are expressed by the Feynman

diagrams of Fig. 5.1. The decay width to the neutrinos is given by

Γχ→νανβ =
mχ

16πv2
φ

∣∣(mν)αβ
∣∣2, (5.2.6)

where (mν)αβ is the neutrino mass matrix. To realize the long-lived dark matter, the VEV

vφ has a lower bound for a fixed value of the dark matter mass mχ. The constraints on
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the dark matter mass and lifetime for this decay mode are discussed e.g., in Refs. [PR08,

CGIT10]. For example, the VEV vφ is found to satisfy vφ & 1015 GeV for TeV-scale dark

matter. In the following parts, we assume vφ ≈ 1015 GeV. In addition, the Majoron is

so heavy that it can decay to (the top) quark pair through the one-loop diagram shown

Fig. 5.1. As the width is generally proportional to the quark mass, the dominant radiative

decay is given by χ→ tt, if possible, and its width is evaluated as

Γχ→tt =
3αWC

2
χZ

8 cos2 θW

mχm
2
t

m4
Z

√
1− 4m2

t

m2
χ

, (5.2.7)

where mt and mZ are the masses of the top quark and the Z boson, respectively, and αW
is the fine structure constant of SU(2)L gauge coupling. The overall factor 3 comes from

the summation of color indices of the final states. The neutrino loop factor connecting χ

and Z is given by

CχZ =
∑
i,j

g
∣∣(mD)ij

∣∣2
16π2vφ cos θW

∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−x−y

0

dz
F (2m2

χ/M
2
Ni

)

F (m2
χ/M

2
Ni

)2
, (5.2.8)

where F (ω) := (x+ y) + (y + z)(y + z − 1)ω. The main decay modes of the Majoron are

these χ → νανβ, χ → tt, and the model parameters are constrained by the cosmic-ray

observations such as anti-protons and gamma-rays. The decay widths of the Majoron

to other SM particles are much smaller, then the constraints are irrelevant.3 In general,

analyzing the constraints on the model parameters are very complicated due to many

degrees of freedom and indeterminacy [IYY], which is beyond the scope of this chapter. In

this chapter, we impose a conservative upper bound on the Yukawa coupling fi . 10−(10–11)

with reference to the past analysis, but the precise value of fi is irrelevant to the Majoron

creation.

From these results and analysis, we find the following three statements are inseparable

in the TeV-scale Majoron dark matter model:

1. Light right-handed neutrinos with TeV-PeV-scale masses

2. Heavy Majoron feebly interacting with right-handed neutrinos

3. Large VEV of Φ around the unification scale

5.3 Dark matter creation: majorogenesis

In this section, we will show the difficulty to realize the dark matter relic abundance,

and discuss some improved scenarios for the Majorogenesis to take place.

3In the case of the Majoron being light, see a previous work [GCH17] for the constraints from the

Majoron decay.
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5.3.1 Flaw and improvements of the model

As we have seen in the last section, the three conditions,

1. light right-handed neutrinos,

2. heavy Majoron,

3. large vφ,

are inseparable when we consider a TeV-scale Majoron dark matter. In the model in Sec-

tion 2, the Majoron couples to the SM particles only through the right-handed neutrinos

and the coupling is too small to realize the freeze-out mechanism. Even if we introduce the

mixing coupling such as λHΦ|H|2|Φ|2, it is hard for pNGB dark matter with the large VEV

to realize the relic abundance as by the freeze-out mechanism [ABD+20]. Then another op-

tion to create the Majoron is the freeze-in mechanism discussed in Ref. [HJMRW10]. The

magnitude of the coupling that is necessary for the freeze-in to work is typically O(10−11),

and thus the tiny Yukawa couplings in the model of Section 2, fij . O(10−(10–11)), seem

useful for the Majoron creation via the freeze-in. However, the Yukawa interaction be-

tween the Majoron and the right-handed neutrinos is flavor diagonal in the right-handed

neutrino mass basis, and flavor changing off-diagonal interactions such as χN1N2 are ab-

sent in the Lagrangian (see Eq. (5.2.5)). The other processes are too tiny to explain the

relic abundance by the freeze-in mechanism. The scattering amplitude of the annihilation

NN → χχ via t-channel is proportional to f 2. In addition, the decay N → χν is highly

suppressed by the neutrino mass on top of f . Therefore, it is impossible to realize the

dark matter relic abundance by the freeze-in mechanism using the right-handed neutrino

decay in that model. Here let us consider the following three scenarios to avoid this flaw.

(A): The first is to modify the universality of mass/coupling ratios for the pNGB Ma-

joron. A simple way for this is to introduce Majorana masses for right-handed

neutrinos, which break the U(1)L symmetry similarly to the soft breaking term for

Φ. Then flavor changing couplings of the Majoron generally appear in the right-

handed neutrino mass basis, and could lead to the freeze-in production of Majoron.

(B): The second is adding the mixing coupling between the SM Higgs H and the SM

singlet scalar Φ such as λHΦ|H|2|Φ|2 to the scalar potential (5.2.2). The Majoron

can interact with the SM Higgs via this coupling on top of neutrinos, but the typical

magnitude of the interaction is also too small to realize the thermal relic because

of the nature of NGB [RSW20] as we stated above. As an alternative option, we

consider the freeze-in mechanism through this portal coupling.

(C): The third option is using a non-thermal creation of the right-handed neutrinos dur-

ing the reheating after the cosmological inflation. The scattering process mediated

by the CP-even scalar particle arising from Φ is essential to explain the dark matter

relic abundance.
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Figure 5.2: The Feynman diagram for Majorogenesis in the scenario (A) [AHO+20].

In the rest part of this section, we discuss the above three scenarios (A)–(C) and

investigate the parameter space realizing the TeV-scale Majorogenesis for each case.

5.3.2 (A): Heavy right-handed neutrino decay

Let us consider the scenario (A), in which Majorana mass terms for the right-handed

neutrinos are introduced:

∆LMajorana = −1

2
mijνcRiνRj + h.c. (5.3.1)

which enables the flavor changing interactions in the mass-diagonal basis. In this subsec-

tion, we consider only two right-handed neutrinos (i = 1, 2), or equivalently, we assume

that one of the three is sufficiently heavy. Hereafter, we use g for the off-diagonal Yukawa

interaction giving χN1N2 vertex, which is assumed to have the constraint,

g . 10−10, (5.3.2)

as in the Majoron model.

The dark matter creation process is N2
g→ N1χ (MN2 > MN1 + mχ), which is shown

in Fig. 5.2, and the decay width is given by

ΓN2→N1χ =
g2MN2

32π
I

(
MN1

MN2

,
mχ

MN2

)
, (5.3.3)

where the function I(x, y) is defined by I(x, y) := [(1− x)2 − y2]
3/2

[(1 + x)2 − y2]
1/2

. On

the other hand, the thermal creation process of the right-handed neutrinos are given by

Ni ←→ LαH (LcαH
†), and the decay width is expressed as

ΓNi→B =
|Y ν†
αi |2MNi

8π
. (5.3.4)

The Boltzmann equations for the right-handed neutrinos and the Majoron are given

by

dYN2(x)

dx
=− ΓN2→N1χ

Hx

K1(r2x)

K2(r2x)
YN2(x)
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− ΓN2→B

Hx

K1(r2x)

K2(r2x)

[
YN2(x)− Y eq

N2
(r2x)

]
, (5.3.5)

dYN1(x)

dx
= +

ΓN2→N1χ

Hx

K1(r2x)

K2(r2x)
YN2(x)

− ΓN1→B

Hx

K1(r1x)

K2(r1x)

[
YN1(x)− Y eq

N1
(r1x)

]
, (5.3.6)

dYχ(x)

dx
= +

ΓN2→N1χ

Hx

K1(r2x)

K2(r2x)
YN2(x), (5.3.7)

where Kn is the modified Bessel function of the second kind. We introduce the di-

mensionless parameter x by x := mχ/T for the temperature T and the mass ratios by

ri := MNi/mχ. The Hubble parameter and the entropy density are defined by Eq. (4.3.1)

and Ṫ ≈ −HT is used. The yield of a particle a is defined by Ya := na/s with the number

density na. The function form of YX in the thermal equilibrium is given by

Y eq
X (z) = gX

(
45

4π4gS∗

)
z2K2(z), (5.3.8)

with gX being the number of the degrees of freedom for the particle X. We assume that

the SM particles are always in the thermal bath and neglect the inverse decay N1χ→ N2

because the contribution from this process is small.

Using Eqs. (5.3.5)–(5.3.7), we obtain

Yχ(∞) =

∫ ∞
xI

dx
dYχ(x)

dx

=
ΓN2→N1χΓN2→B

ΓN2→N1χ + ΓN2→B

∫ ∞
xI

dx
1

Hx

K1(r2x)

K2(r2x)
Y eq
N2

(r2x), (5.3.9)

where we have assumed YN2(xI) = YN2(∞) = 0. The integral Eq. (5.3.9) can be carried

out approximately and the Majoron relic abundance is evaluated as

Yχ(∞) ≈
(

ΓN2→N1χΓN2→B

ΓN2→N1χ + ΓN2→B

)
405
√

5

8π9/2gS∗ g
1/2
∗

mPl

M2
N2

(5.3.10)

≈ ΓN2→N1χ
405
√

5

8π9/2gS∗ g
1/2
∗

mPl

M2
N2

, (5.3.11)

where we have used ΓN2→N1χ � ΓN2→B and the explicit expressions of the Hubble param-

eter and the entropy density.

The time evolution of the yields are shown in Fig. 5.3. The masses for the particle

contents are fixed as MN1 = 5 TeV, MN2 = 20 TeV and mχ = 1 TeV, and the off-diagonal

Yukawa coupling is chosen as g = 10−11. The decay parameter Di is defined by the ratio

of the decay width of Ni → SM to the Hubble parameter H as Di = ΓNi→B/H(T = MNi)

and is related to the neutrino Yukawa couplings Y ν
αi (see Eq. (5.3.4)). In the left panel,

the two decay parameters are unity, and then the right-handed neutrinos go into the
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Figure 5.3: The solutions of the Boltzmann equations with the masses MN1 = 5 TeV,

MN2 = 20 TeV, mχ = 1 TeV and the Yukawa coupling g = 10−11 [AHO+20]. The black

solid lines indicate the yields in the thermal equilibrium, Y eq
Ni

. The decay parameters

Di = ΓNi→B/H(T = MNi) are changed. In the left panel, the decay parameters are unity.

In the right panel, the decay parameters are hierarchical and tiny values.

thermal bath and the yields follow the thermal equilibrium distribution (black solid lines

in the figure). In the right panel, the two decay parameters are too small to put YNi
into the thermal bath. It is interesting that the final result Yχ(∞) converges to the same

value independently of the magnitudes of the neutrino Yukawa couplings Y ν
αi, which is

clear from Eq. (5.3.11). This is because, for small Y ν
αi, the thermally induced amount of

the right-handed neutrinos around their mass scale becomes small while the branching

ratio decaying into the Majoron becomes large and these two effects are canceled out.

In the thermal historical point of view, the independence of neutrino Yukawa couplings

is understood by the fact that thermally induced N2 is proportional to D2 and the time

interval where the decay N2 → N1χ is effective is inversely proportional to D2.

Then the relic abundance of the Majoron is given by

Ωχh
2 =

mχYχ(∞)s0

εc,0/h2

≈0.1075×
(

g

10−11

)2(
100

gS∗

)(
100

g∗

)1/2(
mχ

1 TeV

)(
20 TeV

MN2

)
I

(
MN1

MN2

,
mχ

MN2

)
,

(5.3.12)

where s0 = 2891 cm−3 is the today entropy density, and εc,0 = 5.16(h/0.7)2 GeV m−3

is the today critical energy density. The current observed value of dark matter abun-

dance is Ωdarkmatterh
2 = 0.1200(12) [A+20b]. As we stated above, the relic abundance is

independent of the neutrino Yukawa couplings Y ν
αi.

In Fig. 5.4, we show the allowed parameter regions in (mχ, g) and (MN1 ,MN2) planes.

In the left panel, each line represents the parameter space realizing the dark matter relic
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Figure 5.4: The allowed region to realize the dark matter relic abundance in (mχ, g)- and

(MN1 ,MN2)-planes [AHO+20]. See the text for details.

abundance for several choices of MN2 with MN1 fixed as 5 TeV. Note that the stronger

Yukawa coupling g is required for the smaller Majorana mass MN2 since the phase factor

I(MN1/MN2 ,mχ/MN2) becomes smaller. On the other hand, large g is also required for

larger MN2 because I ∼ 1 and the relic abundance is inversely proportional to MN2 . The

allowed region regarding MN2 as a free parameter is bounded from below by the critical

line corresponding to MN2 ∼ 20 TeV. Thus the lower bound for g is around g ∼ 10−11. In

the right panel, we show the allowed region with the dark matter mass mχ = 3 TeV and

the Yukawa coupling g ≤ 10−10.4, 10−10.7, 10−11. If we take a severer bound for the off-

diagonal Yukawa coupling g ≤ 10−11 (red region in the figure), the lightest right-handed

neutrino mass has to be in 3 TeV ≤ MN1 ≤ 7 TeV, and the mass MN2 has to be larger

than 10 TeV.

Interestingly, the bound on g for this scenario to work is marginally comparable with

the experimentally constrained upper bound Eq. (5.3.2). Therefore, the scenario (A) can

be proved or excluded in the near future observations.

5.3.3 (B): Scalar potential interaction

Let us move to another scenario, in which we introduce the mixing coupling λHΦ|H|2|Φ|2.

We consider the freeze-in creation of the Majoron in this model. The scalar potential is

written as

V(H,Φ) =VH(H)− µ2
Φ

2
|Φ|2 +

λΦ

2
|Φ|4 + λHΦ|H|2|Φ|2 −

m2

4

(
Φ2 + Φ∗2

)
, (5.3.13)

and the conditions for the quartic couplings such that the potential is bounded from below

are λH > 0, λΦ > 0,
√
λHλΦ + λHΦ > 0. In addition, the quartic coupling λΦ has the

upper bound 8π/3 from the perturbative unitarity as discussed in Ref. [CDL15]. The
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Figure 5.5: The Feynman diagrams for the Majorogenesis in the scenario (B) [AHO+20].

The contact type interaction in the left panel is canceled by the low-energy contribution

from the scalar mediated interaction in the right panel.

quartic coupling λHΦ is also constrained by the bound of the mixing angle between the

CP-even components [FGL15].

One important feature of the Majoron is a cancellation due to the nature of NGB in

two-body scattering processes such as Fig. 5.5. The contribution from the contact type

four-point interaction (left panel) is canceled by the one from the φ-mediated interaction

(right panel) in the soft limit, and the remaining value is suppressed by the large decay

constant. Indeed, the leading contribution after the cancellation comes from the portal

energy in the propagator, which is written as

iM(H†H → χχ)(s) = −i λHΦ

s−m2
φ

s, (5.3.14)

where s is the Mandelstam’s s variable and m2
φ = λΦv

2
φ is the mass of φ. This is consistent

with the result implied by the soft-pion theorem, and is easily understood in the non-linear

representation:

Φ =
vφ + φ√

2
eiπ/vφ . (5.3.15)

The phase field π is the Majoron in this representation and is the same as χ to the leading

order of 1/vφ. We have the following interaction vertices in the Lagrangian:

Lint 3
φ

vφ

[
(∂µπ)2 −m2

χπ
2
]
− λHΦvφφ|H|2, (5.3.16)

where the derivative coupling between the (p)NGB π and the CP-even scalar particle φ

has come from the kinetic term of Φ. The scattering amplitude for HH → ππ evaluated

from this interaction Lagrangian Eq. (5.3.16) is the same as Eq. (5.3.14), which is now

given by a single diagram like the right-panel of Fig. 5.5 and the energy (s) dependence

originates from the derivative coupling.

The Boltzmann equation for the Majoron dark matter is given by

dYχ(x)

dx
=

2

sHx
γχχH†H , (5.3.17)

82



105 107 109 1011 1013 1015

1

10-3

10-6

10-9

10-12

Figure 5.6: The parameter space in the (mφ, λHΦ) plane explaining the dark matter relic

by the TeV scale Majoron [AHO+20]. See the text for details.

where γχχH†H is the interaction density defined by

γχχH†H :=
4

2!2!

Tλ2
HΦ

29π5

∫ ∞
4m2

χ

ds
√
s− 4m2

χK1(
√
s/T )

s2

(s−m2
φ)2

. (5.3.18)

The prefactor 4 comes from the degrees of freedom of the Higgs doublet in the symmetric

phase. We integrate the Boltzmann equation with the initial condition Yχ(xR) = 0, then

the Majoron abundance can be analytically evaluated as

Ωχh
2 ≈1.5× 1025 GeV

(
100

gS∗

)(
100

g∗

)1/2(
mχ

1 TeV

)
λ2
HΦT

3
R

m4
φ

, (5.3.19)

where TR is the reheating temperature satisfying xR := mχ/TR. In Eq. (5.3.19), we have

assumed that mφ is larger than the reheating temperature. Due to the energy dependence

of the amplitude (5.3.14) and the heavy portal scalar, the relic abundance is dominated

by the contribution from the UV-region unlike the previous case (A) and depends on the

reheating temperature TR, which arises from the UV physics. A similar type of freeze-in

effect is discussed in the context of higher dimensional operators [HJMRW10].

In Fig. 5.6, we show the allowed region in the (mφ, λHΦ) plane. Each solid line repre-

sents the parameter space realizing the dark matter relic abundance and the region above

each line for TR being fixed is excluded by the over creation. The dashed line means

the case mφ = TR, and the region below this line is not valid because we assumed that

the mass of φ is larger than the reheating temperature such that φ is inactive in thermal

evolution after the reheating. The shaded region shows the parameter space in which

the dark matter relic abundance is realized regarding the reheating temperature as a free

parameter. The region of mφ is taken as 104 GeV ≤ mφ ≤ 1015 GeV. We note the
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Figure 5.7: The Feynman diagrams for the Majorogenesis in the scenario (C) [AHO+20].

VEV vφ is large for the TeV-scale Majoron and the constraint from the mixing among

the CP-even components is negligible due to the suppression by vφ.

We here give a comment on other previous work. The portal-like coupling of pNGB

has also been discussed in various contexts, e.g., Refs. [GMS10, QS14]. The existence of

the contact type interaction by the quartic coupling λHΦ is usually assumed, but that is

canceled by heavy scalar mediated contribution, as stated above. Consequently, it seems

that the thermal freeze-out creation and collider search of the pNGB dark matter are

inaccessible in case of the large decay constant.

5.3.4 (C): Resonant creation from non-thermal source

Let us consider the third scenario that the Majoron dark matter is created by the right-

handed neutrino annihilation process mediated by the heavy CP-even scalar φ. We here

assume that the mass mφ is smaller than the reheating temperature TR so that φ plays

an important role in the thermal history of the universe. In this subsection, we consider

the case of one generation right-handed neutrino for simplicity, but the generalization to

three generations right-handed neutrino is straightforward.

We further assume that the right-handed neutrino has a Yukawa coupling to the

inflaton field ϕ with mass mϕ. This coupling generates the right-handed neutrinos non-

thermally during the reheating, and the yield at TR is evaluated as

YN =
3

2

TR
mϕ

Br(ϕ→ NN). (5.3.20)

Here Br(ϕ → NN) is the branching ratio of ϕ → NN process, which is given by

Γϕ→NN/Γϕ with Γϕ being the total decay width of the inflaton. The reheating tem-

perature TR is defined by H(T = TR) = Γϕ.

The right-handed neutrinos created by the inflaton can annihilate into the Majoron

through the scattering process mediated by φ: NN
φ←→ χχ as shown by Fig. 5.7. The

Yukawa coupling f corresponding to φNN should be small from astrophysical constraints,

and the three point coupling φχχ is also suppressed. As we will see in the following, even

for these tiny couplings, a sufficient amount of the Majoron dark matter can be generated

with the resonant contribution of φ. The partial decay widths of φ to right-handed
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Figure 5.8: The solution of the Boltzmann equations with mφ = 106 GeV, mχ = 103 GeV

and the initial value of the right-handed neutrino yield YN(xR) = 10−2 [AHO+20]. The

right-handed neutrino mass is fixed as MN = 104 GeV, but the dark matter abundance

Yχ(∞) does not depend on it.

neutrinos and Majoron

Γφ→NN =
f 2mφ

32π

[
1− 4M2

N

m2
φ

]3/2

, Γφ→χχ =
λΦmφ

32π

[
1− 4m2

χ

m2
φ

]1/2

. (5.3.21)

The contribution to the Boltzmann equations from the φ portal annihilation process,

NN
φ→ χχ, is evaluated as

γNNχχ =
λΦf

2T

211π5

∫ ∞
4M2

N

ds
(s− 4M2

N)3/2(s− 4m2
χ)1/2

s1/2(s−m2
φ)2

K1(
√
s/T )

≈
f 2m3

φT

26π3

[
1− 4M2

N

m2
φ

]3/2

K1(mφ/T ), (5.3.22)

where we use the narrow width approximation.

The Boltzmann equations for the Majorogenesis in this system are expressed as

dYN(x)

dx
=2

Γφ→NN
Hx

K1(rφx)

K2(rφx)
Y eq
φ (rφx)

[
Yφ(x)

Y eq
φ (rφx)

−
(
YN(x)

Y eq
N (rx)

)2]
− 2

Hsx
γNNχχ

(
YN(x)

Y eq
N (rx)

)2

− ΓN→B

Hx

K1(rx)

K2(rx)

[
YN(x)− Y eq

N (rx)
]
, (5.3.23)

dYφ(x)

dx
=− Γφ→NN

Hx

K1(rφx)

K2(rφx)
Y eq
φ (rφx)

[
Yφ(x)

Y eq
φ (rφx)

−
(
YN(x)

Y eq
N (rx)

)2]
− Γφ→χχ

Hx

K1(rφx)

K2(rφx)
Yφ(x), (5.3.24)

dYχ(x)

dx
=2

Γφ→χχ
Hx

K1(rφx)

K2(rφx)
Yφ(x) +

2

Hsx
γNNχχ

(
YN(x)

Y eq
N (rx)

)2

, (5.3.25)
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Figure 5.9: The allowed region in (mχ,mφ) plane when the initial yield of the right-handed

neutrino is given [AHO+20]. The initial yield is fixed as fYN(xR) ≥ 10−13, 10−12, 10−11,

and the small φ mass is favored.

where we have assumed that the SM particles are in the thermal bath. rφ and r are

defined as rφ := mφ/mχ and r := MN/mχ, respectively. The relic density of the Majoron

dark matter is found by solving these equations and evaluated approximately as

Yχ(∞) ≈ f 2mφ

16π

(
1− 4M2

N

m2
φ

)3/2 ∫ ∞
xR

dx
2

Hx

K1(rφx)

K2(rφx)
Y eq
φ (rφx)

(
YN(x)

Y eq
N (rx)

)2

, (5.3.26)

where we have used the boundary conditions Yφ(xR) = Yχ(xR) = YN(∞) = Yφ(∞) = 0.

The final result is given by

Yχ(∞) ≈ π5/2gS∗

128
√

5g
1/2
∗

mPl

mφ

f 2YN(xR)2. (5.3.27)

The relic abundance of the Majoron dark matter is evaluated as

Ωχh
2 ≈4.02× 1027

(
100

gS∗

)(
100

g∗

)1/2
mχ

mφ

f 2YN(xR)2. (5.3.28)

This result depends on the Yukawa coupling f , the scalar mass mφ, and the initial amount

of right-handed neutrinos, but is independent of the right-handed neutrino mass.

The time evolution of the yields are shown in Fig. 5.8, in which the masses are fixed

as mφ = 106 GeV, mχ = 103 GeV and MN = 104 GeV. The yield YN initially created

by the inflaton decay is large and remains the constant for T & mφ, during which φ and

Majoron are generated through the decay and scattering processes. After the creation of

Majoron dark matter by this process, the relic abundance is frozen-in at the temperature
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just below mφ.4 On the other hand, the heavy scalar φ similarly created by the N decay

finally disappears after the φ→ χχ process becomes effective in the thermal history.

In Fig. 5.9, we show the allowed region in (mχ,mφ) plane with the initial yield

fYN(xR) ≥ 10−11, 10−12, 10−13. A smaller φ mass is favored to realize the dark matter

relic abundance. The figure shows that a tiny value of the coupling f is compatible with

the observations, while that depends on the other parameters.

5.4 Summary

We have studied the scenarios where the Majoron, a pNGB of lepton number symmetry

with TeV-scale mass, can be the dark matter of the universe. Since the decay constant

of the Majoron is large and the coupling to the SM is tiny, it is nontrivial how to create

the Majoron in the early universe, called Majorogenesis. The Majoron model can realize

neither freeze-out nor freeze-in production of the Majoron dark matter with the large VEV

because the Majoron couplings to the SM particles are tiny and the Yukawa couplings

to the right-handed neutrinos are flavor-diagonal in the mass basis of the right-handed

neutrinos. To avoid this flaw, we have discussed three scenarios (A)–(C) for Majorogenesis

via the freeze-in mechanism; (A) introducing explicit Majorana masses, (B) using the

interaction with the SM Higgs doublet, (C) using the resonant production from the non-

thermally induced right-handed neutrinos.

In (A), we find the lower bound on the Majoron Yukawa coupling for the freeze-

in Majorogenesis to work, and the bound is roughly comparable with the tiny value

of Yukawa coupling constrained from astrophysics. Therefore, this scenario could be

proved or excluded in the near future observations such as Cherenkov Telescope Array

(CTA) [C+16] and IceCube Neutrino Observatory [A+19b].

In (B), the toal coupling between the Majoron and the SM Higgs is found to be

canceled and suppressed by the large mass scale, and is useful to create the Majoron via

the freeze-in mechanism. Note that this scenario is quite general because we have used

only the fact that χ is the pNGB having the large VEV and the mixing coupling to the

SM Higgs.

In (C), the sufficient amount of right-handed neutrinos are produced by the decay of

the inflaton during the reheating. After that, the φ-mediated NNχχ interaction, whose

magnitude is constrained by cosmic-ray observations, can be used to realize the freeze-in

production.

In all the scenarios (A)–(C), there are the parameter regions realizing the dark matter

relic abundance and avoiding the astrophysical constraints. Therefore, the Majoron with

the TeV-scale mass (or heavier) can play the role of dark matter in the universe.

4The relic abundance of the Majoron could be slightly changed by thermalized right-handed neutrinos.

However, it is not large effect unless mφ is close to MN .
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For further study, it may be intersting to examine the leptogenesis [FY86] in these

scenarios. A straightforward way is using resonances between the right-handed neutri-

nos [PU04]. A more challenging is introducing other particles whose masses are at an in-

termediate scale between v and vφ. One can use radiative decay processes of right-handed

neutrinos where the new particles appear in the loop to generate lepton asymmetry. This

motivates us to consider an extension in which one more SM-singlet U(1)L-charged scalar

is added. Whether such type of leptogenesis can be compatible with the TeV-scale Ma-

jorogeneis is left for future work.
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Chapter 6

Electroweak axion string and

superconductivity

6.1 Strong CP problem, axions and axion strings

In the Quantum Chromodynamics (QCD) sector, the general Lagrangian is given by

LQCD = − 1

2g2
s

tr(Gµν)
2 +

iθ

8π2
tr(GµνG̃

µν) + Lmatter, (6.1.1)

where Gµν denotes the field strength of the Gluon field and G̃µν = 1
2
εµνρσGµν . The second

term is the CP violating term, which is called θ-term and θ ∈ [0, 2π]. The non-vanishing θ

value leads the non-trivial electric dipole moment of the neutron, but the observed value

is highly suppressed |dn| < 2.9× 10−26 e cm [B+06] and the constraint on the θ parameter

is typically given by |θ| . 10−10 [H+99]. While there is no reason in QCD, the the value

of theta is fine tunned, this is known as the strong CP problem.

This strong CP problem is one of the unresolved mysteries in SM. The problem can

be naturally solved by the Peccei-Quinn (PQ) mechanism, in which a global symmetry

denoted by U(1)PQ is assumed to be spontaneously broken and provides a pNGB, the

axion [PQ77a,PQ77b,Wei78,Wil78]. In other words, the PQ mechanism solves the strong

CP problem dynamically by promoting the parameter θ to a scalar field. The axion is a

promising candidate for a viable cold dark matter [PWW83,AS83,DF83].

Among various models bringing the axion (for recent reviews, see, e.g., Refs. [Sik08,

Mar16,Rin12,WS10,KC10]), the DFSZ model [Zhi80,DFS81] has been studied extensively,

as well as the KSVZ model [Kim79,SVZ80]. In the DFSZ model, the scalar sector of the

SM is extended to have two Higgs doublets and one SM-singlet complex scalar. The

scalar fields and the SM fermions are assumed to be charged under the U(1)PQ symmetry,

which is spontaneously broken by a VEV of the complex scalar. The axion is a linear

combination of imaginary components of the doublets and the complex scalar.

The U(1)PQ symmetry in the DFSZ model is anomalous due to one-loop contributions

from the SM fermions and is broken down to a discrete subgroup Z3 (or Z6), which
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produces a domain wall at the QCD phase transition. The energy density of the domain

walls dominate soon that of the universe, leading to the domain wall problem. One

possible scenario to solve the problem is to assume that the U(1)PQ symmetry is broken

during or before the cosmological inflation. There exists, however, a stringent constraint

on isocurvature perturbation produced by the axion during the inflation [A+20c]. Another

simple way is introducing a tiny term breaking the symmetry explicitly, called the bias

[GGK89,LSW97], which resolves the vacuum degeneracy [Sik82,CHS99,Vil81]. For other

scenarios and their studies, see, e.g., Refs. [PWY86,KW86,LS82,CHN20,KTY16,STY18].

As well as most axion models enjoying the U(1)PQ symmetry, the DFSZ model predicts

the axion string [Dav86], which is a global cosmic string. The axion string is created by the

Kibble-Zurek mechanism [Kib80,Zur85] (see also Ref. [MS10]) when the U(1)PQ symmetry

is spontaneously broken. For the scenario that the domain wall problem is avoided by

the inflation, the axion strings are diluted away and seem to play no role in cosmology.

But for the other scenarios, they become interesting ingredients in the universe and have

been studied in various contexts (see Ref. [VS00]). We assume the latter scenarios in

this chapter. After the creation, the strings form a network whose energy density has a

scaling property. To understand the evolution of the network, it is important to study

the interaction between the axion strings. The interaction is thought to be dominated by

exchange of the (massless) axion as a long-range force.

On the other hand, cosmic strings sometimes can be superconducting strings [Wit85]

when the electromagnetic gauge symmetry is spontaneously broken inside the strings. It

is known that the axion strings necessarily become superconducting states [LS85, Iwa97,

GL89,LPS88] because they must have fermionic zero modes traveling on the string [JR81,

CH85]. The maximum amount of the supercurrent is determined by the (bulk) mass of the

fermions. In the DFSZ model, however, the axion string cannot carry significant amount

of the current because the model has no heavy fermion. Thus, the superconductivity

seems to play no crucial role for cosmological properties.

In this chapter, we show that the axion string in the DFSZ model becomes the elec-

troweak string after the breaking of the electroweak symmetry. The electroweak string

is a string containing flux tubes of the SU(2)L × U(1)Y gauge fields like the Abrikosov-

Nielsen-Olesen vortex [Abr57, NO73] and has been studied in the SM [Nam77, Vac93,

Vac92,JPV92,JPV93,VF94,BVB94,Bar95,EKNO13] (see Ref. [AV00] for review), and in

two Higgs doublet models (2HDM) [Per93,La93,DS93,DS94,BL94,BRT99,Iva08,BBP11,

EHKN20b, EHKN20a] (for recent comprehensive studies, see Refs. [EKN18a, EKN18b]).

An essence is that the two Higgs doublets in the DFSZ model also acquire the VEVs

after the electroweak phase transition and they must have winding in the SU(2)L×U(1)Y
gauge orbits for the single-valuedness, as well as the winding for U(1)PQ. We call such

strings the electroweak axion strings. In particular, we show that there are at least three

types of the electroweak axion string in the DFSZ model. Interestingly, some of them

have very similar properties to those of the electroweak string in 2HDM.
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H1 H2 S

SU(2)L 2 2 1

U(1)Y 1 1 0

U(1)PQ X1 X2 Xs

Table 6.1: The scalar field contents and their quantum charges.

Furthermore, we show that one of the electroweak axion strings (dubbed the type-

C string) can be a superconducting string without fermionic fields. This is because the

charged fields, the charged Higgs and W bosons, acquire non-zero values inside the string

and the U(1)EM symmetry is spontaneously broken there. This is a similar situation to

superconductivity of non-Abelian vortices [ABC+90, ABC+91] and of the U(1) × Ũ(1)

model considered by Witten [Wit85]. Remarkably, due to the coupling between the Higgs

doublets and the complex scalar, the amount of the supercurrent can be of order of the

U(1)PQ breaking scale resulting in large magnetic energy even in the DFSZ model. As

a consequence, the strings feel a large magnetic interaction, which can overcome the

one from the axion exchange. Therefore, superconductivity could drastically change the

cosmological scenario of the axion strings after the electroweak phase transition in the

DFSZ model.

The rest of this chapter is organized as follows. In Section 6.2, the DFSZ axion model

is reviewed and our notation is introduced. For later use, we present a definition of

the U(1)EM in general soliton backgrounds. In Section 6.3, after a brief review of the

conventional axion string, we discuss the electroweak axion strings. There are at least

three types of the electroweak axion strings (type-A, B and C). We compare the tensions

of the strings. In Section 6.4, we show that the type-C string can be superconducting. A

linearized equation of motion for massless zero modes traveling on the string is presented.

