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Chapter 1 

Introduction 

 

 

1.1 Research background 

Design process of building structures is a collaborative work due to the interdisciplinary 

requirements from various aspects of architects and engineers, and the final result of a building 

project could be a compromise or synergy of different even conflict goals of the structure, such as 

aesthetics in appearance, structural strength and construction cost [1][2]. As a result, a large 

number of revisions are needed to iteratively balance the decisions made by architects and 

engineers which is inefficient and complicated. To alleviate this difficulty, one of the alternatives 

is to introduce structural optimization into the design process for generating design options with 

specified objectives and constraints [3].  In this way architects and engineers can work more 

interactively to save design time, and find out the optimal solution from these proposed designs 

that benefits the both sides [4][5]. Although the early idea of structural optimization can be traced 

back to the pioneering work of Michell truss [6] [7], it is not widely applied as a powerful tool 

until 1980s when the high performance computer system is rapidly developed [8]. Among all types 

of structures, optimization of frame structures is one of the standard research topic in structural 

optimization because it is commonly used in civil and architectural engineering. Typically, the 

optimization problem of frame structure is formulated as minimizing the structural cost (e.g., 

structural volume or weight) subject to constraints on structural response (e.g., deformation or 

stress), or vice versa, and the design variables are usually the cross-sectional properties and/or 

nodal locations. Then the problem is solved by either mathematical programming method [9][10], 

heuristic method [11][12] or the recently developed machine learning method [13][14], and the 

optimal solution can be considered as a design option or initial guess of the frame to be modified 

by architects and engineers [15].  

Moreover, because uncertainties are unavoidable in the real world structure which could have 

impact on the result designed by structural optimization, it is more reasonable to incorporate 

uncertainty during optimization process to ensure that the result is practically useful [16].  

Therefore, the research topic of structural optimization under uncertainty has attracted attention 

from researchers since the early works in 1960s [17], and become increasingly important in today’s 

building industry [18][19]. Among them the robust structural optimization (RSO) [20] and 

reliability-based structural optimization (RBSO) [21] are two frequently used methods which 

consider the effects of uncertainties in different ways. On the one hand, RSO usually focuses on 
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searching for a result which is relatively insensitive to the variation of uncertainties, and several 

problem formulations are proposed based on different description of uncertainty [22]. Roughly 

speaking, when uncertainty is described by probabilistic model with available distribution 

information, the RSO problem is formulated to minimize the expectancy and discrepancy of 

structural response, including the standard measure of weighted sum of mean value and standard 

deviation of structural response [23][24]; otherwise, when uncertainty is described by non-

probabilistic model, the RSO problem is formulated to minimize the worst structural response with 

all the possible realizations of uncertainties, which is also called worst case optimization (WCO) 

[25–27]. On the other hand, RBSO aims at finding a design satisfying the structural safety 

requirement, which is usually quantified by the probability of failure or reliability index [28][29]. 

Generally, RBSO consists two main calculation procedures: structural optimization procedure and 

reliability analysis procedure, and the methods for solving RBSO problem can be classified into 

different types depending on how reliability analysis is incorporated into structural optimization 

[21][30].  

In addition, since the goal of frame optimization is usually to produce lighter and stronger 

structure, it often leads to a frame composed of slender members, and thus lacks sufficient stability. 

Therefore, the need to include stability constraint in frame optimization has been emphasized by 

many studies [31–33]. Among all the different phenomena covered by stability theory, because the 

detailed nonlinear stability information about the structure is not available at the early stage of 

design process, global stability (also called global buckling or linear buckling) is widely used to 

consider instability problem into structural optimization [34], and the nonlinear buckling load 

factor can be obtained by scaling the linear buckling load factor [35]. This procedure works well 

for many real-world structures to account for structural stability. When solving frame optimization 

problem with global stability constraint, a local buckling mode may appear if some of the members 

have very small cross-sectional areas, resulting in an artificial or pseudo buckling mode which 

violates the stability constraint. This is called singularity phenomenon in structural optimization 

considering global stability [36][37]. One of the alternatives is to penalize the geometrical stiffness 

matrices of thin members to reduce theirs contributions to the global geometrical stiffness matrix, 

and thus the artificial buckling mode can be eliminated from global stability analysis [38]. This 

penalization method has been used by many researchers and currently appears to be a standard 

approach to alleviate the difficulty caused by singularity phenomenon in global stability [39][40].  

 

1.2 Literature review 

1.2.1 Optimization of frame structures  

Optimization of frame structures can be classified into three categories, namely, sizing, shape (or 

geometry) and topology optimization, which are illustrated in Fig. 1-1. Sizing optimization, which 

aims at finding the optimal cross-sectional properties of members, is usually included in shape and 

topology optimization, and the change of structural topology can be achieved in the standard 

framework of sizing optimization [41][42]. Based on the well-established ground structure method 

[43], the optimal topology of a frame structure is obtained by removing the unnecessary members 
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from the set of potential connections of nodes with fixed locations and retaining the members with 

positive cross-sectional properties. Compared to the optimal Michell truss which is composed of 

an infinite number of members, the ground structure method provides an alternative by using a 

finite number of members [44]. It has been further refined by Sokol [45] to an easy-to-use 

implementation for truss topology optimization in structured orthogonal domains, which is also 

extended to unstructured meshes in initial ground structure [46]. Lewinski et al. [47] also used 

ground structure method to approximate the exact solution of optimization problem with 

complicated domain. However, since the nodal locations are unable to vary during the optimization 

process, it is necessary to work with as many nodes and members as possible for shape 

optimization, resulting in a large number of design variables.  

 

 

Fig. 1-1 Classification of optimization of frame structure 

 

Unlike the ground structure method, shape and topology optimization of frame structures 

allows the node to vary in a given range, leading to an effective improvement of objective function 

value [48–50]. Therefore, it may start from a sparse initial structure with less members. When 

shape optimization is involved, however, one of the main difficulties is the existence of melting 

nodes, or coalescent nodes, resulting in extremely short member in the structure and making the 

stiffness matrix singular [51]. Moreover, the derivative of the objective function with respect to 

the nodal coordinates becomes discontinuous due to existences of extremely short members. 

Ohsaki [52] modeled a regular grid truss as a frame with beam elements and adjusted the stiffness 

of a short member using a Sigmoid function. Wang et al. [53][54] proposed a node shift method 

for truss shape optimization where the intervals of node shift are controlled not to cause a large 

variation in stiffness matrix.  

To widen the moving range of nodes during shape optimization and at the same time to 

alleviate the difficulty of melting node, Ohsaki and Hayashi [55][56] recently explored the merit 

of force density method (FDM) to shape and topology optimization of pin-jointed trusses, in which 
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the objective and constraint functions are expressed explicitly by the force densities only; thus, the 

problem caused by melting nodes is alleviated. FDM is primarily applied in the form-finding 

process of cable nets and tensegrity structures, where the nonlinear equilibrium equations with 

respect to the unknown nodal coordinates is converted to a set of linear equations by prescribing 

the force density of each member which is defined as the ratio of member force to its length 

[57][58]. Kimura et al. [59][60] optimized the shape of shear wall consisting of latticed blocks, 

where force densities of members are used as auxiliary parameters for arrangement of lattice 

members, and the problem is solved by alternatively optimizing the geometry and topology of the 

lattice. Descamps and Coelho [61] used force density as an intermediate variable in the formulation 

of compliance minimization problem of truss. However, since the members of a frame are rigidly-

jointed, not only axial force but also shear force and bending moment exist in frame structures, to 

which the FDM for cable nets and trusses cannot be directly applied.  

1.2.2 Optimization under uncertainty 

In RSO, when probabilistic model is used to describe the uncertainties, the variation of structural 

response is usually represented by its second-order statistical moment, and it is simultaneously 

minimized or assigned as constraints with its first-order statistical moment (i.e., mean value) 

[23][24]. However, substantial effort is needed for calculation of the statistical moments and their 

derivatives if more than one type of random variables are involved, or uncertainty is assumed in 

the structural stiffness because the displacement is a function of the inverse of uncertain stiffness 

matrix [62][63]. To alleviate this difficulty, the stochastic method has been introduced to describe 

the characteristics of the uncertain parameters, and it attracts more attention from the researchers 

due to its explicit form of uncertainty propagation [64][65] [66]. However, balancing the accuracy 

and computational efficiency is still a challenge and such kind of method has not been fully 

explored yet. In addition, this type of RSO requires accurate distribution information of 

uncertainties to ensure accuracy of the solution, and a large estimation error will occur when the 

information about uncertainty is insufficient [67][68].  

By contrast, the WCO provides an alternative if the uncertainty is described by a non-

probabilistic model [19]. Traditionally, the procedure of WCO consists of a two-level problem: 

the upper- and lower-level problems are solved for structural optimization and worst value 

evaluation, respectively [26][69][70]. However, the computational cost for searching the exact 

worst value is very large even for a simple interval model or a well-defined ellipsoid model to 

define the region of uncertain parameters [27] [71]. To save computational cost without loss of 

generality, Kanno and Takewaki [72][73] constructed a minimum confidence ellipsoid of the 

structural response to solve the WCO problem in a confidence way, and the uncertainty is 

considered in the cross-sectional areas and the applied load; Guo et al. [74] extended this method 

to a single-level problem formulation with stiffness uncertainty and fixed nodes; Kanno and Guo 

[75] reduced the discrete WCO of truss structure to a mix-integer programming problem where 

the uncertain load is predefined in an ellipsoid. Although these WCO approaches with confidence 

robustness model can be successfully solved, their application to shape optimization requires 

uncertainty in nodal locations, which is another common source of uncertainty. Fu et al. [76] 

solved the truss topology optimization problem with uncertain nodal locations using proportional 
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topology optimization method, where the inverse of stiffness matrix is expressed based on 

Neumann series expansion. However, since its objective function is the expected value of 

structural response, this method might be insufficient to characterize the uncertain properties of 

the structure if the deviation of response is moderately large. Recently, Ohsaki et al. [77][78] 

developed an order statistic approach to consider the worst value with certain confidence level, in 

which the worst  value is approximated by the kth order statistic and the parameter k is regarded 

as the robustness level according to the theory of distribution-free tolerance interval. This method 

can be regarded as a special case of scenario optimization where the scenario theory is used to 

provide a certain robustness for the optimal solution [79], that is, the probability of the solution 

not to violate the requirements in the unseen future with given sample set and confidence level. 

As for RBSO, according to their strategies to incorporate reliability constraints in optimization 

procedure, the methods for solving RBSO problem can be classified into three categories: double-

loop method, single-loop method and decoupling method, and their corresponding schematic 

presentations are shown in Fig. 1-2. In double-loop method the probability constraints are 

evaluated at each iteration of the optimization procedure with the current values of design variables. 

Therefore, there are two nested loops in the double-loop method: the inner loop evaluates the 

probability constraints at each iteration of the outer loop of optimization procedure. Although the 

double-loop method is easy to implement, it would become computationally infeasible because it 

consists of nested loops of design optimization and reliability analysis [80]. Therefore, great effort 

has been made in the past two decades to improve its computational efficiency by either facilitating 

the procedure of reliability analysis [81] or modifying the formulation of probability constraints 

[82]. Lee et al. [83] introduced the popular dimensional reduction method (DRM) into the double-

loop RBSO with a new inverse reliability analysis to reduce the number of function evaluations in 

multidimensional probability integration; Rahman and Wei [84] also applied DRM to a double-

loop RBSO procedure where the sensitivity coefficients of probability with respect to design 

variables are derived. However, since the inner loop of reliability analysis is called at each time 

when the design variables are updated at the outer loop, the number of reliability analyses could 

be still very large, leading to a high computational cost. On the other hand, the single-loop method 

provides an alternative to reduce the number of RBSO function calls, where the reliability 

constraint is converted into approximated deterministic constraint at most probable point (MPP). 

Chen et al. [85] first proposed the single-loop single-vector method where the unit direction vector 

for searching the MPP is assumed to be constant, and Liang et al. [86] further developed the 

method by adaptively calculating the unit direction vector during the optimization procedure. It is 

proven that the single-loop method is one of the most efficient approaches for solving RBSO 

problems [87]; however, its numerical stability is still a challenge when the limit state function is 

highly nonlinear [30]. 

The decoupling method improves the efficiency of double-loop method from another 

perspective, where the inner loop of reliability analysis is decoupled from the outer loop of 

optimization, and the evaluations of probabilistic constraints are only conducted at the end of each 

sub-deterministic optimization process. Early works of decoupling method approximate the 

probability constraints using sensitivity information of the previous iteration [88]. Du and Chen 

[89] proposed the sequential optimization and reliability assessment (SORA) method which 
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decouples the reliability analysis from structural optimization using the shifting vector. Since then, 

SORA has gradually become one of the frequently used methods for solving RBSO problems 

because of its simplicity and stability [30], and many researches have been conducted to enhance 

its performance. Du [90] further improved the accuracy of SORA by using saddle point 

approximation to handle the nonlinearity in probability constraints caused by the transformation 

between non-normal and normal random variables. Chen et al. [91] searched the optimal shifting 

vector using the limit state functions to accurately adjust the boundaries of probability constraints 

when they are highly nonlinear. However, as most of the existing SORAs are MPP-based methods, 

one of the challenges is that the MPP-based SORA may not be able to converge if there are multiple 

MPPs [92]. To overcome this difficulty, recently Li et al. [93] proposed a quantile-based SORA 

method where the shifting vector is calculated in the probability space without relying on the 

accurate MPP. The Kriging model is also applied instead of the crude Monte Carlo simulation 

(MCS) to reduce the computational cost for calculating the quantile. He et al. [94] further extended 

the quantile-based SORA method by calculating the quantile corresponding to the target reliability 

using fractional moment-based maximum entropy method (MEM), where the two-level 

optimization problem to obtain the values of Lagrangian multipliers and the orders of fractional 

moments is reduced to a single-loop optimization problem by using Laplace transform [24]. 

However, the Laplace transform of unknown probability distribution function (PDF) needs to be 

carefully chosen otherwise it may spoil the result [95]. 

 

 

Fig. 1-2 Strategies for solving RBSO problem, from left to right: double-loop method, single-

loop method and decouple method 
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Similar to RSO problem, another challenge in RBSO problem is that in practice the exact 

probability information of uncertainties may be unavailable beforehand, and one would need to 

estimate the structural reliability with a given set of random samples of uncertain parameters 

[96][97]. Moreover, the sample size and sampling variability have great effect on the accuracy of 

reliability estimation [98–101], and it is recognized that the estimation of higher order central 

moment from a set of random samples tends to be biased when the sample size is small [99] [102]. 

To overcome such difficulties, Pandey [102] estimated the quantile function of a random variable 

with unknown distribution using MEM subject to sample probability-weighted moments (PWMs), 

and the results showed that this method is more reliable than the method using sample central 

moments when sample size is small. Deng and Pandey [103] further improved this method with 

fractional PWMs; however, the Lagrange multipliers and the orders of fractional moments are 

determined by the computationally expensive two-level nested optimization procedure. Besides, 

since the single-level method in Ref. [95] is constructed for ordinary fractional moments, it cannot 

be directly applied to the quantile-based MEM subject to fractional PWM constraints. On the other 

hand, Pandey [104][105] also presented an approach for quantile estimation using minimum cross-

entropy principle (MCEP) subject to PWM constraints, and stated that if the prior distribution in 

MCEP is uniform, the cross-entropy minimization is equivalent to entropy maximization. However, 

since MCEP requires a prior distribution for quantile estimation, the MEM is more appropriate 

than MSEP when any prior information of uncertainties is absent. Hosking [106] found that by 

using MEM subject to specified linear moments (L-moments), the density-quantile function of an 

unknown random variable, which is the derivative of the quantile function, has a polynomial form, 

and the corresponding quantile function can then be obtained by numerical integration. However, 

the unknown coefficients in density-quantile function are derived by solving a complex system of 

nonlinear equations. 

