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Abstract

In recent years, many regions worldwide have been affected by unprecedented extreme

floods and droughts. The latest assessment report by the Intergovernmental Panel on Cli-

mate Change predicts that water–related disasters increase in magnitude and frequency ow-

ing to global warming. Previous impact assessment studies sought to project changes in fu-

ture river discharge using runoff (ROF) output from general circulation models (GCMs) and

regional climate models (RCMs). However, many researchers have pointed out that the simu-

lated discharge by runoff from GCMs/RCMs is biased. This bias could be due to precipitation

and/or runoff bias. The ROF is estimated using the land surface model (LSM) embedded in

GCMs/RCMs. It is necessary to evaluate the performance of LSMs with respect to river dis-

charge, because runoff plays an essential role in river discharge simulation. In addition, it is

important to understand the sources of runoff bias in LSMs to enhance model performance. In

this study, we aimed to evaluate the runoff generation schemes in LSMs and propose strategies

to improve their reproductions of long–term observed streamflow.

The two LSMs utilized in this study were the Simple Biosphere including Urban Canopy

(SiBUC) and the Meteorological Research Institute–Simple Biosphere Model (MRI–SiB). Both

LSMs have been developed based on a Simple Biosphere (SiB). Sensitivity analysis of runoff

characteristics in both LSMs was performed using atmospheric forcing data from MRI-AGCM

3.2S, a GCM with a mesh size of 20 km, and the NHRCM, an RCM with mesh sizes of 5 and

2 km. Numerical experiments for both LSMs were conducted in the upper part of the Ping

River Basin in northern Thailand. The basin is one of the main tributaries of the Chao Phraya

River. The main dam in the basin is the Bhumibol Dam, which has a total catchment area of

approximately 26,400 km2.

First, we investigated the applicability of runoff generated by both LSMs to streamflow sim-

ulation. Comparisons of the water budget showed that the SiBUC tended to estimate higher

evapotranspiration and lower runoff than the MRI-SiB. Each LSM generated different runoff



characteristics. The SiBUC estimated higher surface runoff and lower subsurface runoff than

the MRI–SiB. Subsurface runoff was the dominant runoff component in the MRI–SiB. Different

runoff characteristics impact the simulated streamflow in differing ways. The peak discharge

determined by the SiBUC, attributed primarily to surface runoff generation, was produced soon

after the peak rainfall. In contrast, peak flow in the MRI–SiB showed a significant delay com-

pared to peak rainfall. As the MRI–SiB is dominated by subsurface runoff, rainwater first infil-

trates into soil before it flows into a river, resulting in long lag times. In general, the discharge

simulated by the SiBUC was of a higher volume than that simulated by the MRI–SiB because of

the higher estimation of runoff. This study showed that even though the same forcing data was

imposed on both LSMs, the estimated runoff and simulated discharge differed for each LSM.

We examined the runoff generation schemes in the two LSMs in detail to determine the rea-

sons for the different runoff characteristics. Extensive research on the intercomparison of LSMs

has been conducted. Many studies have demonstrated a considerable spread in runoff output

among different LSMs. However, it is not clear whether this spread is related to model pa-

rameters (such as those that describe soil properties) or model structures (such as governing

equations used to describe the processes underlying soil–water flow). Identifying sources of

uncertainty is challenging owing to the complexity of and different ways in which runoff gen-

eration schemes are described. In this study, we developed an emulation model by including

various settings of other models to evaluate their impacts in a controlled manner. Specifically,

the MRI–SiB emulation model was developed by incorporating MRI–SiB settings in the SiBUC.

The investigation determined the main different settings in both LSMs that affected runoff gen-

eration and simulated discharge. We found that by adopting the same soil parameters, model

structures, and time integration method for soil schemes, the runoff characteristics from the

MRI–SiB can be emulated well by the SiBUC. The findings of this study provide insights into

identifying the sources of runoff uncertainty in LSMs.

Next, the simulated discharge forced by the runoff from both the SiBUC and MRI–SiB emu-

lation model was evaluated by comparing it with 30 years of observed river flow data. The two

LSMs were forced by the observed rainfall and reanalysis of atmospheric data. For long–term

evaluation, the discharge simulated by the SiBUC performed better than the flow estimated by

the MRI-SiB to reproduce the monthly observed discharge. In particular, the SiBUC performed

well at reproducing the discharge observed during wet years (when annual rainfall is higher

than the climatological mean). In contrast, the discharge simulated by the MRI–SiB was better



than the flow estimated by the SiBUC during dry years (when annual rainfall is lower than the

climatological mean). Therefore, using some SiBUC settings in the MRI–SiB, and vice versa,

could enhance the performance of each model at reproducing the long–term observed river

flow.





Table of contents

1 Introduction 1

1.1 Research background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Composition of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Methodology 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Historical development of land surface models . . . . . . . . . . . . . . . . . . . . 7

2.3 Intercomparison studies of land surface models . . . . . . . . . . . . . . . . . . . 9

2.4 Framework of this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Land surface models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.3 Flow routing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.4 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.5 Observation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.6 Climate model output datasets . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Analysis of the applicability of runoff generated by land surface models for stream-

flow simulation 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Simulation designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Impact analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 Modeling approach for runoff simulation by SiBUC . . . . . . . . . . . . . 26

3.3 Evaluation of rainfall output from the climate models . . . . . . . . . . . . . . . . 28

3.3.1 Spatial patterns of climatological mean rainfall . . . . . . . . . . . . . . . 28

i



3.3.2 Seasonal cycles of basin average rainfall . . . . . . . . . . . . . . . . . . 30

3.3.3 Frequency and intensity of daily rainfall . . . . . . . . . . . . . . . . . . . 32

3.4 Analysis of water budget and runoff characteristics . . . . . . . . . . . . . . . . . 33

3.5 Evaluation of simulated river discharge . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Characteristics of simulated daily discharge . . . . . . . . . . . . . . . . . 40

3.5.2 Evaluation of simulated daily streamflow . . . . . . . . . . . . . . . . . . . 43

3.5.3 Evaluation of average monthly simulated streamflow . . . . . . . . . . . . 45

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Investigation of runoff generation schemes in land surface models 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Development processes of MRI–SiB emulation model . . . . . . . . . . . . . . . 54

4.3 Different settings between SiBUC and MRI–SiB . . . . . . . . . . . . . . . . . . . 56

4.3.1 Land surface parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Structure for direct infiltration from ground surface into deeper soil layer . 62

4.3.3 Governing equation for water movement between adjacent soil layers . . 63

4.3.4 Governing equation for subsurface runoff estimation . . . . . . . . . . . . 63

4.3.5 Time integration methods for soil schemes . . . . . . . . . . . . . . . . . 64

4.4 Experimental designs by MRI–SiB emulation model . . . . . . . . . . . . . . . . . 68

4.5 Changes of water budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.1 Overall impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.2 Impacts of changing land surface parameters . . . . . . . . . . . . . . . . 72

4.5.3 Impacts of incorporating direct infiltration structure into deeper soil layer . 73

4.5.4 Impacts of neglecting gravitational drainage for estimating soil–water flow

between adjacent soil layers . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.5 Impacts of considering hydraulic diffusion for estimating subsurface runoff

estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.6 Impacts of changing all model structures . . . . . . . . . . . . . . . . . . . 79

4.5.7 Impacts of different time integration methods for soil schemes . . . . . . . 82

4.5.8 Impacts of considering all MRI–SiB settings in SiBUC . . . . . . . . . . . 87

4.6 Evaluation of MRI–SiB emulation model . . . . . . . . . . . . . . . . . . . . . . . 90

4.6.1 Overall impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

ii



4.6.2 Spatial distributions of water budget components . . . . . . . . . . . . . . 90

4.6.3 Annual water budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6.4 River discharge simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.7.1 Parameters related to ground cover layer . . . . . . . . . . . . . . . . . . 98

4.7.2 Transpiration schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.7.3 Initial value of soil moisture . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.7.4 Time integration methods for solving Richards equation . . . . . . . . . . 103

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Improvement of land surface models to reproduce long–term observed river flow 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Comparison of water budget estimated by SiBUC and MRI–SiB emulation model 111

5.4 Evaluation of river discharge simulated by runoff from SiBUC and MRI–SiB em-

ulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5 Improvement strategies for MRI–SiB emulation model . . . . . . . . . . . . . . . 119

5.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5.2 Experimental designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5.3 Changes of water budget by revised emulation model . . . . . . . . . . . 123

5.5.4 Evaluation of streamflow simulated by revised emulation model . . . . . . 125

5.6 Improvement strategies for SiBUC . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.6.2 Experimental designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.6.3 Changes of water budget by revised SiBUC . . . . . . . . . . . . . . . . . 132

5.6.4 Evaluation of streamflow simulated by revised SiBUC . . . . . . . . . . . 134

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6 Conclusions 141

iii



iv



List of figures

2.1 Framework of this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Schematic figure of SiBUC. Courtesy of SiBUC manual. . . . . . . . . . . . . . . 14

2.3 Schematic figure of MRI–SiB. Courtesy of Team GW of Meteorological Research

Institute www.mri-jma.go.jp/Project/1-21/1-21-2/Land Surface Processe en.html). 15

2.4 Elevation (m) in the upper part of the Ping River Basin. Black line represents the

basin boundary. Red circle shows the Bhumibol Dam location. . . . . . . . . . . 16

2.5 Elevation (m) in NHRCM 5–km domain applied in Thailand region. Purple box

represents NHRCM 2–km domain, covering Yom and Nan River Basin. Red box

indicates the target basin in upper part of the Ping River. . . . . . . . . . . . . . . 19

3.1 Framework and impacts analysis of this study. . . . . . . . . . . . . . . . . . . . . 25

3.2 Comparison of topography among different spatial resolution of SiBUC. . . . . . 26

3.3 Comparison of daily discharge from observation (black dot) and simulation (red

line) in 2011. Reproduced from Yorozu et al. (2018). . . . . . . . . . . . . . . . . 27

3.4 Spatial patterns of climatological mean (1) annual, (2) wet (May to October), and

(3) dry seasons (November to April) rainfall from (a) observation, and bias of

simulated rainfall from (b) MRI–AGCM 3.2S, (c) NHRCM05, and (d) NHRCM02. 29

3.5 Seasonal cycles of (a) mean and (b) standard deviation of observed rainfall

(black line) and rainfall output from MRI–AGCM 3.2S, NHRCM05, and NHRCM02,

shown in the red, green, and pink lines, respectively. . . . . . . . . . . . . . . . . 30

3.6 Frequency and intensity of daily rainfall from observation and simulation from

MRI–AGCM 3.2S, NHRCM05, and NHRCM02, represent by black, red, green,

and pink colors, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



3.7 Comparison of annual water budget (WB) by SiBUC (red line) and MRI–SiB

(green line) forced by MRI–AGCM 3.2S atmospheric data. P, ET, ROF, delsm,

Qs, Qsb, E, and T represent precipitation, evapotranspiration, runoff, change of

soil moisture, surface runoff, subsurface runoff, evaporation, and transpiration,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 Similar to previous figure, but the forcing is NHRCM05 atmospheric data. . . . . 34

3.9 Similar to previous figure, but the forcing is NHRCM02 atmospheric data. . . . . 34

3.10 Mean annual water budget components simulated by SiBUC and MRI–SiB, forced

by atmospheric output from (a) MRI–AGCM 3.2S, (b) NHRCM05, and (c) NHRCM02. 35

3.11 Scatter plot of daily rainfall and surface runoff generated by SiBUC in 1992. Only

grid cells within Bhumibol Dam catchment are plotted. Black, green, and pink

dots represent forcing data from MRI–AGCM 3.2S, NHRCM05, and NHRCM02,

respectively. Unit is mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.12 Spatial pattern of annual rainfall (P) and surface runoff (Qs) generated by SiBUC

in 1992. Unit is mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.13 Time series of daily precipitation (P) from MRI–AGCM 3.2S, simulated daily dis-

charge (Q), surface runoff (Qs), and subsurface runoff (Qsb) by SiBUC (red line)

and MRI–SiB (green line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.14 Similar to Figure 3.13 but the forcing is NHRCM05 atmospheric data. . . . . . . . 41

3.15 Similar to Figure 3.13 but the forcing is NHRCM02 atmospheric data. . . . . . . . 41

3.16 Time series of daily precipitation (P), simulated daily discharge (Q), surface runoff

(Qs), and subsurface runoff (Qsb) between SiBUC (red line) and MRI–SiB (green

line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.17 Flow duration curve (FDC) of observed (black line) and simulated discharge

forced by runoff by SiBUC (solid line) and MRI–SiB (dash line). Red, green, and

pink colors represent atmospheric forcing data from MRI–AGCM 3.2S, NHRCM05,

and NHRCM02. The FDC is partitioned into four zones: (a) peak flow (0–1% of

exceedance probability), (b) high flow (1–20%), (c) mid flow (20–70%), (d) low

flow (70–100%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.18 Percent bias of flow duration curve (FDC) for simulated discharge by (a) SiBUC

and (b) MRI–SiB (dash line). Red, green, and pink bars represent atmospheric

forcing data from MRI–AGCM 3.2S, NHRCM05, and NHRCM02. . . . . . . . . . 44

vi



3.19 Evaluation of simulated discharge and runoff components generated by SiBUC

(red line) and MRI–SiB (green line) forced by (a) MRI–AGCM 3.2S, (b) NHRCM05,

and (c) NHRCM02. Black line represents observed inflow into Bhumibol Dam. . 47

4.1 Framework of this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Schematic diagram of land surface model. Red circles represent the variables

that are estimated differently in both LSMs. Illustration is reproduced from a

schematic figure of green area in SiBUC, based on SiBUC manual. . . . . . . . . 56

4.3 (a) Spatial pattern of soil class in SiBUC obtained from Ecoclimap database.

Green, blue, and purple color represents sandy loam, loam, and clay loam, re-

spectively. (b) Spatial pattern of vegetation class in MRI–SiB. Purple, blue, red,

green, and yellow color represents broadleaf–evergreen forest, broadleaf and

needleleaf forest, short–vegetation, dwarf trees and shrubs, and cropland, re-

spectively. This is for upper part of Ping River Basin. . . . . . . . . . . . . . . . . 58

4.4 Spatial patterns of soil parameters in SiBUC (left) and MRI–SiB (right). . . . . . . 60

4.5 Spatial patterns of greenness fraction for canopy layer in SiBUC (left), canopy

layer in MRI–SiB (middle), and ground cover layer in MRI–SiB (right). . . . . . . . 61

4.6 Similar to Figure 4.2. Red circles shows a structure for direct infiltration from

ground surface into second soil layer, called P2. . . . . . . . . . . . . . . . . . . . 62

4.7 Algorithm of explicit–midpoint method applied in SiBUC to update soil moisture

at next time step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 20–years–mean annual water budget component by MRI–SiB, control, and each

case. Top: blue, gray, light blue, and red bars represent rainfall (P), evapotran-

spiration (ET), runoff (ROF), and change of soil moisture (delSM). Bottom: pink,

green, yellow, and orange bars represent surface runoff (Qs), subsurface runoff

(Qsb), transpiration (T), and evaporation (E). Forcing data is MRI–AGCM 3.2S

atmospheric data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 Similar to the previous figure but for 10–years–mean with the forcing is NHRCM05

atmospheric data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.10 Time series of daily rainfall (a), surface runoff (b), saturation ratio of top to bottom

layers (c-e), and subsurface runoff (f) in 1990. This is for investigating the impacts

of considering P2 structure. Forcing is NHRCM05 atmospheric data. . . . . . . . 74

vii



4.11 Similar to Figure 4.10, but for investigating the impacts of neglecting gravitational

drainage for estimating soil–water flow. . . . . . . . . . . . . . . . . . . . . . . . . 75

4.12 Similar to Figure 4.10 but for investigating the impacts of considering hydraulic

diffusion for calculating subsurface runoff. . . . . . . . . . . . . . . . . . . . . . . 78

4.13 Time series of daily rainfall (a), surface runoff (b), saturation ratio of each layer

(c-e), and subsurface runoff (f). Black and light blue represent simulation by

MRI–SiB and experiment B4, respectively. . . . . . . . . . . . . . . . . . . . . . . 80

4.14 Similar to Figure 4.10 but for investigating the impacts of different time integration

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.15 Relationship between hydraulic conductivity (y–axis) and soil moisture (x–axis)

based on Clapp and Hornberger (1978). Red and green lines are estimated by

using soil parameters of MRI–SiB (broadleaf–evergreen forest type) and SiBUC

(clay loam), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.16 Impacts of different time integration methods by different parameters on soil

moisture estimation. (1) P (mm hr−1), (2) K1 (mm hr−1), (3) Q1,2 (mm hr−1),

(4) W1 (m3 m−3). Red and black dots represent midpoint and updated variables

for each time step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.17 Similar to Figure 4.10 but for investigating the impacts of considering all MRI–SiB

settings in SiBUC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.18 Time series of daily rainfall (a), surface runoff (b), saturation ratio of each layer

(c-e), and subsurface runoff (f). Black and light blue represent simulation by

MRI–SiB and experiment B6, respectively. . . . . . . . . . . . . . . . . . . . . . . 89

4.19 Scatter plot of mean annual water budget components (surface runoff (Qs), sub-

surface runoff (Qsb), evaporation (E), and transpiration (T)) by MRI–SiB and

emulation model. Only grid cells within the target basin are plotted. r value is

correlation coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.20 Difference in mean annual water budget components (surface runoff (Qs), sub-

surface runoff (Qsb), evaporation (E), and transpiration (T)) by emulation model

and MRI–SiB. Red and blue color represent lower and higher estimation by the

emulation model compared to the MRI–SiB. . . . . . . . . . . . . . . . . . . . . . 91

4.21 Spatial pattern of climatological mean rainfall by climate models. . . . . . . . . . 91

viii



4.22 Time series of annual water budget components (precipitation (P), evapotranspi-

ration (ET), runoff (ROF), change of soil moisture (delsm), surface runoff (Qs),

subsurface runoff (Qsb), evaporation (E), and transpiration (T)). Light blue, black,

and red lines represent simulation by original SiBUC (control), MRI–SiB, and em-

ulation model, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.23 Daily discharge for 20 years forced by MRI–AGCM 3.2S. Black and red lines

represent simulation results by MRI–SiB and emulation model, respectively. P, Q,

Qs, and Qsb represent basin average of GCM precipitation, discharge, surface

runoff, and subsurface runoff, respectively. . . . . . . . . . . . . . . . . . . . . . 96

4.24 Similar to Figure 4.23 but for 10 years daily discharge forced by NHRCM05. . . . 97

4.25 Daily discharge simulated by MRI–SiB and emulation model, represented by

black and red lines, respectively. Blue bar shows basin average daily rainfall

from MRI–AGCM 3.2S. Pink and green bar are surface and subsurface runoff,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.26 Comparison of greenness fraction without (left) and wit (right) considering ground

cover parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.27 Difference in mean annual water budget components (surface runoff (Qs), sub-

surface runoff (Qsb), evaporation (E), and transpiration (T)) without (left) and

considering (right) ground cover parameters. Forcing data is GCM output. . . . . 99

4.28 Similar to Figure 4.27 but for scatter plot of grid cells within the target basin. r

value is correlation coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.29 Algorithm of soil moisture update for each time step. . . . . . . . . . . . . . . . . 102

4.30 Time series of rainfall, surface runoff, soil moisture of surface layer and recharge

zone, respectively. Pink and purple lines represent an explicit–midpoint and

semi–implicit methods, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1 Framework in this study to evaluate and improve LSMs’s performance. LSMs

used in this study are SiBUC and MRI–SiB emulation model. . . . . . . . . . . . 108

ix



5.2 Time series of annual water budget components estimated by SiBUC (red line)

and MRI–SiB (green line) forced by observed hydrometeorological data. P, ET,

ROF, delSM, Qs, Qsb, E, and T represents precipitation, evapotranspiration,

runoff, change of soil moisture, surface runoff, subsurface runoff, evaporation,

and transpiration, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Comparison of daily discharge from observation (black dot) and simulation by

SiBUC (red line) and MRI–SiB emulation (green line) from 1984–2013. . . . . . . 113

5.4 Evaluation of indices performance of daily discharge simulated by SiBUC (red

line) and MRI–SiB (green line) for each year. Black dash line indicates a limit of

each index for ’satisfactory’ performance. Negative value of NSE means ’poor’

performance. Optimum value of NSE is 1, while that of RSR and PBIAS is 0. . . 114

5.5 Daily discharge from observation (black dot) and simulation by SiBUC (red line)

and MRI–SiB (green line) in 1994 and 2011. . . . . . . . . . . . . . . . . . . . . . 115

5.6 Daily discharge from observation (black dot) and simulation by SiBUC (red line)

and MRI–SiB (green line) in 1993 and 2001. . . . . . . . . . . . . . . . . . . . . . 115

5.7 Similar to Figure 5.4 but for evaluation of monthly discharge. . . . . . . . . . . . 116

5.8 Time series of monthly discharge by SiBUC (red line) and MRI–SiB emulation

(green line) from 1984–2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.9 Spatial pattern of soil characteristics parameters in (a) emulation model (based

on MRI–SiB parameters), (b) SiBUC, and (c) revised emulation. . . . . . . . . . . 120

5.10 Spatial pattern of soil depth in (a) emulation model (based on MRI–SiB parame-

ters), (b) SiBUC, and (c) revised emulation. . . . . . . . . . . . . . . . . . . . . . 121

5.11 Comparison of water budget components (surface runoff (Qs), subsurface runoff

(Qsb), evaporation (E), transpiration (T), and change of soil moisture (delSM))

between SiBUC, MRI–SiB emulation, and each experiment of revised emulation

model. Blue dash–line represents a 30–years-mean annual rainfall. . . . . . . . 123

5.12 Time series of daily discharge in 1994 from observation (black dot) and simula-

tion by SiBUC (red line), MRI–SiB emulation (green line), and revised emulation

model (pink line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.13 Similar to Figure 5.12 but for daily discharge in 2011. . . . . . . . . . . . . . . . . 126

5.14 Evaluation of 30–years simulated monthly discharge by SiBUC, MRI–SiB emu-

lation, and each experiment of revised MRI–SiB emulation model. . . . . . . . . 126

x



5.15 Evaluation of simulated monthly discharge in each year by MRI–SiB emulation

(green line) and revised emulation model (pink line). . . . . . . . . . . . . . . . . 127

5.16 Time series of monthly discharge by MRI–SiB emulation (green line) and revised

emulation model (pink line) from 1984–2013. . . . . . . . . . . . . . . . . . . . . 129

5.17 Comparison of water budget components (surface runoff (Qs), subsurface runoff

(Qsb), evaporation (E), transpiration (T), and change of soil moisture (delSM))

between SiBUC, MRI–SiB emulation, and each experiment of revised SiBUC.

Blue dash–line represents a 30–years-mean annual rainfall. . . . . . . . . . . . 132

5.18 Time series of daily discharge in 1993 from observation (black dot) and simu-

lation by SiBUC (red line), MRI–SiB emulation (green line), and revised SiBUC

(light blue line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.19 Similar to Figure 5.18 but for daily discharge in in 2001. . . . . . . . . . . . . . . 135

5.20 Evaluation of 30–years simulated monthly discharge by MRI–SiB emulation, SiBUC

and each experiment of revised SiBUC. . . . . . . . . . . . . . . . . . . . . . . . 135

5.21 Evaluation of simulated monthly discharge in each year by SiBUC (red line) and

revised SiBUC (light blue line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.22 Time series of monthly discharge by SiBUC (red line) and revised SiBUC (light

blue line) from 1984–2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xi



xii



List of tables

2.1 Classification of land surface models based on Sellers et al. (1997). . . . . . . . 8

2.2 Comparison of SiBUC and MRI–SiB. . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Climate model output datasets used in this study. . . . . . . . . . . . . . . . . . . 17

3.1 Summary of availability and experimental period for each dataset. . . . . . . . . 24

3.2 Mean and standard deviation of observed annual, wet, and dry seasons rainfall

(unit: mm), and the evaluation of rainfall from each dataset in terms of PBIAS. . . 30

3.3 Mean of annual, wet, and dry seasons observed streamflow(unit: m3 s−1), and

the evaluation of rainfall from each dataset in terms of PBIAS. . . . . . . . . . . . 45

4.1 Summary of simulation period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Different settings between SiBUC and MRI–SiB. . . . . . . . . . . . . . . . . . . 57

4.3 List of variables for the soil schemes . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Comparison of soil characteristic parameters in SiBUC and MRI–SiB. . . . . . . 61

4.5 Considered variables for updating soil moisture at the next time step in SiBUC

and MRI–SiB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Experimental designs by emulation model. Experiment A and B were performed

by using SiBUC and MRI–SiB parameters, respectively. Control experiment is

the simulation by original parameters and structures of SiBUC. . . . . . . . . . . 68

4.7 Mean annual runoff components (unit: mm). Experiment 0 is changing MRI–SiB

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.8 Mean annual runoff components (unit: mm). Experiment 1 is incorporating P2

scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.9 Mean annual runoff components (unit: mm). Experiment 2 is neglecting gravita-

tional drainage in Darcy’s Law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xiii



4.10 Mean annual runoff components (unit: mm). Experiment 3 is considering hy-

draulic diffusion for subsurface estimation. . . . . . . . . . . . . . . . . . . . . . . 78

4.11 Mean annual runoff components (unit: mm). Experiment 4 is considering all

MRI–SiB’s structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.12 Mean annual runoff components (unit: mm). Experiment 5 is applying a semi–

implicit method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.13 Mean annual runoff components (unit: mm). Experiment 6 is employing all MRI–

SiB’s settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.14 Evaluation of daily discharge simulated by emulation model with respect to MRI–

SiB for the whole simulation period. . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.15 20–years–mean water budget components. Forcing is GCM output. . . . . . . . 98

5.1 Performance ratings for a monthly time step (based on Moriasi et al. 2007). . . . 110

5.2 Similar to Figure 5.2 but for 30–years–mean water budget components (unit: mm

year−1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Evaluation of 30–years daily discharge. . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Evaluation of 30–years monthly discharge. . . . . . . . . . . . . . . . . . . . . . 117

5.5 Experimental designs for improving MRI–SiB emulation model. . . . . . . . . . . 119

5.6 Comparison of original and revised soil parameters in emulation model. The

revised values are based on SiBUC parameters. . . . . . . . . . . . . . . . . . . 119

5.7 Settings of original and revised (experiment 7) emulation model. . . . . . . . . . 128

5.8 Experimental designs for improving SiBUC. . . . . . . . . . . . . . . . . . . . . . 130

5.9 Settings of original and revised (experiment 7) SiBUC. . . . . . . . . . . . . . . . 137

xiv



Chapter 1

Introduction

1.1 Research background

In recent years, many regions worldwide have been affected by unprecedented extreme

floods and droughts. For example, in 2011, Thailand experienced severe flood damage due to

continuous intense precipitation in the Chao Phraya River Basin, the main basin in this country.

The flood disaster has affected more than 4 million households, with more than 800 deaths

(Hydro and Agro Informatics Institute, 2012) and economic losses of approximately 46.5 billion

USD (World Bank, 2012). The annual rainfall in 2011 was record–breaking; it was the highest

in the country’s 61–years record (Thai Meteorological Department, 2011). The extreme rainfall

in that year was due to a combination of a strong southeast Asian monsoon between May and

October and the previous four tropical storms that brought severe rainfall between June and

October (Gale and Saunders, 2013). Komori et al. (2012) estimated that the accumulated rain-

fall during the 2011 rainy season (May–October) was 1439 mm, which was 1.43–fold greater

than the climatological–mean rainy season rainfall during 1982–2002. In terms of duration, the

2011–flood was the longest ever in history, with a total span of 158 days (Gale and Saunders,

2013).