In addition, we estimate the maximum amount of the supercurrent flowing on the string

to be of order of the U(1)PQ breaking scale. Section 6.5 is devoted to the summary. In

Appendix. 6.B, we present the derivation of the linearized equation used in Section 6.4.

6.2 The model

6.2.1 DFSZ axion model

The particle contents and the charge assignments under the SM gauge group and the

U(1)PQ are shown in Tab. 6.1. We introduce a SM-singlet complex scalar S and two

SU(2)L doublets, H1 and H2, both with the hypercharge QY = 1/2. The Lagrangian

which describes the electroweak and scalar sectors is written as

L = −1

4
(Bµν)

2 − 1

4

(
W a
µν

)2
+
∑
i=1,2

|DµHi|2 + |∂µS|2 − V (H1, H2, S). (6.2.1)
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Here, Bµν and W a
µν describe field strength tensors of the hypercharge and weak gauge

interactions, respectively, with µ (ν) and a being Lorentz and weak iso-spin indices,

respectively. Dµ represents the covariant derivative acting on the Higgs fields, and the

index i runs i = 1, 2. The scalar potential V (H1, H2, S) being invariant under the charge

assignments of Tab. 6.1 is

V (H1, H2, S) = VH + VS + Vmix, (6.2.2)

where each part is given by

VH =m2
11H

†
1H1 +m2

22H
†
2H2 +

β1

2

(
H†1H1

)2

+
β2

2

(
H†2H2

)2

+ β3

(
H†1H1

)(
H†2H2

)
+ β4

(
H†1H2

)(
H†2H1

)
, (6.2.3)

VS =−m2
S|S|2 + λS|S|4, (6.2.4)

Vmix =
(
κS2H†1H2 + h.c.

)
+ κ1S|S|2|H1|2 + κ2S|S|2|H2|2, (6.2.5)

with m2
S > 0 which admits S to acquire a non-zero VEV: 〈S〉 = vs. Without loss of

generality, we can suppose that the Higgs fields develop VEVs as 〈H1〉 = (0, v1) , 〈H2〉 =

(0, v2) with v1, v2 ∈ R.1 Then the electroweak scale, vEW (≈ 246 GeV), can be expressed

by these VEVs as v2
EW = 2(v2

1 +v2
2). We also define tan β := v2/v1. In order for Vmix to be

invariant under the U(1)PQ symmetry, the U(1)PQ charges in Tab. 6.1 should satisfy the

relation 2Xs −X1 + X2 = 0. If the first term in Eq. (6.2.5) has a structure like SH†1H2

instead of S2H†1H2, the assignment of the U(1)PQ charges should change, but qualitative

properties of the axion strings we discuss below are almost same. In particular, the string

becomes superconducting also in such a case.

The Yukawa interaction terms are given by

LYukawa = −yUuRH̃1Q− yDdRH2Q− yeeRH2L+ h.c., (6.2.6)

and the SM fermions carry the U(1)PQ charge so that this Lagrangian is invariant under

U(1)PQ. The new singlet scalar S couples to the SM fermions via Higgs sector. In the

following parts of this chapter, we leave aside the Yukawa terms.

For later use, we rewrite the Higgs fields in a two-by-two matrix form [GMW11], H,

defined by

H =
(
iσ2H∗1 , H2

)
=
(
H̃1, H2

)
. (6.2.7)

The matrix field H transforms under the electroweak SU(2)L × U(1)Y symmetry as

H 7→ exp

[
i

2
θa(x)σa

]
H exp

[
− i

2
θY (x)σ3

]
, (6.2.8)

1Note that we drop “1/
√

2” in our notation for the VEVs.
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where the group element acting from the left belongs to SU(2)L and the other element

acting from the right belongs to U(1)Y . Therefore the covariant derivative on H can be

expressed as

DµH = ∂µH− ig2

2
σaW a

µH + i
g1

2
Hσ3Bµ. (6.2.9)

The VEV of H is expressed by a diagonal matrix 〈H〉 = diag(v1, v2), and the Higgs

potential VH can be written by using H as follows:

VH =−m2
1 tr |H|2 −m2

2 tr
(
|H|2σ3

)
+ α1 tr |H|4

+ α2

(
tr |H|2

)2
+ α3 tr

(
|H|2σ3|H|2σ3

)
+ α4 tr

(
|H|2σ3|H|2

)
, (6.2.10)

where the relations between the parameters in Eq. (6.2.3) and in Eq. (6.2.10) are given

by

m2
11 = −m2

1 −m2
2, m2

22 = −m2
1 +m2

2, (6.2.11)

β1 = 2(α1 + α2 + α3 + α4), β2 = 2(α1 + α2 + α3 − α4), (6.2.12)

β3 = 2(α1 + α2 − α3), β4 = 2(α3 − α1). (6.2.13)

The formulae in the bilinear formalism is summarized in Appendix 6.A.2. The mixing

term Vmix is also rewritten by H as

Vmix =
(
κS2detH + h.c.

)
+

1

2
(κ1S + κ2S)|S|2 tr |H|2

+
1

2
(κ1S − κ2S)|S|2 tr(|H|2σ3). (6.2.14)

The custodial transformation SU(2)C in the two Higgs doublet model [GMW11,PV94]

is identified as the global unitary transformation of the Higgs matrix H as

H 7→ U †HU, U ∈ SU(2)C . (6.2.15)

If m2
2 = α3 = α4 = 0, and κ1S = κ2S, the scalar potential is invariant under the custodial

transformation. This symmetry makes the two VEVs be equal, tan β = 1.

6.2.2 Mass spectra and PQ transformation

The scalar fields develop the following VEVs

〈H〉 =

(
v1 0

0 v2

)
, 〈S〉 = vs. (6.2.16)

The stationary conditions are solved with the mass parameters m2
1, m2

2, m2
S as

m2
1 = (α1 + 2α2 + α3 + α4)v2

1 + (α1 + 2α2 + α3 − α4)v2
2

+
1

2

[
κ

(
v1

v2

+
v2

v1

)
+ κ1S + κ2S

]
v2
s , (6.2.17)
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m2
2 = (α1 + α3 + α4)v2

1 − (α1 + α3 − α4)v2
2 +

1

2

[
κ

(
v2

v1

− v1

v2

)
+ κ1S − κ2S

]
v2
s , (6.2.18)

m2
S = 2λSv

2
s + κ1Sv

2
1 + κ2Sv

2
2 + 2κv1v2. (6.2.19)

After the symmetry breaking, the gauge bosons and scalars become massive due to the

above VEVs. The masses of the weak gauge bosons are given by

mW =
g2vEW

2
, mZ =

g2vEW

2 cos θW
, (6.2.20)

with the standard definitions of the weak mixing angle cos θW = g2/
√
g2

2 + g2
1, the Z

boson Zµ = W 3
µ cos θW −Bµ sin θW , and the photon Aµ = W 3

µ sin θW +Bµ cos θW .

In the scalar sector, we have three scalars, three pseudo scalars, and two charged

scalars. Among these, one massless pseudo scalar and one massless charged scalar are

eaten by the weak gauge bosons, and the other massless pseudo scalar becomes the axion,

which obtains a mass from the non-perturbative QCD effect. There remain five physical

scalar bosons after the symmetry breaking. For example, the lightest real scalar has the

mass eigenvalue

m2
h1
≈ 4(α1 + α3)

v4
1 + v4

2

v2
1 + v2

2

+ 4α2(v2
1 + v2

2) + 4α4(v2
1 − v2

2)

−
(
κ1Sv

2
1 + κ2Sv

2
2 + 2κv1v2

)2

λS(v2
1 + v2

2)
, (6.2.21)

up to O(v2
EW/v

2
s), and we identify it as the SM Higgs boson. The mass squared matrix

for three pseudo scalars is expressed as

κ

 −
v2v2

s

v1
v2
s 2v2vs

v2
s −v1v2

s

v2
−2v1vs

2v2vs −2v1vs −4v1v2

 . (6.2.22)

This matrix has one massive and two exact zero modes. The non-vanishing mass eigen-

value is

m2
A0

= −κ4v2
1v

2
2 + v2

1v
2
s + v2

2v
2
s

v1v2

. (6.2.23)

In order to avoid the tachyonic mass, the portal coupling κ should be negative. One of the

massless eigenvector is (cos β, sin β, 0) which corresponds to the longitudinal mode of the Z

boson. Another zero eigenvector is given by (X1v1, X2v2, Xsvs) as long as 2Xs−X1+X2 =

0 is satisfied. This flat direction corresponds to the axion. Imposing these two massless

modes are orthogonal, we find

X1 = 2 sin2 β, X2 = −2 cos2 β, Xs = 1, (6.2.24)
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where Xs determines the normalization. Then the U(1)PQ transformation acts on the

scalars as

H1 → e2iα sin2 βH1, H2 → e−2iα cos2 βH2, S → eiαS. (6.2.25)

The same result is obtained by defining the U(1)PQ current not to couple to the Z boson.

For the matrix field H, the U(1)PQ transformation becomes

H→ e−iαHeiασ
3 cos 2β. (6.2.26)

6.2.3 Definition of unbroken U(1)EM group

Unlike in the vacuum, in the presence of a soliton background, the definition of the

unbroken U(1)EM generator is non-trivial. In this chapter, it is defined as 2

Q̂H := −naσ
a

2
H− H

σ3

2
, (6.2.27)

where

na :=

∑
i=1,2 |Hi|2nai

C
, (6.2.28)

na1 :=
H†1σ

aH1

|H1|2
, na2 :=

H†2σ
aH2

|H2|2
. (6.2.29)

The positive normalization factor C is determined to satisfy nana = 1. Correspondingly,

the U(1)Z subgroup in the SU(2)L × U(1)Y group is defined as

T̂ZH := −naσ
a

2
H− sin2 θW Q̂H. (6.2.30)

Also, the U(1)Z and U(1)EM gauge fields are defined as

Zµ := −naW a
µ cos θW −Bµ sin θW , (6.2.31)

Aµ := −naW a
µ sin θW +Bµ cos θW . (6.2.32)

In addition, the charged components of SU(2)L gauge group is defined as orthogonal com-

ponents to naσa. In the vacuum, the Higgs field takes a constant VEV 〈H〉 = diag(v1, v2),

and naσa = −σ3. The above definitions reduce to the conventional ones. The VEV is

invariant under U(1)EM,

Q̂ 〈H〉 = 0, (6.2.33)

which means that the U(1)EM symmetry is not spontaneously broken in the vacuum.

It may be useful to rewrite the above expressions for the two doublets H1 and H2,

Q̂Hi =

(
−naσ

a

2
+

1

2
1

)
Hi, (6.2.34)

T̂ZHi =

(
−naσ

a

2
− sin2 θW Q̂

)
Hi, (6.2.35)

for i = 1, 2.

2The vector na corresponds to ña in Ref. [EHN20].
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6.3 Electroweak axion strings

Similarly to other axion models, the DFSZ axion model provides a vortex string so-

lution known as the axion string corresponding to the breaking of U(1)PQ. On the other

hand, after the electroweak phase transition, the axion string can contain flux tubes of

the SU(2)L × U(1)Y gauge fields like the Abrikosov-Nielsen-Olesen vortex [Abr57,NO73]

since the two Higgs doublets also acquire the VEVs. We call such vortex strings the elec-

troweak axion strings. In this section, we show that there are (at least) three types of the

electroweak axion strings in the DFSZ model. Interestingly, some of them have similar

properties to those of (non-Abelian) vortices in two Higgs doublet models, in which there

is a global symmetry for a relative rotation of the two Higgs doublets. In particular, some

part of our argument in this section refers to that in Refs. [EKN18a,EKN18b].

6.3.1 Axion string in DFSZ model

We first review the conventional axion string in this subsection. Let us consider a

case that the U(1)PQ symmetry is spontaneously broken by 〈S〉 6= 0 but the electroweak

symmetry remains, 〈H1〉 = 〈H2〉 = (0, 0). This situation realized in the early universe

when the temperature T satisfies vEW � T � vs. In this case, as is well-known, a vortex-

string configuration associated with the global U(1)PQ symmetry exists as a solution to

the equation of motion (EOM), which is called the axion string in the literature. The

configuration located on the z-axis is described by the following ansatz

S = vse
iθφ(r), H1 = H2 =

(
0

0

)
, (6.3.1)

where r and θ are the distance from the z-axis and the rotational angle, respectively.

Namely, x+ iy = reiθ. The profile function φ(r) satisfies the boundary conditions

φ(0) = 0, φ(∞) = 1. (6.3.2)

The detailed form of φ(r) is determined by solving the EOM. This string has a winding

number associated with the U(1)PQ symmetry, and hence is topologically stable. The

U(1)PQ symmetry is restored on the string core because of φ(0) = 0.

It is known that such strings are necessarily produced during the phase transition

of the U(1)PQ symmetry breaking by the Kibble-Zurek mechanism. In the viewpoint of

phenomenology, one of the important aspects of cosmic strings is the interaction between

a pair of the cosmic strings having the same topological charge. For axion strings, the

interaction is dominated by exchange of massless axion particles, resulting in the long-

range repulsive force. The potential of the interaction Vst. is approximately given as Vst. ∼
−v2

s logR with R being the distance between the pair. Due to the repulsive interaction,

a pair of the strings reconnects with probability of the order of unity when they collide
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to each other and does not form a bound state of the strings (such as the Y-junction

[BLM97,BK94,CKS06,CKS07,SAC+08,BS08a,BCM+09,HEK+14,HST+13]). As a result,

the strings form a stationary network whose typical length scale remains to be the Hubble

horizon scale (scaling regime). Such a scale-invariant evolution of the network prevents

the energy density of the strings from dominating that of the universe, and thus axion

models producing the axion strings are cosmologically viable as far as concerning the

strings.

6.3.2 Vortex string with Z-flux (type-A string)

Next, we discuss the electroweak axion strings. Let us consider a string configuration

after the electroweak phase transition Tth . vEW. The two doublets also acquire the VEVs

and their phases must also wind because they also have the U(1)PQ charges, otherwise

divergent energy arises from Vmix.3 From the single-valuedness of the doublets, the string

configuration has the form 

S = vse
iθφ(r)

H1 = v1e
iθ

 0

f(r)


H2 = v2e

−iθ

 0

h(r)


, (6.3.3)

Zi =
2 cos 2β

gZ

εijxj
r2

(1− z(r)), (6.3.4)

and W±
i = Ai = 0. gZ is the coupling of Z-boson given by gZ =

√
g2

2 + g2
1. εij is the

anti-symmetric tensor satisfying ε12 = −ε21 = 1. We call this string configuration the

type-A electroweak axion string.

The last two configurations in Eq. (6.3.3) are equivalent to

H = e−iθ

(
v1f(r) 0

0 v2h(r)

)
. (6.3.5)

The profile functions f(r), h(r) satisfy the same boundary conditions as that of φ(r), i.e.,

φ(0) = f(0) = h(0) = 0, φ(∞) = f(∞) = h(∞) = 1. (6.3.6)

The profile function for the gauge field z(r) should satisfy the boundary conditions

z(0) = 1, z(∞) = 0. (6.3.7)

3If the two doublets had no windings, the mixing term provides κv2
sv1v2 cos 2θ at large distances,

which means a divergent potential energy after the spatial integration.
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Figure 6.1: Schematic picture of the energy density profile of the electroweak axion strings

(type-A, B and C) [AHY21]. The energy density consists of three parts. There is a

one-dimensional thin object consisting of the radial component of the complex scalar

φ(r) in Region I: r . v−1
s . We call this region the core of the string. In Region II:

v−1
s . r . (vEW)−1 (red region), the energy density is dominated by the Higgs fields and

the electroweak gauge fields. This region is much fatter than Region I. In addition, there is

the fattest part made from the gradient energy of the axion, leading to the logarithmically

divergent tension. This is denoted by Region III: r & (vEW)−1 (blue cloud). Note that

the type-A string with tan β = 1 is a special case since it has only the global winding and

its energy density does not have the Region II.

Eq. (6.3.6) indicates that the electroweak symmetry is restored inside the string as well

as U(1)PQ.

Noting that the two doublets have U(1)PQ charges as given in Eq. (6.2.25), it is

convenient to decompose the winding phases as

H1 = v1e
2iθs2βe−iθσ

3c2β

(
0

f(r)

)
, (6.3.8)

H2 = v2e
−2iθc2βe−iθσ

3c2β

(
0

h(r)

)
, (6.3.9)

with cX := cos(X) and sX := sin(X). Eqs. (6.3.8) and (6.3.9) mean that the configurations

of the doublets have the winding number unity for the global U(1)PQ symmetry and the

fractional winding number − cos 2β for the U(1)Z subgroup of the SU(2)L×U(1)Y gauge

symmetry. Therefore, the gradient energy from the U(1)Z windings is canceled by the Z

gauge field (6.3.4) with Eq. (6.3.7) at large distances r →∞. It follows from Eq. (6.3.4)

that the string configuration has the Z-flux,

ΦZ =

∮
r=∞

dxi Zi =
−4π cos 2β

gZ
, (6.3.10)

which is fractionally quantized because of the fractional winding number.

We discuss a qualitative property of the profile functions. The typical length scale for

φ(r) is v−1
s while those of f(r), h(r) and z(r) are given as (vEW)−1. Thus the string is a
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“multi-scale solution”. Fig. 6.1 shows a schematic picture of the energy density profile of

the electroweak axion strings. The energy density has three structures. One is that from

the radial component of the complex scalar, φ(r), whose typical scale is v−1
s . This part

looks as a thin object (Region I: r . v−1
s ). Another is from those of the two Higgs doublets

and the gauge fields, whose typical scale is the EW-scale (vEW)−1. This region, which we

call Region II, is much fatter than Region I and is shown as the red region. The third

part is the fattest part from the gradient energy of the axion. This is denoted by Region

III: r & (vEW)−1 (blue cloud in the figure). When one calculates the tension of the string

(energy per unit length) by integrating the energy density on the xy plane, the third part

leads to the log-divergent tension ∼ 2πv2
s logL where L is the IR-cutoff and is usually

taken as the distance between neighbor two strings. The coefficient of the log divergence

is the same as that of the conventional axion string shown in the last subsection because

it depends only on the winding number of the global U(1)PQ symmetry.

Let us obtain the profile functions and calculate the string tension for the type-A

string in a numerical way. For simplicity, we take m2
2 = α4 = 0 and κ1S = κ2S, leading to

tan β = 1 (see the stationary condition (6.2.18)). The VEVs are denoted as v1 = v2 := v.

We should note that in this case, the Higgs doublets do not have winding number for the

U(1)Z gauge subgroup, and thus the right hand side of Eq. (6.3.4) vanishes. The Z-flux

is constantly zero. After substituting the ansatz, the energy density is given by

E := |∂iS|2 + tr |DiH|2 +
1

4
(W a

ij)
2 +

1

4
(Bij)

2 + V (H, S) (6.3.11)

=
v2

r2

[
r2
(
f ′(r)2 + h′(r)2

)
+ f(r)2 + h(r)2

]
+ v2

[
−m2

1(f(r)2 + h(r)2) + 2α2v
2f(r)2h(r)2 + v2α123(f(r)4 + h(r)4)

]
+ v2v2

s

[
2κf(r)h(r)φ(r)2 + κ1S(f(r)2 + h(r)2)φ(r)2

]
+ v2

s

(
−m2

Sφ(r)2 + λSv
2
Sφ(r)4

)
+
v2
s

r2

(
r2φ′(r)2 + φ(r)2

)
, (6.3.12)

with α123 := α1 + α2 + α3 and ′ denoting the derivative with respect to r.

The EOMs are obtained as

f ′′(r) +
f ′(r)

r
− f(r)

r2

−
(

2α123 v
2f(r)2 + 2α2v

2h(r)2 + κ1Sv
2
sφ(r)2 −m2

1

)
f(r)− κv2

sh(r)φ(r)2 = 0, (6.3.13)

h′′(r) +
h′(r)

r
− h(r)

r2

−
(

2α123 v
2h(r)2 + 2α2v

2f(r)2 + κ1Sv
2
sφ(r)2 −m2

1

)
h(r)− κv2

sf(r)φ(r)2 = 0, (6.3.14)

φ′′(r) +
φ′(r)

r
− φ(r)

r2

−
(

2λSv
2
sφ(r)2 + 2κ1Sv

2(f(r)2 + h(r)2) + 2κv2f(r)h(r)−m2
S

)
φ(r) = 0. (6.3.15)
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Figure 6.2: Numerical solution for the type-A string [AHY21]. We take benchmark pa-

rameters as Eq. (6.3.16) and vs = 10 v. Also we adopt a length unit as v−1
s = 0.5. (left):

Plots of profile functions. Note f(r) (blue line) is equal to h(r) (dotted orange line) ev-

erywhere. φ(r) increases as φ ∼ vsr for r ∼ 0 while f = h ∼ vr. All of them approach

to unity for r → ∞. (right): Plot of energy density E (Eq. (6.3.11)) divided by v2
s/r

2.

Clearly, the energy density has a polynomial tail like r−2, instead of an exponential one.

This leads to the logarithmically divergent tension. The integrated value of the tension

over 0 ≤ r ≤ 120 v−1
s is 140.321.

We adopt the so-called relaxation method to solve the EOMs. As a benchmark case, we

take the parameters as

α1 = 1, α2 = −0.3348, α3 = 0, λS = 1, κ = −2

(
v

vs

)2

, κ1S = 0.4, (6.3.16)

such that the lightest scalar mass m2
h1

reproduces the SM Higgs mass (125 GeV)2. In

addition, we set the VEV for S as vs = 10 v. Although this is too small and not viable in

the phenomenological viewpoint, it does not matter because the qualitative picture of the

type-A string does not change. If one takes them more hierarchical, huge numerical costs

arise in the calculation. The obtained numerical solutions are shown in Fig. 6.2. In the

left panel, f(r) (blue line) is equal to h(r) (dotted orange line) everywhere. φ(r) increases

as φ ∼ vsr for r ∼ 0 while f = h ∼ vr. All of them approach to unity for r → ∞. The

right panel shows the energy density E (Eq. (6.3.11)) divided by v2
s/r

2. The divided value

approaches to unity, which means that the energy density has a polynomial tail like r−2,

instead of an exponential one. This leads to the logarithmically divergent tension.

6.3.3 Type-B string with Z-flux

We have shown that the phases of the two Higgs doublets must wind after the elec-

troweak phase transition Tth . vEW. Actually, there is another type of vortex string that

is consistent with the single-valuedness and the potential minimum. This is obtained by

giving an additional winding in the U(1)Z gauge orbit to the type-A string. We call this
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string the type-B electroweak axion string. The ansatz describing the string is given as

S = vse
iθφ(r)

H1 = v1e
2iθ

 0

f(r)


H2 = v2

 0

h(r)


(6.3.17)

Zi =
4 cos2 β

gZ

εijxj
r2

(1− z(r)). (6.3.18)

The last two configurations in Eq. (6.3.17) are equivalent to

H = e−iθe−iθσ
3

(
v1f(r) 0

0 v2h(r)

)
. (6.3.19)

The profile functions f(r) and φ(r) satisfy the same boundary conditions,

φ(0) = f(0) = 0, φ(∞) = f(∞) = 1, (6.3.20)

but h(r) should satisfy the following boundary conditions:

∂rh|r=0 = 0, h(∞) = 1. (6.3.21)

The profile function for the gauge field z(r) satisfies

z(0) = 1, z(∞) = 0. (6.3.22)

Note that h(r) is not fixed to zero on the center of the string because it does not have

a winding phase. Therefore, the electroweak symmetry is not restored inside the string

core (see Fig. 6.3.)

Again, we decompose the winding phases as

H1 = v1e
2iθs2βe−2iθσ3c2β

(
0

f(r)

)
, (6.3.23)

H2 = v2e
−2iθc2βe−2iθσ3c2β

(
0

h(r)

)
, (6.3.24)

which mean that the configurations of the doublets have the winding number unity for

the global U(1)PQ symmetry and the fractional winding number −2 cos2 β for the U(1)Z
subgroup. The difference between the winding number of the type-A and type-B strings

is unity. Similarly to the previous case, the Z gauge field (6.3.18) cancels the gradient
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Figure 6.3: Numerical solution for the type-B string [AHY21]. We take the same param-

eters as ones in Fig. 6.2. Also we adopt a length unit as v−1
s = 0.5. (left): Plots of profile

functions. φ(r) increases as φ ∼ vsr for r ∼ 0 while f(r) behaves as a quadratic function

with respect to r. The three profile functions f, h and φ approach to unity for r → ∞.

The profile function of the Z field, z(r), approaches to zero as r →∞ starting from unity

at r = 0. (right): Plots of energy density (6.3.26) divided by v2
s/r

2 and the Z-flux density

multiplied by −10. The energy density has a polynomial tail like r−2 like the type-A

string. The tension T integrated over 0 ≤ r ≤ 120 v−1
s is 140.524. The Z-flux density

decays exponentially for r →∞ like the usual Abrikosov-Nielsen-Olesen vortex. The total

value of the Z-flux is calculated to −16.9539, which is consistent with Eq. (6.3.25).

energy from the U(1)Z windings. It follows from Eq. (6.3.4) that the string configuration

has the Z-flux, which is calculated as

ΦZ =

∮
r=∞

dxi Zi =
−8π cos2 β

gZ
. (6.3.25)

Interestingly, this string configuration is quite similar to the topologically stable Z-string

(topological vortex with the Z-flux) in 2HDM [DS93,DS94,EKN18a,EKN18b]. In addition

to the winding number of U(1)Z , the difference from the 2HDM is the existence of the

singlet complex scalar carrying the U(1)PQ charge, which is replaced by the relative phase

rotation of the two doublets in the 2HDM.

Let us obtain the profile functions and calculate the string tension for the type-B string

in a numerical way. Again, we take m2
2 = α4 = 0 and κ1S = κ2S, leading to tan β = 1.

The VEVs are denoted as v1 = v2 := v. Unlike the type-A string, the Higgs doublets

have winding numbers for the U(1)Z gauge subgroup even for tan β = 1. Consequently,

the Z-flux is non-zero and confined inside the string. The energy density is

E =
v2

r2

[
r2
(
f ′(r)2 + h′(r)2

)
+ f(r)2(1 + z(r))2 + h(r)2(1− z(r))2

]
+ v2

[
−m2

1(f(r)2 + h(r)2) + 2α2v
2f(r)2h(r)2 + v2α123(f(r)4 + h(r)4)

]
+ v2v2

s

[
2κf(r)h(r)φ(r)2 + κ1S(f(r)2 + h(r)2)φ(r)2

]
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+ v2
s

(
−m2

Sφ(r)2 + λSv
2
Sφ(r)4

)
+
v2
s

r2

(
r2φ′(r)2 + φ(r)2

)
+ 2

z′(r)2

g2
Zr

2
(6.3.26)

Then, the EOMs are obtained as

f ′′(r) +
f ′(r)

r
− (1 + z(r))2

r2
f(r)

−
(

2α123 v
2f(r)2 + 2α2v

2h(r)2 + κ1Sv
2
sφ(r)2 −m2

1

)
f(r)− κv2

sh(r)φ(r)2 = 0, (6.3.27)

h′′(r) +
h′(r)

r
− (−1 + z(r))2

r2
h(r)

−
(

2α123 v
2h(r)2 + 2α2v

2f(r)2 + κ1Sv
2
sφ(r)2 −m2

1

)
h(r)− κv2

sf(r)φ(r)2 = 0, (6.3.28)

φ′′(r) +
φ′(r)

r
− φ(r)

r2

−
(

2λSv
2
sφ(r)2 + κ1Sv

2(f(r)2 + h(r)2) + 2κv2f(r)h(r)−m2
S

)
φ(r) = 0, (6.3.29)

z′′(r)− z′(r)

r
− g2

Zv
2

2
f(r)2(1 + z(r))− g2

Zv
2

2
h(r)2(−1 + z(r)) = 0. (6.3.30)

We take the same parameter choice as Eq. (6.3.16). In addition, we set the VEV for S as

vs = 10 v. The obtained numerical solutions are shown in Fig. 6.3. In the left panel, f(r)

(φ(r)) behaves like vsr (vr2) at the origin because the phases of φ(r) and f(r) wind once

and twice, respectively. h(r) does not start from zero at the origin due to the Neumann

condition at the origin. All of the scalar profile functions approach to unity for r → ∞.

The profile function for the gauge field z(r) approaches to zero starting from unity. The

right panel shows the energy density E (Eq. (6.3.11)) divided by v2
s/r

2 and the Z-flux

density multiplied by −10. Similarly to the previous case, the type-A string, the energy

density has a polynomial tail like r−2, instead of an exponential one. This leads to the

logarithmically divergent tension. The schematic picture of the energy density profile is

the same as Fig. 6.1. On the other hand, the Z-flux has an exponential tail.

In the above ansatz for the type-B string, only the one doublet H1 has the winding

number. There may be also an alternative string in which only H2 has the winding phase.

Roughly speaking, they are related by exchange of the two doublets H1 and H2. Since

the property is similar to the former, we do not study the latter one in this chapter and

also categorize the latter one as the type-B string.

6.3.4 Type-C string with W -flux

Finally, we consider the third type of the vortex string, called the type-C electroweak

axion string. While the type-B string has been obtained by performing an additional

rotation of U(1)Z on the type-A one, the type-C string has a winding in the U(1)W 1
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subgroup of the SU(2)L × U(1)Y symmetry. The ansatz for the scalar fields is given as

S = vse
iθφ(r)

H1 = 1
2
v1e

iθ

f(r)eiθ − h(r)e−iθ

f(r)eiθ + h(r)e−iθ


H2 = 1

2
v2e
−iθ

h(r)eiθ − f(r)e−iθ

h(r)eiθ + f(r)e−iθ


(6.3.31)

The profile functions f(r), h(r), φ(r) satisfy similar boundary conditions to those of the

type-B string, (6.3.20) and (6.3.21), i.e.,

f(0) = φ(0) = 0, ∂rh|r=0 = 0, f(∞) = h(∞) = φ(∞) = 1. (6.3.32)

Due to the non-zero value of h(0), the electroweak symmetry is not restored inside the

string as the type-B string.

Unlike the type-A and type-B strings, in the background of the type-C string, the

U(1)EM and U(1)Z generators depend on the positions. As explained in Section 6.2,

the U(1)EM generator is defined by Eq. (6.2.27) or Eq. (6.2.34). Substituting the ansatz

Eq. (6.3.31), we obtain

na1 =
H†1σ

aH1

|H1|2
=

2

f 2 + h2

(
(f 2 − h2)/2,−fh sin 2θ,−fh cos 2θ

)
, (6.3.33)

na2 =
H†2σ

aH2

|H2|2
=

2

f 2 + h2

(
(h2 − f 2)/2,−fh sin 2θ,−fh cos 2θ

)
, (6.3.34)

and

na
σa

2
= −σ

2

2
sin 2θ − σ3

2
cos 2θ. (6.3.35)

Then the U(1)EM and U(1)Z generators are given by

Q̂Hi =

(
σ2

2
sin 2θ +

σ3

2
cos 2θ +

1

2
1

)
Hi, (6.3.36)

T̂ZHi =
(
σ2 sin 2θ + σ3 cos 2θ − sin2 θW Q̂

)
Hi, (6.3.37)

which depend on θ.

Let us see the asymptotic behaviors of the two doublets at large distances r → ∞.

From Eq. (6.3.32), we obtain

H1 ∼ v1e
iθ

(
i sin θ

cos θ

)
= v1e

2iθs2βe−iθc2βσ
Z

eiθσ
1

(
0

1

)
, (6.3.38)

H2 ∼ v2e
−iθ

(
i sin θ

cos θ

)
= v2e

−2iθc2βe−iθc2βσ
Z

eiθσ
1

(
0

1

)
, (6.3.39)
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where σZ := 2T̂Z (note Q̂Hi = 0 for r →∞). It is clear that these configurations have a

winding number unity for U(1)PQ, − cos 2β for U(1)Z and unity for the U(1)W 1 subgroup

(σ1 rotation) of the gauge symmetry. Therefore, to cancel the gradient energy from the

windings for U(1)Z and U(1)W 1 , the ansatz for the gauge fields are given as

Zi =
2 cos 2β

gZ

εijxj
r2

(1− z(r)), (6.3.40)

W 1
i =
−2

g2

εijxj
r2

(1− w(r)), (6.3.41)

and Ai = 0, where we have used the definitions of the gauge fields Eqs. (6.2.31) and

(6.2.32). The profile functions for the gauge fields w(r) and z(r) satisfy

w(0) = z(0) = 1, w(∞) = z(∞) = 0. (6.3.42)

Interestingly, the type-C string has both of the Z and W -fluxes for tan β 6= 1. It

follows from the ansatz (6.3.40) and (6.3.41) that

ΦZ =

∮
r=∞

dxi Zi =
−4π cos 2β

gZ
, (6.3.43)

ΦW 1 =

∮
r=∞

dxi W
1
i =

4π

g
, (6.3.44)

where the latter flux is independent of tan β.