 

1.2.3 Optimization with stability constraints 

Global stability constraint in frame optimization is typically formulated using linear buckling load 

factor, and the geometric nonlinearity induced by large deformation under external loading is 

ignored. Ohsaki et al. [107] solved the truss topology optimization problem under frequency 

constraints by using semidefinite programming, and Kanno and Ohsaki [108] extended the method 

to optimization of frame structures with global stability constraint, where the optimization problem 

is transformed into a nonlinear semidefinite programming problem with a matrix inequality 

constraint . Ben-Tal et al. [109] also proposed a semidefinite programming formulation for truss 

optimization with global stability constraint. Weldeyesus et al. [110] introduced shape 

optimization to an existing truss topology optimization with global stability constraints, whereas 

the range of node shift is limited. Moreover, in order to take into account both global and local 

stabilities of the structure, Torii et al. [111] modeled the truss structure using frame elements to 

capture the local buckling without the use of the Euler formula, and formulated  the optimization 

problem with only one global stability constraint to consider both local and global buckling 

constraints. Madah and Amir [112] simulated each truss member by a sequence of geometrically 

nonlinear beam elements which release the bending moments at the ends of a bar, and the global 
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stability is taken into account by applying appropriate imperfections on the structure. Descamps 

and Coelho [61] used force density as an intermediate variable in the formulation of compliance 

minimization problem, and avoided the nodal instability  by applying the nominal force method to 

simulate the geometric imperfection. Meanwhile, Evgrafov [37] showed that global stability 

consideration may face singularity phenomenon when the cross-sectional area approaches the 

small lower bound. To alleviate this difficulty, Guo et al. [113][114] extended the relaxation 

technique, which is firstly proposed to handle stress constraints, to optimization problem of truss 

structure under stability and stress constraints. On the other hand, Bendsøe and Sigmund [3] 

proposed to use a scheme for penalizing the geometric stiffness matrix of thin members. 

Furthermore, based on the identification scheme of pseudo buckling mode in continuous structural 

topology optimization [39], Asadpoure et al [34] introduced a set of indicator variables of existence 

for each member in the frame structure to exclude the contributions of geometric matrices of thin 

elements, which can be also considered as a variant of penalization method [115]. It has been 

pointed out that the penalization method works well[39][40]; therefore, the method is used by 

many other researchers to deal with singularity phenomenon [38].  

 

1.3 Research objectives  

Objective of this research is to investigate and exploit new methods for shape and topology 

optimization of plane frame structures, which aims at alleviating some difficulties and challenges 

in the existing methods. The specific goals relevant to this work are: 

 1) To develop a new method for simultaneous shape and topology optimization of plane frame 

structures which is capable of avoiding melting nodes. 

 2) To define the structural robustness level in RSO problem formulation without any prior 

assumption on the distributions of uncertainties. 

 3) To express the reliability constraint in RBSO problem formulation in terms of quantile of 

structural response without searching MPP. 

 4) To discuss the influence of stability constraint on the optimal result. 

 

1.4 Thesis outline 

The rest of dissertation is organized as follows: in Chapter 2 the basic concepts of methodologies 

and techniques which contributes to the main novelties and findings of the dissertation are 

introduced; in Chapter 3 the method of simultaneous shape and topology optimization of plane 

frames is presented with illustrative examples, and the method will also be applied to both robust 

optimization in Chapter 4 and reliability-based optimization in Chapter 5; finally, Chapter 6 

summaries the results of Chapters 2-5, and gives some suggestions to the future study. 
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Chapter 2 

Basic concepts 

 

 

2.1 Brief introduction 

Chapter 2 is to give some basic concepts and definitions of some terminologies and techniques, 

which will be used for further investigation and discussion of optimization of frame structures in 

this research. A brief introduction of this chapter is given as follows.  

In Section 2.2, the idea of FDM is briefly explained, which will be used for shape optimization 

of frame structures in Chapters 35. Unlike the traditional FDM, in this research the fixed nodes 

include supporting nodes, loading nodes and the nodes for specific reason, and the locations of 

free nodes are obtained by solving the equilibrium equations to determine the structural shape. 

In Section 2.3, the definition of order statistics is first given, which will be used to define 

structural robustness level in Chapter 4. Unlike the traditional definition, in this research the order 

statistics are sorted in a descending order for convenience, and some properties of order statistics 

are also presented. Moreover, by using order statistics the calculations of linear moments (L-

moments) and sample L-moments are derived, which will be used to compute the reliability 

constraints in Chapter 5. 

In Section 2.4, the definitions of uncertainties in nodal locations, cross-sectional areas and 

Young’s modulus are given, which will be used in Chapters 4 and 5. When the global stability 

constraint is involved in the problem, each frame member is modeled by four Euler-Bernoulli 

beam elements for application to the linear buckling analysis, and the uncertainty should also be 

considered at the end nodes of these beam elements, making the frame member no longer straight. 

Note that in this research no assumption is made on the distribution types of the uncertainties. 

In Section 2.5, the singularity phenomenon of global stability is discussed. When the thin 

elements are not removed from the structure, the linear buckling load factor is much smaller than 

that after removing the thin elements, which makes the structure easier to violate the stability 

constraint. 
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2.2 Force density method 

FDM is widely used in the form-finding process of pin-jointed structures, such as cable nets and 

tensegrity structures, where the force density is defined as the axial force divided by the length of 

a member. In this study for optimization of frame structures, FDM is used for an auxiliary pin-

jointed truss or cable net structure to generate nodal locations. Let m and n represent the numbers 

of members and nodes of the auxiliary truss, respectively. If member i connects nodes j and k 

 j k  , then the m-by-n connectivity matrix C is given by defining each entry as [55][58]  

   ,

1

1  1, 2, , ; , 1, 2,...,

0 other case

i p

p j

p k i m j k n




    



C   (2.1) 

where the subscript (i, p) indicates the entry of C at the ith row and pth column. The force density 

ti of the ith member is defined as 

i
i

i

N
t

L
   (2.2) 

where Ni is the axial force and Li is the length of the ith member. Accordingly, the m-by-1 force 

density vector is denoted by  1 2, ,...,
T

mt t tt  . Let xfree, xfix, yfree and yfix represent the x- and y- 

coordinates of the free nodes and the fixed nodes, respectively, and arrange the columns of 

connectivity matrix C such that the columns corresponding to the free nodes precede those 

corresponding to the fixed nodes, i.e.,  free fix
,C C C . Then the equilibrium equations at the free 

nodes and the fixed nodes of the auxiliary pin-jointed structure are written as 

   

   

   

   

free free free free fix fix ,free

free free free free fix fix ,free

fix free free fix fix fix ,fix

fix free free fix fix fix ,fix

diag diag

diag diag

diag diag

diag diag

T T

x

T T

y

T T

x

T T

y

 

 

 

 

C t C x C t C x P

C t C y C t C y P

C t C x C t C x P

C t C y C t C y P

  (2.3) 

where diag(t) is the square diagonal matrix with the elements of vector t on the main diagonal, and 

Px,free, Px,fix, Py,free and Py,fix are the external forces applied at the free nodes and fixed nodes in x- 

and y-directions, respectively. For the conventional FDM, the free nodes and fixed nodes are 

determined in accordance with the support conditions. However, in this research, the fixed nodes 

consist of the supported nodes and loaded nodes, as well as the nodes for specific reason, e.g., 

requirement of structural shape, that are not allowed to move during the optimization process. 

If the force densities are given for all members in the structure and the locations of fixed nodes 

are assigned, then the locations of free nodes can be obtained from Eq. (2.3), that is 
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    

    

1

free free free free fix fix

1

free free free free fix fix

diag diag

diag diag

T T

T T





 

 

x C t C C t C x

y C t C C t C y

  (2.4) 

It has been proved by Kanno and Ohsaki [116] that the submatrix corresponding to free nodes in 

the connectivity matrix, i.e., Cfree, is non-singular if at least one node is fixed. Therefore, if t is a 

non-zero vector and at least one node is fixed, then the matrix  free fix
diagT

C t C is non-singular and 

Eq. (2.4) has a solution for xfree and yfree. 

 

2.3 Order statistics and L-moments 

Order statistic is a very useful concept in statistical science and one of the most fundamental tools 

in non-parametric statistics and inference [117]. Suppose  1 2, , ,
dnd d dd  and 

 
u1 2, , , n  θ  are the vectors of nd design variables and nu uncertain parameters, and let 

1θ , 

2θ ,…,
smθ be the ms independent and identically distributed (i.i.d.) vectors of uncertain parameters. 

The corresponding ms structural responses are denoted as 

 1 1
;Z g d θ ,  2 2

;Z g d θ ,…,  
s s

;m mZ g d θ   (2.5) 

where   s
; ,  1, 2, ,ig i md θ  is the ith stochastic structural response corresponding to d and iθ . 

Because
1Z , 

2Z ,…, 
smZ are obtained from the same response function with i.i.d. uncertain 

parameters, it is rational to assume that these responses are samples from the same distribution 

with unknown cumulative distribution function (CDF) denoted by    PrF z Z z  . We further 

define the values 
s1:mZ , 

s2:mZ ,…, 
s s:m mZ  as a permutation of 1Z , 2Z ,…, 

smZ  such that 

s s s s1: 2: :m m m mZ Z Z   , and the kth  s
1 k m   response 

s:k mZ  is called the kth order statistic. 

Note that the descending order statistics herein are used for convenience to approximate the 

maximum structural response, which is different from the conventional definition of order statistics 

arranged in an ascending order. 

Next we introduce some properties of order statistics. Firstly, let 1U , 2U ,…, 
smU  be the ms 

random samples from standard uniform distribution, and 
s1:mU , 

s2:mU ,…, 
s s:m mU  be the 

corresponding order statistics in a descending order as defined above. Then we can have the 

following relation [117] 

 
s s: : s,  1, 2,...,k m k mF Z U k m   (2.6) 

for any arbitrary CDF  F z . Using the inverse CDF  1F z
 we can also have 
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 
s s

1

: : s,  1, 2,...,k m k mF U Z k m


   (2.7) 

Another useful property of order statistics 
s1:mU , 

s2:mU ,…, 
s s:m mU is the distribution of range 

between two order statistics. Suppose 
1 s:k mU  and 

2 s:k mU  are the two order statistics with orders

1 2 s1 k k m   , and denote 
2 1 s:k k mU 

 as the range between 
1 s:k mU and 

2 s:k mU . According to Ref. [117] 

we have  

 2 1 s 1 s 2 s s 2 1 s
: : : 1:k k m k m k m m k k m

U U U U   
      (2.8) 

Besides, let    
s s: :Prk m k mF z Z z   be the CDF of 

s:k mZ  which is computed as [117] 

         
s s: :

1

Pr 1
s

s

s

m
r m rs

k m k m

r m k

m
F z Z z F z F z

r



  

 
    

 
  (2.9) 

By using the identity equation [117] 

     
   

 
 s

s
s

s

1s s

0
1 s

!
1 1

! 1 !

m
F zr m r km k

r m k

m m
F z F z u u du

r m k k

 

  

 
   

  
   (2.10) 

Eq. (2.9) can then be rewritten with respect to incomplete beta function 
   s 1,

F z
I m k k   as  

         

   
 

 

   

s
s

s s

s

s

: :

1

1s
s

0
s

Pr 1

!
1 1,

! 1 !

s

m
r m r

k m k m

r m k

F z km k

F z

m
F z Z z F z F z

r

m
u u du I m k k

m k k



  



 
    

 

    
 





 (2.11) 

Clearly, if  F z  is a CDF of standard uniform distribution, then we can have 

     s s1, 1, ,  0< <1zF z
I m k k I m k k z     .  

Furthermore, let 
1 s:k mZ  and 

2 s:k mZ  be the two order statistics with orders 1 2 s1 k k m   . Based 

on Eqs. (2.6) and (2.11), the probability 
1 2 s, :k k m  of a random sample falling into the interval 

between 
1 s:k mZ  and 

2 s:k mZ  is calculated as follows: 

     1 2 s 1 s 2 s 1 s 2 s s 2 1 s
, : : : : : 1:k k m k m k m k m k m m k k m

F Z F Z U U U
  

      (2.12) 

Then based on Eqs. (2.9) and (2.12), the probability of 
1 2 s, :k k m no less than a specific value 

 0 1    is calculated as 
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      
 s 2 1

s

1 2 s 1 2 ss 2 1 s

s

, : , :1:
0

Pr Pr 1

m k k
m rr

k k m k k mm k k m
r

m
U

r
     

 


  


 
      

 
  (2.13) 

It can be observed in Eq. (2.13) that 
1 2 s, :k k m  only depends on the orders k1, k2 and sample size ms, 

and is free of distribution F. In other words, the interval between 
1 s:k mZ  and 

2 s:k mZ  forms a 

distribution free 100β% tolerance interval for the population at confidence level 
1 2 s, :k k m . Therefore, 

Eq. (2.13) is called distribution-free tolerance interval at the confidence level 
1 2 s, :k k m [117]. 

As for L-moments, they are defined as linear combinations of order statistics analogously to 

conventional moments. Taking the aforementioned stochastic structural response Z as example, 

the rth (r≥1) order L-moment of Z, denoted as 
rLM , is given as follows [118]: 

   
1

1

1:

0

1
1 E

r
k

r k r

k

r
LM r Z

k








 
   

 
   (2.14) 

where  1:
E k rZ

  is the expectation (i.e., mean value) of the order statistic 
1:k rZ 

. Since the 

distribution information of 
1:k rZ 

 is unknown, in practice it is usually estimated by the sample L-

moments from the ms samples 
s1:mZ , 

s2:mZ ,…, 
s s:m mZ . Denoting the rth order sample L-moment of 

Z as 
rlm , it can be obtained by  

 
1

1

0

1 1
1

r
r s

r s

s

r r s
lm b

s s


 



    
    

  
  (2.15) 

where 
sb  is one kind of the sample probability weighted moments (PWMs) of Z calculated as 

follows [118]: 

     

     

s

s

1

s :

1

1 1

1 2

m

s i m

i

m i m i m i s
b m Z

n n n s





     


  
  (2.16) 

 

2.4 Uncertainty in structural stiffness 

Since in practical engineering the joint locations and cross-sectional areas of members in the frame 

structure may deviate from their corresponding nominal values due to manufacturing or on-site 

construction error, and uncertainty in the material property should also be considered. Therefore, 

in this research the uncertainties in structural stiffness is assumed to possibly exist in the x- and y-

coordinates of nodes, cross-sectional areas and Young’s modulus, and they are modeled as random 

variables with unknown distribution information. For simplicity, the fixed nodes, such as loading 

and supporting nodes, are assumed to be precisely located, and uncertainties are only considered 

in x- and y-coordinates of free nodes, respectively, although it is also possible to add uncertainties 

to the x- and y-coordinates of fixed nodes to simulate the variations such as installation error at the 
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support in practical engineering. It should be noted in the problem formulations of Chapters 4 and 

5 that no assumption is made on the distribution information of uncertainty. However, in the 

numerical examples of Chapters 4 and 5, we choose uniform distribution as the sample-generating 

mechanism for conveniently constructing the random sample set for order statistics [79]. 

The details of modeling uncertainties will be illustrated below. Suppose the ith member is 

connected by two nodes i1 and i2 as shown in Fig. 2-1(a) with member length Li. The random 

perturbations are firstly added to the locations of the end nodes i1 and i2 in x- and y-coordinates, 

and the corresponding uncertain nodal locations are expressed as  

      , , ,   for   1,  2j j j j j jx y x y x y j i i         (2.17) 

where  ,j jx y   is the uncertain location of node j after adding perturbations and  ,j jx y  is the 

nominal location of node j before adding perturbations, which are denoted as blue and red dots in 

Fig. 2-1(a), respectively;  ,j jx y   are the random perturbations of uncertainty in nodal locations.  

 

 

  (a) (b)  

Fig. 2-1 Uncertainty in nodal locations of the ith member on (a) end nodes; (b) intermediate 

nodes 

 

After determining the uncertain locations of the end nodes, the member length is changed from 

Li to iL . When no global stability constraint is considered or iL  is small enough, the ith member 

is simulated by only one Euler-Bernoulli beam element, otherwise it is simulated by four Euler-

Bernoulli beam elements with the same element length, which are distinguished by three 

intermediate nodes i3, i4 and i5 as shown by the red dots in Fig. 2-1(b). Interpolating between the 

uncertain locations  1 1
,i ix y   and  2 2

,i ix y   of nodes i1 and i2 obtained by Eq. (2-17), the locations 

of the three intermediate nodes are calculated as follows: 

   
   2 2 1 1

1 1

, ,
, , ,  =1,2,3

4

i i i i

j j i i

x y x y
x y x y k k

    
      

 
 (2.18) 
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where k = 1, 2 and 3 correspond to the locations of i3, i4 and i5, respectively. For the given 

eccentricity e of the ith member, which is the maximum deviation from the straight line connected 

the two end nodes i1’ and i2’ and can be considered as initial imperfection shape, the random 

perturbations are added to nodes i3, i4 and i5 perpendicular to the ith member, and the uncertain 

locations of these three nodes are calculated as 

     

   2 2

2 1 2 1

, , ,  for  3,  4,  5 

;   , ,

j j j j j j

j j i j j i i i i

x y x y x y j i i i

x y eL x y x x y y

       

            
 (2.19) 

where  , ,  ( 3,  4,  5)j jx y j i i i    are the uncertain locations of nodes i3, i4 and i5 as shown by the 

blue dots in Fig. 2-1(b), and  , ,  3,  4,  5 j jx y j i i i   are the random perturbations on the 

locations of nodes i3, i4 and i5. It can be seen from Figs 2-1(a) and (b) that the final imperfect 

geometry of the ith member is obtained through the uncertain locations of two end nodes i1 and i2 

and three intermediate nodes i3 to i5. Moreover, in order to consider the correlation relationships 

among uncertainties in locations of end nodes and intermediate nodes, the following exponential 

decay function is used to calculate the correlation coefficient [66]: 

   1 1 2 2

1 2

exp

, ,
exp ,   1,  2 1,  2,...,  5

j j j j

j j

x y x y
c j j i i i

L

 
   
 
 

 (2.20) 

where cj1j2 is the correlation coefficient between uncertainties in locations of nodes j1 and j2, and 

Lexp is the user-defined correlation length. As discussed in Ref. [66], since the correlation among 

uncertainties in frame structures is weaker than that in continuum structure, a small value will be 

assigned to Lexp in numerical examples. 

