C-type natriuretic peptide facilitates autonomous Ca²⁺ entry in growth plate chondrocytes for stimulating bone growth C型ナトリウム利尿ペプチドは 自発的な Ca²⁺流入を介して骨伸長を促進する

Graduate School of Pharmaceutical Sciences, Kyoto University

宮崎 侑

Contents

Abstract	1
Introduction	2-3
Results	4-26
Discussion	27-30
Materials and methods	31-37
References	38-41
Publication list	42
Acknowledgments	43

<u>Abstract</u>

The growth plates are cartilage tissues found at both ends of developing bones, and vital proliferation and differentiation of growth plate chondrocytes are primarily responsible for bone growth. C-type natriuretic peptide (CNP) stimulates bone growth by activating natriuretic peptide receptor 2 (NPR2) which is equipped with guanylate cyclase on the cytoplasmic side, but its signaling pathway is unclear in growth plate chondrocytes. I previously reported that transient receptor potential melastatin-like 7 (TRPM7) channels mediate intermissive Ca²⁺ influx in growth plate chondrocytes, leading to activation of Ca²⁺/calmodulin-dependent protein kinase II (CaMKII) for promoting bone growth. In this report, I provide experimental evidence indicating a functional link between CNP and TRPM7 channels. My pharmacological data suggest that CNP-evoked NPR2 activation elevates cellular cGMP content and stimulates big-conductance Ca²⁺-dependent K⁺ (BK) channels as a substrate for cGMP-dependent protein kinase (PKG). BK channel-induced hyperpolarization likely enhances the driving force of TRPM7-mediated Ca²⁺ entry and seems to accordingly activate CaMKII. Indeed, ex vivo organ culture analysis indicates that CNP-facilitated bone growth is abolished by chondrocyte-specific *Trpm7* gene ablation. The defined CNP signaling pathway, the NPR2-PKG-BK channel-TRPM7 channel-CaMKII axis, likely pinpoints promising target proteins for developing new therapeutic treatments for divergent growth disorders.

Introduction

The development of skeletal long bones occurs through endochondral ossification processes, during which chondrocyte layers form the growth plates at both ends of bone rudiments, and then the expanded cartilage portions are gradually replaced by trabecular bones through the action of osteoclasts and osteoblasts [1]. Therefore, bone size largely depends on the proliferation of growth plate chondrocytes during endochondral development. On the other hand, atrial (ANP), brain (BNP) and C-type (CNP) natriuretic peptides regulate diverse cellular functions by activating the receptor guanylate cyclases, NPR1 and NPR2 [2]. Of the natriuretic peptides, CNP exclusively stimulates bone development by acting on growth plate chondrocytes expressing the CNP-specific receptor NPR2 [2-4]. Indeed, loss- and gain-of-function mutations in the human NPR2 gene cause acromesomelic dysplasia and skeletal overgrowth disorder, respectively [5, 6]. Furthermore, translational studies have been probing the benefits of CNP treatments in various animal models with impaired skeletal growth, and a phase III clinical trial of CNP therapy has recently been completed and approved for treatment of patients with achondroplasia primarily resulting from mutations in the FGFR3 gene [7]. It is thus likely that NPR2 guanylate cyclase controls chondrocytic cGMP content during growth plate development. Downstream of NPR2 activation, cGMP-dependent protein kinase (PKG) seems to phosphorylate target proteins to facilitate growth plate chondrogenesis [4]. Activated

PKG is postulated to stimulate the biosynthesis of growth plate extracellular matrix by playing an inhibitory role in the mitogen-activated protein kinase Raf-MEK-ERK cascade [8]. In parallel, glycogen synthase kinase 3β (GSK3 β) is likely activated by PKG-mediated phosphorylation, leading to the hypertrophic maturation of growth plate chondrocytes [9]. However, it is still unclear how CNP promotes bone growth at the molecular level, and it is important to further address CNP signaling cascade in growth plate chondrocytes.

In the transient receptor potential channel superfamily, the melastatin subfamily member 7 (TRPM7) forms a mono- and divalent cation-permeable channel in various cell types and participates in important cellular processes including cell growth and adhesion [10]. My research group recently reported that growth plate chondrocytes generate autonomic intracellular Ca²⁺ fluctuations, which are generated by the intermittent gating of TRPM7 channels, and also that TRPM7-mediated Ca²⁺ entry activates Ca²⁺/calmodulin-dependent protein kinase II (CaMKII), facilitating chondrogenesis for endochondral bone development [11]. Based on these observations, I explored the link between CNP signaling and TRPM7-mediated Ca²⁺ entry through the experiments described in this report. My data obtained clearly indicate that big-conductance Ca²⁺-dependent K⁺ (BK) channels play a key role in the functional coupling between NPR2 and TRPM7 channels in growth plate chondrocytes.

Results

CNP facilitates spontaneous Ca²⁺ fluctuations in growth plate chondrocytes

In the growth plates of developing bones, proliferating cartilage cells, designated as round and columnar chondrocytes, frequently exhibit weak increases and decreases in intracellular Ca^{2+} concentration under resting conditions [11]. On the other hand, previous *in vivo* studies demonstrated that CNP application (>1 µmol/kg) stimulates endochondral bone growth [2]. In my Fura-2 imaging of round chondrocytes within femoral bone slices prepared from wild-type mice, CNP pretreatments (30~300 nM for 1 hr) dose-dependently facilitated spontaneous Ca^{2+} fluctuations (Figure 1A). In particular, fluctuation-positive cell ratio and fluctuation amplitude were remarkably elevated in response to the CNP treatments. In contrast, ANP treatments exerted no effects on Ca^{2+} fluctuations in growth plate chondrocytes.

In chondrocyte-specific *Npr2*-knockout mice (*Npr2*^{fl/fl}, *Col2a1-Cre*^{+/-}), Cre recombinase is expressed under the control of the collagen type $2\alpha 1$ gene promoter and thus inactivates the floxed *Npr2* alleles in a chondrocyte-specific manner [12]. My RT-PCR analysis indicated that the floxed *Npr2* gene was largely inactivated in the growth plates prepared from the E17.5 mutant embryos, but such recombination events were not detected in other tissues examined (Figure 2A and B). Accordingly, *Npr2* mRNA contents in the mutant growth plates were reduced to less than 40% of controls (Figure 2C), despite the growth plate preparations contain not only chondrocytes but also perichondrium-resident cells including undifferentiated mesenchymal cells and immature chondroblasts. In contrast to the imaging observations in wild-type and control bone slices, CNP treatments failed to enhance Ca^{2+} fluctuations in the mutant round chondrocytes prepared from the chondrocyte-specific *Npr2*-knockout mice (Figure 1B). Therefore, CNP seems to facilitate spontaneous Ca^{2+} fluctuations downstream of NPR2 activation in growth plate chondrocytes.

Figure 1

CNP-induced facilitation of Ca²⁺ fluctuations in growth plate chondrocytes.

(A) Fura-2 imaging of round chondrocytes pretreated with or without natriuretic peptides. Femoral bone slices prepared from wild-type C57BL embryos were pretreated with or without CNP and ANP, and subjected to Ca²⁺ imaging. Representative recording traces from three cells are shown in each pretreatment group (upper panels). The effects of CNP and ANP pretreatments on spontaneous Ca²⁺ fluctuations are summarized (lower graphs). The fluctuation-positive cell ratio, fluctuation amplitude and frequency were statistically analyzed, and significant differences from the control vehicle pretreatment are marked with asterisks (*p<0.05 and **p<0.01 in one-way ANOVA and Dunnett's test). The data are presented as the means ± SEM. with *n* values indicating the number of examined mice. (B) Fura-2 imaging of round chondrocytes prepared from chondrocyte-specific *Npr2*-knockout (*Npr2*fl/fl, *Col2a1-Cre*^{+/-}) and control (*Npr2*fl/fl, *Col2a1-Cre*^{-/-}) mice. The bone slices were pretreated with CNP, and then subjected to Ca²⁺ imaging. Representative recording traces are shown (left panels) and the CNP-pretreated effects are summarized (right graphs); significant differences from the wild-type group are marked with asterisks (*p<0.05 in one-way ANOVA and Tukey's test). The data are presented as the means ± SEM. with *n* values

Chondrocyte-specific Npr2 ablation.

(A) Organization of floxed and deleted *Npr2* alleles. The chondrocyte-specific *Npr2*-knockout (*Npr2*^{fl/fl}, *Col2a1-Cre^{+/-}*) mice were previously generated [12]. In this study, genotyping primers were newly designed, and *Npr2* ablation was evaluated in growth plates. The genomic map shows PCR primers for detecting the mutated *Npr2* alleles and *Npr2* mRNA. (B) *Npr2* gene ablation in various tissues from the chondrocyte-specific *Npr2*-knockout mice. Genomic DNAs were prepared from tissues (Gp, humeral growth plate; Br, brain; Lu, lung; Hr, heart; Lv, liver; Ki, kidney) from the E17.5 chondrocyte-specific *Npr2*-knockout and control embryos, and subjected to PCR analysis to detect the floxed and deleted *Npr2* alleles; the *Col2a1-Cre* transgene was also examined. (C) Reduction of *Npr2* mRNA in mutant growth plates prepared from the chondrocyte-specific *Npr2*-knockout mice. Total RNAs were prepared from humeral growth plates from the E17.5 embryos, and subjected to RT-PCR analysis for estimating *Npr2* mRNA content. 18S ribosomal RNA was examined as an internal control. The relative mRNA contents were estimated from cycle thresholds in RT-PCR reactions and are summarized in the bar-graph. The data represent means \pm SEM, and the numbers of mice examined are shown in parentheses. A significant difference between the genotype is marked with an asterisk (***p*<0.01 in *t*-test).

Activated PKG facilitates spontaneous Ca²⁺ fluctuations

CNP binds to NPR2 to activate its intrinsic guanylate cyclase and thus stimulates PKG by elevating cellular cGMP contents [2]. CNP also binds to NPR3 which acts as a decoy receptor for ligand clearance, but the *Npr3* gene seemed to be inactive in growth plate chondrocytes (Figure 3). Next, I pharmacologically verified the contribution of PKG to CNP-facilitated Ca^{2+} fluctuations. The cGMP analog 8-(4-chlorophenylthio)-cyclic GMP (8-pCPT-cGMP) is widely used as a PKG-selective activator, while KT5823 is a typical PKG inhibitor. In wild-type growth plate chondrocytes pretreated with 8-pCPT-cGMP (100 μ M for 1 hr), spontaneous Ca^{2+} fluctuations were remarkably facilitated (Figure 4A); both fluctuation-positive cell rate and fluctuation amplitude were highly increased. In contrast, the bath application of KT5823 (2 μ M) clearly attenuated CNP-facilitated Ca^{2+} fluctuations within a short time frame (Figure 4B). Therefore, PKG activation seems to be essential for CNP-facilitated Ca^{2+} fluctuations in growth plate chondrocytes.

Gene expression analysis in wild-type growth plate chondrocytes.

Total RNAs were prepared from growth plate sections packed with round chondrocytes or enriched with columnar and hypertrophic chondrocytes, and subjected to RT-PCR analysis. The cycle threshold (Ct) was determined for each RT-PCR reaction for estimating relative mRNA content. The data represent the mean \pm SEM, and the numbers of mice examined are shown in parentheses. Significant differences between the growth plate sections are marked with asterisks (**p*<0.05 and ***p*<0.01 in *t*-test). n.d.: not detectable.

Figure 4

Contribution of PKG to CNP-facilitated Ca²⁺ fluctuations.

(A) Facilitated Ca²⁺ fluctuations in round chondrocytes pretreated with the PKG activator 8-pCPT-cGMP. Wild-type bone slices were pretreated with or without the cGMP analog, and then subjected to Ca²⁺ imaging. Representative recording traces are shown (left panels), and the pharmacological effects are summarized (right graphs). Significant differences between control and 8-pCPT-cGMP pretreatments are marked with asterisks (**p<0.01 in *t*-test). The data are presented as the means ± SEM. with *n* values indicating the number of examined mice. (B) Attenuation of CNP-facilitated Ca²⁺ fluctuations by the PKG inhibitor KT5823. Wild-type bone slices were pretreated with CNP, and then subjected to Ca²⁺ imaging. Representative recording traces are shown (left panel), and KT5823-induced effects are summarized (right graphs). Significant KT5823-induced shifts are marked with asterisks (**p<0.01 in *t*-test). The data are presented as the means ± SEM. The data are presentative recording traces are shown (left panel), and KT5823-induced effects are summarized (right graphs). Significant KT5823-induced shifts are marked with asterisks (**p<0.01 in *t*-test). The data are presented as the means ± SEM. With *n* values indicating the number of examined mice are shown (left panel), and KT5823-induced effects are summarized (right graphs). Significant KT5823-induced shifts are marked with asterisks (**p<0.01 in *t*-test). The data are presented as the means ± SEM. with *n* values indicating the number of examined mice.

Activated BK channels contribute to CNP-facilitated Ca²⁺ fluctuations

Spontaneous Ca²⁺ fluctuations are facilitated by activated BK channels in growth plate chondrocytes [11]. Previous studies have established a functional link between PKG and BK channels in several cell types including smooth muscle and endothelial cells; activated PKG enhances BK channel gating by directly phosphorylating the α subunit KCNMA1 protein [13-15]. I thus examined whether altered BK channel activity is associated with CNP-facilitated Ca²⁺ fluctuations. The BK channel inhibitor paxilline (10 μ M) exerted no obvious effects on basal Ca²⁺ fluctuations in non-treated chondrocytes. However, the same paxilline treatments remarkably inhibited CNP-facilitated Ca^{2+} fluctuations (Figure 5A); both fluctuation-positive cell ratio and fluctuation amplitude were clearly decreased after paxilline application. On the other hand, the BK channel activator NS1619 (30 µM) stimulated basal Ca²⁺ fluctuations in the growth plate chondrocytes prepared from control mice. The NS1619-induced effects were preserved in the mutant chondrocytes prepared from chondrocyte-specific Npr2-knockout mice (Figure 5B). Therefore, BK channel activation is likely involved in CNP-facilitated Ca^{2+} fluctuations in growth plate chondrocytes.

Figure 5

Contribution of BK channels to CNP-facilitated Ca²⁺ fluctuations.

(A) Attenuation of CNP-facilitated Ca²⁺ fluctuations by the BK channel inhibitor paxilline in round chondrocytes. Wild-type bone slices were pretreated with or without CNP, and then subjected to Ca²⁺ imaging. Representative recording traces are shown (left panels), and paxilline-induced effects are summarized (right graphs). Significant paxilline-induced shifts are marked with asterisks (*p<0.05 and **p<0.01 in one-way ANOVA and Tukey's test). The data are presented as the means ± SEM. with *n* values indicating the number of examined mice. (B) Ca²⁺ fluctuations facilitated by the BK channel activator NS1619 in *Npr2*-deficient chondrocytes. Bone slices were prepared from the chondrocyte-specific *Npr2*-knockout and control embryos, and NS1619-induced effects were examined in Ca²⁺ imaging. Representative recording traces are shown (left panels), and the effects of NS1619 are summarized (right graphs). Significant NS1619-induced shifts are marked with asterisks (**p <0.01 in one-way ANOVA and Tukey's test). The data are presented as the means ± SEM. With *n* values indicating the number of examined in Ca²⁺ imaging. Representative recording traces are shown (left panels), and the effects of NS1619 are summarized (right graphs). Significant NS1619-induced shifts are marked with asterisks (**p <0.01 in one-way ANOVA and Tukey's test). The data are presented as the means ± SEM. with *n* values indicating the number of examined mice.

PLC seems unrelated to CNP-facilitated Ca²⁺ fluctuations

 Ca^{2+} fluctuations are maintained by phosphatidylinositol (PI) turnover in growth plate chondrocytes [11]. Although it has been reported that activated PKG inhibits phospholipase C (PLC) in smooth muscle [16-19], it might be possible that NPR2 activation enhances basal PLC activity to facilitate Ca^{2+} fluctuations. The PLC inhibitor U73122 (10 μ M) remarkably inhibited basal Ca^{2+} fluctuations in non-treated chondrocytes: the fluctuation-positive cell ratio and fluctuation amplitude reduced less than half in response to U73122 application (Figure 6). U73122 was also effective for CNP-facilitated Ca^{2+} fluctuations, but the inhibitory efficiency seemed relatively weak compared to those on basal fluctuations. Given the different inhibitory effects, it is rather unlikely that PLC activation accompanies CNP-facilitated Ca^{2+} fluctuations.

PKG stimulates sarco/endoplasmic reticulum Ca^{2+} -ATPase (SERCA) by phosphorylating the Ca^{2+} pump regulatory peptide phospholamban (PLN) in smooth and cardiac muscle cells [20-22], and activated Ca^{2+} pumps generally elevate stored Ca^{2+} content and thus stimulate store Ca^{2+} release. RT-PCR data suggested that the *Pln* gene and the *Atp2a2* gene encoding SERCA2 are weakly active in growth plate chondrocytes (Figure 3). To examine the effects of CNP treatments on Ca^{2+} stores, I examined Ca^{2+} responses to the activation of Gq-coupled lysophosphatidic acid (LPA) receptors (Figure 7A) and the Ca^{2+} pump inhibitor thapsigargin (Figure 7B). CNP- and vehicle-pretreated chondrocytes exhibited similar LPA-induced Ca^{2+} release and thapsigargin-induced Ca^{2+} leak responses. Therefore, CNP treatments seem ineffective for store Ca^{2+} pumps in growth plate chondrocytes. Moreover, the dose-dependency of Ca^{2+} release by LPA (1~10 μ M) was not altered between CNP- and vehicle-pretreated chondrocytes, implying that CNP does not affect basal PLC activity.