The most important difference from the type-A and type-B strings is that the U(1)EM

symmetry is broken inside the type-C string. This can be seen by using the concrete

expression, Eq. (6.3.31), as Q̂Hi 6= 0 (i = 1, 2). Actually, that is generally inevitable

for a configuration with a non-vanishing winding number for charged components, i.e., a

configuration whose asymptotic form is exp[iT̂ (θ)]H(θ = 0) with a non-Abelian generator

T̂ (θ) satisfying [T̂ (θ), Q̂] 6= 0 [ABC+90, ABC+91]. (T̂ = σ1θ in our case.) Due to the

winding, the charged components cannot remain zero, and they acquire non-zero values

inside the string, leading to the breaking of U(1)EM. We should note that U(1)EM is

restored at large distances from the string, r →∞.

Let us solve the EOMs with respect to the profile functions and calculate the string

tension for the type-C string. Again, we take m2
2 = α4 = 0 and κ1S = κ2S, leading to

tan β = 1. The VEVs are denoted as v1 = v2 := v. The Higgs doublets have winding

numbers for the U(1)W 1 gauge subgroup but not for U(1)Z . Consequently, only the W 1-

flux is non-zero and confined inside the string. Substituting the ansatz, the energy density

is given by

E =
v2

r2

[
r2
(
f ′(r)2 + h′(r)2

)
+ f(r)2(w(r) + 1)2 + h(r)2(w(r)− 1)2

]
−m2

1v
2(f(r)2 + h(r)2) + v4

[
2(α2 + α3)f(r)2h(r)2 + (α1 + α2)(f(r)4 + h(r)4)

]
+ v2v2

s

[
2κf(r)h(r)φ(r)2 + κ1S(f(r)2 + h(r)2)φ(r)2

]
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Figure 6.4: Numerical solution for the type-C string [AHY21]. We take the same bench-

mark parameters as Fig. 6.2. Also we adopt a length unit as v−1
s = 0.5. (left): Plots

of profile functions. The behavior of the scalar profile functions are the same as one in

Fig. 6.3. The profile function of the W 1 field, w(r), approaches to zero as r → ∞ start-

ing from unity at r = 0. (right): Plots of energy density (6.3.45) divided by v2
s/r

2 and

the W 1-flux density multiplied by 10. The tension integrated over 0 ≤ r ≤ 120 v−1
s is

140.604. The total value of the W 1-flux is calculated to 19.3208, which is consistent with

Eq. (6.3.44).

+
2w′(r)2

g2r2
+ v2

s

(
−m2

Sφ(r)2 + λSv
2
sφ(r)4

)
+
v2
s

r2

(
r2φ′(r)2 + φ(r)2

)
, (6.3.45)

and, the EOMs are given as follows:

f ′′(r) +
f ′(r)

r
− (1 + w(r))2

r2
f(r)

−
(

2(α1 + α2)v2f(r)2 + 2(α2 + α3)v2h(r)2 + κ1Sv
2
sφ(r)2 −m2

1

)
f(r)− κv2

sh(r)φ(r)2 = 0,

(6.3.46)

h′′(r) +
h′(r)

r
− (−1 + w(r))2

r2
h(r)

−
(

2(α1 + α2)v2h(r)2 + 2(α2 + α3)v2f(r)2 + κ1Sv
2
sφ(r)2 −m2

1

)
h(r)− κv2

sf(r)φ(r)2 = 0,

(6.3.47)

φ′′(r) +
φ′(r)

r
− φ(r)

r2

−
(

2λSv
2
sφ(r)2 + κ1Sv

2(f(r)2 + h(r)2) + 2κv2f(r)h(r)
)
φ(r) = 0, (6.3.48)

w′′(r)− w′(r)

r
− g2

2v
2

2
f(r)2(1 + w(r))− g2

2v
2

2
h(r)2(−1 + w(r)) = 0. (6.3.49)

The obtained numerical solutions are shown in Fig. 6.4. We take the same parameter

choice as Eq. (6.3.16) and set the VEV for S as vs = 10 v. The shapes of the profile

functions, the energy density and the flux density are almost similar to those of the type-

B string (Fig. 6.3). This can be understood by the argument on non-Abelian moduli in
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2HDM in Ref. [EKN18b]. That is, when tan β = 1, the two ansatz for the Higgs fields

(Eqs. (6.3.17) and (6.3.31)) are related by the SU(2)C custodial transformation:

H→ U †HU (6.3.50)

with U = exp
[
iπ

4
σ2
]
. This symmetry is respected in the potential V (H,S) when m2

2 =

α3 = α4 = 0 and κ1S = κ2S, but is explicitly broken in the gauge sector because of g1 6= 0.

Thus the shapes and hence the string tension are slightly different between them.

While the above ansatz has the Z- and W 1-fluxes in the string, there is also a string in

which the W 2-flux (and also mixtures of them in general) is confined. Due to the U(1)EM

symmetry in the Lagrangian, they have the degenerated tension. Since the property is

almost the same as the one we studied above, we do not consider them in this chapter.

6.3.5 String tensions

The vortex strings we have considered above have the same winding number (unity)

associated with the U(1)PQ symmetry. Because all possible configurations in the theory

are classified into topological sectors characterized by the non-trivial first homotopy group

π1(U(1)PQ) = Z, the above fact means that they are in the same topological sector with

the topological charge 1 ∈ π1(U(1)PQ) = Z and that they can continuously deform to each

others. Since their string tensions (energy per length unit) are generically not degenerated,

heavier strings decay into the lightest one, which does not decay any further and is a stable

solution to the EOMs.We here study the string tensions, i.e., stability of the strings.

For simplicity, we focus on a case with tan β = 1. This is realized when m2
2 = α4 = 0

in the Higgs potential (6.2.10) and κ1S = κ2S in the mixing term (6.2.14). In this case,

as stated above, the type-A string does not have the Z-flux and the type-B one has the

winding number unity for U(1)Z . In addition, the type-C string does not have the U(1)Z
winding but does for U(1)W 1 . It may seem that the type-A one is lighter than type-B

and type-C ones since the latter two have the Z and W -fluxes. However, this is not the

case when the potential energy is more dominant than that of the gauge sector. Indeed,

both the profile functions for the doublets in the type-A string vanish on the core, and

thus that leads to a larger amount of the potential energy than those of the type-B and

type-C.

On the other hand, the difference of the tensions between the type-B and type-C

strings is controlled by the parameter α3. As explained in the last subsection, in the case

tan β = 1, the type-C string has only the W 1-flux, and the two strings are related by the

custodial SU(2)C transformation. If α3 = 0 (and m2
2 = α4 = 0), the Higgs potential VH

respects this symmetry but the gauge sector does not due to the U(1)Y coupling constant

g1 6= 0. This slightly lifts up the tension of the type-C because of gZ =
√
g2

2 + g2
1 > g.

The non-zero value of α3 can change this relation. In Refs. [EKN18b, EHKN20a], it is

shown that, in 2HDM, the smaller (larger) value of α3 tends to make the tension of the
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Figure 6.5: String tensions of the type-A, type-B and type-C strings [AHY21]. The

parameters are taken as Eq. (6.3.51) and the tension is calculated by integration over

0 ≤ r ≤ 120 v−1
s . (left): α3 is fixed as 0 and κ1S is taken as a free parameter. The

tension of the type-A string increases as κ1S becomes larger, but those of the type-B and

type-C ones change to decrease for κ1S & 0.5. (right): κ1S is fixed as 1.0 and α3 is taken

as a free parameter. As is expected, the tension of the type-B (type-C) strings decreases

(increases) as α3 becomes larger. The type-C string becomes the lightest one for α3 & 0.

string with the W -flux heavier (lighter) than that of the string with the Z-flux. Thus,

in our case, we expect that the type-C string is lighter than the type-A and type-B ones

when α3 is larger than a critical value depending on other parameters.

Keeping κ1S = κ2S, we take the benchmark parameters as

α1 = 1, λS = 1, κ = −2

(
v

vs

)2

, vs = 10 v, m2
2 = α4 = 0, (6.3.51)

and take α2 such that the lightest scalar mass m2
h1

is equal to the SM Higgs mass

(125 GeV)2. We use a length unit v−1
s = 0.5. The remaining two parameters α3 and

κ1S are taken as free parameters. The tensions T are calculated over 0 ≤ r ≤ L with

the IR cutoff L = 120 v−1
s . Note that, although each tension depends on the IR cutoff as

∼ logL, the differences do not, so that we can compare them as far as L is fixed.

Fig. 6.5 shows the relation of the string tensions between the three strings. In the left

panel, we fix α3 = 0 and scan κ1S in the range −1 ≤ κ1S ≤ 1. The tension of the type-A

string increases as κ1S becomes larger, but those of the type-B and type-C ones change to

decrease for κ1S & 0.5. It can be seen that the difference of the tensions between type-B

and type-C is independent of κ1S, which is reasonable because it is controlled only by the

SU(2)C breaking parameters g1 and α3 as stated above.

In the right panel, we fix κ1S = 1.0 and scan α3 in the range −1 ≤ α3 ≤ 1. As is

expected, the tension of the type-C (type-B) strings increases (decreases) as α3 increases.

In this parameter choice, that of the type-A string is almost constant, but this tendency

depends on the parameters in general. The type-C string becomes the lightest one for

α3 & 0.
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Before closing this section, we stress that the type-C string can be the lightest and

stable string for rather wide parameter space. Although we have concentrated on the case

of tan β = 1, it would not be crucial. Therefore, the axion string produced by the breaking

of U(1)PQ in the early universe necessarily becomes the type-C electroweak axion string

after the electroweak phase transition, depending on the parameters in the DFSZ model.

In the string, the U(1)EM symmetry is spontaneously broken. This property causes an

interesting phenomenon on the string, superconductivity of vortex strings, as we see in

the next section.

6.4 Superconducting DFSZ string

It is known [Wit85] that cosmic strings can be superconductors, i.e., the electric cur-

rent can flow along a string without resistance, when the electromagnetic gauge symmetry

is broken inside the string core. Superconducting strings are often realized by using scalar

fields that develop non-zero VEVs only inside the strings or fermionic fields whose gapless

modes are confined on the string. Further, non-Abelian vortex strings, in which charged

particles such as charged vector bosons are condensed, can also support superconduc-

tivity [ABC+91, ABC+90]. In this section, we show that the type-C string discussed in

Section 6.3 can be a superconducting string.

In the type-C string, the W 1-flux is confined, and the U(1)EM symmetry is broken by

the charged Higgs components and the W 1 gauge field. Corresponding to the breaking

of U(1)EM, the string has a U(1)EM moduli parameter, which is a flat direction around

the string configuration. The existence of the moduli ensures that a (z, t)-dependent

fluctuation in the direction of the moduli is a zero mode (massless excitation) in the

string background and can travel on the string with the speed of light. It can carry

an electric current without resistance, resulting in a supercurrent. We can rephrase this

explanation into a more concrete one. The breaking of U(1)EM means that the charged

components of the Higgs field gets the non-zero VEV inside the string, Q̂H 6= 0, and that

they can play a similar role to the charged scalar field in Ref. [Wit85].

In addition, the string can carry large electric current which induces a large magnetic

interaction between the strings. That may affect the cosmological evolution of the string

in the DFSZ axion model. In the following analysis, we assume tan β = 1 for simplicity,

but it is irrelevant to the argument on superconductivity.

6.4.1 Zero modes along the string

Let S, H, W µ and Bµ be the background configuration for the type-C string given

by Eqs. (6.3.31) and (6.3.41). Note that Zµ = 0 due to tan β = 1. To find a zero mode

excitation, we consider the (z, t)-modulated “gauge transformation” around the type-C
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string:

S = S, (6.4.1)

H = exp [iη(z, t)χ(r, θ)] H exp

[
iη(z, t)ξ(r, θ)

σ3

2

]
, (6.4.2)

Wµ = exp[iη(z, t)χ(r, θ)]

(
W µ −

i

g
δjµ∂j

)
exp[−iη(z, t)χ(r, θ)], (6.4.3)

Bµ = Bµ +
1

g1

δjµ η(z, t)∂jξ(r, θ) (6.4.4)

where χ = χaσa/2 and j = r, θ. This is not a mere gauge transformation unless η is

independent of z and t, but is a (z, t)-dependent physical excitation described by η(z, t),

ξ(r, θ) and χa(r, θ).

Instead of the above expressions, for later use, we analyze an alternative ansatz that

is obtained by performing the SU(2)L × U(1)Y gauge transformation with the gauge

parameters (ηχ, ηξ). The transformed ansatz is given by

S = S, (6.4.5)

H = H, (6.4.6)

Wµ = W µ + δWµ, (6.4.7)

Bµ = Bµ + δBµ (6.4.8)

with

δWµ =
1

g2

δαµ χ∂αη, (6.4.9)

δBµ = − 1

g1

δαµ ξ∂αη, (6.4.10)

where α = t, z. For these ansatz (6.4.5)–(6.4.8), the field strength tensors are given by

Wµν = W µν +DµδWν −DνδWµ, (6.4.11)

Bµν = Bµν + ∂µδBν − ∂νδBµ, (6.4.12)

where W µν , Bµν and Dµ are the field strengths and the covariant derivative consisting of

the background gauge configurations W µ and Y µ.

The linearized EOMs for the excitation η, χa and ξ are obtained by substituting the

ansatz into the full EOMs,

(DνW
νµ)a = −jµ,aW , (6.4.13)

∂νB
νµ = −jµY , (6.4.14)

DµD
µH = −δV (H, S)

δH†
, (6.4.15)
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where jµ,aW and jµY are the SU(2)L and U(1)Y currents:

jµ,aW =
i

2
g2 tr

[
H†σaDµH− (DµH)†σaH

]
, (6.4.16)

jµY = − i
2
g1 tr

[
σ3H†DµH− (DµH)†Hσ3

]
. (6.4.17)

Then we obtain the following equations from Eqs. (6.4.13) and (6.4.14) (see Appendix

6.B for the derivation),

∂αη
(
DjD

j
χ
)a

=
−g2

2

2
∂αη

(
χa tr |H|2 + ξ tr

[
H
†
σaHσ3

])
, (6.4.18)

∂αη∂j∂
jξ =

−g2
1

2
∂αη

(
ξ tr |H|2 + 2 tr

[
H
†
χHσ3

])
, (6.4.19)

D
j
χ ∂α∂αη = 0, (6.4.20)

∂jξ ∂α∂αη = 0, (6.4.21)

and from the EOM for H (6.4.15)

∂α∂αη
(
2χH + ξHσ3

)
= 0. (6.4.22)

We have used the fact that the background configurations H, W µ and Y µ solve the EOMs.

The above equations (6.4.20), (6.4.21) and (6.4.22) are satisfied with

∂α∂αη = (∂2
t − ∂2

z )η = 0, (6.4.23)

which is a (1+1)-dimensional wave equation. This has the zero mode solutions η =

η+(z + t) and η = η−(z − t) with some functions η±, and the general solution can be

written by a linear combination of these modes. When one is particularly interested in

the static case, the t-independent solution is given by

η(z) = ωz, (ω : const.) (6.4.24)

implying the constant current along the z direction. On the other hand, the radial and

angular dependence of the excitations is determined by Eqs. (6.4.18) and (6.4.19). We can

see that there are four independent zero modes corresponding to the solutions χa (a =

1, 2, 3) and ξ. This is understood from the fact that the whole symmetry of SU(2)L×U(1)Y
(even U(1)EM) is broken inside the string. In other words, four zero modes can induce

the SU(2)L and U(1)Y currents on the string.

However, only one of them induces the U(1)EM current, which generates two-dimensional

Coulomb (magnetic) potential far from the string. To illustrate this, let us consider the

asymptotic behavior of χ and ξ at r → ∞. At infinity, the U(1)EM is restored, in which

the background configuration H satisfies [EHN20]

Hσ3 + naσaH = 0, na = −
tr
(
σ3H

†
σaH

)
tr |H|2

, (6.4.25)
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and (Dµn)a = 0 and tr |H|2 = 2 v2. Using these conditions, the Poisson-like equations

(6.4.18) and (6.4.19) become(
DjD

j
χ
)a

= −g2
2v

2 (χa − naξ) , (6.4.26)

∂j∂
jξ = −g2

1v
2 (ξ − χana) , (6.4.27)

which describe the long-range behavior on the xy plane only when χa − ξna = 0. Thus,

we have the two-dimensional Laplace equation:

1

r
∂r(r∂rξ) = 0 (6.4.28)

with χa = ξna for ξ being rotationally invariant (∂θξ = 0). The asymptotic solution of

Eq. (6.4.28) behaves as ξ ∼ log r. Substituting this into the expressions of gauge fields

gives

δW a
z ∼

ω

g2

na log r, δBz ∼ −
ω

g1

log r, (6.4.29)

where we have taken the normalization of ξ such that ξ → log r for r →∞. We find the

form of the U(1)EM field strength

FEM
rz = − sin θWn

aW a
rz + cos θWYrz, (6.4.30)

= − sin θWn
a∂rδW

a
z + cos θW∂rδYz, (6.4.31)

∼ − ω
er

(r →∞). (6.4.32)

This is nothing but the magnetic long-range force on the two-dimensional xy plane. Cor-

respondingly, the total amount of U(1)EM current JEM along the string is estimated from

Eq. (6.4.32) as

JEM := −2πrFEM
rz ∼

2πω

e
. (6.4.33)

6.4.2 Current quenching and string interaction

In the above argument, it may seem that the magnitude of the current is given by the

parameter ω and can be taken arbitrarily large. However this is not the case since we

have ignored the backreaction from the zero modes to the background fields S, H, W µ

and Y µ by linearizing the EOMs. To examine the backreaction, we look at the following

term in the Lagrangian:

L ⊃ − tr
∣∣∣−ig2δWzH + i

g1

2
Hσ3δBz

∣∣∣2 (6.4.34)

= −ω2 tr

∣∣∣∣χH + ξH
σ3

2

∣∣∣∣2 , (6.4.35)

which is obtained by substituting the string ansatz and the solution for η(z). This term

induces a positive squared mass for the SU(2)L × U(1)Y charged components of H. For
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ω →∞, the charged components vanish, χH+ξHσ3

2
→ 0, which decreases the SU(2)L and

U(1)Y currents from the Higgs field, jz,aW and jzY ((6.4.16) and (6.4.17)). Correspondingly,

the right hand sides of Eqs. (6.4.18) and (6.4.19) vanish everywhere, and they have only

a trivial solution ξ = χa = 0.4 Thus, the backreaction from an extremely large ω reduces

the amount of the current. Such behavior is known as the current quenching [Wit85].

Now, let us estimate the maximum value of the current. For the U(1)EM zero mode,

χa = ξna, the mass term (6.4.35) reads

− (ωξ)2 tr |Q̂H|2 = −(ωξ)2v
2

2
(f − h)2, (6.4.36)

where Q̂ is the U(1)EM generator defined in Eq. (6.2.27), and we have used the concrete

expression of H for the type-C string, Eq. (6.3.31). On the other hand, using κ1S = κ2S

for v1 = v2 = v, the mass terms for f and h that are originally present in the Lagrangian

are

− L 3 v
2

r2

[
(1 + w)2f 2 + (1− w)2h2

]
+ (−m2

1 + κ1Sv
2
sφ

2)(f 2 + h2). (6.4.37)

Due to the backreaction term Eq. (6.4.36), the two-by-two mass matrix M2 for (f, h)

is changed and not diagonal. It is sufficient to consider the signs of the eigenvalues

of M2. If they are positive inside the string, then f and h tend to vanish, and hence

(f − h)2 ∝ tr |Q̂H|2 = 0, which means that the U(1)EM symmetry is restored even inside

the string. On the other hand, if one of them is negative, the quenching is not significant

and the U(1)EM symmetry is still broken. Then the current can be increased with |ω|.
Inside the string, r . v−1, the determinant of the matrix M2 is calculated as

det M2 ∼ m4
1 +

4

r2

(
ω2ξ2 −m2

1 + κ1Sφ
2
)

+
(
−m2

1 + κ1Sv
2
sφ

2
)
ω2ξ2, (6.4.38)

where we have used w(r) ∼ 1 there. Note that the mass matrix and hence the determinant

vary with the radius r in and out the string core as

det M2 ∼

v4
s + 4

r2 (ω2ξ2 − v2)− v2ω2ξ2 for r & v−1
s ,

v4
s + 4

r2 (ω2ξ2 − v2
s)− v2

sω
2ξ2 for r . v−1

s .
(6.4.39)

Clearly, there is a critical value of |ωξ|, for which the sign of the term proportional to r−2

changes from negative to positive. For a value smaller than the critical one, there exists

a region where the determinant is negative, avoiding the current quenching. The critical

value of |ωξ| is ∼ vs around the core. Then the current magnitude becomes maximum for

this value. Note that ξ is of order unity inside the core to be connected with the asymptotic

form ξ → log r. Thus, |ω| ∼ vs in this case. Note that the definition of the U(1)EM moduli

may be different a bit from χa = ξna inside the string [EHN20]. The difference is however

subleading and negligible for the maximum amount of the supercurrent.

4A solution behaving like ∼ log r for all r is singular at r = 0.
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Finally, we consider the tension of the string (energy per unit length). When ω = 0,

the string reduces to the type-C string and the tension T is dominated by the gradient

energy from the axion:

T (ω = 0) ∼ 2π

∫ L

rdr|∂iS|2 ∼ 2πv2
s logL, (6.4.40)

with L being an IR cutoff. The logarithmic divergence is natural because U(1)PQ is a

global symmetry. On the other hand, for ω 6= 0, there should be an additional contribution

to the tension from the magnetic field induced by the U(1)EM current:

T (ω) = T (0) + TEM (6.4.41)

where

TEM ∼ 2π

∫ L

rdr
(
FEM
rz

)2 ∼ 2πω2

e2
logL. (6.4.42)

Thus the current also induces a logarithmically divergent energy, which is comparable to

that from the gradient term, for the maximal current |ω| ∼ vs discussed above.

This result provides an interesting sight for the interaction between the strings. Let

us consider two superconducting strings that are well separated in the xy plane. They

are assumed to have the same winding for U(1)PQ and U(1)W 1 , and contain the supercon-

ducting currents with the same sign. As is well-known, the gradient energy of S gives a

repulsive force ∼ v2
s/R0 with R0 being the distance between them. However, the magnetic

interaction induced from the supercurrent provides an attractive force,

F = −(JEM)2

2πR0

∼ −2πω2

e2R0

. (6.4.43)

Therefore, the superconducting strings can receive the attractive force overcoming the

repulsive one with |ω| ∼ vs.

6.4.3 Y-junction formation

In usual cases, a pair of axion strings reconnects with a probability of the order

of unity when they collide. Thanks to this reconnection process, a network of strings

in the early universe produces small string loops, which soon shrink and disappear by

emitting radiations, and sufficiently looses the energy if the network is dense. The time

evolution of the energy density approaches the so-called scaling behavior, and the total

energy density of the universe is not dominated by the string network. However, the

attractive interaction discussed above, which is induced by superconducting current, can

change this picture drastically. In particular, it is known that an attractive interaction

between strings could form the Y-junction [BLM97,BK94,CKS06,CKS07,SAC+08,BS08a,

BCM+09, HEK+14, HST+13], which is a bound state of two strings (see Fig. 6.6). If Y-

junctions are formed frequently, that reduces the effective reconnection probability and
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Formation of Y-junction

Reconnection

Figure 6.6: Reconnection process and formation of a Y-junction [AHY21].

makes non-trivial whether the string network evolves to the scaling solution. As the first

step to study the Y-junctions of the axion strings, we present a rough estimation of the

formation probability of Y-junctions in this section.

Firstly, let us assume the presence of a primordial magnetic field (PMF) after the

electroweak phase transition. PMF is well motivated as an origin of intergalactic magnetic

fields in order to explain the galactic magnetic fields observed today via the dinamo

mechanism [Par55]. (For a review, see, e.g., Ref. [DN13].) There are the observational

lower and upper bounds on the present strength of intergalactic magnetic fields for a

coherent length λ & 0.1 Mpc as 3 × 10−16 G . B0 . 10−11 G, where the lower one is

set by the non-observation of secondary photons from the emission of highly collimated

gamma rays by blazars [NV10] and the upper one is from the CMB observations [JS19].

For simplicity, we further assume that the power spectrum of PMF is scale invariant and

almost coherent over the entire Hubble horizon, which could be realized for the inflationary

magnetogenesis [DN13].

We then show that PMF can induce large superconducting currents on the strings.

Such large currents are sufficient to form the Y-junctions. The scale invariant PMF evolves

as

B(t) ∝ a(t)−2 , (6.4.44)

where B(t) and a(t) are the magnetic field strength and the scale factor at the cosmological

time t, respectively. It is convenient to define a ratio of the energy density of PMF (ρB)

to that of photon (ργ),

ε :=
ρB
ργ
∼ B(t)2GN t

2, (6.4.45)

with GN being the Newton constant. The ratio ε is a constant as the universe expands.
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Figure 6.7: Two strings (red and blue lines) collide with the crossing angle α [AHY21].

The black arrows indicate the directions of the topological winding number of U(1)PQ.

The red and blue arrows indicate the directions of the flowing electric currents, which are

parallel for α = 0. The green and purple planes are orthogonal and include the collision

point.

If we take the upper limit on B0, we have ε ∼ 10−11.

In the early universe, the superconducting strings (Type-C EW axion strings) move

with velocity vstr (∼ O(1)) in the presence of PMF and hence feel the electric fields

E ∼ B(t)vstr, which induce the superconducting current,

JPMF ∼ e2B(t)ξvstr , (6.4.46)

with ξ being a string typical length. Since there are no superconducting strings before

the electroweak phase transition, we can assume that the scaling property ξ ∼ t holds at

least just after the phase transition, and obtain

JPMF ∼ 1012
( ε

10−11

)1/2

GeV ∼ 1012

(
B0

10−11 G

)
GeV . (6.4.47)

Note that this is independent of t. For the upper limit of B0, yielding ε ∼ 10−11, the

induced current (6.4.47) is larger than the maximum current estimated in the last sub-

section, JEM ∼ 2πvs/e, with vs ≈ 109−12 GeV. Therefore, the current is saturated to the

maximum value by PMF. In the following argument, we use this maximum current as

those the strings carry in the early universe.

Let us discuss the formation of Y-junctions. They can be formed by collisions of

two superconducting strings when they feel an attractive force and are trapped in the

potential. We suppose that the two strings collide with the crossing angle α and that

they are identical and parallel for α = 0. The superconducting currents are assumed to

flow in the same direction for α = 0 (the opposite case will be considered later). The three-

dimensional dynamics of the collision event is rather complicated and difficult to analyze.

However a qualitative picture can be understood by reducing it on two orthogonal planes
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including the colliding point [CT86,She87,She88] (see Fig. 6.7). On one of them (purple

plane in Fig. 6.7), the situation is regarded as a collision (scattering) event of two point-

like vortices in two dimensions while, on the other plane (green plane in Fig. 6.7), as a

vortex-antivortex collision resulting in the annihilation in two dimensions. Note that this

picture reproduces the reconnection process shown in the upper-right picture in Fig. 6.6

when the strings have no superconducting current; two scattered vortices on the purple

plane and nothing on the green one.

We concentrate on the two-dimensional analysis of the superconducting vortex-vortex

collision since the current does not change the annihilation. Unlike the non-superconducting

case leading to the 90◦ scattering, the long-range magnetic interaction plays a crucial role

in our case. On the reduced plane, the vortex-vortex pair feel a net interaction potential,

V ∼ v2
s

e2
cos

α

2
log r , (6.4.48)

where r is the distance between the two vortices and we have ignored the axion-mediated

repulsive interaction, which should be subleading by a factor e2 compared to Eq. (6.4.48).

If the vortices do not have sufficient kinetic energy to escape to infinity, they become

trapped by the potential. Thus we obtain a condition to form a bound state,

v2
s

e2
cos

α

2
log

L

δ
≥ (γ − 1)µ , (6.4.49)

where γ and µ are the Lorentz factor and the tension of the colliding vortices. L and δ are

the IR and UV cutoff for the potential, which we take as the Hubble radius and the width

of the strings, respectively. As considering just after the electroweak phase transition, the

logarithmic factor gives log(1017×vs/vEW) ∼ 50. In addition, we take a mildly relativistic

velocity ∼ 0.6 for the vortices, yielding γ ∼ 1.25, and thus Eq. (6.4.49) gives

cos
α

2
≥ 10−3 , (6.4.50)

which means that they almost always form the bound state except for α ≈ π.

On the other hand, they cannot form such a bound state in the case that the currents

flow in the opposite directions (anti-parallel) on the vortex-vortex plane because they

always feel a repulsive force. Therefore, we obtain a rough estimation for the formation

probability of the bound state,Y-junction formed (current in the same directions)

not formed (current in the opposite directions)
⇒ probability ≈ 1

2
.

(6.4.51)

Note that this is based on the two-dimensional analysis focusing on the collision point.

This picture may break down for the case that the dynamics after colliding is dominated

by other parts of the strings than the collision point. Furthermore, the formed Y-junction

could be peeled off, depending on the velocities and the crossing angle of the strings. For a
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Figure 6.8: Self-intersection of a superconducting string [AHY21]. The Y-junction (green

doubled line) is formed with probability 1
2
. Otherwise, it reconnects producing a small

loop (blue line) or passes through. The reconnection probability is p ∼ 1.

more detailed study including these effects, it is necessary to perform a three-dimensional

simulation, which is beyond the scope of the present paper.

Finally, we discuss a consequence of the formation of Y-junctions. When a super-

conducting string intersects with itself, it forms the Y-junction with probability 1/2,

produces a small loop with probability p/2, or passes through with probability (1− p)/2
(see Fig. 6.8), where p is the reconnection probability without the current (p ∼ 1). If

such a Y-junction-connected loop (upper one in Fig. 6.8) is produced, it is not obvious

whether the strings sufficiently loose their energy, and the scaling behavior of the energy

density of strings is not ensured. Once the energy density of the universe is dominated

by such superconducting strings, it causes large impacts on cosmology, and hence some

parameter region in the DFSZ axion model may be constrained.

6.5 Summary

We have studied the axion strings with the electroweak gauge flux, and their supercon-

ductivity in the DFSZ model. We constructed three types of the electroweak axion string

solutions, which have similar properties to those of (non-Abelian) vortices in two Higgs

doublet model. We also showed that in some parameter space, the string with W -flux,

we called the type-C string, can be lighter than those with Z-flux. The type-C string

exhibits superconductivity and a large electric current can flow along the string. This

large current may realize a net attractive force between the axion strings, which could

form the so-called Y-junctions in the early universe. By considering the string collision

reduced onto two-dimensional planes, the probability of the formation of the Y-junctions

is estimated to be ∼ 1/2.
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Type Comments up-type quarks donw-type quark charge lepton

Type I Fermiophilic H2 H2 H2

Type II MSSM-like H2 H1 H1

X lepton-specific H2 H2 H1

Y Filipped H2 H1 H2

Table 6.2: Classification of THDM

Once such Y-junctions are formed, they can affect the evolution of the string network

and make non-trivial whether the network evolves to the scaling solution. If no obeying

the scaling behavior, the string network could dominate the energy density of the the

universe and the model is severely constrained. To conclude whether this is true or

not, we need detailed numerical simulations on the time evolution of the network taking

into account both the axionic and magnetic interactions. In addition, the Y-junction

provides characteristic signals in astrophysical observations. It is worthwhile to study

the Y-junction dynamics of the DFSZ axion strings5 within a phenomenologically allowed

parameter space.

In this chapter, we focus on the U(1)EM symmetry breaking through the W -flux and

the charged Higgs components. On the other hand, the type-A and type-B strings also

could be superconducting. The Z-flux give a negative mass contribution to the W -boson

as

ig cos θWZµνW
−µW+ν , (6.5.1)

which leads the instability called the W -condensate [AO92,AO90b,AO90a]. This can be

another possible mechanism realizing superconductivity. If the magnitude of the back-

ground flux is sufficiently large, the type-A and type-B strings also can be superconduct-

ing.

Appendix 6.A Memo for Two Higgs doublet model

In this section, we show brief summary of the Two Higgs doublet model (THDM) and

its bilinear formalism.

6.A.1 Two Higgs doublet model

In THDM, we have two Higgs doublets and the general scalar potential is given by

VH =m2
11|H1|2m2

22|H2|2 −
(
m2

12H
†
1H2 + h.c.

)
5Y-junctions could also be formed in the KSVZ model when heavy extra fermions are U(1)EM charged

and the strings are superconducting.
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+
β1

2
|H1|4 +

β2

2
|H2|4

+ β3|H1|2|H2|2 + β4(H†1H2)(H†2H1) +

{
β5

2

(
H†1H2

)2
+ h.c.

}
, (6.A.1)

where m2
12 is a Z2 soft breaking parameter. Depending on the Yukawa couplings between

two Higgs doublets and SM fermions, some types are able to be considered (shown in

Table 6.2).