Similarly, by denoting the nominal values of cross-sectional area and Young’s modulus as iA  

and 
iE , respectively, the random perturbations are added in a similar manner as in Eq. (2-17) as 

;  i i i i i iA A A E E E       (2.21) 

where iA  and iE   are the corresponding uncertain cross-sectional area and Young’s modulus of 

ith member after adding random perturbations. It is worth noting that the four beam elements in 

Fig. 2-1(b) share the same iA  and iE  . 

 

2.5 Singularity phenomenon in global stability 

As discussed in the research background in Chapter 1, the singularity phenomenon in global 

stability would result in pseudo local buckling which have negative effects on calculating the linear 

buckling load factor [36][37]. To illustrate the singularity phenomenon of the stability constraint, 

the buckling load factor of a simple frame structure is investigated as shown in Fig. 2-2(a), where 

the node number and the member number are indicated by those with and without parentheses, 
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respectively. The frame is pin-supported at nodes 1 and 2, and a downward vertical load F with 

magnitude 2000 N is applied at node 3. Each member is divided into four Euler-Bernoulli beam 

elements with Young’s modulus 3×1011 Pa, and their cross-sectional areas are listed in Table 2-1. 

Note that the crossing members 3 and 4 are not connected at their intersection. As a result, there 

are 20 beam elements in total in the structure. For comparison purpose, the frame structure after 

removing the thin members, i.e., members 2, 3 and 5, is also investigated and shown in Fig. 2-2(b). 

The linear buckling load factor cr  before removing thin members is 0.7971, whereas the value of 
cr  after removing thin members is 238440.64. This enormous difference demonstrates that global 

geometrical stiffness matrix of the structure is highly dependent on its thin members; therefore, 

the accurate value of cr cannot be obtained without removing the thin members which may have 

pseudo member buckling and violate the global stability constraint. 

 

 

 (a) (b) 

Fig. 2-2 Simple frame structure: (a) before removing thin elements; (b) after removing thin 

elements 

 

Table 2-1 Cross-sectional areas of structure in Fig. 2-2(a) 

Member number Cross-sectional area (m2) 
1 0.03478 

2 1×10-7 

3 1×10-7 

4 0.04611 

5 1×10-7 
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Chapter 3  

Shape and topology optimization 

 

 

3.1 Brief introduction 

Chapter 3 is to present a method for simultaneous shape and topology optimization of plane frames, 

in which the FDM is used to prevent the generation of extremely short members, and a brief 

introduction of this chapter is given as follows.  

In Section 3.2, the idea of shape optimization using FDM is explained. The shape of frame 

structure to be optimized is determined by the auxiliary pin-jointed structure to which the FDM is 

applied, and finite element analysis (FEA) is implemented on the frame structure only. Thus, the 

loading and boundary conditions of the auxiliary pin-jointed structure are not related to the true 

conditions for the frame structure to be optimized. 

In Section 3.3, the shape and topology optimization problem of plane frame is formulated. 

Based on FDM, The design variables are the force densities and cross-sectional properties of 

members in the frame structure, and the details of how FDM indirectly controls the member length 

to avoid melting node is also given. 

In Section 3.4, the sensitivity coefficients with respect to design variables are derived, and in 

order to obtain a distinct structural shape, an optimization problem is solved after removing the 

thin elements and merging the closely spaced nodes in the result obtained in Section 3.3, where 

the design variables are the nodal locations and the cross-sectional properties of members. 

In Section 3.5, three numerical examples are investigated to illustrate the effectiveness of 

proposed method, and each example is solved 100 times with different initial values of design 

variables to obtain the optimal result. Finally, some conclusions are drawn in Section 3.6. 

 

3.2 Shape optimization using FDM 

Firstly, consider a plane frame structure discretized by Euler–Bernoulli beam element [119]. The 

global coordinates, node numbers, local coordinates and local displacement numbers of the ith 

beam element are shown in Fig. 3-1. Each element has six degrees of freedom (DOF) due to the 

consideration of bending deformation. 

Let    be the angle between the -axis of the beam element and the x-axis of the global 
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coordinates, where -axis is directed from node 1 to node 2. The local stiffness equation of the ith 

element can be written as  

i i ik u f   (3.1) 

where 6 6

i R k  , 6

i Ru    and 6

i Rf   are the stiffness matrix, nodal displacement vector and 

nodal force vector, respectively, with respect to the local coordinates. Note that the components in 

if  correspond to those in 
iu , in which the displacement numbers are specified in Fig. 3-1. By 

introducing transformation matrix 6 6

i R T   for the ith element, the relation between the local 

stiffness matrix and the global stiffness matrix of the ith beam element can be obtained as 

T

i i i ik T k T   (3.2) 

where 6 6

i R k  represents the element stiffness matrix with respect to the global coordinates. 

The vectors of nodal displacements and nodal forces with respect to the global coordinates are 

denoted by 6

i Ru  and 6

i Rf , respectively. Relation between ui and fi can be expressed using ki 

as  

i i ik u f   (3.3) 

 

Assembling all the elements of ki, we can derive the ndof-by-ndof global stiffness matrix K of the 

frame structure, where ndof is the number of DOFs of the structure with appropriate boundary 

conditions. Accordingly, the nodal force vector dofn
RF  and the nodal displacement vector 

dofn
RU   can be constructed by assembling fi and ui. Therefore, U is obtained by solving the 

following stiffness equation: 

KU F   (3.4) 

 

 

Fig. 3-1 Definition of displacement/force components and global/local coordinates of ith beam 

element 
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Then the FDM discussed in Section 2.2 is introduced for shape optimization of the frame 

structure. Since not only axial force, but also shear force and bending moment exist in the beam 

element, the FDM is applied to an auxiliary pin-jointed structure to define the nodal locations of 

the frame that is to be optimized. Therefore, it is important to note that in the following section of 

problem formulation, the shape of frame structure to be optimized is determined by the auxiliary 

pin-jointed structure to which the FDM is applied, and the FEA for obtaining the structural 

response is implemented on the frame structure only. Fig. 3-2 illustrates how FDM is applied to 

shape optimization of frame structure. The loading and boundary conditions are given to the frame 

structure only, whereas the corresponding nodes are classified into fixed and free nodes in the 

auxiliary pin-jointed structure to which the FDM is applied. After determining the locations of 

nodes in the auxiliary pin-jointed structure using FDM, the shape of frame structure is 

correspondingly modified and the FEA is implemented to obtain the structure response.  

 

 

Fig. 3-2 Introduction of FDM to shape optimization of frame structure 

 

It is worth noting that in Refs. [59][60] a two-step algorithm is proposed for the optimization 

of a shear wall consisting of latticed block, where the lattice members are discretized with plane 

stress shell elements. In the first step of the algorithm the shape of lattice is optimized with fixed 

width of lattice members, and FDM is used to define the nodes of lattices to avoid the difficulty of 

overlapping nodes; in the second step the widths of lattice members are optimized with fixed 

geometry of lattice. Each step is alternatively repeated until the lattice converges to an optimal 

configuration, and the thin lattice members will be removed after step 2 every time to modify the 

topology. However, in such cases the FDM is only applied to a very specific problem, i.e., the 

shape optimization of lattice, and the general application to simultaneous shape and topology 

optimization of plane frames are not considered. Besides, the indirect control of member length to 

avoid singularity in stiffness matrix, which will be presented in the next section, is also not 

discussed, and the effectiveness of applying FDM to an auxiliary truss or cable-net structure is not 

fully explored yet. 
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3.3 Problem formulation 

Consider an optimization problem of minimizing the compliance J defined as follows: 

T
J U KU   (3.5) 

which is equal to the external work that is converted into the form of Eq. (3.5) using Eq. (3.4). Let  

 1 2
, , mD D DD  denote the vector of design variables defining the cross-sectional properties 

of members, and the upper bound V is given for the total structural volume. Then, the conventional 

optimization problem with respect to the locations of free nodes and the cross-sectional properties 

as variables is formulated as follows:  

   

 

free free free free

free

free free

Minimize   , , , ,

subject to  ,  1, 2, , ;  

                 ,  ,  1, 2, ,

                 , ,

T

i i i

j j j j jj

J

D D D i m

x x x y y y j n

V V



  

    



D x y U K D x y U

D x y

  (3.6) 

where nfree is the number of free nodes, iD  and iD  are the lower and upper bounds of Di, and jx , 

jx , 
j

y  and jy  are the lower and upper bounds of x- and y-coordinates of the jth node. Note that 

K is a function of D, xfree and yfree, while U is an implicit function of D, xfree and yfree which is 

obtained by solving Eq. (3.4). It should be noted here that since the stiffness matrix of rigidly-

jointed frame structure differs from that of the pin-jointed truss structure, the compliance 

minimization problem (3.6) is not equivalent to the volume minimization under stress constraints, 

and cannot be solved by the existing methods for truss structures [120]. 

One of the difficulties in solving problem (3.6) is the existence of melting or coalescent nodes, 

which will result in the singularities in K [51]. This can be handled by adding constraints to limit 

the lower bound of the member length. However, as pointed out by Achtziger [51], directly 

introducing such constraints to avoid geometries without melting nodes will in return cause 

intractable definition of feasible region of the nodal location. By contrast, the solution space 

becomes too small if a tight bound is given for the nodal coordinates, and large bound will lead to 

unfavorable intersection of members. Hence, we next incorporate FDM for defining the nodal 

locations of the plane frame structure by solving Eq. (2.4) of the corresponding auxiliary truss or 

cable-net structure. The side constraints for the locations of free nodes which are assigned in 

problem (3.6) to prevent divergence in the optimization process, however, are no longer needed 

when the nodal coordinates can be calculated by Eq. (2.4). Accordingly, the optimization problem 

(3.6) is restated as  

         

    

free free free free

free free

Minimize   , , , ,

subject to  ,  ,  1, 2, , ;  

                 , ,

T

i ii i i i

J

D D D t t t i m

V V



    



D x t y t U K D x t y t U

D x t y t

  (3.7) 
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where it  and 
it  are the lower and upper bounds for force density of the ith member. We can 

observe from Eqs. (3.6) and (3.7) that these two formulations of optimization problem are basically 

the same, and they will lead to the same solution if a set of t in problem (3.7) can define the optimal 

solution of problem (3.6). In other words, if the optimal solution of problem (3.6) is included in 

the feasible domain of problem (3.7), it can be found by solving the optimization problem (3.7). 

Recall that in Eq. (3.7) the structural compliance is calculated for the rigidly-jointed frame model 

with Euler-Bernoulli beam elements.  

Substituting 
it in Eq. (2.2) into the constraints on 

it  in problem (3.7), we obtain 

i
i i

i

N
t t

L
    (3.8) 

If we assume the absolute value of it  is equal to 
it , i.e.,  ,abs

0i i it t t   , Eq. (3.8) can be 

simplified as 

,abs
i

i

i

N
t

L
   (3.9) 

Because the member lengths are positive, we can derive the lower-bound constraint for member 

length, if Ni is not equal to 0, by transforming Eq. (3.9) to 

,abs

i

i

i

N
L

t
   (3.10) 

Since ti can have either positive or negative value, the nodal locations obtained from Eq. (2.4) will 

have drastic variation due to the change of sign of force density. Therefore, we next assume that 

lower bound of ti is a small positive value ε, namely, =it  , and it  is a sufficiently large real number. 

Then Eq. (3.8) can be rewritten as 

i
i

i

N
t

L
     (3.11) 

which means i i it N L  are positive for all members like a cable net during the optimization 

process. Since Ni > 0 for all the members, we can reformulate Eq. (3.11) with respect to Li as 

i i
i

i

N N
L

t 
    (3.12) 

Hence, the length of ith member is indirectly controlled by the side constraints of its corresponding 

force density. If it  is appropriately chosen and the shape of the frame is modeled by an auxiliary 

cable net that can be at self-equilibrium state with positive forces in all the members, then the 

existence of extremely short member can be avoided by using Eq. (3.12).  
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Furthermore, for the auxiliary structure of cable net without external load, nodal locations are 

determined only by the ratios of force densities, and the nodal locations do not change when the 

force densities are scaled with the same factor. Therefore, to prevent poor convergence of 

optimization process due to non-uniqueness of the solution, an additional norm constraint with a 

positive constant c is given for the force densities. Hence, the optimization problem is rewritten as 

         

    

free free free free

free free

2

1

Minimize   , , , ,

subject to  ,  ,  1, 2, ,

                 , , ;

                 ( )

T

i ii i i i

m

i

i

J

D D D t t t i m

V V

t c




    





D x t y t U K D x t y t U

D x t y t   (3.13) 

where  1 2
, , , mt t tt   and  1 2

, , , mD D DD  are the 2m design variables, and the difficulties 

caused by the melting nodes are avoided by indirectly adding the side constraints on the force 

densities, which in return controls the upper and lower bounds of member lengths. Note that 

optimization problems (3.7) and (3.13) are classified as nonlinear programming (NLP) problem, 

in which all functions are differentiable with respect to t and D. We will exploit this good nature 

to carry out the sensitivity analysis in the next section. 

 

3.4 Sensitivity analysis and further improvement 

To solve problems (3.7) and (3.13) using a gradient-based algorithm, sensitivity coefficients of 

objective and constraint functions are analytically derived for reducing computational effort 

[121][122]. By differentiating the compliance with respect to ti, we can obtain 

free
free, free,

1 free, free,

,  1,2,...,
n

j j

ji j i j i

x yJ J J
i m

t x t y t

    
         
   (3.14) 

The differential coefficients free, jJ x   and free, jJ y   are called shape sensitivity coefficients, 

and the derivatives of the coordinates of free nodes xfree and yfree with respect to force density 

vector t can be computed from the equilibrium equation Eq. (2.4), and details can be found in Ref 

[55]. By directly differentiating Eq. (3.5) with respect to free, jx  and free, jy , we can have the 

following equations 

free

free, free, free, free,

, ,  1,2, ,T T

j j j j

J J
j n

x x y y

   
    

   

K K
U U U U   (3.15) 

The expression of design sensitivity coefficients with respect to Di is given as 

, 1,2, ,T

i i

J
i m

D D

 
  

 

K
U U   (3.16) 
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Let  1, 1,,i ix y  and  2, 2,,i ix y denote the coordinates of the two end nodes of ith member. 

Differentiation of the total structural volume with respect to ti and Di, respectively, leads to  

2
, ,

1 1 , ,

,   ,  1,2, ,
m

j k j j k j i
j i

j ki k j i k j i i i

L x L y AV V
A L i m

t x t y t D D 

      
            
   (3.17) 

where
jA is the cross-sectional area of the jth member. Because the locations of fixed nodes are 

invariant to the force densities, the derivatives of member length Li with respect to ,k ix  and ,k iy

 1, 2k   vanish if ,k ix and ,k iy , respectively, are the coordinates of a fixed node. The sensitivity 

coefficients of objective and constraint functions can be computed by using Eqs. (3.14)(3.17).  

Furthermore, since problems (3.7) and (3.13) may have many local optimal solutions, we carry 

out optimization many times from randomly generated different initial values of design variables, 

and select the best local optimal solution as an optimal solution. However, the optimal solution 

may have closely spaced nodes and/or very thin members, causing ambiguity in structural layout. 

Therefore, we further optimize the cross-sectional properties and nodal locations by solving the 

following problem: 

   

 

free free free free

free

free free

Minimize  , , , ,

ˆsubject to  ,  1, 2, , ;  

ˆ                 ,  ,  1, 2, ,

                 , ,

T

i i i

j j j j jj

J

D D D i m

x x x y y y j n

V V



  

    



D x y U K D x y U

D x y

  (3.18) 

where 
freen̂  and m̂  are the numbers of free nodes and members, respectively, after merging the 

closely spaced nodes and removing the thin elements of the optimal solution of problem (3.7) or 

(3.13), which may have different values from the corresponding n and m in problem (3.7). The 

same symbols in Sec. 3.3 are used for variables for brevity, and sensitivity analysis of the objective 

and constraint functions in problem (3.18) can be carried out in a similar manner as given above.  