Among diverse Ca²⁺ handling-related proteins, PLC, PLN and BK channels have been reported as PKG substrates, however, my observations suggested that both PLC and PLN receive no obvious functional regulation in CNP-treated chondrocytes. On the other hand, the paxilline treatments diminished CNP-facilitated Ca²⁺ fluctuations down to non-treated control levels (Figure 5A), suggesting that activated BK channels predominantly contribute to CNP-facilitated Ca²⁺ fluctuations in growth plate chondrocytes.

Figure 6

Effects of PLC inhibitor U73122 on CNP-facilitated Ca²⁺ fluctuations.

In Ca²⁺ imaging, U73122 was bath-applied to wild-type round chondrocytes pretreated with or without CNP. Representative recording traces are shown (left panels), and the effects of U73122 are summarized (right bar-graphs). Data represent means \pm SEM, and the numbers of cells and mice examined are shown in parentheses in the keys and graph bars, respectively. Significant differences between before and after the U73122 treatment are marked with asterisks (*p<0.05 and **p<0.01 in one-way ANOVA and Tukey's test).

(A) Store Ca^{2+} release triggered by 1-oleoyl lysophosphatidic acid (LPA) in wild-type round chondrocytes pretreated with or without CNP. Representative recording traces are shown (left panels), and LPA-evoked Ca^{2+} responses are summarized (right graphs). Data represent means \pm SEM, and the numbers of cells and mice examined are shown in parentheses in the keys and graph bars, respectively. No significant differences were observed between CNP- and vehicle-pretreated groups (one-way ANOVA and Tukey's test). (B) Ca^{2+} leak responses evoked by the SERCA pump inhibitor thapsigargin (TG) in wild-type round chondrocytes pretreated with or without CNP. Representative recording traces are shown (left panels), and TG-evoked Ca^{2+} responses are summarized (right bar-graphs). Data represent means \pm SEM, and the numbers of cells and mice examined are shown in parentheses in the keys and graph bars, respectively. No significant differences were observed between CNP- and vehicle-pretreated groups (t-test).

CNP induces BK channel-mediated hyperpolarization

To confirm the contribution of activated BK channels to CNP-facilitated Ca²⁺ fluctuations, I conducted confocal imaging using the voltage-dependent dye oxonol VI. In this imaging analysis, depolarization results in the accumulation of the dye into cells, in which the fractional fluorescence intensity, normalized to the maximum intensity monitored in the bath solution containing 100 mM KCl, is thus increased (Figure 8A left panel). The fractional intensity of CNP-pretreated cells was significantly lower than that of non-treated cells in a normal bath solution (Figure 8A middle graph), although both cells exhibited similar intensity shifts in high K⁺ bath solutions. Based on the recording data, I prepared a calibration plot for the relationship between the fractional intensity and theoretical membrane potential (Figure 8A right panel). In the tentative linear correlation, resting potentials of -46.4 ± 0.2 and -43.6 ± 0.3 mV were estimated in CNP-treated and non-treated cells, respectively. The estimated potentials closely approximate the reported value from monitoring articular chondrocytes using sharp microelectrodes [23].

In pharmacological assessments, paxilline elevated fractional intensities to the same levels in CNP-and non-treated chondrocytes (Figure 8B). Moreover, NS1619 decreased fractional intensities to the same levels in both cells under 20 mM KCl bathing conditions, which enabled us to reliably

evaluate the reducing intensity shifts (Figure 8C). The oxonol VI imaging data suggested that CNP treatments induce BK channel-mediated hyperpolarization and thus facilitate spontaneous Ca^{2+} fluctuations by enhancing Ca^{2+} -driving forces in growth plate chondrocytes.

Figure 8

BK channel-mediated hyperpolarization induced by CNP.

(A) Oxonol VI imaging of round chondrocytes pretreated with or without CNP. Wild-type bone slices were pretreated with or without CNP, and then subjected to membrane potential imaging. During contiguous treatments with high-K⁺ solutions, cellular fluorescence intensities were monitored and normalized to the maximum value in the 100 mM KCl-containing solution to yield the fractional intensity (left panel). The resting fractional intensities were quantified and statistically analyzed in CNP- and vehicle-pretreated cells (middle graph). For preparing the calibration plot (right panel), the data from ten cells in bathing solutions containing 4 (normal solution), 20, 40, 60 and 100 mM KCl are summarized; red and black lines indicate the estimated resting membrane potentials of CNP- and vehicle-pretreated cells, respectively. (B) Effects of the BK channel inhibitor paxilline on resting membrane potential in round chondrocytes. Recording data from ten cells pretreated with or without CNP were averaged (left panel), and the fractional intensities elevated by paxilline are summarized (right graph). (C) Effects of the BK channel activator NS1619 on membrane potential in round chondrocytes. Recording data from ten cells pretreated with or without CNP were averaged (left panel), and the fractional intensities in normal, 20 mM KCl and NS1619-containing 20 mM KCl solutions are summarized (right graph). Significant differences between CNP- and vehicle-pretreated cells are indicated by asterisks in A (**p<0.01 in t-test) and in C (**p<0.01 in one-way ANOVA and Dunn's test). The data are presented as the means \pm SEM. with *n* values indicating the number of examined mice.

CNP enhances TRPM7-mediated Ca²⁺ entry and CaMKII activity

Spontaneous Ca²⁺ fluctuations are predominantly attributed to the intermissive gating of cell-surface TRPM7 channels in growth plate chondrocytes [11]. For pharmacological characterization of TRPM7 channels, FTY720 is used as a typical inhibitor, while NNC550396 is an activator. As reasonably expected, bath application of FTY720 (10 μ M) clearly diminished CNP-facilitated Ca²⁺ fluctuations in round chondrocytes (Figure 9A). On the other hand, NNC550396 (30 μ M) remarkably facilitated Ca²⁺ fluctuation in non-treated chondrocytes, and this facilitation was preserved in the mutant chondrocytes prepared from chondrocyte-specific *Npr2*-knockout mice (Figure 9B). Therefore, CNP treatments likely facilitate TRPM7-mediated Ca²⁺ influx in growth plate chondrocytes.

TRPM7-mediated Ca²⁺ entry activates CaMKII in growth plate chondrocytes toward bone outgrowth [11], and cellular CaMKII activity can be estimated by immunochemically quantifying its autophosphorylated form. In immunocytochemical analysis, CNP-pretreated growth plate chondrocytes were more decorated with the antibody against phospho-CaMKII than non-treated control cells (Figure 10A). This CNP-facilitated decoration was abolished by the cotreatment of the CaMKII inhibitor KN93 (30 μM). This observation was further confirmed by Western blot analysis; CNP treatments increased the phospho-CaMKII population without affecting total CaMKII content in the cell lysates prepared from growth plates (Figure 10B). Therefore, CaMKII is likely activated downstream of enhanced TRPM7-mediated Ca²⁺ entry in CNP-treated growth plate chondrocytes.

Figure 9

Enhanced TRPM7-mediated Ca²⁺ entry by CNP treatments.

(A) Inhibition of CNP-facilitated Ca²⁺ fluctuations by the TRPM7 inhibitor FTY720 in round chondrocytes. Wild-type bone slices were pretreated with CNP, and then subjected to Ca²⁺ imaging. Representative recording traces are shown (left panel), and the effects of FTY720 are summarized (right graphs). Significant FTY720-induced shifts are marked with asterisks (**p<0.01 in *t*-test). The data are presented as the means ± SEM. with *n* values indicating the number of examined mice. (B) Ca²⁺ fluctuations facilitated by the TRPM7 channel activator NNC550396 in *Npr2*-deficient round chondrocytes. Bone slices were prepared from the chondrocyte-specific *Npr2*-knockout and control embryos, and NNC550396-induced effects were examined in Ca²⁺ imaging. Representative recording traces are shown (left panels) and the effects of NNC550396 on Ca²⁺ fluctuations are summarized (right graphs). Significant NNC550396-induced shifts in each genotype are marked with asterisks (**p <0.01 in one-way ANOVA and Tukey's test). The data are presented as the means ± SEM. with *n* values indicating the number of examined mice.

Figure 10

CaMKII activation in CNP-treated round chondrocytes.

(A) Immunohistochemical staining against phospho-CaMKII (p-CaMKII) in round chondrocytes. Wild-type bone slices were pretreated with or without CNP and the CaMKII inhibitor KN93, and then subjected to immunostaining with antibody to p-CaMKII. DAPI (4', 6-diamidino-2- phenylindole) was used for nuclear staining. Lower panels show high-magnification views of white-dotted regions in upper panels (scale bars, 10 μ m). (B) Immunoblot analysis of total CaMKII and p-CaMKII in growth plate cartilage. Growth plate lysates were prepared from wild-type bone slices pretreated with or without CNP, and subjected to immunoblot analysis with antibodies against total CaMKII and p-CaMKII (upper panel). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was also analyzed as a loading control. The immunoreactivities observed were densitometrically quantified and are summarized (lower graph). A significant difference between CNP- and vehicle-pretreatments is marked with an asterisk (*p<0.05 in one-way ANOVA and Tukey's test). The data are presented as the means \pm SEM. with *n* values indicating the number of examined mice.

Pharmacologically activated BK channels facilitate bone outgrowth

Based on the present data from in vitro experiments, the novel CNP-signaling route, represented as the NPR2-PKG-BK channel-TRPM7 channel-CaMKII axis, can be proposed in growth plate chondrocytes. I attempted to examine the proposed signaling axis in metatarsal bone culture, a widely used ex vivo model system for analyzing bone growth and endochondral ossification [24]. In chondrocyte-specific Trpm7-knockout mice (Trpm7^{fl/fl}, 11Enh-Cre^{+/-}), Cre recombinase is expressed under the control of the collagen type XI gene enhancer and promoter, and thus inactivates the floxed *Trpm7* alleles in cartilage cells [11]. The bone rudiments prepared from control embryos (*Trpm7*^{fl/fl}, 11Enh-Cre^{-/-}) regularly elongated during ex vivo culture, and their outgrowth was significantly stimulated by the supplementation with CNP (30 nM) into the culture medium (Figure 11A). In contrast, the mutant rudiments prepared from the chondrocyte-specific Trpm7-knockout embryos were reduced in initial size and did not respond to the CNP supplementation. Therefore, CNP-facilitated bone outgrowth seems to require TRPM7 channels expressed in growth plate chondrocytes.

In my proposed signaling axis, activated BK channels exert an essential role by converting the chemical signal into the electrical signal. I finally examined the effect of the BK channel activator NS1619 on bone outgrowth (Figure 11B). NS1619 supplementation (30μ M) significantly stimulated

the outgrowth of wild-type bone rudiments. In contrast, under the same culture conditions, no stimulation was detected in the mutant rudiments from the chondrocyte-specific *Trpm7*-deficient embryos. The observations in the bone culture support my conclusion that CNP activates BK channels and thus facilitates TRPM7-mediated Ca^{2+} influx in growth plate chondrocytes, stimulating bone growth.

Figure 11

Contribution of TRPM7 and BK channels to CNP-facilitated bone outgrowth.

(A) Loss of CNP-facilitated outgrowth in *Trpm7*-deficient bones. Metatarsal rudiments isolated from the chondrocyte-specific *Trpm7*-knockout (*Trpm7*^{fl/fl}, *11Enh-Cre*^{+/-}) and control (*Trpm7*^{fl/fl}, *11Enh-Cre*^{-/-}) embryos were precultured in normal medium for 6 days, and then cultured in medium supplemented with or without CNP for 3 days. Representative images of cultured metatarsals are shown (left panels; scale bar, 0.3 mm), and longitudinal bone outgrowth during the CNP-supplemented period was statistically analyzed in each genotype group (right graphs). Significant CNP-supplemented effects are marked with asterisks (**p*<0.05 in *t*-test). The data are presented as the means \pm SEM. with *n* values indicating the number of examined mice. (**B**) Stimulated bone outgrowth by the BK channel activator NS1619. Metatarsal rudiments isolated from wild-type and the chondrocyte-specific *Trpm7*-knockout embryos were precultured in normal medium for 5 days, and then cultured in medium supplemented with or without NS1619 for 4 days. Representative images of cultured metatarsals are shown (left panels; scale bar, 0.3 mm), and Instituted metatarsals are shown (left panels; scale bar, 0.3 mm), and statistically analyzed in each genotype group (right graphs). A significant S1619-supplemented period was statistically analyzed in each genotype group (right graphs). A significant NS1619-supplemented effect is marked with asterisks (**p*<0.05 in *t*-test). The data are presented as the means \pm SEM. with *n* values indicating the number of examined metaarsals are shown (left panels; scale bar, 0.3 mm), and longitudinal bone outgrowth during the NS1619-supplemented period was statistically analyzed in each genotype group (right graphs). A significant NS1619-supplemented effect is marked with asterisks (**p*<0.05 in *t*-test). The data are presented as the means \pm SEM. with *n* values indicating the number of examined mice.

Discussion

I reported that in growth plate chondrocytes, PLC and BK channels maintain autonomic TRPM7-mediated Ca²⁺ fluctuations, which potentiate chondrogenesis and bone growth by activating CaMKII [11]. Based on the present data, together with the previous reports, I proposed a new CNP signaling axis in growth plate chondrocytes (Figure 12A). CNP-induced NPR2 activation elevates cellular cGMP content and thus activates PKG, leading to the phosphorylation of BK channels. The resulting BK channel activation likely induces cellular hyperpolarization to facilitate TRPM7-mediated Ca^{2+} entry by enhancing the Ca^{2+} driving force, leading to CaMKII activation. Therefore, it is likely that CaMKII activity is physiologically regulated by BK channels as a key player of the CNP signaling cascade. In a recent genetic study, several patients carrying loss-of-function mutations in the KCNMA1 gene encoding BK channel a subunit were characterized by a novel syndromic growth deficiency associated with severe developmental delay, cardiac malformation, bone dysplasia and dysmorphic features [25]. In the KCNMA1-mutated disorder, CNP signaling likely fails to facilitate TRPM7-mediated Ca²⁺ fluctuations in growth plate chondrocytes and resulting insufficient Ca²⁺ entry may lead to systemic bone dysplasia associated with stunted growth plate cartilage. On the other hand, the origin of CNP may still be ambiguous in the signaling scheme. Transgenic mice overexpressing CNP in a chondrocyte-specific manner develop a prominent skeletal overgrowth phenotype, suggesting autocrine CNP signaling [26]. However, several genechip data in public databases indicate that prepro-CNP mRNA is abundantly expressed in the placenta among embryonic tissues (for example, see the records under accession number GSE28277 in NCBI database). Therefore, it may be important to further examine which cell type primarily produces CNP to facilitate bone growth during embryonic development.

From a physiological point of view, it is interesting to note that the proposed CNP signaling axis has clear overlap with the nitric oxide (NO) and ANP/BNP signaling cascades for vascular relaxation [27-29]. In blood vessels, NO is produced by endothelial cells in response to various stimuli including shear stress and acetylcholine, and activates soluble guanylate cyclase in neighboring vascular smooth muscle cells. ANP and BNP are released from the heart in response to pathological stresses, such as atrial distension and pressure overload, and are delivered to activate the receptor guanylate cyclase NPR1 in vascular muscle. In either case, the resulting cGMP elevation followed by PKG activation induces BK channel-mediated hyperpolarization and thus inhibits L-type Ca²⁺ channel gating, leading to vascular dilation due to decreased Ca²⁺ entry into vascular muscle. Therefore, activated BK channels inhibit the voltage-dependent Ca²⁺ influx in vascular muscle cells regarded as excitable cells (Figure 12B). In contrast, activated BK channels reversely stimulate TRPM7-mediated Ca^{2+} entry in growth plate chondrocytes classified as nonexcitable cells, because the channel activity is voltage-independently maintained by the intrinsic PI turnover rate.

CNP is an effective therapeutic reagent for achondroplasia and divergent short statures [26, 30, 31], and vosoritide, a stable analog of CNP has recently been approved for the treatment of achondroplasia [32]. The proteins contributing to the CNP signaling axis may be new pharmaceutical targets for developing medications; in addition to NPR2, BK and TRPM7 channels are reasonably considered promising targets. Moreover, phosphodiesterase subtypes might be useful targets, although the subtypes responsible for cGMP hydrolysis remain to be identified in growth plate chondrocytes. Chemical compounds specifically targeting the signaling axis defined in this study would be useful drugs for not only clinical treatment of developmental disorders but also artificially modifying body sizes in farm and pet animals.

Figure 12

Α

Growth plate chondrocyte

Vascular dilation

(A) The schematic diagram representing the NPR2-PKG-BK channel-TRPM7 channel-CaMKII axis proposed as an essential CNP signaling cascade in growth plate chondrocytes. Previous studies proposed that the RAF-MEK-ERK axis is also involved in growth plate CNP signaling [8]. (B) The schematic diagram representing the NO- and ANP/BNP-induced relaxation signaling in vascular smooth muscle.