The latest report by the Intergovernmental Panel on Climate Change (IPCC, 2021) indicated

that the risks of water–related disasters are increasing in magnitude and frequency as the wa-

ter cycle is intensified due to climate change. Climate change brings more intense rainfall,

associated flooding, and intense drought in many regions. Rainfall patterns are also chang-

ing owing to global warming. Precipitation is projected to increase in high latitudes, while it is

likely to decrease in the subtropics region. Based on observational datasets, the report shows
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that emissions of greenhouse gases from human activities are responsible for an increase of

1.1◦ warming since 1850–1900. It is expected that the global temperature will exceed 1.5◦ of

warming over the next 20 years.

For climate change studies, general circulation models (GCMs) have been utilized as impor-

tant tools to project future changes in climate and its associated impacts. GCMs are numerical

models that simulate the physical processes in the atmosphere, ocean, ice, and land surface,

represented by using a three–dimensional grid over the globe. The performance of the mod-

els is tested by comparing it with observed climate in the past. And sometimes, they are also

compared with the results from other models. Once the models’ accuracy has been confirmed,

they are used to project the future climate according to some possible scenario. The IPCC

issued its Special Report on Emissions Scenarios (SRES) in 2000 (Nakicenovic and Swart,

2000). It described four possible future scenarios, called A1, A2, B1, and B2, which are es-

timated based on a complex relationship between socioeconomic and range of emissions of

greenhouse gases (GHGs) and their driving forces during the 21st century (IPCC, 2000). In

2013, the IPCC proposed new scenarios based on the level of GHGs in the atmosphere at

the end of the 21st century, relative to the pre–industrial level. These scenarios are known

as Representative Concentration Pathways (RCPs). It consists of four possible scenarios of

radiative forcing, varies between 2.6, 4.5, 6.0, and 8.5 watts per square meter (W m−2), which

results in different ranges of mean global warming over 1.6, 2.4, 2.8, and 4.3 in 21st century,

respectively. These RCPs were used in the IPCC Fifth (IPCC, 2014) and the Sixth Assessment

Report (IPCC, 2021).

Although the GCMs have been used extensively to make a projection in the future climate,

the information provided by the GCMs usually too coarse to capture regional and local climate

processes, particularly in the areas where the climate is highly affected by topography. To deal

with those issues, regional climate models (RCMs) are often used to dynamically downscale

the GCMs for providing more detailed information at some particular regions. These higher

resolution models have provided some advantages, such as they could reproduce locally heavy

precipitation events that could not be obtained from the results of GCMs (Sasaki et al., 2011).

Among the output of the climate models, runoff data have been extensively used to predict the

changes of future river discharge under global warming. For instance, a study by Nohara et al.

(2006) was performed to investigate the projections of streamflow for 24 major rivers in the world

based on the Special Report on Emissions Scenarios A1B scenario. The river discharge was
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simulated using runoff output from 19 GCMs, participating under the Program for Climate Model

Diagnosis and Intercomparison (PCMDI). A weighted ensemble mean (WEM) was used for the

multimodel projections to reduce the models’ bias and uncertainty. Their findings show that

the results of WEM of the simulated flow could better reproduce the observed river flow, except

those artificially controlled rivers (due to dam, irrigation effects, etc.). However, they revealed

that it was difficult for an individual model to reproduce the observed historical streamflow,

including the runoff bias from the GCMs. The results from river discharge projection at the end

of the 21st century indicate that in high–latitude rivers, the discharge increases, and the peak

flow is produced earlier due to earlier snowmelts caused by a warmer climate. On the other

hand, streamflow tends to decrease for the rivers in Europe to the Mediterranean region and

the southern United States.

Another study by Hirabayashi et al. (2013) was conducted to project global flood risk under

climate change by employing daily runoff data generated by 11 GCMs under Coupled Model

Intercomparison Project 5 (CMIP5). Historical simulations from 1850–2005 and future simula-

tions with radiative forcing from 2.6 to 8.5 W m−2 during 2006–2100 were performed in their

study. Before analyzing future climate simulations, they validated the accuracy of simulated

flow forced by runoff from each GCM by comparing it with observed streamflow data from the

Global Runoff Data Centre (GRDC) in 32 selected river basins. They found the annual simu-

lated discharge was biased; the predicted discharge about< 50% underestimated the observed

streamflow. Even so, they assumed that the changes of frequency of extreme events, such as

floods with a relatively long return period (of 100 year), could be illustrated without correcting the

bias. In terms of future flood risks, they demonstrate a significant increase in flood frequency

in Southeast Asia, Peninsular India, eastern Africa, and the northern half of the Andes. While,

in some other regions, flood frequency is projected to decrease. They found that the global

exposure to floods would increase depending on the degree of warming scenarios, implying a

necessity for adaptation and mitigation strategies before significant warming.

The literature studies, including the two mentioned above, have reported the runoff output

from the climate models is inevitably biased. Therefore, the discharge estimated by the runoff

from the GCMs/RCMs inherits the bias of the climate models (Hirabayashi et al., 2013). Some

possible causes might come from the performance of climate models on simulating precipi-

tation and/or runoff. The runoff is calculated by the land surface model (LSM) embedded in

the GCMs/RCMs. In the LSMs, runoff is estimated as a difference between precipitation and
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evaporation. Since runoff plays an essential role in river discharge projection, it is necessary

to evaluate the performance of LSMs with respect to river discharge.

Previous studies, as mentioned above, have also shown a large variability of runoff output

among different LSMs embedded in the climate models, causing potential uncertainties in the

future projection of river discharge. Different runoff estimations among various LSMs may be

caused by different parameterization, representation of physical processes in the model, nu-

merical schemes, etc. To improve the runoff accuracy from the LSM, it is necessary to improve

the land surface scheme in the climate models ((Nohara et al., 2006). In addition, understand-

ing the underlying physical processes of runoff generation in the LSMs is important to identify

the sources of uncertainty in the LSMs (Falloon et al., 2011).

1.2 Research objectives

This study aims to evaluate runoff generation schemes in land surface models and propose

strategies to improve their long-term observed streamflow reproductions. The objectives of this

research are as follows.

• To analyze the differences in characteristics of runoff generated by land surface models

forced by atmospheric output from a general circulation model and a regional climate

model.

• To examine the applicability of the runoff output by the land surface model forced by the

output of each climate model to river discharge simulation.

• To develop a framework for a detailed intercomparison of the land surface models.

• To investigate the runoff generation schemes in the land surface models.

• To conduct sensitivity analysis for considering the impacts of various settings in the land

surface models on streamflow simulation.

• To improve the runoff accuracy in the land surface schemes to enhance the reproducibility

of long-term observed river flow.
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1.3 Composition of thesis

As mentioned earlier, this study aims to evaluate and improve the runoff generation schemes

in land surface models for long-term streamflow simulations. This thesis consists of 6 chapters

for discussing the objective of this study.

Chapter 2 describes the methodology of this study. As the land surface model is the main

topic of this study, the historical development of the land surface models is briefly described. In

addition, several intercomparison studies conducted in the past are reviewed. Also, an overall

framework of this study is explained. Additionally, information about land surface models, river

routing model, study area, observed rainfall and streamflow, and output of climate models used

in this study is described.

Chapter 3 analyzes the applicability of runoff generated by land surface models to river dis-

charge simulation. In total, three output datasets from the general circulation model and regional

climate model, which vary in horizontal resolutions, were utilized in this study. Before stream-

flow simulation is performed, precipitation output from each dataset is evaluated with historical

observed rainfall. Next, characteristics of runoff output from two land surface models, forced

by atmospheric output from each climate model, were investigated. As the forcing data for both

LSMs are the same, different runoff estimation indicates different settings in each LSM. Then,

simulated discharge by runoff from each LSM is compared with the observed streamflow.

Chapter 4 investigates runoff generation schemes in the land surface models. The intercom-

parison analysis was performed by developing an emulation model, which enabled an investi-

gation of the effects of various settings in the LSMs. Throughout this analysis, the settings in the

LSMs, which have significant impacts on river discharge simulation, could have been identified.

Chapter 5 suggests some strategies for improving the accuracy of runoff from land surface

models in reproducing long–term observed river flow. The estimated runoff from the two LSMs,

forced by observed hydrometeorological data, was evaluated with respect to observed dis-

charge. Throughout this analysis, the advantages and limitations of each LSM in reproducing

the observed streamflow could be identified. Some strategies for improving the reproducibility

of the observed streamflow were proposed by adopting some settings of one LSM to another

LSM. This study also proposes a future direction for improving the land surface schemes.

Chapter 6 presents the concluding remark of this study.
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Chapter 2

Methodology

2.1 Introduction

This chapter briefly introduces the historical development of a land surface model and its

recent progress. Several studies about the intercomparison of the land surface models are

also reviewed. Finally, a framework for this chapter is also described.

2.2 Historical development of land surface models

Land surface model (LSM) is a numerical model that solves energy and water transfer be-

tween land surface and atmosphere. It is one of the important components of climate models

for providing a boundary condition in climate models and meso–scales atmospheric models.

It controls the partitioning of available energy between sensible and latent heat, and of avail-

able water between evaporation and runoff (Pitman, 2003). Following is a brief description of

the historical development of the LSMs. Based on the level of complexity of evapotranspira-

tion processes, Sellers et al. (1997) classified the evolution of LSMs into three generations, as

shown in Table 2.1.

The first LSM implemented in a climate model was proposed by Manabe (1969). A simple

energy balance equation is applied in this model. Evaporation is limited by soil moisture below

a threshold; if the soil moisture exceeds a certain limit, runoff is generated (saturation–excess

runoff). The soil is represented as a single layer, and a constant soil depth and water–holding

capacity are applied globally. That parameterization of hydrology is widely known as the ”Man-

abe bucket model”. Sellers et al. (1997) described the LSM proposed by Manabe (1969) is
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Table 2.1: Classification of land surface models based on Sellers et al. (1997).

Generation Characteristics Example of LSMs

First

Use a simple energy balance equation,

”Bucket model” (Manabe, 1969)

globally uniform soil depth and water–holding capacity,
soil is represented as a single layer,

runoff is treated as saturated–excess runoff,
no representation of vegetation,

heat conduction into soil is ignored.

Second

Explicit representation of vegetation and its role:
including transpiration, canopy interception, etc. BATS (Dickinson, 1983)

More complex hydrological process: SiB (Sellers et al., 1986)
soil hydrology scheme is based on Richards equation; SSiB (Xue et al., 1991)

soil–water movement is estimated based on Darcy’s Law; CLM (Dai et al., 2003)
infiltration–excess runoff is also considered.

Third
Explicit representation of carbon cycle:

MOSES (Cox et al., 1999)by integrating stomatal conductance and
photosynthesis schemes into the LSMs.

included as the first–generation models. These models do not explicitly represent vegetation

schemes and their roles. That oversimplification of evapotranspiration schemes is one of the

significant limitations of these models (Sellers, 1992). In addition, the first–generation models

may also be inadequate to capture diurnal to multi–annual scales of temperature variations, as

heat conduction into the soil is neglected in these models (Pitman, 2003).

The work by Deardorff (1978) has shown a breakthrough in land surface modeling by intro-

ducing a method for explicitly simulating soil temperature and moisture in two layers, and veg-

etation in a single layer that shielded a fraction of ground from solar radiation (Pitman, 2003).

Sellers (1997) describes those LSMs that includes a Deardorff (1978)–type model of vegeta-

tion being as second generation, including the Biosphere Atmosphere Transfer Scheme (BATS;

Dickinson et al., 1983), the Simple Biosphere Model (SiB; Sellers et al., 1986), the Simplified

Simple Biosphere Model (SSiB; Xue et al., 1991), and the Community Land Modeling (CLM;

Dai et al., 2003). Major innovations of the second–generation LSMs include an explicit repre-

sentation of vegetation and its roles, such as treatment of transpiration, canopy interception,

and the impacts of canopy conductance on momentum transfer. The treatment of hydrology

processes has also become more complex than the first–generation schemes. For example,
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explicit representation of various soil types; soil scheme is implemented based on Richards

equation, replacing the simple bucket model of Manabe (1969); vertical water transfer within

the soil layers is described following Darcy’s Law; and infiltration–excess runoff is also con-

sidered for estimating the runoff. The improvement in evaporation, soil temperature, and soil

moisture representations in the second–generation models have provided a means to explore

the impacts of land cover change (Pitman, 2003).

The third–generation models are identified by the method used to model the carbon cycle.

The canopy conductance introduced in the second–generation models was recognized as a

means to improve evapotranspiration schemes, address the issue of carbon uptake by plants

and its structural response, and capture the impact of increasing carbon dioxide. Stomatal

conductance and photosynthesis schemes into the LSMs represent a fundamental advance in

LSMs for estimating the feedbacks of increasing carbon dioxide in climate simulations. The

increasing carbon dioxide influences the canopy conductance, and the vegetation can respond

structurally by growing different leaves or taller trees (Pitman, 2003). Despite this, other pro-

cesses, such as soil hydrology, soil temperature, etc., are treated similarly to the second–

generation schemes. Met Office Surface Exchange Scheme (MOSES; Cox et al., 1999) is

one of the LSMs that belongs to this group.

Pitman (2003) describes that although the above–ground processes in the LSMs (e.g. the

evapotranspiration schemes) has been well developed, the modeling of the below–ground pro-

cesses (e.g. soil hydrology) are still too simplified. As the two components are linked via root–

uptake, improving the hydrological representation in the LSMs is necessary, because the errors

in the hydrological processes inevitably cause errors in the surface energy balance simulation.

2.3 Intercomparison studies of land surface models

Land surface processes in climate models have evolved from a very simple, implicit approach

representing the surface energy balance and hydrology (Manabe, 1969) to complex models that

explicitly represent many of the key processes in the land surface (Pitman, 2003). Numerous

land surface schemes vary in detail and complexity and have been developed by various insti-

tutions. Intercomparison of the land surface models are useful to assess the sensitivities of the

wide range of and improve the land surface schemes (Henderson–Sellers et al., 1995).

Extensive studies have been done on the intercomparison of land surface models. They have
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shown a large spread among different LSMs in terms of their partitioning of surface energy be-

tween latent and sensible heat flux and precipitation between runoff and evapotranspiration

when driven with the same meteorological forcing (Koster and Milly, 1997). Some efforts have

been done to bring the land surface community together to understand why various LSMs per-

form differently, including Global Land–Atmosphere System Study (GLASS, http://hydro.iis.u-

tokyo.ac.jp/GLASS/), The Project for Intercomparison of Landsurface Parameterisation Schemes

(PILPS; Henderson–Sellers et al., 1995), and the Global Soil Wetness Project (GSWP; Dirmeyer

et al., 1999).

Numerous studies on the intercomparison of LSMs have been conducted by different methods

and purposes. For example, a study by Koster and Milly (1997) aimed to analyze the sources

of variability in LSM behavior, targeting 16 LSMs participating in the PILPS. The results of this

project have shown that different LSMs driven by the same forcing can produced significantly

different surface energy and water budgets, even when some key aspects of the LSMs (vege-

tation cover, albedo, turbulent drag coefficient, and snowcover) are carefully controlled (Pitman

et al., 1993). To understand why these differences happened, they employed a monthly wa-

ter balance model (MWBM) as a tool for understanding the differences in evaporation rates by

each LSM and how the interplay between evaporation and runoff formulations affects simulated

soil water dynamics. The MWBM performs no energy balance calculation; the only prognostic

variable is the amount of soil moisture in the root zone. The model is forced with monthly total

precipitation; some of its amounts reduce as interception loss, the remainder infiltrates the soil.

The root zone soil moisture increases with the infiltration, but it decreases through evaporation,

which represents the sum of transpiration and bare soil evaporation. Some of the infiltrated

water is calculated as root–zone drainage. By fitting the parameters in MWBM for each LSM,

they successfully reproduced the annual and seasonal water balances of the 16 LSMs. They

showed that the differences in evaporation estimation among LSMs are due to differences in

the interception loss rates and the functional relationships between root-zone soil moisture,

transpiration efficiency, surface runoff, and root–zone drainage generation. One advantage of

their method is that it can be applied without detailed knowledge of individual LSM formulations.

However, it is also the limitation of this method; the parameters fitting of the WMBM can not

be used for the physical interpretation of each LSM. The MWBM only captures that the transpi-

ration and runoff rates increase with increasing soil moisture in a given LSM. Therefore, they

emphasized that understanding the interaction between evaporation and runoff processes in an

10



2.3 Intercomparison studies of land surface models

LSM, such as how runoff processes affect soil moisture, is critical for understanding the LSM’s

behavior.

Another study by Oki et al. (1999) focuses on the assessment of the accuracy of runoff gen-

erated by 11 LSMs participating under the GSWP project. Offline simulations were performed

by the LSMs using observed hydrometeorological data. The runoff estimated by the LSMs was

translated into river discharge by a river routing model TRIP (Total Runoff Integrating Pathways

(TRIP; Oki and Sud, 1998). Then, the simulated discharge was evaluated by comparing it with

observed streamflow at 250 stations in 18 river basins worldwide, including the Chao Phraya,

the Amazon, the Mackenzie, and the Mississippi. They found that the estimated runoff by the

LSMs tends to underestimate the annual observation, which is mainly due to the precipitation

forcing. For instance, inadequate quality of the rainfall data, weaker intensity, and continuous

precipitation due to disaggregation of monthly precipitation into six–hourly data; small density

of rain gauges in some catchment; etc. They also pointed out inadequate parameters or struc-

tures of the LSMs, such as processes of groundwater movement, agricultural usage of river

water, etc., may also cause errors. However, that topic is beyond the scope of their study.

A study by Mueller et al. (2016) had been conducted to examine the behaviour of LSMs for

generating surface runoff in case of intense rainfall events. That issue is important because

an accurate estimation of surface runoff depends on reliable schemes of infiltration and re-

distribution of water throughout the soil profile. They performed two infiltration experiments

using 3 LSMs: the Soil Water Air Plant (SWAP; van Dam, 1997), Carbon and Hydrology–Tiled

ECMWF Scheme for Surface Exchange over Land (CHTESSEL; Balsamo, 2009), and Joint

UK Land Environment Simulator (JULES; Best et al., 2011). In LSMs, when the rainwater

reaches the ground, it is split into water available to infiltrate –maximum infiltration rate, and the

surface runoff. The maximum infiltration rate is used as the top boundary condition for a one–

dimensional (vertical) water redistribution solution in the soil column below the surface. The

models used in their study differ mainly in the maximum infiltration rate definition: in SWAP, it is

defined as flux or head controlled; in CHTESSEL, it is calculated as an effective depth of surface

runoff for the first 50 cm of the soil; and in JULES, saturated hydraulic conductivity is multiplica-

tion and a factor that depends on tile types (land–use types). All the LSMs discretize the spatial

derivative in the Richards equation for updating the soil moisture in the next step by using cen-

tral finite difference, which is a non–monotone method and is prone to produce non–physical

spurious oscillations in the solution. In each LSM, six mesh dependence studies were per-
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formed by changing the vertical resolution of the soil column, with a total depth of 2m. The grid

size varies from uniform 1cm to 5cm, 10cm, 20cm, 50 cm, default JULES setting (10cm, 25cm,

65cm, and 100cm), and default CHTESSEL setting (1cm, 2cm, 4cm, 8cm, 10cm, 25cm, 50cm

and 100cm). All simulations were run over one day, with a timestep of 1s to avoid numerical

instabilities. In the first experiment, intensive rainfall was represented as a step function of 1000

mm day−1 over 0.1 days, and in the second, constant intensive rainfall of 1000 mm day−1 was

considered. These types of discontinuities problems are challenging for the numerical solvers.

When the soil is characterized with hydraulic conductivity that is higher than the rainfall, they

found that the solution on the coarse uniform mesh using SWAP (> 10cm mesh) and JULES

(> 5cm mesh) is prone to non–physical oscillations. The interpolation of hydraulic conductivity

K between the soil layers may cause those oscillations: in SWAP and JULES, K is averaged

by the arithmetic mean method, while in CHTESSEL, it is computed using the maximum soil

moisture of the two cells. An and Noh (2014) has shown that simple averaging methods (e.g.

arithmetic, geometric) may produce unacceptably large errors on coarse grids owing to the high

non–linearity of the hydraulic conductivity. In contrast, the upwinding approach used for com-

puting K in the CHTESSEL, can avoid oscillations on the coarse grid while providing a similar

solution to the other models in finer grids. They also pointed out that infiltration representation

in JULES did not allow for the gradual increase of surface runoff, unlike the other two models.

That is because the maximum infiltration rates in JULES are solely based on saturated hydraulic

conductivity. The infiltration rate should represent the gradually developing runoff in rainfall on

initially unsaturated soil. They suggest that treatment of maximum infiltration rates in JULES

can be revised by considering the soil moisture content.

In this section, several intercomparison studies of LSMs with various methods and purposes

have been reviewed. As it can be seen, performing the intercomparison of LSMs study is helpful

to analyze the model behavior, and to identify a direction for improvement, such as shown in

the study by Mueller et al. (2016).

2.4 Framework of this study

2.4.1 Introduction

As mentioned earlier, this study aims to evaluate and improve the runoff generation schemes

in land surface models for long–term streamflow simulations. The overall framework of this
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Figure 2.1: Framework of this study.

study is shown in Figure 2.1. The main contents of this study are described in Chapter 3 until

Chapter 5. In chapter 3, the main topic is an intercomparison study to analyze the applicability

of runoff generated by land surface models to river discharge simulation. This chapter aims to

analyze how much the spread of output between two land surface models. The atmospheric

forcing used for both LSMs is obtained from the output of climate models. Next, in chapter 4,

some possible reasons why such differences happen are investigated by carrying out sensitivity

analysis to investigate the LSM behavior on runoff estimation. Previous study has pointed out

that it is extremely challenging to analyze the sources of variability in LSM behavior due to the

complexity of the interactions among components (Kally and Milly, 1997). This study addresses

such problem by developing an emulation model of one LSM by using another LSM so that a

process–by–process comparison can be conducted to quantify each component’s contribution

to the disparity. Similar to chapter 3, atmospheric data from the output of climate models are

used as forcing data. In chapter 5, the performance of both LSMs is evaluated by comparing

their output with observation data. Observed rainfall and reanalysis atmospheric data are used

as forcing for the LSMs. The advantages and limitations of each LSM for reproducing the ob-

servation are investigated in this chapter. Based on this analysis, some strategies for improving

their performance are proposed.

Description of land surface models, flow routing model, study area, observation, and output

of climate model datasets used in this study are presented below.
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Table 2.2: Comparison of SiBUC and MRI–SiB.

Differences SiBUC MRI–SiB
Base model SiB version 2 (Seller et al., 1996) SiB version 1 (Seller et al., 1986)
Water body considered not considered

Urban canopy considered not considered
Vegetation layer 1 layer (canopy) 2 layers (canopy and ground cover)

Figure 2.2: Schematic figure of SiBUC. Courtesy of SiBUC manual.

2.4.2 Land surface models

Two LSMs were used in this study: Simple Biosphere Model including Urban Canopy (SiBUC;

Tanaka et al., 2005) and Meteorological Research Institute–Simple Biosphere (MRI–SiB, Hirai

et al., 2007).

SiBUC is a land surface model which implements a mosaic scheme that can consider a mix-

ture of land use, paddy field, and irrigation system in the model. In SiBUC, land use is separated

into three categories: green area, urban area, and water body, as shown in Figure 2.2. The

green area model was developed based on Simple Biosphere (SiB) scheme version 2 (SiB2;

Seller et al., 1996).

MRI–SiB is a land surface model developed by Meteorological Research Institute, Japan
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Figure 2.3: Schematic figure of MRI–SiB. Courtesy of Team GW of Meteorological Research
Institute www.mri-jma.go.jp/Project/1-21/1-21-2/Land Surface Processe en.html).

Meteorological Agency based on the original version of a SiB (Seller et al., 1986; Sato et al.,

1989). This model is embedded in the climate models developed by Meteorological Research

Institute. Schematic figure of MRI–SiB is shown in Figure 2.3. Several versions of the MRI–SiB

has been developed by the MRI; this study utilized the ”SiB0109” version.

Some of the differences between these two LSMs are shown in Table 2.2. As both LSMs

have been developed based on similar schemes of SiB, the basic structures are the same; for

example, soil water movement is described by three soil layers utilizing a simplified Richards

equation in both models. However, as two of them have been developed independently by the

different institutions, detail structures, calculation methods, soil parameters, etc., are different.

For example, vegetation schemes are treated differently in both LSMs. MRI–SiB has two vege-

tation layers for canopy and ground cover. While, in the green area model in SiBUC, the number

of vegetation layers is reduced to only one, following SSiB (Xue et al., 1991) and SiB2 (Sellers

et al., 1996), in order to adopt iterative photosynthesis–conductance model and for incorporat-

ing satellite data to describe surface parameters. The differences between the two LSMs will

be described in detail in Chapter 4 of this thesis.
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2.4.3 Flow routing model

A flow routing model is required to simulate river discharge by using runoff output from the land

surface models. This study utilized a distributed flow routing model 1K–FRM, developed based

on one–dimensional kinematic wave theory. The source codes and the manual operation are

opened to the public on the webpage of Hydrology and Water Resources Research Laboratory

Kyoto University.

A coupled of a land surface model SiBUC and a flow routing model 1K–FRM (Yorozu and

Tachikawa, 2015) is used in this research. By using this coupled model, the effect of interaction

between flow routing and land surface processes could be investigated.

2.4.4 Study area

Figure 2.4: Elevation (m) in the upper part of the Ping River Basin. Black line represents the
basin boundary. Red circle shows the Bhumibol Dam location.
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Table 2.3: Climate model output datasets used in this study.

Climate model Present climate simulation
MRI–AGCM 3.2S with 20km mesh size 1979–2003
NHRCM with 5km and 2km mesh size 1980–1999

The target area of this study is the upper part of the Ping River Basin, in the northern part of

Thailand, as shown in Figure 2.4. The total catchment area of the dam is about 26,400 km2.

The main dam in Ping River, named Bhumibol Dam, was completed in 1964. Bhumibol Dam

catchment is located in 98—99.5◦E, 17—19.9◦S. It was built mainly for the purpose of water

resources, hydroelectric power production, and flood control.

Ping River is one of the major tributaries of the Chao Phraya River system. Chao Phraya

River basin, which covers about 30% of land area in Thailand, is considered the most important

basin in Thailand.

2.4.5 Observation data

This study used observation of rainfall, atmospheric reanalysis, and streamflow data. For

rainfall data, the dataset from Climate Hazards Group InfraRed Precipitation with Station data

(CHIRPS; Funk et al., 2015) was utilized. CHIRPS is a quasi–global satellite data product with

in–situ station rainfall data. We selected this gridded rainfall data because it has a very high

spatial resolution of 0.05◦. This dataset has a daily time step, and it is available from 1981 to

the near–present.

In addition to rainfall, other atmospheric data, such as air temperature, air pressure, humidity,

short and longwave radiation in the downward direction, and wind speed, are required for LSMs’

forcing. This study obtained those atmospheric reanalysis data from JRA–55 (Kobayashi and

Iwasaki, 2016). This dataset has 60–km spatial resolution and 3–hour temporal resolution.