Note that in Section 3.3 the lower bound of member length is indirectly assigned in order to 

prevent the existence of a zero-length member; however, the closely spaced nodes may still exist 

if the ratio of |Ni| to ti,abs or to it   is small. The lower bound iD  for Di is a sufficiently small positive 

value, and owing to the fact that optimization problem of minimizing compliance is continuously 

dependent on the bounds of member sizes [123], optimal topology is further enhanced and obtained 

by removing some of the members whose member size reaches the lower bound iD .  

 

3.5 Numerical examples 

In this section, we will present three numerical examples in order to illustrate the effectiveness of 

proposed method, and for each example the node number and the member number shown in the 
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initial structure are indicated by those with and without parentheses, respectively. The NLP 

problem is solved using the sequential quadratic programming (SQP) algorithm in the fmincon of 

Optimization Toolbox of MATLAB 2018a [124]. Each member is assumed to have solid circular 

cross-section, and thereby the cross-sectional area and second moment of inertia can be expressed 

by its diameter, i.e., the design variable Di is the diameter of member i. Without loss of generality, 

Young’s modulus is assumed to be the same for all the members.  

Optimal solutions are found for the following Cases N and P with negative and positive lower 

bounds, respectively, of force density: 

Case N: Solve problem (3.7) with ,abs ,abs ,abs,  1000 N mi i i it t t t    . 

Case P:  Solve problem (3.13) with ,abs ,abs,  1000 N m,  =0.0001N mi i it t t    . 

Note that the value of ti,abs is determined such that the lower bound of member length is around 

0.001 m for a member with the axial force about 1 N. For the diameter, the lower bound is 0.001 

m, and no upper bound is given. We select the best result out of 100 solutions obtained from 100 

different random seeds, and the average computational time, denoted as tave, of these 100 runs is 

also presented for each example. 

 

3.5.1 Example 1 

The first example is optimization of a two-dimensional cantilever frame. The initial ground 

structure consists of a 3×2 grid, with 12 nodes and 27 members, as shown in Fig. 3-3. The frame 

is pin-supported at three left nodes 1, 2, 3, and a downward vertical load F with unit magnitude 1 

N is applied at node 11. Note that the magnitude of load is not important, because the compliance 

is proportional to the load for the same optimal solution. According to Section 2.2, these four nodes, 

i.e., nodes 1, 2, 3 and 11 are the fixed nodes and the remaining eight nodes are the free nodes.  

First consider Case N to solve problem (3.7) with the upper bound volume V  equal to 1 m3. 

The best result among 100 trials is shown in Fig. 3-4(a) that has the compliance J = 81.957 Nm. 

Note that the width of each member in the following figures is proportional to its diameter, which 

is scaled appropriately for each figure. The locations of nodes are listed in Table 3-1, and the values 

of force density vector t, member diameter vector D and member length vector L of the best result 

are listed in Table 3-2. 

 



25 

 

 

Fig. 3-3 Initial ground structure of Example 1 

 

  

 (a) (b) 

Fig. 3-4 Optimal shapes of Example 1 for Case N and 3
1mV  ; (a) best result of problem (3.7), 

(b) optimal solution after solving problem (3.18) 

 

In order to obtain a distinct structural shape and topology, this best result is further optimized 

by solving problem (3.18) with volume constraint 3
1mV  and    ˆ0.001, m ,  1, 2, ,iD i m   . 

The four nodes 7, 10, 11 and 12 are combined to a single node and members 4, 6, 13, 17, 18, 19, 

22, 25 and 27, which reach the lower bound of member diameter, are removed before further 

optimization. The optimal solution of problem (3.18) is shown in Fig. 3-4(b), with the removal of 

members whose Di is equal to iD . The compliance, denoted as Final J in Table 3-3, is slightly 

increased to 83.095 NmJ  . As we can see from Fig. 3-4, the procedure of further optimization 

“filters” the result and presents a more distinct solution. 



26 

 

Table 3-1 Nodal location of best result of Example 1 with 3
1mV   

Node 
Case N Case P 

x (m)  y (m) x (m) y (m) 

1 0 0 0 0 

2 0 1 0 1 

3 0 2 0 2 

4 1.9065 0.3324 0.3396 0.0567 

5 1.4783 0.9906 1.5071 1.0066 

6 0.6368 1.9009 0.6521 1.8924 

7 2.9136 0.9536 1.9760 0.3278 

8 2.2941 1.4542 1.5457 1.0069 

9 1.9173 1.6558 1.9596 1.6778 

10 2.9127 1.0291 3 0 

11 3 1 3 1 

12 2.9849 1.0351 3 2 

 

  

 (a) (b) 

Fig. 3-5 Optimal shapes of Example 1 for Case N and 3
0.7mV  ; (a) best result of problem 

(3.7), (b) optimal solution after solving problem (3.18) 
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Table 3-2 Force density, diameter and length of best result of Example 1 with 3
1mV   

Member End nodes 
Case N Case P 

ti (N/m) Di (m) Li (m) ti (N/m) Di (m) Li (m) 

1 1 4 953 0.379 1.935 0.632 0.374 0.344 

2 4 7 0.114 0.364 1.183 0.131 0.373 1.658 

3 7 10 124 0.243 0.075 0.283 0.001 1.075 

4 2 5 147 0.001 1.478 0.0001 0.001 1.507 

5 5 8 0.297 0.00399 0.938 0.192 0.186 0.038 

6 8 11 274 0.001 0.839 0.125 0.001 1.454 

7 3 6 380 0.380 0.644 0.456 0.371 0.661 

8 6 9 0.509 0.382 1.304 0.227 0.371 1.325 

9 9 12 0.325 0.00554 1.235 0.339 0.001 1.089 

10 4 5 220 0.232 0.785 0.0001 0.00108 1.505 

11 7 8 0.174 0.00163 0.796 0.00284 0.240 0.804 

12 10 11 300 0.295 0.092 0.0734 0.001 1 

13 5 6 237 0.001 1.240 0.0001 0.00193 1.231 

14 8 9 331 0.365 0.427 0.0001 0.238 0.788 

15 11 12 336 0.0352 0.038 0.0533 0.001 1 

16 1 5 0.0116 0.287 1.780 0.0148 0.295 1.812 

17 2 4 0.190 0.001 2.020 0.0001 0.001 1.002 

18 4 8 752 0.001 1.187 0.0001 0.00308 1.535 

19 5 7 156 0.001 1.436 0.177 0.0121 0.825 

20 7 11 187 0.255 0.098 0.00878 0.356 1.225 

21 8 10 425 0.367 0.751 0.0005.74 0.001 1.768 

22 2 6 0.224 0.001 1.103 0.0001 0.001 1.105 

23 3 5 0.132 0.285 1.790 0.00141 0.296 1.805 

24 5 9 291 0.234 0.797 0.201 0.00782 0.809 

25 6 8 333 0.001 1.716 0.0001 0.00492 1.258 

26 8 12 509 0.0109 0.808 0.00253 0.001 1.761 

27 9 11 0.280 0.001 1.266 0.0343 0.355 1.241 

 

Furthermore, we change the value of V  to 0.7, 0.4 and 0.1 (m3), and find the optimal solutions 

as shown in Figs. 3-5, 3-6 and 3-7, respectively. The compliance values of optimal solutions of 

problem (3.18) are listed in Table 3-3 as Final J. As seen from these figures, layouts of the optimal 

solutions corresponding to different values of V are similar, although they are not exactly the same. 

The optimal solution for 3
0.7mV  is asymmetric, which is similar to the case of optimal truss in 

Ref. [55]. Since the members of a frame are rigidly jointed, the existence of collinear members 

connected to one node, which may cause singularity in stiffness matrix of pin-jointed structure, is 

permitted. Thus, once the bounds of force density are carefully determined, the generation of 

extremely short members can be prevented, keeping regularity of the stiffness matrix of the 

structure.  
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 (a) (b) 

Fig. 3-6 Optimal shapes of Example 1 for Case N and 3
0.4mV  ; (a) best result of problem 

(3.7), (b) optimal solution after solving problem (3.18) 

 

  

 (a) (b) 

Fig. 3-7 Optimal shapes of Example 1 for Case N and 3
0.1mV  ; (a) best result of problem 

(3.7), (b) optimal solution after solving problem (3.18) 

 

We further investigate the effectiveness of proposed method of Case P with different values of 

V . In this case, nodes 10 and 12 together with nodes 1, 2 and 3 in Fig. 3-3 are pin-supported for 

ensuring each member is in tension at self-equilibrium state to represent an auxiliary cable net, 

and no load is applied to the cable net for finding the nodal location using the FDM. The loading 

condition of the frame to be optimized is the same as Case N. 
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 (a) (b) 

Fig. 3-8 Optimal shapes of Example 1 for Case P and 3
1mV  ; (a) best result of problem (3.13), 

(b) optimal solution after solving problem (3.18) 

 

The results of solving problems (3.13) for 1.0V  , 0.7, 0.4 and 0.1 (m3), are listed in Table 3-

3. The optimal solutions of problems (3.13) and (3.18) with 3
1 mV   are shown in Fig. 3-8, and 

the nodal locations of optimal solution of problems (3.13) are listed in Table 3-1, while the 

corresponding member diameters, force densities and member lengths are listed in Table 3-2. The 

values of J after improvement, denoted as Final J, are listed in Table 3-3 to show that the 

compliance values are close to those with the same values of V before improvement, respectively, 

for 1.0V  , 0.7, 0.4 and 0.1 (m3). Note that the optimal shapes of Case P with 0.7V  , 0.4 and 

0.1 (m3) are almost the same as Fig. 3-8(a) before further optimization, and similar to those in Figs. 

3-5(b), 3-6(b) and 3-7(b) after further optimization. Therefore, those figures are not shown here. It 

is seen from Fig. 3-8(a) that the optimal shape is defined using some members in the auxiliary 

cable net with supports in left and right boundaries. 

 

Table 3-3 Statistical result, final values of compliance J (Nm) and CPU time (sec) of 100 results 

of Example 1 with different V (m3) 

V  1.0 0.7 0.4 0.1 

Case N P  P  P  P 

Max. J 99.050 87.661 186.185 123.573 247.511 218.988 997.379 876.403 

Min. J 81.987 82.930 117.481 118.769 206.680 208.012 833.479 832.460 

Average J 86.544 83.814 123.801 119.474 215.292 210.070 847.479 845.779 

Std. Dev.  3.941 1.194 9.073 1.305 6.723 3.304 35.955 16.568 

Final J 83.095 82.796 118.721 118.650 208.412 207.949 833.855 832.267 

tave 10.95 25.22 7.71 19.36 7.80 12.87 5.83 10.18 

Converged 

solutions 
76 86 72 83 68 79 61 72 



30 

 

Table 3-3 also shows the maximum, minimum, average and standard deviation of J of problem 

(3.13) of 100 runs for each values of V . It is seen from the table that the difference between the 

maximum J and the minimum J with Case N is greater than that of Case P, and the standard 

deviation also has larger value, indicating a wide range of variation in the solutions. This is mainly 

because if the force density is allowed to change from negative to positive real number or vice 

versa for Case N, the free nodes move drastically and the possibility of convergence to a local 

optimal solution increases. 

On the other hand, if all the members are allowed in tension only, the movement of free nodes 

become smooth due to invariant sign in force density and every node for Case P is balanced in 

tension. It is important to note for Case P that since only positive force density is allowed to exist, 

the fixed nodes may be different from those for Case N; however, it has little influence on finding 

the optimal solution of problem (3.13) if the optimal shape can be successfully determined by a 

set of positive force densities. Some shapes during the optimization procedure are presented and 

illustrated in Appendix A1 for a better interpretation of the proposed method with Cases N and P. 

The average computation time tave of Example 1 among 100 random seeds are listed in Table 3-3, 

with a computer configuration of Intel Core i5 processor and 4GB RAM. As explained in Appendix 

A1, Case P has smoother convergence property than Case N; e.g., for 3
1mV  ; therefore, nearly 

optimal solution can be easily obtained in Case P. However, the number of major iterations of SQP 

algorithm is 644 for Case P and 517 for Case N, and the Case P needs more computation time than 

Case N. This is mainly because the norm constraint for force density in problem (3.13) is to be 

satisfied and the feasible region in Case P is smaller than Case N. Although the optimization 

procedure of Case P is less oscillatory, the step length can often be taken as a small value for 

satisfying the side constraints for ti, requiring more iterations. 

 

3.5.2 Example 2 

In the second example, we investigate the optimal shape and topology of a 2-dimensional bridge 

frame with a 6×1 grid, where the 14 nodes are connected by 31 members, and the initial ground 

structure is shown in Fig. 3-9. The structure is pin-supported at node 1 and roller-supported at node 

13. At each of the nodes 3, 5, 7, 9 and 11, a downward vertical load F with unit magnitude 1 N is 

applied. Accordingly, these seven nodes are regarded as fixed nodes during the optimization 

procedure. 

Again, 3
1mV   is first assigned for this example. Because the summation of entries of each 

row in force density matrix is zero and y-coordinates of all fixed nodes are zero, one of the trivial 

solutions for yfree is the zero-vector. Therefore, we assign upward reaction force 2.5 N at the 

supports 1 and 13 and include the y-directional equilibrium equations at the supports to be solved 

for yfree. The best result of problem (3.7) of Case N is presented in Fig. 3-10(a), with the compliance 

J = 1221.03 Nm. The nodal locations are listed in Table 3-4, and the corresponding values of t, D 

and L for all members are listed in Table 3-5. As seen from Fig. 3-10(a) and Table 3-5, the free 

nodes are separately located such that no extremely short member exists. 
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Fig. 3-9 Initial ground structure of Example 2 

 

            

 (a) (b) 

Fig. 3-10 Optimal shapes of Example 2 for Case N and 3
1mV  ; (a) best result of problem 

(3.7), (b) optimal solution after solving problem (3.18) 

 

The improved optimal solution is obtained by solving problem (3.18) with 3
1mV   as shown 

in Fig. 3-10(b). After removal of thin members with 0.001miD   , the compliance J is reduced to 

1219.22 Nm. It should be noted that members 2 and 27 connecting nodes (1, 3) and nodes (11, 13), 

respectively, do not vanish in Fig. 3-10(b), making the structure globally stable. This property is 

different from the optimal shape of pin-jointed truss [51][55], where members 2 and 27 do not 

exist. This is because only axial force equilibrium condition has to be satisfied for truss structure; 

however, for rigidly-jointed frame structure, axial force, shear force and bending moment 

simultaneously exist in the member, leading to the slight inclination of members 1 and 31 as shown 

in Fig. 3-11. Therefore, the forces in members 2 and 27 are not zero, and these members are 

necessary to exist for satisfying the equilibrium conditions at the supports.   
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 (a) (b) 

Fig. 3-11 Illustration of equilibrium condition; (a) pin-supported node 1 and (b) roller-supported 

node 31 

 

Table 3-4 Nodal location of best result of Example 2 with 3
1mV   

Node 
Case N Case P 

x (m) y (m) x (m) y (m) 

1 0 0 0 0 

2 0.0062 0.7462 0.0064 0.7583 

3 1 0 1 0 

4 1.0273 2.0677 0.7234 1.7475 

5 2 0 2 0 

6 2.6053 2.5714 1.3496 2.1902 

7 3 0 3 0 

8 3.3339 2.5842 3.0004 2.6822 

9 4 0 4 0 

10 4.978 2.0556 4.6505 2.1903 

11 5 0 5 0 

12 5.8098 1.0044 5.2764 1.7477 

13 6 0 6 0 

14 5.9893 0.5174 5.9936 0.7583 

15 -- -- 0 3 

16 -- -- 1 3 

17 -- -- 2 3 

18 -- -- 3 3 

19 -- -- 4 3 

20 -- -- 5 3 

21 -- -- 6 3 
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Table 3-5 Force density, diameter and length of best result of Example 2 with 3
1mV   

Member End nodes 
Case N Case P 

ti (N/m) Di (m) Li (m) ti (N/m) Di (m) Li (m) 