Materials and Methods

Reagents, primers and mice

Reagents and antibodies used in this study are listed in Table 1. Synthetic primers used for RT-PCR analysis and mouse genotyping are listed in Table 2. C57BL mice were used as wild-type mice in this study. Chondrocyte-specific *Trpm7*-knockout mice with C57BL genetic background were generated and genotyped as previously described [11]. Chondrocyte-specific *Npr2*-knockout mice with C57BL background were generated as previously described [12], and I newly designed primers for detecting the *Col2a1-Cre* transgene and the floxed *Npr2* gene in this study (Figure 2). All experiments in this study were conducted with the approval of the Animal Research Committee according to the regulations on animal experimentation at Kyoto University.

Bone slice preparations

Femoral bones were isolated from E17.5 mice and immersed in a physiological salt solution (PSS): (in mM) 150 NaCl, 4 KCl, 1 MgCl₂, 2 CaCl₂, 5.6 glucose, and 5 HEPES (pH 7.4). Longitudinal bone slices (~40 μm thickness) were prepared using a vibrating microslicer (DTK-1000N, Dosaka EM Co., Japan) as previously described [11].

Ca²⁺ imaging

Fura-2 Ca²⁺ imaging of bone slices was performed as previously described [11]. Briefly, bone slices placed on glass-bottom dishes (Matsunami, Japan) were incubated in PSS containing 15 µM Fura-2 AM for 1 hr at 37°C. For ratiometric imaging, excitation light of 340 and 380 nm was alternately delivered, and emission light of >510 nm was detected by a cooled EM-CCD camera (Model C9100-13; Hamamatsu Photonics, Japan) mounted on an upright fluorescence microscope (DM6 FS, Leica, Germany) using a 40x water-immersion objective (HCX APO L, Leica). In typical measurements, ~30 round chondrocytes were randomly examined in each slice preparation to select the Ca^{2+} fluctuation-positive cells generating spontaneous events (>0.025 in Fura-2 ratio) using commercial software (Leica Application Suite X), and recording traces from the positive cells were then analyzed using Fiji/ImageJ software (US. NIH) for examining Ca²⁺ fluctuation amplitude and frequency. Imaging experiments were performed at room temperature (23-25 °C) and PSS was used as the normal bathing solution. For the pretreatments of CNP, ANP and 8-pCPT-cGMP, bone slices were immersed in PSS with the indicated compound for 1 hr at room temperature after Fura-2 loading.

Membrane potential monitoring

Bone slices were perfused with the PSS containing 200 nM oxonol VI at room temperature and analyzed as previously described [33]. To prepare the calibration plot showing the relationship between the fluorescence intensity and membrane potential, saline solutions containing 20 mM, 40 mM, 60 mM or 100 mM KCl were used as bathing solutions. Fluorescence images with excitation at 559 nm and emission at >606 nm were captured at a sampling rate of ~7.0 s using a confocal laser scanning microscope (FV1000; Olympus).

Immunochemical analysis of CaMKII

Bone slices were pretreated with or without CNP were subjected to immunochemical assessments as previously described [34]. Briefly, for immunohistochemical analysis, bone slices were fixed in 4% paraformaldehyde and treated with 1% hyaluronidase to enhance immunodetection [35, 36]. After blocking with fetal bovine serum-containing solution, bone slices were reacted with primary and Alexa 488-conjugated secondary antibodies and observed with a confocal microscope (FV1000; Olympus). For immunoblot analysis, bone slices were lysed in the buffer containing 4% sodium deoxycholate, 20 mM Tris-HCl (pH 8.8) and a phosphatase inhibitor cocktail (100 mM NaF, 10 mM Na₃PO₄, 1 mM Na₂VO₃ and 20 mM β -glycerophosphate). The resulting lysate proteins were electrophoresed on SDS-polyacrylamide gels and electroblotted onto nylon membranes for

immunodetection using primary and HRP-conjugated secondary antibodies. Antigen proteins were visualized using a chemiluminescence reagent and image analyzer (Amersham Imager 600, Cytiva). The immunoreactivities yielded were quantitatively analyzed by means of Fiji/ImageJ software.

Metatarsal organ culture

Metatarsal bone rudiments were cultured as previously described [24]. Briefly, the three central metatarsal rudiments were dissected from E15.5 mice and cultured in α MEM containing 5 µg/ml ascorbic acid, 1 mM β-glycerophosphate pentahydrate, 100 units/ml penicillin, 100 µg/ml streptomycin and 0.2% bovine serum albumin (fatty acid free). The explants were analyzed under a photomicroscope (BZ-X710, Keyence, Japan) for size measurements using Fiji/ImageJ software.

Gene expression analysis

Quantitative RT-PCR analysis was performed as previously described [37]. Total RNA was prepared from mouse tissues using a commercial reagent (Isogen) and reverse-transcribed using a commercial kit (ReverTra ACE qPCR-RT kit). The resulting cDNAs were examined by real-time PCR (LightCycler 480 II, Roche), and the cycle threshold was determined from the amplification curve as an index for relative mRNA content in each reaction.

Quantification and statistical analysis

All data obtained are presented as the means \pm SEM. with *n* values indicating the number of examined mice. Student *t*-test and ANOVA were used for two-group and multiple group comparisons, respectively (Prism 7, GraphPad Software Inc.): *p*<0.05 was considered to be statistically significant.

Reagent/Resource	Source	Identifier	
Antibodies			
Anti-phospho-CaMKII (Thr 286)	Cell Signaling Technology	Cat#12716; RRID: AB_2713889	
Anti-CaMKII	Abcam	Cat#EP1829Y; RRID: AB_868641	
Anti-GAPDH	Sigma-Aldrich	Cat#G9545; RRID: AB_796208	
Anti-rabbit IgG-HRP	Santa Cruz	Cat#sc-2357; RRID; AB_628497	
Anti-rabbit Alexa Flour 488	Invitrogen	Cat#A-11008; RRID: AB_143165	
Chemicals			
Amersham ECL Prime Western Blotting Detection	Cytiva	Cat#RPN2232	
ANP (Human, 1-28)	Peptide Institute	Cat#4135	
CNP-22 (Human)	Peptide Institute	Cat#4229	
FTY720	Sigma-Aldrich	SML0700; CAS: 162359-56-0	
Fura-2AM	Dojindo	F025; CAS: 108964-32-5	
Hyaluronidase from sheep testes	Sigma-Aldrich	H2126; CAS: 37326-33-3	
ISOGEN	NipponGene	Cat#319-90211	
KN93	Wako	115-00641; CAS: 139298-40-1	
КТ5823	Cayman Chemical	10010965; CAS: 126643-37-6	
NNC 550396 dihydrochloride	Tocris Bioscience	2268; CAS: 357400-13-6	
NS1619	Sigma-Aldrich	N170; CAS: 153587-01-0	
1-oleoyl lysophosphatidic acid	Cayman Chemical	62215; CAS: 325465-93-8	
Oxonol VI	Sigma-Aldrich	75926; CAS: 64724-75-0	
Paxilline	Tocris Bioscience	2006; CAS: 57186-25-1	
8-pCPT-cGMP	Biolog	C009; CAS: 51239-26-0	
ReverTra Ace® qPCR RT Master Mix with gDNA	ТОУОВО	Cat#FSQ-301	
Thapsigargin	Nacalai Tesque	33637-31; CAS: 67526-95-8	
U73122	Sigma-Aldrich	U6756; CAS: 112648-68-7	