6.A.2 Higgs bilinear formlism in THDM

According to Ref. [GMW11], we introduce the Higgs bilinear H by using the Higgs

doublets as,

H = (iσ2H∗1 , H2) = (H̃1, H2), (6.A.2)

which transforms under the SU(2)L × U(1)Y gauge transformation as

H 7→ exp

(
iαa(x)

σa

2

)
H exp

(
−iβ(x)

σ3

2

)
. (6.A.3)

The trace and determinant of H’s polynomials are expressed as [EKN18b]

tr(H†H) = H†1H1 +H†2H2, (6.A.4)

tr(H†Hσ3) = H†1H1 −H†2H2, (6.A.5)

det H = H†1H2, det H† = H†2H1, (6.A.6)

tr
[
(H†H)(H†H)

]
=(H†1H1 +H†2H2)2 − 2(H†1H2)(H†2H1), (6.A.7)

tr
[
(H†H)σ3(H†H)

]
= (H†1H1)2 − (H†2H2)2, (6.A.8)

tr
[
(H†H)σ3(H†H)σ3

]
= (H†1H1 −H†2H2)2 + 2(H†1H2)(H†2H1), (6.A.9)

det H2 = (H†1H2)2, det H†
2

= (H†2H1)2, (6.A.10)

det H†H = (H†2H1)(H†1H2). (6.A.11)

From these equations, we can express products of Hi by the bilinear Higgs matrix H as

H†1H1 =
1

2

[
tr(H†H) + tr(H†Hσ3)

]
, (6.A.12)

H†2H2 =
1

2

[
tr(H†H)− tr(H†Hσ3)

]
, (6.A.13)

H†1H2 = det H, H†2H1 = det H†, (6.A.14)

(H†1H1)2 =
1

4

{
tr
[
(H†H)(H†H)

]
+ 2 tr

[
(H†H)σ3(H†H)

]
+ tr

[
(H†H)σ3(H†H)σ3

]}
,

(6.A.15)

(H†2H2)2 =
1

4

{
tr
[
(H†H)(H†H)

]
− 2 tr

[
(H†H)σ3(H†H)

]
+ tr

[
(H†H)σ3(H†H)σ3

]}
,

(6.A.16)
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(H†1H1)(H†2H2) =
1

4

{
tr
[
(H†H)(H†H)

]
− tr

[
(H†H)σ3(H†H)σ3

]}
+ det H†H, (6.A.17)

(H†1H2)2 = det H2, (H†2H1)2 = det H†
2
, (H†1H2)(H†2H1) = det(H†H). (6.A.18)

Using these equations, the scalar potential (6.A.1) is rewritten as

VH =
m2

11 +m2
22

2
tr(H†H)− m2

11 −m2
22

2
tr(H†Hσ3)−m2

12(det H + h.c.)

+
β1 + β2 + 2β3

8
tr
[
(H†H)(H†H)

]
+
β1 + β2 − 2β3

8
tr
[
(H†H)σ3(H†H)σ3

]
+
β1 − β2

4
tr
[
(H†H)σ3(H†H)

]
+ (β3 + β4) det(H†H)

+

{
β5

2
det H2 + h.c.

}
(6.A.19)

=
m2

11 +m2
22

2
tr |H|2 − m2

11 −m2
22

2
tr(|H|2σ3)−m2

12(det H + h.c.)

+
β1 + β2 − 2β3 − 4β4

8
tr |H|4 +

β3 + β4

2

(
tr |H|2

)2
+
β1 + β2 − 2β3

8
tr
[
|H|2σ3|H|2σ3

]
+
β1 − β2

4
tr
[
|H|2σ3|H|2

]
+

{
β5

2
det H2 + h.c.

}
(6.A.20)

=: m2
1 tr |H|2 −m2

2 tr(|H|2σ3)−m2
3(det H + h.c.)

+ α1 tr |H|4 + α2

(
tr |H|2

)2
+ α3 tr

(
|H|2σ3|H|2σ3

)
+ α4 tr

(
|H|2σ3|H|2

)
+

{
α5

2
det H2 + h.c.

}
, (6.A.21)

where we used the Cayley-Hamilotn identity

tr[A2]− (trA)2 + 2 detA = 0,

and we can obtain the following coupling of the scalar potential relations:

m2
1 =

m2
11 +m2

22

2
, m2

2 =
m2

11 −m2
22

2
, m2

3 = m2
12,

α1 =
β1 + β2 − 2β3 − 4β4

8
, α2 =

β3 + β4

2
, (6.A.22)

α3 =
β1 + β2 − 2β3

8
, α4 =

β1 − β2

4
, α5 = β5,

m2
11 = m2

1 +m2
2, m2

22 = m2
1 −m2

2, m2
12 = m2

3,

β1 = 2(α1 + α2 + α3 + α4), β2 = 2(α1 + α2 + α3 − α4), (6.A.23)

β3 = 2(α1 + α2 − α3), β = −2(α1 − α3), β5 = α5.
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Appendix 6.B Derivation of the linearized EOMs

By substituting the string ansatz into the EOM (6.4.13) for µ = α, we have(
DjD

j
δWα

)a
=
−i
2
g2 tr

[
H
†
σa
(
−igδWαH + i

g1

2
δBαHσ3

)
− h.c.

]
, (6.B.1)

where we have used the fact that the background configurations H, W µ and Bµ solve the

EOMs. The equation is explicitly written by the functions η, χ and ξ :

(l.h.s.) =
1

g2

∂αη
(
DjD

j
χ
)a
, (6.B.2)

(r.h.s) =
−g2

2
∂αη tr

[
H
† {σa, χ}H +

(
H
†
σaH

σ3

2
+
σ3

2
H
†
σaH

)
ξ

]
(6.B.3)

=
−g2

2
∂αη

(
χa tr |H|2 + ξ tr

[
H
†
σaHσ3

])
, (6.B.4)

which implies the linearized EOM (6.4.18). A similar procedure for the EOM of Bµ

(6.4.14) leads to the linearized one (6.4.19). On the other hand, for the EOM (6.4.13) for

µ = j, we have (
DνW

νj
)a

= − i
2
g2 tr

[
H
†
σaD

j
H− (D

j
H)†σaH

]
. (6.B.5)

The l.h.s. is divided into two pieces(
DνW

νj
)a

=
(
DkW

kj
)a

+
(
DαW

αj
)a

(6.B.6)

with k = r, θ. The first term in the r.h.s. of Eq. (6.B.6) is found to be equal to the r.h.s.

of Eq. (6.B.5), and they are cancelled out from the EOM. The remaining second term is

given at the leading order of δW as

DαW
αj = −∂αDj

δWα + ig2

[
δWα, D

j
δWα

]
≈ −1

g2

D
j
χ ∂α∂αη, (6.B.7)

which implies the linearized EOM (6.4.20). The similar derivation holds for the gauge

field Bµ.

Appendix 6.C Aharonov-Bohm string, axion string

and anomaly inflow

Let us consider the system of two gauge fields F2 = dA1, F̃2 = dÃ1, two form field B2

and the axion a:

S =

∫
M

(
1

2
F2 ∧ ∗4F2 +

1

2
F̃ ∧ ∗4F̃2 +

1

2
dB2 ∧ ∗4dB2 +

1

2
da ∧ ∗4da

+B2 ∧ F̃2 + κaF2 ∧ F2

)
, (6.C.1)

where M denotes the total spacetime. We assume that a has 2π periodicity a ' a + 2π.

In this system, there exist two-types of string objects.
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Figure 6.9: Schematic picture of string objects.

6.C.1 Aharonov-Bohm string

The first one is a string charactrized by the holonomy around the string

hol(γ) = exp i

∫
γ

Ã1 = exp i

∫
D

F̃2 = exp iΦ, (6.C.2)

which has non-trivial gauge flux. The string electrically interacts with the two form field

and the gauge field has the following Lagrangian:∫
M

B2 ∧ F̃2 +

∫
S
B2, (6.C.3)

which dual picture is discussed in Section 2.B.

6.C.2 Axion string and anomaly inflow

Another string is a so called axion string, which is characterized by the monodromy

of the axion field around the string ∫
γ′
da = 2π, (6.C.4)

which implies that this is a magnetic object for the axion field. The EOM of the axion is

d ∗4 da = κF2 ∧ F2, (6.C.5)

the right-handed side comes from the Chern-Simons coupling κaF2 ∧ F2. This equation

is rewritten as

−d ∗4 da+ κF2 ∧ F2 = d
(
− ∗4 da+ κA1 ∧ dA1

)
= 0. (6.C.6)
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If we consider the following large grauge transformation

A1 7→ A1 + β1, dβ1 = 0, β1 6= dα, (6.C.7)

the second term in Eq. (6.C.6) is transformed as∫
M

δA
(
κA1 ∧ dA1

)
=

∫
M

(
κβ1 ∧ dA1

)
= −

∫
∂M

κβ1 ∧ A1, (6.C.8)

and this implies that the object should have localized anomalous degree of freedom such

that it can cancel this contribution. This is an anomaly inflow.

This can be seen in the Lagrangian level. We introduce the Chern-Simons form by

F2 ∧ F2 = dω3, ω3 = A1dA1, then the Chern-Simons term is rewritten as∫
M

aF2 ∧ F2 = −
∫
M

da ∧ ω3. (6.C.9)

From the descent equation, we assume that the trasformation of the Chern-Simons form

is given by δω3 = dG2, and the transformation of the above Chern-Simons term becomes

δ

(
−
∫
M

da ∧ ω3

)
= −

∫
M

da ∧ dG2 =

∫
M

dda ∧G2. (6.C.10)

If a has a non-trivial monodromy, dda 6= 0 and this implies the existence of the delta

function source

dda ∼ δW . (6.C.11)

Then the localized degree of freedom on the object δW produces the new contribution to

cancel the anomaly of G2 such as ∫
M

δW ∧G2. (6.C.12)
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Chapter 7

Conclusion

In this thesis, we consider a scalar sector extension by an SM singlet scalar field, which

can carry other charges such as U(1)B−L or U(1)L and the dynamics and phenomenology

of pNGB arising from the spontaneous symmetry breaking of the scalar potential.

In Chapter 2 and Chapter 3, we investigate the UV completion of the pNGB dark mat-

ter model motivated by the swampland conjecture of no-global symmetry. The pNGB is

an attractive candidate of WIMPs and avoid the severe constraints of the direct detection

experiments thanks to the its derivative couplings which is typically evaluated by the ratio

of the electroweak scale and the VEV of the singlet scalar. In Chapter 2, we propose the

pNGB dark matter model based on the gauged U(1)B−L symmetry where the symmetry

of the scalar sector is realized as the discrete gauge symmetry. The soft breaking mass

term of the pNGB arises from the cubic coupling such as Φ∗S2. However, this pNGB is

not a stable dark matter candidate due to the interaction with the B − L gauge boson

and the scalar mixing, and becomes a decaying dark matter. We evaluate the life-time of

the pNGB and show the parameter space realizing the current dark matter relic as the

thermal relic consistently with the experimental and observational results. In Chapter 3,

we consider the embedding of the U(1)B−L pNGB dark matter model to the SO(10) GUT.

In order to realize this model in the low energy region, the symmetry breaking pattern of

SO(10)→ GPS → GSM × U(1)B−L is favored. It is found that the B − L gauge coupling,

the gauge kinetic mixing ε and the B−L breaking intermediate scale MI ∼ vφ are deter-

mined by the grand unification. The intermediate scale is lower than that in Chapter 2,

which implies that the lighter dark matter mass is required in order to make the life-time

long. We find that the thermal relic abundance can be consistent with all the constraints

when the dark matter mass is rather close to the resonances mχ . mhi/2.

In Chapter 4 and Chapter 5, we consider the phenomenology in other aspects of

the simple singlet scalar extension, where the VEV of the singlet scalar is much larger

than the electroweak scale. In such situation, the interaction of the pNGB is highly

suppressed by the huge VEV. This kind of invisible pNGB is discussed in some BSM

models. In Chapter 4, we show that the pNGB with large VEV becomes a typical FIMP
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candidate and the dark matter relic is realized by the freeze-in production through the

portal interactions between the singlet scalar and the SM Higgs boson. In addition to

this FIMP pNGB, the possibility is pursued that the symmetry breaking scalar causes

the inflationary expansion, reheats the SM thermal bath and directly produce the pNGB.

We show the allowed region in the (mχ, λΦ) plane. In Chapter 5, we consider the case

that the singlet scalar field carries the lepton number and becomes Majoron with the

TeV-scale mass. The life-time constraint and the cosmic-ray observations give a strong

constraint on the interactions of the TeV-scale Majoron via the VEV and neutrino sector

Yukawa couplings, which implies that the TeV-scale Majoron is also FIMP dark matter

candidate. We propose three production scenarios and show the parameter space realizing

the current dark matter relic.

We study the situation that the pNGB becomes another type scalar field, called axion

in Chapter 6. We consider the DFSZ axion model and find that the axion string in this

model has novel structure, named as an electroweak axion string: it has a thin axion

string core and the SM gauge flux surrounds this. We construct the solution describing

this string object, and discuss that the electromagnetic symmetry can be broken around

the string core, and the axion string can be superconducting in some parameter space.

If the electromagnetic symmetry is broken, the zero mode current can travel along the

string and gives the long-range attractive force between these strings. We discuss the

possibility that this attractive force can form a bound state of the axion string called

Y-shaped junction and its cosmological impacts.

These days, it is pointed out that the consistency conditions of quantum gravity

theory gives constraints on the low-energy effective theory. The classification of the

constraints is discussed in the context of the Swampland Programs [Vaf05] (and re-

views [Pal19, vBCIMV21, GnH21]). In this thesis, the BSM model motivated by the

swampland conjectures was proposed and we discussed the possibility that the existence

of dark matter and the quantum gravity consistency may imply the grand unification of

the fundamental forces. The soliton in such models and the interactions between them

can be suitable for testing the swampland conjectures in the phenomenology. In addition

to these, the scalar potential plays the crucial role for the phenomenology and it can be di-

rectly connected to the dynamics of quantum gravity. Thus, the author thinks that it will

be important to develop quantum gravity theory and phenomenology in a complementary

manner in order to reveal the theory of everything.
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Appendix A

Notation and convention

A.1 Notation

In the main part of this thesis, we use the notation of Ref. [PS95]. The signature of

Minkowski metric is the almost minus one,

ηab = ηab = diag(+1,−1,−1,−1), (A.1.1)

and the Clifford algebra is given by

{γa, γb} = 2ηab. (A.1.2)

The hermitian conjugate of the gamma matrices is expressed as

(γa)† = γa = γ0γaγ0. (A.1.3)

The Weyl representation of the gamma matrices is

γ0 =

(
0 1

1 0

)
, ~γ =

(
0 ~σ

−~σ 0

)
, (A.1.4)

with the Pauli matrices ~σ. For the four component Dirac fermion ψ, the Dirac conjugate

is defined by

ψ = ψ†γ0. (A.1.5)

The chirality operator is defined by

γ5 := iγ0γ1γ2γ3 =

(
−1 0

0 1

)
, (A.1.6)

which satisfies the following normalization,

tr γaγbγcγdγ5 = −4iεabcd, (A.1.7)
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with ε0123 = +1. The left-handed and right-handed projection operator is given by

PL :=
1− γ5

2
, PR :=

1 + γ5

2
, (A.1.8)

and they satisfy γ5PL = −PL and γ5PR = +PR.1

In the curved background, the vielbein field is defined by

gµν = ηabe
a
µe
b
ν , (A.1.13)

and the volume element becomes

√−g :=
√
− det gµν = det eaµ =: e. (A.1.14)

The Levi-Civita connection and curvatures are introduced by

Γµνρ =
1

2
gµσ(∂µgσν + ∂νgµσ − ∂σgµν), (A.1.15)

Rµν
ρ
σ = ∂µΓρνσ − ∂νΓρµσ + ΓρµτΓ

τ
νσ − ΓρντΓ

τ
µσ, (A.1.16)

Rµν = Rρµ
ρ
ν , (A.1.17)

R = gµνRµν . (A.1.18)

In the convention of Eq. (A.1.1), the Einstein-Hilbert action becomes

SEH = − 1

2κ2
4

∫
d4x
√−gR. (A.1.19)

1In the almost plus signature of the Minkowski metric ηab = diag(−1,+1,+1,+1) notation, the Clifford

algebra

{γa, γb} = 2ηab, (A.1.9)

leads the anti-hermite (γ0)† = −γ0 and the hermite (~γ)† = +~γ. The representation of these gamma

matrices is given by the replacement with γa → −iγa in Eq. (A.1.4) [Wei05,Wei13a,Wei13b]. The Dirac

conjugate of the Dirac fermion ψ is given by ψ := iψ†γ0, and the canonically normalized kinetic term for

the massive free Dirac fermion is

L = −ψ(γµ∂µ +m)ψ. (A.1.10)

In this convention, the chirality operator is defined by

γ5 = −iγ0γ1γ2γ3 =

(
1 0

0 −1

)
, (A.1.11)

and the left, right-handed projection operators are given by

PL =
1 + γ5

2
, PR =

1− γ5

2
. (A.1.12)
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Name Field SU(3)c SU(2)L U(1)Y

SU(3)c gauge boson (Gluon) Ga=1−8
µ 8 (adj) 1 0

SU(2)L gauge boson W a=1−3
µ 1 3 (adj) 0

U(1)Y gauge boson Bµ 1 1 adj

Quark doublet (left) Qi=1,2,3
L 3 2 +1/6

Up quark (right) (uCR)i=1,2,3 3̄ 1 −2/3

Down quark (right) (dCR)i=1,2,3 3̄ 1 +1/3

Lepton (right) Li=1,2,3
L 1 2 −1/2

Electron (right) (eCR)i=1,2,3 1 1 −1

Higgs doublet H 1 2 +1/2

Table A.1: Particle contents and their quantum charges of the SM.

where κ2
4 = 1/M2

P with the reduced Planck mass MP . We expand the graviton around

the flat Minkowski background as gµν = ηµν + hµν , this action reduces to

SEH =
1

2κ2
4

∫
d4x

[
1

4
∂µhαβ∂

µhαβ − 1

2
∂µhαβ∂

αhµβ +
1

2
∂αh∂βh

αβ − 1

4
∂αh∂

αh

]
, (A.1.20)

with h := ηµνhµν , which leads the canonical kinetic term of the graviton fluctuation.

A.2 Standard Model Lagrangian

The particle contents and their quantum charges of the SM are summarized in Ta-

ble A.1 and the Lagrangian is given by

LSM = − 1

4

8∑
a=1

(Ga
µν)

2 − 1

4

3∑
a=1

(W a
µν)

2 − 1

4
(Bµν)

2

+ iQi /DQi + iuRi /DuRi + idRi /DdRi + iLi /DLi + ieRi /DeRi

−
(
yDijdRiH

†Qj + yUijuRiH̃
†Qj + yeijeRiH

†Lj + h.c.
)

+ (DµH)†(DµH)− VH(H), (A.2.1)

VH(H) = − µ2
H

2
|H|2 +

λH
2
|H|4, (A.2.2)

with H̃ = iσ2H∗. The covariant derivative of the SM gauge boson is

Dµ = ∂µ + igsG
a
µ

λa

2
+ ig2W

a
µ

σa

2
+ ig1QYBµ (A.2.3)

= ∂µ + igsG
a
µ

λa

2
+
ig2√

2
(W+

µ T
+ +W−

µ T
−) +

ig2

cos θW
Zµ(T 3 − sin2 θWQEM) + ieAµQEM,

(A.2.4)

130



where λa and σa denote the Gell-Mann matrices and the Pauli matrices, respectively.

T± := T 1 ± iT 2 and T i denotes the i th component of weak isospin. The electromagnetic

charge and the coupling constant are defined by QEM := T 3 +QY and e := g2g1/
√
g2

2 + g2
1.

The gauge bosons are introduced by

W±
µ =

W 1
µ ∓ iW 2

µ√
2

,

(
Zµ
Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
, (A.2.5)

wheresin θW = g1/
√
g2

1 + g2
2, cos θW = g2/

√
g2

1 + g2
2.

A.3 Differential forms

In this section, we will summarize the notation of the differential forms.

Let us consider the D-dimensional space-time with the following Minkowski metric for

simplicity of the signature2

ηAB = diag(−1,+1, . . . ,+1). (A.3.1)

The infinitesimal distance ds2 is given by

ds2 = gMNdx
MdxN , (A.3.2)

and the vielberin eAM is defined by

gMN = ηABe
A
Me

A
N . (A.3.3)

The determinant is

√−g :=
√
− det gMN = det eAM =: e (A.3.4)

Differential forms

p-fomrs is introduced by

ωp =
1

p!
ωM1···Mpdx

M1 ∧ · · · ∧ dxMp . (A.3.5)

The exterior product of p-forms and q-forms satisfy

ωp ∧ ηq = (−1)pqηq ∧ ωp. (A.3.6)

2If we use the almost minus notation ηAB = diag(+1,−1, . . . ,−1), the signature of ε01···D−1 is depend

on the number of the space dimensions. In the case of four-dimensional spacetime, the we can discuss

in the similar manner. The difference is the overall signature of the canonically normalized kinetic

terms (A.3.45).
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The exterior derivative d acts the p-form as

dωp =
1

p!
∂MωM1···Mp dx

M ∧ dxM1 ∧ · · · ∧ dxMp , (A.3.7)

which is d : p-forms 7→ (p+ 1)-forms as

dAp =
1

p!
∂NAM1···Mpdx

N ∧ dxM1 · · · ∧ dxMp =: Fp+1, (A.3.8)

Fp+1 :=
1

(p+ 1)!
FM1···Mp+1dx

M1 ∧ · · · ∧ dxMp+1 , (A.3.9)

FM1···Mp+1
:=(p+ 1)∂[M1AM2···Mp+1]. (A.3.10)

The exterior derivative of the exterior product is defined as

d(ωp ∧ ηq) = (dωp) ∧ ηq + (−1)pωp ∧ (dηp). (A.3.11)

d is a nilpotent operator d2 = 0:

d2ωp = −d2ωp = 0. (A.3.12)

The interrior product of the p-form ωp and the vector field V is defined by

IV ωp =
1

(p− 1)!
V MωMM1···Mp−1 dx

M ∧ · · · ∧ dxMp−1 . (A.3.13)

IV maps p-forms to (p− 1)-forms.

The Lie derivative is defined by

LV := d IV + IV d, (A.3.14)

which maps p-forms to p-forms.

Invariant tensor and volume form in Lorentz signature

We choose the following normalization of the invariant tensors

ε01···(D−1) = +α, ε01···(D−1) = −α. (A.3.15)

In this normalization, the anti-symmetric symbols (Levi-Civita symbols) are defined by

εM1M2···MD :=e εA1A2···ADeA1

M1eA2

M2 · · · eADMD (A.3.16)

εM1M2···MD
:=e−1 εA1A2···ADe

A1
M1e

A2
M2 · · · eADMD

. (A.3.17)

We note that εA1A2···AD is a tensor, but εM1M2···MD is not a tensor but an anti-symmetric

symbol.

εA1A2···AD and εM1M2···MD satisfy the following relations:

ε01···(D−1) = +α, (A.3.18)
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ε01···(D−1) = −α, (A.3.19)

εM1M2···MD := e εA1A2···ADeA1

M1eA2

M2 · · · eADMD (A.3.20)

εM1M2···MD
:= e−1 εA1A2···ADe

A1
M1e

A2
M2 · · · eADMD

, (A.3.21)

εA1A2···AD = e−1 εM1M2···MDeA1
M1e

A2
M2 · · · eADMD

, (A.3.22)

εA1A2···AD = e εM1M2···MD
eA1

M1eA2

M2 · · · eADMD , (A.3.23)

εA1A2···ADεA1A2···AD = −D!α2, (A.3.24)

εM1M2···MDεM1M2···MD
= −D!α2 (A.3.25)

εA1···ApC1···CD−pεB1···BpC1···CD−p = −p!(D − p)!α2δ
A1···Ap
B1···Bp , (A.3.26)

εM1···MpL1···LD−pεN1···NpL1···LD−p = −p!(D − p)!α2δ
M1···Mp

N1···Np (A.3.27)

εA1A2···AD e
A1 ∧ eA2 ∧ · · · ∧ eAD =

1

α
εA1A2···ADdVD, (A.3.28)

dDx = dx0 ∧ dx1 ∧ · · · ∧ dxD = − 1

D!α
εM1M2···MD

dxM1 ∧ dxM2 ∧ · · · ∧ dxMD , (A.3.29)

dxM1 ∧ dxM2 ∧ · · · ∧ dxMD =
1

α
εM1M2···MDdDx (A.3.30)

where δ
A1···Ap
B1···Bp is given by

δ
A1···Ap
B1···Bp =

1

p!

∑
σ∈SD

sgn(σ)δA1

σ(B1) · · · δ
Ap
σ(Bp). (A.3.31)

The volume form dVD is defined by

dVD =e0 ∧ e1 ∧ · · · ∧ eD−1 = − 1

D!α
εA1···ADe

A1 ∧ · · · ∧ eAD (A.3.32)

=e0
M1e

1
M2 · · · eD−1

MD
dxM1 ∧ dxM2 ∧ · · · ∧ dxMD =: e dDx. (A.3.33)

Hodge duality

The Hodge duality for the frame fields eA1 is defined by

∗D
(
eA1 ∧ · · · ∧ eAp

)
=

1

(D − p)! ε
A1···Ap

B1···BD−P e
B1 ∧ · · · ∧ eBD−p . (A.3.34)

The Hodge dual of the unity is

∗D1 :=
1

D!
εA1A2···AD e

A1 ∧ eA2 ∧ · · · ∧ eAD = −αdVD (A.3.35)

and that of the volume form is given by

∗DdVD = ∗D
(
− 1

D!α
εA1A2···ADe

A1 ∧ eA2 ∧ · · · ∧ eAD
)

=− 1

D!α
εA1A2···ADε

A1A2···AD = α. (A.3.36)
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Let us evaluate the operations of acting on the Hodge dual in twice:

∗D(∗D1) = ∗D
(
−αdVD

)
= −α2, (A.3.37)

∗D
(
∗DdVD

)
= ∗D α = −α2dVD (A.3.38)

From these, we can get the following relations

∗D ∗D 1 = −α2, ∗D ∗D dVD = −α2 dVD. (A.3.39)

The Hodge dual of the basis of the curved space-time is defined as

∗D
(
dxM1 ∧ · · · ∧ dxMp

)
=

e

(D − p)! g
M1K1 · · · gMpKp εK1···KpN1···ND−p dx

N1 ∧ · · · ∧ dxND−p .

(A.3.40)

Then, the Hodge dual of the p-form field is given by

∗Dωp =
1

p!(D − p)!ω
A1A2···ApεA1A2···ApB1B2···BD−p e

B1 ∧ eB2 ∧ · · · ∧ eBD−p

=
e

p!(D − p)! ω
N1···NpεN1···NpM1···MD−p dx

M1 ∧ · · · ∧ dxMD−p , (A.3.41)

and the operations of acting on the Hodge dual of the p-forms in twice satisfy

∗D ∗D ωp = α2(−1)p(D−p)+1ωp. (A.3.42)

∗D1 is also written as

∗D1 =

√−gD
D!

εM1···MD
dxM1 ∧ · · · ∧ dxMD = −α√−gD dDx = −αdVD. (A.3.43)

Using the Hodge dual, the kinetic term of Fp+1 = dCp is written in the differential

form as∫
Fp+1 ∧ ∗DFp+1

=

∫ (
1

(p+ 1)!
FM1···Mp+1dx

M1 ∧ · · · ∧ dxMp

)
∧
(

e

(p+ 1)!(D − p− 1)!
ωN1···Np+1

× εN1···Np+1K1···KD−p−1
dxK1 ∧ · · · ∧ dxKD−p−1

)
=

∫
e

(p+ 1)!(p+ 1)!(D − p− 1)!
FM1···Mp+1F

N1···Np+1εN1···NpK1···KD−p−1

× 1

α
εM1···Mp+1K1···KD−p−1dDx

=

∫
dDx

e

(p+ 1)!(p+ 1)!(D − p− 1)!

1

α
(−α2)(p+ 1)!(D − p− 1)! δ

N1···Np+1

M1···Mp+1
FM1···Mp+1F

N1···Np+1

=(−α)

∫
dDx e

1

(p+ 1)!
FM1···Mp+1FM1···Mp+1 = (−α)

∫
dDx e|Fp+1|2, (A.3.44)
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where |Fp+1|2 = 1
(p+1)!

FM1···Mp+1FM1···Mp+1 . Then the kinetic term of Cp in the Minkowski

metric (A.3.1) is written as

Lkin. of Cp = −1

2

∫
dDx
√−g 1

p!
FM1···Mp+1FM1···Mp+1 = −1

2

∫
dDx
√−g|Fp+1|2

=
1

2α

∫
Fp+1 ∧ ∗DFp+1. (A.3.45)

In the same way, the Einstein-Hilbert action is written as

SEH =
M2

P

2

∫
dDx
√−gR = −M

2
P

2α

∫
R∧ ∗D1. (A.3.46)
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Appendix B

Implications of the weak gravity

conjecture in anomalous quiver

gauge theories

B.1 Swampland conjecture and weak gravity conjec-

ture

Swampland conjectures attract much attention recently in various aspects [Vaf05,

OV07, AHMNV07, OOSV18, GK19, OPSV19, Pal19]. The conjectures are expected to

constrain effective field theories to be consistent with quantum gravity, and give us new

insights into not only the string theory as a candidate of quantum gravity but also physics

of BSM.

Among them, the weak gravity conjecture (WGC) requires theories consistent with

quantum gravity to include a charged state with a charge q and a mass m satisfying the

weak gravity bound [AHMNV07],

eq ≥ m√
2MP

, (B.1.1)

so that an extremal black holes can have a decay channel. The WGC briefly states

that the gravity is the weakest force. Here, e is an anomaly-free gauge coupling and

MP is the reduced Planck mass. The WGC can be extended to theories with multi-

ple U(1) groups [CR14] and also to a scalar exchange force such as a Yukawa interac-

tion [Pal17,LP18,GIn19,ACE20,BBLM20]. The latter extension is called the scalar weak

gravity conjecture (SWGC) . These conjectures also have been checked in several as-

pects [LLW19a,LLW19b], and indicate that repulsive forces of gauge interactions among

the same species of particles are stronger than attractive forces of gravity and Yukawa

interactions among them [HRR19].

The situation may not be so simple in chiral gauge theories. IR symmetries are often

obtained through the breaking of UV symmetries, and an IR gauge coupling is given by
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a linear combination of UV gauge couplings as in the SM. The linear combinations are

determined by the Stückelberg couplings among the gauge bosons and would-be NGB (or

axions) associated with the symmetry breaking. This is applicable not only to anomaly-

free gauge theories but also to consistent theories possessing anomalous U(1) gauge groups.

In theories with an anomalous U(1), an axion field plays an important role to cancel

the gauge anomalies: the gauge invariance is (non-linearly) restored owing to the axion

coupling to topological terms of the gauge fields on top of the Stückelberg couplings.1 As

in the ordinary spontaneous symmetry breaking, these Stückelberg couplings lead to the

gauge boson mass and determine the eigenstate of massless gauge boson. Thus the gauge

boson of anomalous U(1) symmetry is decoupled in the low energy limit.2 In the string

theory, this anomaly cancellation is realized by the Green-Schwarz mechanism [GS84]

involving string theoretic axions. 4D string models with anomalous U(1)’s have been well-

discussed for realizing the SM [AIQU00,AFI+01b,AFI+01a,BLS03,BHW05,BKLS07].

In this chapter, we will focus on models with multiple U(1) symmetries and chiral

fermions. For models with U(1)k, an anomaly-free U(1) is given by a linear combination

of the original symmetries:

U(1)anomaly-free =
k∑
i=1

ciU(1)i, (B.1.2)

where k is the number of U(1) symmetries, ci (i = 1, 2, . . . , k) is a model-dependent

O(1) coefficient and U(1)i is the i-th gauge group. We will discuss some examples in the

following section. Then, the corresponding anomaly-free gauge coupling e is given by

1

e2
=

k∑
i=1

c2
i

g2
i

, (B.1.3)

where gi is the gauge coupling of the U(1)i symmetry. The gauge coupling e will become

necessarily very weak and smaller than the original coupling gi as the number of U(1)

gauge groups increases in the large k limit.3 Thus, the WGC condition in Eq. (B.1.1) looks

hard to be satisfied with an assumption that chiral anomlies can be canceled. In other

words, the repulsive force among particles will then become very weak. It is conjectured

that a certain class of chiral gauge theories with too many U(1) symmetries can be in the

swampland.4 It is noted that the gauge groups in 10D superstring theories are restricted

[Pol07], while those in 4D brane models seem less-constrained in the view point of tadpole

condition.5 When magnitude of all the gauge couplings is comparable to each other, the

1See also a recent work [CGGK20].
2Some of gauge bosons in the anomaly-free gauge groups can also become massive through the

Stückelberg couplings.
3The WGC with a similar gauge coupling is discussed in Ref. [Sar17].
4This will generally be applicable to theories with a semi-simple gauge group of G =

∏k
i=1Gi in the

large k limit, when G is spontaneously broken to a simple group. Here Gi is a simple group.
5In the heterotic string, the rank of the gauge group is sixteen.
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Eq. (B.1.3) is rewitten as

eq ∼ g̃√
k
q &

m

MP

, (B.1.4)

where g̃ ∼ gi for ∀ i is the average of the gauge couplings. We find that the gauge coupling

is scaling as e ∼ k−1/2 for a large k and there exists an upper bound on k, k . (qg̃MP

m
)2,

if the WGC is correct and the mass m remains non-zero in the large k limit. This upper

bound on k is similar to the species bound [DR08], but k is not the number of species

but the number of U(1) gauge groups in our case.6 Similar conditions for theories with a

discrete Zk (gauge) symmetry are also discussed in Refs. [CGGK19,BCMU20]. Eq. (B.1.4)

could be regarded as an example of the weak coupling conjecture [BCMU20].