1 1 2 2.08 0.304 0.846 0.381 0.302 0.858 

2 1 3 0.365 0.00431 1.000 0.122 0.00300 1.000 

3 1 4 343 0.00402 2.399 0.227 0.001 1.984 

4 2 3 398 0.238 1.305 0.00128 0.2341 1.312 

5 2 4 144 0.266 1.670 0.000790 0.264 1.221 

6 3 4 1.21 0.001 2.168 0.161 0.001 1.868 

7 3 5 0.706 0.207 1.000 0.102 0.203 1.000 

8 3 6 479 0.001 3.117 0.135 0.001 2.316 

9 4 5 0.0495 0.198 2.376 0.0227 0.145 2.245 

10 4 6 177 0.248 1.656 0.164 0.255 0.767 

11 5 6 276 0.001 2.739 0.000687 0.145 2.380 

12 5 7 0.111 0.244 1.000 0.203 0.244 1.000 

13 5 8 0.607 0.001 2.997 0.0164 0.001 2.956 

14 6 7 553 0.134 2.700 0.0135 0.001 2.823 

15 6 8 0.142 0.248 0.729 0.0231 0.247 1.722 

16 7 8 1.23 0.141 2.705 0.0318 0.187 2.782 

17 7 9 0.234 0.244 1.000 0.00720 0.244 1.000 

18 7 10 379 0.001 2.926 0.000117 0.001 2.823 

19 8 9 0.616 0.00424 2.766 0.00911 0.001 2.956 

20 8 10 0.224 0.247 1.727 0.0001.95 0.247 1.721 

21 9 10 477 0.196 2.367 0.00513 0.145 2.381 

22 9 11 0.495 0.206 1.000 0.0991 0.203 1.000 

23 9 12 0.340 0.0116 2.120 0.0759 0.145 2.245 

24 10 11 0.494 0.001 2.156 0.165 0.001 2.317 

25 10 12 181 0.261 1.340 0.219 0.255 0.767 

26 11 12 224 0.152 1.369 0.0347 0.001 1.868 

27 11 13 0.396 0.00409 1.000 0.0940 0.003 1.000 

28 11 14 0.295 0.183 1.166 0.00310 0.234 1.313 

29 12 13 2.06 0.001 1.121 0.234 0.001 1.984 

30 12 14 650 0.283 0.519 0.000239 0.264 1.222 

31 13 14 363 0.303 0.618 0.433 0.302 0.858 

32 2 15 -- -- -- 0.144 0.001 2.241 

33 2 16 -- -- -- 0.00156 0.001 2.452 

34 15 4 -- -- -- 0.270 0.001 1.446 

35 15 16 -- -- -- 0.0706 0.001 1.000 

36 4 16 -- -- -- 0.171 0.001 1.282 

37 4 17 -- -- -- 0.107 0.001 1.788 

38 16 6 -- -- -- 0.284 0.001 0.882 

39 16 17 -- -- -- 0.139 0.001 1.000 

40 6 17 -- -- -- 0.163 0.001 1.038 

41 6 18 -- -- -- 0.0498 0.001 1.838 
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42 17 8 -- -- -- 0.197 0.001 1.049 

43 17 18 -- -- -- 0.0803 0.001 1.000 

44 8 18 -- -- -- 0.0997 0.001 0.318 

45 8 19 -- -- -- 0.242 0.001 1.049 

46 18 10 -- -- -- 0.142 0.001 1.838 

47 18 19 -- -- -- 0.217 0.001 1.000 

48 10 19 -- -- -- 0.116 0.001 1.038 

49 10 20 -- -- -- 0.342 0.001 0.882 

50 19 12 -- -- -- 0.0582 0.001 1.788 

51 19 20 -- -- -- 0.222 0.001 1.000 

52 12 20 -- -- -- 0.123 0.001 1.282 

53 12 21 -- -- -- 0.251 0.001 1.446 

54 20 14 -- -- -- 0.000616 0.001 2.452 

55 20 21 -- -- -- 0.0738 0.001 1.000 

56 14 21 -- -- -- 0.166 0.001 2.242 

 

  

 (a) (b) 

Fig. 3-12 Optimal shapes of Example 2 for Case N and 
3

0.1mV   ; (a) best result of problem 

(3.7), (b) optimal solution after solving problem (3.18) 

 

The same optimization procedure is carried out with 
3

0.1mV   , and compliance of the 

improved optimal solution is listed in Table 3-6 as Final J. It can also be found from Fig. 3-12 that 

no melting nodes exist for this case. Although the frame in Fig. 3-12 has only six upper nodes, 

members 25 and 30 connecting nodes (10, 12) and (12, 14), respectively, are colinear, and node 12 

exists on the member connecting nodes (10, 14). Furthermore, with the decrease of upper bound 

volume, the diameters of members 2 and 27 are close to iD and these members are removed after 

further optimization. However, the stiffness matrix of the optimal solution after solving problem 

(3.18) is determinate owing to small bending stiffness in members 1 and 31.  
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Fig. 3-13 Modified initial ground structure for Case P of Example 2 

 

Optimization problems (3.13) and (3.18) for Example 2 are solved also with Case P. Seven 

additional nodes 1521 exist at the top of the initial structure as shown in Fig. 3-13. By fixing the 

locations of nodes 1, 3, 5, 7, 9, 11, 13, 1521, we have an auxiliary cable net to define the nodal 

locations of free nodes. In order to allow the free nodes to move in a wide range, y-coordinates of 

the seven additional nodes have a large value 3 m. In this way, a kind of cable net is generated for 

solving Eq. (2.4) to obtain xfree and yfree. 

The compliance values of improved optimal solutions are listed in Table 3-6 as Final J, and 

Figs. 3-14 and 3-15 show the optimal solutions for 1V   and 0.1 (m3), respectively. Although the 

final structural layouts of these four solutions are symmetric with respect to the middle vertical 

axis, symmetry constraints are not enforced explicitly. Through observation from Table 3-6, one 

can realize that the values of J of improved optimal solutions with the same V  are very close in 

both cases. It is worth noting that the initial ground structures for Cases N and P are different; 

however, the purpose of adding nodes and members for Case P is merely to obtain a self-

equilibrium state of free nodes with tension state, and none of the additional nodes are allowed to 

move. Therefore, the optimal shapes of both cases are still controlled by the same free nodes, i.e., 

nodes 2, 4, 6, 8 and 10, and similar optimal solutions can be found by the proposed method if the 

coordinates of free nodes of optimal shape can be determined in their feasible domain of the force 

density vector. 
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 (a) (b) 

Fig. 3-14 Optimal shapes of Example 2 for Case P and 
3

1mV  ; (a) best result of problem 

(3.13), (b) optimal solution after solving problem (3.18) 

 

  

  (a) (b) 

Fig. 3-15 Optimal shapes of Example 2 for Case P and 
3

0.1mV   ; (a) best result of problem 

(3.13), (b) optimal solution after solving problem (3.18) 

 

Table 3-6 Statistical result, final values of compliance J (Nm) and CPU time (sec) of 100 results 

of Example 2 with different V  (m3)  

V  (m3) 1.0 0.1 

Case N P  P 

Max J 7898.12 1276.47 47039.81 13405.61 

Min J 1221.03 1217.43 12255.81 12232.50 

Average J 2252.89 1232.22 15520.27 12448.70 

Std. Dev. 1912.16 21.2445 6842.66 310.84 

Final J  1219.22 1217.07 12255.04 12230.92 

tave  22.65 25.99 12.47 16.01 

Converged 

solutions 
85 97 82 93 
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Table 3-6 also lists the statistical result of 100 runs, computation time tave with the same 

computer configuration as Example 1 and number of converged solutions within 100 different 

trials. It can be observed that the value of maximum J among 100 runs can be 5 or 6 times the 

value of minimum J for Case N, indicating the tendency of being trapped in a local optimal solution 

or even diverged to some extent. Its standard deviation is also greater than that of Case P. However, 

the values of average J for both cases are within an acceptable range, which are about 20% larger 

than the minimum J. 

 

3.5.3 Example 3 

The third example is an optimization of a grid-like shear wall subjected to a horizontal force of 1 

N at node 5 as shown in Fig. 3-16. The structure is pin-supported at nodes 1 and 31. Because the 

border of shear wall is usually required to keep rectangle after optimization, nodes on the border 

frame, i.e., 2, 3, 4, 5, 6, 10, 11, 15, 16, 20, 21, 25, 26, 30, 32, 33, 34 and 35, as well as nodes 1 and 

31, are classified as fixed nodes, and the remaining 15 nodes are the free nodes. Members of border 

and inner lattice are depicted by thick and thin black lines in Fig. 3-16, respectively. The cross-

section diameters of border frame members are fixed at 0.1 m and remain unchanged during the 

optimization procedure. Design variables are the cross-section diameters and force densities of all 

the inner lattice members. In this example, only Case P is considered, Fig. 3-17 shows the 

optimization results by solving problems (3.13) and (3.18) with 
3

1mV  . It should be noted that 

in this example there is no intention to optimize a practical shear structure which could be subjected 

to the horizontal load from both directions, but rather a structure similar to shear wall, and therefore 

symmetry condition is not applied in this example. 

 

 

Fig. 3-16 Initial ground structure of Example 3 
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It can be observed from Fig. 3-17(a) that no extremely short member exists, although some of 

the nodes are closely spaced and connected mainly due to the low axial force in the self-equilibrium 

state, and the diameters of many members reach iD . Then, the final optimal solution is obtained 

as shown in Fig. 3-17(b) by further solving problem (3.18), where the compliance value is 

103.0494 Nm. Next, problems (3.13) and (3.18) are solved with the change of upper-bound volume 

V  to 0.7, 0.4 and 0.1 (m3). The optimal solutions are shown in Figs. 3-18to 3-20, respectively, 

and the corresponding compliances after further optimization are listed in Table 3-7 as final J. For 

1V   and 0.7 (m3), the optimal solutions are similar; however, the shape and topology of optimal 

solution becomes different when V  decrease to 0.4 and 0.1 (m3). This is mainly because long 

members cannot exist if the diameter becomes small as V  is decreased.  

 

     

 (a)  (b) 

Fig. 3-17 Optimal shapes of Example 3 for Case P and 
3

1mV   ; (a) best result of problem 

(3.13), (b) optimal solution after solving problem (3.18) 

 

     

 (a) (b) 

Fig. 3-18 Optimal shapes of Example 3 for Case P and 
3

0.7mV   ; (a) best result of problem 

(3.13), (b) optimal solution after solving problem (3.18) 
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  (a)  (b) 

Fig. 3-19 Optimal shapes of Example 3 for Case P and 
3

0.4mV  ; (a) best result of problem 

(3.13), (b) optimal solution after solving problem (3.18) 

 

     

  (a)  (b) 

Fig. 3-20 Optimal shapes of Example 3 for Case P and 
3

0.1mV   ; (a) best result of problem 

(3.13), (b) optimal solution after solving problem (3.18) 

 

Table 3-7 Statistical result, initial and final values of compliance J (Nm) and CPU time (sec) of 

100 results of Example 3 with different V  (m3) 

V  1.0 0.7 0.4 0.1 

Max J 107.595 146.811 245.683 889.966 

Min J 103.829 144.110 242.160 840.453 

Average J 105.315 145.700 244.180 851.771 

Std. Dev. 0.9778 0.4579 0.6406 10.814 

Final J 103.050 143.794 242.142 840.231 

Initial J  388.792 465.937 626.432 1517.843 

tave 27.45 27.44 22.30 21.47 
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The maximum, minimum, average and standard deviation of J among 100 random seeds, as 

well as tave, are shown in Table 3-7. Compliance of initial ground structure where the inner lattice 

members are evenly distributed is also calculated and listed in Table 3-7 as Initial J for comparison 

purpose. It can be seen from Table 3-7 that the compliance is significantly decreased through 

optimization by the proposed method. 

 

3.6 Conclusions 

In this chapter a new method has been presented for shape and topology optimization of plane 

frame structures using force density to define the nodal locations of free nodes. An auxiliary truss 

or cable net with different boundary and loading conditions is introduced to which the FDM is 

applied. In order to prevent generation of melting nodes in the structure, the side constraint on 

member length is indirectly assigned by limiting the force density value of each member. Two 

cases of lower bound of force density are given; namely, Case N for negative lower bound and 

Case P for small positive lower bound, which correspond to truss and cable net, respectively, for 

the definition of auxiliary structure. Sensitivity coefficients of the objective and constraint 

functions with respect to the force density and the member diameter are also derived to accelerate 

the optimization procedure. After obtaining the optimization results, the shape and topology of the 

structure are further improved in order to achieve a distinct final solution without extremely thin 

member or closely space nodes. Three numerical examples are presented to illustrate the 

effectiveness of proposed method, and the conclusions are drawn as follows: 

(1) Good approximate optimal solutions of shape and topology of frames can be successfully found 

for both Case N and Case P. However, comparison of results obtained from 100 different trials 

shows that Case P is more stable, i.e., has smaller standard deviation, than Case N.  

(2) Lower bounds for member lengths can be indirectly assigned by the upper- and lower-bound 

constraints on the force densities. An approximate optimal solution can be obtained smoothly 

by assigning a positive lower bound for force density, although convergence to a strict optimal 

solution is slow. 

(3) In the example of bridge frame (Example 2), a thin horizontal member is needed at the roller 

support to be at equilibrium with the shear force of the thick vertical member, although such 

member is not needed for a truss or a frame with thin vertical member corresponding to a small 

upper bound of structural volume.   

(4) If the vertical coordinates of fixed nodes have the same value, then the coordinates of free 

nodes cannot be determined using FDM. In this case, an equilibrium condition with the reaction 

force at a support is included to successfully obtain the nodal coordinates of free nodes. 
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Chapter 4 

Robust optimization 

 

 

4.1 Brief introduction 

Chapter 4 is to present a worst case approach to RSO of plane frames, in which the structural 

robustness is represented by using order statistics and the corresponding order, and a brief 

introduction of this chapter is given as follows. 

In Section 4.2, details of defining the structural robustness using order statistics are given. The 

accurate evaluation of the exact worst structural response is relaxed to 100βth percentile response, 

which is further approximated by the kth order statistic using the theory of distribution-free one-

side tolerance interval. Therefore, the structural robustness is represented by the order k and the 

corresponding order statistic.    

In Section 4.3, two kinds of WCO problem formulations are presented. The first is to minimize 

the structural stress with volume and global stability constraints, where the penalization method is 

used to alleviate the singularity phenomenon; the second is a multi-objective optimization problem 

with volume constraint, where several stress values with different robustness levels are considered 

as objectives to be minimized. 

In Section 4.4, the penalization method is implemented to avoid singularity phenomenon. The 

element stress and geometrical stiffness matrix are penalized with respect to the cross-sectional 

areas for the thin elements, and a simple example is investigated for verification of the proposed 

penalization method. 

In Section 4.5, four numerical examples are explored to demonstrate effectiveness of the two 

methods proposed in Section 4.3, and the solution of deterministic optimization is also given in 

each example for comparison purpose. Finally, some conclusions are drawn in Section 4.6.   

 

4.2 Robustness definition using order statistics 

Consider an RSO problem corresponding to the design variables d  and the uncertain parameters 

θ . Based on the definition of order statistics and the corresponding statistical inference theory in 
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Section 2.3, the probability 
k  of 100β% of the stochastic structural response  ;g d θ  less than 

the kth order statistic 
s:k mZ can be calculated as 

        
s

s

s s

s

: : s

0

Pr Pr 1 1 1,
m k

m rr

k k m k m

r

m
F Z U I m k k

r
    






 
          

 
  (4.1) 

where 
s:k mU is the kth order statistic from ms i.i.d. standard uniform random variables as defined in 

Section 2.3, and  s
1,I m k k    is the incomplete beta function [77][117]. Because the probability 

of the structural response falling into the one-side interval  
s:, k mZ  is independent of the 

distribution  F z , Eq. (4.1) is also called distribution-free one-side tolerance interval, and 
s:k mZ  

can be seen as the 100βth percentile structural response in probabilistic sense with the confidence 

level k .  

In order to enable 
s:k mZ to be accurate as a percentile estimator of the structural response, the 

value of confidence level 
k  in Eq. (4.1) should be close to 1; e.g., 0.9 or 0.95 [117]. Furthermore, 

according to Prescott et al. [117] , k will monotonically increase to 1 as the sample size ms is 

increased. Therefore, if the values of k, 
k  and   are specified, one can obtain the threshold 

(minimum) value of sample size ms such that k is not less than its preassigned value; on the other 

hand, if sample size ms is specified as the threshold value satisfying Eq. (4.1) and the value of k is 

also given, the relation between k and  can also be derived by solving Eq. (4.1). As 

demonstrated by Ohsaki et al. [77], the relation between k  and   can be obtained for some 

fixed values of ms and various specified values of  1, 2, , 20k  , which is shown in Fig. 4-1. 

Note that the curves in top-right and bottom-left of each figure in Fig. 4-1 correspond to k=1 and 

20, respectively. The relations between k and   with 0.9k   are also given in Tables 4-1 and 4-

2 for ms = 100 and 200, respectively. It can be seen from these tables that   is a decreasing 

function of k, in other words, the portion of the structural response less than 
s:k mZ  will decrease as 

the value of k increases with the same k . Therefore, for given k  and ms, a higher order k 

corresponds to a less structural response under uncertainty exceeding 100βth percentile response, 

and the order k and its corresponding order statistic 
s:k mZ  approximating the percentile response 

can be regarded as representing the robustness level of the structure. 