For streamflow data, observed daily inflow at the outlet of Bhumibol Dam was utilized. The

observation data was obtained from the Electricity Generating Authority of Thailand (EGAT).

2.4.6 Climate model output datasets

In this study, output dataset from an atmospheric general circulation model MRI–AGCM 3.2S

(Mizuta et al., 2012) and a regional climate model Non–Hydrostatic Regional Climate Model
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(NHRCM; Sasaki et al., 2008) were utilized. Summary of climate model output datasets utilized

in this study is shown in Table 2.3. Both climate models were developed by Meteorological Re-

search Institute. MRI–AGCM 3.2S has a very high horizontal resolution of 20–km, enabling the

simulation of large–scale phenomena associated with small–scale orography, such as tropical

cyclones and other localized phenomena (Mizuta et al., 2012). The model is developed based

on the Japan Meteorological Agency (JMA)’s operational weather prediction model, implement-

ing quasi–conservatives semi–Langrangian dynamics, a radiation scheme, and a land surface

scheme. Yoshimura scheme is used for parameterization of cumulus convection in the model.

The present and future climate simulation was performed using observed sea surface tem-

perature (SST) and projected SST by atmosphere–ocean coupled models as lower boundary

conditions. They have shown that this high–resolution model shows an excellent performance

in simulating heavy monthly–mean precipitation around the tropical Western Pacific, the global

distribution of tropical cyclones, the seasonal cycle of East Asian summer monsoon, and so on.

This model has been developed under the Innovative Program of Climate Change Projection

framework for the 21st Century (KAKUSHIN), supported by the Ministry of Education, Culture,

Sports, Science, and Technology (MEXT). The output dataset of the present climate simulation

by the MRI–AGCM 3.2S (SPA experiment) was utilized for this study. It consists of 25–years of

simulation results, ranging from 1979 until 2003.

Another climate model output dataset used in this study was obtained from NHRCM. NHRCM

was built based on an operation Non–Hydrostatic Model (NHM), developed by the Meteo-

rological Research Institute and the Numerical Prediction Division of the Japan Meteorolog-

ical Agency. A land surface scheme MRI–JMA Simple Biosphere model is embedded in the

NHRCM for describing the biosphere process, surface temperature, and snow depth. Parametriza-

tion of cumulus convection in this model is based on Kain and Fritsch scheme. A preliminary

experiment was conducted to evaluate the performance of the model (Sasaki et al., 2008). The

NHRCM, with a grid interval of 10 km, was nested in the Regional Analysis dataset, and a 4

km mesh size NHRCM was nested in it. They found that the NHRCM could well reproduce

the monthly precipitation, seasonal change and observed rainfall’s regional features obtained

from the AMeDAS dataset. Another study by Sasaki et al. (2011) also analyzed the perfor-

mance of NHRCM with 5km spatial resolution, applied in Japan. The results showed that the

annual mean surface temperature and precipitation agreed with the observed data. In addition,

it also could reproduce heavy precipitation events which could not be obtained from the results
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Figure 2.5: Elevation (m) in NHRCM 5–km domain applied in Thailand region. Purple box
represents NHRCM 2–km domain, covering Yom and Nan River Basin. Red box indicates the
target basin in upper part of the Ping River.

of GCM.

In this study, output from the NHRCM applied in the Thailand region was utilized. This

dataset was generated under the Integrated Research Program for Advancing Climate Mod-

els (TOUGOU) framework supported by MEXT. Two datasets are available, simulated by the

different spatial resolutions of NHRCM: 5 km and 2km grid size. The NHRCM with 5km was

nested in MRI–AGCM 3.2S and the NHRCM with 2km was nested in it. The 5km model was

simulated for the whole Thailand region, while the 2km model was applied to Yom and Nan

River basin (15.2◦–21.4◦S and 97.3◦-101.8◦E), as shown in Figure 2.5. Each output dataset

consists of 20 years of results of present climate simulation (1980–1999) and future climate

simulation (2080–2099) under the RCP8.5 scenario. However, only the results of the present

climate simulation are used in this study.
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Chapter 3

Analysis of the applicability of runoff
generated by land surface models for
streamflow simulation

Abstract
This research investigated the applicability of runoff generated by two land surface models

(LSMs) for streamflow simulation in the upper part of Ping River Basin, Thailand. Atmospheric

output dataset from a general circulation model MRI–AGCM 3.2S with 20–km grid size and a

regional climate model NHRCM with 5–km (NHRCM05) and 2–km grid size (NHRCM02) were

used as forcing for both LSMs. First, rainfall output from each dataset was evaluated with

the observed rainfall. Simulated rainfall by GCM rainfall has shown excellent performance in

reproducing the mean observed precipitation. Meanwhile, rainfall from the RCMs tends to un-

derestimate the climatological mean of the observed rainfall. Simulated rainfall by GCM also

showed a stronger intensity of daily precipitation than that by the RCMs. The NHRCM02 was

able to produce significantly higher intensity than the NHRCM05. From the comparison of

the water budget, SiBUC tended to estimate higher evapotranspiration and lower runoff than

MRI–SiB. Each LSM generated different runoff characteristics; SiBUC estimated higher surface

runoff and lower subsurface runoff than MRI–SiB (Tinumbang et al., 2019). Subsurface runoff

was the dominant runoff component in MRI–SiB. Different runoff characteristics have shown

some impacts on the simulated streamflow. The peak discharge by SiBUC, formed primarily

due to surface runoff generation, is produced soon after the peak rainfall event. On the other

hand, MRI–SiB’s peak flow shows significantly more delay than the peak rainfall. As MRI–SiB

is dominated by subsurface runoff, the rainwater is first infiltrated into the soil before it travels
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to reach a river, resulting in long lag times. The estimated daily discharge forced runoff from

both LSMs was evaluated by using a flow duration curve. Simulated discharge by SiBUC using

GCM forcing tends to overestimate the observed peak and low flow, while it shows well repro-

ducibility of the mid–flow. On the other hand, the discharge by MRI–SiB mostly underestimated

the observed flow, but it was able to reduce the bias of peak flow by SiBUC. The simulated

monthly streamflow was also evaluated to analyze the LSMs’ ability to reproduce the seasonal

cycles of observed discharge. Overall, all simulated results by both LSMs could reproduce the

seasonal variability of the observed discharge, mainly due to the excellent performance of the

climate model in simulating the seasonal variability of the observed rainfall. However, different

runoff characteristics between the two LSMs have shown some impacts on the simulated peak

discharge. Monthly peak discharge by SiBUC has shown the same timing as peak simulated

rainfall. On the other hand, peak discharge by MRI–SiB is more delayed than peak rainfall.

Simulated discharge by SiBUC using GCM forcing has shown a low bias for simulating annual

flow and that in wet and dry seasons, indicating the excellent ability of runoff by SiBUC in re-

producing the observed streamflow. In contrast, discharge by MRI–SiB forced by GCM has

improved performance in reproducing the peak observed flow, but it mostly underestimated the

observed discharge. Meanwhile, most of the simulated discharges forced by the RCMs show

much lower volume than the observed inflow, mainly due to underestimating the precipitation

output by the RCMs. However, the peak discharge by SiBUC using NHRCM02 shows the best

performance in reproducing the peak observed flow (Tinumbang et al., 2019a). Stronger rainfall

intensity by the NHRCM02 might have an impact on improving the simulated peak discharge.

In conclusion, the present work has shown the different runoff characteristics of each LSM and

how it affects the simulated streamflow.
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3.1 Introduction

Many regions worldwide have been affected by unprecedented extreme floods and drought

in recent years. Intergovernmental Panel on Climate Change (2021) reported that it is expected

that the risks of water-related disasters are increasing in magnitude and frequency due to global

warming. Projections of such phenomena are necessary to design planning and perform ap-

propriate responses to future events.

Climate models, also known as general circulation models or GCMs, have been developed

to simulate the present climate and project the changes of future climate. They simulate Earth’
s climate system interactions, including atmosphere, ocean, ice, and land surface. However,

the resolution of GCMs output are often too coarse to be used for impact assessment studies

for local scale because it do not accurately describe local phenomenon. For regional level

assessment, much finer resolution output is generally used, usually by downscaling the output

of GCMs, such as utilizing statistical or dynamic methods (using a nested model, known as a

regional climate model, RCM).

The output of the climate models have been widely used to predict the changes of river dis-

charge under global warming (Hirabayashi et al., 2013, Hunukumbra and Tachikawa, 2013,

Manee et al., 2017, etc.). However, many researchers (Hirabayashi et al., 2013) reported some

bias in the simulated discharge by runoff output from the climate models. The possible causes

might come from the performance of climate models on simulating precipitation and/or runoff.

The latter, runoff, is calculated by the land surface model (LSM) embedded in the climate mod-

els. Since runoff plays an essential role in river discharge simulation, it is necessary to evaluate

the performance of LSMs from a river discharge viewpoint. Some studies have been done to

analyze the performance of LSMs for estimating energy balance components, including sensi-

ble and latent heat, and the evaluation for runoff is still limited in the literature (Getirana et al.,

2017).

This study aims to investigate characteristics of runoff generated by two LSMs and analyze

their applicability for streamflow simulation.
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Table 3.1: Summary of availability and experimental period for each dataset.

Dataset Baseline period Spin–up period Analysis period

Observed rainfall
1990–1999

Observed streamflow
MRI–AGCM 3.2S 1979–2003 1979–1989 1990–1999

NHRCM05
1980–1999 1980–1989 1990–1999

NHRCM02

3.2 Methodology

3.2.1 Simulation designs

This study utilized the output of general circulation model MRI–AGCM 3.2S with 20–km mesh

size, and regional climate model NHRCM with 5–km and 2–km mesh size, which was applied in

the Thailand region. This analysis only used the output of the baseline period from each dataset.

The data from MRI–AGCM 3.2S and NHRCM consist of 25–years and 20–years, respectively,

as shown in Table 3.1.

One year data of MRI–AGCM 3.2S consists of 12 months, starting from January to December.

On the other hand, the one-year dataset from NHRCM consists of 13 months, starting from the

beginning of April to the end of April in the following year. Hence, the first-month data of NHRCM

was discarded as model spin up, and the last 12–months data, starting from May to April in the

following year, were utilized for simulation.

In this study, simulation by MRI–AGCM 3.2S atmospheric forcing data was conducted for 25–

years, while NHRCM was for 20–years. For each dataset, the simulation results during 1990–

1999 were utilized for impact analysis, and the rest were discarded as spin-up simulations.
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Figure 3.1: Framework and impacts analysis of this study.

3.2.2 Impact analysis

Figure 3.1 shows the framework and impacts analysis of this study.

At first, rainfall output from each climate model was evaluated by comparing it with the ob-

served CHIRPS rainfall data. The evaluation was performed by analyzing the spatial pattern of

the rainfall, climatological–mean of basin average monthly rainfall, frequency, and intensity of

precipitation from each dataset.

After that, runoff simulation was performed by SiBUC utilizing the atmospheric data from the

output of each climate model. Characteristics of runoff generated by SiBUC were compared

with that by MRI–SiB. In this analysis, the estimated runoff by MRI–SiB was obtained from

the output dataset of each climate model. Since both LSMs utilized the same atmospheric

data, different runoff estimations indicated different settings (land surface parameters, model

structures, etc.) between the two LSMs.

Then, the generated runoff by both LSMs was given to a flow routing model for simulating the

streamflow. The simulated discharge was extracted as daily discharge at the outlet of Bhumibol

Dam, and it was evaluated by comparing it with the observed inflow into this dam. The charac-

teristics of simulated discharge forced by the runoff by both LSMs were examined in terms of

volume of the discharge as well as the timing of peak discharge.
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Figure 3.2: Comparison of topography among different spatial resolution of SiBUC.

3.2.3 Modeling approach for runoff simulation by SiBUC

The spatial resolution of SiBUC was set according to the mesh size of the climate models.

Hence, SiBUC with three different spatial resolutions was utilized in this study: 20–km, 5–km,

and 2–km mesh size.

SiBUC with 5–km spatial resolution for the upper part of Ping River Basin developed by Yorozu

et al., (2018) was used for this study. It was confirmed that the simulated discharge by the de-

veloped model could well reproduce 2011–big flood event in this basin, as shown in Figure 3.3,

with Nash–Sutcliffe Efficiency (NSE) is 0.79, Root Mean Square Error (RMSE) is 219 m3 s−1,

and the correlation coefficient is 0.90 (Yorozu et al., 2018).

SiBUC with 20–km spatial resolution was developed by interpolating the resolution of SiBUC

with 5–km into 20–km using the nearest neighbor method. On the other hand, SiBUC with 2–

km mesh size was developed by upscaling the original input data of SiBUC from 1–km to 2–km
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Figure 3.3: Comparison of daily discharge from observation (black dot) and simulation (red line)
in 2011. Reproduced from Yorozu et al. (2018).

resolution by the same method.

Comparison of topography among different spatial resolutions of SiBUC is shown in Fig-

ure 3.2. The 20–km, 5–km, and 2–km model utilize 9×17 (163), 30×58 (1740), and 90×174(15660)

grid cells, respectively.
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3.3 Evaluation of rainfall output from the climate models

3.3.1 Spatial patterns of climatological mean rainfall

For rainfall evaluation, at first, spatial distribution of the simulated rainfall from the climate

models was compared with the observed rainfall. In this analysis, the spatial resolution of MRI–

AGCM 3.2S and NHRCM02 were interpolated using the nearest neighbor method to be the

same as that of the observed CHIRPS rainfall (0.05◦). NHRCM05 rainfall was not interpolated

as it already had the same resolution as that of the observed rainfall dataset.

The differences between the simulated and observed rainfall were calculated in terms of

percent of bias (PBIAS), shown in Eq. (5.3).

PBIAS =

∑N
i=1 (Mi −Oi)∑N

i=1Oi

× 100 (3.1)

with M and O represents the rainfall amount from the model and observation, respectively.

The bias measures the tendency of the simulated rainfall to be higher (positive value) or lower

(negative value) than the observation, with the optimal value is equal to zero. We estimated the

bias of 10–years mean annual rainfall and the average rainfall in wet (May to October) and dry

(November to April) seasons.

Figure 3.4 shows the spatial pattern of average annual, wet, and dry seasons observed rain-

fall, as well as the bias of the simulated rain by MRI–AGCM 3.2S, NHRCM05, and NHRCM02.

The observed annual rainfall shows a diverse distribution, with more rain in the northern and

southwest and less rainfall in the middle of the basin. As seen, abundant rainfall occurs in the

wet season and less rainfall in the dry season.

Simulated rainfall by MRI–AGCM 3.2S shows a good performance in reproducing the mean

annual and wet season rainfall, but it mostly overestimates the precipitation in the dry season.

This wet bias in GCM in the dry season is slightly reduced by dynamically downscaling, as

shown by NHRCM05 rainfall, especially in the basin. However, overall results by RCMs rainfall

do not show significant improvement, as it mostly underestimated the observed rainfall in both

wet and dry seasons in most regions.
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3.3 Evaluation of rainfall output from the climate models

(a) Spatial patterns of CHIRPS observed rainfall. (b) Spatial patterns of bias for MRI–AGCM 3.2S rain-
fall.

(c) Spatial patterns of bias for NHRCM05 rainfall. (d) Spatial patterns of bias for NHRCM02 rainfall.

Figure 3.4: Spatial patterns of climatological mean (1) annual, (2) wet (May to October), and
(3) dry seasons (November to April) rainfall from (a) observation, and bias of simulated rainfall
from (b) MRI–AGCM 3.2S, (c) NHRCM05, and (d) NHRCM02.
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Figure 3.5: Seasonal cycles of (a) mean and (b) standard deviation of observed rainfall (black
line) and rainfall output from MRI–AGCM 3.2S, NHRCM05, and NHRCM02, shown in the red,
green, and pink lines, respectively.

Table 3.2: Mean and standard deviation of observed annual, wet, and dry seasons rainfall (unit:
mm), and the evaluation of rainfall from each dataset in terms of PBIAS.

Dataset
Mean Standard deviation

Annual Wet Dry Annual Wet Dry

Observed [mm] 1152 1018 135 82 59 23

MRI–AGCM 3.2S -3 -6 25 -0.2 13 61
NHRCM05 -43 -44 -30 -30 -8 10
NHRCM02 -45 -44 -50 -31 -10 -23

3.3.2 Seasonal cycles of basin average rainfall

Figure 3.5 shows seasonal variations in the mean and standard deviation of rainfall for each

dataset, and Table 3.2 shows the evaluation of rain from different climate models in terms of

percent bias (PBIAS). This analysis aims to evaluate the ability of the climate models in repro-

ducing the observed pattern of rainfall and its interannual variability. In this analysis, all the

rainfall was computed as basin average for 10–years period.

The area means annual rainfall estimated from the CHIRPS dataset is 1152 mm. This value

is close to mean annual (during 1981–2004) rainfall estimated from gauges stations, which is

1101 mm (Kotsuki et al., 2013). In this basin, more than 80% of the annual rainfall occurs in

the wet season, and the rest in the dry season.

In general, the rainfall from all datasets could capture the seasonal cycle of precipitation in

this basin. The observation peak rainfall in the early and late rainy seasons occurs in May and
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3.3 Evaluation of rainfall output from the climate models

September, respectively. Rainfall from GCM shows the same peak time in the early wet season,

but it produces an earlier peak in the late rainy season in August. On the other hand, the rainfall

from both RCMs shows the same peak time in the early and late rainy seasons as that of the

observed rainfall. However, the peak value from RCMs tends to be underestimated, while the

peak value from GCM rainfall shows a better fit with the observation.

Overall, the rainfall from GCM has better performance than the RCMs in reproducing the

mean and interannual variability of the observed annual rainfall. The wet season shows a

lower bias, indicating good abilities to reproduce the observed rainfall, but in the dry season,

it produces about 25% excessive precipitation. On the other hand, rainfall from both RCMs

tends to underestimate the mean and standard deviation of observed annual rainfall. Estimated

rainfall from NHRCM05 shows a lower bias than the rainfall from NHRCM02 in the dry season.

In general, the simulated rainfall from the climate models is better at capturing the interannual

variability of observed precipitation in the wet season.
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Figure 3.6: Frequency and intensity of daily rainfall from observation and simulation from MRI–
AGCM 3.2S, NHRCM05, and NHRCM02, represent by black, red, green, and pink colors, re-
spectively.

3.3.3 Frequency and intensity of daily rainfall

Figure 3.6(b) shows the frequency of daily rainfall from observation and simulation from each

climate model. RCMs rainfall tends to be closer to the observed rainfall in simulating the light

rain (1 mm day−1), while the rainfall from GCM has less light rain. The simulated rainfall by

MRI–AGCM 3.2S and NHRCM02 show more frequent heavy rain ( 50 mm day−1) than that of

NHRCM05 and are close to the observed rainfall.

Figure 3.6(b) shows a non–exceedance probability of rainfall (mm day−1) between observed

and simulated rainfall from each climate model. For extreme rainfall (more than the 99th per-

centile), the MRI–AGCM 3.2S shows a higher intensity than the rainfall from RCMs and is closer

to observed. The rainfall from 2–km mesh size NHRCM shows a stronger intensity than the 5–

km NHRCM.
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Figure 3.7: Comparison of annual water budget (WB) by SiBUC (red line) and MRI–SiB (green
line) forced by MRI–AGCM 3.2S atmospheric data. P, ET, ROF, delsm, Qs, Qsb, E, and T
represent precipitation, evapotranspiration, runoff, change of soil moisture, surface runoff, sub-
surface runoff, evaporation, and transpiration, respectively.

3.4 Analysis of water budget and runoff characteristics

Figure 3.7, Figure 3.8, and Figure 3.9 show annual water budget by SiBUC and MRI–SiB

forced by MRI–AGCM 3.2S, NHRCM05, and NHRCM02, respectively. Water budget by MRI–

SiB embedded in the NHRCM is unbalanced because it was simulated by time–slice integration

method. In addition, one out of 13–months in one–year result by NHRCM was discarded since

it was assumed as NHRCM spin–up.

Overall, estimated evapotranspiration by MRI–SiB tends to be higher, and the generated

runoff tends to be lower than that by SiBUC. When the rainfall amount is relatively low, as shown

by NHRCM05 rainfall in 1992 and 1997 (less than 600 mm), the estimated evapotranspiration

by MRI–SiB exceeds the annual rainfall. Due to low rainfall amounts, evapotranspiration could

occur by extracting more water from the soil.

Fluctuations of annual runoff from both LSMs seem to be affected by rainfall amount and

rainfall intensity. For example, annual rainfall by NHRCM05 in 1990 and 1991 is 815 mm and
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Figure 3.8: Similar to previous figure, but the forcing is NHRCM05 atmospheric data.
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Figure 3.9: Similar to previous figure, but the forcing is NHRCM02 atmospheric data.
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Figure 3.10: Mean annual water budget components simulated by SiBUC and MRI–SiB, forced
by atmospheric output from (a) MRI–AGCM 3.2S, (b) NHRCM05, and (c) NHRCM02.

744 mm, respectively. In 1991, estimated runoff by both LSMs was higher (SiBUC: 106 mm,

MRI–SiB: 81 mm) than that in 1990 (SiBUC: 87 mm, MRI–SiB: 57 mm). That was affected by

extreme rainfall events, which caused the high estimated runoff.

Figure 3.10(a) shows a mean annual water budget by SiBUC and MRI–SiB forced by at-

mospheric output from each dataset. In this basin, 10–years–mean of runoff depth estimated
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Chapter3 Analysis of the applicability of runoff generated by land surface models for streamflow simulation

from inflow into the Bhumibol Dam is 183 mm. As the mean annual rainfall is 1152 mm, the

evapotranspiration in this basin is estimated to occupy more than 80% of the total precipitation.

Between the two LSMs, the generated runoff by SiBUC forced by output from MRI–AGCM

3.2S is closer to the observed runoff depth. On the other hand, simulated runoff by both LSMs

forced by RCMs forcing is lower than the observed runoff. That is due to the underestimated

rainfall by the RCMs.

Figure 3.10(b) shows a comparison of mean annual evapotranspiration components between

SiBUC and MRI–SiB forced by each output dataset. Overall, estimated evaporation by SiBUC

tends to be higher than MRI–SiB, while the estimated transpiration is the opposite.

Comparison of mean annual runoff components between SiBUC and MRI–SiB forced by

atmospheric data from each dataset is shown in Figure 3.10(c). As seen, the estimated runoff

by MRI–SiB is dominated by subsurface runoff in all simulations regardless of the atmospheric

forcing. On the other hand, SiBUC tends to estimate higher surface runoff and lower subsurface

runoff than MRI–SiB. However, the ratio of surface and subsurface runoff estimated by SiBUC

differ depending on the atmospheric data.

By using MRI–AGCM 3.2S forcing, surface runoff and subsurface runoff by SiBUC occupy

about 30% and 70% of the total runoff, respectively. While, when the atmospheric data from

RCMs output were used, SiBUC estimated significantly higher surface runoff than the subsur-

face runoff. In particular, by using the NHRCM02 forcing, SiBUC generated mostly only surface

runoff. The amount of surface runoff by SiBUC was also particularly high in this simulation, even

though the rainfall amount by the NHRCM02 was relatively low. That difference in runoff char-

acteristics by SiBUC among different forcing is caused by the difference in rainfall intensity. For

this analysis, one year result, such as in 1992, was investigated in detail.
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3.4 Analysis of water budget and runoff characteristics

Figure 3.11: Scatter plot of daily rainfall and surface runoff generated by SiBUC in 1992. Only
grid cells within Bhumibol Dam catchment are plotted. Black, green, and pink dots represent
forcing data from MRI–AGCM 3.2S, NHRCM05, and NHRCM02, respectively. Unit is mm.

(a) Simulation by NHRCM05 forcing. (b) Simulation by NHRCM02 forcing.

Figure 3.12: Spatial pattern of annual rainfall (P) and surface runoff (Qs) generated by SiBUC
in 1992. Unit is mm.
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Chapter3 Analysis of the applicability of runoff generated by land surface models for streamflow simulation

Relationship between rainfall and surface runoff generated by SiBUC using each forcing

in 1992 was investigated. In this year, annual rainfall by MRI–AGCM 3.2S, NHRCM05, and

NHRCM02 is 1042 mm, 597 mm, and 581 mm, respectively. The generated surface runoff by

SiBUC by each forcing is 26 mm, 30 mm, and 85 mm, respectively. Although the total rainfall

by the GCM is the highest, the generated surface runoff by SiBUC is relatively lower than by

using the RCMs forcing. In addition, even though total rainfall by the RCMs is similar, SiBUC

generated very high surface runoff by using NHRCM02 compared to by NHRCM05.

Figure 3.11 shows a scatter plot of daily rainfall and surface runoff generated by SiBUC for

grid cells within the basin in 1992 by using each forcing. As seen from this figure, the higher

the spatial resolution of the climate models, the more grid cells with high rainfall intensity, such

as rainfall more than 100 mm day−1. The high rainfall intensity corresponds to the high surface

runoff generated by SiBUC. As the RCMs had more cells with high–intensity rainfall than the

GCM, surface runoff estimated by SiBUC forced by the RCMs atmospheric data tends to be

more dominant than that by the GCM forcing.

In addition, the spatial distribution of rainfall also affects the runoff generation. Figure 3.12

shows a spatial pattern of annual rainfall and surface runoff generated by SiBUC in 1992 forced

by NHRCM05 and NHRCM02. Even though the basin average rainfall by the RCMs is similar,

the rainfall distribution is different in both RCMs. In particular, the NHRCM02 tends to have

more intense rainfall in mountainous region of the western part of this basin compared to the

NHRCM05. On the other hand, in the low–elevation region (eastern area of the basin), the

estimated rainfall by NHRCM05 tends to be higher than the NHRCM02.

From this figure, the spatial pattern of surface runoff by SiBUC mostly corresponds to the

spatial distribution of rainfall: the higher the rainfall, the higher the surface runoff. As there

are more grid cells in the NHRCM02 with high rainfall than the NHRCM05, the number of cells

corresponding to high surface runoff by SiBUC is also higher, resulting in higher surface runoff

generation by SiBUC forced by NHRCM02 compared to that of NHRCM05.

In summary, even though the RCMs has similar rainfall amount, the generated surface runoff

by SiBUC between NHRCM05 and NHRCM02 is greatly different. It is due to the difference

in rainfall intensity and spatial distribution of rainfall. The generated surface runoff by SiBUC

forced by NHRCM02 is higher than NHRCM05 because the NHRCM02 rainfall tends to have

higher intensity and more grid cells with high rainfall amount compared to NHRCM05.

Overall, in this section, the differences in water budget estimation as well as runoff char-
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3.4 Analysis of water budget and runoff characteristics

acteristics between the two LSMs were found, even though they were forced with the same

atmospheric forcing data. This difference in the ability of the LSMs in simulating the water bud-

get components might be due to the differences in land surface parameters, representation of

physical processes in land surface, etc.
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Figure 3.13: Time series of daily precipitation (P) from MRI–AGCM 3.2S, simulated daily dis-
charge (Q), surface runoff (Qs), and subsurface runoff (Qsb) by SiBUC (red line) and MRI–SiB
(green line).