A notion of quiver gauge theory is often used for theories in the presence of multiple

gauge groups and bi-fundamental chiral fermions, and matches model building involving

D-branes well [IMR01,CIM02b,CIM02a,VW07,CHR09,KDMQ10,DKQ11,DM96,Ura00,

BLPZ06,Yam08]. Instead of concrete string models, in this chapter we will consider quiver

gauge theories with U(1)k gauge groups and focus on the anomaly-free gauge groups

and the (S)WGC in a bottom-up approach, supposing that the remaining anomalies are

canceled and then the anomalous gauge bosons get massive. In general, computation of

anomalies depends on the matter content in models. In order to check anomaly-free U(1)’s

systematically and study concretely the (S)WGC constraints on the gauge couplings, we

restrict ourselves to several types of models controlled by discrete symmetries. However,

a behavior of the anomaly-free gauge coupling in Eq. (B.1.3) does not change in general

models with anomalous U(1)’s. The (S)WGC can constrain range of free parameters

in low energy theories and show what parameter values are favored by UV theory in

the view point of IR physics. In some quiver gauge theories of our interest, there exist

a discrete symmetry associated with cyclic permutations between the gauge groups in

certain quiver gauge theories, and the symmetry can generally be broken in anomaly-free

U(1) theories by a linear combination of U(1)’s as in Eq. (B.1.3). Some of quiver gauge

theories remind us of deconstructed extra dimension [AHCG01, AKMY03], which could

relate our approach to the weak coupling conjecture in holography [BCMU20]. Also new

insights can be given to chiral abelian gauge theories which may be a candidate of hidden

sectors of dark matter models in particle physics [CDF20].

This appendix is based on Ref. [AHT20] and organized as follows. In Section B.2,

we give a brief review of the (S)WGC and anomalous U(1) symmetries. In Section B.3,

we will discuss concrete quiver gauge theories with U(1)k, then identify the anomaly-free

U(1) symmetries. In Section B.4, we numerically show the SWGC constraint on the gauge

couplings and Yukawa couplings in a U(1)4 quiver gauge theory. We discuss also a toy

model from 5D orbifold compactification similarly. Section B.5 is devoted to summary

6If we have too large ci’s, the theory would be in the swampland owing to the appearance of very

weak coupling.
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and conclusion. In this chapter, we will discuss the above arguments with the tree level

parameters.

B.2 Brief reviews of the (S)WGC and anomalous U(1)’s

B.2.1 The WGC and the SWGC

In this subsection, we give a brief review of the WGC and the SWGC in four dimension.

The WGC claims that there exists a state with a charge q and a mass m satisfying the

inequality

eq ≥ m√
2MP

(B.2.1)

in a theory consistent with quantum gravity [AHMNV07]. The factor of 1/
√

2 comes

from the relative normalization of the Newton force against the Coulomb one, and a gen-

eralization to an arbitrary dimension is straightforward [Rob06]. This conjecture makes

(super)extremal black holes decay into lighter ones.

The WGC can be extended to theories including a scalar exchange force such as a

Yukawa interaction. This is called the SWGC [Pal17, LP18, LLW19a]. Let us consider a

theory with multiple U(1) gauge groups:

SEM =

∫
d4x
√−g

[
−M

2
P

2
R+

∑
a,b

1

2
Kab∂µφ

a∂µφb − 1

4

∑
i,j

fij(φ)F (i)
µν F

(j)µν

]
(B.2.2)

where R is a Ricci scalar, φa is a real scalar field, F
(i)
µν is a field strength of U(1)i, Kab

is a scalar kinetic matrix, fij is a gauge kinetic function, and i, j (= 1, 2, . . . , k) and

a, b denote the labels of U(1) gauge groups and those of scalar fields respectively. The

diagonal parts of fij give the gauge couplings of U(1)i’s and the off-diagonal components

are kinetic mixings. The matter part action is given by

Smatter =

∫
d4x
√−g

[
1

2

∑
a,b

Kab∂µΦa∂µΦb + ψiγµ
(
∇µ + i

∑
j

qjA
(j)
µ

)
ψ −m(Φ)ψψ

]
(B.2.3)

where ψ is a Dirac spinor of a test particle for the SWGC and has a charge qi under the

gauge group U(1)i and a mass m(Φ), and Φa is a real scalar field which may be different

from φa in general. Here, the covariant derivative ∇µ includes the spin connection. The

Φa is decomposed as

Φa = ϕa + ϕa, (B.2.4)

where ϕa is the background configuration of Φa and ϕa denotes a fluctuation around the

background. With these, the mass m(Φ) is rewritten as

m(Φ) = m(ϕ) +
∂m

∂ϕa
ϕa + · · · . (B.2.5)
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m(ϕ) is the mass of the ψ in the background ϕa, and the higher order terms of ϕa give

the interaction terms between ϕa’s and ψ. Thus the Yukawa coupling reads:

Smatter ⊃
∫
d4x
√−g

∑
a

ya(ϕ)ϕaψψ, (B.2.6)

ya(ϕ) :=
∂m

∂ϕa
(ϕ) = ∂am(ϕ). (B.2.7)

Then the SWGC for ψ is given by∑
i,j

f ijqiqj ≥
m2

2M2
P

+
∑
a,b

Kabyayb, (B.2.8)

where f ij and Kab are the inverse matrix of the fij and Kab respectively. This inequality

can be interpreted as the total gauge repulsive force is stronger than the sum of the

attractive forces of the gravity and the total Yukawa interactions when we focus on forces

acting between the test particle ψ: |~FCoulomb| ≥ |~Fgravity| + |~FYukawa|. The absolute value

of long-range force mediated by massless fields in four dimension is expressed as

|~F | = A

4πr2
, (B.2.9)

where a numerator A is the factor corresponding to each force:

ACoulomb =
∑
i,j

f ijqiqj, Agravity =
m2

2M2
P

, AYukawa =
∑
a,b

Kabyayb (B.2.10)

If the scalars ϕa are heavy, Yukawa interactions are short-range forces and neglected.

Then the SWGC gets back to the WGC.

B.2.2 Anomalous U(1) symmetries

In this subsection, we review cancellation of chiral U(1) gauge anomalies by axion

fields. In 4D effective field theories, gauge transformation of the axions can cancel the

chiral anomalies produced by light chiral fermions in the presence of topological terms

of the gauge fields and the Stückelberg couplings. In field theories with an anomaly-

free U(1) gauge symmetry, such axions are would-be Nambu-Goldstone bosons associ-

ated with the spontaneous breaking of the U(1) symmetry. After integrating out heavy

fermions with chiral U(1) charges, we can obtain anomalous U(1) in the low energy

limit [ABDK06,CGGK20]. In 4D string models, anomalies can be canceled by the Green-

Schwarz mechanism involving string theoretic axions that originate from tensor fields,

when tadpoles of brane charges are canceled [DSW87,JL05].

We shall consider the 4D action involving axions in addition to chiral fermions leading

to chiral anomalies:

Saxion =
∑

i∈U(1)anomaly

∫
d4x

[
1

2

m2
i

g2
i

( ∑
I∈axions

BiI∂µθI + A(i)
µ

)2

+
∑

I∈axions

CiIθI
32π2

εµνρσF (i)
µν F

(i)
ρσ

]
.

(B.2.11)
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Here, θI is an axion, BiI and CiI are constants, mi is the gauge boson mass. For the

anomalous U(1) symmetries, the fields transform as

θI → θI −DIiΛi, A(i)
µ → A(i)

µ + ∂µΛi, (B.2.12)

where Λi is the transformation parameter, and we assume that DIi satisfies
∑

I BiIDIj =

δij. The theory is invariant in the presence of chiral anomalies produced by gauge trans-

formations against chiral fermions:

Sanomaly =
∑

i∈U(1)anomaly

∫
d4x

[ ∑
I∈axions

Λi
CiIDIi

32π2
εµνρσF (i)

µν F
(i)
ρσ

]
, (B.2.13)

such that δΛStotal = Sanomaly + δΛSaxion = 0. Thus, in terms of axions the anomaly-free

U(1)’s are determined such that the coefficients of CiI ’s are vanishing7. 4D effective action

from 5D theory is also discussed, for instance, in Refs. [LOSW99,CGN20]. The anomalous

gauge bosons become massive as

1

2

m2
i

g2
i

(
BiI∂µθI + A(i)

µ

)2
=:

1

2

m2
i

g2
i

(
Ã(i)
µ

)2
, (B.2.14)

after θ’s are eaten by them as in spontaneous gauge symmetry breaking. Further, for

some non-anomalous gauge bosons, there can exist Stückelberg couplings

Saxion =
∑

i∈U(1)non-anomalous

∫
d4x

[
1

2

m2
i

g2
i

( ∑
I∈axions

B′iI∂µθI + A
′(i)
µ

)2]
. (B.2.15)

The non-anomalous gauge bosons can become massive as the anomalous ones. Then, the

repulsive forces mediated by such massive gauge bosons will not contribute to the WGC.

Hereafter, we suppose that this mechanism works in the quiver gauge theories studied

in this chapter, and these terms are ignored otherwise stated.

B.3 Quiver gauge theories and the WGC

In this section, we discuss quiver theories with U(1)k gauge symmetry and identify

anomaly-free gauge groups. In general, computation of anomalies depends on the matter

content in models. To check anomaly-free U(1)’s systematically and identify the gauge

couplings concretely, we focus on several types of models controlled by discrete symme-

tries. However, an anomaly-free gauge coupling will be given by Eq. (B.1.3) in general

cases. As for a quiver diagram in this chapter, each node implies a gauge group whereas

each arrow among two nodes shows a left-handed chiral fermion charged under two gauge

7Once anomalous gauge fields are written as Aanomalous
µ =

∑
i biA

(i)
µ , bi’s would be related to ci’s

in Eq. (B.1.3) through the orthogonality among U(1)’s. If there exists a large hierarchy among bi’s in

bi(∂
µθ)A

(i)
µ , some ci’s would become very large.
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Figure B.1: A quiver diagram with k nodes [AHT20].

groups. The number of arrows shows that of matters and a direction of an arrow is cor-

responding to the representation against two gauge groups. An arrowhead corresponds

to anti-fundamental representation while its opposite side means fundamental one. For

theories only with multiple U(1) groups, (anti-)fundamental representation is supposed

to have a charge +1 (−1). A solid line shows a chiral (left-handed) fermion whereas a

dashed line shows a complex scalar.

At first, we shall focus on non-supersymmetric gauge theories with bi-fundamental

chiral fermions of (N1,N2) representation under U(N1)×U(N2)×· · · gauge group, which

is inspired by D-brane models. Although there exist many types of quiver diagrams

corresponding to gauge theories, for simplicity we focus on theories including only U(1)

groups in the diagrams such as Fig. B.1. Since there exist chiral fermions, chiral gauge

anomalies can generally be produced as a consequence. We study cancellation condition

of chiral anomalies to identify anomaly-free gauge couplings at the tree level, and apply

the couplings to the WGC. Anomaly-free conditions for U(N)3 and U(N)4 are discussed

in Appendix B.A. For instance, in SU(N)k theories with a general N , non-abelian gauge

anomaly cancellations require that the number of incoming arrows is equal to that of

outgoing ones at each node. In U(1)k theories we will simply mimic SU(N)k cases because

in D-brane models a gauge group can be given by U(N) = U(1) × SU(N) rather than

just SU(N), hence U(1) and SU(N) are considered simultaneously. We suppose that

the anomalies are canceled as in Section B.2.2 and then (non-)anomalous gauge fields get

massive in a gauge invariant form. Quiver gauge theories associated with deconstructed

extra dimension [AHCG01, AKMY03] could relate our approach to the weak coupling

conjecture [BCMU20].
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In quiver gauge theories with U(1)k of our interest, the action is written by

S =
k∑
j=1

∫
d4x

[
− 1

4g2
j

F (j)
µν F

(j)µν + ψj,j+1iγ
µ
(
∂µ + iA(j)

µ − iA(j+1)
µ

)
ψj,j+1 + · · ·

]
, (B.3.1)

where ellipsis shows gravity and interaction terms among fermions which we have ne-

glected. We assume that kinetic mixings among gauge fields are absent at the tree level for

simplicity, and will ignore them in this chapter. The gauge field of U(1)j is denoted by A
(j)
µ

and ψj,j+1 is a left-handed spinor with a charge of (+1,−1) against the (U(1)j, U(1)j+1)

gauge group as noted above. The index runs as j = 1, 2, . . . , k and satisfies k + 1 ≡ 1.

There will exist a symmetry8 that shifts labels simultaneously as j → j + 1:

gj → gj+1, A(j)
µ → A(j+1)

µ , ψj,j+1 → ψj+1,j+2, (B.3.2)

when we treat the gauge couplings as spurion fields, which are expected to be moduli

fields in the string theory. This can be regarded as a Zk symmetry acting on k nodes with

a element of 
0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0
. . .

1 0 0 0 · · · 0

 . (B.3.3)

We can study anomalies and identify anomaly-free U(1)’s systematically owing to this

symmetry as seen below. This symmetry will be broken in the low energies when an

anomaly-free gauge group is given by a linear combination of UV U(1)’s. So, interactions

of axions to gauge fields are expected to violate this discrete symmetry.

In terms of particle phenomenology, this theory may be the hidden sector for dark

matter apart from the visible sector [CDF20]. In Appendix B.B, we discussed also several

quiver models not shown in this section.

B.3.1 U(1)2k−1

We consider quiver gauge theories with U(1)2k−1 groups as shown in Fig. B.1. These

types of (supersymmetric) models have often been studied in D-brane models on orb-

ifolds or intersecting/magnetized D-brane models. They are used also to realize realistic

Yukawa couplings or higher order couplings. We hereafter focus just on fermions produc-

ing anomalies. As seen below, these theories can have an unique anomaly-free U(1).
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Figure B.2: Three nodes quiver diagram [AHT20].

U(1)3

One of the simplest case is the quiver gauge theory with U(1)3 = U(1)1×U(1)2×U(1)3

groups9 in Fig. B.2. As in Eq. (B.3.1), there exist three left-handed chiral fermions ψLi (i =

1, 2, 3), which have charges of (1,−1, 0), (0, 1,−1) and (−1, 0, 1) against (U(1)1, U(1)2, U(1)3)

respectively.10 This model will have a Z3 symmetry as noted above, and there is no other

choices to connect each node. The divergences of U(1)3 chiral currents jiµ (i = 1, 2, 3) are

given by 
∂ · j1 = Q2 −Q3

∂ · j2 = Q3 −Q1

∂ · j3 = Q1 −Q2,

(B.3.4)

where ∂ · ji = ∂µj
iµ and Qi is the topological charge density, Qi = 1

32π2 ε
µνρσF

(i)
µν F

(i)
ρσ . Thus

we define the anomaly-free U(1) by

U(1)X := c1U(1)1 + c2U(1)2 + c3U(1)3, (B.3.5)

and impose the divergence of its current to vanish

∂ · jX =
∑
i=1,2,3

ci∂ · ji = (−c2 + c3)Q1 + (c1 − c3)Q2 + (−c1 + c2)Q3 ≡ 0. (B.3.6)

Then the solution is

U(1)X = U(1)1 + U(1)2 + U(1)3. (B.3.7)

8See also Refs. [GRW98,BLPZ06,GVMU19].
9In a supersymmetric case, we have a Yukawa coupling.

10These charge vectors will not satisfy the convex-hull condition if the same masses are given to the

matters by hand. This is seen on the two dimensional section with two charge vectors whose magnitudes

are
√

2 and between which the angle is 2π/3.
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In this model, the anomaly-free gauge group is determined uniquely (up to overall nor-

malization of the charges), and its gauge coupling is given by

1

e2
X

=
1

g2
1

+
1

g2
2

+
1

g2
3

. (B.3.8)

Here, the anomaly-free gauge coupling eX is written so that the gauge kinetic term be-

comes the canonical form:

−
∑
j

1

4g2
j

F (j)
µν F

(j)µν = − 1

4e2
X

F (X)
µν F (X)µν + (anomalous gauge fields). (B.3.9)

Thus, the anomaly-free gauge coupling eX can be smaller than the original U(1) gauge

couplings gi’s.

It is noted that all the matters are then neutral under this anomaly-free U(1)X , i.e.,

∀ qX = 0. It seems that this model may not be naively applied to the WGC, but the

presence of global symmetries is important. The low energy Lagrangian will be given by

L =
∑

i∈ matter

iψLi/∂ψLi −
1

4e2
X

(
F (X)
µν

)2
+ · · · , (B.3.10)

if anomaly-free gauge boson A
(X)
µ survives in low energy limit. Ellipsis includes inter-

actions among fermions and anomaly-free gauge boson and there will additionally exist

kinetic mixings such as KijψiL/∂ψjL and Majorana mass terms of −MijψCiLψjL in low en-

ergy limit after anomalous massive bosons are integrated out. These terms will violate

invariance under phase rotations of fermions. Now the original Z3 symmetry acts as

eX → eX , A
(X)
µ → A

(X)
µ and ψLi → ψLi+1, but whether this low energy theory has the

Z3 symmetry depends on parameters for fermions. Since all fermions are neutral under

U(1)X , global symmetries will be hard to survive in the low energy limit while discrete

gauge symmetries originating from the anomalous U(1)’s can survive if any. If global

symmetries survive, this model is in the swampland. It will be necessary to embed this

model into string theory in order to know what kind of symmetries survives. This is

beyond the scope of this work and left for future work.

U(1)2k−1

We consider quiver gauge theories with more general U(1)2k−1 groups. Fig. B.3 shows

quiver diagrams with the five nodes, and it is noted that the number of incoming arrows is

equal to that of outgoing ones at each node and both diagrams have a Z5 cyclic symmetry

among each node. As in Eq. (B.3.1) and in the left diagram of Fig. B.3, we have five

left-handed fermions charged against (U(1)1, U(1)2, U(1)3, U(1)4, U(1)5). The divergences
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Figure B.3: Quiver diagrams with five nodes [AHT20]. Both diagrams have a Z5 cyclic

symmetry among each node. In the right diagram, all nodes are connected with arrows.

of U(1)5 chiral currents are given by

∂ ·


j1

j2

j3

j4

j5

 =


0 1 0 0 −1

−1 0 1 0 0

0 −1 0 1 0

0 0 −1 0 1

1 0 0 −1 0




Q1

Q2

Q3

Q4

Q5

 . (B.3.11)

The number of anomaly-free U(1)’s is given by that of zero eigenvalues of this coefficient

matrix, and we find only one zero eigenvalue in this model. The anomaly-free U(1) is

given by the corresponding eigenvector

U(1)anomaly-free = U(1)1 + U(1)2 + U(1)3 + U(1)4 + U(1)5. (B.3.12)

Thus all matters are again neutral under this anomaly-free U(1) and this system will not

simply be applied to the WGC. The situation is similar to the three quivers model in

Section B.3.1.

The result is not changed by adding five chiral fermions to this model as in the right

diagram of Fig. B.3. Then their action is additionally given by

S =
5∑
j=1

∫
d4x

[
ψj,j+2iγ

µ
(
∂µ + iA(j)

µ − iA(j+2)
µ

)
ψj,j+2 + · · ·

]
. (B.3.13)

The anomaly coefficient matrix reads
0 1 1 −1 −1

−1 0 1 1 −1

−1 −1 0 1 1

1 −1 −1 0 1

1 1 −1 −1 0

 . (B.3.14)
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Figure B.4: A quiver diagram of three nodes connected with five nodes by a pair of two

arrows of vector-like matters [AHT20].

Thus, the anomaly-free U(1) is similary given by Eq. (B.3.12).

So far we have discussed specific quiver models with three and five nodes, but the

result can be simply extended to general models with odd number nodes as shown in

Fig. B.1. Since the entries of the anomaly coefficient matrix are composed of the same

number of 1 and −1 as above, the anomaly-free U(1) is uniquely determined as

U(1)anomaly-free =
2k−1∑
i

U(1)i, (B.3.15)

and the gauge coupling is given by

1

e2
=

2k−1∑
i=1

1

g2
i

. (B.3.16)

In concrete models, these are easily verified and it is checked also that the result does

not change for models with odd nodes and full diagonal lines that are similar to the right

diagram of Fig. B.3. As noted previously, however, there exist no charged chiral matters

for this anomaly-free U(1).

U(1)2k−1 × U(1)2l−1 with vector-like matters

We shall consider quiver gauge theories with U(1)2k−1 × U(1)2l−1 in the presence

of vector-like matters. As in Fig. B.4, the correspoinding diagram is composed of two

diagrams with odd nodes which are connected by a pair of two arrows of vector-like

matters. Action is given by two kinds of Eq. (B.3.1) showing U(1)2k−1×U(1)2l−1 symmetry
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and vector-like part of

S =

∫
d4x

[
ψ1,2kiγ

µ
(
∂µ + iA(1)

µ − iA(2k)
µ

)
ψ1,2k + ψ2k,1iγ

µ
(
∂µ − iA(1)

µ + iA(2k)
µ

)
ψ2k,1

−mψC2k,1ψ1,2k + h.c.

]
, (B.3.17)

where we assume that the bi-fundamental vector-like matters are charged under the gauge

groups of U(1)1×U(1)2k and that the mass m remains non-zero in the weak gauge coupling

limit. In this case, the discrete symmetry is explicitly broken since ψ1,2k is transformed

to ψ2,2k+1 that is originally absent. For instance, we focus on U(1)3 × U(1)5 theory with

vector-like matter, which is the case of k = 2 and l = 3. Since vector-like matter does not

contribute to the chiral anomalies, we have two anomaly-free U(1)’s as mentioned above:

one denotes U(1)X from U(1)3 and another denotes U(1)X′ from U(1)5. Here,

U(1)X =
3∑
i=1

U(1)i, U(1)X′ =
8∑
i=4

U(1)i, (B.3.18)

hence charges of vector-like matters are (+1,−1) and (−1,+1) for (U(1)X , U(1)X′) and

other chiral matters are neutral for them. The respective gauge couplings are given by

1

e2
X

=
3∑
i=1

1

g2
i

,
1

e2
X′

=
8∑
i=4

1

g2
i

. (B.3.19)

These can be weaker than the original gauge couplings of gi’s. Then the WGC for the

vector-like matter reads11

e2
X + e2

X′ ≥
m2

2M2
P

. (B.3.20)

In the large limit of k and l with a given m and gi’s, we find

e2
X + e2

X′ ∼
g2
i

k
+
g2
i

l
→ 0, (B.3.21)

and then the WGC can be violated since the couplings becomes very weak as long as the

mass m remains non-zero in the limit of eX → 0 and eX′ → 0. Note that we now fix

gi’s but change only k and l. This indicates that there exists an upper bounds on the

numbers of U(1) gauge groups, k and l as k + l . (gi
MP

m
)2 if the WGC is correct.

B.3.2 U(1)2k

We consider quiver gauge theories with U(1)2k symmetry as shown in Fig. B.1. These

types of models are also studied in D-brane models similarly to U(1)2k−1 cases. As the

11In the (U(1)X , U(1)X′) theory, we need also additional (+1,+1) and (−1,−1) vector-like matters to

satisfy the convex-hull condition so that extremal black holes with (Q,Q) charge can decay. This would

imply that orientifold planes are required to cancel D-brane charges in the string theory. However, our

conclusion does not change.
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Figure B.5: The Z4 symmetric quiver diagram with four nodes [AHT20].

simplest model with chiral anomalies, we focus on U(1)4 symmetry and this model has

four left-handed fermions as in Fig. B.5. Divergences of each chiral current are given by

∂ ·


j1

j2

j3

j4

 =


0 1 0 −1

−1 0 1 0

0 −1 0 1

1 0 −1 0



Q1

Q2

Q3

Q4

 , (B.3.22)

Since the anomaly coefficient matrix have two zero eigenstate, this model has two inde-

pendent anomaly-free U(1)’s, which are represented by the eigenvectors (1, 0, 1, 0) and

(0, 1, 0, 1). The former relates first node to third one, whereas the latter does second node

to fourth one. The independent anomaly-free U(1)’s are generally given by

U(1)X = cU(1)1 + U(1)2 + cU(1)3 + U(1)4, (B.3.23)

U(1)X′ = −1

c
U(1)1 + U(1)2 −

1

c
U(1)3 + U(1)4, (B.3.24)

where c is a free parameter that depends on the D-brane configuration in concrete UV

string models [AIQU00,AFI+01b,AFI+01a]12, and will be a rational number. Otherwise,

there exists a global symmetry [BD88,BS11,HO21]. The result does not change even if we

add bi-fundamental vector-like matters that are charged under only U(1)1×U(1)3 or only

U(1)2 × U(1)4. For c = 0, we find U(1)X = U(1)2 + U(1)4 and U(1)X′ = U(1)1 + U(1)3.

It is noted that for a general c a linear combination can violate the Z4 to Z2
2 exchanging

1↔ 3 and 2↔ 4. The gauge couplings relevant to the anomaly-free U(1)’s read

1

e2
X

=
c2

g2
1

+
1

g2
2

+
c2

g2
3

+
1

g2
4

, (B.3.25)

12A gauge boson in one of the two U(1)’s could be massive in UV models. But, the behavior of gauge

coupling will not change in the large k limit.
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Figure B.6: A quiver diagram of U(1)4 model including a complex scalar [AHT20].

1

e2
X′

=
1/c2

g2
1

+
1

g2
2

+
1/c2

g2
3

+
1

g2
4

. (B.3.26)

In this model, the chiral fermions have non-trivial charges under these anomaly-free U(1)’s

as shown in Table B.1. In the next section, we will numerically study the SWGC in this

model by adding a complex scalar.

Extending this model to general theories with U(1)2k is simple, and we can verify that

there exists at least two anomaly-free U(1)’s in a concrete model. So it is expected that in

the large k limit with a given c and a fixed gi, anomaly-free gauge couplings become very

small as in cases of U(1)2k−1×U(1)2l−1. Then there exists an upper bound on the number

of abelian gauge groups if the WGC is correct and a fermion mass remains non-zero in

the large k limit.

B.4 A U(1)4 model and the SWGC

In this section, we discuss the detail of U(1)4 quiver gauge theory shown in the pre-

vious section and its application to the SWGC at the tree level in the presence of a

complex scalar field. The motivation for this is to study SWGC in a more realistic (or

string-inspired) model with a scalar field. The SWGC shows numerically constraints of a

smallness of gauge couplings against Yukawa couplings. We also study a UV completion

of 5D orbifold model for it.

B.4.1 Constraints of the SWGC

Fig. B.6 shows a quiver diagram of U(1)4 model in the presence of a complex scalar

ϕ, whose charge is (+1,−1) for (U(1)b, U(1)d).
13 Due to this scalar field, we have Yukawa

13The direction of the dashed arrow shows the scalar charge same as chiral fermions. We changed

the names of gauge groups from U(1)1 × U(1)2 × U(1)3 × U(1)4 to U(1)a × U(1)b × U(1)c × U(1)d and
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Fields qX qX′

ψab −1 + c −1− 1/c

ψda 1− c 1 + 1/c

ψbc 1− c 1 + 1/c

ψcd −1 + c −1− 1/c

ϕ 0 0

Table B.1: The charges of fields for the anomaly-free U(1)X × U(1)X′ group.

couplings of

LYukawa = −yϕψCabψda − y′ϕ†ψCbcψcd + h.c. (B.4.1)

This model is inspired by intersecting brane models [IMR01, CIM02a]. No Z4 symmetry

exists. This is because ϕ can be written as ϕbd in the view point of the U(1) charges

and hence ϕbd is transformed to ϕca that is originally absent. There could exist Z2 that

simultaneously exchanges the labels as a ↔ c and b ↔ d for y = y′, if we can identify

ϕbd = ϕ†db. As seen in the previous section, two anomaly-free U(1)’s are given by

U(1)X = cU(1)a + U(1)b + cU(1)c + U(1)d, (B.4.2)

U(1)X′ = −1

c
U(1)a + U(1)b −

1

c
U(1)c + U(1)d, (B.4.3)

where a free parameter c is a rational number and can be fixed in concrete models by

the brane configuration in the string theory. The charges of the fields are summarized in

Table B.1.

The effective Lagrangian showing two anomaly-free U(1)’s may read

L =
∑

I=ab,bc,cd,da

iψI /DψI + |∂µϕ|2 −
1

4e2
X

(
F (X)
µν

)2 − 1

4e2
X′

(
F (X′)
µν

)2

−
[
yϕψCabψda + y′ϕ†ψCbcψcd + h.c.] + · · · , (B.4.4)

where Dµ = ∂µ + iqXA
(X)
µ + iqX′A

(X′)
µ , gauge bosons relevant to two anomalous U(1)’s

are neglected since they become massive if the Green-Schwarz mechanism works. Yukawa

couplings between the complex scalar and chiral fermions are denoted by y and y′, which

are not the same in general. It is noted that vector-like pairs of ψab + ψda and ψbc + ψcd
will constitute the Dirac spinors.14 Now scalar ϕ is neutral under anomaly-free U(1)’s

accordingly those of left-handed fermions from (ψ1,2, ψ2,3, ψ3,4, ψ4,1) to (ψab, ψbc, ψcd, ψda) for the

latter convenience.
14From the view point of the anomaly-free U(1)’s, there may exist Yukawa couplings including ψCabψbc

and ψCcdψda, but they are supposed to be much smaller than y and y′ here. Similarly, there may exist

Dirac masses to these fermions because ϕ is singlet for the anomaly-free U(1)’s in the low energy, but

the masses would be negligibly small against the Planck scale.
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and will not be considered for the SWGC. The scalar potential will be neglected hereafter

with an assumption that ϕ is sufficiently light at energy scales of our interest since the

scalar potential will be model-dependent. To check strong SWGC [GIn19] for ϕ is an

interesting issue, but this is left for future work and we focus on the SWGC for fermions

with non-trivial anomaly-free gauge charges. Here the anomaly-free gauge couplings are

given by

1

e2
X

=
c2

g2
a

+
1

g2
b

+
c2

g2
c

+
1

g2
d

, (B.4.5)

1

e2
X′

=
1/c2

g2
a

+
1

g2
b

+
1/c2

g2
c

+
1

g2
d

. (B.4.6)

In the presence of a very light ϕ, the SWGC can be expressed as

(−1 + c)2e2
X +

(
1 +

1

c

)2

e2
X′ ≥

M2

2M2
P

+
Y 2

2
, (B.4.7)

for a test fermion. Here, Y = y and M = yRe(ϕ) for a Dirac fermion of ψab + ψda,

whereas Y = y′ and M = y′Re(ϕ) for ψbc + ψcd. A factor Y 2/2 is obtained because

of the canonical normalization of Re(ϕ), and Im(ϕ) contributes to the spin-dependent

interaction that is not 1/r2-force. If the scalar is sufficiently heavy, Y does not contribute

to the SWGC conditon owing to exponentially damping force and hence the WGC can

be easily satisfied. To reduce the number of parameters, we will set gb = gd =: g for

simplicity. In the next subsection, we will study this situation realized in the 5D orbifold

model. Thus this equation can be rewritten as

(1− c)2

c2(g2/g2
a + g2/g2

c ) + 2
+

(1 + 1/c)2

(1/c2)(g2/g2
a + g2/g2

c ) + 2
&

1

2

(
Y

g

)2

. (B.4.8)

Here, the masses are neglected becauseM/MPl � 1 is numerically expected in the effective

field theory. Indeed, there is almost no change in appearance of the plots for M/gMPl .

0.1, where gMPl is expected as a cutoff scale [AHMNV07], when the scalar is massless. It

is noted also that a gauge boson in either U(1)X or U(1)X′ may be massive owing to the

Stückelberg coupling and then either eX or eX′ vanishes in Eq. (B.4.8).

In the top panels of Fig. B.7, we show the plots of the SWGC (B.4.8) in the (X, Y/g)-,

(c, Y/g)- and (c,X)-planes, where X := g2/g2
a+g2/g2

c . The each line saturates Eq. (B.4.8),

hence the allowed region exists below them. In the presence of the mass, the SWGC

is violated on each line. Note that these plots are symmetric under c → −1/c owing

to the definition of the anomaly-free U(1)’s. A region for a large Yukawa coupling is

excluded by the SWGC. For a large X, the constraint becomes tighter. In other words,

a big discrepancy between gauge couplings is disfavored. It turns out that the constraint

becomes stronger near c = ±1 because either eX or eX′ vanishes then. We find also that

the constraint is independent of c for special values of X = 2 and Y/g =
√

2. This is

because for X = 2 the left hand side of Eq. (B.4.8) becomes unity and hence for Y/g ≥
√

2
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Figure B.7: Plots of the SWGC constraints in (X, Y/g)-, (c, Y/g)- and (c,X)-

planes [AHT20]. The top panels plot the constraints of Eq. (B.4.8). The middle (bottom)

figures show the similar plots with eX′ = 0 (eX = 0), when U(1)X (U(1)X′) gauge group

survives in low energy limit. The condition is saturated on each lines, below which there

exist an allowed region. In the presence of mass, the SWGC is violated on each line.

the SWGC is then violated in the presence of the mass term. We can find also that the

constraint becomes weaker as the c > 0 increases in the top-left panel for X > 2, because

either eX or eX′ gets stronger then whereas the constraint does not depend on c for

X � 1. It is noted that in the string theory c depends on the D-brane configuration and

the couplings depend on moduli fields with the fixed configuration. The middle (bottom)

figures show the similar plots with eX′ = 0 (eX = 0), when only a gauge boson of U(1)X
(U(1)X′) remains massless and mediates the long-range repulsive force. In these cases,

the condition of the SWGC tends to give tighter constraints.
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Fields U(2) U(1)a U(1)c

AM adj 0 0

Ψa 21/2 −1 0

Ψc 2−1/2 0 +1

A
(a)
M 0 adj 0

A
(c)
M 0 0 adj

Table B.2: Table of the field contents and their charges in 5D model for realizing U(1)4

gauge theory in 4D. Subscripts of U(2) representation for fermions are U(1) charges

against the overall U(1) ∈ U(2).