Table 1. Chemical reagents for pharmacological analysis

NpT Rev TATCAAATGCCTCACGCTIGGA Np2 Rev CCTGGTACCCCCCTCTITA Np3 For GGTATGCCGACTTCTCTIGG FIFor GTAACCTGGGTAGCATGTTIGG DelFor TGTTATTTGTGAGATGACG Rev ATGGTGGAGGAGGCTTTTGTGG Cot2a1-Cr Rev CATGGTGGAGAAATGATGCG Prkg1 For ATGGCATCAGGAGAAATGATGCG Prkg2 For TGCGGAGAGAAATGATGCG Kcmm1 For AGGCCGGAGAAATGAGAAATGATGCG Kcmmb1 Rev CACTGTGCTGCCCCCTCTA Kcmm2 For TCACGAGAGACACCAAACGCCAAAGAC Kcmmb3 Rev GCACTTGGGGGGTGGTCGCCG Kcmm4 For CTCAGAGACACCCCAACGCCCAAAG Kcmn1 Rev CGCACTGGGGGTGGTCGTCGA Kcmn2 For CACACGCCGAAATGCCCAAAGCCCCAAGAC Kcmn3 For CCCAAGTGCGGAAGGAGAA Kcm12 For GCACAGGACCCAAGAGACACTG Picb1 For CCCAAGTGCGGAAGGAACACTA Picb2 For AACCCCAACACACTGAAGC Picb3 For CAGGCACCACACACAGACACTA Picb1 For CAGGCCACACACACACACAA Rev GGTGGGAGGCGCACACACACACACA Picb2 For AACCCCTACACACACACGGGAGGA Rev GGAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	New	For AACAAGGAGAACAGCAGCAAC		For GGCCCCATCCCTGATGAAC
Npr3 For Galance Galance Control of C	Npr1	Dr1 Rev TATCAAATGCCTCAGCCTGGA Npr2	Npr2	Rev CCTGGTACCCCCTTCCTGTA
Null Rev TCIGGICTCATCTAGTGICA PH/00 DelFer TGTATTITIGTGACATGACG Rev ATGGTGGAGAGAGGACTTTAATTCC Col2at-Cre For CGTTGGGAAGTTGGICG Prkg1 For ATGGACTCTGGGCGTCTA Rev CATTGGGGAAGAMAATGATGCG Kenmat For ATGGACTCGAGGAGGCTA Rev GATGGGGCAGGCTGAGGAGGA Kenmat Rev TCTGGGGACACCAAACTTC Rev GATGGGGCGGGGGGGGGGGGCGACTT Kenmat For TCAGGAGACAACCACAACTCTC Rev GGCCTGGGGGTGGGCCTGGA Kenmat For CTCGGAGACCAAAGCCCAAGGC Kennth3 For GTGGATGAGGGGCGGGAGACT Kennat For CTCGGAGACCAAAGCCCAAGGC Kennth3 For GTGGAGAGGGGCGGGGAGGA Kennat For CTCGGCAGCCCAAGGC Kennth3 For ACCCCAAGAGGGGATGGAGAA Kennat For GCCCCCAGGAGA Kennth3 For GTGAGGCAGGCGGGAGAACTTC Picb2 For ACCCCAAGAGGGGATGGAGAACTTC Picb1 For CAGGCCCAAGCAGAAGACTC Picb2 For AACCCCAAGGAGGGGGGGGGAAGACTT Picb2 For AACCCCAAGCAGAAGACTC Picb2 Rev GGGAGGGGGGGGAAGACTA Rev GGAGGGGGGGGGAAGCATA Picb2 Rev AGGAGGGGGGGGGAAGCCAGAGGCGCGGGGGAGAGCCCAGGGGGG	Ninr2	For GGTATGGGGACTTCTCTGTG	ElEor	GTAACCTGGGTAGACTAGTTGTTGG
Defer TGTTATTTGTGAGATGAGG Rev ATGGTGGAGGAGGAGTGTTTATCC Collat-Cre For GGTGTGAGTGGATGGATGGT Prkg1 For ATGGCGTTTTTTGTGGGAGCT Fig2 For GTGTGGAGGAGGAGAA For ATGGCATTTTTTTGTGGGAGCTA Rev GATGGGGAGGAGAAATGATGTGG Kenmal For ATGGACTTTTTTTGTGGGAGCTA Rev GAATGGGAGGAGGAGGAGAA Kenmal For ATGGACATCTAGGGGGCTG Kenmb1 For GTGGAGGAGGGCTGGACTT Kenmb2 For TCAGAGAGACCCAAACCAA Kenn1 For TGGGAGTGAGGGGCTGGACTT Kenmb1 For CCCAAGTGGGTGTGCAAC Kenmb1 Rev CACTGTGGCTGCGAAC Kenn2 For GAGCCCCAAGGAGACGTGTGTGC Kenn3 For ACTCCAAAGCCCCGATCGTC Rev TGCTGACACCCCGATGGTGGAGAA Ken14 For ACACTCCAAGGTGAAACCTC Picb1 For CCCAAGTTGGAGAGAA Picb1 For CAGCCCAAGCCAAGAGAATA Picb2 For AAGCCATTGAGGAGGAG Picb1 Pic CAGCCCAAGCCAAGAGAAGA Picg1 For AAGCCATTGCGGGAGA Picb1 For CACCCAAGCCCAACCAGAGACATA Picg2 For AAGCCATTGCAGGAGGAGAG Picb2 For AAGCCATTGCAGGAGGAGGAGGAGGTGT Picg2 For CACCCCAAGCCACACGAGAGCACTATCC Picg2 For AAGCCCAAGCCAAGCGAGGAGGA	Npr3	Rev TCTGGTCTCATCTAGTCTCA	FIFO	
Colzat-Cer For CSTIGTIGAGTIGGATAGTTG Prkg1 For ATGGACTTTTTGGAGACTC Prkg2 For TIGCGGAAGAAAATGATGTGG Kenmat For ATGCACTTCGAGGAGGCTA Rev CATTGCTGCTGCCCCTCTA Kenmbt For TAGCACTGTGGCGCCCCTA Rev CATGTGGAGTTGCAGGAGAA Kenmb1 For TGCAAGCGGGGTGGACTT Kenmbt For TGCAAGCGGAGTGGACTGAC Kenmbt Rev CACTGTGGGTTGCGCCTGA Kenmbt For GGATGAGAAGACCCAACAGCACCAAGACCCCCAAGA Rev TGCTTCAACAGCGGATTGGTC Kennt For GGATGGACGCAAGACCCCAAGAAGACCTGA Rev GGAAGGACGTGATGGGAAACTC Picb1 For CACGCCAAGCCGAAGGACTG For ACCCCCTACAGAACACCCCT Picb1 For CACGCAAGCCCCAAGGAGACTC Picb2 For AACCCCTAAGCCGAATGCTC Picb3 For CACGACCCCAAGCGAAGGACTC Picb1 For CACGACCCCCAACGAGAGCT Rev AGATGCTGGGCAACTAATC Picg1 For AACCCCTAAGGAGGAGGAGTGATGGAGGA Rev AGATGCTGGGGCAACCCAAGGAGACT TpmT For AACCCCTAAGGAGGAGGAGGAGGAGGAGGAGGAGGAGT Rev ATAGCTGACCCAACAGGAGAGCT TpmT For AACCGCAAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG	DelFor	TGTTATTTTGTGAGATGACG	Rev	ATGGTGGAGGAGGTCTTTAATTCC
Construction Rev CATTGCTGCACTTGGTCGT Pring? Rev GGTTTCCGGAGAGAAATGCTGG Pring2 For TGCGGAGAGAAATGCTGG Kcmma1 For ACGCGTGCGGACGTGAGCAGAA Kcmmb1 For ACGCGTGGGTTGGTCGCCCCTGTA Kcmmb2 For CAGGGCGGACACTTCC Kcmmb1 For GCGACTGGGGTTGGTCCCCG Kcmmb2 For CCCGGGTGGACCACCCAAGTG Kcmmb3 For GCGACTGGGGTTGGTCCCGC Kcmmb4 For GCACCTGGCAAGC Kcmn1 For TCCAAAATGCTGCTGCAAAC Kcmn2 For GCACCTGGCGAACC Kcmn3 For CCAAGGTGAAACCCCGTTGC Kcmn4 For GCACCTGCGGAACCTG Rev GGAAGGGAACGCGAAGAGGAATA Picb1 For CCAAGGTGAAAACCTC Picb2 For ACTCCAACACCCGATCGGCAACAATC Picg1 For ACATCCAAGGGAAGGGAGA Picb2 For ACACCCAAGCGAAGGACATA Picg1 For ACACCCAAGCGAAGGGAGT Picg2 For ACACCCAAGCAACAATC Picg1 For ACACCCAAGCTGGAAGGGGTGGAGT Picg2 For ACACCCCAAGCGAAGGACATC Picg1 For ACACCCCAAGCGAAGGGAGGAGT Picg2 For ACACCCCAAGCGAAGGACAGT Picg3 For ACACCCCAAGCCGAAGGAGGAGT Picg2 For ACACACACACAGAGGAGGAGT Picg4 For AC	Collant Cro	For CGTTGTGAGTTGGATAGTTG	Drka1	For ATGGACTTTTTGTGGGACTC
Prkg2 For TIESCGGAMGAAAATGATGTGG Kommat For ANTECACTTCGAGGAGGTA Rev GAATGGGAGGTTGAGGAGAA For ACAACTGTGGTGCCCCCTCIA Kommbt For TCAGGAGACAAACCAACACTTC Rev CCACGGGTGAATTCCAAA For ACAACTGTGGCTTGACCCCCTCIA Kommbt For TCAGGAGACACAACCAACCACACCTC Kanmb3 For GTGGTGGTGGCGCTGAAC Kommbt For CTCAGAAAGCGCAACGAC Kommbt Kann1 For TCAAAATGCTGCTGGCAACC Konmbt For GACTGGACACACCAGAA For GACTGGCAACACAGAG Kann3 For ACCAACCCGGATGGTGC Konmbt For GACTGCAACGACACGTG For GACCCTACAGAACACACGTG Picb1 For CAGGCAAGCAGAACGTGATGGAGA Kcnn1 For GACCCTACAGAACACACGTG For AACCCCACACTTGGTGGAACTTC Picb2 For CAGGCCAGCCAACAGAGACATA Picg1 For AACCCCACACGAGAGAGACTA Picg1 For AACCCCACACGCAGAGAGAGA Picg2 For AACCCCACCCACCAGAGAGAGCATA Picg1 For AACCCACACTTGGCGCCTG Tpm7 For AACCACACATGGAGGAGAGAGA Rev GTAGCCACCACCACGAGAGAGGACG Camk20 For AACGAAGAGCAACCCACCACGAGAGGAGGAGAGA Fer AACTATCCTTGGGAGAGTGACGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG	Colza1-Cre	Rev CATTGCTGTCACTTGGTCGT	Pikgi	Rev GGTTTTCATTGGATCTGGGC
Pring2 Rev GARTGGGGAGGTTGAGGAGAA Primat Rev CTCAGCCGGTAATTCCAAA Kenmb1 For CACACTGTGGCTGCCCTCTA Rev CACTGTTGGTTTGATCCCG Kenmb2 For TCAGAGCAGCAACAACAACAACAACAACAACAACAACAACA	Dukan	For TTGCGGAAGAAAATGATGTCG	Kenmal	For AATGCACTTCGAGGAGGCTA
Kenmb1 For ACAACTG TEGTTIGGTCCCG CTGTA Kenmb2 For TCAGGAGACACAACACTTC Rev CACTG TEGTTIGGTCCTGA Kenmb4 For CTCCCTGACACACACCCAAGTG Rev TAAATAGCAAGCCAACCCCAAGTG Kenn1 For CTGATAGACGGGCTGGACTT Kenmb4 For CTCCCTGACACCCAAGTGGTG Rev TAAATAGCAACTGCCAGATGGGC Kenn3 For CTCAAACACCCGAATCGTC Kenn4 For GGCACCCCAAGACCGGAA Rev GGGAAGCCCAAGACGGAA Kenn3 For ACTCAAACACCGGTAAACTTC Plcb2 For ACTCCAGGAGCGGAAAACCTC Plcb2 Picb3 For CACCCAAGCGGAAAAACCTC Plcg1 For ACTCCAGGAGCGAGAAGAGAGATA Plcg1 Picb3 For CACCCACCCAACCCAAGAGAGATCA Plcg1 For AACGCCTTGGGAGTGTCTTC Plcg2 For AACGCCAACCCAACACGAGAGATCA Plcg1 For AACGCCTTGGGAGTGTCTTC Plcg1 For AACGCCAAGCAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	FINYZ	Rev GAATGGGGAGGTTGAGGAGAA	Kennar	Rev CTCAGCCGGTAAATTCCAAA
Rev ACTIGETTIGATECCG Network Rev ACTIGETTIGATECCATAGCAA Kamb3 For GTGGGARACGGGGGGGACT Kamb4 For GTGGGARACCGAACGGACTGAAC Kann1 For GTGGACAACCCTAACCTGCAAAC Kann1 For GTGGACAACCTGACACGGA Rev GACTTCAACACCCGATTCGTC Kann4 For GGCACTGGGAAACCTG Rev GAGAAGGAACGTGAGAAACCTC Picb1 For ACTCAACCCCAGATTCGTC Kann4 For AGGCACCTTAACAACCGAGAAACCTC Picb2 For ACTCCAGGAAACCTCAGAAAACCTC Picb1 For CAAGCCAACCAACAAGAACATA Picb2 For AAGCCCAACCCAACCAACAGAAACCTC Picb2 For AAGCCCAACCCAACCAACAAGCT Rev GGACCTTTAGGGATGAAGC Picb3 For AACCCCAACCCAACCACACGAGACT Picp1 For AAGCCCAACCCAACCACACGAGAC Tym7 For ATTGCTTGCGGAAACCCCA Rev AGGTTCAACCCCATGAGGACCAACG Camk2b For AAGCAACAGCAACACAAGCCCAACG Rev CTCTCTAACTGCGGAAGCCAACGC Rev CTCTCAACCACACGAGCCAACGC Camk2d For ATTTTGCACACTTCCTCG Pde3a For AACCACACCACACAGAGCCAACG Rev GTGTGGAGACTGCAACGCAACGCAACGC Pde2a For ATTTTGCACACTTCCTCG Pde3a For AACCACACACGACACCACGAGCACCACGA Rev GTTGTGCGGAATGCCACTC Pde6a For AACCAACCACACGCACCACG Pde5a Fo	Konmh1	For ACAACTGTGCTGCCCCTCTA	Kenmh2	For TCAGGAGACACCAACACTTC
Kennb3 For GTGGATGACCGGCTGGACTT Kennb4 For CTCGTACCACCCCAATG Rev GACATTGGGGTTGGTCGGAAAC Kenn1 For TCAAAAATGCTGCTGCTGAAAC Kenn2 For GATCTGGACAGCCGATGGC Kenn3 For CTCAACACCCGATTCGTC Kenn4 For GATCTGACACCCGATTGGTC For GACCTCACAGCGGATGGAGCAT Picb1 For CCCAAGGTGAAACCTC Picb2 For ACATCACAGGGAAAACCTC Picb2 For ACGCCAAGCGGAAAACCTC Picb2 For ACGCCAGCGACACAGGAGCATCA Picg1 For ACGCCCAGCCCAGCAGAGAGAGCATC Picb3 For CACGCAAGCGGAACAAGAGCATC Picg1 For AACGCCTTGGGAGTGTGGAGCT Picb3 For CACGCAACCGAGCACAAGAGGCAGC Trpm7 Rev GATGTGCGGAAGTGGAGGAG Picg2 For AAGCCACCACTGATGAGGC Camk2a For ATGCTAGAGGCTGTCATCC Rev GATGTCGGGAACTCC Rev GATGTGAAGCCTACAGCCCCAT Camk2a For ATGCAAGACACAAGCCAAGG Camk2a For ATGCAAGCACAGTTCCCCCAT Pde2a For ATGCAAGACACATGCCCCAT Pde3a For AACTATACCAGCGGACCACGG Rev GTAGGAGAGCGAGCACCCCCCCCCCCCCCCCCCCCCCCC	Kennor	Rev CACTGTTGGTTTTGATCCCG	Kenningz	Rev AGTTAGTTTCACCATAGCAA
Number Rev GCACTTGGGGTTGGTCGTGA Number Rev TAAATAGCAAATGGATGGC Kenn1 For TCAAAATAGCGAATGCATGGC Kenn2 For GGCACCTCGCAGACCAGATG Rev GGAAGGACGTGGTGGGACTCT Picb1 For CACGCCAGACGACGATGGAC Kenn4 For GGCACCTCGCAGACACAGAGGA Picb1 For CACGCCAGCACGAGAGCAT Picb2 For AGCCCAGAGCGAGAGGAG For AGCCCAGAGGAGAG Picb3 For CACGCCACCACGAGGCA Picb1 For AGCCCAGCCACCAGAGGAC Picb1 For AGCGCAGCCACGAGGAG Picb1 Picb3 For CAGGCCCACCACGAGGCA Picb1 For AGCCCAGCCACCAGAGGAC Picb1 For AGCGCAGCCACCACGAGGCA Picg2 For AGCCCACCCACCAGAGGCAT Picg1 For AGCGCTTAGGGCAGAG Rev GTTCGTGGGAGAGGAG Rev GTTCGTGGGAGAGGAGGAG Rev GTTCGTGGGAGAGGAGC Rev GTTCGTGCGGAGAGGCAGC Camk2a For AGTCGTGGAGAGGCAGTC Pide3a For ATTCCTAGCCCCAGCCCCAT Rev GTTCGTGGGAGAGGAGTC Pide3a Por ATTCTGCAGAGCGTGACCACTG Pide3a For AGGGGAGCAGCCAGCCAGC Pide3a For CCCAGGCCAGCCCAGCT Pide6a For ATTCCAAGCAGGGTGTTC Pide3a For CCCAGGCCAGCCCAGCT Pide3a For CCCAGGCCAGCCCAGCT	Kenmb3	For GTGGATGACGGGCTGGACTT	Kcnmb4	For CTCCTGACCAACCCCAAGTG
Kenn1 For TCAMAAATGCTGCTGCAAAC Kenn2 For GATCTGGCAAAGACCCAGAA Rev TCGTTCAACATCCCTTGTC Kenn3 For ACTTCAACAACCCGATTGGTC Rev TGGTCACGAGACACACTG Picb1 For CACCAAGCTGATGGAGA Kenn4 For GGCACCCTCACAGACACACTG Picb1 For CCCAAGCTGATGGAGAA Picb2 For ACTCCAGGAGATGGTCAGAGACATA Picb3 For CAGGCCAGCACAGAGACATA Picg1 For ACCCCTTCGCCACTGCAGAGAGACATA Picg2 For AACCCCAACCCACAGAGACATA Picg1 For AACCCCTTGCGCACTCCACAGG Picg2 For AACCCCACCCACCAGAGAGC Camk2b For AAGCCGAGAGAGAGGAGAG Rev GTCAAAGCCTTCCCCCCG Trpm7 For AAGCCGAGAGAGAGTCAAGCC Rev GTTAAACAAAGCAAAGC Camk2b For AAGCCGAGAGAGAGTCACCC Rev GTAAACAAAGCCACAGGG Camk2g For AATCTGCGGAACTCCCCCAT Rev GTAAGCCACACTTCTCAGGCATC Pde3a For AACCTATGCTGGAGCACC Rev GTATACCAAGCAGAGAGGTCATC Pde5a For AACCTACCAGCGAGAGCC Rev GTATACCAAGCCAGAGAGGCATC Pde5a For CACCTACCAGTGCCAGCAGACACC Pde6a For ATTCCCAAGCCAGAGGCACC Pde5a For CATCGGGACACCCAGCAGACACC Rev GTAAGCAAACCATCAGCGAGAGGCACCCG		Rev GCACTTGGGGTTGGTCCTGA	11011104	Rev TAAAATAGCAAGTGAATGGC