3.5 Evaluation of simulated river discharge

3.5.1 Characteristics of simulated daily discharge

Figure 3.13, Figure 3.14, and Figure 3.15 shows simulated daily discharge forced by runoff

by SiBUC and MRI–SiB utilizing atmospheric data from MRI–AGCM 3.2S, NHRCM05, and

NHRCM02 output datasets, respectively. In general, simulated discharge by SiBUC is higher

than that by MRI–SiB due to higher runoff estimation.

Figure 3.16(a) shows the simulated daily discharge in 1991 by using MRI–AGCM 3.2S forcing.

As can be seen, both LSMs show different abilities in simulating the streamflow due to the

differences in the estimated runoff characteristics. The increase and decrease of the simulated

discharge by SiBUC runoff show a similar response to the rainfall events. As the discharge

by SiBUC was formed mainly through surface runoff, the discharge increases soon after the

rainfall events.
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Figure 3.14: Similar to Figure 3.13 but the forcing is NHRCM05 atmospheric data.

    0

   20

   40

   60

   80

P
 [

m
m

]

NHRCM02

    0

 1000

 2000

 3000

Q
 [

m
3
 s

-1
]

SiBUC MRI-SiB

    0

    5

   10

   15

   20

   25

Q
s
 [

m
m

]

 0.00

 0.25

 0.50

 0.75

 1.00

05/1990 05/1991 05/1992 05/1993 05/1994 05/1995 05/1996 05/1997 05/1998 05/1999

Q
s
b

 [
m

m
]

Figure 3.15: Similar to Figure 3.13 but the forcing is NHRCM02 atmospheric data.
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(a) Simulated daily discharge by MRI–AGCM 3.2S
in 1991.
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(b) Simulated daily discharge by NHRCM05 in 1994.

Figure 3.16: Time series of daily precipitation (P), simulated daily discharge (Q), surface runoff
(Qs), and subsurface runoff (Qsb) between SiBUC (red line) and MRI–SiB (green line).

Meanwhile, the estimated discharge by MRI–SiB does not show such high discharge in re-

sponse to the earlier intense rainfall events, as shown at the end of May. As subsurface runoff is

the dominant runoff component in MRI–SiB, the effect of catchment wetness can be seen here.

It is thought that the first rainwater is used to increase the soil moisture, and as the wetness of

the soil gets higher, the discharge starts to rise.

Different runoff components between the two LSMs also results in the different lag time of

the simulated discharge, such as shown in Figure 3.16(b). In this year, the peak of a rainfall

event is shown in the mid of August. As seen, the peak discharge by SiBUC is produced soon

after the peak rainfall event, while the peak flow by MRI–SiB show significantly more delayed at

the beginning of September. As surface runoff is dominant in SiBUC, the rainwater enters the

river quicker, resulting in shorter lag times. Oppositely, as MRI–SiB is dominated by subsurface

runoff, the rainwater is first infiltrated into the soil before it travels to reach a river, resulting in

longer lag times.
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Figure 3.17: Flow duration curve (FDC) of observed (black line) and simulated discharge forced
by runoff by SiBUC (solid line) and MRI–SiB (dash line). Red, green, and pink colors represent
atmospheric forcing data from MRI–AGCM 3.2S, NHRCM05, and NHRCM02. The FDC is
partitioned into four zones: (a) peak flow (0–1% of exceedance probability), (b) high flow (1–
20%), (c) mid flow (20–70%), (d) low flow (70–100%).

3.5.2 Evaluation of simulated daily streamflow

Figure 3.17 shows a comparison of the flow duration curve (FDC) of the observed and simu-

lated daily streamflow for 10–years period. Following Chilkoti et al. (2019), in this analysis, the

FDC is partitioned into four different zones: (a) peak flow (PF, 0–1% of exceedance probability),

(b) high flow (HF, 1–20%), mid flow (MF, 20–70%), low flow (LF, 70–100%). Simulated daily

discharge by the runoff from each LSM is evaluated by calculating the PBIAS of each zone, as

shown in Figure 3.18.

By utilizing MRI–AGCM 3.2S forcing, the simulated discharge by SiBUC tends to overestimate

the observed peak and low flow, while it could well reproduce the observed mid flow. The

simulated flow by MRI–SiB tends to underestimate all flow, except the peak flow, which shows

a lower PBIAS, indicating a better model performance.

Compared to the simulated flow forced by GCM forcing, the estimated peak flow by SiBUC

utilizing NHRCM02 is closer to the observation. However, all simulated discharges by both

LSMs forced by RCMs forcing tend to underpredict the observed flow in most zones. That is

mainly due to the underestimation of the simulated rainfall from the RCMs.

43



Chapter3 Analysis of the applicability of runoff generated by land surface models for streamflow simulation

-50

 0

 50

 100

 150

 200

 250
P

B
IA

S
(a) SiBUC

MRI-AGCM 3.2S

 75

NHRCM05

-50

NHRCM02

  9
-18

-55

-14
  1

-64 -52

236

-22
-56

-100

-50

 0

 50

Peak Flow (PF) High Flow (HF) Mid Flow (MF) Low Flow (LF)

P
B

IA
S

(b) MRI-SiB
 25

-69
-77

-18

-72
-80

-49

-78 -79
-89 -89

-68

Figure 3.18: Percent bias of flow duration curve (FDC) for simulated discharge by (a) SiBUC
and (b) MRI–SiB (dash line). Red, green, and pink bars represent atmospheric forcing data
from MRI–AGCM 3.2S, NHRCM05, and NHRCM02.

All simulated discharge by MRI–SiB shows more negative biases than SiBUC, as MRI–SiB

tends to produce lower runoff estimation.
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Table 3.3: Mean of annual, wet, and dry seasons observed streamflow(unit: m3 s−1), and the
evaluation of rainfall from each dataset in terms of PBIAS.

Dataset LSMs Annual Wet Dry

Observed [m3 s−1] 1805 1471 334

MRI–AGCM 3.2S
SiBUC -1 -3 5

MRI–SiB -25 -19 -49

NHRCM05
SiBUC -57 -53 -72

MRI–SiB -74 -72 -83

NHRCM02
SiBUC -24 -15 -67

MRI–SiB -79 -79 -79

3.5.3 Evaluation of average monthly simulated streamflow

Figure 3.19 shows a comparison of 10–years–mean monthly observed and simulated dis-

charge forced by runoff by SiBUC and MRI–SiB utilizing the forcing from each dataset. There

are some differences between the simulated discharge by both LSMs in terms of discharge

volume and peak discharge timing.

The monthly discharge by SiBUC shows the same timing of peak flow as that of peak rainfall.

For example, peak rainfall by MRI–AGCM 3.2S is shown in August, and by RCMs is in Septem-

ber. All the peak discharge by SiBUC is shown in August, and the RCMs forcing is shown in

September. On the other hand, most of the peak discharge by MRI–SiB is shown more delayed

than the peak rainfall. As mentioned earlier, the subsurface runoff is the dominant runoff com-

ponent in MRI–SiB, and subsurface runoff arrives at the stream later than the surface runoff,

which causes a delay in peak discharge.

The simulated discharge by both LSMs is evaluated by calculating PBIAS of mean annual

discharge, discharge in wet (May to September), and dry season (October to April), as shown

in Table 3.3. In terms of mean annual discharge, simulated streamflow by SiBUC forced by

MRI–AGCM 3.2S is closer than that by MRI–SiB to the observed river flow. However, the

peak discharge in September by MRI–SiB is closer to the observed inflow than SiBUC. All the

simulated discharges from both LSMs utilizing RCMs atmospheric forcing tend to underestimate

the observed discharge. It is mainly due to the underestimated rainfall by the RCMs. On the

other hand, the simulated discharge by SiBUC forced by NHRCM02 is close to the observed
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discharge, even though the rainfall from the NHRCM02 underestimated the observed rainfall.

That high volume of discharge corresponds to the high surface runoff generated by SiBUC,

which is caused by high rainfall intensity and more grid cells with high rainfall amounts in the

NHRCM02.
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Figure 3.19: Evaluation of simulated discharge and runoff components generated by SiBUC
(red line) and MRI–SiB (green line) forced by (a) MRI–AGCM 3.2S, (b) NHRCM05, and (c)
NHRCM02. Black line represents observed inflow into Bhumibol Dam.
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3.6 Conclusions

This research investigated the applicability of runoff generated by two land surface models

(LSMs) for streamflow simulation. Atmospheric output dataset from MRI–AGCM 3.2S with 20–

km grid size and NHRCM with 5–km and 2–km grid size were used as forcing for both LSMs.

First, we evaluated the rainfall output from each dataset with the observed rainfall. Simulated

rainfall from the RCMs underestimated the climatological mean and standard deviation of the

observed rainfall. On the other hand, the GCM rainfall was better at reproducing the mean and

interannual variability of the observed precipitation. Simulated rainfall by GCM also showed

a stronger intensity of daily precipitation than that by the RCMs. The NHRCM02 was able to

produce significantly higher intensity than the NHRCM05.

Regarding water budget, SiBUC tended to estimate higher evapotranspiration and lower

runoff than MRI–SiB. Different LSMs also generated different runoff characteristics; SiBUC esti-

mated higher surface runoff and lower subsurface runoff than MRI–SiB. Subsurface runoff was

the dominant runoff component in MRI–SiB.

Different runoff characteristics have shown some impacts on the simulated streamflow. The

peak discharge by SiBUC, formed primarily due to surface runoff generation, is produced soon

after the peak rainfall event. On the other hand, MRI–SiB’s peak flow shows significantly more

delay than the peak rainfall. As MRI–SiB is dominated by subsurface runoff, the rainwater is

first infiltrated into the soil before it travels to reach a river, resulting in long lag times.

Then, we evaluated the simulated flow forced runoff from both LSMs by using a flow duration

curve. Simulated discharge by SiBUC using GCM forcing tends to overestimate the observed

peak and low flow, while it shows well reproducibility of the mid flow. On the other hand, the

discharge by MRI–SiB mostly underestimated the observed flow, but it was able to reduce the

bias of peak flow by SiBUC.

The simulated monthly streamflow was also evaluated to analyze the LSMs’ ability to repro-

duce the seasonal cycles of observed discharge. Overall, all simulated results by both LSMs

could reproduce the seasonal variability of the observed discharge, mainly due to the excellent

performance of the climate model in simulating the seasonal variability of the observed rainfall.

However, different runoff characteristics between the two LSMs have shown some impacts on

the simulated peak discharge. Monthly peak discharge by SiBUC has shown the same tim-

ing as peak simulated rainfall. On the other hand, peak discharge by MRI–SiB is mostly more
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delayed than the peak rainfall.

Simulated discharge by SiBUC using GCM forcing has shown a low bias for simulating annual

flow and that in wet and dry seasons, indicating the excellent ability of runoff by SiBUC in

reproducing the observed streamflow. In contrast, discharge by MRI–SiB forced by GCM has

improved performance in reproducing the peak observed flow, but it mostly underestimated

the observed discharge. Meanwhile, most of the simulated discharges forced by the RCMs

show much lower volume than the observed inflow. That is due to the underestimation of the

precipitation output by the RCMs.

The present work has shown the different runoff characteristics by each LSM and how it

affects the simulated streamflow. Further investigation on the runoff generation mechanisms in

each LSM is necessary to understand what has caused such differences.
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Chapter 4

Investigation of runoff generation
schemes in land surface models

Abstract
The previous chapter has shown different runoff characteristics between SiBUC and MRI–SiB.

It is thought that different settings in both LSMs have caused that difference. This study in-

vestigated which settings were treated differently in the two land surface models (LSMs). The

different settings between both LSMs were adopted in SiBUC to evaluate their impacts on runoff

generation. Our investigation identified some different settings in both LSMs that mainly affected

the runoff generation and the simulated discharge, such as soil parameters, model structures,

and time integration methods on soil schemes (Tinumbang et al., 2020, 2021). It is thought that

the findings in this study could provide some insights to identify the sources of uncertainty in

LSMs and propose better settings for reproducing the observed river flow.
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4.1 Introduction

The Intergovernmental Panel on Climate Change (IPCC, 2021) predicts that water-related

disasters increase in magnitude and frequency due to global warming. Previous impact as-

sessment studies (Nohara et al., 2006, Hirabayashi et al., 2013) sought to project changes in

future river discharge using runoff (ROF) output from general circulation models (GCMs) and

regional climate models (RCMs). However, they pointed out that the simulated discharge by

runoff from GCMs/RCMs is biased. In order to get a better prediction of future river flow, it is

necessary to enhance the model performance, including parameters calibration, improving the

physical processes in LSMs, and so on.

The importance of understanding the underlying physical processes of runoff generation by

GCMs for river flow prediction has been emphasized in the earlier study. For example, Fal-

loon et al., (2011) evaluated the simulated discharge forced by runoff output from two GCMs:

Hadley Centre GCM (HadCM3; Gordon et al., 2000) and Hadley Centre Global Environmental

Model version 1 (HadGEM1; Martin et al., 2006), against the observed river flow on 24 world ’
s major river basins. Both GCMs employed different LSMs. The original version of Met Office

Surface Exchange Scheme (MOSES1; Cox et al., 1999) is embedded in HadCM3, while Met

Office Surface Exchange Scheme version 2 (MOSES2; Essery et al., 2001) is employed in

HadGEM1. The two LSMs have been developed with similar soil hydrology schemes, but they

apply different time integration methods, an explicit method in MOSES1 and an implicit method

in MOSES2, to update the soil moisture. They found that in some of the river basins, the bias

of simulated river discharge was reflected in the precipitation bias, while in other regions, were

not. They suggested that other reasons for errors, such as runoff generation due to errors in

soil moisture storage, are likely to cause the bias of the simulated discharge in those basins.

Based on their results, it is thought that the choice of time integration method may be impor-

tant as it affects the calculation of soil moisture. From the literature review, we found that the

implicit method is widely applied for the soil schemes in many LSMs, including The Minimum

Advanced Treatments of Surface Interaction and RunOff (MATSIRO) (Takata et al., 2003) and

The Community Noah Land Surface Model with Multi–Parameterization Options (NOAH–MP)

(Niu et al., 2011).

Although many studies have shown some bias of runoff by LSMs, a detailed investigation on

the reasons for bias due to runoff generation processes is still limited in the literature (Falloon
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et al., 2011). A study by Takata and Hanasaki (2021) discussed this issue by investigating

the behavior of MATSIRO on runoff generation mechanisms. They evaluated the simulated

discharge forced by the runoff from MATSIRO against observed inflow at the Bhumibol Dam

catchment in Thailand. The runoff by MATSIRO was simulated using the observed meteoro-

logical data. They found that the estimated river flow by the original MATSIRO significantly

underestimated the observed discharge. Throughout sensitivity analysis by changing satura-

tion threshold to determine the depth of water table, they found that as the level of unsaturated

soil moisture decreased, the water table depth became shallow, resulting in the increase of both

saturation–excess and base runoff. Consequently, the simulated discharge increased, and the

closest estimation to the observed inflow was achieved by changing the saturation threshold

from 0% to 50% of porosity. Their findings suggest the importance of the relationship between

soil moisture and groundwater depth.

In this study, we also tried to investigate the possible reasons of runoff bias in the two LSMs:

SiBUC and MRI–SiB. In our previous study (Tinumbang et al., 2019), we found that both LSMs

showed different runoff characteristics, even though they were forced by the same forcing from

the output of the Non–Hydrostatic Regional Climate Model. MRI–SiB showed a significantly

low surface runoff and high subsurface runoff, while SiBUC was the opposite. To have a better

understanding of the runoff generation mechanisms in the LSMs and to figure out the reason

why such differences happened, we investigated the runoff generation schemes in the two

LSMs. To figure out a better model among both LSMs is beyond the scope of this chapter.

However, it is thought that the findings of this study could provide some insights into potential

causes of runoff bias in both LSMs.
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Figure 4.1: Framework of this study.

4.2 Development processes of MRI–SiB emulation model

The previous chapter has shown different runoff characteristics between SiBUC and MRI–SiB

and their impacts on the simulated river flow. The different performances of the LSMs might

be owing to the differences in land surface parameters, representation of physical processes in

the model, parameter settings, etc.

In this study, the possible reasons for the different runoff estimations between the two LSMs

are investigated in detail. Figure 4.1 shows a framework of this study.

To understand the underlying processes in the runoff generation mechanisms in the two

LSMs, first, we investigated the different settings in both LSMs, mainly by analyzing the source

codes of the two LSMs. Next, the different setting that was found is adopted in SiBUC. SiBUC

that the setting has been revised to be the same as that of MRI–SiB is called MRI–SiB emu-

lation model. These processes are repeated until the emulation model can reproduce similar

runoff characteristics as MRI–SiB.

The atmospheric output data from MRI–AGCM 3.2S and NHRCM with 5–km mesh size

(NHRCM05) were used as forcing for the emulation model, and the runoff generated by MRI–

SiB embedded in these climate models were set as a reference. Total GCM rainfall was close to

the observation, while the RCM rainfall underestimated. Therefore, the simulation by the RCM

forcing can be assumed to be set as dry condition.

54



4.2 Development processes of MRI–SiB emulation model

Table 4.1: Summary of simulation period.

Dataset Historical simulation period Spin–up period Analysis period

MRI–AGCM 3.2S 1979–2003 1979–1983 1984–2003
NHRCM05 1980–1999 1980–1989 1990–1999

The impacts of changing settings on runoff estimation are investigated in detail throughout

the development of the emulation model.

Summary of numerical simulation for each atmospheric forcing is shown in Table 4.1. Ex-

perimental cases by using MRI–AGCM 3.2S output data were conducted for 25–years period

(1979–2003). The first 5–years results were discarded as spin–up, and the last 20–years were

used for sensitivity analysis. On the other hand, simulation by NHRCM05 output was performed

for 20–years, with the first ten–years were discarded as spin–up, and the rest were utilized for

analysis study. The spatial resolution of the emulation model is set to be the same as the

atmospheric forcing, and the temporal resolution is set as 1 hour for all forcing.
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Figure 4.2: Schematic diagram of land surface model. Red circles represent the variables that
are estimated differently in both LSMs. Illustration is reproduced from a schematic figure of
green area in SiBUC, based on SiBUC manual.

4.3 Different settings between SiBUC and MRI–SiB

Both SiBUC and MRI–SiB have been developed based on Simple Biosphere (SiB) (Sellers,

et al., 1986). Therefore, the basic structures in both models are similar. For example, soil

water movement between adjacent soil layers is described by three soil layers using a simplified

Richards equation. However, as two of them have been developed independently, detailed

structures, calculation methods, soil parameters, etc., are different. Figure 4.2 shows variables

that are treated differently in SiBUC and MRI–SiB, and Table 4.2 summarizes the different

settings between both LSMs based on our findings. The list of all variables in this chapter is

shown in Table 4.3.
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Table 4.2: Different settings between SiBUC and MRI–SiB.

Settings SiBUC MRI–SiB

Land surface parameters set for each soil class set for each vegetation class
Structure for direct infiltration (P2) no yes

Soil–water flow equation Qi,i+1 = K

[
∂ψ

∂z
+ 1

]
Qi,i+1 = K

[
∂ψ

∂z

]
Subsurface runoff equation Q3 = sin⊘sKsW

2B+3
3 Q3 = sin⊘sKsW

2B+3
3 +

ψ2 − ψ3

z3
Numerical methods for soil schemes explicit midpoint method semi–implicit method

Table 4.3: List of variables for the soil schemes

Symbol Meaning Dimension

P total precipitation L T−1

Pc intercepted precipitation L T−1

P0 effective precipitation into ground surface L T−1

P1 infiltrated rainwater into surface soil layer L T−1

P2 infiltrated rainwater into root zone L T−1

Es direct evaporation of water from surface soil layer M L−2 T−1

Edc,1, Edc,2 abstraction of soil moisture by transpiration M L−2 T−1

Q1,2, Q2,3 soil–water flow between soil layer L T−1

Q3 subsurface runoff L T−1

Ki hydraulic conductivity of ith layer L T−1

ψi matric potential of ith layer L
Wi soil water content of ith layer L3 L−3

Di depth of ith soil layer L
ψs matric potential at saturation L
θs soil water content at saturation L3 L−3

Ks soil hydraulic conductivity at saturation L T−1

⊘s mean topographic slope
B soil wetness parameter
ρw density of water M L−3

∆t time step T
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(a) Soil class in SiBUC. (b) Vegetation class in MRI–SiB.

Figure 4.3: (a) Spatial pattern of soil class in SiBUC obtained from Ecoclimap database. Green,
blue, and purple color represents sandy loam, loam, and clay loam, respectively. (b) Spatial
pattern of vegetation class in MRI–SiB. Purple, blue, red, green, and yellow color represents
broadleaf–evergreen forest, broadleaf and needleleaf forest, short–vegetation, dwarf trees and
shrubs, and cropland, respectively. This is for upper part of Ping River Basin.

4.3.1 Land surface parameters

In general, the land surface processes models require a lot of parameters, including parame-

ters related to soil, vegetation, slope, and elevation. Among these parameters, soil parameters

are one of the important settings for estimating the runoff in LSMs as they are directly used

to calculate the movement of rainwater in the soil. The parameters related to soil include soil

characteristics parameters (such as saturated hydraulic conductivity Ks, matric potential of sat-

uration ψs, saturation ratio, B power), and soil depth of three soil layers.

Soil parameters used in SiBUC for simulation in this basin were derived from the Ecoclimap

dataset (Masson et al., 2003). In SiBUC, soil characteristics parameters are set for each soil
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class, following the definition from Cosby et al., (1994). On the other hand, in MRI–SiB, all soil

parameters, including soil characteristics parameters, are assigned for each vegetation class.

Figure 4.3 shows spatial distributions of soil class in SiBUC and vegetation class in MRI–SiB

for the upper part of Ping River Basin.

In both LSMs, the parameters are set differently, such as shown in Figure 4.4(a) and Fig-

ure 4.4(b), which shows spatial patterns of Ks and ψs in SiBUC and MRI–SiB. Details informa-

tion is shown in Table 5.6, which describes soil characteristics parameters for each soil class

in SiBUC (based on the definition from Cosby at al., 1994) and for each vegetation class in

MRI–SiB. As seen, MRI–SiB set higher soil characteristic parameters than in SiBUC.

Figure 4.4(c) and Figure 4.4(d) shows spatial distributions of soil layer of the root zone (second

layer) and recharge zone (third layer), respectively. In both LSMs, the soil thickness of surface

soil layer is set to be the same, equal to 0.02 m. Meanwhile, the depth of the deeper layers

is set differently. For this catchment, the depth of root and recharge zone in MRI–SiB is set

between 0.5–1.5 m and 1.5–3.5 m, respectively, depending on vegetation type. SiBUC tends

to set much thicker depth than MRI–SiB. The maximum depth in SiBUC is set up to 12 m.

Parameters related to vegetation, such as greenness fraction, leaf area index (LAI), and the

fraction of photosynthetically active radiation (FPAR), are also important for water budget esti-

mation, especially for transpiration. Both LSMs also set the vegetation parameters differently.

For developing the emulation model, not all vegetation parameters of MRI–SiB can be adopted

in SiBUC, as the two LSMs have different vegetation schemes. In MRI–SiB, the vegetation is

represented by two layers: canopy and ground cover. In SiBUC, both canopy and ground cover

are called canopy, and treated together in one vegetation layer.

Figure 4.5 shows spatial patterns of greenness fraction in the two LSMs. This parameter

is set to only one vegetation layer (canopy) in SiBUC, and two vegetation layers, canopy and

ground cover, in MRI–SiB. For this analysis, only the parameters for canopy in MRI–SiB are

used, and the parameters for ground cover are not considered for developing the emulation

model.
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(a) Saturated hydraulic conductivity. (b) Matric potential of saturation

(c) Soil depth of root zone. (d) Soil depth of recharge layer.

Figure 4.4: Spatial patterns of soil parameters in SiBUC (left) and MRI–SiB (right).
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Table 4.4: Comparison of soil characteristic parameters in SiBUC and MRI–SiB.

(a) Soil characteristic parameters in SiBUC (based on Cosby at al., 1984).
Soil class Ks (m s−1) ψs (m) θs B

Sandy loam 8.35×10−6 -0.16 0.419 4.34
Loam 2.36×10−6 -0.65 0.476 5.25

Clay loam 1.44×10−6 -0.63 0.478 8.41

(b) Soil characteristic parameters value in MRI–SiB.
Vegetation class Ks (m s−1) ψs (m) θs B

Broadleaf–evergreen forest 2.00×10−5 -0.086 0.42 7.12
Broadleaf and needleleaf forest 2.00×10−5 -0.086 0.42 7.12

Short–vegetation 2.00×10−5 -0.086 0.42 7.12
Dwarf trees and shrubs 1.76×10−4 -0.035 0.435 4.05

Cropland 3.50×10−6 -0.198 0.458 7.80

Figure 4.5: Spatial patterns of greenness fraction for canopy layer in SiBUC (left), canopy layer
in MRI–SiB (middle), and ground cover layer in MRI–SiB (right).
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Figure 4.6: Similar to Figure 4.2. Red circles shows a structure for direct infiltration from ground
surface into second soil layer, called P2.

4.3.2 Structure for direct infiltration from ground surface into deeper soil layer

By investigating MRI–SiB source codes, we found a structure for direct infiltration from the

ground surface into the root zone. In this study, that structure is called as ”P2”, indicated in

Figure 4.10. In SiBUC, when rainwater reaches the ground, some rainwater can infiltrate into

the surface soil layer. While, in MRI–SiB, rainfall is able to infiltrate into the surface soil layer

and directly infiltrate into the root zone. That structure was originally incorporated in the global

circulation model (GCM) developed by MRI because large time–steps setting (more than one–

hour) in the GCM had caused less infiltrated rainwater in the soil. In the NHRCM, this scheme

is still employed.

The incorporation of P2 structure affects the surface runoff calculation. In both LSMs, two

types of surface runoff is considered; infiltration–excess runoff (Hortonian runoff) and saturation–

excess runoff (Dunne runoff). Hortonian runoff is calculated when the rainfall intensity exceeds

the infiltration capacity. In SiBUC, saturation–excess runoff is estimated when soil moisture of

surface soil layer has reached saturation. As P2 structure exists in the MRI–SiB, Dunne runoff

is calculated when the soil moisture of both surface soil layer and root zone has saturated.
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4.3.3 Governing equation for water movement between adjacent soil layers

Another difference in both LSMs is the governing equations for estimating soil–water flow.

In SiBUC, the transfer of water between each soil layer is calculated based on Darcy’s Law by

considering hydraulic diffusion and gravitational drainage of water in the soil, shown in Eq. (4.1).

The term ”1” in Eq. (4.1) accounts for gravitational drainage. In MRI–SiB, the gravitational

drainage is neglected, and soil–water flow is estimated only based on the hydraulic diffusion,

as shown in Eq. (4.2).

Qi,i+1 = K

[
∂ψ

∂z
+ 1

]
= K

[
2 (ψi − ψi+1)

Di +Di+1
+ 1

]
(i=1,2) (4.1)

Qi,i+1 = K

[
∂ψ

∂z

]
= K

[
2 (ψi − ψi+1)

Di +Di+1

]
(i=1,2) (4.2)

with,
K =

DiKi +Di+1Ki+1

Di +Di+1
(4.3)

In both LSMs, hydraulic conductivity and matric potential are given as a function of soil mois-

ture based on the formulae of Clapp and Hornberger (1978), as shown in Eq. (4.4) and Eq. (4.5),

respectively.