B.4.2 A U(1)4 model from S1/Z2 orbifold and the SWGC

We consider a 5D gauge theory with U(2)× U(1)a × U(1)c on the S1/Z2 orbifold for

realizing chiral fermions. The purpose of this subsection is to give a concrete Yukawa

coupling associated with the gauge coupling and a relation between gauge couplings as in

the previous subsection via the symmetry breaking of U(2)→ U(1)b×U(1)d by an orbifold

projection. The fields contents and their representations are exhibited in Table B.2. The

5D action is given by

S5D =

∫
M4×S1/Z2

d4xdy
√
−G5

[
− 1

2κ2
5

R5 −
1

2ĝ2
2

tr(FMN)2 − 1

4ĝ2
a

(
F

(a)
MN

)2 − 1

4ĝ2
c

(
F

(c)
MN

)2

+ Ψa(i /D −Ma)Ψa + Ψc(i /D −Mc)Ψc

]
, (B.4.9)

where M = 0, 1, 2, 3, y, DM = ∇M + iAM + iq̂aA
(a)
M + iq̂cA

(c)
M and q̂a and q̂c are the charges

of U(1)a and U(1)c respectively. 5D Chern Simons terms associated with 4D Green-

Schwarz mechanism is neglected as already noted. The field strengths are given by FMN =

∂MAN−∂NAM+i[AM , AN ] and F
(a,c)
MN = ∂MA

(a,c)
N −∂NA(a,c)

M for the non-abelian gauge field

and abelian gauge fields respectively. The normalization of generator of U(2) is chosen

as tr(TaTb) = δab/2, hence the U(2) gauge field is expanded as AM = 12

2
A

(0)
M + σa

2
A

(a)
M ,

where 12 is 2× 2 identity matrix and σa’s (a = 1, 2, 3) are the Pauli matrices. Since the

covariant derivative is acting on Ψa as DMΨa 3 iAMΨa = i12

2
A

(0)
M Ψa + · · · , Ψa has 1/2

charge against the overall U(1). This is similar to Ψc, which has the opposite U(1) charge.

Here, Ψa,c = (ψa,c1, ψa,c2) are doublets for the SU(2) and ψa,c are the 4D Dirac spinors.

The metric of M4×S1/Z2 is written by ds2
5 = e−σgµνdx

µdxν+e2σdy2, where σ is the radion

field, and gives 4D Einstein frame. The size of S1/Z2 is assumed to be πL and we take

〈σ〉 = 0 without loss of generality. The graviphoton gµy is dropped since it is parity odd

while the 4D graviton gµν remains massless. Then, the massive graviphoton mediates the

short-range force among particles which have the Kaluza-Klein (KK) charges, and does

not contribute to the SWGC condition. On top of the usual periodic boundary condition
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of S1, the orbifold boundary conditon is given by

PAM(x,−y)P−1 = ηAAM(x, y), A
(a,c)
M (x,−y) = ηAA

(a,c)
M (x, y), (B.4.10)

PΨa,d(x,−y) = γ5Ψa,d(x, y), (B.4.11)

where P = diag(+1,−1) ∈ U(2), ηA = 1 for M = µ = 0, 1, 2, 3 and ηA = −1 for M = y.

Thus 4D massless modes read

Aµ =

(
A

(b)
µ

A
(d)
µ

)
, Ay =

(
iϕ/
√

2

−iϕ†/
√

2

)
, A(a)

µ , A(c)
µ , (B.4.12)

ψa1R, ψa2L, ψc1R, ψc2L. (B.4.13)

where A
(b)
µ := 1

2
(A

(0)
µ +A

(3)
µ ), A

(d)
µ := 1

2
(A

(0)
µ −A(3)

µ ), ϕ = −(iA
(1)
y +A

(2)
y )/
√

2 is the complex

scalar originating from the W -boson of y-direction15, and the ψL (ψR) is the left-handed

(right-handed) chiral fermion in 4D. It turns out that there exists the gauge symmetry of

U(1)a×U(1)b×U(1)c×U(1)d. As seen from the zero mode basis in the U(2) gauge bosons,

we find matter charges for the gauge symmetry: As for (U(1)a, U(1)b, U(1)c, U(1)d),

ψCa1R ≡ ψab : (+1,−1, 0, 0), ψCc1R ≡ ψbc : (0,+1,−1, 0), ψc2L ≡ ψcd : (0, 0, 1,−1),

ψa2L ≡ ψda : (−1, 0, 0, 1) and ϕ : (0, 1, 0,−1). This is the same field content as in

the previous subsection, hence ϕ is a neutral scalar under anomaly-free U(1)’s and will

not be considered for the SWGC. The scalar potential will be neglected as previously

noted since the scalar potential including radion will depend on the model and the radion

stabilization. Deriving the scalar potential and checking the strong SWGC for this is left

for future work.

The 4D parameters are given by the 5D parameters with an assumption of 〈σ〉 = 0. For

the details, see Appendix B.C. The 4D Planck mass is associated with the 5D gravitational

coupling κ5 as

M2
P =

πL

κ2
5

, (B.4.14)

and the gauge couplings in 4D are expressed by

2

g2
2

:=
1

g2
b

=
1

g2
d

=
2πL

ĝ2
2

,
1

g2
a

:=
πL

ĝ2
a

,
1

g2
c

:=
πL

ĝ2
c

. (B.4.15)

This is because we have the gauge kinetic term L = −2/4g2
2

(
F

(b)
µν

)2−2/4g2
2

(
F

(d)
µν

)2
via the

symmetry breaking of U(2)→ U(1)b×U(1)d. With these, the anomaly-free couplings are

defined as previously:

1

e2
X

=
c2

g2
a

+
2

g2
2

+
c2

g2
c

+
2

g2
2

, (B.4.16)

15Here we define the complex scalar by multiplying the ordinary W+-boson by −i so that the effective

Lagrangian of the zero modes reproduces Eq. (B.4.4) after this orbifold projection.
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1

e2
X′

=
1/c2

g2
a

+
2

g2
2

+
1/c2

g2
c

+
2

g2
2

, (B.4.17)

where a free parameter c is a rational number.

The Yukawa couplings between ϕ and ψ’s are given by

y = y′ =
ĝ2√
2πL

=
g2√

2
. (B.4.18)

Here, y and y′ are the same definition as in the previous subsection. This equation relates

the Yukawa coupling to the gauge coupling. In the presence of a light Re(ϕ) and the

radion, the SWGC inequality for zero mode fermions reads

(1− c)2e2
X +

(
1 +

1

c

)2

e2
X′ ≥

y2

2
+

(
1

2
+

1

6

)
M2

M2
P

(B.4.19)

where M has the same definition as in the previous subsection16 and 1/6 comes from

the radion exchange via ye−σc/
√

6MPlRe(ϕ)ψψ with the canonically normalized radion

σc =
√

3/2MPlσ. We have neglected momentum-dependent terms induced by the radion

exchange with terms of ψγµψ∂µσ. If Re(ϕ) is sufficiently heavy, the yukawa interaction

in this equation can be neglected and the WGC can be then easily satisfied. Gravita-

tional interactions including radion exchange will be numerically neglected below as in

the previous subsection owing to the Planck-suppressed interaction within the effective

field theory. For M/g2MPl . 0.1 and p/g2MPl . 0.1, where p is the momentum of a test

fermion, there are not significant differences compared to the plots shown below. Substi-

tuting the above couplings given by Eqs.(B.4.16)–(B.4.18) to Eq. (B.4.19), we then find

the SWGC condition

(1− c)2

(c2/2)(g2
2/g

2
a + g2

2/g
2
c ) + 2

+
(1 + 1/c)2

(1/2c2)(g2
2/g

2
a + g2

2/g
2
c ) + 2

&
1

4
. (B.4.20)

This is also obtained when the parameters in Eq. (B.4.8) are replaced as g2 → g2
2/2 and

(Y/g)2 → 1/2. This gives a constraint between c and X := g2
2/g

2
a + g2

2/g
2
c .

As for the KK modes or the massive parity odd ones, a similar equation to Eq. (B.4.19)

will be hold. It is noted that massive gauge bosons do not contribute to long-range forces

and all bosons including scalar zero mode are neutral under anomaly-free U(1)’s and

fermions with non-trivial gauge charges are considered for the SWGC. Parity odd fermions

of ψa1L, ψa2R, ψc1L and ψa2R have opposite charges to zero mode fermions. KK modes

of a field have the same charge as that of the lightest mode. Yukawa couplings that are

invariant under Z2 projection are given by φevenψevenψeven, φevenψoddψodd, φoddψoddψeven,

where φeven (φodd) is an even (odd) parity scalar and ψeven (ψodd) is an even (odd) parity

fermion. As massive scalars do not contribute to a long-range force, Yukawa couplings

relevant to the SWGC are associated with ϕ: ϕψevenψeven, ϕψoddψodd. After integration

16We have factored out the common radion dependence e−σ.
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Figure B.8: The left panel: Plots of the SWGC conditons (B.4.20) in the (c,X)-planes.

The condition is saturated on each lines, below which there exist an allowed region. In the

presence of mass, the SWGC is violated on each line. The right panel: A similar plot with

only U(1)X (red) and one with only U(1)X′ (blue). These figures are from Ref. [AHT20].

over the extra dimension, we will find Yukawa couplings of yϕψ′nψn in addition to KK

mass terms (n/L)ψnψn+(n/L)ψ′nψ
′
n for n-th KK modes with the canonically normalized

kinetic terms (up to the radion dependence). Then n-th KK mass eigenstates will have

mass M2 = (n/L± yRe(ϕ))2. As the SWGC could be violated by heavy KK modes, it is

necessary to check whether lighter modes including the zero modes satisfy the SWGC.

Fig. B.8 shows the plots of the SWGC (B.4.20) in the (c,X) plane. The each line

saturates Eq. (B.4.20), hence the allowed region exists below them. In the presence of

mass, the SWGC is violated on each line. The these plots are symmetric under c→ −1/c.

The left panel shows the constraint when there exists two anomaly-free U(1)’s. This is

very similar to the top-right one of Fig. B.7 for a small value of Yukawa. For a large

X, not only U(1)b × U(1)d gauge coupling but also Yukawa coupling ∝ g2 become much

stronger than ga or gc, and hence there exist an upper bound on X. It is noted that in the

context of the string theory a large X may imply a big discrepancy among moduli VEVs.

In the vincity of c = ±1, matter becomes neutral against either one of the anomaly-free

U(1)’s, then the constraint becomes tighter. In the right panel, plots show the SWGC

constraint with eX = 0 or eX′ = 0, when only the gauge boson of either U(1)X or U(1)X′

remains massless owing to a Stückelberg coupling as often seen in concrete string models.

B.5 Summary

We have studied the (S)WGC in several types of quiver gauge theories with U(1)k

gauge symmetry in the presence of bi-fundamental chiral fermions leading to the chiral

anomalies, which is supposed to be canceled by the Green-Schwarz mechanism. The

theories which we consider possesses a cyclic Zk symmetry associated with a shift of
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the label of the gauge groups. As a consequence of this, we can study anomalies in

the models systematically and the (S)WGC constraints on the gauge couplings. We

identified concretely the anomaly-free U(1)’s and their gauge couplings obtained via linear

combinations of the original U(1)’s. Then, Zk symmetry can be broken in general. In

the large k limit, an anomaly-free gauge coupling becomes very weak as e ∼ k−1/2, and

there exists an upper bound on k if the WGC is correct and the mass for a test particle

remains in the large k limit. This may be regarded as an example of the weak coupling

conjecture. For quiver theories with U(1)2k−1, an unique anomaly-free U(1) is proportional

to
∑2k−1

i=1 U(1)i and all matters are neutral under the anomaly-free U(1). There exist

charged matters in the presence of vector-like pairs, and Z2k−1 symmetry is broken then.

For quiver theories with U(1)2k gauge symmetry, there exist two anomaly-free U(1)’s and

charged matters under these gauge groups, and Z2k symmetry is broken in general. Even

if the gauge couplings of the the anomaly-free U(1)’s receive quantum corrections, the IR

couplings will remain very weak in the large k limit since U(1) couplings are generally

asymptotic non-free as far as the pertubation theory is valid.

We have numerically studied also the SWGC in U(1)4 theory in the presence of a

complex scalar field, and construct a similar model based on a 5D orbifold. It turns out

that a much larger Yukawa coupling than gauge couplings is forbidden and also that a

big discrepancy among gauge couplings is disfavored. A special linear combination for

realizing the anomaly-free U(1)’s can be also be disfavored, since matter charge becomes

small then.

So far, we neglected kinetic mixings χijF
i
µνF

jµν among gauge fields. If we have such

terms, we may have a kinetic mixing of χFX
µνF

X′µν , where χ ∼∑k
i,j χijcic

′
j, for anomaly-

free U(1)X =
∑

i ciU(1)i and U(1)X′ =
∑

i c
′
iU(1)i with ci’s = O(1). If the mixing χ is

at most of O(k3/2−α) (α > 0) in the large k limit, the WGC can still be violated as in

Section B.3. This is because the canonically normalized mixing is given by eXeX′χ and

hence an induced coupling of a fermion to an anomay-free gauge field is proportional to

e2
XeX′χ or eXe

2
X′χ that are scaling as k−α then. However, if χ = O(k2) in the large k

limit, the WGC can be satisfied.

In the Section B.4, the scalar ϕ is a singlet under the anomaly-free gauge groups, and

we did not discuss the detail of the scalar potential in addition to the radion. Hence it

may be an interesting challenge to check the strong SWGC within a fixed model. This is

left for future work.

It will be worth to investigate the (S)WGC in theories with more general gauge groups.

In actual string compactifications, the number of closed string axions is known to be finite

and depends on the Hodge number of compactification manifold. Some of the axions play

an important role to cancel anomalies through the Green-Schwarz mechanism. Hence,

the number of anomalous U(1) gauge theories, which is k−1 or k−2 in our cases, should

be constrained by the number of such axions. If the anomalies are independent among

the anomalous theories, the number of anomalous U(1)’s can be less than that of axions
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for anomaly cancellation. Also in the string theory, the conjecture would constrain brane

configuration and moduli values. If one starts with 10D super Yang-Mills theory, 4D

effective action including an anomaly-free U(1) may be given by [CIM03,CIM04]

L = −cS
4

(Fµν)
2 − ϑ(τ)√

S
φψψ + · · · , (B.5.1)

where S is the 4D dilaton, τ is a complex structure modulus, and a rational number

c originates from a linear combination of U(1)’s depends on brane configuration of the

number of branes and magnetic fluxes. The SWGC of e2 & y2 (up to mass term) for

matter fermion may read

c .
1

|ϑ(τ)|2 . (B.5.2)

However, it will be required a deep understanding of the string theory or concrete effective

field theories including (non-abelian) Dirac-Born-Infeld action to study the SWGC con-

straints on moduli space for consistent gauge theories in the presence of the Green-Schwarz

mechanism. This is also left for future works.

Appendix B.A Anomalies in string-inspired (SUSY)

gauge theories

We discuss anomaly-free U(1)’s in U(N)k quiver gauge theories inspired by the string

theory. We focus only on certain types of quiver theories considered in Section B.3 in this

section. Hereafter, Na denotes the rank of the gauge group of U(Na) at the a-node, and

nab shows the number of bi-fundamental matter fields which correspond to that of arrows

connecting between a-node and b-node in the quiver diagram.

B.A.1 U(N)3

We consider a U(N)3 quiver gauge theory as shown in Fig. B.9, and identify an

anomaly-free U(1). To this end, we calculate chiral anomalies and mixed anomalies. Then,

we find the constraints on the ranks of gauge groups and the numbers of generations.

For a consistent theory, the non-abelian cubic anomalies ASU(Na,b,c)3 give the following

constraints,

ASU(Na)3 ∝(nabNb − ncaNc) ≡ 0, (B.A.1)

ASU(Nb)3 ∝(nbcNc − nabNa) ≡ 0, (B.A.2)

ASU(Nc)3 ∝(ncaNa − nbcNb) ≡ 0. (B.A.3)

With these equations, the ranks of the gauge groups are related as

Na =
nbc
nab

Nc ∈ N, Nb =
nca
nab

Nc ∈ N. (B.A.4)
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Figure B.9: A quiver diagram of U(N)3 gauge theory [AHT20].

Thus, we find Na = Nb = Nc for nab = nbc = nca. The divergences of the chiral currents

ja,b,c for U(1)a,b,c are given by

∂ · ja = Na(NbnabQb −NcnacQc) +Na(nabNb − ncaNc)Qa +AU(1)aG2 , (B.A.5)

∂ · jb = Nb(NcnbcQc −NanabQa) +Nb(nbcNc − nabNa)Qb +AU(1)bG2 , (B.A.6)

∂ · jc = Nc(NancaQa −NbnbcQb) +Nc(ncaNa − nbcNb)Qc +AU(1)cG2 , (B.A.7)

whereQx = QU(1)x+ 1
Nx
QSU(Nx), QGx = 1

16π2 ε
µνρσtr(F

(x)
µν F

(x)
ρσ ) for x = a, b, c, and tr(T iT j) =

δij/2 for U(N) generators T i’s. These include anomalies of U(1)3, U(1)SU(N)2 and the

mixed anomalies between the gravity and U(1)’s, which are denoted by AU(1)a,b,cG2 . We

impose that they are vanishing:

AU(1)aG2 ∝ Na(nabNb − ncaNc) ≡ 0, (B.A.8)

AU(1)bG2 ∝ Nb(nbcNc − nabNa) ≡ 0, (B.A.9)

AU(1)cG2 ∝ Nc(ncaNa − nbcNb) ≡ 0. (B.A.10)

This is the same condition as in the non-abelian anomalies. There are not exist charged

fields under all (U(1)a, U(1)b, U(1)c), then the anomaly between U(1)aU(1)bU(1)c vanishes

automatically. Then we find

∂ · ja ≡Na(NbnabQb −NcnacQc), (B.A.11)

∂ · jb ≡Nb(NcnbcQc −NanabQa), (B.A.12)

∂ · jc ≡Nc(NancaQa −NbnbcQb). (B.A.13)

To identify the anomaly-free U(1) we define it as

U(1)X :=
ca
Na

U(1)a +
cb
Nb

U(1)b +
cc
Nc

U(1)c, (B.A.14)

160



Figure B.10: U(N)4 quiver diagram [AHT20].

and we impose that the divergence of the current associated with U(1)X vanishes

∂ · jX =
∑
x=a,b,c

cx
Nx

∂ · jx

= Na(ccnca − cbnab)Qa +Nb(canab − ccnbc)Qb +Nc(cbnbc − canca)Qc ≡ 0.

(B.A.15)

From this equation, the coefficients satisfy the following conditions

ca =
nbc
nab

cc, cb =
nca
nab

cc. (B.A.16)

We take cc = 1 and use Eqs. (B.A.4) and (B.A.16), then the anomaly-free U(1) is given

by

U(1)X =
cc
Nc

(
U(1)a + U(1)b + U(1)c

)
. (B.A.17)

It is noted that all fields are neutral matter under this anomaly-free U(1). The anomaly-

free gauge coupling is given by

1

e2
X

=
1

g2
a

+
1

g2
b

+
1

g2
c

. (B.A.18)

B.A.2 U(N)4

In this case, we impose that the anomaly coefficients of non-abelian cubic anomaly are

vanishing:

ASU(Na)3 ∝(nabNb − ndaNd) ≡ 0, (B.A.19)
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ASU(Nb)3 ∝(−nabNa + nbcNc + nbdNd) ≡ 0, (B.A.20)

ASU(Nc)3 ∝(−nbcNb + ncdNd) ≡ 0, (B.A.21)

ASU(Nd)3 ∝(ndaNa − nbdNb − ncdNc) ≡ 0. (B.A.22)

Solving these equations, we find that the ranks of gauge groups and the numbers of

generations have the following relations,

Nb =
nda
nab

Nd ∈ N, Nc =
nda
ncd

[
Na −

(
nbd
nab

)
Nd

]
∈ N,

nda
nab

=
ncd
nbc

. (B.A.23)

The cancellation of the mixed anomaly between the gravity and U(1)’s imposes the same

constraints as above:

AU(1)aG2 ∝Na(nabNb − ndaNd) ≡ 0, (B.A.24)

AU(1)bG2 ∝Nb(−nabNa + nbcNc + nbdNd) ≡ 0, (B.A.25)

AU(1)cG2 ∝Nc(−nbcNb + ncdNd) ≡ 0, (B.A.26)

AU(1)dG2 ∝Nd(ndaNa − nbdNb − ncdNc) ≡ 0. (B.A.27)

The divergences of the U(1) currents are expressed as

∂ · ja ≡Na(NbnabQb −NdndaQd), (B.A.28)

∂ · jb ≡Nb(−NanabQa +NbnbcQc +NdnbdQd), (B.A.29)

∂ · jc ≡Nc(−NbnbcQb +NdncdQd), (B.A.30)

∂ · jd ≡Nd(NandaQa −NbnbdQb −NcncdQc), (B.A.31)

where we used vanishing conditions of non-abelian anomalies. We define the anomaly-free

U(1) by the following equation as in the previous subsection

U(1)X :=
ca
Na

U(1)a +
cb
Nb

U(1)b +
cc
Nc

U(1)c +
cd
Nd

U(1)d, (B.A.32)

and impose the current divergence associated with this U(1)X is vanishing∑
x=a,b,c,d

cx
Nx

∂ · jx = Na(−cbnab + ndnda)Qa +Nb(canab − ccnbc − cdnbd)Qb

+Nc(cbnbc − cdncd)Qc +Nd(−canda + cbnbd + ccncd)Qd

≡0. (B.A.33)

Solving these equations for the coefficients cx, we get the following relations

cb =
nda
nab

cd, cc =
nda
ncd

[
ca −

(
nbd
nab

)
cd

]
,

nda
nab

=
ncd
nbc

. (B.A.34)

From Eqs. (B.A.23) and (B.A.34), the coefficient ca (or cb) is a free parameter. In oder to

solve these equations, we shall impose some assumptions. Here we will list some examples

satisfying these equations.
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• ∀ N = 1

– nbd = 0

A solution is

Na = Nb = Nc = Nd = 1, nab = nbc = ncd = nda, nbd = 0. (B.A.35)

This is similar to the quiver gauge theory shown in Fig. B.5. The two indepen-

dent anomaly-free U(1)’s are generally given by Eqs. (B.3.23) and (B.3.24), and

the corresponding gauge couplings are expressed as Eq. (B.3.25) and (B.3.26).

– nbd = 2

A solutions is given by

Na = Nb = Nc = Nd = 1, nab = nda = −nbc = −ncd = 1, nbd = 2.

(B.A.36)

The minus sign represents the opposite arrow of Fig. B.10. The independent

anomaly-free U(1)’s are defined by

U(1)X = cU(1)a + U(1)b + (2− c)U(1)c + U(1)d, (B.A.37)

U(1)X′ =
c− 3

c− 1
U(1)a + U(1)b +

c+ 1

c− 1
U(1)c + U(1)d. (B.A.38)

For these anomaly-free U(1)’s, bd matters are neutral. The anomaly-free gauge

couplings are given by

1

e2
X

=
c2

g2
a

+
1

g2
b

+
(2− c)2

g2
c

+
1

g2
d

, (B.A.39)

1

e2
X′

=

(
c− 3

c− 1

)2
1

g2
a

+
1

g2
b

+

(
c+ 1

c− 1

)2
1

g2
c

+
1

g2
d

. (B.A.40)

• ∀ |n| = 1

A solution is given by

Nb = Nd = 2, Na = Nc = 1, nab = nda = nbd = −nbc = −ncd = 1. (B.A.41)

The independent anomaly-free U(1)’s for this solution is defined as

U(1)X = cU(1)a +
1

2
U(1)b + (1− c)U(1)c +

1

2
U(1)d, (B.A.42)

U(1)X′ =
2c− 3

4c− 2
U(1)a +

1

2
U(1)b +

2c+ 1

4c− 2
U(1)c +

1

2
U(1)d. (B.A.43)

bd matter is neutral for these anomaly-free gauge groups. The gauge couplings are

given by

1

e2
X

=
c2

g2
a

1/2

g2
b

+
(1− c)2

g2
c

+
1/2

g2
d

, (B.A.44)

1

e2
X′

=

(
2c− 3

4c− 2

)2
1

g2
a

+
1/2

g2
b

+

(
2c+ 1

4c− 2

)2
1

g2
c

+
1/2

g2
d

. (B.A.45)

It is noted that a coefficient of 1/g2
b,d is given by 1/2 = Nb,d · (1/2)2 for Nb,d = 2.
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Figure B.11: The left panel: U(2) × U(1)1 × U(1)2 quiver diagram. The right panel:

U(1)1 × U(1)2 × U(1)3 × U(1)4 quiver diagram obtained from U(2)→ U(1)1 × U(1)2 by

the Higgs mechanism. The dashed quiver shows bi-fundamental scalars arising from this

symmetry breaking. These figures are from Ref. [AHT20].

Figure B.12: A quiver diagram of left-right symmetric Pati-Salam model [AHT20].

Appendix B.B Models inspired by the SM

We consider two quiver models with U(1)4 and U(1)5 symmetries inspired by the SM.

These are different from the models exhibited in the Section B.3 in terms of chiral fermions.

We show just that the anomaly-free gauge couplings are still given by a linear combination

of the original couplings. The SM might not originate from a gauge symmetry that has

too many U(1)’s.

B.B.1 A model inspired by Pati-Salam

We shall consider the U(1)4 gauge theory shown in the right panel of Fig. B.11. It

is noted that we have two left-handed fermions charged only under U(1)3 × U(1)4, and
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there exist six chiral fermions and two complex scalars. This model is obtained from

three nodes model of U(2) × U(1)3 × U(1)4 in the left panel of Fig. B.11 by the Higgs

mechanism of U(2) complex adjoint scalar whose VEV is given by 〈Φ〉 = diag(v,−v). This

can be regard as a toy model of left-right symmetric theory obtained from the Pati-Salam

model [PS74,MP75,SM75] as in Fig. B.12.

The U(1)4 model has two anomaly-free U(1)’s and non-trivial charged matter fields,

but we focus only on the relevant gauge couplings. The detail of the anomaly cancellation

is discussed in Appendix B.A. The divergences of U(1) currents are given by

∂ ·


j1

j2

j3

j4

 =


0 0 1 −1

0 0 1 −1

−1 −1 0 2

1 1 −2 0



Q1

Q2

Q3

Q4

 , (B.B.1)

and we define two independent anomaly-free U(1)’s with a free parameter c as

U(1)X = cU(1)1 + (2− c)U(1)2 + U(1)3 + U(1)4, (B.B.2)

U(1)X′ =
3− c
1− cU(1)1 −

1 + c

1− cU(1)2 + U(1)3 + U(1)4. (B.B.3)

Two chiral fermions charged only under U(1)3 × U(1)4 is still neutral but other fermions

have non-trivial charges under these anomaly-free U(1) gauge groups. The corresponding

anomaly-free gauge couplings read

1

e2
X

=
c2

g2
1

+
(2− c)2

g2
2

+
1

g2
3

+
1

g2
4

, (B.B.4)

1

e2
X′

=

(
3− c
1− c

)2
1

g2
1

+

(
1 + c

1− c

)2
1

g2
2

+
1

g2
3

+
1

g2
4

. (B.B.5)

These gauge couplings are given by linear combinations of the original ones, and when

U(1)1 × U(1)2 is unified to U(2) we find g1 = g2.

B.B.2 A model inspired by the SM

Another example is a model in Fig. B.13 that is inspired by the SM-like model in

Fig. B.14.17 The divergences of chiral currents are given by

∂ ·


j1

j2

j3

j4

j5

 =


0 −2 1 0 1

2 0 −2 2 −2

−1 2 0 −1 0

0 −2 1 0 1

−1 2 0 −1 0




Q1

Q2

Q3

Q4

Q5

 . (B.B.6)

17The authors of Ref. [VW07] discussed the world-volume theory on a stack of D3-branes reproducing

the field content of the minimal supersymmetric standard model with extended Higgs sector in a quiver

extension.
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Figure B.13: A diagram of quiver gauge theory inspired by the SM [AHT20].

ோ୳୮

𝑈 1 ୪ୣ୮୲୭୬

𝑈 1 ோୢ୭୵୬

Figure B.14: A quiver diagram of the SM-like model [VW07]. This figure is from

Ref. [AHT20].

We find three anomaly-free U(1)’s and they can generally be written as

U(1)X = c1U(1)1 + U(1)2 + c2U(1)3 + (2− c1)U(1)4 + (2− c2)U(1)5, (B.B.7)

with two free parameters of c1 and c2 which will be a rational numbers. The parameters

of ci’s are taken as a gauge group is orthognal to each other. Then the fermions have

non-trivial charge in this anomaly-free U(1)’s, but we focus only on the gauge couplings.

The relavant gauge coupling is given by

1

e2
X

=
c2

1

g2
1

+
1

g2
2

+
c2

2

g2
3

+
(2− c1)2

g2
4

+
(2− c2)2

g2
5

. (B.B.8)

As mentioned earlier, an anomaly-free coupling can contain more of the original couplings

as the number of U(1)’s in a theory increases.
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Appendix B.C Orbifold compactification

Let us dimensionally reduce the 5D action in Eq. (B.4.9) and show the gauge couplings

and Yukawa couplings in 4D. The metric ofM4×S1/Z2 is written by ds2
5 = e−σgµνdx

µdxν+

e2σdy2. Thus, the vielbein is given as

EA
M =

(
e−σ/2eaµ

eσ

)
, (B.C.1)

where A and a represent 5D and 4D local Lorentz indices respectively, and eaµ is the

4D vielbein. The off-diagonal element of the vielbein is absent because the orbifold pro-

jection prohibits the graviphoton. It is noted that 5D fermion kinetic term is given by

ΨΓAEA
MDMΨ, where EA

M is the inverse matrix of EA
M . Using these equations, we

obtain 4D action for massless modes in Eqs. (B.4.12) and (B.4.13):

S4D =

∫
d4x
√−g4

[
− πL

2κ2
5

R4 +
3πL

4κ2
5

(∂µσ)2

− 1

4

πLeσ

ĝ2
a

(F (a)
µν )2 − 2

1

4

πLeσ

ĝ2
2

(F (b)
µν )2 − 1

4

πLeσ

ĝ2
c

(F (c)
µν )2 − 2

1

4

πLeσ

ĝ2
2

(F (d)
µν )2 +

πLe−2σ

ĝ2
2

|Dµϕ|2

+ πLe−σ/2iψab /Dψab + πLe−σ/2iψda /Dψda + πLe−σ/2iψcd /Dψcd + πLe−σ/2iψbc /Dψbc

− πLe−2σ

√
2

ϕR(ψCabψda + ψdaψ
C
ab)−

πLie−2σ

√
2

ϕI(ψCabψda − ψdaψCab)

− πLe−2σ

√
2

ϕR(ψCbcψcd + ψcdψ
C
bc) +

πLie−2σ

√
2

ϕI(ψCbcψcd − ψcdψCbc)− V (σ, ϕ)

]
, (B.C.2)

where Dµ = ∂µ + i
∑

j=a,b,c,d qψA
(j)
µ is the covariant derivative associated with the gauge

group U(1)a × U(1)b × U(1)c × U(1)d, and the chiral fermions ψij are defined in Sec-

tion B.4.2. The four dimensional Ricci scalar is denoted by R4, and ϕ = ϕR + iϕI is the

complex scalar. We introduce the scalar potential V (σ, ϕ) formally.18 Thus, the gauge

couplings are given as in Eq. (B.4.15).

In order to find the relation between the Yukawa coupling and the gauge coupling, we

canonically normalize the fermion and the complex scalar as

ψij →
eσ/4√
πL

ψij, ϕ→ ĝ2e
σ

√
πL

ϕ. (B.C.3)

Then, the kinetic term is rewritten as

πLe−σ/2iψij /Dψij → iψij /Dψij −
i

2
ψijγ

µψij∂µσ. (B.C.4)

18At the classical level, the scalars σ and ϕ do not have potential due to the gauge symmetries, but the

potential can be generated by the radiative corrections. In addition, we assume the radion field develops

the VEV of 〈σ〉 = 0 around the radius L.
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Hereafter, we will ignore the derivative coupling of the radion to the fermions. The Yukawa

interactions are expressed as

L4D,Yukawa = − ĝ2e
−σ/2

√
2πL

ϕR(ψCabψda + ψdaψ
C
ab)−

ĝ2ie
−σ/2

√
2πL

ϕI(ψCabψda − ψdaψCab)

− ĝ2e
−σ/2

√
2πL

ϕR(ψCbcψcd + ψcdψ
C
bc) +

ĝ2ie
−σ/2

√
2πL

ϕI(ψCbcψcd − ψcdψCbc).