Rev TCGTTCACCTTCCCTTGTTC Nume Rev GAAGTCCCTTGCTCCTGCT Kcnn3 For ACTTCAACACCCGATTCGTC Kcnn4 For GGCAACCCAACGTG Picb1 For ACTTCAAGACCCAATTCGTC Picb2 For ACTCCAGGAAGTGGTCAAGT Picb3 For CAGGCCAACGAGACAGATA Picg1 For AACTCCATGCAGAGGGAG Rev CTTTCCCGCAGGGGAG Picb3 For ACGCCAACCAACCACCACGAGGTC Picg1 For AACCCCTTTGAGGACTGAGG Rev CATGTTTCCCGCAGGGG Picg2 For AACGCCAACCAACCACACGAGGGC Trpm7 For AAGCCATTCCCGGGAGGTC Rev GGTGAAACGCAACG Camk2a For CACCACCACTTAGGACCAAG Camk2b For AAGCCATTCCCGGGAGGTTCC Rev GTGTGAAGACCAAGCCAACG Pde2a For ATCTTCAAGGACGAGGCCAAC Camk2g For CACGACCCTTGCTGGGCAA Pde3b For ATCTCAAGGAAGGCCAACC Pde3a For AACTATACCTGCTGGAGCC Pde3a For AACCACCACCCGCGGACACC Pde3a For CCCTGACGTGAACTCC Pde3a Pde6a For TACTCAAGGAAGGCAACC Pde5a For CCCCCAGGGACCAC Pde5a For CCCCCCAGGCTGAACACCG Pde6a For AAGCGTTGAAGCCAGCGAGGTATCC Pde5a For TCCGGGCCATTCAACTGC Pde6b For CCCCAGGGACATTCCCCAG	Kenn1	For TCAAAAATGCTGCTGCAAAC	Kcnn2	For GATCTGGCAAAGACCCAGAA
Kenn3 For ACTTCAACACCCGATTCGTC Kenn4 For GGCACCTCACGACGACACGTG Picb1 For CCCAAGTTGCGTGAACTTCT Picb2 For ACATCCAGGACAGTGGTCAGACTT Picb3 For CCGCACGCACGACAGACTA Picb2 For ACATCCAGGAGAGTGGGAGA Picb3 For ACGCCAGCACGACAGACATA Picg1 For ACGCCTTGAGGACTGGGAA Picg2 For AACCCCAACCCACACGAGGTC Trpm7 For ATGCTGGGAGAGGGAGGA Rev AGGTTCAACGCCCCCTG Trpm7 For AAGCAGAGAGGAGAG Camk2b For GATAACACACAAGCCACCATC Camk2b For AAGCAGAGAGTCCAAGG Rev GTGTGAAAGCCCACACGAGG Camk2a For ATTCTTGACCACTTCCCCAT Camk2b For AAGCAGAAGCCCACGGG Rev GTAAGCCCCACTCAAGGCCCATC Pde2a For ATTCTTGACCACTTCTCCG Pde3a For ACTCTAAGCCACGTCGAGGAG Rev CTATGCTGGTGCGCATC Pde3b For ATTCCAAAGCAGAGGCCATC Pde5a For GATACTTTGCTGGTGGCATC Pde5a Pde6a For ATTCCAAGGAGAGTGTATG Pde5a For CCCCAGGAGAGACCCATCGAGGAGAGC Rev TGTGTGCGGCATTTAACTGC Pde6a For ATTCCAAGCAGAGAGTGTATG Pde5a For CATCCACCGCGTGAGCACTG Rev GAAGACAATTCCCGAGGGGAGAG Pde6a <td< th=""><th></th><th>Rev TCGTTCACCTTCCCTTGTTC</th><th></th><th>Rev GAAGTCCCTTTGCTGCTGTC</th></td<>		Rev TCGTTCACCTTCCCTTGTTC		Rev GAAGTCCCTTTGCTGCTGTC
Rev GGAAAGGAACGTGATGGAGA Name Rev TTTCTCGCCTTGTTGAACT Picb1 For CCCAAGTTGCGTGAAACCTTCT Picb2 For ACATCCAGGAAGTGGTCAGG Picb3 For CAGGCCAGCAAGAGGAGATA Picg1 For AAGCCTTTGGGAGAGG Picg2 For CAGGCCAGCAACGAGGAGTC Pirm7 For AAGCGTTTGGGGAGG Picg2 For CACCCCCATTGAGGACGAGG Trpm7 For AAGCGTTTGGGGAGGGAGG Camk2a For CACCACCATTGAGGACGAAGG Camk2b For CACGACGAAGATCCCCGG Rev GTTCTGAGGACGCAACGAAGGCCCCCAT Camk2b For CACGACGAGAGGCCATCC Pde3a Rev GTAGCCCTCAAAGCCCACCCAT Camk2b For AACCTTGCGGGAGCCC Rev GTAGGCGCTTATGCGGGGAG Pde2a For ATCCTAAGGAGGCATC Pde3a For GACCCACCCGCCGCACACCA Pde5a Rev CTTGCTGGGAAGGCCACCC Pde5a For TCCGGGCCTTTATGCTGG Rev GTAGGCCTTCAAGCCACCCCCCAT Pde6a For AACCCACCCCCCCCACGCGGCACCA Pde5a For CCCAGGAATTCCAAGCCACCCCCAT Pde6a For AACCCACCCCCCCTGCCCAGG Pde5a For GCCAGGAATTCCAAGCCACCCCGCCATCACCG Pde6a For AACCCACCCCCCCCACCCGCGCACCACCGGAGC Pde6b For CCCCAGAACCCAACCGAGCCACCCCCACCCCCACCCCGCATCACCG	Kcnn3	For ACTTCAACACCCGATTCGTC	Kcnn4	For GGCACCTCACAGACACACTG
Picb1 For CCCAAGTTGCGTGAAACTTCT Picb2 For ACATCCAGGAAGATGGTGCAG Picb3 For CAGGCCAGCAAGGAGATA Picg1 For AACGCTTTGAGGACTGAAACCTC Picg1 For AACGCTTGAGGACTGAAGG Picg2 For AACCCCAACCCAACGAGGC Trpm7 Rev GATTGTCGGGAAGTGGAGG Rev ATGTTTCCGGGAAGTGAAGGC Camk2a For CACCACCATGAGGCAAGG Camk2b For AACCCGAAGCCAAGGCAAGG Rev GATGTGGGAAGAGCAAGG Camk2a For GATAACACAAAGAAGCCAACG Camk2b For AACTAACACAAAGAGCCAACG Rev GTGGGGAAGCGCAAGG Pde2a For ATTCTTGACCACTTCCTCC Pde3a For AACTAACGCCATTGGGGAGACT Rev CTCTGACGGAAGCCACG Pde3b For ATCTTTGACCACTTCCTCCG Pde3a For AACCTAACCGCACTGACGCACG Pde5a Rev CTAAGCCACCACTGACGCAGCACAC Pde5a For AACCAAACGCATTCGAGAAAGGCATACGCACGCAGGACACC Pde5a Pde6ba For AACCCAGGCAGGCACACC Pde6b For CCCAAGAAAGCAATAGCACAGG Rev CTGCGGGGCATTCTGACTGG Pde6ba For AACCGAACCGCAGCAGCACC Pde6ba For CCCAGAAAGCATAACGCA Rev CTGCTGCGGGCATTCGCACGG Pde6ba For AACCGAACCGCAGGCACC Pde6bb For CCCAGAAGAAGCAAGAGAA Rev TCAAAGCCAAAGCGCATCGCACG	1.01110	Rev GGAAAGGAACGTGATGGAGA	i territ	Rev TTTCTCCGCCTTGTTGAACT
NoticRev GTTGCCAAGCTGAAAACCTCPiculRev CGCACCGACTCCTTTACTTCPicb3For CAGGCCAGCACAGAGACATA Rev AGGACTGCGCACACCAAATCPicg1For AACCCTTGACGCAGGAGA Rev CTCTCTCAATCTCTCGCAAGGPicg2For AACCCCAACCACAGGAGTC Rev ATGTTTCCACTGTGCCACCCACGAGGAGTrpm7For ATTGCTTAGGTGTGCCamk2aFor CACCACCATTGAGGACGAAG 	Picb1	For CCCAAGTTGCGTGAACTTCT	Plcb2	For ACATCCAGGAAGTGGTCCAG
Picb3 For CAGGCCAGCAGAGAGCATA Rev AGATGCTGGCAATCGAATC Picg1 For AACGCTTGAGGATGGAGA Rev CTCTCATCTCGCAAGG Picg2 For AACCCCAACCGACGAGAGC Trpm7 For ATTGCTTAGTTTGGCGCTG Rev AATGTTTCACCTTGCCCTG Camk2a For CACCACCCATTGAGGACGAAG Rev GTTCAAAGGCTGCATTCC Camk2b For AAGGAGTGCAGCAGG Rev GTAAGCCTCAAAGCCCACG Camk2d For GATAAACAAAAACAAAAGCCAACG Rev GTAAGCCTCAAAGCCCACT Camk2b For AACTGTGCGGAGAGTCCAGG Pde2a For AATTCCAAAGCCTCTCTCG Rev CATAACCCACTTCAGCCATC Pde3a For AACTATACCTGCTGGGACTC Rev TGATGGAGAGCACGACAC Pde3b For ATTCCAAAGCCACAGCACAC Pde5a For ACCTTGCTGCGGACTCC Rev TGATGGAGGACAGGACAC Pde6a For AACCCACCCGCTGACCACTG Rev CTTCCTTCTTCTTGTGACGGA Pde6b For TCCGGGCTATCTAAGCACAGGACAC Pde6b For TGCTGAGGAGATGGTATG Rev CTTCCTCTCTTCTTGTGTGACGGA Pde6b For GCCGGGCTATCTAAGCACTGC Rev AGAAGCAATTCCTCAAGC Pde6c For TGCTCAGGGAATGGTTATG Rev CTCACCCCAACCCTGCACCG Pde6b For GCTGGGGGCTAACGCA Rev AGAACCCAACCTCAAGG Pde6b For ACCCCCACCCCCTGACCACTG Pde6b For GCTGGGGCAACTCAAGGA Pde6b For ACCCCAAGCCCACTGC Pde6b For GCTGGGGCAACTCAACGC Pde40a For AAGGGTGAGATTCGGTCAGC Pde6b For GCTGGGGCAACTCCAAGGA Pde40a For ACCTCCCCAAACCCTTCACCAGC Pde6b For GCTGGGGCGCAATTCCCCAAGCCACCG Rev TGCTGGGGGTATTG		Rev GTTGCCAAGCTGAAAACCTC		Rev CGCACCGACTCCTTTACTTC
RevRevAGGATGCTGGGAATCCAAACCProfRevCarCCCAACCCTACTCTCCGCAAGGPlcg2For AACCCCAACCCACACGAGTCTrpm7For ATTGCTGGTAGTTTGGTGTCRevRevAGTTTCACCTTGCCCCTGTrpm7For ATTGCTGGGAGAGTGAGGGGCamk2aFor CACCACCATTGAGGACGAAGCamk2gFor CAAGACAGCAAGCCRevGTTACAAAGCCAACGCCamk2gFor CAAGACAGCAAGCCTATCCRevFor ATTCTTGACCACTTCTCTGPde3aFor AATAACCACAAAGCAGCAAGCPde2aFor ATTCTTGCAAAGCCAAGGCACCPde5aFor AACCCCACCGTGGCGACACCCRevFor AATCCCACCCCCCCGTGACCACTGPde5aFor CCCAAGGATACAGCAPde6aFor ATCCTTGCAGGAGACACCPde5aFor CCCAAGGAAAATCCCCACTGCPde6aFor TCTCTGCGGCGCTATCTGACCACTGPde6bFor CCCAAGGAATTCCCGGCCATPde6aFor TCTCTGCGGACCACTGPde6bFor CCCAAGGACTCGACAGCCPde6aFor TCTCCGGAGAATTGGTTATGPde6bFor CCCAAGGACTCGACAGTGPde6aFor CATCCCCCAACCCCTGCACCPde6hFor GCCAAGACTCGAAGGCPde6gFor CATCCGCCAAAGCCATCGCPde6hFor GCTTGGTGCTGACAGTGPde10aFor CATCCGCAAAGCCATCGGCAGLpar1For CCCAAGGATGATGGTGAGGGLpar2For AAGCGAGGTGGTATTCAGLpar3For CAACCGAGACCAGAGCRev TCCTCACGGAAGCAGGGAGTTCACGGRev GGTTGCTGGAAGACCAGAGCRev GGTGGTGATGCCAGAGGCLpar4For CACCAGAGAACAGAAACATLpar5For CAAACCGAGACCAGAGCRev TGGTGGCAGTTCACCGGCGTTAAtp2a1For CAACCCAGAGACCACAGGCRev TGAGGAGGCACTCACCGGCTTGAtp2a3For CCCCCGGAAGACCGGCAGAGCCGCAGAGCCG <th>Plcb3</th> <th>For CAGGCCAGCACAGAGACATA</th> <th>Plca1</th> <th>For AACGCTTTGAGGACTGGAGA</th>	Plcb3	For CAGGCCAGCACAGAGACATA	Plca1	For AACGCTTTGAGGACTGGAGA
Picg2 For AACCCCAACCCACCGAGTC Rev AATGTTTCACCTTGCCCCTG Trpm7 For ATGCTTGCTTGGTTGTTC Rev GATTGCGGAGAGTGGAGTGCAGGTG Rev GGTTCAAAGGCGACGAAG Camk2a For CACCACCATTGAGGACGAAG Rev GGTTCAAAGGCTGCATTCC Camk2b For AAGCAGATGGAGTCAAGCC Rev TGCTGTCGAGAGCAAGGC Rev CTGATAACAAAGCCAACG Camk2d For AACCCACACGATTGCAGCCATTCC Rev GTAAACCAACAAGCCCACT Pde3a For AACTATACCTGCTCGGCGA Rev CTAACCCACTTCAGCCATT Pde2a For ATCTTTGACCACTTCTCG Rev CATAACCCACCTTCAGCCATC Rev CATAACCCACCTCAGCGAGACAC Pde3a For AACTATACCTGCTCGGACACC Pde3b For ATTCCAAAGCAGAGGTCATC Rev CTGTGGGAGTGACACC Pde5a For TGCGGGCTTATCAAAGCA Rev TGATGGAGGTGACACC Pde6a For AACCCACCCCGCTGACCACTG Rev CTCTTCCTTCTTGTTGTGACGA Pde6b For TCCGGGACTTCAAACTGC Rev ACAAAGCAAATTCCTCAAGC Rev CTCAAGGAGATTCGTACAGGT Pde6b For AACGCAGACACCACTGG Rev CTCCCCAAACCCATTGGACAC Pde6b For CCCCAAGACACTCAACGG Rev ACAAAGCCAAACTCGAAAGCAACT Pde6g For AACGGTGAGATTCGGTCAGC Rev TCATCCCCCAAACCCTTGCAC Pde6b For CATCCGCAAACCCACAGGCA Rev CTCCAGATGGTATTGCTGAC Pde10a For CCTCAGTGGTGTTTGTGAC Lpar1 For AACGAGATGATGGGGA For CCTCAGAGAGCAGCAGCAGC Lpar4 For CCTCAGTGGTGTTTCTGAC Lpar5 For AACACGAGACCTCACCA For CACCCAGAAGACAAGAAACAT Lpar5<	11000	Rev AGGATGCTGGCAATCAAATC		Rev CTCCTCAATCTCTCGCAAGG
Rev AATGTTTCACCTTGCCCCTGMmRev GATTGTCGGGAAGAGTGGAGTCamk2aFor CACCACCATTAGGGACGAAGCamk2bFor AAGCAGATGGAGTCAAGCCRev GGTTCAAAGGCTGTCATTCCCamk2bFor CACGACGAAGGCATCCAAGPde2aFor GATAAACAACAAGCCCCCTPde3aFor CACGACGCGCGCGAPde3bFor ATTTGACCACTTCTCGGCATCPde3aFor GACCCTTGCGGCAGTGCGAPde3bFor ATTCCAAGGCCAGCAGCACCACPde5aFor GACCCTGCGTGCGACAGTCCPde6aFor AACCAACCCGCGGCAGCAGACACPde5aFor GACCCTTGCGTGCGCATTGPde6aFor AACCAACCCGCGGACAGACACPde6bFor TGCGGCCTATCAAAGTGCPde6aFor TGCTCCGGGAATGGTATGPde6bFor CCCCAAGAAATCGCAGGACAGGACAGTPde6bFor TGCCCGGGAAATGGTTATGPde6bFor CCCCAAGAAATCCGAAGGAAGGACACPde6gFor ATCCCCCAAACCCTGCACCPde6hFor CCCCAAGACCCGAGAAAPde6gFor CATCCCCCAAAGCCCATGGCPde6hFor CATCCGCAAAGCCATCGACAGGAPde10aFor CATCCCCCAAAGCCATGGCACPde6hFor CCTTGGCGCTTATTGTCTPde10aFor CCTCAGTGGTGGTATTCGGCAGLpar3For ACTTTCCCAGCAGAGAACAGPar4For CCTCAGTGGTGGTATTCGGCAGLpar3For CCTCAGGAGAGCAGAACAGRev GCAGTTCCTCCCATCACTGTAtp2a3For CCTCGGTCGTTAGCACACAGPlnFor AACCCAGCTGCCGCATTPth/hFor CCTCCGCAAACCCGCAACCGRev GGAGGCGCCCCAACTGCCCACACARev GGTGGTAGTGGGGGGGAACCCGRev GGTGGTGGTGTGTGCAACAGGGAGCCCCGAATGGTGGGGGGAACCGGPlnFor CAACCCAGGGCAAAGGTCGCCACACAFor CCCCGGTAAAGGGGAACCGCRev GGAGGCGCCCAATTCCCCTTCCol2a1For CACCCGGAAACCGC <td< th=""><th>Plca2</th><th>For AACCCCAACCCACACGAGTC</th><th>Trpm7</th><th>For ATTGCTTAGTTTTGGTGTTC</th></td<>	Plca2	For AACCCCAACCCACACGAGTC	Trpm7	For ATTGCTTAGTTTTGGTGTTC
Camk2aFor CACCACCATTGAGGAGGAGGCamk2bFor AAGCAGATGGAGTCAAGCC Rev GCTGCGGAAGATTCCAGGCamk2dFor GATAAACAACAAAGCCAAAGCCAATCCRev GCTGCGGAACGCTATCCRev GTAAGCCATTCTAGCCATTRev CTCTGACTGGCGGAGTCAAGCCPde2aFor ATCTTTGACCACTTCAGCCATCPde3aFor GACTAACCTGCTGGCGGARev TCGTGCGGGCTTAGCTGGGGGPde3bFor ATCTTGCAAGGCAGGCCATCPde5aFor GACCTTGCTGCTCATTGRev TGGTGGGGCTTATGGTGGGPde6aFor AACCCACCCGCTGACCACTGPde5aFor GACCCTTGCTCATTGRev TGGTGGGGCTATCAAGCCPde6aFor AACCCACCCCGCTGACCACTGPde6bFor CCCGAGAGAACGCCACAGGARev TGCGGGCCTATCTAAACTGCPde6aFor TTGCTCAGGAAATGGTTATGPde6dFor CCCCAAGAAAATCCCCAGGGRev AGAAGCCAAATCCCCAGGGPde6gFor AAGCGTGAGACTGGTCAGCPde6hFor GGCAGACTCGACAGAGRev CTCCAGATGGCTGAACGCTPde6gFor CATCCCCAAAGCCATCATCGLpar1For GCCTGGGCGTATCAAGARev CTCCAGATGGTGAACGCTPde10aFor CATCCCCAAAGCCATCATCGLpar3For ACTTTCCACACCAGGGGGFor ACTTTCCACACCAGAGGCCAGAGCLpar4For CCTCAGTGGTGGTATTCAGLpar5For AACCAGCATCATCGTRev GTGGGAGAGACGAGAGCAGAGACAGAGAACATLpar6For CAACCAGAGAACAGAAAACATLpar5For CAACCAGGAGACCCGAGAGCRev GCAGTGCCCGCACACAGGGCAACAGAGAACATAtp2a1For CCTCCGGCAGAGCCRev GGGGGCATTCCCCCACACAGGGAAGACGCTTARev GGGGGGAGGCCCCACACAGAGAGCACAGAGAGACAG		Rev AATGTTTCACCTTGCCCCTG		Rev GATTGTCGGGAGAGTGGAGT