 

Table 4-1 Relation between k and   ( k = 0.9, ms = 100) 

k 1 2 3 4 5 6 7 8 9 10 

β 0.977 0.962 0.948 0.934 0.922 0.909 0.897 0.885 0.873 0.862 

k 11 12 13 14 15 16 17 18 19 20 

β 0.850 0.839 0.827 0.816 0.805 0.794 0.783 0.772 0.761 0.750 
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Table 4-2 Relation between k and   (
k = 0.9, ms = 200) 

k 1 2 3 4 5 6 7 8 9 10 

β 0.989 0.981 0.974 0.967 0.960 0.954 0.948 0.942 0.936 0.930 

k 11 12 13 14 15 16 17 18 19 20 

β 0.924 0.918 0.912 0.907 0.901 0.895 0.890 0.884 0.878 0.873 

 

 

 (a)  (b) (c) 

Fig. 4-1 Relation between k  and   for some fixed values of ms and various values of k:  

(a) ms = 50; (b) ms = 100; (c) ms = 150 

 

4.3 Problem formulation 

In this section, two formulations for robust optimization of plane frames under uncertainty are 

presented. One is a single-objective optimization to minimize the maximum stress under volume 

and global stability constraints, and the other is a multi-objective optimization to simultaneously 

minimize the maximum stress with different robustness levels under volume constraint. 

 

4.3.1 Shape and topology optimization with global stability constraint 

We begin with the deterministic shape and topology optimization problem of minimizing the stress 

of a plane frame under global stability and volume constraints, which is formulated as follows: 

  
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 

e
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free free
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free free free free freefree

Minimize max , ,

1 1
subject to ;   

, ,

                , , ;

                ;   ;   

V ij
i m
j p

V V

 

 



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x y A

x y A

x y A

x x x y y y A A A

 (4.2) 
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where xfree, yfree and A are the vectors of x- and y-coordinates of the free nodes and the cross-

sectional areas of the Euler-Bernoulli beam elements, respectively, which serve as design variables 

in problem (4.2), and the lower and upper bars in the constraints represent the lower and upper 

bounds of the corresponding design variables; me is the number of beam elements in the frame; p 

is the number of points for stress evaluation within each element, and their selections will be 

explained in Section 4.4, together with the penalization method for stress and global stability 

singularities; 
,V ij is the von Mises stress evaluated at point j of the ith element, and the detailed 

implementation of calculating the von Mises stress of beam element is referred to Ref. [125]; V  

and   are the upper bound for the structural volume and the lower bound for the global linear 

buckling load factor 
cr , respectively. Note that 

cr  is defined as the smallest positive eigenvalue 

of the following eigenvalues problem: 

    free free free free
, , , ,G K x y A K x y A Φ 0   (4.3) 

where K and KG are the ndof-by-ndof global elastic stiffness matrix and the geometrical stiffness 

matrix corresponding to the unit load factor, respectively [126]. In Eq. (4.2) the global stability 

constraint is written with respect to the reciprocals of 
cr  and   to ensure that 

cr  is either larger 

than   or negative [108], and for simplicity we hereafter denote the reciprocals as cr cr
1/   and 

1/   , respectively. 

By incorporating the FDM as discussed in Chapter 3, the locations of free nodes of a plane 

frame can be derived by solving Eq. (2.4) of the corresponding auxiliary truss, and the optimization 

problem (4.2) is restated as  

     

    

    
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cr

free free

free free

Minimize max , ,
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                , ,

                ;   

V ij
i m
j p
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 

 










   

x t y t A

x t y t A

x t y t A

t t t A A A

  (4.4) 

where t is the force density vector. As discussed in Chapter 3, problems (4.2) and (4.4) are basically 

the same and will lead to the same solution if a set of t in problem (4.4) can define the optimal 

solution of problem (4.2), which means the optimal solution of problem (4.2) can be found by 

solving problem (4.4) if it is included in the feasible domain of problem (4,4). Note again that in 

problem (4.4) the stress are calculated for the rigidly-jointed frame model with Euler-Bernoulli 

beam elements.  

When uncertainty is introduced to problem (4.4), the optimization problem considering 

uncertainty takes the following form:  
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    
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where   and cr  are the same as problem (4.4);  , ,   θ x y A  is the vector representing the 

uncertainty in nodal locations and cross-sectional areas as described in Section 2.4; Ω is the 

corresponding uncertain parameter space of θ ; 
max and cr,max  are the values of maximum von 

Mises stress and reciprocal of global linear buckling load factor within the space Ω, respectively. 

It is worth noting that problem (4.5) can be regarded as a WCO problem with semi-infinite 

constraint for design variables and uncertain parameters, since it can be equivalently transformed 

into 
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  (4.6) 

Problem (4.6) can be classified as an RSO problem. To see this, we introduce the slack variable s 

and problem (4.6) can be further reformulated as follows, where the constraints are to be satisfied 

for all possible set of uncertain parameters: 

 

    

     

    

free free

cr cr

free free

free free

Minimize 

subject to , , ;  for ;

                , , ;  for ;

                , , ;

                ;   

s

s

V V



  

  

   



   

x t y t A θ θ

x t y t A θ θ

x t y t A

t t t A A A

 (4.7) 

Therefore, we solve an RSO problem using the randomized or stochastic approach for estimating 

the worst values of the responses of the WCO problem. However, it is difficult to directly solve 

problem (4.7) because the exact worst values of structural responses are difficult to find. Therefore, 

the exact worst responses are relaxed to the 100βth percentile structural responses which are 

approximated by order statistics, and the procedure will be illustrated as follows.  

Let 
s1 2, , , mθ θ θ  be the ms samples of i.i.d. vectors of uncertainties in nodal locations and 

cross-sectional areas with unknown distributions, and  ,t A  be the design variable vectors of 

force densities and cross-sectional areas. The corresponding ms structural responses in Eq. (4.7) 

with respect to 
s1 2, , , mθ θ θ and  ,t A  are denoted by    

s s1 1, ; ,..., , ;m m    t A θ t A θ  and 
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   
s s

cr cr cr cr

1 1, ; ,..., , ;m m    t A θ t A θ , respectively. Similar to the order statistics defined in 

Section 2.2, the kth maximum stress 
s:k m  is called the kth order statistic of the stress where 

s s s s1: 2: :
...m m m m     , and the 

s s s s

cr cr cr

1: 2: :
, ,...,m m m m    and 

s

cr

:k m  are also defined in the same manner. 

As stated in Section 4.2, the order k and its corresponding order statistic approximating the 

100βth percentile of structural response can be regarded as representing the robustness level of the 

structure. Suppose the worst values of the responses in the parameter space in problem (4.7) are 

approximated by the kth order statistics 
s:k m  and 

s

cr

:k m  among ms realizations at confidence level 

k . Then problem (4.7) can be rewritten as 
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 (4.8) 

where  
s1, , mΘ θ θ  denotes the set of ms sample vectors of uncertain parameters. The 

difference between the approximated worst values in problem (4.8) and the exact worst values in 

problem (4.7) will become smaller if the value of k is closer to 1, and the robustness levels of both 

maximum stress and global stability also increase as the order k decreases. Note that the constraints 

in RSO problem (4.7) are relaxed, i.e., the robustness for satisfying the constraints is relaxed, by 

using order statistics in problem (4.8) at specified confidence level k , and such robustness can 

be referred to as statistical feasibility robustness which handles the semi-infinite constraints 

stochastically [20]. Although similar formulation to incorporate uncertainty in constraint can be 

found in RBSO problem and referred to as risk or chance constraint [127–129], there is no general 

consensus that RBSO should not be considered as part of the robust optimization methodology, 

and vice versa [20], and the connection between robustness and the stochastic or probability theory 

are also exploited recently by some researchers [130]. The equivalence between the probabilistic 

optimization problem and the robust optimization with uncertain-but-bounded variables are also 

discussed by Elishakoff and Ohsaki [17]. Hence, we consider problem (4.8) as robust optimization 

problem due to the fact that it is a relaxed version of the WCO problem (4.7), and problem (4.8) 

serves as the RSO problem to be solved in the numerical examples of this chapter. 

Moreover, as stated in Section 3.3, although the member length is indirectly controlled by the 

bounds of force densities to prevent zero-length member, closely spaced nodes may exist when 

the value of Ni is small, which can be derived by Eq. (3.10) or Eq. (3.12). Besides, if the cross-

sectional area of the short member is moderately large, unexpectedly large von Mises stress may 

appear due to its large bending stiffness. However, the closely spaced nodes in the final solution 

will be merged into one node to obtain a simplified structural layout without short members. 

Therefore, in order to find the appropriate maximum stress to be minimized, the stress of the short 
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member is ignored for computing the objective function during the optimization process. In 

addition, the short member is modeled by only one beam element to avoid singularity caused by 

its large stiffness, and the nodal uncertainty is then applied only at the end nodes of a short member.  

Problem (4.8) is solved using CONOPT in the MATLAB interface of TOMLAB with default 

settings [131]. The correlated nodal uncertainty values in each member are generated by using 

copulas [132] [133] in MATLAB 2018a [134], and their correlation coefficients are calculated by 

Eq. (2.20) in Section 2.4. Furthermore, the frame member is modeled by only one beam element 

if its length is less than 0.1 m; otherwise the frame member is evenly divided into four beam 

elements as explained in Section 2.4. Flowchart of the optimization procedure with global stability 

constraint is shown in Fig. 4-2. 

 

 

Fig. 4-2 Flowchart of robust optimization in Section 4.3.1 
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4.3.2 Multi-objective optimization  

Due to the trade-off relationship between robustness level and structural performance [135], the 

selection of order k is not evident, and one may decide the value of k to meet the practical 

robustness. Because the exact extreme value corresponds to extremely rare event, for some cases 

it may be important to minimize not only the worst (i.e., k close to 1), but also the median and/or 

other percentile values of the response. Therefore, it is of interest to consider the structural 

responses with different values of k as multiple objective functions. Moreover, for comparison 

purpose the structural response without considering uncertainty is also included. The details of 

formulating multi-objective optimization problem are given as follows.  

Let design variables be the vectors of nodal coordinate  1 2, , ,
xnx x xx ,  1 2, , ,

yny y yy  

and cross-sectional areas  
e1 2, , , mA A AA , where 

xn  and 
yn  are the numbers of variables in x- 

and y-coordinates, respectively. The structural optimization problem without considering 

uncertainty can be formulated as 
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  (4.9) 

It is worth noting that in problem (4.9) tight bounds x , x , y and y  are given for the design 

variables of coordinates x and y, and therefore FDM is not used here for shape optimization. After 

solving problem (4.9), the topology of the structure is modified by removing the elements which 

have small cross-sectional areas and are considered to have little contribution to the reduction of 

structural response. However, such unnecessary elements may become useful for a solution to an 

RSO problem to minimize the worst structural response under uncertainty. Therefore, based on the 

optimal shape obtained by solving problem (4.9), we further choose the cross-sectional areas as 

the design variables for RSO problem formulated as follows: 
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  (4.10) 

Note that in problem (4.10) no uncertainty is considered in the constraint for simplicity. According 

to Section 4.2, the worst value 
max is relaxed to 100βth (0<β<1) percentile response which is 

approximated by the kth order statistic, and problem (4.10) is rewrite as 

 
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s:Minimize  ;

subject to  ;

                 

k m

V V
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A
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where ms is the sample size of order statistics. By selecting different values of k in problem (4.11), 

and including the response without considering uncertainty denoted by     
e

,
1,2,
1,2,

max V ij
i m
j p

 



A A  , 

the multi-objective optimization problem is formulated as   

       

 
1 s 2 s f s: : :Minimize  ,  ; ,  ; , ,  ;

subject to  ;  

                 

k m k m k m

V V

   



 

A A θ A θ A θ

A

A A A

  (4.12) 

where  1 2 f 1 2 f s
, , ,  1k k k k k k m       are the selected values of order k.  

According to the dependence properties of order statistics [136] [137], two order statistics are 

non-negatively correlated if they are i.i.d. random variables. Since the probability distribution of 

structural response is unknown, only distribution-free measurements of dependence, like 

Spearman’s correlation and Kendall’s tau can be applied, and their explicit calculations have been 

exploited by Navarro and Balakrishnan [138]. However, it is known that the value of  
s:

;k m A θ  

strongly depends on the choice of random numbers, especially when k is close to 1. Therefore, in 

some cases the linear statistic (L-statistic), which is a linear combination of order statistics, is also 

used as an estimator due to its simplicity and stability [117]. We use the simple trimmed mean 

 
s:

;
k m

S A θ , defined as follows, for smoothing the quantile response: 
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1
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S
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


A θ A θ   (4.13) 

where 1p  and 21 p  1 2
0 1p p    are the preassigned portions of the samples trimmed at the 

lower and upper ends, and  s 1
m p  and  s 2m p  are the greatest integer less than s 1m p  and s 2m p , 

respectively. The subscript k represents the arithmetic mean of all orders k in the set 

    s 1 s 21, ,m p m p .  

It is obvious that if 1p  and 2p  in Eq. (4.13) are properly selected such that 

        
s s ss

1: : 1::

1
; ; ; ;

3
k m k m k mk m

S      A θ A θ A θ A θ   (4.14) 

then the trimmed mean  :
;

k m
S X θ  is a function of order k, and can also be used as an 

approximation of quantile response  
s:

;k m A θ  to meet the various robustness levels. We denote 

the trimmed mean defined as Eq. (4.14) by :k mS for the implication of function of order k hereafter. 

Then, the multi-objective optimization problem to minimize :k mS  can be formulated as 
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where  1 2 f 1 2 f s
, ,  2 1k k k k k k m       are the selected values of order k in  

s:
;k mS A θ  .  

Problems (4.9), (4.12) and (4.15) are solved using genetic algorithms (GAs), which is one of 

the standard methods for solving multi-objective optimization problem. It is well known for GAs 

that the diversity of the initial population has great influence on the final solution and convergence 

property. Therefore, we use Latin hypercube sampling (LHS) method to generate the initial 

population for all of the three problems to maintain diversity, and the optimal solution of problem 

(4.9) is also added into the initial population of multi-objective optimization problems (4.12) and 

(4.15).  

The flowchart of multi-objective optimization procedure is summarized in Fig. 4-3, which 

consists of the following steps: 

Step 1: Select the design variables from the sets of nodal coordinates and cross-sectional areas, 

and specify the nominal values of uncertain parameters for problem (4.9). Generate the 

initial population using LHS method. Solve problem (4.9) using GA and obtain the 

optimal solution. 

Step 2: Based on the shape of optimal solution of Step 1, select the cross-sectional areas as 

design variables for multi-objective optimization problems (4.12) and (4.15). Generate 

the initial population using LHS method and add the optimal solution of problem (4.9) 

into it.  

Step 3: Select the multiple values of order k to determine the objective functions of problems 

(4.12) and (4.15) according to various robustness levels. Generate ms vectors of random 

values θ  to obtain the sample set for order statistics. 

Step 4: Solve problems (4.12) and (4.15) using a multi-objective GA. For each individual, 

compute ms response values corresponding to the ms vectors of θ , and rearrange the 

responses in a descending order to compute the objective function values based on the 

multiple selected orders k.  

Step 5: Obtain the Pareto optimal solutions, and remove the elements whose cross-sectional 

areas are small enough. 
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Fig. 4-3 Flowchart of multi-objective robust optimization in Section 4.3.2 

 

4.4 Penalization method  

When the cross-sectional areas of some members are close to 0, the accuracy of stress and 

eigenvalue analyses of the structure would be affected due to the existence of these thin elements, 

resulting in a disconnected feasible domain for the optimization problem which may have some 

degenerate sub-domains such as half lines [139][140], and this behavior is usually regarded as 

singularity phenomena in structural optimization [8][113][141]. Since singularity phenomenon 

might emerge in the maximum stress and the global buckling load factor and influence the 

optimization result, the penalization method is used for both stress singularity problem and 

singularity in global buckling load factor. Firstly, based on the method for stress-based 

optimization [140], the element stress is penalized as follows if the cross-sectional area of the ith 

element is small enough: 

   , ,
1,2,

ˆ / maxV i i i V ij
j p

A A


 


   (4.16) 
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where i, j , p and 
,V ij have the same meaning as Eqs. (4.2) and (4.4); 

iA  is the ith element of A   

defined in Eq. (4.8);   is the penalization parameter to underestimate the stress of a thin element. 

According to Ref. [140], the value of   should be greater than 0 and less than 1, and in this 

research we select 0.5    which is the same as in Ref. [140]. 