(B.C.5)

We introduce the Dirac fermions as

ψa =

(
ψda
ψCab

)
. ψc =

(
ψcd
ψCbc

)
. (B.C.6)

With these Dirac fermions, the kinetic terms of the anomaly-free sector read

L4D,KT = − 1

4e2
X

(
F (X)
µν

)2 − 1

4e2
X′

(
F (X′)
µν

)2
+ (∂µϕR)2 + (∂µϕI)

2

+ iψa /Dψa + iψc /Dψc, (B.C.7)

where we neglected gauge bosons in anomalous U(1)’s, the anomaly-free gauge couplings

are defined by Eqs. (B.4.16) and (B.4.17). As shown in Table B.1, the covariant derivatives

of the Dirac fermions associated with anomaly-free U(1)’s are expressed as

Dµψa =

[
∂µ + i(−1 + c)A(X)

µ − i
(

1 +
1

c

)
A(X′)
µ

]
ψa, (B.C.8)

Dµψc =

[
∂µ − i(−1 + c)A(X)

µ + i

(
1 +

1

c

)
A(X′)
µ

]
ψc. (B.C.9)

The charges of ψa and ψc under U(1)X and U(1)X′ are opposite to each other due to the

4D anomaly-free conditions. With the Dirac spinor, the Yukawa terms in this Lagrangian

are rewritten as below:

L4D,Yukawa = −ye−σ/2ϕRψaψa − iye−σ/2ϕIψaγ5ψa

− ye−σ/2ϕRψcψc + iye−σ/2ϕIψcγ5ψc, (B.C.10)

where the 4D Yukawa coupling is defined as

y =
ĝ2√
2πL

. (B.C.11)
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Appendix C

Leptonic CP asymmetry and Light

flavored scalar

C.1 Matter-antimatter asymmetry and type-I see-

saw model with flavored scalar

The Standard Model of particle physics and cosmology still have some mysteries,

e.g., the nature of dark matter, the source of matter-antimatter asymmetry, the origin

of neutrino masses, and so on. An attractive idea to realize tiny neutrino masses is

the seesaw mechanism with Majorana right-handed neutrinos [Min77, Yan79, GMRS79],

called the type I seesaw. The additional Majorana fermions can also be the origin of

matter-antimatter asymmetry via their decay, the scenario called leptogenesis [FY86].

The baryon asymmetry in the present universe is measured by the cosmic microwave

background observation [A+20a] as

Y∆B =
n∆B

s
= (0.852 – 0.888)× 10−10, (C.1.1)

with the number density n∆B and the entropy density s. In the leptogenesis scenario,

the right-handed neutrinos generate the lepton asymmetry, which is then converted to

the baryon asymmetry [KRS85] via the sphaleron process [KM84]. In the simplest lepto-

genesis, the interference between the tree-level and one-loop level right-handed neutrino

two-body decays gives a source of the asymmetry, which is determined by neutrino Yukawa

couplings. On the other hand, Refs. [AS98, Ham02, DBDKZ20, AKS20, BDM20, LDR14]

also discuss possibilities of tree-level leptogenesis by considering various extensions of the

neutrino sector.

In this chapter, we focus on a possibility of flavorful light scalar for the lepton asym-

metry generation. This is a minimal scalar extension of the type-I seesaw model by

introducing a SM singlet scalar interacting with the right-handed neutrinos. This kind of

scalar may be motivated by some dynamical origin of Majorana neutrino mass scale, but

in this work we do not specify it and investigate the general form of scalar interaction
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to the right-handed neutrinos. In this setup, we study the tree-level leptogenesis via the

right-handed neutrino three-body decays with this flavorful scalar field.

This chapter is based on Ref. [AIY21] and the rest parts are organized as follows.

In Section C.2, the model we focus on is introduced and we derive the decay widths

and the asymmetry parameters of the two-body decay processes. In Section C.3, the

three-body decay widths and the asymmetry parameter are evaluated and we give their

approximation formulae. In Section C.4, we discuss the behaviors of the lepton asymme-

try and its approximated relic value by solving the Boltzmann equations, and show the

allowed parameter spaces of this model. We also give some comments on the dynamics

of the additional singlet scalar field and its realization in some phenomenological models.

Section C.5 is devoted to the summary of this chapter.

C.2 Lagrangian and two-body decay

In this work, we denote the right-handed neutrinos as Ni in the mass diagonal basis.

They are the Majorana fermions with the Majorana masses mNi . An SM gauge singlet

scalar χ is introduced and assumed to have the coupling to the right-handed neutrinos.

The lagrangian we consider is

L = LSM +
1

2
Ni(i/∂ −mNi)Ni − yνijH̃†NiPLLj + h.c.− 1

2
χNi

(
ξijPR + ξ∗ijPL

)
Nj. (C.2.1)

The coupling constants ξij are i, j symmetric and generally complex-valued. They can be

decomposed into the scalar (real part) and pseudo-scalar (imaginary part) couplings to

Ni. As discussed in Ref. [CI01], with the seesaw relation, the neutrino Yukawa coupling

yν can be generally parameterized as

yν =

√
2i

v

√
MNR

√
mνU

†
MNS, (C.2.2)

with the Majorana mass matrix MN = diag(mN1 ,mN2 ,mN3) and the neutrino mass matrix

mν = diag(mν1 ,mν2 ,mν3), and the neutrino flavor mixing matrix UMNS. v ≈ 246 GeV is

the electroweak scale. For the neutrino masses and mixing angles, we use the experimen-

tally observed values summarized in Ref. [Z+20]. R is an arbitrary complex orthogonal

matrix describing the degrees of freedom of neutrino Yukawa couplings which cannot be

reached with the seesaw relation. We parameterize R as

R =

1 0 0

0 cosω23 sinω23

0 − sinω23 cosω23


 cosω13 0 sinω13

0 1 0

− sinω13 0 cosω13


 cosω12 sinω12 0

− sinω12 cosω12 0

0 0 1

 ,

(C.2.3)

introducing the complex angles ωij (called the Casas-Ibarra (CI) parameters in the fol-

lowing).
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Through the neutrino Yukawa coupling, the right-handed neutrinos interact with the

SM thermal bath. For the two-body decay of Ni to the SM particles, the partial widths

at tree level are given by

ΓNi→LjH = ΓNi→L̄jH̄ =
yνijy

ν†
ji

16π
mNi , (C.2.4)

where L̄, H̄ means the corresponding anti-particles. We denote the total width of the

two-body decay via neutrino Yukawa coupling as

Γ̃i =
∑
j

(
ΓNi→LjH + ΓNi→L̄jH̄

)
. (C.2.5)

When mN2 > mN1 +mχ, a heavier mode N2 can also decay to N1 and χ via the off-diagonal

coupling ξ12 and its width is evaluated as

ΓN2→N1χ =
mN2

16π

√
λ(m2

N2
,m2

N1
,m2

χ)

m2
N2

{[(
1− mN1

mN2

)2

− m2
χ

m2
N2

]
(Im ξ12)2

+
[(

1 +
mN1

mN2

)2

− m2
χ

m2
N2

]
(Re ξ12)2

}
, (C.2.6)

with the kinematic function λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx.

As we will see in the following, the decay of the lightest N1 is dominated by the

two-body decay, but for a heavier mode the resonant contribution of three-body decay is

comparable to that of N2 → N1χ. Then the total decay widths ΓNi of the lightest and

heavier right-handed neutrinos are generally written by

ΓN1 ≈ Γ̃1, ΓN2 = Γ̃2 + ΓN2→N1χ + Γ2, (C.2.7)

where Γi are the three-body decay widths of Ni and will be described in the next section.

The CP asymmetry in the ordinary leptogenesis comes from the interference of the

right-handed neutrino’s two-body decays (the tree-level and the right two diagrams in

Fig. C.1), where the phases of neutrino Yukawa couplings play an important role. The

asymmetry parameters ε̃
(LH)
i associated with this interference is evaluated as (for a review

[DNN08]),

ε̃
(LH)
i =

ΓNi→LH − ΓNi→L̄H̄
ΓNi→LH + ΓNi→L̄H̄

=
1

8π(yνyν†)ii

∑
j

Im
[
(yνyν†)ji

]2
g(m2

Nj
/m2

Ni
), (C.2.8)

where g(x) in the SM is given by g(x) =
√
x
[

2−x
1−x − (1 + x) log

(
1+x
x

)]
. It is noticed that,

when ωij are real or pure imaginary, ε̃
(LH)
i vanish and the two-body decay via the neutrino

Yukawa loop does not generate the CP asymmetry.

In addition to the SM particle loops, lighter right-handed neutrinos and the scalar field

χ give an additional asymmetry in the two-body decay of heavier right-handed neutrinos.
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Figure C.1: The one-loop two-body decays of a right-handed neutrino Ni to the SM fields.

(Left) from lighter right-handed neutrinos and the scalar χ. (Middle and Right) from the

SM loops.

The left diagram in Fig. C.1 shows the relevant one-loop contribution to the Ni decay.

The asymmetry reads from the difference between the decay widths to particles and anti-

particles,

∆ΓNχ =
∣∣M0 +M1

∣∣2 − ∣∣MC
0 +MC

1

∣∣2, (C.2.9)

whereM(C)
0 denotes the amplitude of the tree-level decay to the (anti-)particles andM(C)

1

that of the one-loop diagram including χ, respectively. This is evaluated as

∆ΓNχ =
m4
Ni

4π2

∑
k,l

1

m2
Nl
−m2

Ni

∫ 1

0

dx Im
(
log ∆2

Nkχ

)
Im
[
fli(x)(yνyν†)il

]
, (C.2.10)

where

∆2
Nkχ

= x(x− 1)m2
Ni

+ (1− x)m2
Nk

+ xm2
χ, (C.2.11)

fli(x) =

(
ξ∗lkξki + ξlkξ

∗
ki

mNl

mNi

)
x+ ξ∗lkξ

∗
ki

mNk

mNi

+ ξlkξki
mNkmNl

m2
Ni

. (C.2.12)

In order to produce non-trivial asymmetry, the conditions i 6= k for the interference and

∆2
Nkχ

< 0 are needed. The latter condition is satisfied if the internal loop particles Nk and

χ are lighter than the parent particle Ni, and then only the case of i = 2, k = l = 1 gives

a non-vanishing asymmetry parameter. As a result, we obtain the N -χ loop contribution

to asymmetry parameter

ε̃
(Nχ)
2 =

−mN2

64π2Γ̃2

∫ x+

x−

dx Im
[
f12(x)(yνyν†)21

]
≈ 1

16π(yνyν†)22

Im
[
ξ11ξ

∗
12(yνyν†)12

]
,

(C.2.13)

where x± are the solutions for ∆2
N1χ

= 0. In the latter approximation, we have assumed

the hierarchy mN1 � mN2 . The total CP asymmetry from two-body decay of the lightest

and heavier right-handed neutrinos are given by

ε̃1 = ε̃
(LH)
1 , ε̃2 = ε̃

(LH)
2 + ε̃

(Nχ)
2 . (C.2.14)

With general complex phases of neutrino Yukawa couplings, ε̃
(LH)
i are not necessarily van-

ishing simultaneously. In the following analysis, we simply assume that the CI parameters

are real or pure imaginary to examine the CP asymmetry effect of the flavorful scalar χ.
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Figure C.2: The three-body decay of a right-handed neutrino Ni at tree level including

the scalar χ.

C.3 Three-body decay for asymmetry

When there exist a scalar χ and its (pseudo-) scalar coupling to the right-handed

neutrinos N , non-trivial CP asymmetry can be generated at the three-body decay N →
LHχ (Fig. C.2). Its amplitude is

MNi→LjHχ = −
∑
k

uLj(k1)yν†jkPR
1

/q − m̄Nk

(ξkiPR + ξ∗kiPL)uNi(p), (C.3.1)

where m̄Nk = mNk − iΓNk/2. The initial and final state momenta p, ki are shown in the

figure (q = k1 + k2). The renormalized mass parameters are mr 2
Ni

= m2
Ni
− Γ2

Ni
/4 for

ΓNi being the width of the resonance Ni, but we quantitatively drop any difference of

O((Γ/mN)2) throughout this chapter. Summing up the final charged-lepton flavor and

gauge charge, the three-body decay width becomes

ΓNi→LHχ =
∑
k, l

(yνyν†)lk
256π3m3

Ni

∫ (mNi−mχ)2

0

dm2
12

∫ [m2
23]+

[m2
23]−

dm2
23

1

(m2
12 − m̄∗2Nl)(m2

12 − m̄2
Nk

)

×
[
ξilξ
∗
kim

2
12(m2

12 +m2
23 −m2

χ) + (ξilξkim̄Nk + ξ∗ilξ
∗
kim̄

∗
Nl

)mNim
2
12

+ ξ∗ilξkim̄
∗
Nl
m̄Nk(m

2
Ni
−m2

23)
]
. (C.3.2)

The invariant mass parameters are defined by m2
12 = (k1 + k2)2, m2

23 = (k2 + k3)2, and

the maximum and minimum values of m2
23 with a fixed s are given by [Kum69,Z+20]

[m2
23]± =

1

2

[
m2
Ni

+m2
χ −m2

12 ±
√
λ(m2

Ni
,m2

χ,m
2
12)
]
. (C.3.3)

The three-body decay to the anti-particles ΓNi→L̄H̄χ is evaluated in the same manner.

The total decay width and the CP asymmetry parameter for the three-body decay are

defined by

Γi = ΓNi→LHχ + ΓNi→L̄H̄χ, εi =
ΓNi→LHχ − ΓNi→L̄H̄χ
ΓNi→LHχ + ΓNi→L̄H̄χ

. (C.3.4)

In the following, we will discuss dominant contributions to the widths and asymmetry

parameters and their approximate forms.
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C.3.1 The lightest mode

Among the intermediate states Nk, the lightest one N1 generally gives the dominant

contribution to the N1 three-body decay, i.e., the i = k = l = 1 part in (C.3.2). For a

typical hierarchy of mass parameters, mχ � mN1 � mN2 , the N1 decay width reduces to

Γ
(11)
1 ≈ mN1

64π3
(yνyν†)11

[
|ξ11|2 + Re(ξ2

11)
]

log
(mN1

mχ

)
, (C.3.5)

which is mainly determined by the diagonal coupling ξ11. Compared with the two-body

decay N1 → LH, the width is multiplied by a factor ∼ (ξ11)2/4π log(mN1/mχ), which

can be of order one. If ξ11 is negligibly small, the width is instead given by the k = l = 2

part,

Γ
(22)
1 ≈ m3

N1

384π3m2
N2

(yνyν†)22|ξ12|2. (C.3.6)

The CP asymmetry, the difference between the decay widths to particles and anti-

particles, is usually described by the quantum interference of processes with different

intermediate states. For the current three-body decay, such interference occurs from the

diagrams with different intermediate neutrinos Nk,l (k 6= l), that is, the cross terms in

the amplitude squared. It is important that, in addition to this usual asymmetry, the

present model induces CP asymmetry from a single diagram with one intermediate state.

For example, we find the N1 three-body decay with virtual N1 generates a nonzero CP

asymmetry parameter

ε
(11)
1 ≈ Im(ξ2

11)

|ξ11|2 + Re(ξ2
11)

ΓN1

2mN1

, (C.3.7)

which is irrelevant to the N2 physics at the leading order. (This is the approximate

formula for mχ � mN1 � mN2 . The exact form of asymmetry parameter is found in

Appendix C.B.)

The non-vanishing “interference” from a single diagram (C.3.7) is a characteristic

feature of the present decay mode and its origin is understood by the amplitude form.

The three-body decay amplitude (C.3.1) contains the factor PR(/q + m̄N)(ξPR + ξ∗PL)

between the initial and final spinor wavefunctions. The first projection PR comes from

the Yukawa (chirality-violating) vertex, the second factor (/q + m̄N) the propagator of

heavy unstable fermion, and the third one (ξPR + ξ∗PL) means the Majorana fermion

vertex. The chirality structure implies this factor is divided into two pieces m̄Nξ and

/qξ∗, and hence the squared amplitude generally contains a cross term of these two pieces

(Fig. C.3). Further the corresponding decay width to anti-particles is obtained by the

replacement of couplings ξ ↔ ξ∗ (and yν ↔ yν∗, PR ↔ PL). In the end, the interference

of these two pieces leads to the CP asymmetry proportional to Im(ξ2) Im(m̄), appearing

in the numerator of (C.3.7). We thus find that this CP asymmetry from a single decay

174



ξ

PR

= +/q

PR PR

ξ∗PL ξPR

m̄/q + m̄

2 2

Figure C.3: CP asymmetry (cross term) from a single amplitude squared.

process is generated in the presence of a chiral vertex, a unstable intermediate state, and

a complex decay coupling. The three-body decay of a right-handed neutrino to the SM

particles plus scalar is an interesting realization of all these criteria satisfied.

The interference of different intermediate states also contributes to the CP asymmetry

as usual, and its approximate form is found

ε
(12)
1 ≈ mN1ΓN2

8m2
N2

Im
[
(yνyν†)12ξ12(2ξ11 + 3ξ∗11)

]
(yνyν†)11

[
|ξ11|2 + Re(ξ2

11)
]

log
(mN1

mχ

) . (C.3.8)

Which contribution (C.3.7) or (C.3.8) is the dominant CP asymmetry depends on the

model parameters.

The k = l = 2 part in the N1 decay width only gives a subdominant CP asymmetry

in almost case due to the large mN2 suppression.

C.3.2 Heavier modes

A heavier right-handed neutrino than N1 can also generate CP asymmetry at its

three-body decay. A lighter intermediate state, e.g., N1 meets the resonance around its

mass m2
12 ∼ m2

N1
and then the amplitude is largely enhanced. There are two types of

enhancement in the decay width (C.3.2), the k = l = 1 and cross terms. The enhanced

contributions to the decay width are evaluated with the narrow width approximation. For

the k = l = 1 part, we obtain

Γ
(11)
2 =

mN1

128π3m3
N2

ΓN1

(yνyν†)11

√
λ(m2

N1
,m2

N2
,m2

χ)

×
[
|ξ12|2(m2

N1
+m2

N2
−m2

χ) + 2 Re(ξ2
12)mN1mN2

]
, (C.3.9)

where we have neglected O
(
(ΓN1)2

)
terms. In the limit mχ � mN1 � mN2 and ΓN1 ≈ Γ̃1,

the N1 resonant contribution (C.3.9) is equal to 1
2
ΓN2→N1χ. (The prefactor 1

2
implies Γ̃1

contains the decays both to particles and anti-particles.) We also find the cross-term

contribution is relatively suppressed than the k = l = 1 one. The enhanced on-shell decay

(C.3.9) is controlled by the off-diagonal coupling ξ12. When ξ12 is negligibly small, the N2

three-body decay width is dominantly given by the non-resonant k = l = 2 part and its

approximate form is

Γ
(22)
2 ≈ mN2

64π3
(yνyν†)22

[
|ξ22|2 + Re(ξ2

22)
]

log
(mN2

mχ

)
. (C.3.10)
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The CP asymmetry of N2 three-body decay is also generated by the resonant and

non-resonant parts. The asymmetry from the N1 resonant part comes from the last term

in (C.3.9) and reads

ε
(11)
2 =

mN1

128π2m2
N2

Γ2

(yνyν†)11

√
λ(m2

N1
,m2

N2
,m2

χ) Im(ξ12)2. (C.3.11)

The usual interference of different diagrams also contributes to the asymmetry and is

approximately found

ε
(12)
2 ≈ −mN1

128π2Γ2

Im
[
(yνyν†)21ξ

∗
22ξ12

]
(C.3.12)

in the limit mN1 � mN2 . This usual cross-term part gives a tiny contribution to the decay

width as mentioned above, but a possibly large one to the CP asymmetry parameter. The

exact form of asymmetry parameters from the resonant contribution is found in Appendix

C.B.

Similar to the N1 decay, there is the CP asymmetry from a single diagram where the

unstable N2 is the intermediate state. In this case, the difference of the decay widths

to particles and anti-particles is the same form as in the N1 decay, but the total three-

body decay width has several possibilities as described above. The resultant asymmetry

parameter from the N2-intermediate diagram becomes

ε
(22)
2 ≈ ΓN2

128π3Γ2

(yνyν†)22 Im(ξ2
22) log

(mN2

mχ

)
(C.3.13)

Among the above 3 types of ε2, the leading contribution is generally given by the non-

resonant part (C.3.13) except for a tiny ξ22 (see Fig. C.4). We thus find for the N2

three-body decay that the width is determined by the diagonal k = l = 1 or k = l = 2

part, and the CP asymmetry is governed by the non-resonant k = l = 2 part.

C.4 Lepton asymmetry with χ scalar

C.4.1 Boltzmann equations

In this section, solving the Boltzmann equations in the present system, we discuss the

time evolution of yields and the washout effect of asymmetry.

In the following analysis, we apply for simplicity the single flavor approximation to

the lepton asymmetry, and write the yields of leptons and anti-leptons as

YL = Y eq
L +

1

2
Y∆L, YL̄ = Y eq

L −
1

2
Y∆L, (C.4.1)

where Y∆L denotes the yield of the lepton asymmetry. If one would like to include flavor-

dependent effects, a further detailed analysis with, e.g., the density matrix formalism, is

needed [GMP21], but that is beyond the purpose of this work. The SM particles including
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Figure C.4: A typical comparison of various asymmetry parameters. The approximate

formulae of these parameters are given in the text. (Left) |ξ11| = |ξ22| = 10−5. (Right)

|ξ11| = |ξ22| = 1. In these figures, the neutrino Yukawa couplings are roughly replaced by

the mass eigenvalues of neutrinos as (yνyν†)ij ∼ (mNimNjmνimνj)
1/2/v2, and the complex

phases of couplings are assumed such that the asymmetry parameters take their maximal

values.

the leptons and the Higgs field are assumed to be in the thermal bath. In this setup, the

Boltzmann equations needed for the lepton asymmetry are given by

Hx
dYN1

dx
≈ K1(mN1/T )

K2(mN1/T )
Y eq
N1

[
Γ̃1

(
1− YN1

Y eq
N1

)
− 1

2
Γ̃1ε̃1

Y∆L

Y eq
L

+ Γ1

(
−YN1

Y eq
N1

+
Yχ
Y eq
χ

)

− 1

2
Γ1ε1

Yχ
Y eq
χ

Y∆L

Y eq
L

]
+
K1(mN2/T )

K2(mN2/T )
Y eq
N2

ΓN2→N1χ

(
YN2

Y eq
N2

− YN1

Y eq
N1

Yχ
Y eq
χ

)
, (C.4.2)

Hx
dYN2

dx
≈ K1(mN2/T )

K2(mN2/T )
Y eq
N2

[
Γ̃2

(
1− YN2

Y eq
N2

)
− 1

2
Γ̃2ε̃2

Y∆L

Y eq
L

+ Γ2

(
−YN2

Y eq
N2

+
Yχ
Y eq
χ

)

− 1

2
Γ2ε2

Yχ
Y eq
χ

Y∆L

Y eq
L

− ΓN2→N1χ

(
YN2

Y eq
N2

− YN1

Y eq
N1

Yχ
Y eq
χ

)]
, (C.4.3)

Hx
dY∆L

dx
≈
∑
i

K1(mNi/T )

K2(mNi/T )
Y eq
Ni

[
Γ̃iε̃i

(
YNi
Y eq
Ni

− 1

)
− 1

2
Γ̃i
Y∆L

Y eq
L

+ Γiεi

(
YNi
Y eq
Ni

− Yχ
Y eq
χ

)
− 1

2
Γi
Yχ
Y eq
χ

Y∆L

Y eq
L

]
, (C.4.4)

Hx
dYχ
dx
≈
∑
i

K1(mNi/T )

K2(mNi/T )
Y eq
Ni

[
Γi

(
YNi
Y eq
Ni

− Yχ
Y eq
χ

)
+

1

2
Γiεi

Yχ
Y eq
χ

Y∆L

Y eq
L

]

+ Y eq
N2

K1(mN2/T )

K2(mN2/T )
ΓN2→N1χ

(
YN2

Y eq
N2

− YN1

Y eq
N1

Yχ
Y eq
χ

)
, (C.4.5)

where the dimensionless parameter x is introduced by x = mN1/T , Kn(z) denotes the

modified Bessel function of second kind, and off-shell scattering contributions are dropped
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N2 decay dominant N1 decay dominant

weak washout YFI
∆L(z1) Y FI

∆L(∞)

strong washout —– YWO
∆L (∞)

Table C.1: Four possible patterns of dominant contributions to the lepton asymmetry.

for simplifying the analysis. For the three-body decay process, the on-shell contributions of

right-handed neutrinos are deducted in order to avoid the double counting when deriving

the Boltzmann equations (C.4.2)–(C.4.5).

The right-handed neutrinos are first generated by their interactions to the thermal

bath, and the lepton asymmetry and the scalar χ are produced via the right-handed

neutrino decays. While the total amounts of the lepton asymmetry and χ are related,

the washout (inverse decay) effect via the neutrino Yukawa couplings deduces only the

asymmetry. The Boltzmann equation for the lepton asymmetry approximately becomes

dY∆L

dx
≈
∑
i

1

Hx

K1(mNix/mN1)

K2(mNix/mN1)

[
Γiεi

(
YNi −

Y eq
Ni
Yχ

Y eq
χ

)
− 1

2

(
Γ̃i + Γi

Yχ
Y eq
χ

)
Y eq
Ni

Y eq
L

Y∆L

]
,

where the ε̃i terms have been dropped since we are interested in the asymmetry produced

by the three-body decay process. The first term of rhs produces the asymmetry via the

Ni decay and the second term denotes the washout term. Depending on the N1 or N2

decay process being dominant to the production and the washout effect being strong or

weak, there are four possibilities of the main lepton asymmetry as listed in Table C.1. We

also show in Fig. C.5 the typical time evolution of the yields corresponding to these four

patterns, respectively. The top panels in Fig. C.5 are the results for the weak washout,

and the bottom panels are for the strong one. Further, the N2 decay process is the

main contribution to the asymmetry in the left panels in Fig. C.5 and the N1 process is

dominant in the right panels. Roughly speaking, the relic of lepton asymmetry in the

bottom line is given by that in the top line times the washout suppression factor.

In the case that the freeze-in production from N2 is dominant (top-left panel), we have

to take the washout effect into account (for the detail, see Appendix C.C.2). The lepton

asymmetry of this case is evaluated by

YFI
∆L(z1) =

∫ z1

0

dx′F2(x′) exp

[
−
∫ z1

x′
dx′′W2(x′′)

]
, (C.4.6)

where

W2 :=
1

2Hx

K1(mN2x/mN1)

K2(mN2x/mN1)

(
Γ̃2 + Γ2

Yχ
Y eq
χ

)
Y eq
N2

Y eq
L

+
1

2Hx

K1(x)

K2(x)

(
Γ̃1 + Γ1

Yχ
Y eq
χ

)
Y eq
N2

Y eq
L

,

(C.4.7)

F2 =
1

Hx

K1(mN2x/mN1)

K2(mN2x/mN1)
Γ2ε2

(
YN2 −

Y eq
N2

Y eq
χ

Yχ

)
+

1

Hx

K1(x)

K2(x)
Γ1ε1

(
YN1 −

Y eq
N1

Y eq
χ

Yχ

)
.

(C.4.8)
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Figure C.5: The time evolution of the yields. In the top panels, the washout effect is

weak and the asymmetry is produced by the freeze-in mechanism of the right-handed

neutrino decays. The washout works well in the bottom panels. In the left panels, the

N2 decay is the dominant production channels and N1 dominant in the right panels. The

solid lines are numerical solutions of the Boltzmann equations [Eqs. (C.4.2)–(C.4.5)]. The

orange dashed line is evaluated by solving the Boltzmann equations of N1, χ and ∆L

with YN2 = Y eq
N2

. The dot-dashed dark red, dark green and dark blue lines are given by

Eqs. (C.4.6), (C.4.13) and (C.4.14), respectively.

YN2 =
45
√

10

2π5g
1/2
∗ gS∗

MPmN2Γ̃2

m3
N1

x3, (C.4.9)

Yχ =
135

2π6g∗gS∗

M2
Pm

2
N2

Γ̃2(ΓN2→N1χ + Γ2)

m6
N1

x6, (C.4.10)

YN1 =
45
√

10

2π5g
1/2
∗ gS∗

MP Γ̃1

m2
N1

x3 +
135

2π6g∗gS∗

M2
Pm

2
N2

Γ̃2(ΓN2→N1χ + Γ2)

m6
N1

x6. (C.4.11)

z1 is given by using these YN2 and Yχ as

z1 = min(zN2 , zχ), YN2(zN2) =
45

π4gS∗
, Yχ(zχ) =

45

2π4gS∗
, (C.4.12)

and zN2 (zχ) is regarded as the time of N2 (χ) being close to the thermal equilibrium. The

washout gives the exponential suppression through e−
∫
dx′W2(x′). On the other hand, if

the N1 process is dominant, the asymmetry is mainly produced by the ordinary freeze-in
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mechanism via N1 decay such as the FIMP dark matter [HJMRW10] (top-right panel in

Fig. C.5). The relic of the lepton asymmetry is written as

Y FI
∆L(∞) ≈ 135

√
10

2π5g
1/2
∗ gS∗

MPΓ1ε1
m2
N1

∫ ∞
0

dx x3K1(x) =
405
√

10

4π4g
1/2
∗ gS∗

MPΓ1ε1
m2
N1

. (C.4.13)

If the washout is strong and dilutes the relic from the N1 decay (bottom right panel

in Fig. C.5), the lepton asymmetry is evaluated as

YWO
∆L (∞) =

∫ ∞
0

dx′F1(x′) exp

[
−
∫ ∞
x′

dx′′W1(x′′)

]
, (C.4.14)

where the washout function of this case is given by

W1 :=
1

2Hx

K1(mN2x/mN1)

K2(mN2x/mN1)
(Γ̃2 + Γ2)

Y eq
N2

Y eq
L

+
1

2Hx

K1(x)

K2(x)
(Γ̃1 + Γ1)

Y eq
N1

Y eq
L

, (C.4.15)

and we introduce the following function

F1 :=
1

Hx

K1(mN2x/mN1)

K2(mN2x/mN1)
Γ2ε2

(
Γ̃2 + Γ2

mN2

)
Y eq
N2

+
1

Hx

K1(x)

K2(x)
Γ1ε1

(
Γ̃1 + Γ1

mN1

)
Y eq
N1
. (C.4.16)

C.4.2 Parameter space

Based on the analysis of the Boltzmann equations in the previous subsection, we

discuss the parameter spaces of the model where the lepton asymmetry is properly gener-

ated. The Majorana masses of the right-handed neutrinos are fixed to mN1 = 1010 GeV,

mN2 = 1012 GeV, and mN3 = 1014 GeV. N3 is heavy so that it is assumed not to join the

initial and final states of our considering processes. The scalar χ is light and its mass is

assumed in this work to be mχ = 10−3 GeV, but its detailed value does not largely affect

the asymmetry. As for the CI parameters (the degrees of freedom of neutrino Yukawa

couplings), we consider the following two typical patterns of parameters:

(I) Real CI parameters

ω12 =
1

4
, ω23 =

3

7
, ω13 = 0 (C.4.17)

(II) Pure imaginary CI parameters

ω12 = 2i, ω23 = i, ω13 = 0. (C.4.18)

With these parameter sets, the asymmetry from the SM particle loops vanish, ε̃
(LH)
i = 0,

found from Eq. (C.2.8).

Fig. C.6 shows the relic of the lepton asymmetry Y∆L(∞) for

Re ξ =

(
1
20

Re ξ12

Re ξ12
1
10

)
, Im ξ =

(
1
2

Im ξ12

Im ξ12 1

)
. (C.4.19)
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Figure C.6: The density plots of the lepton asymmetry in the (Re ξ12, Im ξ12) plane. The

left panel is the parameter space for the normal mass hierarchy and all the CI parameters

real-valued. In other two panels, the inverted mass hierarchy is assumed and the middle

(right) panel shows the parameter space with all the CI parameters being real (pure

imaginary). The light blue regions properly produce the observed baryon asymmetry in

the universe.

The light blue regions properly produce the observed baryon asymmetry. The CP asym-

metry parameters Eqs. (C.3.7), (C.3.8) and (C.3.11)–(C.3.13) are roughly determined by

the large values in ξ2, which then lead to the contours seen in Fig. C.6.

The left panel of Fig. C.6 is the parameter space for the normal mass hierarchy of

neutrinos and real CI parameters, where the washout effect is less dominant. In this

case, larger values of couplings lead larger lepton asymmetry through the freeze-in like

production of N1. Then the lepton asymmetry reduces due to weaker couplings, but the

asymmetry becomes large again when ξ12 is small enough. This is because the freeze-in

like production of N2 is dominant. If the washout effect works well as in the inverted mass

hierarchy, the lepton asymmetry is suppressed as shown in the middle and right panels

of Fig. C.6. When the CI parameters are real, the final value of the lepton asymmetry

tends to converge to a value slightly smaller than 10−10 if ξ are feeble couplings, which

means the relic asymmetry is determined by the neutrino Yukawa couplings. However

the washout is relatively stronger if ξ is larger, and the relic is more suppressed. On the

other hand, the washout effect of neutrino Yukawa couplings works well and the lepton

asymmetry can only take a tiny value. In this case, an enough large coupling is needed for

a large amount of Y∆L produced in the early universe to explain the observed asymmetry

even when it is washed out. From these observations, the tree-level leptogenesis from

the three-body decay of right-handed neutrinos with a flavorful scalar does not favor the

inverted mass hierarchy of neutrinos.