Rev GGTTCAAAGGCTGTCATTCC Rev RGCTGTCGGAAGATTCCAGG Camk2d For GATAACAAAGGCCTGTCATTCC Rev GTAAGCCTCAAGTCCCAT Rev GTAAGCCTCAAGTCCCAT Pde2a For ATCTTTGACCACTTCTCTCG Pde3a For AACTATACCTGCTGGACCAC Pde3b For ATTCCAAAGGCAGGGTCATC Pde3a For GACCTTGCGTGGGGCTTTG Pde6a For AATCCCACCGCTGACCACTG Pde3a For GACCTTGCGTGCGGACTACC Pde6a For AACCCACCCGCTGACCACTG Pde6b For TCCGGGCCTATCTAAACTGC Pde6a For AACCCACCCGCTGACCACTG Pde6b For TCCGGGCCTATCTAAACTGC Pde6a For AACCCACCCGCTGACCACTG Pde6b For TCCGGGCCTATCTAAACTGC Pde6b For TGTCTCCAGGAAGCTGTACACG Pde6b For CCCAGAGACACTCTAAGCA Pde6c For TGTGCTCAGGAATCGTACGC Pde6h For GCCCAGAGCACTCAAGCA Pde6g For AAGGTGTGCTGGTATTGCTGAC Pde6h For GCTGGTGCCCTTTATGCT Pde10a For AGTGTGCTGGTATTGCTGAC Pde6h For ACTTTCCCAGAAGCACT Rev GTGTGCGGCCTTTATGCT Pde10a For AGTGTGCTGGTATTCAGC Lpar1 For AGTGGGCCCTTACACCGA Rev TTGATGGAGACCTGGACAGC Rev GTGTGCTCGCACAAGCCT Lpar2 For AGTGTGCTGGTGTTTCAGC Lpar3 For ACCCGAGCAGAA	Camk2a	For CACCACCATTGAGGACGAAG	Camk2b	For AAGCAGATGGAGTCAAGCC
Camk2dFor GATAAACAACAACAAGCCAACG Rev GTAAGCCTCAAAGTCCCCATCamk2gFor CAAGAACAAGCAAGCAAGCCATATCC Rev CCTCTGACTGACTGGTGGCGAPde2aFor ATCTTTGACCACTTCTCTCG Rev CATAACCCACTTCAGCCACTCPde3aFor AACTATACCTGCTGGGAGCTC Rev TTCGTGCGGGCTTTATGCTGGPde3bFor ATTCCAAAGCAGAGGCACCAGCAGCACPde5aFor GACCCTTGGGTGCTCAATG Rev TGATGGAGTGACAGTACAGCPde6aFor AACCCACCGGTGACCACTG Rev CTCTTCTTGTTGACGAPde6bFor CCCGGGCCTATCAAACTGC Rev AGAAGACAATTCCCCGGCCATPde6aFor TTGCTCAGGAATGGTTATG Rev GTAAGCGAGACTCGTACAGGTPde6dFor CCCAAGACACACTGGAAGAAPde6gFor TTGCTCAGGAATCGGTCAGC Rev CAACAGCCAACCCTGACAGCPde6dFor GCCAGACTCGAACGCTPde6gFor AACGCGCAAAGCCATCATCG Rev TCATCCCCCAAAGCCATCATCG Rev TCTCATCACCCCTAGCCCAGPde6hFor GCCTGGGCAGCTCAAGAGPde10aFor CATCCGCAAAGCCATCATCG Rev TTGCATGGTGGTGTATTCGGCAGLpar1For GCTTGGTGCCTTTATTGTCT Rev GGTAGGAGTGAGTGATGGGGGLpar2For ACTGTGGCGGTGGTGTTTTCAG Rev CACAGAAGAACAAGAAAAACATLpar5For ACACCGAGAGGCCAGAGCCLpar6For TACTTGCCCATCACGGTTT Rev GATGGCAGTGCAGCCTAtp2a1For CAAACAAGGGACCCTCACCA Rev GCAGGTAGGAGGCCAGAGCPlnFor TACCTCACTCGCTGGGCAT Rev TGATGGCCAGGCAATGGTGGAAGTCAtp2a3For CACCGGGTAAGCGGAAGACCG Rev GGTGGTCTGCTTGGAC Rev GGTGGTCCCGAAAACCGCCG Rev GGTGGTCCCGAAAACCGCCG Rev GGTGGTCCCCACAAAAACCAC Rev GGTGGGCCAACACCAAAACCACCA Rev GGTGGGCCAACACCAAAACCACCA Rev GGTGGGCCAACACCAAAACCACCA Rev GGTGGTCCCGCAAAATCGCTCACCAACACACACACACACA		Rev GGTTCAAAGGCTGTCATTCC		Rev TGCTGTCGGAAGATTCCAGG
Rev GTAAGCCTCAAAGTCCCCAT Painted Rev CCTCTGACTGACTGACTGACGGA Pde2a For ATTCTTTGACCACTTCTCG Pde3a For AACTAACCCACTGCGGACTC Pde3b For ATTCCAAAGCAGAGGTCATC Pde5a For AACCTAACCCGCTGCGGCACACAGCAC Pde6a For ATTCCAAAGCAGAGGTCATC Pde5a For GACCCTTGCGGCTTATTGCTGACGACGC Pde6a For AACCCACCCGCTGACCACTG Pde5a For TCCGGGGCTATCAAACTGC Pde6a For AACCCACCCGCTGACCACTG Pde6b For TCCCGGACACATACTGC Pde6a For AACCGACCGCTGACACAGGA Pde6b For CCCCAGAAATCCTGACAGGT Pde6g For AAGGGTGAGATTCGGTCACC Pde6b For GCAGACTCGACACGTGACACCT Pde6g For AACGGTGAGATTCGGTCACC Pde6b For GCCAGAAACGCACACTGACACTG Pde10a For CATCCCCCAAACCCATCG Pde6b For GCTGGTGGCAGCTTCACCCTTACTACAGGG Pde10a For AGTGTGCTGGTATTGCTGAC Lpar1 For ACTTTCCCTTCATCACAGGGG Lpar2 For AGTGTGGTGGTGTGTGATTTCGGAG Lpar3 For ACTTTCCCACAGAGGCCAGGAGC Lpar4 For TACTTGCCCCAGAAGAAACAT Lpar3 For CACTGCCCAAAACGGGACCCCACACACACAAACCAC Lpar6 For TACTTGCCCCCCATCACTGT Atp2a1 For CACAGAGGCCAGGAACCCCACACACACACACACACACAC	Camk2d	For GATAAACAACAAAGCCAACG	Camk2a	For CAAGAACAGCAAGCCTATCC
Pde2a For ATCTTTGACCACTTCTCTCG Rev CATAACCCACTTCAGCCATC Pde3a For AACTATACCTGCTCCGGACTC Rev TTGAGAGCCAGCACC Pde3b For ATTCCAAAGCAGAGGTCATC Pde5a For GACCTTGCGTGCTGCTCATTG Pde6a For AACCCACCGCGTGACCACTG Rev CTTTGCTTGTGTGACGACAC Pde6b For TCCGGGCTATCTAAACTGC Rev TGATGGAAACCGCACACGG Rev CTCTTCCTTCTTGTTGAGGA Pde6a For TTGCTCAGGAAATGGTTATG Rev GAAACAGGAACTCGTACAGGT Pde6b For CCCAGGGCAATTCCCGACGCAT Pde6b For TTGCTCGGGAAGCTCGTCAGG Pde6b For CCCAGAGACTCCGAGAGA Pde6g For AAGGGTGAGATTCGGTCAGC Rev TCATCCCCAAACCCTTGCAC Pde6h For GGCAGACTCGACAGATTCAGGAG Rev TCATCCCCCAAACCCTTGCAC Pde10a For ACTTCGGCAAAGCCATCATCG Rev TTGATGGAGAGCCTGGCAG Lpar1 For GCTTGGTGCTTTATTGTT Rev GTTGGTGGTGTGTGTGCAC Lpar2 For AGTGTGCTGGTATTGCTGAC Lpar3 For AACCAGAAGCAATACC Lpar4 For TACTTTGCCATTGCGGCATT Lpar5 For CAACGAGAGCCAGAGCC Lpar6 For TACTTGCCATTCGGGTATT CCCCAAGGCAGTCCGCGGCTAT Atp2a3 For CCTCGGTGATGGGAACCCG Rev GCAGTGGAGACCCGGAACCCG Rev GACTGGCACTTCACTGGCTTT For AACCCAACACGAGGCTGGGGAAGACCG Rev GGATGGTGGCATATGCACC For CAACCGGGAGACCTCACCA Rev GGTGGTGCCAAAACCCAC Rev GGATGGTGGGCATATGCCTT For CAACCGGAAGGCCGGGGAAGACCG Rev GGATGGTGGCCAACACCACA Rev GGTGGTGCCACATATCCCTT For CACCCGGGAAGACCCCA Rev GGTGGTGGTGGGATGGGGGGGGGGGGGGGGGGGGGGGG		Rev GTAAGCCTCAAAGTCCCCAT		Rev CCTCTGACTGACTGGTGCGA
Rev CATAACCCACTTCAGCCATC Poice Rev TTCGTGCGCGCTTTATGCTGG Pde3b For ATTCCAAAGCAGAGGTCATC Pde5a For GACCCTTGCGTTGCTATG Pde6a For AACCCACCCGCTGACCACACG Pde6b For GACCCTTGCGTTGCTATG Pde6a For TTGCTCAGGAAATGGTTATG Pde6b For TCCCGGGCCTATCTAACTGC Pde6c For TTGCTCAGGAAATGGTTATG Pde6d For CCCAAGAAAATCCTCAAGTG Pde6g For AAGCGAGATCGTCAGCAGC Pde6d For CCCAAGAAAATCCTCAAGGA Pde6g For AAGGGTGAGATTCGGTCAGC Pde6h For GCTGGTGGCTGACAGAGTCAAGA Pde10a For AGTGTGCTGGAGATTCGGTCAGC Pde6h For GCTTGGTGCTGTTTATGTT Rev TCTCATCACCCTCAGCCCAG Pde6h For ACTTTCCAGAGAGAGCCTGAGA Pde10a For ACTTGCGGAAAGCCATCATCG Pde7h For ACTTTCCATGCGAAGACCATCATCG Lpar2 For AGTGTGGTGGTATTGCTGAC Lpar1 For ACTTTCCAAGCAAGAACAT For ACTTTCCAAGGAGACCAGAGACAT Lpar4 For CCTCAGGAGAACAGAAACAT Lpar5 For ACACCAGAGGACCAGAGA Lpar6 For TACTTGCCCATCACTGGTATT Atp2a1 For CCTCCGGAAACCGCAAGAC Rev TGATGGGAGTGTCCGTGTGCA Atp2a3 For CCTCGGCAAATCGCTCACCA Rev GACTTCCTCCCCATCACTGGCTTT Atp2a3 For CCTCCGCAAAACCGCACAC Rev TGATGGGGGGGCAATATCCGTCGTGGCATT Ptilh For CACACTGGTAGGAGCCGCAGACG <t< th=""><th rowspan="3">Pde2a Pde3b</th><th>For ATCTTTGACCACTTCTCTCG</th><th>Pde3a</th><th>For AACTATACCTGCTCGGACTC</th></t<>	Pde2a Pde3b	For ATCTTTGACCACTTCTCTCG	Pde3a	For AACTATACCTGCTCGGACTC
Pde3bFor ATTCCAAAGCAGAGGTCATC Rev GTTAGAGAGCCAGCAGCACCPde5aFor GACCCTGCGTGCTCATTG Rev TGATGGAGTGACAGTACAGCPde6aFor AACCCACCGCTGACCACTG Rev CTCTTCTTTGTTGACGAPde6bFor TCCGGGCCTATCTAAACTGC Rev AGAAGACAATTCCCGGCCATPde6cFor TTGCTCAGGAAATGGTTATG Rev GAAACAGAACTCGTACAGGTPde6dFor CCCAAGAAAATCCTCAAGTG Rev ACAAAGCCAAACTCGAAGAAPde6gFor AGGGTGAGATTCGGTCAGC Rev TCATCCCCAAACCCTTGCACPde6hFor GGCAGACTCGACAGTTCAAGAPde6gFor CATCCGCAAACCCTTGCAC Rev TCTCATCACCCTCAGCCCAGPde6hFor GGCAGACTCGACAGTTCAAGAPde10aFor CATCCGCAAAGCCTTGCGC Rev TCTCATCACCCTCAGCCCAGLpar1For ACTTTCCCTTATTGTCT Rev GTAGGAGTAGATGAGGGLpar2For AGTGTGCTGGTATTGCTGAC Rev TTGATGGGAGAGACAGGAACAGGALpar3For ACTTTCCCACAGCACAGALpar4For CACCAGAGAGACAGAAAACATLpar5For AACCAGAGATCACAGALpar6For TACTTTGCCATTCCGCACTGT Rev GAACCAGAGAACCAGGAACCTGTAtp2a1For CCTCGGGAAACCGAAtp2a2For AAACCAGATGTCCGTGTGCA Rev TGATGGCAGTTCCTCCCCATCACTGGCTTA Rev TGATGGCAGTCCGGCTAT Rev TGATGGCAGTCCGGCTAT Rev TGACGGAGTGCTCGGCTATA Rev TGACGGAGTGCTCGGCTATA Rev TGACGGAGTGCTCGGCTATA Rev GACCAGGGAGCCCCGAACACCAC Rev GACTGCCTTCTTCTTCTTCFor CACACCAGAAACCAC Rev GCTGGCTATGGGGCAAGACCG Rev GGATGGTGTGGGCAAGACCG Rev GGATGGTGTGGTGAAGTGGGGCAAGACCG Rev GGATGGTGTGGTGGATTGGGGCAAGACCTGAC Rev GGAGCCACCGATCGCACACAC Rev GGAGGCCACCGATCCACACAC Rev GGAGGCCACCGATCCACACAC Rev TGGGGCCAAAATCGCTCCACCACAC Rev TGGAGCCACCGATCCACACAC Rev TGGCGTGGTGGAACCCGAGAGGCFor CACCCGGAACCCGAACCCCACACAC Rev ATGGAGCCACCGATCCACACACACACACACACACACACAC		Rev CATAACCCACTTCAGCCATC		Rev TTCGTGCGGCTTTATGCTGG
Rev GTTAGAGAGCCACCACTG Rev CTCTACCTCCTTCTTGTTGACCACTG Rev CTCTTCCTTCTTGTTGACCACTG Rev CTCTTCCTTCTTGTTGACCACACGPde6bRev TGATGGACACTGACACGCPde6aFor ACCCACCCGCTGACCACTG Rev CAGAAGACACGGAAATGGTTATG Rev GAAACAGAACACGGAAATGGTTATG Rev GAAACAGAACCCGAACGGTPde6bFor TCCGGGCCATCTCACGCGCATPde6gFor AAGGGTGAGATTCGGTCAGC Rev TCATCCCCAAACCCTTGCACPde6hFor GGCAGACTCGACAGGTTCAAGAPde10aFor CATCCGCAAACCCTTGCAC Rev TCATCCCCCAAACCCTCACGCCAGPde6hFor GGCTGGCGCTTTATTGTCT Rev GGTAGGAGTAGAGGGGGGGPde10aFor AGTGTGCTGGTATTGCTGAC Rev TTGATGGAGAGCCTGGCAGLpar1For GCTTGGTGCTTTATTGTCT Rev GTAGGAGTAGAGGGGGGLpar2For AGTGTGCTGGTATTTCAG Rev TTGATGGAGAGCCTGGCAGLpar3For AACCCAGAGAGCACAGAAACATLpar4For CACCAGAAGAACAAGAAACAT Rev CACAGAAGAACAAGAAACAATLpar5For AAACCAGGACCCTGACAG Rev AAGACCCAGAGACCCGAGAGCLpar6For TACTTTGCCATTTCGGATTT Rev TGATGGCACTTCACCGGCTAT Rev TGACGGACTTCACCGGCTAT Rev TGACGGACTTCACCGGCTAT Rev CACAGAAGAACACCGAtp2a3For CAAAACAGGAACCACA Rev CGTGGTACCCGAAATAGTGGGAPlinFor TACCTCACTGGCTGGCA Rev AGCTGGGCCAATACTCCTTPthlh Rev GCTTGCTTCTTCTTCTTCTFor CAACCCGGAATGGTGGGG18SFor AGACAAGGGACTCGCACCACAC Rev TGGCTGGCGCAATACTCCCACACAC Rev TTGCTGTGAAACCACGGAACCTCACACACACCACACACAC		For ATTCCAAAGCAGAGGTCATC	Pde5a	For GACCCTTGCGTTGCTCATTG
Pde6a For AACCCACCCGCTGACCACTG Rev CTCTTCTTGTTGACGA Pde6b For TCCGGGCCATTCTAAACTGC Rev AGAAGACATTCCGGCCAT Pde6c For TTGCTCAGGAAATGGTTATG Rev GAAACAGAACTCGTACAGGT Pde6d For CCCAAGAAATCCTAAGGA Rev ACAAAGCCAAATCCGAAGAA Pde6g For AAGGGTGAGATTCGGTCAGC Rev TCATCCCCAAACCCTTGCAC Pde6h For GGCAGACTCGACAGTTCAAGA Rev CTCCAGATGGCTGACAGCT Pde10a For CATCCGCAAAGCCATCATCG Rev TCTCATCACCCTAGCCAG Lpar1 For GCTTGGTGCCTTTATTGTCT Rev GGTAGGAGTGAGATGATGGGG Lpar2 For AGTGTGCTGGTATTGCTGAC Rev TTGATGGAGAGACCAGCAGCAT Lpar3 For ACTCTTCCCACAGCAATAACC Lpar4 For CCTCAGTGGTGGTATTTCAG Rev CACAGAAGAACAAGAAACAT Lpar5 For AACCCAGGAGACCCAGAGC Lpar6 For TACTTTGCCATTTCGGATTT Rev GCACTTCTCCCCATCACTGT Atp2a1 For CACAAACAGGGACCCCCAACAG Rev CACAGAAGACAAGGAAACAT Rev GCACTGGTAGGAGACTCGT Lpar6 For AAACCAGGTGTCCGGTGTGCA Rev GAACCAGGAGTGCCCGGTGTGCA Rev GAAGCAGAGTCTCACCGGCTTT Atp2a1 For CCTCAGTGGAGACCCG Rev CGTGGTACCCGAAAGGACCCG Rev GGGTGACCCGAAAACCAC Rev CGTGGTACCCGAAAAACCAC For CACACAGGGAGACCCG Rev GGGTACCCGAAAAAACCAC Rev GGGTGGCTACCGCAAAAACCAC Rev GGGTGGCTACCGCAAAAACCAC Rev GGATTGTGTTCTTCTTC For CACACTGGTAAGTGGGGCAAGACCG Rev GGATTGTGTTGTTCAGGGGC Bas For AAACCAAGGGCAAGACCTCAC Rev TGAGGCAAATCGCTCCACCAAC Rev TGGAGCCAACCGGGAAACCTCAC Actb For CACCGGAGGCACCACAC Rev ATGGAGCCACCGATGCAACCTCAC Bap For TGTGTCCGTCGTGGAGAACCTCAC Actb For CACCCGTGGTAAGAGCCCTCACCAA Rev TGGAGCCACCGATGG		Rev GTTAGAGAGCCAGCAGACAC		Rev TGATGGAGTGACAGTACAGC
Rev CICITICCTICITICITIGITIGACGARev AGAAGACAATTICCCGGGCCATPde6cFor TTGCTCAGGAATGGTTATG Rev GAAACAGAACTCGTACAGGTPde6dFor CCCAAGAAAATCCTCAAGTG Rev ACAAAGCCAAACTCGAAGAAPde6gFor AAGGGTGAGATTCGGTCAGC Rev TCATCCCCCAAACCCTTGCACAPde6hFor GGCAGACTCGACAGTTCAAGAPde10aFor CATCCGCAAAGCCATCATCG Rev TCTCATCACCCTCAGCCAGLpar1For GCTTGGTGCCTTTATTGTCT Rev GTAGGAGATGATGGGGGLpar2For AGTGTGCTGGTATTGCTGAC Rev TTTGATGGAGAGCCTGGCAGLpar3For ACTTTCCCTTCACACGAGAGACAAGALpar4For CCTCAGTGGTGGTATTTCAG Rev CACAGAAGACAAGAACATLpar5For AACTTCACCAGAGGACCAGAGCLpar6For ACTTTGCCATTTCCGATTT Rev GCACTTCTCCCACAGAGAGACAAGAACATAtp2a1 Rev GCAGTGAGAGCCTGGCAGFor CACAAACAGGAACCCAAPlnFor AACCAGATGTCCGGTGTGCA Rev TGACGGAGTGCTCGGCATTA Rev TGATGGCACTTCACCTGGCTTTAAtp2a1 Rev GCAGTGTACTCGGTGTGAFor CACACCGAAACCAAAAACACPlnFor CACCCACAGAGGCCATGGCAGATAtp2a3 Rev GCTGCCTTCTCTTCTTCTTCTTCTFor CACACCGAAAACCAC Rev GCTGGTACCCGAAAACCACFor CACACCGGAAACCAC Rev GCTGGTACCCGAAAAACCACPlnFor CAAGCCAGGCTATGGAAGTC Rev TGACGGGCCAATATCTCCTTPthlhFor CACACTGGTAGGGGCAAGACCG Rev GGATTGTGTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTT	Pde6a	For AACCCACCCGCTGACCACTG	Pde6b	For TCCGGGCCTATCTAAACTGC