To verify the effectiveness of using Eq. (4.16), a simple example of stress minimization 

problem under volume constraint is to be solved where uncertainty is not taken into consideration. 

The initial structure of a simple frame is shown in Fig. 4-4(a), in which the node number and the 

member number are indicated by those with and without parentheses, respectively. The frame is 

pin-supported at nodes 1 and 2, and a downward vertical load F with magnitude 2000 N is applied 

at node 3. The design variables are the cross-sectional areas of the five members, and each member 

is divided into four Euler-Bernoulli beam elements. Note that the crossing members 3 and 4 are 

not connected at their intersection. As a result, there are 20 beam elements in the structure. The 

Young’s modulus is 3×1011 Pa, and the von Mises stress is calculated at the neutral axis and the 

upper and lower edges of the cross-section at the two end nodes of each element,  which are 

illustrated in Fig. 4-4(b). The optimization problem is formulated based on Eq. (4.4) in Section 

4.3.1 without global buckling constraint and considering only A as design variables, where me = 

20, p = 6, and the upper and lower bounds of cross-sectional areas for all members are 0.05 and 

1×10-7 (m2), respectively. The stress of a thin element is penalized using Eq. (4.16), and the thin 

elements are defined as those whose cross-sectional areas are less than 1% of Amax, where Amax is 

the maximum cross-sectional area of the frame. The problem is solved by the generalized reduced 

gradient (GRG) method of CONOPT in the MATLAB interface of TOMLAB with default settings 

[131]. The optimal solution and the corresponding cross-sectional areas are shown in Fig. 4-5(a) 

and Table 4-3, which is the same as Fig. 2-4(a) and Table 2-1 in Section 2.4, and the result after 

removing the thin elements is shown in Fig. 4-5(b). The maximum von Mises stresses before and 

after removing thin elements are 68199.41 and 68199.54 (Pa), respectively, which are almost the 

same, indicating that the stress singularity phenomenon can be avoided by using Eq. (4.16).  

 

            

 (a) (b) 

Fig. 4-4 A simple frame model: (a) initial structure; (b) stress evaluation points of each element 
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Table 4-3 Cross-sectional areas of optimal solution of simple frame model 

Member number Cross-sectional area (m2) 
1 0.03478 

2 1×10-7 

3 1×10-7 

4 0.04611 

5 1×10-7 

 

      

 (a) (b) 

Fig. 4-5 Optimal solution of simple frame model: (a) before removing thin elements; (b) after 

removing thin elements 

The penalization approach to alleviate stress singularity is also used for singularity 

phenomenon in global instability. It has been pointed out that the emergence of slender member 

in compression will lead to a violation of global stability constraint due to their negative 

contributions in global geometrical stiffness matrix [36]. Therefore, in order to obtain the accurate 

linear buckling load factor of the structure when thin elements are involved, the geometrical 

stiffness matrix of the thin element, say the ith element, is penalized as follows: 

 , ,
ˆ /G i i i G iA A



 K K   (4.17) 

where 
,G iK is the original geometrical stiffness matrix of the ith element and   is the penalization 

parameter. Eq. (4.17) is inspired by the standard SIMP method where the elastic element stiffness 

matrix with intermediate density is penalized by the corresponding density design variable [3, 142]. 

The main purpose of using Eq. (4.17) is to exclude the superficial buckling without removing any 

thin element and keeping the connection of nodes unchanged.  
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To illustrate the effectiveness of Eq. (4.17), we investigate the linear buckling load factor of 

the solution of the same optimization problem. As discussed in Section 2.4, the linear buckling 

load factor before removing thin elements is much smaller than that after removing the thin 

elements. However, if the geometrical stiffness matrices of the thin elements are penalized using 

Eq. (4.17), we can eliminate such negative effect in the global geometrical stiffness matrix and 

obtain the accurate value of 
cr  without removing the thin elements. Figure. 4-6 shows the 

relationship between 
cr  before removing thin elements and the penalization parameter ρ in Eq. 

(4.17). The value of 
cr after removing the thin elements is also plotted with red line for 

comparison. As we can see from Fig. 4-6, the value of 
cr  before removing the thin elements 

increases as   is increased, and becomes close to 238440.64 when ρ is greater than 1, indicating 

that the global stability of the structure can be evaluated by using Eq. (4.17) with a value of ρ larger 

than 1. Therefore, for the single-objective optimization problem in Section 4.3.1 we choose 2   

in Eq. (4.17) to penalize the geometrical stiffness matrix of a thin element. 

 

Fig. 4-6 Variation of linear buckling load factor with respect to penalization parameter 

 

4.5 Numerical examples 

In this section four numerical examples are investigated to demonstrate the effectiveness of the 

proposed methods as discussed in Sections 4.3, and the details of parameter settings for the both 

problem formulations will be given in Section 4.4.1. On the one hand, examples 1 and 2 are 

presented for the single-objective problem formulation in Section 4.3.1, and they are solved using 

CONOPT in the MATLAB interface of TOMLAB with default settings [56]. On the other hand, 

examples 3 and 4 are presented for the multi-objective problem formulation in Section 4.3.2, and 

they are solved by a multi-objective GA in Global Optimization Toolbox of MATLAB 2018a [124] 

with crossover rate 0.7 by default. Besides, we assume that in the following examples each member 

has solid circular cross-section, and the crossing members are not connected at their intersection. 
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For each example the node number and the member number shown in the initial structure are 

indicated by those with and without parentheses, respectively.  

4.5.1 Parameter settings 

As for the single-objective problem formulation in 4.3.1, since the robustness level β is a 

decreasing function of order k with given sample size ms, and higher values of β and confidence 

level 
k  lead to a better approximation of the worst structural response, we assume k = 1, ms = 

150 and 0.9995k  for problem (4.8) in examples 1 and 2, i.e., the 
s:k m  and 

s

cr

:k m  in problem 

(4.8) are written as 
1:150  and cr

1:150 , respectively, and the corresponding robustness β of both 

maximum stress and global buckling load factor is 0.95. The eccentricity e in Section 2.4 is 0.01 

for each member in accordance with Ref. [143], and the entries of vector  , ,   θ x y A  are 

characterized by uniformly distributed interval variables with the increments indicated by , i.e.,

lower upper,     x x x , lower upper,     y y y  , lower upper,     A A A . The feasible region   is 

then defined as lower upper lower upper lower upper, , ,                 x x y y A A  , where the subscripts lower 

and upper represent the lower and upper bounds for the corresponding uncertain parameters, 

respectively. Note that the same set of uncertain parameters is used at each iteration during 

optimization process. Validity of this procedure is explained in Appendix A2. Because the 

variation range of uncertain locations of intermediate nodes can be derived with prescribed 

uncertain nodal locations of free nodes and the eccentricity e, only the bounds for free nodes, 

denoted by 
free,lowerx , 

free,upperx , 
free,lowery  and 

free,uppery , are given in each example, and we 

assume that the nodal uncertainty does not exist in the fixed nodes. The correlated nodal 

uncertainty values in each member are generated by using copulas [132][133] in MATLAB 2018a 

[134], and their correlation coefficients are calculated by Eq. (2.20) with correlation length 

Lexp=0.1m. It should be noted that in problem (4.8) no assumption is made on the distribution type 

of the uncertain parameters; however, in the numerical examples we choose the uniform 

distribution as the sample-generating mechanism for conveniently constructing the random sample 

set for order statistics [79]. 

Furthermore, since closely spaced nodes may still exist in the optimization process, we 

hereafter do not divide the frame member if its length is less than 0.1 m; otherwise the frame 

member is evenly divided into four beam elements as explained in Section 2.4. An element is 

regarded as thin if its cross-sectional area is less than 1% of the maximum cross-sectional area of 

the frame. The stress and geometrical stiffness of a thin element are penalized using Eqs. (4.16) 

and (4.17), respectively. The number of evaluation points p within each element is 6, and their 

positions are shown in Fig. 4-4(b).  The parameter values listed in Table 4-4 are used in examples 

1 and 2 if not specified explicitly, where I is the vector with all entries equal to 1. Note that A  in 

Table 4-4 is the lower bound of cross-sectional area without considering uncertainty, i.e., A A , 

and the number of nodes n does not include the intermediate nodes in each member. The 

deterministic optimization problem (4.4) is also solved in examples 1 and 2 for comparison 
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purpose, and the solution of robust optimization problem (4.8) and deterministic optimization 

problem (4.4) are denoted as solutions R and D, respectively.   

 

Table 4-4 Parameter settings of examples 1 and 2 

Parameters Example 1 Example 2 

Lower bound of 
free,lowerx   (m) 0.02 I  0.02 I  

Upper bound of 
free,upperx   (m) 0.02I  0.02I  

Lower bound of 
free,lowery   (m) 0.02 I  0.02 I  

Upper bound of 
free,lowery   (m) 0.02I  0.02I  

Lower bound of 
lowerA (m2) 0.02 A   0.02 A  

Upper bound of 
upperA  (m2) 0.02A  0.02A  

Nominal value of E  (Pa)  
11

2 10 I   
11

2 10 I   

Sample size ms 150 150 

Order k in problem (4.8) 1 1 

Confidence level 
k   0.9995 0.9995 

Robustness    0.95 0.95 

Upper bound A (m2) 0.05I   0.05I  

Lower bound A (m2) 71 10 I   
71 10 I  

Upper bound t  (N/m) 1000I   1000I  

Lower bound t  (N/m) 1000 I  1000 I  

Upper bound V  (m3) 0.02 0.1 

Lower bound    3.4 50 

Upper bound    0.29 0.02 

Correlation length 
expL  (m) 0.1 0.1 

Number of members m 10 27 

Number of nodes n 6 12 

Eccentricity e  0.01 0.01 

 

As for multi-objective formulation in Section 4.3.2, the uncertain parameters  

 , ,   θ x y E  are also characterized by the uniformly distributed interval variables, i.e.,

upper lower,     E E E , lower upper,     x x x and lower upper,     y y y . To illustrate 

effectiveness of the proposed method, the range of uncertain interval parameters are given as 

approximately 10% from the nominal value in the similar manner as the examples by Guest and 

Igusa [62]. It is worth noting that the elements of design variables x and y in problem (4.9) do not 

exactly correspond to the uncertain parameters x  and y  in problems (4.12) and (4.15); x and 

y may have more or less elements than x  and y , respectively, and vice versa.  
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Furthermore, since our purpose is to minimize the structural response at different robustness 

levels, we hereafter select the maximum and median structural responses as the desired percentiles 

to be minimized [135], and the upper quartile, which is defined as the middle between the 

maximum and median, is also included to investigate the variation trend of objective function 

values and their statistical values. A small positive lower bound of cross-sectional area is given for 

a non-existing member to prevent numerical difficulty. The values of parameters in examples 3 

and 4 are listed in Table 4-5, if not specified explicitly 

 

Table 4-5 Parameter settings of examples 3 and 4 

Parameters Example 3 Example 4 

Lower bound of lowerx  (m) 0.6 I    0.1 I   

Upper bound of 
upperx  (m) 0.6I  0.1I   

Lower bound of lowery   (m) 0.6 I  0.1 I  

Upper bound of lowery   (m) 0.6I  0.1I  

Lower bound of 
lowerE  0.1 E   0.1 E  

Upper bound of 
upperE  0.1E   0.1E  

Nominal value of E (Pa) 2.1×1011 2.1×1011 

Upper bound A  (m2) 0.1I  0.05I   

Lower bound A  (m2) 71 10 I   
71 10 I  

Upper bound of V  (m3) 1 0.2 

Order k in problem (4.12) 1, 50, 100 1, 50, 100 

Order k in problem (4.15) 2, 50, 100 2, 50, 100 

Confidence level αk 0.9 0.9 

Sample size ms 200 200 

 

4.5.2 Example 1: single-objective problem formulation in 4.3.1 

The first example is a plane frame with two square units, and the initial frame is shown in Fig. 4-

7. The frame is pin-supported at nodes 1 and 2, and a downward vertical load F = 200 kN is applied 

at node 5. The fixed nodes for FDM are selected as nodes 1, 2 and 5, and the others are free nodes. 

The robust and deterministic solutions R and D are obtained by solving optimization problems 

(4.8) and (4.4), respectively. 

The solutions R and D are shown in Fig. 4-8, where the contour represents the value of von 

Mises stress without adding uncertainty. The nodal locations, force densities, cross-sectional areas 

and member lengths of solutions R and D are listed in Tables 4-6 and 4-7. In order to give a more 

intuitive comparison, the worst case of stress distributions of solutions R and D are shown in Fig. 

4-9, where uncertainties are considered in nodal locations and cross-sectional areas, and the values 

of  , 1:150 , cr , 
cr , cr

1:150 , cr

1:150  and V are also listed in Table 4-8. It is worth noting that Figs. 
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4-8 and 4-9 show the performances of solutions R and D with and without adding uncertainties, 

respectively, under the same loading and boundary conditions. 

 

Fig. 4-7 Initial frame of Example 1  

 

 

 (a) (b)  

Fig. 4-8 Solutions of Example 1 and stress distribution without uncertainty: (a) Solution R; (b) 

Solution D 

 

 

 (a) (b) 

Fig. 4-9 Solutions of Example 1 and worst stress distribition: (a) Solution R; (b) Solution D 
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It can be seen from Fig. 4-8 and Table 4-8 that solution D has a smaller   than solution R, 

and the linear buckling load factor of solution D is close to  . Moreover, for solution D the von 

Mises stresses in the elements with moderate cross-sectional areas are at the similar magnitude 

and close to  , which means that the limited material is fully utilized in solution D. However, as 

we can see from Tables 4-6 and 4-7, the cross-sectional areas of members 1 and 6 in solution D 

are almost the same, and nodes 1, 3 and 5 are almost located at the same horizontal line; therefore 

members 1 and 6 can be considered as a long member connecting nodes 1 and 5, resulting in a 

much higher 
1:150  and a violation on global stability constraint when uncertainty is involved, as 

observed in Fig. 4-9(b) and Table 4-8.  

 

Table 4-6 Nodal location of solutions of Example 1 

Node number 
Solution R Solution D 

x-coordinate (m) y-coordinate (m) x-coordinate (m) y-coordinate (m) 

1 0 0 0 0 

2 0 1 0 1 

3 0.8011 0.0631 1.3101 0.0008 

4 1.6003 0.5087 1.1747 0.7980 

5 2 0 2 0 

6 1.9439 0.2882 1.5822 0.1685 

 

Table 4-7 Cross-sectional area, force density and member length of solutions of Example 1 

Member 

number 

Solution R Solution D 

Cross-sectional 

area (m2) 

Force density  

(N/ m2) 

Length 

(m) 

Cross-sectional 

area (m2) 

Force density  

(N/ m2) 

Length 

(m) 

1 0.004302 0.2617 0.8059 0.002678 0.4489 1.3101 

2 1×10-7 0.0933 1.6767 0.002933 -0.4132 1.4202 

3 0.001560 0.1924 1.2332 1×10-7 -0.1647 1.6476 

4 0.004069 0.1263 1.6729 0.005220 0.7074 1.1920 

5 0.002682 -0.2225 0.9096 1×10-7 0.0980 0.8085 

6 0.002719 0.5726 1.1983 0.002675 0.3539 0.6898 

7 1×10-7 -0.1260 1.1603 1×10-7 0.5198 0.3196 

8 0.003228 0.0078 0.6462 0.003710 0.2497 1.1480 

9 1×10-7 0.4978 0.4081 1×10-7 0.3099 0.7499 

10 1×10-7 0.4798 0.2921 1×10-7 0.6410 0.4504 

 

Table 4-8 Values of  , 1:150 , cr , 
cr , cr

1:150 , cr

1:150  and V of solutions of Example 1 

Solution   (MPa) 1:150  (MPa) cr  cr  
cr

1:150  cr

1:150  V (m3) 

R 103.7015 234.7208 0.0868 11.5117 0.0914 10.9328 0.02 

D 84.5490 354.7003 0.2899 3.4490 0.3193 3.1314 0.02 
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While the stress distribution in solution R has several different stress levels and some of these 

elements has much smaller von Mises stress than  , the long member in solution D no longer 

exists in solution R and node 3 is connected by more elements, increasing the redundancy of the 

structure to reduce the effect of uncertainty on structural performance. In addition, compared to 

solution D, the overall height of solution R is smaller. It is observed from Fig. 4-9 that at the worst 

case more elements in solution R have high stress level close to 
1:150 , while in solution D the high 

stress level only exists in the elements at the bottom, which demonstrates that the elements in 

solution R cooperate with each other to reduce the maximum stress. Table 4-8 also indicates that 

1:150  of solution R is smaller than that of solution D, and the global stability constraint is satisfied 

under uncertainty which is far from being active. Specifically, 
1:150  of solution R increases about 

126.34% from   and cr

1:150  decreases about 5.02% from 
cr , whereas 

1:150  of solution D 

increases about 319.52% from   and cr

1:150  decreases about 9.02% from 
cr . This result indicates 

that solution R is more robust and stable than solution D with respect to reducing the influence of 

uncertainty in nodal locations and cross-sectional areas on structural performance. Although the 

details are not shown, a similar solution as solution D is obtained if global stability constraint is 

not considered. This fact emphasizes the importance of the proposed penalization method of the 

geometrical stiffness matrix to obtain the optimal solution neglecting the superficial buckling of 

the thin members. 