Ki = KsW
2B+3
i (4.4)

ψi = ψsW
−B
i (4.5)

4.3.4 Governing equation for subsurface runoff estimation

In SiBUC, subsurface runoff calculation is only determined by gravitational drainage, shown

in Eq. (4.6). While, in MRI–SiB, both gravitational drainage and potential gradients between

root zone and recharge layer are considered for calculating subsurface runoff, as shown in

Eq. (4.7).

Q3 = sin⊘sKsW
2B+3
3 (4.6)

Q3 = sin⊘sKsW
2B+3
3 +

ψ2 − ψ3

D3
(4.7)
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Table 4.5: Considered variables for updating soil moisture at the next time step in SiBUC and
MRI–SiB.

Variables SiBUC MRI–SiB

Soil moisture ✓ ×
Matric potential ✓ ✓

Hydraulic conductivity ✓ ×

4.3.5 Time integration methods for soil schemes

To update the soil moisture for each time step, both LSMs apply different time integration

methods. The variables that are considered for updating soil moisture at the next time step are

also different in both models, as shown in Table 4.5.

In SiBUC, the explicit–midpoint method is applied to soil moisture, matric potential, and hy-

draulic conductivity. This method is, also known as the modified Euler method, solving the

differential equation by evaluating the slope of the solution at the midpoint between current

and next time step. Algorithm to update soil moisture at next time step in SiBUC is shown in

Figure 4.7. First, by using initial soil moisture, estimated from the previous time step, matric po-

tential in Eq. (4.5), hydraulic conductivity in Eq. (4.4), and soil–water flow between adjacent soil

layer in Eq. (4.1), are calculated. Then, the Richards equation, shown in Eq. (4.8)–Eq. (4.10),

is solved to update the soil moisture.

∂W1

∂t
=

1

θsD1

[
P1 −Q1,2 −

Es + Edc,1

ρw

]
(4.8)

∂W2

∂t
=

1

θsD2

[
Q1,2 −Q2,3 −

Edc,2

ρw

]
(4.9)

∂W3

∂t
=

1

θsD3
[Q2,3 −Q3] (4.10)

Next, take an average of initial and updated soil moisture. Then, the matric potential, hydraulic

conductivity, and soil–water flow is again calculated by using the mean soil moisture value to

solve the Richards equation.
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Figure 4.7: Algorithm of explicit–midpoint method applied in SiBUC to update soil moisture at
next time step.

In MRI–SiB, semi–implicit method is applied to matric potential by linearizing about soil mois-

ture using a Taylor expansion, expressed by:

ψt+∆t
i = ψti +

∂ψti
∂W t

i

∂W t
i

∂t
∆t (4.11)

Then, Eq. (4.11) is inserted into Eq. (4.2) for estimating the soil–water flow in the next time step,

becomes Eq. (4.12).

Qi,i+1 = K

[
∂ψ

∂z

]
= K

2
(
ψi +

∂ψi

∂Wi

∂Wi
∂t ∆t− ψi+1 − ∂ψi+1

∂Wi+1

∂Wi+1

∂t ∆t
)

Di +Di+1

 (i=1,2) (4.12)
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Assume that:

K

[
2 (ψi − ψi+1)

Di +Di+1

]
= Qi,i+1(exp) (i=1,2) (4.13)

Then, Eq. (4.12) can be rewritten as Eq. (4.14).

Qi,i+1 = Qi,i+1(exp) +K

2
(
∂ψi
∂Wi

∂Wi
∂t ∆t−

∂ψi+1

∂Wi+1

∂Wi+1

∂t ∆t
)

Di +Di+1

 (i=1,2) (4.14)

Eq. (4.14) can be inserted into Richards equations for each soil layer, shown in Eq. (4.8)–

Eq. (4.10), to become Eq. (4.16)–Eq. (4.18) for updating the soil moisture of the next time step.

Eq. (4.9) is revised as follow to consider P2 structure.

∂W2

∂t
=

1

θsD2

[
P2 +Q1,2 −Q2,3 −

Edc,2

ρw

]
(4.15)

∂W1

∂t
=

1

θsD1

P1 −Q1,2(exp) −K1,2

2
(
∂ψ1

∂W1

∂W1
∂t ∆t− ∂ψ2

∂W2

∂W2
∂t ∆t

)
D1 +D2

−
Es + Edc,1

ρw

(4.16)

∂W2

∂t
=

1

θsD2

P2 +Q1,2(exp) +K1,2

2
(
∂ψ1

∂W1

∂W1
∂t ∆t− ∂ψ2

∂W2

∂W2
∂t ∆t

)
D1 +D2



−Q2,3(exp) −K2,3

2
(
∂ψ2

∂W2

∂W2
∂t ∆t− ∂ψ3

∂W3

∂W3
∂t ∆t

)
D2 +D3

−
Edc,2

ρw

 (4.17)

∂W3

∂t
=

1

θsD3

Q2,3(exp) +K2,3

2
(
∂ψ2

∂W2

∂W2
∂t ∆t− ∂ψ3

∂W3

∂W3
∂t ∆t

)
D2 +D3

−Q3

 (4.18)

Eq. (4.16)-Eq. (4.18) can be rewritten as following matrices.
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

θsD1

∆t
+

2K1,2

D1 +D2

∂ψ1

∂W1

2K1,2

D1 +D2

∂ψ2

∂W2
0

− 2K1,2

D1 +D2

∂ψ1

∂W1

θsD2

∆t
+

2K1,2

D1 +D2

∂ψ2

∂W2
+

2K2,3

D2 +D3

∂ψ2

∂W2
− 2K2,3

D2 +D3

∂ψ3

∂W3

0 − 2K2,3

D2 +D3

∂ψ2

∂W2

θsD3

∆t
+

2K2,3

D2 +D3

∂ψ3

∂W3





∂W1

∂t
∆t

∂W2

∂t
∆t

∂W3

∂t
∆t



=



P1 −Q1,2(exp) −
Es + Edc,1

ρw

P2 +Q1,2(exp) −
Edc,2

ρw

Q2,3(exp) −Q3


(4.19)

Note that:
∂ψi
∂Wi

=
∂
(
ψsW

−B
i

)
∂Wi

= −BψsW
−B−1
i =

−Bψi
Wi

(4.20)

The above matric can be solved by using the Gauss–Jordan Elimination method to derive the

solution of Richards Equation.
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Table 4.6: Experimental designs by emulation model. Experiment A and B were performed by
using SiBUC and MRI–SiB parameters, respectively. Control experiment is the simulation by
original parameters and structures of SiBUC.

Changes
Experiments

Control
A B

1 2 3 4 5 6 0 1 2 3 4 5 6
1. Land surface parameters

– – – – – – – ✓ ✓ ✓ ✓ ✓ ✓ ✓
SiBUC → MRI–SiB

2. Incorporating P2 scheme – ✓ – – ✓ – ✓ – ✓ – – ✓ – ✓
3. Soil–water flow equation

– – ✓ – ✓ – ✓ – – ✓ – ✓ – ✓Qi,i+1 = K

[
∂ψ

∂z
+ 1

]
→

Qi,i+1 = K

[
∂ψ

∂z

]
4. Subsurface runoff equation

– – – ✓ ✓ – ✓ – – – ✓ ✓ – ✓Q3 = sin⊘sKsW
2B+3
3 →

Q3 = sin⊘sKsW
2B+3
3 +

ψ2 − ψ3

D3

5. Time integration methods
– – – – – ✓ ✓ – – – – – ✓ ✓

Explicit → semi–implicit

4.4 Experimental designs by MRI–SiB emulation model

Table 4.6 shows a summary of experimental cases performed by changing land surface pa-

rameters, model structures, and time integration methods in SiBUC. This study aims not to

develop an MRI–SiB emulation model but to investigate in detail the impacts of different set-

tings in both LSMs. A control experiment is a simulation performed by the original parameters

and structures of SiBUC. Experiment A and B were performed by using SiBUC and MRI–SiB

parameters, respectively. Experiment 0 (E0) was conducted to investigate the impacts of chang-

ing land surface parameters. E1–E4 were performed to analyze the impacts of different model

structures in the two LSMs; by incorporating P2 structure, neglecting gravitational drainage in

soil–water flow, and considering hydraulic diffusion for subsurface runoff calculation, respec-

tively. E5 was performed to examine the impacts of different time integration methods in the

soil schemes by changing from explicit midpoint method to semi–implicit method). E6 was car-

ried out by setting the same model structures and time integration methods as MRI–SiB. The

impact changing setting was evaluated in terms of water budget and runoff components.
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4.5 Changes of water budget

4.5.1 Overall impacts

The results of 20–years–mean annual water budget using MRI–AGCM 3.2S forcing by MRI–

SiB, SiBUC, and each experimental case is shown in Figure 4.8. 20–years–mean annual rainfall

by MRI-AGCM 3.2S is 1144 mm. It is used for all the experimental cases.

As mentioned in the previous section, the evapotranspiration by MRI–SiB counts for about

88% of rainfall, and the rest is runoff. Subsurface runoff is the dominant runoff component, as

surface runoff only counts for about 2% of the total runoff. The results of the original SiBUC

parameters and structures are set as a control experiment in this analysis. The estimated runoff

by SiBUC was about 33% higher than that of MRI–SiB. Surface runoff and subsurface runoff

counts for 30% and 70% of the total runoff, respectively.

Figure 4.9 shows the results of 10–years–mean annual water budget using NHRCM05 forc-

ing by MRI–SiB, SiBUC, and each experimental case. The basin average annual rainfall by

NHRCM05 is less than 700 mm. As mentioned earlier, MRI–SiB results showed an imbalance

of water budget because it was simulated by time–slice integration method. Total runoff by

MRI–SiB is about 7% of total rainfall, and similar to the results by MRI–AGCM 3.2S, it was

mostly generated as subsurface runoff. Meanwhile, in the control experiment (by using original

SiBUC parameters and structures), the surface runoff counts for about 87% of total runoff, and

the rest is subsurface runoff. The ratio of surface runoff by SiBUC using NHRCM05 is higher

than that by using MRI–AGCM 3.2S forcing.

Impacts of adopting MRI–SiB settings in SiBUC are described as follows.
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Figure 4.8: 20–years–mean annual water budget component by MRI–SiB, control, and each
case. Top: blue, gray, light blue, and red bars represent rainfall (P), evapotranspiration (ET),
runoff (ROF), and change of soil moisture (delSM). Bottom: pink, green, yellow, and orange
bars represent surface runoff (Qs), subsurface runoff (Qsb), transpiration (T), and evaporation
(E). Forcing data is MRI–AGCM 3.2S atmospheric data.
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Table 4.7: Mean annual runoff components (unit: mm). Experiment 0 is changing MRI–SiB
parameters.

Forcing MRI–AGCM 3.2S NHRCM05
Experiment MRI–SiB Control B0 MRI–SiB Control B0

Qs 3 58 201 1 56 83
Qsb 143 136 86 46 11 28

4.5.2 Impacts of changing land surface parameters

Table 4.7 shows a comparison of mean annual water budget components between MRI–SiB,

control, and B0 experiment (changing MRI–SiB land surface parameters). The estimated evap-

otranspiration is higher in B0, and runoff is lower than the control experiment in both forcings.

Surface runoff is higher than the control experiment in all forcing. The increase of surface runoff

might be due to thinner soil depth in MRI–SiB parameters than that in SiBUC. Thinner soil depth

could increase the surface runoff since the soil has a lower capacity to store the rainwater.

Meanwhile, subsurface runoff using GCM forcing is lower, and it is higher than the control

experiment by using RCM forcing. It is thought there are two possible reasons. The decrease

of subsurface runoff might happen because of the higher estimation of surface runoff. As some

rainwater has already been generated as surface runoff, subsurface runoff becomes decreases

due to lower infiltrated rainwater.

On the other hand, subsurface runoff could increase because the parameters in MRI–SiB

related to infiltration, such as saturated hydraulic conductivity and saturated matric potential,

are set to be much higher (about 10–fold) than that in SiBUC. Both settings could increase the

vertical infiltration rates and increase the subsurface runoff.

By only changing MRI–SiB soil parameters in SiBUC, surface runoff is much higher, and

subsurface runoff is lower than that in MRI–SiB. These results show that changing the soil

parameters alone could not emulate the MRI–SiB results.
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4.5.3 Impacts of incorporating direct infiltration structure into deeper soil layer

The results by incorporating P2 structure (A1 and B1 cases) shows the surface runoff de-

creases and subsurface increases compared to the results without P2 structure, as seen in Ta-

ble 4.8. As seen in Figure 4.10, surface runoff reduces because by adopting P2 structure, the

infiltrated rainwater in the soil increases, and surface runoff (Dunne runoff) is generated when

both surface soil and root zone has reached saturation. As the infiltrated water increases, the

subsurface runoff also becomes higher.

In both GCM and RCM forcings, the impacts of surface runoff reduction due to P2 structure

is higher by using SiBUC parameters than by MRI–SiB parameters. It can be due to the differ-

ences in soil depth. Higher soil depth can store more rainwater than in the thinner soil.
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Table 4.8: Mean annual runoff components (unit: mm). Experiment 1 is incorporating P2

scheme.

Forcing MRI–AGCM 3.2S NHRCM05
Experiment MRI–SiB Control A1 B0 B1 MRI–SiB Control A1 B0 B1

Qs 3 58 17 201 193 1 56 19 83 78
Qsb 143 136 160 86 92 46 11 22 28 29

(a) Simulation by SiBUC soil parameters. Red
and green lines represent the simulation without
(control) and with P2 structure (A1), respectively.

(b) Simulation by MRI–SiB soil parameters.
Light blue and purple lines represent the simula-
tion without (B0) and with P2 structure (B1), re-
spectively.

Figure 4.10: Time series of daily rainfall (a), surface runoff (b), saturation ratio of top to bottom
layers (c-e), and subsurface runoff (f) in 1990. This is for investigating the impacts of considering
P2 structure. Forcing is NHRCM05 atmospheric data.
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Table 4.9: Mean annual runoff components (unit: mm). Experiment 2 is neglecting gravitational
drainage in Darcy’s Law.

Forcing MRI–AGCM 3.2S NHRCM05
Experiment MRI–SiB Control A2 B0 B2 MRI–SiB Control A2 B0 B2

Qs 3 58 123 201 146 1 56 65 83 62
Qsb 143 136 58 86 103 46 11 3 28 27

(a) Similar to Figure 4.10(a) but for the simulation
which consider (control) and neglecting gravita-
tional drainage (A2) with SiBUC parameters.

(b) Similar to Figure 4.10(b) but for the simulation
which consider (B0) and neglecting gravitational
drainage (B2) with MRI–SiB parameters.

Figure 4.11: Similar to Figure 4.10, but for investigating the impacts of neglecting gravitational
drainage for estimating soil–water flow.
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4.5.4 Impacts of neglecting gravitational drainage for estimating soil–water flow be-
tween adjacent soil layers

Neglecting gravitational drainage in Darcy’s Law shows different impacts using SiBUC pa-

rameters (A2) and MRI–SiB parameters (B2), as seen in Figure 4.9. Using SiBUC parameters

in both GCM and RCM forcings show an increase in surface runoff and decrease of subsurface

runoff compared to the control experiment. In contrast, by using MRI–SiB parameters, com-

pared to the B0 case, which considers the gravitational flow, the impacts of ignoring gravitational

drainage on reduction of surface runoff is significant in both forcings.

Figure 4.11 shows the comparison of soil moisture of each layer for considering and without

considering gravitational flow by using SiBUC parameters (control and A2) and by MRI–SiB

parameters (B0 and B2). The forcing data was NHRCM05 atmospheric output. The grid cell

that showed significant soil moisture changed due to the impact of neglecting gravitational flow

was selected in this plot. The simulation results in 1990 are selected because the annual rainfall

in this year is the highest (more than 800 mm) among 10–years annual NHRCM05 rainfall.

In Figure 4.11(a), annual surface runoff increases by 1.5–fold, from 222 mm to 322 mm, while

the annual subsurface runoff decreases from 162 mm to 20 mm. In contrast, in Figure 4.11(b),

annual surface runoff decreases from 537 mm to 265 mm, while the annual subsurface runoff

increases from 32 mm to 133 mm.

As seen in both figures, the changes of surface soil moisture due to the impacts of neglecting

gravitational flow are seen mainly during the rainfall events. When the gravitational drainage

was neglected, it resulted in the lower vertical exchanges between soil layers. Therefore, the

soil moisture tends to be higher than that by considering the gravitational flow. In Figure 4.11(a),

this results in the higher estimation of the surface runoff. As some rainwater has already been

generated as surface runoff, the subsurface runoff is lower because of less infiltrated rainwater.

On the other hand, in Figure 4.11(b), the surface soil moisture has more fluctuation, and

it also tends to reach saturation faster when the gravitational flow is considered. When the

gravitational drainage is neglected, the surface runoff is lower, perhaps because the surface

soil moisture does not reach saturation as fast as that by considering the gravitation flow.
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4.5.5 Impacts of considering hydraulic diffusion for estimating subsurface runoff esti-
mation

The impacts of considering hydraulic diffusion on subsurface runoff estimation would depend

on soil moisture of root zone and recharge zone. Figure 4.12 shows the change of soil moisture

and subsurface runoff when the hydraulic diffusion is considered when calculating the subsur-

face runoff. Subsurface runoff increases if the soil moisture of the root zone is higher than the

recharge zone. Otherwise, it decreases.

The analysis of basin average, shown in Table 4.10, has been demonstrated that considering

hydraulic diffusion for estimating the subsurface runoff results in the lower subsurface runoff

compared to the original setting.
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Table 4.10: Mean annual runoff components (unit: mm). Experiment 3 is considering hydraulic
diffusion for subsurface estimation.

Forcing MRI–AGCM 3.2S NHRCM05
Experiment MRI–SiB Control A3 B0 B3 MRI–SiB Control A3 B0 B3

Qs 3 58 59 201 208 1 56 55 83 84
Qsb 143 136 109 86 44 46 11 7 28 20

(a) Similar to Figure 4.10(a). A3 is simulation
by considering hydraulic diffusion on subsurface
calculation with SiBUC parameters.

(b) Similar to Figure 4.10(b). B3 is for simulation
by considering hydraulic diffusion on subsurface
calculation with MRI–SiB parameters.

Figure 4.12: Similar to Figure 4.10 but for investigating the impacts of considering hydraulic
diffusion for calculating subsurface runoff.
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4.5.6 Impacts of changing all model structures

Adopting all structures of MRI–SiB (A4 and B4) has resulted in the decrease of surface runoff

and increase of subsurface runoff compared to original structures of SiBUC (control and B0) as

seen in Table 4.11. It is due to the impacts of each setting, as mentioned before. In experiment

B4, the model structures and the soil parameters are set to be the same as MRI–SiB. However,

the runoff characteristics of this experiment are different from the MRI–SiB results. Surface

runoff by B4 is much higher than the subsurface runoff than MRI–SiB’s runoff, which shows the

dominant subsurface runoff.

The estimated soil moisture between experiment B4 and MRI–SiB is evaluated to figure out

the reason. Simulated soil moisture by MRI–SiB is available in GCM and RCM output datasets.

Figure 4.13 shows a comparison of time series of surface runoff, soil moisture of each layer,

and subsurface runoff estimated by the two LSMs.

The year 1991 was selected for MRI–AGCM 3.2S and the year 1990 was for NHRCM05

because it had the highest rainfall amount (annual basin average is 1378 mm) among simulation

period. Overall, the fluctuation of soil moisture between both LSMs is similar. However, the soil

moisture of the surface soil layer is significantly different in near saturation conditions, such as in

rainfall events between August and November. In the near saturation, soil moisture estimated by

SiBUC tends to keep saturated, while MRI–SiB does not show such tendency. This difference

in soil moisture has impacts on the generated surface and subsurface runoff.

Surface runoff by MRI–SiB was generated when soil moisture of both surface layer and root

zone had saturated. It is due to the incorporation of P2 structure. In experiment B4, P2 structure

was also adopted, but surface runoff was generated when soil moisture of surface layer reached

saturation. As a result, the surface runoff estimated by the experiment B4 was more frequent

than MRI–SiB.

Using both GCM and RCM forcing, annual surface runoff simulated by MRI–SiB is lower, and

subsurface runoff is higher than experiment B4. These results show that the difference in soil

moisture can have impacts on the generated surface and subsurface runoff.
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Table 4.11: Mean annual runoff components (unit: mm). Experiment 4 is considering all MRI–
SiB’s structures.

Forcing MRI–AGCM 3.2S NHRCM05
Experiment MRI–SiB Control A4 B0 B4 MRI–SiB Control A4 B0 B4

Qs 3 58 37 201 126 1 56 24 83 50
Qsb 143 136 109 86 98 46 11 10 28 29

(a) Simulation results by using atmospheric out-
put data from MRI–AGCM 3.2S in 1991.

(b) Simulation results by using atmospheric out-
put data NHRCM05 in 1990.

Figure 4.13: Time series of daily rainfall (a), surface runoff (b), saturation ratio of each layer
(c-e), and subsurface runoff (f). Black and light blue represent simulation by MRI–SiB and
experiment B4, respectively.
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Table 4.12: Mean annual runoff components (unit: mm). Experiment 5 is applying a semi–
implicit method.

Forcing MRI–AGCM 3.2S NHRCM05
Experiment MRI–SiB Control A5 B0 B5 MRI–SiB Control A5 B0 B5

Qs 3 58 56 201 13 1 56 57 83 22
Qsb 143 136 137 86 257 46 11 11 28 73

(a) Similar to Figure 4.10(a). A5 is simulation by
applying semi–implicit method with SiBUC pa-
rameters.

(b) Similar to Figure 4.10(b). B5 simulation by
applying semi–implicit method (B5) with MRI–
SiB parameters.

Figure 4.14: Similar to Figure 4.10 but for investigating the impacts of different time integration
methods.
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4.5.7 Impacts of different time integration methods for soil schemes

Previous results have shown the difference in soil moisture estimation between SiBUC and

MRI–SiB. That might be caused by different time integration methods for updating soil moisture

in both LSMs: an explicit–midpoint method in SiBUC and a semi–implicit method in MRI–SiB.

Table 4.12 shows the impacts of different time integration methods on runoff estimation by

using different soil parameters. When SiBUC soil parameters were used (control and A5),

even if the numerical scheme was changed, the runoff components did not show a significant

difference. However, the runoff characteristics showed a remarkable change when the different

time integration was applied by using MRI–SiB soil parameters (B0 and B5).

Figure 4.14 shows a comparison of soil moisture estimated by the explicit and implicit method

by using SiBUC and MRI–SiB parameters. In general, both methods do not significantly differ in

soil moisture estimation. However, soil moisture estimated by different schemes shows a clear

difference when MRI–SiB parameters were utilized during rainfall events. The difference in the

soil moisture estimation between the two methods is mainly affected by the saturated hydraulic

conductivity (Ks) setting between the two LSMs.
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(a) Midpoint–explicit by MRI–SiB parameters.
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(b) Midpoint–explicit by SiBUC parameters.
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(c) Semi–implicit by MRI–SiB parameters.
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(d) Semi–implicit by SiBUC parameters.

Figure 4.16: Impacts of different time integration methods by different parameters on soil mois-
ture estimation. (1) P (mm hr−1), (2) K1 (mm hr−1), (3) Q1,2 (mm hr−1), (4) W1 (m3 m−3). Red
and black dots represent midpoint and updated variables for each time step.
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The relationship between hydraulic conductivity and soil moisture (based on Clapp and Horn-

berger, 1978) estimated by SiBUC and MRI–SiB parameters is shown in Figure 4.15. This plot

used the parameters of clay loam soil in SiBUC and broadleaf–evergreen forest in MRI–SiB.

As seen from this figure, hydraulic conductivity estimation between the two parameters is simi-

lar during the unsaturated condition. However, it shows a clear difference as the soil moisture

reaches saturation. This difference in the behavior of hydraulic conductivity significantly affects

the calculation of soil–water transfer between the adjacent soil layers Qi,i+1 as well as the soil

moisture updates, particularly during heavy rainfall as the soil moisture tends to reach saturated

condition.

Figure 4.16 shows a time series of hourly precipitation P , hydraulic conductivity of surface

soil layer K1, soil–water transfer between top and second soil layer (Q1,2, and soil moisture of

surface soil layer W1, between different time integration methods and soil parameters. In this

figure, the output of MRI–AGCM 3.2S was utilized as forcing. And similarly, the parameters of

clay loam soil in SiBUC and broadleaf–evergreen forest in MRI–SiB were used in this plot. The

results of several hours during August 15, 1991, are plotted here, as quite intense rainfall events

could be captured during this period. The W1 is plotted in this figure, because it significantly

affects the runoff characteristics: if the W1 tends to be saturated, the surface runoff will be

high, and the subsurface runoff will be low, and vice versa. The updated W1 in each time

step depends on initial soil moisture (estimated from the previous time step), precipitation P (as

input), and water transfer within the soil (Qi,i+1), as drainage or output). The actual mechanisms

of soil moisture update in the model are more complex, such as, at first the rainfall should be

intercepted by canopy before it reaches to the ground, and the amount of water reaches on the

ground should be first reduced by surface runoff (depending on W1) before it is infiltrated in the

soil. However, for simplicity, only the relation between P and Qi,i+1 is used for describing the

difference in soil moisture update for each time step among different numerical schemes and

soil parameters.

As mentioned earlier, the hydraulic conductivity is estimated based on soil moisture: the

higher the soil moisture, the higher the hydraulic conductivity. The hydraulic conductivity is also

directly proportional to the soil–water transfer Qi,i+1. Here, the ratio between precipitation and

soil–water transfer will affect the soil moisture update. If the precipitation is higher than the

drainage Qi,i+1, the estimated soil moisture in the next time will become higher than the initial

soil moisture. Oppositely, if the drainageQi,i+1 is higher than the input precipitation, the updated
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4.5 Changes of water budget

soil moisture will be lower than the initial soil moisture, as more rainwater could be infiltrated

into a deeper soil layer. That is the basic concept to understand the results of Figure 4.16.

For the midpoint–explicit method, there are two calculation steps for updating the soil moisture

in each time step. Using initial soil moisture value, midpoint soil moisture is first calculated, then

the midpoint value is used to update the soil moisture for the next step. On the other hand, in

the semi–implicit method, the initial soil moisture value is used to update the soil moisture in

the next step.

First, let’s focus on the results by using the explicit–midpoint method by MRI–SiB parameters,

shown in Figure 4.16(a). Let’s assume that the estimatedW1 at time t = 3 (in hour) as initial con-

dition for the next time step t = 4. The W1 at t = 3 is first used to calculate hydraulic conductivity

K1 and Q1,2 at midpoint (shown in the red dots). As W1,t=3 is equal to 1 (saturated condition),

the estimatedK1 becomes equal toKs (hydraulic conductivity at saturation), and thus theQi,i+1

is also high (note that Qi,i+1 also depends on soil moisture of second soil layer). As the rainfall

P at t = 4 is lower than Q1,2 at midpoint (Pt=4 < Q1,2,t=3,midpoint), the change of soil moisture

of top layer becomes negative due to more drainage into a deeper soil layer, resulting in the

midpoint soil moisture of top layer becomes lower than the initial value (W1,t=3,midpoint = 0.5 <

W1,t=3 = 1.0). The midpoint soil moisture (W1,t=3,midpoint) is then used for calculating K1 and

Q1,2 at next time step (in this case, t = 4, shown in the black dots). Since the W1,t=3,midpoint is

low (=0.5, unsaturated condition), the estimated K1,t=4 and Q1,2,t=4 are also low (both values

are close to 0). Now, the P at t = 4 is higher than the drainage Q1,2,t=4, resulting in the increase

of soil moisture compare to the midpoint value (W1,t=3,midpoint = 0.5 < W1,t=4 = 1.0). As men-

tioned before, the hydraulic conductivity using MRI–SiB parameters significantly differs when

the soil moisture changes from unsaturated to saturated condition. It resulted in soil moisture

oscillation calculated at the midpoint and next step (red and black dots). For calculating the

surface runoff, only the updated soil moisture value (black dot) is considered. The updated soil

moisture using the explicit–midpoint method (two–step calculations) with MRI–SiB parameters

tend to be saturated, therefore, the generated surface runoff is also high.