Pde6cFor TIGCTCAGGAAATGGTTATG Rev GAAACAGAACTCGTACAGGTPde6dFor CCCAAGAAAATCCTCAAGTG Rev ACAAAGCCAAACTCGAAGAAPde6gFor AAGGGTGAGATTCGGTCAGC Rev TCATCCCCAAACCCTTGCACPde6hFor GGCAGACTCGACAGTCAAGGAPde10aFor CATCCGCAAAGCCATCATCG Rev TCCATCACCCTCAGCCAGGLpar1For GCTTGGTGCTCTTTTTGTT Rev GGTAGGAGTAGATGATGGGGLpar2For AGTGTGCTGGTATTGCTGAC Rev TTTGATGGAGAGACCAGAGCALpar3For ACTTTCCCTTCACACCGGLpar4For CCTCAGTGGTGGTATTTCAG Rev TTTGATGGAGAGACAGAACAACATLpar3For ACTTTCCCTTCACACCGGLpar4For CCTCAGTGGTGGTATTTCAG Rev CACAGAGAACACAAGAAACATLpar5For AACACGACTTCACAAGGLpar6For ACTTTGCCATTCCGACTTT Rev GCACTTCCTCCCATCACTGGTAtp2a1For CAAAACAGGGACCCTCACCA Rev GCAGTGATGGGGAACTCGTAtp2a2For TACTTTGCATTTCGGCATT Rev TGATGGCACTCACTGGTCGGCATTA Rev TGACGGAGTGCTCGGCTATT Rev TGACGGAGTGCTCGGCTAT Rev TGACGGGAGTGCTCGGCTATTAAtp2a3For CTCCCCAACACCAAAAACAC Rev GCTGGTACCCGAAATGGTGAPlnFor CAAGCCAGGCTATGGAAGTC Rev AGCTGGGCCAATATCTCCTTAtp2a3For CACCCGGAAAACCAC Rev GCTGCTTTCTTTTCTTCTTCTTCTTCTTCTTCTTCTTCTT		Rev CTCTTCCTTCTTGTTGACGA		Rev AGAAGACAATTTCCCCGGCCAT
Rev GAAGCAGAACTCGIACAGGTRev ACAAAGCCCAAAGCCCGAGAAPde6gFor AAGGGTGAGATTCGGTCAGC Rev TCATCCCCAAAGCCAACCTTGCACPde6hFor GGCAGACTCGACAGTTCAAGA Rev CTCCAGGTGGTGGTTATTGTCT Rev GTAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	Pde6c	For TTGCTCAGGAAATGGTTATG	Pde6d	For CCCAAGAAAATCCTCAAGTG
Pde6gFor AAGGGTGAGATTCGGTCAGCPde6hFor GGCAGACTCGACAGTTCAGACAGTPde10aFor CATCCCCAAAGCCATCATCGLpar1For GCTTGGTGGTGCTGAACGCTPde10aFor CATCCGCAAAGCCATCATCGLpar1For GCTTGGTGGCCTTATTGTCTRev TCTCATCACCCCCAGCCCAGLpar3For ACTTGCGCAGAGTACGGGGLpar2For AGTGTGCTGGTATTGCTGACLpar3For ACTTTCCACAGCAATAACCLpar4For CCTCAGTGGTGGTATTCGGTAGTTTCAGLpar5For AACACGACTTCTACCAACAGALpar6For TACTTTGCATTCGGATTTAtp2a1For CAAAACAGGGACCCTGACAGAAtp2a2For AACCCAGATGTCCGTGTGCA Rev TGATGGCACTTCACCACTGGCTTAAtp2a3For CCTCCGGTCATCGGTGAPlnFor TACCTCACTCGCTCGGCTAT Rev TGACGGAGTGCTGGCAAGAGTCPthlhFor CCTCCCAACACCAAAAACCAC Rev GCTGGTTCTTCTTCTTCTTCTTCCol10a1For CAAGCAAGCAGGCAGAGTC Rev AGACCAGGGAAACCTCACCA Rev CTCAACACGGGAAACCTCACCA Rev CTCAACACGGGAAACCTCACCAACA Rev CTCAACACGGGAAACCTCACCAACAACCAC Rev AGGTGGTCCGTGGCAAACCTCACCAACAAACCACCA Rev CTCAACACGGGAAACCTCACCAACAAACCACCACACACAAAACCACCACACACACAC				Rev ACAAAGCCAAACTCGAAGAA
Pde10aRev TCATCCCCAAACCCCTTGCACLpar1Rev CTCCAGATGCCTGAACGCTPde10aFor CATCCGCAAAGCCATCATCG Rev TCTCATCACCCTCAGCCCAGLpar1For GCTTGGTGCCTTTATTGTCT Rev GGTAGGAGTAGATGATGAGGGGLpar2For AGTGTGCTGGTATTGCTGAC Rev TTTGATGGAGAGCCTGGCAGLpar3For ACTTTCCCTTCACAGCAATAACCLpar4For CCTCAGTGGTGGTATTTCCG Rev CACAGAAGAACAAGAAACATLpar5For AACACGACTTCTACCAGCAAGAACAALpar6For TACTTTGCCATTTCGGATTT Rev GCACTTCCTCCCATCACTGTAtp2a1For CAAACAGGAACCAAGAACCAAAtp2a2For AAACCAGATGTCCGTGTGCA Rev TGATGGCACTTCACCGCTTACACTGGCTTAtp2a3For CCTCGGTCATCTGGACA Rev CGTGGTACCCGAAAAACCACPlnFor TACCTCACTCGCTCGGCTAT Rev TGACGGAGTGCTGGGCAATATCCCTTPth/hFor CCCCAACACCAAAAACCAC Rev GCTGCCTTCTTCTTCTCol10a1For AAACCAGGGCAATATCTCCTTCol2a1For CACACTGGTAAGTGGGGCAAGACCG Rev AGCTGGGCCAATATCCCCAACA Rev TGCAGGAGCCTCACCAAC Rev TGCAGGACCTCATCGGGGAAACCTCAC Rev TGCTGTGTGTTCAGGGGAAACCTCAC Rev AGCTGGGCCACCCACCAAAACCACC Rev AGCTGGGCCACCCACCAACA Rev TTGCTGTTCAGGGAACCCG Rev AGCTGGGCCACCCACCAACA Rev TTGCTGTTGTGTGCGTGGGAACCCCACAAAACCACC Rev AGCGGAGCCACCCACCAACACCAAC Rev AGCGGAGCCACCCACCAACACCAACACCACACACACACA	Pde6g	For AAGGGTGAGATTCGGTCAGC	Pde6h	For GGCAGACTCGACAGTTCAAGA
Pde10a For CATCCGCGAAGCCATCATCG Lpar1 For GCTTGGTGCCTTTATTGTCT Rev TCTCATCACCCCTCAGCCCAG Lpar3 For ACTTTCCCTTCATCACCTG Lpar2 For AGTGTGCTGGTATTGCTGAC Lpar3 For ACTTTCCCTTCACACGCAAGAACCC Lpar4 For CCTCAGTGGTGGTATTTCAG Lpar3 For ACCTTTCCCACAGGCAATAACC Lpar4 For CCTCAGTGGTGGTATTTCAG Lpar5 For AACACGACTTCACCAACAG Lpar6 For TACTTTGCCATTTCGGATTT Atp2a1 For CAAAACAGGGACCCTCACCA Atp2a2 For AAACCAGATGTCCGTGTGCA Atp2a3 For CCTCCGGTCATCGGCTAT Pln For TACCTCACTGGCTGGCATT Pthlh For CACACGACAGAGAACCAC Pln For CAAGCCAGGCTATGGAAGTC Col2a1 For CACACTGGTAGGGCAAAGCCG Rev AGCTGGGCCAATATCTCCTT Col2a1 For CACACTGGTAAGTGGGGCAACCGA Rev AGCTGGGCCAATACCCAAC Actb For CATCCGTAAGACCACAACAAGACCACACACACACACACAC	_			Rev CTCCAGATGGCTGAACGCT
Lpar2For AGTGTGCTGGTATTGCTGAC Rev TTGATGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	Pde10a		Lpar1	
Lpar2For AGTGGTGGTGGTGGTGGTGGTGGAGLpar3For ACTTTCCCTCCTACTACTACTG Rev GTCTTTCCACAGCAATAACCLpar4For CCTCAGTGGTGGTATTTCAG Rev CACAGAAGAACAAGAAACAATLpar5For AACACGACTTCTACCAACAG Rev AGACCCAGAGGGCCAGAGCLpar6For TACTTTGCCATTTCGGATTT Rev GCACTTCCTCCCATCACTGTAtp2a1For CAAAACAGGGACCCTCACCA Rev GCCAGTGATGGAGAACCGGTAtp2a2For AAACCAGATGTCCGTGTGCA Rev TGATGGCACTTCACTGGCTTAtp2a3For CCTCGGTCATCTGCTCTGAC Rev CGTGGTACCCGAAAACAGCGAA Rev CGTGGTACCCGAAAACCAC Rev GCTTGCCTTCTTCTTCTTCPlnFor TACCTCACTCGCTCGGCTAT Rev AGCTGGGCCAATGTCGGCCAATATCTCCTTPthlhFor CACACTGGTAAGTGGGGCAAGACCG Rev GGATTGTGTTGTTTCAGGGTCCGGGCol10a1For CAAGCCAGGCTATGGAAGTC Rev CTCAACACGGGAAACCGCCACAAATCGCTCACCA Rev CTCAACACGGGAAACCTCACCCol2a1For CATCCGTAAGTGGGGCAAGACCG Rev ATGGAGCCACCGATCCACAGapdhFor TGTGTCCGTCGTGGGATCTGA Rev TIGCTGTTGAAGTCGCAAGGCGAGGAGActbFor CATCCGTAAGACCACCAAA				
Lpar4For CCTCAGTGGTGGTATTTCAG Rev CACAGAAGAACAAGAACAATLpar5For AACACGACTTCTACCAACAG Rev AAGACCCAGAGGCCAGAGCLpar6For TACTTTGCCATTTCGGATTT Rev GCACTTCCTCCCATCACTGTAtp2a1For CAAAACAGGGACCCTCACCA Rev GCCAGTGATGGAGAACTCGTAtp2a2For AAACCAGATGTCCGTGTGCA Rev TGATGGCACTTCACTGGCTTAtp2a3For CCTCCGGTCATCTGCTCGAC Rev CGTGGTACCCGAAAAAACCAC Rev CGTGGTACCCGAAAAAACCAC Rev TGACGGAGTGCTCGGCTATA Rev TGACGGAGTGCTCGGCTATAGAAGTC Rev AGCTGGGCCAATATCTCCTTPthlhFor CCCCAACACAAAAACCAC Rev GCTGGTACCCGAAAAAACCAC Rev GGATTGTGTTGTTTCAGGGTCGGG18SFor AGACAAATCGCTCCACCAAC Rev TGGTGGTCCGTCGTGGAAACCTCACActbFor CATCCGTAAGACCCTACAC Rev ATGGAGCCACCGATCCACAGapdhFor TGTGTCCGTCGTGGATCTGA Rev TGCTGTTGAAGTCGCGCAAGACCGAGAGCFor CATCCGTAAGACCCACAA	Lpar2		Lpar3	
Lpar4For ConcentrationLpar5For AACACGACTIC TACCAACAG Rev AAGACCCAGAGAGCCAGAGCLpar6For TACTTTGCCATTTCGGATTT Rev GCACTTCCTCCCCATCACTGTAtp2a1For CAAAACAGGGACCCTCACCA Rev GCCAGTGATGGAGAACTCGTAtp2a2For AAACCAGATGTCCGTGTGCA Rev TGATGGCACTTCACTGGCTAT Rev TGACGGAGTGCTCGGCTAT Rev TGACGGAGTGCTCGGCTATA Rev AGCTGGGCCAATATCTCCTTAtp2a3For CCTCGGTCATCTGGTGAC Rev CGTGGTACCCGAAAACACAC Rev CGTGGTACCCGAAAAACCAC Rev GCTTGCCTTTCTTCTTCCol10a1For CAAGCCAGGCTATGGAAGTC Rev AGCTGGGCCAATATCTCCTTCol2a1For CACACTGGTAAGTGGGGCAAGACCG Rev GGATTGTGTTGTTTCAGGGTTCGGG18SFor AGACAAATCGCTCCACCAAC Rev TGGTGGTCCGTCGTGGAAACCTCACActbFor CATCCGTAAGACCCCAAC Rev ATGGAGCCACCGATCCACAGapdhFor TGTGTCCGTCGTGGATCTGA Rev TGCTGTTGAAGTCGCGCAGGAGFor CATCCGTAAGACCCGATCCACA	-			
Lpar6 For TACTTTGCCATTTCGGATTT Rev GCACTGCCCATCACTGT Atp2a1 For CAAAACAGGGACCCTCACCA Rev GCCAGTGATGGAGAACTCGT Atp2a2 For AAACCAGATGTCCGTGTGCA Rev TGATGGCACTTCACTGGCTT Atp2a3 For CCTCGGTCATCTGCTCGAC Rev CGTGGTACCCGAAATGGTGA Pln For TACCTCACTCGCTCGGCTAT Rev TGACGGAGTGCTCGGCTTTA Pth/h For CTCCCAACACCCAAAAACCAC Rev GCTTGCCTTTCTTCTTC Col10a1 For CAAGCCAGGCTATGGAAGTC Rev AGCTGGGCCAATATCTCCTT Col2a1 For CACACTGGTAAGTGGGGCAAGACCG Rev GGATTGTGTTGTTTCAGGGTTCGGG 18S For AGACAAATCGCTCCACCAAC Rev TGGTGTCCGTCGTGGATCTGA Rev TGGTGTCCGTCGTGGATCTGA Rev TGCTGTTGAAGTCGCAGGAG Actb For CATCCGTAAGACCCGATCCACA	Lpar4		Lpar5	
Lpar6 Foi TACTITISCEATTICEGRATIT Atp2a1 Foi CAAAACAGGGACCCTCACGAC Rev GCACTTCCTCCCATCACTGT Atp2a1 Foi CAAAACAGGGACCCTCACCGT Atp2a2 For AAACCAGATGTCCGTGTGCA Rev TGATGGCACTTCACTGGCTT Atp2a3 For CCTCGGTCATCTGCTCGAC Rev CGTGGTACCCGAAATGGTGA Pln For TACCTCACTCGCTCGGCTAT Rev TGACGGAGTGCTCGGCTTTA Pthlh For CTCCCAACACCAAAAACCAC Rev GCTTGCCTTTCTTCTTC Col10a1 For CAAGCCAGGCTATGGAAGTC Rev AGCTGGGCCAATATCTCCTT Col2a1 For CACACTGGTAAGTGGGGCAAGACCG Rev GGATTGTGTTGTTCAGGGTTCGGG 18S For AGACAAATCGCTCCACCAAC Rev CTCAACACGGGAAACCTCAC Actb For CATCCGTAAGACCCGATCGAC Rev ATGGAGCCACCGATCCACA Gapdh For TGTGTCCGTCGTGGATCTGA Rev TTGCTGTTGAAGTCGCAGGAG For CACCGTAAGACCCCCACAA				
Atp2a2 For AAACCAGATGTCCGTGTGCA Rev TGATGGCACTTCACTGGCTT Atp2a3 For CCTCGGTCATCTGCTCGAC Rev CGTGGTACCCGAAATGGTGA Pln For TACCTCACTCGCTCGGCTAT Rev TGACGGAGTGCTCGGCTTTA Pthlh For CTCCCAACACCAAAAACCAC Rev GCTTGCCTTTCTTCTTC Col10a1 For CAAGCCAGGCTATGGAAGTC Rev AGCTGGGCCAATATCTCCTT Col2a1 For CACACTGGTAGTGGGGCAAGACCCG Rev GGATTGTGTTGTTCAGGGTTCGGG 18S For AGACAAATCGCTCCACCAAC Rev CTCAACACGGGAAACCTCAC Actb For CATCCGTAAAGACCTCATGCAAC Rev ATGGAGCCACCGATCCACA Gapdh For TGTGTCCGTCGTGGATCTGA Rev TTGCTGTTGAAGTCGCAGGAG For CACACTGGAGCAACCTCAC Actb	Lpar6		Atp2a1	
Atp2a2 Poi AAACCAGATGTCCGTGTGCA Atp2a3 Poi CCTCGGTCATCTGCTCGCTCGAC Rev TGATGGCACTTCACTGGCTT Atp2a3 For CCTCGGTACCCGAAATGGTGA Pin For TACCTCACTCGCTCGGCTAT Rev TGACGGAGTGCTCGGCTTTA Pth/h For CTCCCAACACCAAAAACCAC Rev GCTTGCCTTTCTTCTTCTTC Col10a1 For CAAGCCAGGCTATGGAAGTC Rev AGCTGGGCCAATATCTCCTT Col2a1 For CACACTGGTAAGTGGGGGCAAGACCG Rev GGATTGTGTTGTTCAGGGTTCGGG 18S For AGACAAATCGCTCCACCAAC Rev CTCAACACGGGAAACCTCAC Actb For CATCCGTAAAGACCTCATGCCAAC Rev ATGGAGCCACCGATCCACA Gapdh For TGTGTCCGTCGTGGATCTGA Rev TTGCTGTTGAAGTCGCAGGAG For CATCGGAGCCACCGATCCACA				
Pin For TACCTCACTCGCTCGGCTAT Rev TGACGGAGTGCTCGGCTTTA Pth/h For CTCCCAACACCAAAAACCAC Rev GCTTGCCTTTCTTCTTCTTC Col10a1 For CAAGCCAGGCTATGGAAGTC Rev AGCTGGGCCAATATCTCCTT Col2a1 For CACACTGGTAAGTGGGGGCAAGACCG Rev GGATTGTGTTGTTCAGGGTTCGGG 18S For AGACAAATCGCTCCACCAAC Rev CTCAACACGGGAAACCTCAC Actb For CATCCGTAAGACCCTATGCCAAC Rev ATGGAGCCACCGATCCACA Gapdh For TGTGTCCGTCGTGGAGTCTGA Rev TTGCTGTTGAAGTCGCAGGAG For CATCCGTAAGACCCCACAA	Atp2a2		Atp2a3	
Pin For TGACGGAGTGCTCGGCTTTA Pth/h For CACACCGAAAAACCAC Col10a1 For CAAGCCAGGCTATGGAAGTC Rev AGCTGGGCCAATATCTCCTT Col2a1 For CACACTGGTAAGTGGGGCAAGACCG Rev GGATTGTGTTGTTTCAGGGTTCGGG 18S For AGACAAATCGCTCCACCAAC Rev CTCAACACGGGAAACCTCAC Actb For CATCCGTAAGACCCTATGCCAAC Rev ATGGAGCCACCGATCCACA Gapdh For TGTGTCCGTCGTGGAGTCTGA Rev TTGCTGTTGAAGTCGCAGGAG For CATCCGTAAGGCCACCGATCCACA	Pin			
Col10a1 For CAAGCCAGGCTATGGAAGTC Rev AGCTGGGCCAATATCTCCTT Col2a1 For CACACTGGTAAGTGGGGCAAGACCG Rev GGATTGTGTTGTTTCAGGGTTCGGG 18S For AGACAAATCGCTCCACCAAC Rev CTCAACACGGGAAACCTCAC Actb For CATCCGTAAGACCCTCATGCCAAC Rev ATGGAGCCACCGATCCACA Gapdh For TGTGTCCGTCGTGGATCTGA Rev TTGCTGTTGAAGTCGCAGGAG For CATCCGTAAGACCCCACAA			Pthlh	Rev GCTTGCCTTCTTCTTCTTC
Col10a1 For CACCAC TGG TAAG TGG GGC AAGACCG Rev AGCTGGGCCAATATCTCCTT Col2a1 18S For AGACAATCGCTCCACCAAC Rev CTCAACACGGGAAACCTCAC Gapdh For TGTGTCCGTCGTGGATCTGA Rev TTGCTGTTGAAGTCGCAGGAG				
18S For AGACAAATCGCTCCACCAAC Rev CTCAACACGGGAAACCTCAC Actb For CATCCGTAAAGACCTCTATGCCAAC Rev ATGGAGCCACCGATCCACA Gapdh For TGTGTCCGTCGTGGAGTCGA Rev TTGCTGTTGAAGTCGCAGGAG For CATCCGTAAAGACCTCACA	Col10a1		Col2a1	
18S For CATCCGTAAGAGCCTCAC Actb Rev CTCAACACGGGAAACCTCAC Actb Gapdh For TGTGTCCGTCGTGGATCTGA Rev TTGCTGTTGAAGTCGCAGGAG				
Gapdh For TGTGTCCGTCGTGGATCTGA Rev TTGCTGTTGAAGTCGCAGGAG	18S		Actb	
Gapdh Rev TTGCTGTTGAAGTCGCAGGAG				
	Gapdh	Rev TTGCTGTTGAAGTCGCAGGAG		