We now discuss a singlet scalar χ and its general form of couplings to the right-handed

neutrinos. If χ is something like a pNGB associated with the lepton number symmetry,

the imaginary parts of the diagonal couplings ξii tend to be dominant. Keeping in mind
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Figure C.7: The density plots of the lepton asymmetry in the (Im ξ12,Re ξ11),

(Im ξ12,Re ξ22) and (Re ξ11,Re ξ22) planes with the parameterization (C.4.20). The nor-

mal mass hierarchy and real CI parameters are adopted for realizing Y∆L(∞) ∼ 10−10.

this fact, we take the coupling ξ as

Re ξ =

(
Re ξ11 0

0 Re ξ22

)
, Im ξ =

(
10−2 Im ξ12

Im ξ12 1

)
. (C.4.20)

The parameter spaces are shown in Fig. C.7 when Re ξ11, Re ξ22 and Im ξ12 are assumed

to be the modifications to the imaginary diagonal elements. In this situation, the lepton

asymmetry is produced by the freeze-in mechanism of N1 or N2 as shown in the top panels

of Fig. C.5, and there exist the allowed regions between the parameter spaces of over- and

under-productions of the asymmetry.

On the other hand, the parameter spaces of the imaginary diagonal elements are shown

in Fig. C.8. For evaluating the lepton asymmetry in these planes, Im ξ12 and one of Im ξ12

or Re ξ22 are fixed to 10−1 or 10−5, and the normal mass hierarchy for the neutrino masses

is assumed. As seen from these figures, larger couplings lead to larger relic asymmetry,

similar to the above cases of the normal mass hierarchy, and Im ξ11, Im ξ22 ∼ 10−(1–2) are

favored.

C.4.3 Property of χ scalar

In the present work, the scalar field χ has two important property that (i) it has

the complex coupling ξij to the parent decay particles and (ii) its remnant Yχ in the

present universe is large. That is a general result to have an appropriate order of baryon

asymmetry generated from the three-body decay including χ.

Let us first discuss about the coupling ξij. The analysis in the above shows that

ξij should be complex-valued so that the CP asymmetry is properly produced through

the three-body decay. Further the flavor-changing components ξij (i 6= j) can play an

important role for the leptogenesis. These nature of couplings put some constraint on the

property of the field χ, for example, a dynamical completion in high-energy regime.
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Figure C.8: The density plots of the lepton asymmetry in the (Im ξ11, Im ξ22) plane for

the normal mass hierarchy. (Left) Im ξ12 = 10−1, Re ξ12 = 10−1. (Middle) Im ξ12 = 10−5,

Re ξ12 = 10−1. (Right) Im ξ12 = 10−5, Re ξ22 = 10−1.

• NGB :

A simple example for scalar couplings to neutrinos is the one whose VEV gives the

masses of right-handed neutrinos Ni. If such a scalar is complex, the coupling has

the lepton number symmetry (the chiral rotation of Ni) and the scalar VEV breaks

it. As a result of symmetry breaking, a NGB appears [CMP80, CMP81, GR81],

which couples to Ni and can be identified to χ. This is a typical and the simplest

dynamical realization of the present model. It is however noticed that, if the NGB

nature is exact, χ is massless and its couplings to Ni are real and flavor diagonal,

i.e., ξij = ci δij, ci ∈ R. As mentioned above, such a too simple form of scalar

couplings is not suitable for generating the asymmetry.

• Flavor-dependent interaction :

There are several ways to ameliorate the NGB problem, too simple ξij, found in

the above simplest setup. The first is to introduce multi scalars which couple to the

right-handed neutrinos Ni. These scalars generally couple to each other and develop

nonzero VEVs. The resultant NGB, which is identified to χ, is a linear combination

of (the phases of) these scalars. As a result, the flavor structure becomes different

between the masses and the scalar couplings of right-handed neutrinos.

A more interesting realization is to assign generation-dependent charges to lep-

tons under some flavor symmetry. The assignment is chosen so that the masses (and

Yukawa couplings) are forbidden and then induced by some VEV of complex scalar,

charged under the same flavor symmetry [FN79]. In this case, χ is possibly the NGB

of flavor symmetry and its coupling to leptons is determined by the flavor structure

of lepton masses and symmetry charges. Unless the masses and charges have exactly

the same structure, the χ couplings are generally flavor dependent [DW82, Wil82]

(and complex valued). Typical examples may be constructed with flavor U(1) sym-

metry for fermion mass hierarchy, and non-universal anomaly-free lepton numbers
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such as Lµ − Lτ and others [BV91,MS15].

• Radiative corrections :

The NGB property is not exactly hold if the original symmetry is somehow

violated via explicit breaking terms. A well-known example is the scalar mass term

which does not respect (global) symmetry, and hence the NGB acuires its nonzero

mass (the “pion” mass) at classical level. With such explicit breaking, one generally

expects to have non-vanishing radiative corrections to unusual NGB couplings and

resolve the NGB problem mentioned above. There are phenomenological analysis for

large breaking, e.g., a heavy NGB of the lepton number symmetry [AHO+20,MY10],

where suitably size of corrections might be obtained.

The large remnant of χ is another characteristic result of the model. We here discuss

two approaches to this issue: (i) additional scalar interactions. (ii) a very light χ. The

first resolution is to introduce additional interaction such that it suppresses the scalar

abundance somewhere in the thermal history. However, when χ is the NGB of high-scale

symmetry, its large decay constant generally suppresses the χ couplings to the SM fields

and cannot give an enough suppression to the χ abundance. For example, when χ is

the NGB of lepton number symmetry which couples to the right-handed neutrinos, a

typical ratio Γ/H(T = mχ) is 10−20 ξ2(mχ/GeV). We are therefore lead to the situation

that the scalar including three-body decay is not a NGB-like pseudo-scalar χ but some

heavy real scalar ρ (heavier than the electroweak scale). As long as ρ is rather lighter

than Ni, the analysis of leptogenesis from three-body decay discussed in this chapter is

unchanged even for Ni → LjHρ. Dynamical examples of ρ are a partner of NGB (a radial

fluctuation around a VEV), a massive scalar in the multi scalar scenario, and so on. A

main difference between χ and ρ is the interaction to other (SM) fields. In particular,

for the Higgs portal interaction, ρ interacts with the portal quartic coupling λ, but χ has

a suppressed amplitude given by λE2/(VEV)2 where E is the energy scale considered.

Upon the decoupling E ∼ mρ or mχ, the latter interaction (for χ) is too tiny to reduce

the abundance, and the former one (for ρ) can be used for the suppression. Whether ρ

is the dark matter component in the universe or not depends on the model parameters,

though both are possible to realize.

The second option is to assume that χ is very light and does not contribute much to

the mass density of the present universe. The relic abundance of χ is given by Ωχh
2 =

mχs0Yχ,0/(εc,0/h
2) with the today entropy and critical energy densities, s0 = 2891 cm−3

and εc,0 = 5.16(h/0.7)2 GeV/m3. If this abundance is required to be less than the observed

dark matter density times a small ratio δ, that implies the upper bound on mχ,

mχ < δ
ΩDMεc,0
s0Y

eq
χ

= 1.89× 10−7 δ [GeV] (C.4.21)

where we have assumed Yχ,0 is equal to the equilibrium value Y eq
χ . For example, χ has a

sub-eV mass for δ = 10−3 but weighs more than the current temperature. Furthermore
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the interaction of χ to the SM sector is generally suppressed by O(mν). Such a very light

and feebly-interacting scalar may be harmlessly floating in the present universe.

C.5 Summary

We have studied the lepton asymmetry produced by the tree-level right-handed neu-

trino three-body decays with a singlet scalar field. In order to cover the general case,

we considered the scalar and pseudo-scalar couplings between the scalar field and right-

handed neutrinos. We evaluated the right-handed neutrino two-body and three-body

decay widths with the scalar field and the asymmetry parameters. For the decay widths,

the k = l = 1 contribution tends to be dominant in the lightest N1 decay, and the contri-

bution of the resonant k = l = 1 or the non-resonant k = l = 2 is dominant depending

on ξ in the heavier N2 decay. For the asymmetry parameters, not only usual cross terms

but also the k = l = 1 can be dominant to ε1, and the k = l = 2 term is the leading

contribution to ε2. In the latter two contributions, the CP asymmetry comes from a

single decay process, which is characteristic of the existence of the flavorful scalar. We

derived the Boltzmann equations and discussed there are four typical patterns of the lep-

ton asymmetry production depending on the N1 or N2 decay process being dominant to

the production and the washout effect being strong or weak. Based on these analyses,

we show the parameter space of the model where the lepton asymmetry is properly gen-

erated. For example, we find the tree-level leptogenesis via the three-body decay with

the flavorful scalar does not favor the inverted mass hierarchy due to the strong washout

suppression, without a help of the two-body decay asymmetry.

In this chapter, we consider a simplified model with a single flavorful scalar coupling to

the right-handed neutrinos and investigate the possibility of the leptogenesis via the three-

body decay with specific values of couplings. Pursuing the UV origin of this additional

scalar such as a pNGB and a more detailed analysis of flavor dynamics are important and

left for future study.

Appendix C.A Three-body decay widths

We consider for simplicity the two-generation case N1,2. The generalization to more

generations is straightforward. We assume mχ � mNi and no large hierarchy among mNi .

The masses of charged leptons and Higgs boson are dropped in the following formulae.

The three-body decay width of the lightest right-handed neturino N1 is found from the

full form (C.3.2) after the phase space integral as

ΓN1→LjHχ =
∑
k, l

yνljy
ν∗
kj

(
ξ∗1lξ1kG

A
kl + ξ1lξ

∗
1kG

B
kl + ξ∗1lξ

∗
1kG

C
kl + ξ1lξ1kG

D
kl

)
=
∑
k, l

Γ
(kl)
1 ,

(C.A.1)
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where k, l indicate the contributions to the amplitudes which contain the intermediate

states are Nk,l, respectively. For example, k 6= l means the cross term in the amplitude

squared. Each piece GA,B,C,D reads from the full form (C.3.2) and not explicitly given

here. We instead show the exact form of Γ
(kl)
1 , corresponding M∗

kMl, where Mm is the

N1 three-body decay amplitude with the intermediate state Nm. The result is found in

the limit of light mχ as

Γ
(11)
1 =

1

128π3
yν1jy

ν∗
1j

[
|ξ11|2mN1 + Re(ξ2

11m̄N1)
]

log
(mN1

mχ

)
, (C.A.2)

Γ
(12)
1 =

1

512π3m3
N1

yν2jy
ν∗
1j

[
ξ11ξ

∗
12m̄N1m̄

∗
N2

[(
m2
N1

+m2
N2

)
log
( m2

N2

m2
N2
−m2

N1

)
−m2

N1

]
+ 2mN1(ξ11ξ12m̄N1 + ξ∗11ξ

∗
12m̄

∗
N2

)
[
m2
N2

log
( m2

N2

m2
N2
−m2

N1

)
−m2

N1

]
+ ξ∗11ξ12

[
m2
N2

(m2
N1

+m2
N2

) log
( m2

N2

m2
N2
−m2

N1

)
−m2

N1
m2
N2
− 3

2
m4
N1

] ]
, (C.A.3)

Γ
(21)
1 = Γ

(12)∗
1 , (C.A.4)

Γ
(22)
1 =

1

512π3m3
N1

yν2jy
ν∗
2j

[
|ξ12|2

[
(5m4

N2
−m4

N1
) log

( m2
N2

m2
N2
−m2

N1

)
− 5m2

N1
m2
N2
− 5

2
m4
N1

]
+ 4 Re(ξ2

12m̄N2)mN1

[
(2m2

N2
−m2

N1
) log

( m2
N2

m2
N2
−m2

N1

)
− 2m2

N1

] ]
. (C.A.5)

When N2 is much heavier than N1, the expressions are reduced to

Γ
(12)
1 = Γ

(21)∗
1 ≈ mN1m̄

∗
N2

1024π3m2
N2

yν2jy
ν∗
1j ξ

∗
12(3ξ11m̄N1 + 2ξ∗11mN1), (C.A.6)

Γ
(22)
1 ≈ m3

N1

768π3m2
N2

yν2jy
ν∗
2j |ξ12|2. (C.A.7)

The last equation implies that the k = l = 2 mode does not induce CP asymmetry at the

leading order and then highly suppressed for the N1 decay.

For a heavier right-handed neutrino, its three-body decay can meet the resonance

around the mass of a lighter intermediate state, and then the width is largely enhanced.

In the present case, the N2 decay width ΓN2→LjHχ has the enhancement both for k = l = 1

and the sum of cross terms, namely, Γ
(11)
2 and Γ

(12)
2 +Γ

(21)
2 in the similar notation as (C.A.1).

These on-shell contributions to the decay width are evaluated from the full form (C.3.2)

with the narrow width approximation. For the k = l = 1 part, we obtain

Γ
(11)
2 =

mN1

256π2

m2
N2
−m2

N1

m3
N2

ΓN1

yν1jy
ν∗
1j

[
|ξ12|2(m2

N1
+m2

N2
) + 2 Re(ξ2

12m̄N1)mN2

]
, (C.A.8)

where ΓN1 in the denominator indicates N1 is the real intermediate state. Compared with

the decay width for N2 → N1χ given in (C.2.6), the on-shell k = l = 1 contribution is

found

Γ
(11)
2 ≈ mN1

16πΓN1

yν1jy
ν∗
1j ΓN2→N1χ ≈

1

2
ΓN2→N1χ. (C.A.9)
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For the cross-term part, a similar evaluation leads to the on-shell resonant contribution,

Γ
(12)
2 + Γ

(21)
2 =

mN1

256π2m3
N2

(m2
N2
−m2

N1
)

[
ΓN2

[
1
2

Re(yν2jy
ν∗
1j ξ
∗
22ξ12)(m2

N1
+m2

N2
)2

− 4 Im(yν2jy
ν∗
1j ξ
∗
12) Im(ξ22)mN1mN2(m2

N1
+m2

N2
) + 2 Re(yν2jy

ν∗
1j ξ22ξ12)m2

N1
m2
N2

]
−
[

Im(yν2jy
ν∗
1j ξ22ξ

∗
12)mN1 + Im(yν2jy

ν∗
1j ξ
∗
22ξ12)mN2

]
(m4

N2
−m4

N1
)

− 2
[

Im(yν2jy
ν∗
1j ξ22ξ12)mN1 + Im(yν2jy

ν∗
1j ξ
∗
22ξ
∗
12)mN2

]
mN1mN2(m2

N2
−m2

N1
)

]
.

(C.A.10)

Finally the non-resonant part, k = l = 2, gives

Γ
(22)
2 =

1

128π3
yν2jy

ν∗
2j

[
|ξ22|2mN2 + Re(ξ2

22m̄N2)
]

log
(mN2

mχ

)
. (C.A.11)

Appendix C.B CP asymmetry (width differences)

For a real particle (a real scalar, a Majorana fermion, etc), the decay to anti-particle

final states is obtained by replacing all coupling constants with their complex conjugates

in the corresponding decay amplitude to particle final states. In the present case, the

three-body decay of Ni to the anti-lepton L̄j, the conjugate of Higgs boson H̄, and the

real scalar χ is described by yν ↔ yν∗ and ξ ↔ ξ∗ (and PR ↔ PL) everywhere in the

amplitude. The CP asymmetry is induced at the decay, proportionally to the difference of

decay widths to particles and corresponding anti-particles. As a result, the asymmetry is

originated from the pieces in the decay widths which are not real with respect to coupling

constants.

The decay width to anti-particles is defined in a similar way to the decay to particles

discussed in the previous section, namely,

ΓN1→LcjH†χ =
∑
k, l

Γ̄
(kl)
1 . (C.B.1)

The differences of partial widths are written as ∆Γ
(kl)
1 = Γ

(kl)
1 − Γ̄

(kl)
1 . From the explicit

forms for Γ
(kl)
1 and the replacement rule mentioned above, we obtain

∆Γ
(11)
1 =

ΓN1

128π3
yν1jy

ν∗
1j Im(ξ2

11) log
(mN1

mχ

)
, (C.B.2)

∆Γ
(12)
1 + ∆Γ

(21)
1 =

1

256π3m3
N1

[
Im(yν2jy

ν∗
1j ξ11ξ

∗
12)(ΓN1mN2 − ΓN2mN1)

×
[(
m2
N1

+m2
N2

)
log
( m2

N2

m2
N2
−m2

N1

)
−m2

N1

]
+mN1

[
Im(yν2jy

ν∗
1j ξ11ξ12)ΓN1 − Im(yν2jy

ν∗
1j ξ
∗
11ξ
∗
12)ΓN2

]
187



×
[
m2
N2

log
( m2

N2

m2
N2
−m2

N1

)
−m2

N1

] ]
, (C.B.3)

∆Γ
(22)
1 =

ΓN2

128π3m2
N1

yν2jy
ν∗
2j Im(ξ2

12)
[
(2m2

N2
−m2

N1
) log

( m2
N2

m2
N2
−m2

N1

)
− 2m2

N1

]
.

(C.B.4)

When N2 is much heavier than N1, the expressions are reduced to

∆Γ
(12)
1 + ∆Γ

(21)
1 ≈ −m

2
N1

ΓN2

512π3m2
N2

Im
[
yν2jy

ν∗
1j ξ
∗
12(3ξ11 + 2ξ∗11)

]
, (C.B.5)

∆Γ
(22)
1 ≈ m4

N1
ΓN2

768π3m4
N2

yν2jy
ν∗
2j Im(ξ2

12). (C.B.6)

In a similar way, we have the width differences for the N2 resonant and non-resonant

three-body decay,

∆Γ
(11)
2 =

mN1

128π2

m2
N2
−m2

N1

m2
N2

yν1jy
ν∗
1j Im(ξ2

12), (C.B.7)

∆Γ
(12)
2 + ∆Γ

(21)
2 =

−mN1

128π2m3
N2

[[
Im(yν2jy

ν∗
1j ξ22ξ

∗
12)mN1 + Im(yν2jy

ν∗
1j ξ
∗
22ξ12)mN2

]
(m2

N1
+m2

N2
)

+ 2
[

Im(yν2jy
ν∗
1j ξ22ξ12)mN1 + Im(yν2jy

ν∗
1j ξ
∗
22ξ
∗
12)mN2

]
mN1mN2

]
,

(C.B.8)

∆Γ
(22)
2 =

ΓN2

128π3
yν2jy

ν∗
2j Im(ξ2

22) log
(mN2

mχ

)
. (C.B.9)

Appendix C.C Boltzmann equations and asymmetry

formulae

C.C.1 Boltzmann equations

The Boltzmann equations for the system of Eq. (C.2.1) are given by

Hx
dYN1

dx
=
K1(mN1/T )

K2(mN1/T )
Y eq
N1

[∑
j

Γ̃1j

(
1− YN1

Y eq
N1

)
− 1

2

∑
j

Γ̃1j ε̃1j
Y∆Lj

Y eq
L

+
∑
j

Γ1j

(
Yχ
Y eq
χ
− YN1

Y eq
N1

)
− 1

2

∑
j

Γ1jε1j
Yχ
Y eq
χ

Y∆Lj

Y eq
L

]
+
K1(mN2/T )

K2(mN2/T )
Y eq
N2

ΓN2→N1χ

(
YN2

Y eq
N2

− YN1

Y eq
N1

Yχ
Y eq
χ

)
+ Cscat., (C.C.1)

Hx
dYN2

dx
=
K1(mN2/T )

K2(mN2/T )
Y eq
N2

[∑
j

Γ̃2j

(
1− YN2

Y eq
N2

)
− 1

2

∑
j

Γ̃2j ε̃2j
Y∆Lj

Y eq
L

+
∑
j

Γ2j

(
Yχ
Y eq
χ
− YN2

Y eq
N2

)
− 1

2

∑
j

Γ2jε2j
Yχ
Y eq
χ

Y∆Lj

Y eq
L
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− ΓN2→N1χ

(
YN2

Y eq
N2

− YN1

Y eq
N1

Yχ
Y eq
χ

)]
+ Cscat., (C.C.2)

Hx
dY∆Li

dx
=
∑
j

K1(mNj/T )

K2(mNj/T )
Y eq
Nj

[
Γ̃jiε̃ji

(
YNj
Y eq
Nj

− 1

)
− 1

2
Γ̃ji

Y∆Li

Y eq
L

+ Γjiεji

(
YNj
Y eq
Nj

− Yχ
Y eq
χ

)
− 1

2
Γji

Yχ
Y eq
χ

Y∆Lj

Y eq
L

]
+ Cscat., (C.C.3)

Hx
dYχ
dx

=
∑
i,j

K1(mNi/T )

K2(mNi/T )
Y eq
Ni

[
Γij

(
YNi
Y eq
Ni

− Yχ
Y eq
χ

)
+

1

2
Γijεij

Yχ
Y eq
χ

Y∆L

Y eq
L

]
+
K1(mN2/T )

K2(mN2/T )
Y eq
N2

ΓN2→N1χ

(
YN2

Y eq
N2

− YN1

Y eq
N1

Yχ
Y eq
χ

)
+ Cscat.. (C.C.4)

Cscat. denotes the collision terms of the scattering divided by the entropy density with the

on-shell contribution removed. In deriving these equations, the SM particles, in particular

the leptons and the Higgs bosons, are assumed to be in thermal equilibrium:

YLj = Y eq
L +

1

2
Y∆Lj , YL̄j = Y eq

L −
1

2
Y∆Lj , YH = YH̄ = Y eq

H , (C.C.5)

with the lepton asymmetry of j-th generation Y∆Lj . In this paper, we analyze the Boltz-

mann equations with the single-flavored approximation. The total lepton asymmetry is

defined by

Y∆L :=
∑
i

Y∆Li , (C.C.6)

and the collision terms are approximated as in the following forms:∑
i

Γji
Y∆Li

Y eq
Li

∼ Γj
Y∆L

Y eq
L

,
∑
i

Γjiεji
Y∆Li

Y eq
Li

∼ Γjεj
Y∆L

Y eq
L

, (C.C.7)

∑
i

Γ̃ji
Y∆Li

Y eq
Li

∼ Γ̃j
Y∆L

Y eq
L

,
∑
i

Γ̃jiε̃ji
Y∆Li

Y eq
Li

∼ Γ̃j ε̃j
Y∆L

Y eq
L

. (C.C.8)

Using these equations, the Boltzmann equations (C.C.1)–(C.C.4) are rewritten as

Hx
dYN1

dx
≈ K1(mN1/T )

K2(mN1/T )
Y eq
N1

[
Γ̃1

(
1− YN1

Y eq
N1

)
− 1

2
Γ̃1ε̃1

Y∆L

Y eq
L

+ Γ1

(
−YN1

Y eq
N1

+
Yχ
Y eq
χ

)

− 1

2
Γ1ε1

Yχ
Y eq
χ

Y∆L

Y eq
L

]
+
K1(mN2/T )

K2(mN2/T )
Y eq
N2

ΓN2→N1χ

(
YN2

Y eq
N2

− YN1

Y eq
N1

Yχ
Y eq
χ

)
+ Cscat.,

(C.4.2)

Hx
dYN2

dx
≈ K1(mN2/T )

K2(mN2/T )
Y eq
N2

[
Γ̃2

(
1− YN2

Y eq
N2

)
− 1

2
Γ̃2ε̃2

Y∆L

Y eq
L

+ Γ2

(
−YN2

Y eq
N2

+
Yχ
Y eq
χ

)
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− 1

2
Γ2ε2

Yχ
Y eq
χ

Y∆L

Y eq
L

− ΓN2→N1χ

(
YN2

Y eq
N2

− YN1

Y eq
N1

Yχ
Y eq
χ

)]
+ Cscat., (C.4.3)

Hx
dY∆L

dx
≈
∑
i

K1(mNi/T )

K2(mNi/T )
Y eq
Ni

[
Γ̃iε̃i

(
YNi
Y eq
Ni

− 1

)
− 1

2
Γ̃i
Y∆L

Y eq
L

+ Γiεi

(
YNi
Y eq
Ni

− Yχ
Y eq
χ

)
− 1

2
Γi
Yχ
Y eq
χ

Y∆L

Y eq
L

]
+ Cscat., (C.4.4)

Hx
dYχ
dx
≈
∑
i

K1(mNi/T )

K2(mNi/T )
Y eq
Ni

[
Γi

(
YNi
Y eq
Ni

− Yχ
Y eq
χ

)
+

1

2
Γiεi

Yχ
Y eq
χ

Y∆L

Y eq
L

]

+ Y eq
N2

K1(mN2/T )

K2(mN2/T )
ΓN2→N1χ

(
YN2

Y eq
N2

− YN1

Y eq
N1

Yχ
Y eq
χ

)
+ Cscat.. (C.4.5)

C.C.2 Phenomenological formulae for lepton asymmetry

The Boltzmann equation of the lepton asymmetry (e.g. Eq. (C.4.4)) has following

form:

dY∆L(x)

dx
= F(x)−W (x)Y∆L(x), (C.C.9)

where F(x) is the Y∆L independent function describing the asymmetry production from

decays and scatterings ofNi andW (x) is the washout function. As discussed in Refs. [BCST00,

BDBP04,DNN08], the solution of this equation can be expressed by

Y∆L(x) =

∫ x

xi

dx′F(x′) exp

[
−
∫ x

x′
dx′′W (x′′)

]
+ Y∆L(xi) exp

[
−
∫ x

xi

dx′′W (x′′)

]
.

(C.C.10)

Intuitively, the integral of F means the freeze-in like production [HJMRW10] and e−
∫
dx′W (x′)

denotes the washout suppression. Using this equation, we will show the approximated

values of the lepton asymmetry, YFI
∆L(z1) and YWO

∆L (∞) in the following part of this section.

Case for freeze-in from N2

N2 is mainly produced by the first term of the rhs in Eq. (C.4.3). Using the approxi-

mation for the modified Bessel function

Kn(x) ∼
x∼0

(n− 1)!

2

(
x

2

)−n
, (C.C.11)

the Boltzmann equation is approximately written as

dYN2

dx
≈ 1

Hx

K1

(
mN2

mN1
x
)

K2

(
mN2

mN1
x
) Γ̃2Y

eq
N2
∼ 135

√
10

2π5g
1/2
∗ gS∗

MPmN2Γ̃2

m3
N1

x2, (C.C.12)
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and the yield of N2 is scaled by

YN2 =
45
√

10

2π5g
1/2
∗ gS∗

MPmN2Γ̃2

m3
N1

x3. (C.C.13)

This N2 produces χ and N1 via N2 → N1χ process, and their yields are also written as

Yχ =
135

2π6g∗gS∗

M2
Pm

2
N2

Γ̃2(ΓN2→N1χ + Γ2)

m6
N1

x6, (C.C.14)

YN1 =
45
√

10

2π5g
1/2
∗ gS∗

MP Γ̃1

m2
N1

x3 +
135

2π6g∗gS∗

M2
Pm

2
N2

Γ̃2(ΓN2→N1χ + Γ2)

m6
N1

x6. (C.C.15)

where the contribution of the first term of the rhs in Eq. (C.4.2) is included, which is

scaled by x3 as in the same way to N2. Using these functions, we will evaluate the lepton

asymmetry. From Eq. (C.4.4), The washout function

W2 :=
1

2Hx

K1(mN2x/mN1)

K2(mN2x/mN1)

(
Γ̃2 + Γ2

Yχ
Y eq
χ

)
Y eq
N2

Y eq
L

+
1

2Hx

K1(x)

K2(x)

(
Γ̃1 + Γ1

Yχ
Y eq
χ

)
Y eq
N2

Y eq
L

,

(C.C.16)

is read, and the yield is evaluated by using (C.C.10) as

YFI
∆L(x) =

∫ x

0

dx′F2(x′) exp

[
−
∫ x

x′
dx′′W2(x′′)

]
, (C.C.17)

with

F2 =
1

Hx

K1(mN2x/mN1)

K2(mN2x/mN1)
Γ2ε2

(
YN2 −

Y eq
N2

Y eq
χ

Yχ

)
+

1

Hx

K1(x)

K2(x)
Γ1ε1

(
YN1 −

Y eq
N1

Y eq
χ

Yχ

)
.

(C.C.18)

If the washout suppression is weak enough, which is the case of the neutrino Yukawa

couplings being small, the lepton asymmetry is mainly produced by the right-handed

neutrinos before getting into the thermal bath and the total amount is evaluated as

Y∆L ≈ YFI
∆L(z1), (C.C.19)

where

z1 = min(zN2 , zχ), YN2(zN2) =
45

π4gS∗
, Yχ(zχ) =

45

2π4gS∗
. (C.C.20)

This is regarded as the asymmetry by the freeze-in production including the weak washout

effects.
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Case for strong N1 washout

If the washout of N1 is strong, the lepton asymmetry is mainly determined by this,

and the contribution from YFI
∆L(z1) is exponentially suppressed. The washout function of

this case is given by

W1 :=
1

2Hx

K1(mN2x/mN1)

K2(mN2x/mN1)
(Γ̃2 + Γ2)

Y eq
N2

Y eq
L

+
1

2Hx

K1(x)

K2(x)
(Γ̃1 + Γ1)

Y eq
N1

Y eq
L

, (C.C.21)

where Yχ ≈ Y eq
χ is assumed. Then, the lepton asymmetry is written as

YWO
∆L =

∫ x

0

dx′F1(x′) exp

[
−
∫ x

x′
dx′′W1(x′′)

]
, (C.C.22)

where we introduce the following function

F1 :=
1

Hx

K1(mN2x/mN1)

K2(mN2x/mN1)
Γ2ε2

(
Γ̃2 + Γ2

mN2

)
Y eq
N2

+
1

Hx

K1(x)

K2(x)
Γ1ε1

(
Γ̃1 + Γ1

mN1

)
Y eq
N1
. (C.C.23)

Using these functions, the lepton asymmetry is given by

Y∆L ≈ YWO
∆L (∞). (C.C.24)

Appendix C.D Feynman rules for Majorana fermions

Let us briefly summarize the Feynman rules for the Majorana fermion N = NC . The

kinetic term is the standard form:

Lkin. =
i

2
N/∂N − M

2
NN. (C.D.1)

• For the propagator, we will use

〈NN〉 =
i(/p+M)

p2 −m2
, (C.D.2)

which is the standard propagator of the Dirac fermion [PS95]. 1 However, in addition

to

NN (C.D.5)

1We will give some comments on the propagator [DEHK92]. For a Dirac fermion ψ, we introduce the

propagator by

〈ψψ〉 → i

/p−m
=
i(/p+m)

p2 −m2
= S(p). (C.D.3)

The charge conjugation of this Dirac propagator is given by

〈ψCψC〉 = C
t(〈ψψ〉)C−1 → C tS(p)C−1 =

i

−/p−m
= S(−p) =: S′(p). (C.D.4)
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the all possible contraction should be considered due to the Majorana fermion such

as

NN NN. (C.D.6)

• For the interaction vertex, we will use the standard Feynman rules from the expan-

sion of the partition function∫
DN eiSkineiSint ≈

∫
DN eiSkin

∑
n=0

(iSint)
n

n!
. (C.D.7)

In this calculation, We havue to consider the following possible contractions

NN NN NN.

For the interaction Lagrangian such as χOAψ, we determine to use NN as the

propagator, and other rules are constructed so that they are consistent with this

propagator rule. In order to pursue this method, we will rewrite the interaction

Lagrangian in the ψCεA
tOAχC form by using the following flip formula:

χOAψ = ψCC tOAC−1χC . (C.D.8)

In particular, the transformation rule of the basis of the spinor bi-linear is given by

χOAψ = εAψCOAχC ,

εA =

+1 : OA = 1, γ5, iγ5γµ

−1 : OA = γµ, σµν
. (C.D.9)

The point is that the signature is controlled by γ-matrices and other terms are

rewritten as tOA.

• For the outline spinor, we will use the standard wavefunction:

– Dirac fermion: The mode expansion is given by

ψ(x) =

∫
d3p

(2π)32Ep

∑
s

[
bspu

s(p)e−ip·x + ds†p v
s(p)eip·x

]
, (C.D.10)

ψ(x) =

∫
d3p

(2π)32Ep

∑
s

[
bs†p u

s(p)eip·x + dspv
s(p)e−ip·x

]
, (C.D.11)

then we get the following relations:

ψbs†p → us(p), bspψ → us(p), ψds†p → vs(p), dspψ → vs(p) (C.D.12)
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– ψC : the charge conjugation of ψ is given by

ψC = C
t
ψ, ψC = − tψC−1, (C.D.13)

where C satisfies

C† = C−1, tC = −C, C−1γµC = − tγµ. (C.D.14)

We note that the wavefunctions satisfy

us(p) = C
t
vs(p), vs(p) = C

t
us(p). (C.D.15)

The mode expansion of the fermion is

ψC =

∫
d3p

(2π)32Ep

∑
s

[
bs†p v

s(p)eip·x + dspu
s(p)e−ip·x

]
, (C.D.16)

ψC =

∫
d3p

(2π)32Ep

∑
s

[
bspv

s(p)e−ip·x + ds†p u
s(p)eip·x

]
, (C.D.17)

then the following relations are read:

ψCds†p → us(p), dspψ
C → us(p), ψCbs†p → vs(p), bspψ

C → vs(p) (C.D.18)

Example

Let us the following neutrino Yukawa interaction:

Lint. = −NyH̃†PLL− Ly†H̃PRN. (C.D.19)

The amplitude contributing to the see-saw diagram is evaluated as

iM =
1

2!

[
−iNyH̃†PLL

][
−iNyH̃†PLL

]
=

1

2!

[
−iLC t

(yH̃†PL)N

][
−iNyH̃†PLL

]
∼− 1

2
uL

tyyv2

2
PL
i(/q +M)

q2 −M2
PLuL (C.D.20)

=− 1

2
uL

tyyv2

2

iM

q2 −M2
PLuL. (C.D.21)
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