In the case of explicit–midpoint method with SiBUC parameters (Figure 4.16(b)), oscillation

of hydraulic conductivity and soil–water flow were also captured at the midpoint and in the next

time step. In the SiBUC parameters, the change of hydraulic conductivity from unsaturated

to saturated condition is less significant than the MRI–SiB soil parameters. Therefore, the

difference in K1 and Q1,2 estimation between the midpoint and updated value is very small
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Chapter4 Investigation of runoff generation schemes in land surface models

compared to that of MRI–SiB parameters. As the hydraulic conductivity at saturation in SiBUC

is set relatively small (about 5 mm hr−1), the infiltration rate also tends to be low. Therefore, the

updated soil moisture tends to be saturated, resulting in high surface runoff generation.

When the semi–implicit method was applied by using MRI–SiB parameters (Figure 4.16(c)),

the updated soil moisture tends to be less saturated than by the midpoint–explicit method. As

mentioned earlier, in contrast to the midpoint–explicit method that implements two–step cal-

culations, the semi–implicit method updates the soil moisture directly by using the initial soil

moisture estimated from the previous time step. Therefore, the oscillation of soil moisture can

be seen clearly, due to the behavior of hydraulic conductivity when the soil moisture change

from unsaturated to saturated condition. Due to the high value of saturated hydraulic conduc-

tivity (about 72 mm hr−1), the infiltration rate also tends to be high, causing less saturated soil

moisture and less surface runoff generation.

In the case of semi–implicit method was applied with SiBUC parameters (Figure 4.16(d)), the

updated soil moisture also tends to be saturated, similar to the result by the explicit–midpoint

method. Slightly different estimations of K1 and Q1,2 were found compared to the explicit

method. However, it does not significantly affect the soil moisture and surface runoff gener-

ation due to small infiltration rates affected by the hydraulic conductivity setting.

In summary, time integration methods impact soil moisture estimation and runoff generation,

depending on which soil parameters are used, particularly during intense rainfall events. Ap-

plying the explicit–midpoint method for updating the soil moisture seems to have uncertainty,

particularly when the change of hydraulic conductivity is significant during unsaturated to sat-

urated conditions (such as in MRI–SiB parameters setting). Therefore, selecting which time

integration method for updating the soil moisture is essential as the soil moisture estimation

significantly affects the runoff generation.
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4.5 Changes of water budget

4.5.8 Impacts of considering all MRI–SiB settings in SiBUC

By considering all MRI–SiB settings in SiBUC, total runoff by these experiments (A6 and B6)

are lower, and the evapotranspiration are higher than the original SiBUC structures (control

and B0), as seen in Table 4.13. Surface runoff decreases significantly than the original results.

In particular, the surface runoff estimated by MRI–SiB parameters shows a higher reduction

compared to that by SiBUC parameters. In MRI–SiB, soil characteristics parameters are set to

be higher, and soil depth is thinner than that in SiBUC. It caused higher infiltration rates and

higher reduction of surface runoff in the MRI–SiB.

Figure 4.17 shows a comparison of soil moisture estimated by the adopting all MRI–SiB set-

tings using SiBUC and MRI–SiB parameters.

Figure 4.18 shows time series of runoff components and soil moisture of each layer by MRI–

SiB and the experiment B6. The grid cell within the basin, which showed significant impacts of

changing time integration methods on surface runoff and soil moisture of the topsoil layer, was

selected in this plot. As seen, the timing of surface runoff by the B6 is similar to MRI–SiB.

In this cell, annual surface runoff forced by GCM output by MRI–SiB and B6 is 160 and 176

mm, respectively. Not only the timing but also the amount of surface runoff by B6 is close to

MRI-SiB.

Both results show the surface runoff was generated when soil moisture of the first and second

layers reached saturation. It is reasonable due to the incorporation of P2 structure.

Annual subsurface runoff by MRI–SiB and B6 is 504 and 554 mm, respectively. This result

shows the soil moisture, and the amount of runoff components by experiment B6 is close to

the MRI–SiB. Overall, it shows that adopting MRI–SiB’s soil parameters, model structures, and

time integration methods in SiBUC can produce similar runoff characteristics and soil moisture

to MRI–SiB. The setting of experiment B6 is set as MRI–SiB emulation model.
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Chapter4 Investigation of runoff generation schemes in land surface models

Table 4.13: Mean annual runoff components (unit: mm). Experiment 6 is employing all MRI–
SiB’s settings.

Forcing MRI–AGCM 3.2S NHRCM05
Experiment MRI–SiB Control A6 B0 B6 MRI–SiB Control A6 B0 B6

Qs 3 58 38 201 5 1 56 23 83 10
Qsb 143 136 109 86 205 46 11 10 28 57

(a) Similar to Figure 4.10(a). A6 is simulation
by applying all MRI–SiB settings with SiBUC pa-
rameters.

(b) Similar to Figure 4.10(b). B6 is simulation
by applying all MRI–SiB settings with MRI–SiB
parameters.

Figure 4.17: Similar to Figure 4.10 but for investigating the impacts of considering all MRI–SiB
settings in SiBUC.
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4.5 Changes of water budget

(a) Simulation forced by atmospheric data from
MRI–AGCM 3.2S in 1991.

(b) Simulation forced by atmospheric data from
NHRCM05 in 1990.

Figure 4.18: Time series of daily rainfall (a), surface runoff (b), saturation ratio of each layer
(c-e), and subsurface runoff (f). Black and light blue represent simulation by MRI–SiB and
experiment B6, respectively.
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(a) 20–years–mean annual simulations forced by
MRI–AGCM 3.2S atmospheric data.
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(b) 10–years–mean annual simulations forced by
NHRCM05 atmospheric data.

Figure 4.19: Scatter plot of mean annual water budget components (surface runoff (Qs), sub-
surface runoff (Qsb), evaporation (E), and transpiration (T)) by MRI–SiB and emulation model.
Only grid cells within the target basin are plotted. r value is correlation coefficient.

4.6 Evaluation of MRI–SiB emulation model

4.6.1 Overall impacts

As mentioned earlier, MRI–SiB emulation model was developed by adopting MRI–SiB soil

parameters, model structures, and time integration methods in SiBUC (experiment B6 setting).

Mean annual water budget components was shown in the previous section in Figure 4.8 and

Figure 4.9. Overall, the emulation model could reproduce similar runoff characteristics to MRI–

SiB: low surface runoff and high subsurface runoff. However, the subsurface runoff estimated

by the emulation model is much higher than MRI–SiB. This section investigates in detail why

such differences happen.

4.6.2 Spatial distributions of water budget components

Figure 4.19 shows scatter plot of mean annual water budget components by emulation model

and MRI–SiB, forced by MRI–AGCM 3.2S and NHRCM05. Figure 4.20 shows a difference

of spatial pattern of mean annual water budget between emulation model and MRI–SiB. In

general, the simulated water budget by the emulation model shows a good correlation with the

results by MRI–SiB. However, surface and subsurface runoff by the emulation model is mostly
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4.6 Evaluation of MRI–SiB emulation model

(a) Simulations by GCM forcing. (b) Simulations by RCM forcing.

Figure 4.20: Difference in mean annual water budget components (surface runoff (Qs), sub-
surface runoff (Qsb), evaporation (E), and transpiration (T)) by emulation model and MRI–SiB.
Red and blue color represent lower and higher estimation by the emulation model compared to
the MRI–SiB.

(a) 20–years–mean annual rainfall
by MRI–AGCM 3.2S.

(b) 10–years–mean annual rainfall
by NHRCM05.

Figure 4.21: Spatial pattern of climatological mean rainfall by climate models.
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Chapter4 Investigation of runoff generation schemes in land surface models

higher than MRI–SiB. The overestimation of surface runoff by the emulation model happens

in most regions. However, the overprediction of subsurface runoff forced by the GCM seems

to correlate with the rainfall. Figure 4.21(a) shows spatial distributions of climatological mean

annual rainfall by the GCM. This comparison indicates that the grid cells that show very high

overestimation of subsurface runoff correspond to those with low rainfall amounts. It is because

the MRI–SiB estimated very low subsurface runoff in this region, thus the difference was quite

high. The spatial pattern of the difference in surface and subsurface runoff by RCM forcing

does not show a clear correlation with rainfall amount, as shown in Figure 4.21(b).

Evaporation and transpiration estimated by the emulation model do not show a high difference

with MRI–SiB’s results in most regions. However, the grid cells which show the high positive

difference in evaporation show a high negative deviation in transpiration. It is due to vegetation

parameter settings, such as greenness fraction, leaf area index, and a fraction of photosyn-

thetically active radiation. As mentioned earlier, in MRI–SiB, the vegetation parameters are set

for two vegetation layers: canopy and ground cover. In SiBUC, the vegetation scheme only

consists of one layer: both canopy and ground cover are treated together as a canopy. The

grid cells, which do not consider vegetation parameters for green cover in the emulation model,

show much higher evaporation and lower transpiration than MRI–SiB. As seen, the grid cells

which show a dominant canopy layer can well reproduce MRI–SiB’s transpiration, and shows

a high correlation in both simulations.

Evaporation estimated by the emulation model and MRI–SiB forced by GCM does not show

a clear trend. However, the pattern can be seen obviously in the results by using RCM forc-

ing. Three trends can be observed in the figure: very high estimation, high estimation, and low

estimation of evaporation by the emulation model compared to MRI–SiB. These trends corre-

sponds to vegetation types. As mentioned earlier, much higher evaporation estimated by the

emulation model correspond to short–vegetation and cropland, which is dominated by ground

cover than the canopy. In this simulation, only the parameters of the canopy layer are consid-

ered in the emulation model due to the simplified treatment of the ground cover layer in SiBUC.

The grid cells which show higher evaporation estimated by the emulation model corresponds

to broadleaf–needleleaf forest. And the cell which has lower evaporation simulated by the em-

ulation model corresponds to broadleaf–evergreen forest. These differences might be due to

different treatment of evaporation schemes in the two LSMs. However, further investigation is

necessary to understand the reasons.
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(b) Simulations by RCM forcing.

Figure 4.22: Time series of annual water budget components (precipitation (P), evapotranspira-
tion (ET), runoff (ROF), change of soil moisture (delsm), surface runoff (Qs), subsurface runoff
(Qsb), evaporation (E), and transpiration (T)). Light blue, black, and red lines represent simu-
lation by original SiBUC (control), MRI–SiB, and emulation model, respectively.

4.6.3 Annual water budget

Figure 4.22(a) and Figure 4.22(b) show time series of annual water budget components

forced by MRI–AGCM 3.2S (for 20 years) and NHRCM05 (for 10 years), respectively. In general,

the emulation model estimates a lower evapotranspiration, and a higher runoff than MRI–SiB.

Although the surface runoff and subsurface runoff by the emulation model are larger than MRI–

SiB, the characterisitcs of runoff is very close to the MRI–SiB, compare to the results by the

original SiBUC (control). The emulation model also could capture the increase or decrease of

annual runoff similar to the MRI–SiB. The emulation model underpredicts the MRI-SiB’s tran-

spiration in both simulations. In contrast, evaporation by the emulation model is almost close

to MRI–SiB in the simulation using GCM forcing, while it is higher when RCM forcing is used.
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Chapter4 Investigation of runoff generation schemes in land surface models

Table 4.14: Evaluation of daily discharge simulated by emulation model with respect to MRI–
SiB for the whole simulation period.

Forcing NSE RMSE (m3 s−1) ERROR (%) r
MRI–AGCM 3.2S (20 years) 0.83 89 47 0.99

NHRCM05 (10 years) 0.68 44 44 0.97

4.6.4 River discharge simulation

Figure 4.23 and Figure 4.24 shows daily discharge simulated by MRI–SiB and emulation

model, forced by MRI–AGCM 3.2S and NHRCM05, respectively. Evaluation of daily discharge

simulated by the emulation with respect to MRI–SiB is shown in Table 4.14. Performance of the

emulation model to reproduce the discharge by MRI–SiB is evaluated by calculating Nash Sut-

cliffe Efficiency (NSE; Nash and Sutcliffe, 1970), Root Mean Square Error (RMSE), difference

in the volume of discharge by the emulation model, and flow by MRI–SiB (ERROR in percent-

age), and Pearson correlation coefficient (r), as shown in Eq. (4.21), Eq. (4.22), Eq. (4.24),

respectively.

NSE = 1−
∑N

i=1 (Mi −Oi)
2∑N

i=1

(
Oi −O

)2 (4.21)

RMSE =

√∑N
i=1 (Mi −Oi)

2

N
(4.22)

ERROR =

∑N
i=1 (Mi −Oi)∑N

i=1Oi

× 100 (4.23)

r =

∑N
i=1

(
Mi −M

)(
Oi −O

)√∑N
i=1

(
Mi −M

)2(
Oi −O

)2 (4.24)

with, r is correlation coefficient, Mi and Oi are discharge by the emulation model and MRI–

SiB, respectively, and M and O are mean of simulated discharge by the emulation model and

MRI–SiB, respectively.

As seen, the discharge by emulation model shows a very high correlation with the discharge

by MRI–SiB (all r-value is higher than 0.95). This means the emulation model can well repro-

duce an increase or decrease of hydrograph similar to MRI–SiB, such as shown in Figure 4.25.
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4.6 Evaluation of MRI–SiB emulation model

NSE index by emulation model also shows a high score, which is more than 0.5, indicating good

model performance. By using GCM forcing, the performance of the emulation model is better

than that of using RCM forcing. Nevertheless, the discharge by the emulation model shows

higher volume than the MRI–SiB due to a higher estimation of runoff.
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Figure 4.23: Daily discharge for 20 years forced by MRI–AGCM 3.2S. Black and red lines
represent simulation results by MRI–SiB and emulation model, respectively. P, Q, Qs, and Qsb
represent basin average of GCM precipitation, discharge, surface runoff, and subsurface runoff,
respectively.
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Figure 4.24: Similar to Figure 4.23 but for 10 years daily discharge forced by NHRCM05.
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(a) Simulation by GCM forcing in 1991.
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(b) Simulation by RCM forcing in 1991.

Figure 4.25: Daily discharge simulated by MRI–SiB and emulation model, represented by black
and red lines, respectively. Blue bar shows basin average daily rainfall from MRI–AGCM 3.2S.
Pink and green bar are surface and subsurface runoff, respectively.

97



Chapter4 Investigation of runoff generation schemes in land surface models

Figure 4.26: Comparison of greenness fraction without (left) and wit (right) considering ground
cover parameters.

Table 4.15: 20–years–mean water budget components. Forcing is GCM output.

Mean annual (mm year−1) ET ROF Qs Qsb E T delsm
MRI–SiB 999 146 3 143 498 501 1

Without ground cover (experiment B6) 934 210 5 205 491 442 0
With ground cover 890 254 6 248 370 520 0

4.7 Discussion

4.7.1 Parameters related to ground cover layer

As seen in the previous results, the grid cells in the emulation model, which did not consider

parameters related to ground cover, showed lower transpiration than MRI–SiB. We also did

an experiment to investigate the impacts of considering the parameters for the ground cover

layer. Since SiBUC only has one vegetation layer, we selected only the maximum value be-

tween canopy and ground cover layers. For example, in cropland type, the greenness fraction

parameter for a canopy is 0.075 and for ground cover is 1.0. The value of 0.075 was used in

the emulation model, and in the current experiment, 1.0 is used. Comparison of greenness

fraction by without and with considering ground cover parameters is shown in Figure 4.26. This

method is also applied for other parameters related to vegetation, such as Leaf Area Index and
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4.7 Discussion

(a) Difference without ground cover parameters
(B6).

(b) Difference by using ground cover parameters.

Figure 4.27: Difference in mean annual water budget components (surface runoff (Qs), subsur-
face runoff (Qsb), evaporation (E), and transpiration (T)) without (left) and considering (right)
ground cover parameters. Forcing data is GCM output.
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(a) Scatter plot without ground cover parameters
(B6).
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(b) Scatter plot by using ground cover parameters.

Figure 4.28: Similar to Figure 4.27 but for scatter plot of grid cells within the target basin. r
value is correlation coefficient.

Fraction of Photosynthetically Active Radiation.

Table 4.15 shows a comparison of mean annual water budget between MRI–SiB, current

emulation model (experiment B6, without considering ground cover), and the experiment which
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Chapter4 Investigation of runoff generation schemes in land surface models

considers parameters related to the ground cover. As seen, transpiration estimated by this

experiment is closer to MRI–SiB result. However, evaporation is much underpredicted. In

addition, subsurface runoff estimation is overestimated by this experiment.

Figure 4.27 shows the spatial pattern of differences in mean annual water budget by exper-

iments without and with ground cover to MRI–SiB results. Spatial distributions of evaporation

and transpiration between these two experiments show appearent differences. The differences

in transpiration between simulation with ground cover and MRI–SiB is lower than that with-

out ground cover. However, the evaporation in the grid cells, which considered ground cover

parameters, underpredicted the evaporation by MRI–SiB.

Figure 4.28 show scatter plot of mean annual water budget by experiments without and with

ground cover to MRI–SiB results. As seen, the correlation of surface and subsurface runoff by

the simulation considering ground cover is worse than that without ground cover. The correlation

of evaporation seems better, while there is not much difference in the correlation of transpiration.

In conclusion, this experiment shows that considering the parameters related to the ground

cover layer does not seem to improve the results of the emulation model. It is because of the

difference in vegetation schemes in the two models.
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4.7.2 Transpiration schemes

Another difference between the two LSMs is the treatment of abstraction of soil moisture by

transpiration. In SiBUC, reduction of soil moisture by transpiration is applied for soil moisture

of the first and second soil layer only, as shown in the following equations.

Edc,1 = Edc ×
D1

D1 +D2
(4.25)

Edc,2 = Edc ×
D2

D1 +D2
(4.26)

(4.27)

with, Edc, Edc,1, Edc,2 corresponds to total transpiration rates, rate of extraction of transpired

water from first and second soil layers, respectively.

On the other hand, in MRI–SiB, all three soil layers implement the abstraction of soil moisture

by transpiration.

Edc,i =
Di

zd

(
ψi − ψl − ZT
rplant + rsoil

)
ρw (4.28)

with, Edc,i, ψl, zd, zT , rplant, and rsoil corresponds to rate of extraction of transpired water

from all three layers, leaf water potential (m), rooting depth (m) , height of transpiration source

(m), area–average resistance imposed by the plant vascular system (s), and area–average

resistance of soil and root system (s) respectively.

Eq. (4.7.2) is applied with values of the parameters related to canopy and ground covers, and

are performed in both vegetation layers.

That difference in the transpiration treatment might have an impact on the water budget esti-

mation. However, a more detailed analysis is necessary to investigate the impacts.
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Chapter4 Investigation of runoff generation schemes in land surface models

(a) Method in SiBUC. (b) Method in MRI-SiB.

Figure 4.29: Algorithm of soil moisture update for each time step.

4.7.3 Initial value of soil moisture

Differences in the runoff estimated by MRI–SiB and SiBUC might also be affected by the soil

moisture value used for the runoff calculation. In SiBUC, the surface and subsurface runoff are

calculated by using the initial soil moisture value of each time step. In one time step, the soil

moisture is updated only once for the next time step, as shown in Figure 4.29(a).

Figure 4.29(b) shows the algorithm of soil moisture updates in each time step in MRI–SiB. As

seen, the initial soil moisture of each time step is first reduced by evapotranspiration compo-

nents before the runoff is calculated. After that, the soil moisture is updated due to the impacts

of infiltrated rainwater and surface runoff estimation. Next, it is updated for the next time step by

considering the soil–water flow and subsurface runoff. Based on this algorithm, the soil mois-

ture value used in MRI–SiB for calculating the runoff should be lower than that in SiBUC, which

might impact the lower runoff estimation. However, a detailed analysis is necessary to figure

out how much impacts such differences on runoff calculation.
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4.7 Discussion

(a) Simulation by considering gravitational drainage
for calculating soil–water flow.

(b) Simulation without considering gravitational
drainage for calculating soil–water flow.

Figure 4.30: Time series of rainfall, surface runoff, soil moisture of surface layer and recharge
zone, respectively. Pink and purple lines represent an explicit–midpoint and semi–implicit meth-
ods, respectively.

4.7.4 Time integration methods for solving Richards equation

As mentioned earlier, SiBUC and MRI–SiB apply different time integration methods to solve

the Richards equation. Impacts of the different methods have been investigated on soil moisture

estimation. It is noticed that in MRI–SiB, the gravitational drainage term is not considered for

calculating soil–water flow between adjacent soil layers. However, this term should not be

negligible in the Richards equation.
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Chapter4 Investigation of runoff generation schemes in land surface models

Here, we analyzed in detail the impacts of considering gravitational drainage on soil moisture

estimation. The timestep is set as hourly for input and output files.

Figure 4.30(a) shows a comparison of soil moisture between an explicit–midpoint method (in

SiBUC) and a semi–implicit method (in MRI–SiB). Soil parameter of this cell is: Ks is 2.00×

10−5 m s−1, ψs is -0.086 m, θs is 0.42, and B is 7.12. These cells were selected as the impacts

of changing different methods are significant in estimating soil moisture of the surface layer.

By using the semi–implicit method, the soil wetness of the top layer shows some oscillations.

While the estimated soil moisture seems more stable by using the explicit method.

Figure 4.30(b) shows a comparison of soil moisture between both methods by neglecting the

gravitational flow in the Richards equation. As seen, the estimated soil moisture of surface layer

by the implicit method seems more stable than that by considering the gravitational drainage.

On the other hand, the estimated result by the explicit method also shows stable results.

From this comparison, it is thought that a more detailed investigation may be necessary to

evaluate the current methods in both LSMs. For instance, by performing a benchmark test by

comparing the estimated soil moisture by each method with a Richards equation model (such as

HYDRUS (Simunek et al.,2008), etc.), as a reference model. Evaluation of calculation method

for soil moisture is essential as water balance and energy partitioning strongly depend on the

soil moisture.
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4.8 Conclusions

In this study, we investigated runoff generation schemes in two LSMs: SiBUC and MRI–SiB.

Throughout our investigation, we found different settings in both LSMs, which mainly affected

runoff and river discharge estimation. To investigate the impacts on those settings in a controlled

manner, we developed MRI–SiB emulation model by adopting MRI–SiB’s settings in SiBUC. By

incorporating MRI–SiB’s land surface parameters, model structures, and time integration meth-

ods for soil schemes, the runoff characteristics could be well emulated by SiBUC. The findings

of this study provide a better understanding of the physical representation of runoff processes

in both LSMs and identify the potential bias of the underlying runoff generation mechanisms in

the LSMs, as has been suggested by Fallon et al., 2011. However, it is beyond the scope of

this study to determine which model settings are better among both LSMs since the simulated

discharge by both models has not yet been evaluated against observed river flow. The next

chapter evaluates the model performance and proposes better settings for their reproducibility

of observed flow.

105



Chapter4 Investigation of runoff generation schemes in land surface models

106



Chapter 5

Improvement of land surface models to
reproduce long–term observed river flow

Abstract
In this chapter, simulated discharge forced by the runoff from the SiBUC and MRI–SiB emulation

models was evaluated by comparing it with 30 years of observed river flow data. The two

LSMs were forced by the observed rainfall and reanalysis of atmospheric data. For long–term

evaluation, the discharge simulated by the SiBUC performed better than the flow estimated by

the MRI-SiB to reproduce the monthly observed discharge. In particular, the SiBUC performed

well at reproducing the discharge observed during wet years (when annual rainfall is higher

than the climatological mean). In contrast, the discharge simulated by the MRI–SiB was better

than the flow estimated by the SiBUC during dry years (when annual rainfall is lower than the

climatological mean). Therefore, using some SiBUC settings in the MRI–SiB, and vice versa,

could enhance the performance of each model at reproducing the long–term observed river

flow.
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Chapter5 Improvement of land surface models to reproduce long–term observed river flow

Figure 5.1: Framework in this study to evaluate and improve LSMs’s performance. LSMs used
in this study are SiBUC and MRI–SiB emulation model.

5.1 Introduction

The original purpose of developing land surface models (LSMs) is to provide boundary con-

ditions for climate models or numerical prediction models. The LSMs now has an increasing

scope; it is not only utilized by meteorologists but also hydrologists. It is widely used as an

efficient tool to project hydrological changes under current and future climate conditions in the

hydrologic field. Several studies have pointed out the bias of runoff from the LSMs for simu-

lating river discharge. Investigation of the runoff generation processes plays an essential role

in understanding the sources of uncertainty in the model. Sensitivity analysis for analyzing the

LSMs’ behavior on runoff generation has been conducted in previous studies. For example, a

study by Takata and Hanasaki (2021) analyzed the behavior of MATSIRO on runoff generation

mechanisms. This study aimed to evaluate the performance of two LSMs: SiBUC and emula-

tion of MRI–SiB (developed in the previous section) on reproducing observed river discharge

and propose better settings for their improvement.
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5.2 Methodology

Figure 5.1 shows a methodology in this study to evaluate and improve the LSMs’ perfor-

mance. Both SiBUC and MRI–SiB emulation models were forced with observed rainfall and

atmospheric reanalysis data. Streamflow simulated by both LSMs was evaluated by comparing

it with observed river flow. Rainfall data from CHIRPS dataset , and reanalysis atmospheric

data were obtained from JRA–55, are used in this study.

Numerical simulations in both LSMs were performed from 1981–2013. The first–three years’

results were discarded as spin–up, and the last 30 years’ results were used for analysis. Both

LSMs were developed with a 5 km mesh size, the same as the spatial resolution of the rainfall

dataset.

First, the water budget estimated by both LSMs was analyzed. Next, simulated streamflow

forced by runoff from both LSMs was evaluated by comparing it with the observed inflow into

Bhumibol Dam. The advantages and limitations of each LSM were analyzed with respect to

the reproducibility of observed streamflow. Some strategies of improvement were proposed to

enhance their performance in reproducing the observed inflow.

Performance indices to evaluate the simulated discharge are Nash–Sutcliffe Efficiency (NSE),

Root Mean Square Coefficient–observations standard deviation ratio (RSR), and percent bias

(PBIAS), as shown in Eq. (5.1), Eq. (5.2), Eq. (5.3).

NSE = 1−
∑N

i=1 (Mi −Oi)
2∑N

i=1

(
Oi −O

)2 (5.1)

RSR =

√∑N
i=1 (Mi −Oi)

2√∑N
i=1

(
Oi −O

)2 (5.2)

PBIAS =

∑N
i=1 (Mi −Oi)∑N

i=1Oi

× 100 (5.3)

with, Mi and Oi are discharge by the emulation model and MRI–SiB, respectively, and M and

O are mean of simulated discharge by the emulation model and MRI–SiB, respectively.