Table 2. Primers used for PCR analysis

References

- 1. Berendsen, A.D., and Olsen, B.R. (2015). Bone development. *Bone*. 80, 14-18.
- 2. Nakao, K., Itoh, H., Saito, Y., Mukoyama, M., and Ogawa, Y. (1996). The natriuretic peptide family. *Curr Opin Nephrol Hypertens.* 5, 4-11.
- 3. Wit, J.M., and Camacho Hübner, C. (2011). Endocrine regulation of longitudinal bone growth. *Endocr Dev.* 21, 30-41.
- Peake, N.J., Hobbs, A.J., Pingguan-Murphy, B., Salter, D.M., Berenbaum, F., and Chowdhury, T.T. (2014). Role of C-type natriuretic peptide signalling in maintaining cartilage and bone function. *Osteoarthritis Cartilage*. 22, 1800-1807.
- 5. Vasques, G.A., Arnhold, I.J.P., and Jorge, A.A.L. (2014). Role of the natriuretic peptide system in normal growth and growth disorders. *Horm Res Paediatr.* 82, 222-229.
- Wit, J.M., Oostdijk, W., Losekoot, M., van Duyvenvoorde, H.A., Ruivenkamp, C.A.L., and Kant, S.G. (2016). MECHANISMS IN ENDOCRINOLOGY: Novel genetic causes of short stature. *Eur J Endocrinol.* 174, R145-R173.
- Savarirayan, R., Tofts, L., Irving, M., Wilcox, W., Bacino, C.A., Hoover-Fong, J., Ullot Font, R., Harmatz, P., Rutsch, F., Bober, M.B., et al. (2020). Once-daily, subcutaneous vosoritide therapy in children with achondroplasia: a randomised, double-blind, phase 3, placebo-controlled, multicentre trial. *Lancet.* 396, 684-692.
- Krejci, P., Masri, B., Fontaine, V., Mekikian, P.B., Weis, M., Prats, H., and Wilcox, W.R. (2005). Interaction of fibroblast growth factor and C-natriuretic peptide signaling in regulation of chondrocyte proliferation and extracellular matrix homeostasis. *J Cell Sci.* 118, 5089-5100.
- Kawasaki, Y., Kugimiya, F., Chikuda, H., Kamekura, S., Ikeda, T., Kawamura, N., Saito, T., Shinoda, Y., Higashikawa, A., Yano, F., et al. (2008). Phosphorylation of GSK-3β by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes. *J Clin Invest*. 118, 2506-2515.
- 10. Fleig, A., and Chubanov, V. (2014). Trpm7. Handb Exp Pharmacol. 222, 521-546.
- Qian, N., Ichimura, A., Takei, D., Sakaguchi, R., Kitani, A., Nagaoka, R., Tomizawa, M., Miyazaki, Y., Miyachi, H., Numata, T., et al. (2019). TRPM7 channels mediate spontaneous Ca²⁺ fluctuations in growth plate chondrocytes that promote bone development *Sci Signal*. 12, eaaw4847.
- 12. Nakao, K., Osawa, K., Yasoda, A., Yamanaka, S., Fujii, T., Kondo, E., Koyama, N., Kanamoto, N., Miura, M., Kuwahara, K., et al. (2015). The local CNP/GC-B system in

growth plate is responsible for physiological endochondral bone growth. Sci Rep. 5, 10554.

- De-Li, D., Peng, Y., Bao-Feng, Y., and Wen-Hui, W. (2008). Hydrogen peroxide stimulates the Ca²⁺-activated big-conductance K channels (BK) through cGMP signaling pathway in cultured human endothelial cells. *Cell Physiol Biochem.* 22, 119-126.
- Fukao, M., Mason, H.S., Britton, F.C., Kenyon, J.L., Horowitz, B., and Keef, K.D. (1999).
 Cyclic GMP-dependent protein kinase activates cloned BK Ca channels expressed in mammalian cells by direct phosphorylation at serine 1072. *J Biol Chem.* 274, 10927-10935.
- 15. White, R.E., Kryman, J.P., El-Mowafy, A.M., Han, G., and Carrier, G.O. (2000). cAMP-dependent vasodilators cross-activate the cGMP-dependent protein kinase to stimulate BK(Ca) channel activity in coronary artery smooth muscle cells. *Circ Res.* 86, 897-905.
- Guo, J.Y., Zhang, M.H., Jiang, J.Z., Piao, L.H., Fang, X.S., Jin, Z., and Cai, Y.L. (2018). The role of CNP-mediated PKG/PKA-PLCβ pathway in diabetes-induced gastric motility disorder. *Peptides*. 110, 47-55.
- Huang, J., Zhou, H., Mahavadi, S., Sriwai, W., and Murthy, K.S. (2007). Inhibition of Gαq-dependent PLC-β1 activity by PKG and PKA is mediated by phosphorylation of RGS4 and GRK2. *Am J Physiol Cell Physiol*. 292, C200-C208.
- Nalli, A.D., Kumar, D.P., Al-Shboul, O., Mahavadi, S., Kuemmerle, J.F., Grider, J.R., and Murthy, K.S. (2014). Regulation of Gβγi-dependent PLC-β3 activity in smooth muscle: Inhibitory phosphorylation of PLC-β3 by PKA and PKG and stimulatory phosphorylation of Gαi-GTPase-activating protein RGS2 by PKG. *Cell Biochem Biophys.* 70, 867-880.
- Xia, C., Bao, Z., Yue, C., Sanborn, B.M., and Liu, M. (2001). Phosphorylation and regulation of G-protein-activated phospholipase C-β3 by cGMP-dependent protein kinases. *J Biol Chem*. 276, 19770-19777.
- Bibli, S.I., Andreadou, I., Chatzianastasiou, A., Tzimas, C., Sanoudou, D., Kranias, E., Brouckaert, P., Coletta, C., Szabo, C., Kremastinos, D.T., et al. (2015). Cardioprotection by H2S engages a cGMP-dependent protein kinase G/phospholamban pathway. *Cardiovasc Res.* 106, 432-442.
- Luc, R., Franz, H., and Rik, C. (1988). Cyclic GMP-dependent protein kinase phosphorylates phospholamban in isolated sarcoplasmic reticulum from cardiac and smooth muscle. *Biochem J.* 252, 269-273.
- Lalli, M.J., Shimizu, S., Sutliff, R.L., Kranias, E.G., and Paul, R.J. (1999). [Ca²⁺]_i homeostasis and cyclic nucleotide relaxation in aorta of phospholamban-deficient mice. *Am J Physiol.* 277, H963-970.
- 23. Clark, R.B., Hatano, N., Kondo, C., Belke, D.D., Brown, B.S., Kumar, S., Votta, B.J., and Giles, W.R. (2014). Voltage-gated K⁺ currents in mouse articular chondrocytes regulate

membrane potential. Channels. 4, 179-191.

- Houston, D.A., Staines, K.A., MacRae, V.E., and Farquharson, C. (2016). Culture of murine embryonic metatarsals: A physiological model of endochondral ossification. *J Vis Exp.*, e54978.
- 25. Liang, L., Li, X., Moutton, S., Schrier Vergano, S.A., Cogné, B., Saint-Martin, A., Hurst, A.C.E., Hu, Y., Bodamer, O., Thevenon, J., et al. (2019). De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurological phenotypes. *Hum Mol Genet.* 28, 2937-2951.
- Yasoda, A., Komatsu, Y., Chusho, H., Miyazawa, T., Ozasa, A., Miura, M., Kurihara, T., Rogi, T., Tanaka, S., Suda, M., et al. (2004). Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. *Nat Med.* 10, 80-86.
- 27. Martel, G., Hamet, P., and Tremblay, J. (2009). Central role of guanylyl cyclase in natriuretic peptide signaling in hypertension and metabolic syndrome. *Mol Cell Biochem.* 334, 53-65.
- 28. Zois, N.E., Bartels, E.D., Hunter, I., Kousholt, B.S., Olsen, L.H., and Goetze, J.P. (2014). Natriuretic peptides in cardiometabolic regulation and disease. *Nat Rev Cardiol.* 11, 403-412.
- Kubacka, M., Kotańska, M., Kazek, G., Waszkielewicz, A.M., Marona, H., Filipek, B., and Mogilski, S. (2018). Involvement of the NO/sGC/cGMP/K⁺ channels pathway in vascular relaxation evoked by two non-quinazoline α1-adrenoceptor antagonists. *Biomed Pharmacother*. 103, 157-166.
- Ueda, Y., Yasoda, A., Yamashita, Y., Kanai, Y., Hirota, K., Yamauchi, I., Kondo, E., Sakane,
 Y., Yamanaka, S., Nakao, K., et al. (2016). C-type natriuretic peptide restores impaired skeletal growth in a murine model of glucocorticoid-induced growth retardation. *Bone.* 92, 157-167.
- Yamashita, T., Fujii, T., Yamauchi, I., Ueda, Y., Hirota, K., Kanai, Y., Yasoda, A., and Inagaki, N. (2020). C-Type natriuretic peptide restores growth impairment under enzyme replacement in mice with mucopolysaccharidosis VII. *Endocrinology*. 161, bqaa008.
- 32. Fafilek, B., Bosakova, M., and Krejci, P. (2021). Expanding horizons of achondroplasia treatment: current options and future developments. *Osteoarthritis Cartilage*. S1063-4584, 00980-00988.
- Yamazaki, D., Tabara, Y., Kita, S., Hanada, H., Komazaki, S., Naitou, D., Mishima, A., Nishi, M., Yamamura, H., Yamamoto, S., et al. (2011). TRIC-A channels in vascular smooth muscle contribute to blood pressure maintenance. *Cell Metab.* 14, 231-241.
- Li, Y., Ahrens, M.J., Wu, A., Liu, J., and Dudley, A.T. (2011). Calcium/calmodulin-dependent protein kinase II activity regulates the proliferative potential of growth plate chondrocytes. *Development*. 138, 359-370.

- 35. Ahrens, M.J., and Dudley, A.T. (2011). Chemical pretreatment of growth plate cartilage increases immunofluorescence sensitivity. *J Histochem Cytochem*. 59, 408-418.
- Mouser, V.H.M., Melchels, F.P.W., Visser, J., Dhert, W.J.A., Gawlitta, D., and Malda, J. (2016). Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. *Biofabrication*. 8, 035003.
- 37. Chengzhu, Z., Ichimura, A., Qian, N., Iida, T., Yamazaki, D., Noma, N., Asagiri, M., Yamamoto, K., Komazaki, S., Sato, C., et al. (2016). Mice lacking the intracellular cation channel TRIC-B have compromised collagen production and impaired bone mineralization. *Sci Signal.* 9, ra49.

Publication list

<u>Miyazaki, Y.</u>, Ichimura, A., Kitayama, R., Okamoto, N., Yasue, T., Liu, F., Ueda, Y., Yamauchi, I., Hakata, T., Nakao, K. Kakizawa, S., Nishi, M.,Mori, Y., Akiyama, H., Nakao, K. and Takeshima, H. (2021). C-type natriuretic peptide facilitates autonomic Ca²⁺ entry in growth plate chondrocytes for stimulating bone growth. *bioRxiv*.

Reference Thesis

Miyazaki, Y., Ichimura, A., Sato, S., Fujii, T., Oishi, S., Sakai, H. and Takeshima, H. (2018). The natural flavonoid myricetin inhibits gastric H⁺, K⁺-ATPase. *Eur J Pharmacol.* 820, 217-221.

Qian, N., Ichimura, A., Takei, D., Sakaguchi, R., Kitani, A., Nagaoka, R., Tomizawa, M., <u>Miyazaki,</u> <u>Y.</u>, Miyachi, H., Numata, T., Kakizawa, S., Nishi, M., Yasuo Mori, Y. and Takeshima, H. TRPM7 channels mediate spontaneous Ca²⁺ fluctuations in growth plate chondrocytes that promote bone development. (2019). *Sci Signal.* 12, eaaw4847.

Acknowledgments

I appreciate gratefully to Professor Hiroshi Takeshima, Graduate School of Pharmaceutical Science, Kyoto University for his immediate guidance through this paper. I also appreciate to Assistant Professor Atsuhiko Ichimura, Graduate School of Pharmaceutical Science, Kyoto University for his immediate guidance and encouragement through the course of this work. My appreciation is also given to Associate Professor Sho Kakizawa and, Dr. Miyuki Nishi, Graduate School of Pharmaceutical Science, Kyoto University, Dr. Hiromu Itoh, Kurashiki Central Hospital, Dr. Kazuwa Nakao, Dr. Kazumasa Nakao, Dr. Ichiro Yamauchi and Dr. Yohei Ueda, Graduate School of Medicine, Dr. Yasuo Mori, Graduate School of Engineering, Kyoto University, Dr. Haruhiko Akiyama, Graduate School of Medicine, Gifu University. I thank Mr. Hitoshi Miyachi, Ms. Satsuki Kitano, and Mr. Jun Matsushita for mouse in vitro fertilization. I appreciate to the late Tetsuro Fujita and his family or persons concerned for giving Fujita Jinsei Scholarship. And I express my acknowledgment to co-workers of my research group: Mr. Ryo Kitayama, Mr. Naoki Okamoto, Mr. Tomoki Yasue, Mr. Feng Liu, Ms. Yitong Wang, Mr. Takaaki Kawabe and Mr. Hiroki Nagatomo. I also appreciate to the members of the department of Biological Chemistry, Graduate School of Pharmaceutical Science, Kyoto University for their continuous encouragement helpful discussions and technical supports. I also appreciate to my friends. Lastly, I would like to express my gratitude to my parents and brother for mental encouragement and persistent understanding.