NSE values range between negative infinity to 1, with being equal to 1 is the perfect fit, and

the values lower than 0 are generally assumed as poor performance. RSR is calculated as
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Table 5.1: Performance ratings for a monthly time step (based on Moriasi et al. 2007).

Performance ratings NSE RSR PBIAS

Very good 0.75 < NSE < 1.00 0.00 < RSR < 0.50 PBIAS < ±10
Good 0.65 < NSE < 0.75 0.50 < RSR < 0.60 ±10 < PBIAS < ±15

Satisfactory 0.50 < NSE < 0.65 0.60 < RSR < 0.70 ±15 < PBIAS < ±25
Unsatisfactory NSE < 0.50 RSR > 0.70 PBIAS > ±25

the ratio of root mean square error (RMSE) to the standard deviation of the observed data. In

fact, the RMSE is more commonly used for evaluating the model performance, with the lower

the RMSE value, the better the model performance. However, in this study, RSR was selected

because there is a guideline based on the recommendation from Singh et al. (2004) to qualify

what is considered as a low RMSE. PBIAS measures the accumulation of differences in the

predicted and observed streamflow, and it indicates the tendency of the simulated value to be

larger or smaller than the reference value. The optimum value of PBIAS is 0. Similar to RSR,

the lower the scores, the more accurate the model performance.

In this study, a guideline based on Moriasi et al. (2007) is used to evaluate the model perfor-

mance for a monthly time step, as shown in Table 5.1. Generally, lower scores are estimated

for evaluation on shorter steps than longer ones (for instance, daily vs. monthly). Therefore,

they recommend to modify this guideline accordingly for evaluating the simulated discharge

with shorter time steps (such as daily streamflow).
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Figure 5.2: Time series of annual water budget components estimated by SiBUC (red line)
and MRI–SiB (green line) forced by observed hydrometeorological data. P, ET, ROF, delSM,
Qs, Qsb, E, and T represents precipitation, evapotranspiration, runoff, change of soil moisture,
surface runoff, subsurface runoff, evaporation, and transpiration, respectively.

Table 5.2: Similar to Figure 5.2 but for 30–years–mean water budget components (unit: mm
year−1).

LSM P ET ROF Qs Qsb E T delsm
SiBUC

1209
1025 189 138 50 527 498 -4

MRI–SiB emulation model 990 219 6 213 493 496 0

5.3 Comparison of water budget estimated by SiBUC and MRI–SiB em-
ulation model

Figure 5.2 shows a comparison of annual water budget by SiBUC and MRI–SiB emulation

model. Table 5.2 shows 30–years–mean of water budget from both LSMs. In general, evap-

otranspiration and runoff estimated by SiBUC were close to the emulation model. However,

the emulation model estimated lower evapotranspiration and higher runoff than SiBUC in some

years, such as 1994, 2011, etc. In those years, the annual rainfall was higher than the climato-

logical mean.
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Chapter5 Improvement of land surface models to reproduce long–term observed river flow

Both LSMs have shown opposite runoff characteristics. SiBUC generated high surface runoff

and low subsurface runoff. In contrast, the subsurface runoff was dominant in the emulation

model. These differences are owing to different settings in both LSMs have already been ana-

lyzed in the previous chapter.

Transpiration estimated by both LSMs was close. While evaporation calculated by SiBUC

was higher than the emulation model.
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Figure 5.3: Comparison of daily discharge from observation (black dot) and simulation by
SiBUC (red line) and MRI–SiB emulation (green line) from 1984–2013.

5.4 Evaluation of river discharge simulated by runoff from SiBUC and
MRI–SiB emulation model

Figure 5.3 shows a comparison of daily discharge from observation and simulation by SiBUC

and MRI–SiB emulation model for 30 years. Figure 5.3 shows an evaluation of the simulated

daily discharge by both LSMs for the whole period with respect to the observed streamflow.

Based on the results of performance indices, overall, SiBUC shows slightly better performance
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Table 5.3: Evaluation of 30–years daily discharge.

LSM NSE RSR PBIAS

SiBUC 0.35 0.81 -0.14
Emulation 0.32 0.82 2.87
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Figure 5.4: Evaluation of indices performance of daily discharge simulated by SiBUC (red line)
and MRI–SiB (green line) for each year. Black dash line indicates a limit of each index for
’satisfactory’ performance. Negative value of NSE means ’poor’ performance. Optimum value
of NSE is 1, while that of RSR and PBIAS is 0.

than the emulation model. Except for PBIAS, NSE and RSR scores by both LSMs seem ac-

ceptable, although not much adequate. The low scores of PBIAS in the two LSMs are owing to

high variations of positive and negative bias.

We also analyzed the performance of each model for each year. In this analysis, annual

rainfall was categorized into the wet and dry years. For simplicity, the climatological mean of

30 years annual rainfall was used as a threshold to determine wet and dry years. Wet years

were defined as the years with annual precipitation exceeding climatological mean rainfall, and
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Figure 5.5: Daily discharge from observation (black dot) and simulation by SiBUC (red line) and
MRI–SiB (green line) in 1994 and 2011.
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Figure 5.6: Daily discharge from observation (black dot) and simulation by SiBUC (red line) and
MRI–SiB (green line) in 1993 and 2001.

those with less than the threshold were identified as dry years. Based on this definition, the

simulation periods were divided into 14 wet and 16 dry years.

Figure 5.4 shows an evaluation of model performance for daily discharge in each year. It

seems both LSMs show different performances depending on rainfall amount, although the

correlation is not so clear. Reproducibility of the observed streamflow by SiBUC seems to be

better than the emulation model in wet years, such as in 1994 and 2011. The simulated dis-

charge in these years is shown in Figure 5.5. In both years, the estimated flow by the emulation
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Figure 5.7: Similar to Figure 5.4 but for evaluation of monthly discharge.

model shows significantly overpredicted the observed discharge, which resulted in poor perfor-

mance scores. The discharge by the emulation model also failed to reproduce the observed

peak flow in 2011, in contrast to SiBUC, which showed an excellent performance.

On the other hand, reproducibility of observed flow by the emulation model seems better than

SiBUC in dry years, for instance, in 1993 and 2001. Figure 5.6 shows the simulated streamflow

in these years As seen, the discharge by SiBUC has overestimated the observed flow due to

the high intensity of rainfall. In contrast, the discharge by the emulation model does not show

such a high response. The performance indices by SiBUC show negative NSE scores, which

indicate a poor model performance. In comparison, the emulation model shows positive NSE

scores in these years, indicating an acceptable performance.

Evaluation for monthly discharge simulated by both LSMs is also analyzed. Comparison

of monthly streamflow from observation and simulation by SiBUC and MRI–SiB emulation is

shown in Figure 5.8. Table 5.4 shows an evaluation of 30 years monthly discharge simulated by

SiBUC and the emulation model with respect to observed river flow. Based on the performance

ratings shown in Table 5.1, except for PBIAS, SiBUC delivers satisfactory performance, while
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Figure 5.8: Time series of monthly discharge by SiBUC (red line) and MRI–SiB emulation (green
line) from 1984–2013.

Table 5.4: Evaluation of 30–years monthly discharge.

LSM NSE RSR PBIAS

SiBUC 0.62 0.62 -0.27
Emulation 0.49 0.72 2.85

the emulation model is less adequate.

Similar to the evaluation of the daily discharge, performance by each LSM varies depending

on the year. Figure 5.7 shows the evaluation of simulated monthly discharge for each year. Even

though SiBUC shows better scores for the whole simulation period, it has more negative NSE

scores for the individual year than the emulation model, indicating poor performance. How-
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Chapter5 Improvement of land surface models to reproduce long–term observed river flow

ever, both LSMs have their advantages and limitations in reproducing the long–term observed

streamflow. For example, SiBUC shows a good ability in reproducing high flow. However, it

sometimes estimates too high discharge during intense rainfall events. On the other hand, the

performance of the emulation model on reproducing high flow needs to be improved. However,

the emulation model does not show such overestimation of discharge during high rainfall events.

From this analysis, it is thought that the advantages of one LSM are the limitations of another

LSM. Therefore, improving the performance of both LSMs can be proposed by adopting some

settings of one LSM to another LSM.
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5.5 Improvement strategies for MRI–SiB emulation model

Table 5.5: Experimental designs for improving MRI–SiB emulation model.

Experiment Revised settings
1 soil characteristics parameters
2 soil depth
3 both soil characteristics parameters and soil depth
4 neglecting P2 structure
5 considering gravitational drainage for soil–water flux equation
6 combine experiment 3 and 4
7 combine experiment 3 and 5

Table 5.6: Comparison of original and revised soil parameters in emulation model. The revised
values are based on SiBUC parameters.

Parameters Original Revised
Saturation ratio θs (m3 m−3) 0.42 0.478

B power 7.12 8.41
Saturated hydraulic conductivity Ks (m s−1) 2.00×10−5 1.440×10−6

Saturated matric potential ψs (m) -0.086 -0.63
Depth of root zone D2 (m) 1.5 2.5

Depth of recharge zone D3 (m) 3.5 5.0

5.5 Improvement strategies for MRI–SiB emulation model

5.5.1 Overview

In this analysis, we proposed some improvement strategies for MRI–SiB emulation model,

focusing on the reproducibility of observed streamflow in wet years. As shown earlier, the em-

ulation model shows too much overprediction of observed flow during these years. Therefore,

the improvement is proposed to reduce the high positive bias by the emulation model.

5.5.2 Experimental designs

Figure 5.5 shows experimental designs to improve the performance of the emulation model.

Seven experiments were conducted by revising soil parameters, model structures, and both soil

parameters and model structures. In particular, all settings in MRI–SiB emulation were revised
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Chapter5 Improvement of land surface models to reproduce long–term observed river flow

(a) Saturation rate θs (m3 m−3). (b) B power.

(c) Saturated hydraulic conductivity Ks (m s−1). (d) Saturated matric potential θs (m).

Figure 5.9: Spatial pattern of soil characteristics parameters in (a) emulation model (based on
MRI–SiB parameters), (b) SiBUC, and (c) revised emulation.

by adopting settings in SiBUC.

For revising the soil parameters, among 15 variables used, only the most sensitive parameters

related to runoff generation were modified to improve the emulation model. Those parameters

were divided into two groups: soil characteristics parameters (saturated hydraulic conductivity

Ks, saturated matric potential ψs, saturation ratio θs, and B power), and parameters related to

soil depth (depth of root zone D2 and recharge zone D3). The soil depth of the surface layer is

120



5.5 Improvement strategies for MRI–SiB emulation model

(a) Depth of root zone D2 (m). (b) Depth of recharge zone D3 (m).

Figure 5.10: Spatial pattern of soil depth in (a) emulation model (based on MRI–SiB parame-
ters), (b) SiBUC, and (c) revised emulation.

the same in both LSMs (=0.02 m), and it is not changed for the improved emulation model.

We also considered spatial distributions of the soil parameters. As mentioned in the previous

chapter, the soil parameter in SiBUC is set based on soil types, while in the emulation model, it

is dependent on vegetation types. To address such differences, we revised only the parameter

values of the dominant vegetation types in the emulation model and incorporated the parameter

settings of major soil types in SiBUC.

Figure 5.9 shows the spatial pattern of soil characteristics parameters in the emulation model

(based on MRI–SiB parameters), SiBUC, and revised emulation model (based on SiBUC pa-

rameters). For instance, as shown in Figure 5.9(a), the dominant value of saturation ratio in

MRI–SiB is 0.42, and SiBUC is 0.478. For the sensitivity experiments, that value of the emula-

tion model was revised from 0.42 to 0.478. All soil characteristics parameters in the emulation

model were modified in a similar manner. Adjusting the parameters for minor vegetation types

might not be necessary as the impacts may be less dominant on the water budget estimation.

Figure 5.10 shows spatial distributions of soil depth of root zone and recharge zone in the

emulation model, SiBUC, and revised emulation. As seen, SiBUC shows various depths re-

gardless of the soil class. Soil depth in the emulation model was revised by selecting a repre-

sentation of dominant depth in SiBUC. For example, the dominant depth of root zone in MRI–SiB
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Chapter5 Improvement of land surface models to reproduce long–term observed river flow

is 1.5 m, and in SiBUC is 2.5 m. Therefore, soil depth of the second layer in emulation model

was revised from 1.5 to 2.5 m.

Table 5.6 shows a comparison of original and revised parameters in the emulation model

based on SiBUC parameters. Experiments 1–3 and 6–7 were conducted using the revised

parameters to investigate whether it could improve the emulation model’s ability to reproduce

observed discharge.

As seen in Table 5.5, first, the impact of changing soil parameters was investigated. Exper-

iments 1, 2, and 3 were performed by modifying soil characteristics parameters, soil depth,

and the combination of both groups. Next, impacts of neglecting P2 structure and incorporat-

ing gravitational drainage for soil–water flux calculation was analyzed in experiments 4 and 5,

respectively. Experiments 5 and 6 were performed to examine the effects of changing both soil

parameters and model structures.
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Figure 5.11: Comparison of water budget components (surface runoff (Qs), subsurface runoff
(Qsb), evaporation (E), transpiration (T), and change of soil moisture (delSM)) between SiBUC,
MRI–SiB emulation, and each experiment of revised emulation model. Blue dash–line repre-
sents a 30–years-mean annual rainfall.

5.5.3 Changes of water budget by revised emulation model

Figure 5.11 shows a comparison of water budget components between SiBUC, MRI–SiB em-

ulation, and each experiment of revised emulation model. Experiment 1–3 was performed to

investigate the impacts of changing soil characteristics, soil depth, and both parameters. In

experiment 1, performed by adopting SiBUC’s soil characteristics parameters, surface runoff

increased, and subsurface runoff decreased compared to MRI–SiB. It is because of lower in-

filtration rates caused by SiBUC’s parameters settings (lower saturated hydraulic conductivity,

lower saturated matric potential, etc.). In experiment 2, subsurface runoff is significantly lower

than the emulation model. As the soil depth of the third layer is deeper, the soil saturation is

more delayed, resulting in the lower subsurface runoff. By changing both soil characteristics

and soil depth, surface runoff increased and subsurface runoff decreased, similar to the exper-
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Chapter5 Improvement of land surface models to reproduce long–term observed river flow

iment 1. However, the estimated subsurface runoff is much lower because the soil takes a long

time to reach saturation than in thinner soil.

In experiments 4–5, model structures were revised to be the same as SiBUC: without incor-

porating P2 structure, and considering gravitational drainage term in the Richards Equation,

respectively. When P2 structure is not considered, surface runoff is higher, and subsurface

runoff is lower than the emulation model. The increase of surface runoff is due to lower in-

filtrated rainwater. As some of the rainwater has already been generated as surface runoff,

the subsurface runoff becomes lower. By considering the gravitational flow in the Richards

Equation, the estimated water budget is almost similar to the emulation model.

Experiment 6–7 was conducted to analyze the impacts of changing both parameters (in exper-

iment 5) and model structures. The experiment with revised soil parameters and without con-

sidering P2 structure shows high surface runoff and low subsurface runoff, similar to SiBUC’s

runoff characteristics. However, the amount of the estimated runoff is higher than SiBUC. One

of the reasons is due to lower soil depth in the revised emulation model. On the other hand,

revising soil parameters and incorporating gravitational drainage shows no significant change

in the water budget compared to experiment 3.
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Figure 5.12: Time series of daily discharge in 1994 from observation (black dot) and simulation
by SiBUC (red line), MRI–SiB emulation (green line), and revised emulation model (pink line).

5.5.4 Evaluation of streamflow simulated by revised emulation model

Figure 5.12 and Figure 5.13 shows a comparison of daily discharge between observation and

each simulation in 1994 and 2011, which is considered as wet years. As mentioned earlier, the

discharge by the emulation model has overestimated the observed streamflow. In contrast, the

streamflow estimated by SiBUC is closer to the observed flow.

Experiment 1, conducted by changing the soil characteristics parameters, has shown an in-

creasing surface runoff. As a result, the simulated discharge shows a slightly faster timing of

increasing and recession of the hydrograph. Experiment 2, performed by increasing the soil

depth, shows a reduction of the overestimated discharge by the emulation model. In the em-

ulation model, the runoff is mostly generated as subsurface runoff. The estimated discharge

decreased owing to a lower subsurface runoff because the soil takes a longer time to reach
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Figure 5.13: Similar to Figure 5.12 but for daily discharge in 2011.
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Figure 5.15: Evaluation of simulated monthly discharge in each year by MRI–SiB emulation
(green line) and revised emulation model (pink line).

saturation in a deeper soil depth. Experiment 3, carried out by both revised soil characteris-

tics parameters and soil depth, shows a closer reproducibility of discharge than the emulation

model.

By neglecting P2 structure, in experiment 4, the estimated discharge is similar to the emulation

model. However, the overestimated discharge at the beginning of rainy seasons on May to

June is worse in this experiment. Experiment 5 was performed by considering gravitational

drainage for calculating soil–water flow. Even though the estimated water budget components

are similar to the emulation model, the simulated discharge is a slightly different. In particular,

the discharge by experiment 5 tends to increase and decrease more quickly than the emulation

model.

In experiment 6, the soil parameters were revised to be the same as experiment 3, and P2

structure is neglected. It shows a good improvement in reproducing the observed discharge in

the later rainy season. However, the simulated discharge in the early rainy season is worse.

Among all experimental cases, experiment 7, which used revised soil parameters and consid-
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Chapter5 Improvement of land surface models to reproduce long–term observed river flow

Table 5.7: Settings of original and revised (experiment 7) emulation model.

Settings Original Revised
Soil parameters MRI–SiB original based on SiBUC’s parameters
P2 structure incorporated incorporated

Soil–water flow Qi,i+1 = K

[
∂ψ

∂z

]
Qi,i+1 = K

[
∂ψ

∂z
+ 1

]
Subsurface runoff Q3 = sin⊘sKsW

2B+3
3 +

ψ2 − ψ3

D3
Q3 = sin⊘sKsW

2B+3
3 +

ψ2 − ψ3

D3

Time integration method semi–implicit semi–implicit

ered gravitational flow for the soil–water flow calculation, seems to have the best reproducibility

of the observed discharge. This experiment has shown that using soil parameters according to

soil types seems to have improved the simulated discharge, particularly for this basin. Incor-

porating gravitational drainage for calculating the soil–water flow also seems to enhance the

reproducibility of discharge.

Figure 5.14 indicates performance scores for evaluating the 30–years monthly simulated dis-

charge for each experiment. The scores of all indices by experiment 7 are the highest among

all experimental cases. Therefore, the emulation model can be revised to follow the settings

of experiment 7 for improving its performance. Table 5.7 is a summary of original and revised

settings of the emulation model. According to the performance ratings, the emulation model’s

ability to reproduce the observed flow has improved from ’unsatisfactory’ to ’good’ performance.

Figure 5.15 shows a comparison of evaluation scores by original settings of MRI–SiB emula-

tion model and the revised one for each year. Figure 5.16 shows monthly discharge between

MRI–SiB emulation model and the revised model. Overall, the revised settings by experiment

7 have shown a better performance than the original model. In particular, the original model

shows negative NSE scores in some wet years, such as in 1994, 2008, 2010, indicating poor

performance. These negative scores, in general, have been improved by the revised settings.

In particular, the bias of overestimated discharge could be reduced by adopting soil param-

eters based on soil types and incorporating the gravitational drainage in the soil–water flows

calculation.
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Figure 5.16: Time series of monthly discharge by MRI–SiB emulation (green line) and revised
emulation model (pink line) from 1984–2013.
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Table 5.8: Experimental designs for improving SiBUC.

Experiment Revised settings
1 incorporating P2 structure
2 reducing half depth of recharge layer
3 reducing half depth of both root zone and recharge layer
4 applying same soil depth as the revised emulation model
5 combine experiment 1 and 2
6 combine experiment 1 and 3
7 combine experiment 1 and 4

5.6 Improvement strategies for SiBUC

5.6.1 Overview

In this analysis, improvement strategies were proposed for SiBUC to reproduce the observed

streamflow, particularly in the dry years, such as 1993 and 2001. As shown earlier, SiBUC

shows too high discharge due to extreme rainfall events in these years. Therefore, the im-

provement is proposed to reduce that overestimated flow by SiBUC.

5.6.2 Experimental designs

Figure 5.8 shows experimental designs to improve SiBUC’s performance. In total, seven

experiments were conducted; some of them were performed by adopting some MRI–SiB’s set-

tings. As the overestimated discharge due to high generation of surface runoff by SiBUC is the

current focus, improvement is proposed to lower the surface runoff and increase the subsurface

runoff by SiBUC.

Experiment 1 was conducted by incorporating P2 structure. As surface runoff is the dominant

component in SiBUC; the runoff is generated soon after soil moisture of top soil is saturated.

Adopting the P2 structure can increase infiltrated rainwater into the soil, thus can reduce the

overestimated discharge.

Experiment 2–4 was performed by reducing soil depth. Current soil depth in SiBUC was

set too deep, up to 12 m. A lower soil depth setting contribute to higher soil–water flow, and

thus subsurface runoff increases. However, surface runoff is expected to increase because of
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5.6 Improvement strategies for SiBUC

lower capacity of soil to store the rainwater. Experiment 2 and 3 were carried out by reducing

the current depth of recharge zone (third soil layer) by half, and depth of both root zone and

recharge layer (second and third layer) by half. Experiment 4 was performed by adopting the

same soil depth of the revised MRI–SiB emulation model, shown in Figure 5.10. As seen, the

D2 and D3 ranges between 0.5 m–2.5 mm, and 1.5 m–5.0 m, respectively.

Experiment 5–7 was carried out by both incorporating P2 structure and reducing soil depth

at various settings. The overestimated streamflow due to high generation of surface runoff by

SiBUC maybe improved by adopting these settings, by generating lower surface runoff and

more subsurface runoff.
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Figure 5.17: Comparison of water budget components (surface runoff (Qs), subsurface runoff
(Qsb), evaporation (E), transpiration (T), and change of soil moisture (delSM)) between SiBUC,
MRI–SiB emulation, and each experiment of revised SiBUC. Blue dash–line represents a 30–
years-mean annual rainfall.

5.6.3 Changes of water budget by revised SiBUC

Figure 5.17 shows a comparison of water budget components between SiBUC, MRI–SiB em-

ulation, and each experiment of revised SiBUC. Experiment 1 was performed to investigate the

impact of adopting P2 in SiBUC. By incorporating this structure, surface runoff is significantly

lower, and subsurface runoff is much higher than the original SiBUC. That is reasonable be-

cause more rainwater can be infiltrated into a deeper soil layer. However, total runoff is lower,

and evapotranspiration is higher than in the original setting. That might be due to affects of the

soil depth, which is set quite deep, resulting in a low soil–water flow, and thus the subsurface

runoff generation.

Experiment 2–4 was carried out by reducing soil depth at various settings. In experiment

2, the soil depth of the third layer was reduced by half, and in experiment 3, the soil depth of
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5.6 Improvement strategies for SiBUC

both the second and third layers was half thinner than the original setting. In experiment 4,

the soil depth of the revised emulation model was applied. As the soil depth became lower,

surface runoff in both experiments was higher than SiBUC. That is because the soil has a lower

capacity to store the rainwater for a thinner soil depth. In addition, the subsurface runoff is also

increasing. The primary source of subsurface runoff is the saturation rate of the third soil layer.

Thinner soil depth impacts a faster saturation than that in a deeper depth.

In experiments 5–7, both P2 structure and lower depth settings were applied. Experiment 5

was performed by adopting P2 and applying half depth of D3. As expected, thinner depth of the

third soil layer impacts on increasing subsurface runoff; it has more subsurface runoff compared

to experiment 1, which was performed by only introducing P2. The total runoff between SiBUC

(control) and experiment 5 are close, but they show opposite runoff components. Experiment

6 was conducted by incorporating P2 and applying half depth of D2 and D3. The reduction

of surface runoff is less significant compared to experiment 5 due to a lower capacity of the

second soil layer to store the water. Subsequently, the generated subsurface runoff is lower

than the experiment 5 due to higher surface runoff. In experiment 7, the surface runoff is higher

than experiment 5, but lower than experiment 6, and subsurface runoff is the vice versa. That

is mainly due to the soil depth setting; in general, the total soil depth of this experiment is higher

than experiment 6 but lower than experiment 5.

133



Chapter5 Improvement of land surface models to reproduce long–term observed river flow

  0

 20

 40P
 [

m
m

]
Daily discharge in 1993

  0

 20

 40P
 [

m
m

]

Daily discharge in 1993

   0

 500

1000

1500

2000

Q
 [

m
3
 s

-1
]

SiBUC

Emulation

Observed

   0

 500

1000

1500

2000

Q
 [

m
3
 s

-1
]

Exp1

   0

 500

1000

1500

2000

Q
 [

m
3
 s

-1
]

Exp2

   0

 500

1000

1500

2000

Q
 [

m
3
 s

-1
]

Exp3

   0

 500

1000

1500

2000

Q
 [

m
3
 s

-1
]

Exp4

   0

 500

1000

1500

2000

Q
 [

m
3
 s

-1
]

Exp5

   0

 500

1000

1500

2000

J F M A M J J A S O N D

Q
 [

m
3
 s

-1
]

Exp6

   0

 500

1000

1500

2000

J F M A M J J A S O N D

Q
 [

m
3
 s

-1
]

Exp7

Figure 5.18: Time series of daily discharge in 1993 from observation (black dot) and simulation
by SiBUC (red line), MRI–SiB emulation (green line), and revised SiBUC (light blue line).

5.6.4 Evaluation of streamflow simulated by revised SiBUC

Figure 5.18 and Figure 5.19 show a comparison of daily discharge between observation and

each simulation in 1993 and 2001, which is considered as dry years. As pointed out earlier,

SiBUC estimated too high discharge during extreme rainfall events. In contrast, the streamflow

estimated by the emulation model is closer to the observed flow.

Simulated discharge by experiment 1, performed by adopting P2, shows a significant reduc-

tion of the overestimated flow in the original SiBUC settings. Incorporating the P2 structure

seems to provide a good direction of improving SiBUC performance. However, the estimated

volume of discharge by the experiment 1 is much lower than the original SiBUC, such as dur-

ing September to November in 1993. As mentioned earlier, the decrease of the streamflow is

due to lower runoff and higher evapotranspiration, cause by too deep soil depth setting, which
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Figure 5.19: Similar to Figure 5.18 but for daily discharge in in 2001.
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Figure 5.20: Evaluation of 30–years simulated monthly discharge by MRI–SiB emulation,
SiBUC and each experiment of revised SiBUC.
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Figure 5.21: Evaluation of simulated monthly discharge in each year by SiBUC (red line) and
revised SiBUC (light blue line).

contribute to a low soil–water flow, and thus the subsurface runoff generation.

Simulated discharge by experiment 2–4, carried out by lowering the soil depth, shows not sig-

nificant reduction of the overestimated flow. However, the simulated flow by these experiments

during August to September are closer to the observed discharge, compared to the original

SiBUC which show underestimation.

Streamflow estimated by experiment 5–7, conducted by incorporating P2 and setting a lower

soil depth, shows a good performance to reproduce the observed river flow. In particular, it

could reduce the overestimated discharge by SiBUC. From these results, adopting P2 structure

and reducing the soil depth provide a good direction in improving SiBUC’s performance.

Figure 5.20 shows performance scores for evaluating the 30–years monthly simulated dis-

charge for each experiment. The scores of all indices by experiment 7 are the highest among

all experiments. Therefore, the settings of experiment 7 can be proposed to improve SiBUC’s

performance. Table 5.9 is a summary of original and revised settings of SiBUC. Based on the

performance ratings, SiBUC’s ability for reproducing observed discharge has improved from
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Table 5.9: Settings of original and revised (experiment 7) SiBUC.

Settings Original Revised
Soil characteristics parameters based on Ecoclimap based on Ecoclimap

Soil depth based on Ecoclimap based on revised MRI–SiB emulation
P2 structure not incorporated incorporated

Soil–water flow Qi,i+1 = K

[
∂ψ

∂z
+ 1

]
Qi,i+1 = K

[
∂ψ

∂z
+ 1

]
Subsurface runoff Q3 = sin⊘sKsW

2B+3
3 Q3 = sin⊘sKsW

2B+3
3

Time integration method explicit–midpoint explicit–midpoint

’satisfactory’ to ’good’ performance.

Figure 5.21 shows a comparison of evaluation scores by original settings of SiBUC and the

revised model for each year. In general, revised settings by experiment 7 could improve overall

performance than the original model. In particular, it improved most of the negative NSE to

positive scores, indicating acceptable performance, such as in 1986, 1988, 1990, etc.

Figure 5.22 shows a comparison of monthly discharge simulated by SiBUC and revised

SiBUC. As seen, in general, the overestimated peak discharge by original SiBUC could be

reduced by the revised setting (experiment 7).

137



Chapter5 Improvement of land surface models to reproduce long–term observed river flow

    0

  100

  200

  300

  400

P
 [m

m
]

    0

  400

  800

 1200

 1600

1984 1986 1988 1990 1992 1994 1996 1998

Q
 [m

3  s
-1

]

SiBUC

Rev-sibuc

Observed

    0

  100

  200

  300

  400

P
 [m

m
]

    0

  400

  800

 1200

 1600

1999 2001 2003 2005 2007 2009 2011 2013

Q
 [m

3  s
-1

]

Figure 5.22: Time series of monthly discharge by SiBUC (red line) and revised SiBUC (light
blue line) from 1984–2013.
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5.7 Discussion

In this study, improvement strategies for SiBUC and MRI–SiB emulation models have been

proposed for their reproducibility of observed discharge. The proposed improvement has shown

a better reproducibility of observed streamflow by both LSMs compared to their original settings.

However, there are still limitations to the current proposals.

First, this study utilized the emulation of the MRI–SiB model to improve the MRI–SiB. The

developed emulation model has shown an excellent performance to reproduce runoff and river

discharge by the MRI–SiB. However, it tended to overestimate MRI–SiB’s runoff and the simu-

lated streamflow. The bias shown by the emulation model in this study might also come due to

the different performance of the emulation model and the original MRI–SiB. Therefore, further

analysis is required to confirm the impacts of the proposed improvement in the original MRI–SiB

embedded in the climate models (MRI–AGCM 3.2S and NHRCM).

Second, the sensitivity analysis for the improvement proposals in this study was only applied

to the Thailand region. Consequently, the results might be different if the model is applied in

the river basin of other regions or climate conditions.

Third, improvement for SiBUC has been proposed only to reduce the overestimation of peak

flow, particularly during high–intense rainfall. Still, SiBUC shows some weakness in reproducing

observed flow. For example, it failed to reproduce the observed discharge in most of the late

rainy seasons, from August to October (such as in 2001). Numerous experiments have been

done by changing soil depth in SiBUC to improve its performance, but still, no better result than

this study has shown can be achieved at the moment. It is thought that changing parameters

only may not be enough to have a robust performance of both LSMs. Therefore, future studies

should focus on improving the runoff generation schemes, particularly on the model structures,

such as to include lateral flow or other types of preferential flow.
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5.8 Conclusions

In this study, the performance of two LSMs: SiBUC and MRI–SiB emulation model, was

evaluated for their reproducibility of long–term observed river discharge. Both LSMs were forced

by observed rainfall and atmospheric reanalysis data. They were simulated for 30 years. Based

on performance ratings, in general, SiBUC showed a better performance than the emulation

model on reproducing observed monthly flow. However, their ability differed depending on

the rainfall amount. SiBUC tended to have a better reproducibility in wet years. However, it

estimated too high rainfall during extreme rainfall events. On the other hand, the emulation

model could well reproduce the observed discharge during heavy rainfall. Yet, it tended to

overestimate observed flow in the wet years.

As the advantages of one model are the limitations of another model, improvement strategies

were proposed by adopting settings of one model to another model. In particular, the emulation

model was improved by adopting SiBUC’s soil parameters and including gravitational drainage.

SiBUC’s performance became better when P2 structure of MRI–SiB was adopted, and the soil

depth was reduced. Based on these proposals, all LSMs have improved to perform well in

reproducing the long-term observed discharge.
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Chapter 6

Conclusions

This study aimed to evaluate the runoff generation schemes in LSMs and propose strategies

to improve their reproductions of long–term observed streamflow. The two LSMs utilized in

this study were the Simple Biosphere including Urban Canopy (SiBUC) and the Meteorological

Research Institute–Simple Biosphere Model (MRI–SiB). Numerical experiments for both LSMs

were conducted in the upper part of the Ping River Basin in northern Thailand.

First, the applicability of runoff generated by both LSMs was investigated to streamflow sim-

ulation. Comparisons of the water budget showed that the SiBUC tended to estimate higher

evapotranspiration and lower runoff than the MRI-SiB. Each LSM generated different runoff

characteristics. The SiBUC estimated higher surface runoff and lower subsurface runoff than

the MRI–SiB. Subsurface runoff was the dominant runoff component in the MRI–SiB. Different

runoff characteristics impact the simulated streamflow in differing ways. The peak discharge

determined by the SiBUC, attributed primarily to surface runoff generation, was produced soon

after the peak rainfall. In contrast, peak flow in the MRI–SiB showed a significant delay com-

pared to peak rainfall. As the MRI–SiB is dominated by subsurface runoff, rainwater first infil-

trates into the soil before it flows into a river, resulting in long lag times. In general, the discharge

simulated by the SiBUC was of a higher volume than that simulated by the MRI–SiB because of

the higher estimation of runoff. This study showed that even though the same forcing data was

imposed on both LSMs, the estimated runoff and simulated discharge differed for each LSM.

Next, the runoff generation schemes in the two LSMs were analyzed in detail to determine

the reasons for the different runoff characteristics. We investigated which settings were treated

differently in the two land surface models (LSMs). The different settings between both LSMs

were adopted in SiBUC to evaluate their impacts on runoff generation. SiBUC that incorporated
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MRI–SiB’s settings is called as MRI–SiB emulation model. Our investigation identified some

different settings in both LSMs that mainly affected the runoff generation and the simulated

discharge. We found that by adopting the same soil parameters, model structures, and time

integration method for soil schemes, the runoff characteristics from the MRI–SiB can be emu-

lated well by the SiBUC. The findings of this study provide insights into identifying the sources

of runoff uncertainty in LSMs.

Finally, the simulated discharge forced by the runoff from both LSMs was evaluated by com-

paring it with 30 years of observed streamflow. The two LSMs were forced by the observed

rainfall and reanalysis of atmospheric data. For long–term evaluation, the discharge simu-

lated by the SiBUC performed better than the flow estimated by the MRI-SiB to reproduce the

monthly observed discharge. In particular, the SiBUC performed well at reproducing the dis-

charge observed during wet years (when annual rainfall is higher than the climatological mean).

In contrast, the discharge simulated by the MRI–SiB was better than the flow estimated by the

SiBUC during dry years (when annual rainfall is lower than the climatological mean). Our anal-

ysis shows that using some SiBUC settings in the MRI–SiB, and vice versa, could enhance the

performance of each model at reproducing the long–term observed river flow. However, some

limitation still exists in the two LSMs for reproducing the observed discharge. Thefore, future

studies should focus on improving the runoff generation schemes, particularly on the model

structures, such as to include lateral flow or other types of preferential flow.

142



Bibliography

An, H. and Noh, S. J.: High–order averaging method of hydraulic conductivity for accurate soil

moisture modelling, Journal of Hydrology, Vol. 516, pp. 119–130, 2014.

Balsamo G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi, M., and Betts, A.

K.: A revised hydrology for the ecmwf model: verification from field site to terrestrial water

storage and impact in the integrated forecast system, Journal of Hydrometeorology, Vol. 10,

No. 623–643, 2009.

Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Mnard, C. B., Edwards,

J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher,

O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment

Simulator (JULES), model description : Part 1: Energy and water fluxes, Geoscientific Model

Development, Vol. 4, No. 677–699, 2011.

Chilkoti, V., Bolisetti, T., and Balachandar, R.: Diagnostic Evaluation of Hydrologic Models

Employing Flow Duration Curve, Journal of Hydrological Engineering, Vol. 24, No. 6, 2019.

Clapp, R. B., and Hornberger, G. M.: Empirical Equations for Some Soil Hydraulic Properties,

Water Resources Research, Vol. 14, No. 4, pp. 601–604, 1978.

Cosbyg, B. J., Hornberger, M., Clapp, B., and Ginn, T. R.: A StatisticaEl xplorationo f the

Relationshipos f Soil Moisture Characteristicsto the PhysicalP ropertieso f Soils–, Water

Resources Research, Vol. 20, No. 6, pp. 682–690, 1984.

Cox, P. M., Betts, R. A., Bunton, C. B., Essery, R. L. H., Rowntree, P. R., and Smith, J.: The

impact of new land surface physics on the GCM simulation of climate and climate sensitivity,

Climate Dynamics, Vol. 15, pp. 183–203, 1999.

Dai, Y., Zeng, X., Dickinson, R. E, Baker, I., Bonan, G. B., Michael, G. B, Denning, A. S.,

Dirmeyer, P. A., Houser, P. R., Niu, G., Oleson, K. W., Schlosser, C. A., and Yang, Z. L.: The

Community Land Model Coupled, Bulletin of the American Meteorological Society, Vol. 84,

Issue 8, pp. 1013–1024, 2003.



Davis, R. O. E., and Bennett, H. H.: Grouping of soils on the basis of mechanical analysis,

United States Department of Agriculture, 1927.

Dickinson, RE.: Land-surface processes and climate, surface albedos and energy balance,

Advances in Geophysics, Vol. 25, pp. 305–353, 1983.

Dirmeyer P. A., Dolman, A. J., Sato N.: The pilot phase of the global soil wetness project. ,

Bulletin of the American Meteorological Society, Vol. 80, pp. 851–878, 1999.

Essery, R., Best, M., Betts, R. A., Cox, P., and Taylor, C. M.: Explicit representation of subgrid

heterogeneity in a GCM land surface scheme, Journal of Hydrometeorology, Vol. 4, pp.

530–543, 2003.

Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., and Merchant, J. W.:

Development of a global land cover characteristics database and IGBP DISCover from 1 km

AVHRR data, International Journal of Remote Sensing, Vol. 21, Issue 6–7, pp. 1303–1330,

2000.

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland,

J., Harrison, L., Hoell, A., and Michaelsen, J.: The climate hazards infrared precipitation with

stations–a new environmental record for monitoring extremes, Scientific Data 2, 150066,

2015.

Falloon, P., Betts, R., Wiltshire, A., Dankers, R., Mathison, C., McNeall, D., Bates, P., and

Trigg, M.: Validation of river flows in HadGEM1 and HadCM3 with the TRIP river flow model,

Journal of Hydrometeorology, Vol. 99, pp. 685–695, 2011.

Gale, E. L. and Saunders, M. A.: The 2011 Thailand flood: climate causes and return periods,

Weather, Vol. 68, Issue 9, pp. 233–237, 2013.

Getirana, A., Boone, A., Peugeot, C., and ALMIP2 WORKING GROUP: Streamflows over a

West African Basin from the ALMIP2 Model Ensemble, Journal of Hydrometeorology, 2017.

Gordon,C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F.

B., and Wood, R. A.: The simulation of SST, sea ice extents and ocean heat transports in

a version of the Hadley Centre coupled model without flux adjustments, Climate Dynamics,

Vol. 16, pp. 147–168, 2000.

Graham, L. P., and Bergstrom, S.: Land surface modeling in hydrology and meteorology–

lessons learn from the Baltic Basin, Hydrology and Earth System Sciences, Vol. 4, No. 1,

pp. 13–22, 2000.

Henderson–Sellers A, Pitman AJ, Love PK, Irannejad P, Chen T.: The project for intercom-



parison of land surface parameterisation schemes (PILPS) phases 2 and 3, Bulletin of the

American Meteorological Society, Vol. 76, pp. 489–503, 1995.

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim,

H., and Kanae, S.: Global flood risk under climate change, Nature Climate Change, Vol. 3,

pp. 816–821, 2013.

Hirai, M., and Ohizumi, M.: Development of a new land–surface model for JMA-GSM, Bulletin

of the American Meteorological Society, Vol. 85, pp. 2737–2743, 2004.

Hirai, M., Sakashita, T., Kitagawa, H., Tsuyuki, T., Hosaka, M., Oh’izumi, M.: Development and

Validation of a New Land Surface Model for JMA ’s Operational Global Model Using the

CEOP Observation Dataset, Journal of The Meteorological Society of Japan, Vol. 85A, pp.

1–24, 2007.

Hunukumbura, P. B. and Tachikawa, Y.: River Discharge Projection under Climate Change in

the Chao Phraya River Basin, Thailand, Using the MRI–GCM3.1S Dataset, Journal of The

Meteorological Society of Japan, Vol. 90A, pp. 137–150, 2012.

Nakicenovic, N. and Swart, R. (Eds.): Special Report on Emissions Scenarios, IPCC, Cam-

bridge University Press, Cambridge, UK, pp. 570, 2000.

IPCC, Intergovernmental Panel on Climate Change Climate Change: Climate Change 2014:

Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report

of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and

L.A. Meyer (eds.)], IPCC, Geneva, Switzerland, 151 pp, 2014.

IPCC, Intergovernmental Panel on Climate Change Climate Change [Masson-Delmotte, V.,

P. Zhai, A. Pirani, S.L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I.

Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O.

Yelekci, R. Yu, and B. Zhou (eds.)]: The Physical Science Basis. Contribution of Working

Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,

Cambridge University Press, In Press, 2021.

Kobayashi, C., and Iwasaki, T.: Brewer-Dobson circulation diagnosed from JRA–55, Journal of

Geophysical Research–Atmospheres, Vol. 121, pp. 1493–1510, 2016.

Komori, D., Nakamura, S., Kiguchi, M., Nishijima, A., Yamazaki, D., Suzuki, S., Kawasaki, A.,

Oki, K., Oki, T.: Characteristics of the 2011 Chao Phraya River flood in Central Thailand,

Hydrological Research Letters, Vol. 6, pp. 41–46, 2012.

Koster, R. D, and Milly, P. C. D.: Brewer-Dobson circulation diagnosed from JRA–55, Journal



of Climate, Vol. 10, pp. 1578–1591, 1996.

Kotsuki, S., Tanaka, K., and Komori, D.: Long–term water balance analysis using different pre-

cipitation products in Upper Chao Phraya River, Thailand, Proceedings of the 6th conference

of Asia Pacific Association of Hydrology and Water Resources (APWH), pp. 6, 2013.

Kyoto University Department of Civil and Earth Resources Engineering Hydrology and Water

Resources Research Laboratory: 1K-FRM/1K-DHM,

http://hywr.kuciv.kyoto–u.ac.jp/products/1K-DHM/1K–DHM.html [Access: December 8,

2021]

Lehner, B., Verdin, K., and Jarvis, A.: New global hydrography derived from spaceborne ele-

vation data, Eos, Transactions, AGU, Vol. 89(10), pp. 93–94, 2008.

Myneni, R., Yuri, K., Park, T.: MOD15A3 MODIS/Combined Terra+Aqua Leaf Area Index/FPAR

Daily L4 Global 1km SIN Grid, Boston University and MODAPS SIPS - NASA, NASA LP

DAAC, 2015.

Manee, D., Tachikawa, Y., Ichikawa, Y., and Yorozu, K.: River discharge and reservoir opera-

tion assessment under a changing climate at the Sirikit Reservoir, THA2017, International

Conference on Water Management and Climate Change Towards Asia’s Water-Energy-Food

Nexus, TA–003, 2017.

Manabe, S.: Climate and the ocean circulation’ 1. The atmospheric circulation and the hydrol-

ogy of the earth’s surface, Monthly Weather Review, Vol. 97, No. 11, pp. 739–774, 1969.

Martin, G. M., Ringer, M. A., Pope, V. D., Jones, A., Dearden, C., and Hinton, T. J.: The

physical properties of the atmosphere in the new Hadley Centre Global Environmental Model

(HadGEM1).Part 1: Model description and global climatology Journal of Climate, Vol. 19,

pp. 1274?-1301, 2006.

Masson, V., Champeaux, J.L., Chauvin, F., Meriguet, C., Pigeon, G.: A Global Database of

Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models, Journal

of Climate, Vol. 16, No. 9, pp. 1261–1282, 2003.

Mizuta, R., Yoshimura, H., Murakami, H., Msatsueda, M., Endo, H., Ose, T., Kamiguchi, K. ,

Hosaka, M., Sugi, M., Yukimoto, S., Kusunoki, S., and Kitoh, A.: Climate simulations using

MRI-AGCM with 20–km grid, Journal of Meteorological Society Japan, Vol. 90A, pp. 235–

260, 2012.

Moriasi, D. N., Arnold, J. G., VanLiew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L.:

Model evaluation guidelines for systematic quantification of accuracy in watershed simula-



tions, American Society of Agricultural and Biological Engineers, Vol. 50(3), pp. 885–900,

2007.

Mueller, A., Dutra, E, Cloke, H., Verhoef, A., Balsamo, G., and Pappenberger, F.: Water infiltra-

tion and redistribution in Land Surface Models, Technical Memorandum European Centre

for Medium-Range Weather Forecast, 2016.

Nakaegawa, T., and Sugi, M: Impact of soil moisture movement schemes in a SVATS on global

climate of AGCM, IAHS Red Book, Vol. 270, pp. 47–51, 2001.

Nash, J.E and Sutcliffe, J. V.: River flow forecasting through conceptual models part I–A dis-

cussion of principles*, Journal of Hydrology, Vol. 10, pp. 282–290, 1970.

Niu, G.-Y., Yang, Z.-L, Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K.,

Niyogi, D., Rosero, E., Tewari, M., Xia, Y.: The community Noah land surface model with

multiparameterization options (Noah–MP): 1. Model description and evaluation with local

scale measurements, Journal of Geophyscial Research–Atmospheres, Vol. 116, D12109,

2011.

Nohara, D., Kitoh, A., Hosaka, M., Oki, T.: Impact of Climate Change on River Discharge

Projected by Multimodel Ensemble, Journal of Hydrometeorology, Vol. 7, pp. 1076–1089,

2006.

Oki, T. and Sud, Y. C.: Design of Total Runoff Integrating Pathways (TRIP)–A global river

channel network, Earth Interactions, Vol. 2, pp. 1–37, 1998.

Oki, T., Nishimura, T., and Dirmeryer, P.: Assessment of Annual Runoff from Land Surface Mod-

els Using Total Runoff Integrating Pathways (TRIP), Journal of the Meteorological Society

of Japan, Vol. 77, No. 1B, pp. 235–255, 1999.

Pitman, A. J., and Coauthors: Project for Intercomparison of Land–surface Parameterization

Schemes, Results from offline control simulations (Phase 1a): International GEWEX Project

Office Publication Series, No. 7, GEWEX/WCRP, pp. 47, 1993.

Pitman, A. J.: Review the evolution of, and revolution in, land surface schemes designed for

climate models: International Journal of Climatology, Vol. 23, pp. 475–510, 2003.

Sasaki, H., Kurihara, K., Takayabu, I., and Uchiyama, T.: Preliminary experiments of reproduc-

ing the present climate using the non-hydrostatic regional climate model, SOLA, Vol. 4, pp.

025–028, 2008.

Sasaki, H., Murata, A., Hanafusa, M., Oh’izumi, M., and Kurihara, K.: Reproducibility of present

climate in a non-hydrostatic regional climate model nested within an atmosphere general



circulation model, SOLA, Vol. 7, pp. 173–176, 2011.

Sato, N., Sellers, P. J., Randall, D. A., Schneider, E. K., Shukla, J., Kinter III. J. L., Hou, Y–

T., and Albertazzi, E.: Effects of implementing the simple biosphere model in a general

circulation model, Journal of the Atmospheric Sciences, Vol. 46, no.18, pp. 2757–2782,

1989.

Sellers, P. J., Mintz, Y., Sud, Y. C., and Dalcher, A.: A simple biosphere model (SiB) for use

within general circulation models, Journal of the Atmosphere Science, Vol. 43, No. 6, pp.

505–531, 1986.

Sellers, P. J.: Biophysical models of land surface processes, In Climate System Modelling,

Trenberth KE (ed.). Cambridge University, Press, 1992.

Sellers, P. J., Dickinson, R. E., Randall, D. A., Denning, A. S., Betts, A. K., Hall, F. G., Berry,

J. A., Collatz, G. J., Mooney, H. A., Nobre, C. A., Sato, N., Field, C. B., and Henderson-

Sellers, A.: Modeling the exchanges of energy, water, and carbon between continents and

the atmosphere, Science, Vol. 275, Issue 5299, pp. 502–509, 1997.

Simunek, J., van Genuchten, M. Th. and Sejna, M.: Development and applications of the HY-

DRUS and STANMOD software packages, and related codes, Vadose Zone Journal, Vol. 7,

No. 2, pp. 782–797, 2008.

Singh, J., H. V. Knapp, and M. Demissie: Hydrologic modeling of the Iroquois River watershed

using HSPF and SWAT, Illinois State Water Survey, CR 2004–08, 2004.

Tanaka, K.: Development of the new land surface scheme SiBUC commonly applicable to basin

water management and numerical weathe prediction model, doctoral dissertation, Kyoto

University, 2005.

Takata, K., Emori, S., and Watanabe, T.: Development of the minimal advanced treatments of

surface interaction and runoff, Global Planet Change, Vol. 38, pp. 209–222, 2003.

Takata, K. and Hanasaki, N.: Investigating runoff sensitivity in the land-surface model MATSIRO

to reduce low runoff bias, Journal of Meteorological Society Japan, Vol. 99 , No. 3 pp. 685–

695, 2021.

Thai Meteorological Department: Annual weather summary of Thailand in 2011,

http://www.tmd.go.th/programs

Tinumbang, A.F.A, Yorozu, K., Tachikawa, Y., Ichikawa, Y., Sasaki, H., and Nakaegawa, T.:

Analysis of runoff characteristics generated by land surface models and their impacts on

river discharge, Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering),



Vol. 75, No. 2, pp. I 271–I 276, 2019.

Tinumbang, A.F.A, Yorozu, K., Tachikawa, Y., Ichikawa, Y.: Analysis of the applicability of nhrcm

2km output data and a distributed hydrologic model for river discharge estimation, Proceed-

ings of the 8th International Conference on Water Resources and Environment Research,

pp. 200–203, 2019a.

Tinumbang, A.F.A, Yorozu, K., Tachikawa, Y., Ichikawa, Y., Sasaki, H., and Nakaegawa, T.:

Impacts of model structures and soil parameters on runoff characteristics in land surface

models, Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), Vol.

76, No. 2, pp. I 217–I 222, 2020.

Tinumbang, A.F.A, Yorozu, K., Tachikawa, Y., Ichikawa, Y., Sasaki, H., and Nakaegawa, T.:

Investigating the impacts of different time integration methods in land surface models on

runoff estimation, Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineer-

ing), Vol. 77, No. 2, pp. I 271–I 276, 2021.

van Dam, J. C. and Feddes, R. A.: Numerical simulation of infiltration, evaporation and shallow

groundwater levels with the Richards equation, Journal of JHydrology (Amsterdam), Vol.

233, pp. 72–85, 2000.

Xue Y, Sellers PJ, Kinter JL, Shukla J.: A simplified biosphere model for climate studies, Journal

of Climate, Ser. B1 (Hydraulic Engineering), Vol. 4, pp. 345–364, 1991.

Yorozu, K. and Tachikawa, Y.: The effect on river discharge estimation by considering an inter-

action between land surface process and river routing process, Proceedings of International

Association of Hydrological Sciences, Vol. 369, pp. 81–86, 2015.

Yorozu, K., Kurosaki, N., Ichikawa, Y., Kim, S., and Tachikawa, Y.,: A study on long-term river

discharge data generation by distributed hydrologic model and recombination atmospheric

data, Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), Vol. 74,

pp. I 127–I 132, 2018 (in Japanese).


	Introduction
	Research background
	Research objectives
	Composition of thesis

	Methodology
	Introduction
	Historical development of land surface models
	Intercomparison studies of land surface models
	Framework of this study
	Introduction
	Land surface models
	Flow routing model
	Study area
	Observation data
	Climate model output datasets


	Analysis of the applicability of runoff generated by land surface models for streamflow simulation
	Introduction
	Methodology
	Simulation designs
	Impact analysis
	Modeling approach for runoff simulation by SiBUC

	Evaluation of rainfall output from the climate models
	Spatial patterns of climatological mean rainfall
	Seasonal cycles of basin average rainfall
	Frequency and intensity of daily rainfall

	Analysis of water budget and runoff characteristics
	Evaluation of simulated river discharge
	Characteristics of simulated daily discharge
	Evaluation of simulated daily streamflow
	Evaluation of average monthly simulated streamflow

	Conclusions

	Investigation of runoff generation schemes in land surface models
	Introduction
	Development processes of MRI--SiB emulation model
	Different settings between SiBUC and MRI--SiB
	Land surface parameters
	Structure for direct infiltration from ground surface into deeper soil layer
	Governing equation for water movement between adjacent soil layers
	Governing equation for subsurface runoff estimation
	Time integration methods for soil schemes

	Experimental designs by MRI--SiB emulation model
	Changes of water budget
	Overall impacts
	Impacts of changing land surface parameters
	Impacts of incorporating direct infiltration structure into deeper soil layer
	Impacts of neglecting gravitational drainage for estimating soil--water flow between adjacent soil layers
	Impacts of considering hydraulic diffusion for estimating subsurface runoff estimation
	Impacts of changing all model structures
	Impacts of different time integration methods for soil schemes
	Impacts of considering all MRI--SiB settings in SiBUC

	Evaluation of MRI--SiB emulation model
	Overall impacts
	Spatial distributions of water budget components
	Annual water budget
	River discharge simulation

	Discussion
	Parameters related to ground cover layer
	Transpiration schemes
	Initial value of soil moisture
	Time integration methods for solving Richards equation

	Conclusions

	Improvement of land surface models to reproduce long--term observed river flow
	Introduction
	Methodology
	Comparison of water budget estimated by SiBUC and MRI--SiB emulation model
	Evaluation of river discharge simulated by runoff from SiBUC and MRI--SiB emulation model
	Improvement strategies for MRI--SiB emulation model
	Overview
	Experimental designs
	Changes of water budget by revised emulation model
	Evaluation of streamflow simulated by revised emulation model

	Improvement strategies for SiBUC
	Overview
	Experimental designs
	Changes of water budget by revised SiBUC
	Evaluation of streamflow simulated by revised SiBUC

	Discussion
	Conclusions

	Conclusions