 

 

 (a)     (b) 

Fig. 4-10 Iteration history of Example 1: (a) Values of 3x , 4y , 1A and 4A  in worst case 

scenario; (b) First order statistic 1:150  

 

Furthermore, the iteration histories of values of uncertainties in the x-coordinate of node 3 and y-

coordinate of node 4, denoted by 3x  and 4y , respectively, and cross-sectional areas of 

members 1 and 4, denoted by 1A and 4A , respectively, in the worst case scenario are presented 
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in Fig. 4-10(a), and the iteration history of 
1:150  is also presented in Fig. 4-10(b). Note that for 

simplicity in Fig. 4-10(a) only the values of every 10 iterations are shown. It can be observed from 

Fig. 4-10(a) that the values of uncertainties in nodal coordinates and cross-sectional areas in the 

worst case scenario change during the optimization procedure, indicating that the worst case 

scenarios would switch with respect to the variations of uncertain parameters. Moreover, in Fig. 

4-10(b) there are several humps in the iteration history of 
1:150  which increase rapidly to a very 

large value. The main reason would be that since the optimization problem is nonlinear with 

respect to the design variables, solutions that are sensitive to uncertain parameters are sometimes 

evaluated during optimization, resulting in a large value of 
1:150 . However, in this example the 

values of humps are gradually decreased and the worst case scenario converged as the optimization 

procedure converged to a local minimum with an appropriate shape and topology. In addition, we 

further investigate the effect of using different sampling sets for constructing the order statistics 

on final design, and the results are presented in Appendix A2. 

 

4.5.3 Example 2: single-objective problem formulation in 4.3.1 

The second example is another cantilever plane frame structure with 3×2 units. The structure is 

pin-supported at nodes 1, 2 and 3, and a downward vertical load F = 100 kN is applied at node 11 

as shown in Fig. 4-11.  

 

 

Fig. 4-11 Initial frame of Example 2 

 

In a similar manner as Example 1, we solve both the robust and deterministic optimization 

problems (4.8) and (4.4) for Example 2. The nodal locations, cross-sectional areas, force densities 

and member lengths of solutions R and D are listed in Tables 4-9 and 4-10, and Table 4-11 lists 

the values of  , 1:150 , cr , 
cr , cr

1:150 , cr

1:150  and V. Solutions R and D are shown in Fig. 4-12 and 
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the stress contours are obtained without considering uncertainty, while Fig. 4-13 shows the worst 

stress distributions of solutions R and D. It should be noted that since the stresses of short members 

are ignored during the optimization, the stresses of short member 6 in solution R and short 

members 1 and 7 in solution D are represented as 0 in Figs. 4-12 and 4-13. 

 

Table 4-9 Nodal location of solutions of Example 2 

Node number 
Solution R Solution D 

x-coordinate (m) y-coordinate (m) x-coordinate (m) y-coordinate (m) 

1 0 0 0 0 

2 0 1 0 1 

3 0 2 0 2 

4 0.9342 0.1628 0.0249 0.0060 

5 1.4275 1.0654 1.3000 1.0004 

6 0.6667 1.9573 0.0250 1.9939 

7 1.9891 0.3623 1.8630 0.2935 

8 2.9738 0.8939 1.4999 1.0004 

9 1.8244 1.8063 1.8622 1.7067 

10 2.7641 1.2496 2.7868 1.2748 

11 3 1 3 1 

12 2.8315 1.0208 2.2953 1.9169 

 

 

 

 (a)  (b) 

Fig. 4-12 Solutions of Example 2 and stress distribution without uncertainty: (a) Solution R; (b) 

Solution D 
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 (a) (b) 

Fig. 4-13 Solutions of Example 2 and worst stress distribition: (a) Solution R; (b) Solution D 

 

Table 4-10 Cross-sectional area and force density of solutions of Example 2 

Member 

number 

Solution R Solution D 

Cross-sectional 

area (m2) 

Force density  

(N/ m) 

Length 

(m) 

Cross-sectional 

area (m2) 

Force density  

(N/ m) 

Length 

(m) 

1 0.0077 0.8088 0.9483 0.0099 0.0114 0.0257 

2 0.0064 -0.8207 1.0735 0.0114 0.0659 1.8603 

3 5.52×10-7 0.0845 1.1781 1×10-7 -0.0595 1.3477 

4 1.87×10-7 -0.0556 1.4290 1×10-7 0.07949 1.3000 

5 1.83×10-7 0.0867 1.5557 1×10-7 -0.4249 0.1999 

6 9.49×10-7 -0.9537 0.1000 1×10-7 -0.4484 1.5000 

7 0.0077 1.3707 0.6681 0.0099 0.0383 0.0257 

8 0.0064 0.0208 1.1674 0.0113 0.2297 1.8595 

9 1.85×10-7 0.0864 1.2772 1×10-7 -0.1393 0.4814 

10 0.0056 0.5636 1.0286 1×10-7 0.1459 1.6169 

11 3.51×10-6 -0.8759 1.1191 0.0017 -0.1890 0.7946 

12 2.99×10-7 1.2386 0.3434 1×10-7 0.1458 0.3478 

13 0.0054 1.1569 1.1722 1×10-7 -0.0752 1.6164 

14 1.84×10-7 0.4991 1.4675 0.0017 -0.2745 0.7937 

15 1.84×10-7 0.0748 0.1697 1×10-7 -0.0232 1.1564 

16 0.0061 -0.1373 1.7813 0.0036 -0.2397 1.6403 

17 0.0032 -0.5928 1.2544 1×10-7 0.0424 0.9943 

18 1.86×10-7 0.3870 2.1667 0.0028 -0.2074 1.7789 

19 0.0036 0.2556 0.8998 0.0028 0.1364 0.9036 

20 0.0098 0.0740 1.1952 0.0103 0.1622 1.3385 

21 1.78×10-7 -1.0804 0.4129 1×10-7 0.0669 1.3158 

22 0.0031 -0.7756 1.1666 1×10-7 0.2256 0.9943 

23 0.0061 -0.4466 1.7062 0.0036 0.0815 1.6398 

24 0.0039 -0.0823 0.8404 0.0028 -0.0069 0.9027 

25 1.85×10-7 -0.2199 2.5403 0.0028 -0.2167 1.7783 

26 1.83×10-7 0.5229 0.1906 1×10-7 0.0552 1.2134 

27 0.0098 -0.5693 1.4255 0.0102 0.3332 1.3393 
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It can be seen from Fig. 4-12 and Tables 4-9 and 4-10 that compared to solution D, the nodal 

locations and cross-sectional areas of solution R are asymmetric with respect to the center line 

parallel to the x-axis, and   of solution R is almost twice of that of solution D. However, when 

uncertainty is added to the nodal locations and cross-sectional areas, 
1:150  of solution D 

significantly increases about 293% from 9.7051 MPa to 38.1419 MPa, and cr

1:150  is also decreases 

about 7.67% from 
cr  violating the global stability constraint. This is mainly because the 

existences of long members in solution D make the structure more sensitive to the asymmetric 

uncertainties. By contrast, 
1:150  of solution R is smaller than that of solution D as more members 

have increased their cross-sectional areas and connect to the support node 2, avoiding the existence 

of long members and increasing the structural stability. In addition, we can see from Table 4-11 

that cr

1:150 of solution R decreases only about 5.3% from 
cr and the global stability constraint is 

also satisfied under uncertainty, which indicates solution R has more stability than solution D. 

 

 

 (a) (b) 

Fig. 4-14 Solutions of Example 2 and stress distribution without uncertainty after merging the 

closely spaced nodes and removing thin elements: (a) Solution R; (b) Solution D 

 

 

 (a) (b)  

Fig. 4-15 Solutions of Example 2 and worst stress distribution after merging the closely spaced 

nodes and removing thin elements: (a) Solution R; (b) Solution D 
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Figures. 4-14 and 4-15 show the stress contours of solutions R and D without considering 

uncertainty and the corresponding worst stress distributions, respectively, after merging the closely 

spaced nodes and removing thin elements. The values of  , 
1:150 , cr , 

cr , cr

1:150 , cr

1:150  and V of 

solutions in Figs. 4-14 and 4-15 are listed in Table 4-12. It can be found that the differences 

between Tables 4-11 and 4-12 for solutions R and D are about 1.5% or less, however, as stated in 

Section 4.3.1, unexpectedly large stress might exist in a short member with moderate cross-

sectional area due to its large bending stiffness, and would provide an inaccurate stress to be 

minimized if it is considered during optimization procedure. For example, the von Mises stress of 

members 1 and 7 without uncertainty in solution D are both 13.0781 MPa, which is much larger 

than the stress after merging the closely spaced nodes and removing thin elements. Therefore, the 

stress in short member is set to 0 during the optimization procedure to avoid such inaccurate stress 

to be minimized. 

 

Table 4-11 Values of  ,
1:150 , cr , 

cr , cr

1:150 , cr

1:150  and V of solutions of Example 2 before 

merging the closely spaced nodes and removing thin elements 

Solution   (MPa) 1:150  (MPa) cr  cr   
cr

1:150  cr

1:150  V (m3) 

R 16.6915 28.7047 0.0102 97.9790 0.0107 92.7861 0.1 

D 9.7051 38.1419 0.0195 51.1818 0.0216 47.2584 0.1 
 

Table 4-12 Values of  ,
1:150 , cr , 

cr , cr

1:150 , cr

1:150  and V of solutions of Example 2  after 

merging the closely spaced nodes and removing thin elements 

Solution   (MPa) 1:150  (MPa) cr  cr  
cr

1:150  cr

1:150  V (m3) 

R 16.6923 29.0141 0.0102 97.9778 0.0108 92.2404 0.1 

D 9.7795 38.8318 0.0197 50.7112 0.0211 47.4364 0.1 
 

It can be seen from Tables 4-9 to 4-11 that solutions R and D have the same structural volume 

that is equal to its upper bound; however, they have different structural geometries and 

distributions of cross-sectional areas, leading to a trade-off relationship between structural 

robustness and performance. Specifically, solution D has a smaller   at deterministic condition, 

while the 1:150  of solution R increases less from   and has larger 
cr  and cr

1:150  than those of 

solution D. 

 

4.5.4 Example 3: multi-objective problem formulation in 4.3.2 

The third example is a 14-node bridge frame with 6×1 grid and 31 beam elements, which is pin-

supported at nodes 1 and 13. The initial ground structure is shown in Fig. 4-16. There are five 

downward loads with magnitude of F = 3×106 N applied at nodes 3, 5, 7, 9 and 11. 
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Firstly, to investigate the difference between optimal designs of truss and frame, we first 

minimize the structural volume under stress constraints on each element and y-directional 

displacement at each node except nodes 1 and 13. This problem has been studied in Ref. [144]  

using truss elements. Note that uncertainty is not considered here, and Young’s modulus for each 

beam element is 2.1×1011 Pa. 

 

 

Fig. 4-16 Initial frame of Example 3 

 

The design variables are the cross-sectional area of each element and the y-coordinates of the 

upper nodes 2, 4, 6, 8, 10, 12 and 14. Because the structural shape, loading and boundary conditions 

are symmetric with respect to the center line parallel to the y-axis, the number of design variables 

is reduced from 38 to 20, with 16 design variables  1 2 16
, , ,A A AA  representing the cross-

sectional areas of elements 1 to 16, and four design variables  2 4 6 8
, , ,y y y yy  representing the 

y-coordinates of nodes 2, 4, 6 and 8. Since both bending moment and axial force exist in the frame 

structure, we have to ensure that both of the tensile and compressive stresses at the edge of element 

ends should not exceed the allowable stress. Therefore, we increase the upper bound of cross-

sectional area from 0.1 m2, which is used in Ref. [144], to 0.2 m2 such that the cross-sectional area 

does not reach the upper bound. The optimization problem to minimize the total structural volume 

 ,V A y  is formulated as follows: 

 

 

 

 

U

max-t

t,U

max-c

c,U

Minimize  ,

subject to  , ,   2,3, ,12,14

,
                 ,

,

                  ,   1, 2, ,16

                  ,    2, 4,6,8

i

l

l

l

j

V

i

A A A l

y y y j

 

 

 

 

 




  

  

A y

A y

A y

A y
  (4.18) 
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where  ,i A y  is the downward displacement of node i, and 
U 0.1 m  is its upper bound; 

 max-t ,l A y  and  max-c ,l A y  represent the maximum tension and compressive edge stresses   

 0  of lth element; 8

t,U
1.30 10  Pa    and 8

c,U
1.04 10  Pa    are the upper bounds of edge 

stress in tension and compression, respectively. Bounds for the design variables are 2 my  ,

8 my  , 
2

0.2 mA    and 7 2
1.0 10  mA


  . 

Problem (4.18) is solved by GA, and the optimal solution is shown in Fig. 4-17(a). The 

structural volume is 5.42 m3, which is about 6.4% larger than the result in Ref. [144]. The main 

reason is that the truss structure has only axial force and the element is either under uniaxial tension 

or compression. On the other hand, the edge stresses of frame element consists of bending stress 

and uniaxial tensile or compressive stress, which are illustrated in Fig. 4-18, and the cross-sectional 

area need to be larger than that of the truss element in order not to violate the stress constraints, 

leading to a little increase of the total structural volume. 

 

   

 (a) (b) 

Fig. 4-17 Optimal solutions of Example 3: (a) problem (4.18); (b) problem (4.19) 

 

 

Fig. 4-18 Illustration of internal force and maximum edge stress of beam element  

Next, we select Young’s modulus of each element and x- and y-coordinates of nodes 2, 4, 6, 8, 

10, 12 and 14 as uncertain parameters, and minimize the maximum stress under volume constraint. 

The initial structure is the same as shown in Fig. 4-16 and design variables are  1 2 16
, , ,A A AA  

and  2 4 6 8
, , ,y y y yy . Based on Eq. (4.9) and the parameter values listed in Table 4-5, the 

optimization problem without uncertainty is formulated as follows:  
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 

 

max max

1,2, ,16
Minimize  max ,

subject to  ,

                 ,   1, 2, ,16;

                 ,   2, 4,6,8

i
i

l

j

V V

A A A l

y y y j

 






  

  

A y

A y
  (4.19) 

Problem (4.19) is solved using GA, and the optimal solution is shown in Fig. 4-17(b). Then based 

on the optimal shape in Fig. 4-17(b), we choose the cross-sectional areas as design variables and 

consider the variation in uncertain parameters. The multi-objective optimization problem reads 

       

 

max max max max

1:200 50:200 100:200
Minimize  ,  ; ,  ; ,  ;

subject to  ;  

                 ,   1, 2, ,16l

V V

A A A l

   



  

A A θ A θ A θ

A  (4.20) 

As a result of optimization, the 200 solutions converged to a set of 70 different Pareto optimal 

solutions, and the total computational efforts for solving problems (4.19) and (4.20), including the 

iteration steps, number of function analyses and computation time, are listed in Table 4-13. Since 

FEA can be avoided if the individuals in the current population have appeared in the previous 

iterations and thus computational efforts can be saved, the following criterion is adopted to 

determine whether the analysis for the current individual is needed or not: 

1

a0.001,  1, 2, ,
i

i

i n


 
p p

p
  (4.21) 

where p1 is the current individual to be evaluated, pi is the individual that has appeared before and 

na is the number of individuals that have appeared before without duplication. By using Eq. (4.21) 

the number of analyses for solving problems (4.19) and (4.20) without duplication can be obtained 

as listed in Table 4-13. Note that the computation time is calculated for the total number of analyses. 

 

Table 4-13 Computational efforts of Examples 1 to 4 

Example 
Iteration 

steps 
Number of analyses  

Number of analyses 

without duplication  

Computation 

time 

1 798 600,150 (problem 4.8) -- 3201.61 sec 

2 1806 1,357,650 (problem 4.8) -- 5450.08 sec  

3 621 
400,200 (problem 4.19) 

7,880,000 (problem 4.20) 

45,533 (problem 4.19)  

4,345,000 (problem 4.20) 
4243.78 sec 

4 951 
115,600 (problem 4.23) 

15,320,000 (problem 4.24) 

37,605 (problem 4.23) 

11,302,600 (problem 4.24) 
5782.27 sec 

 

The Pareto optimal solutions at different steps are plotted in Figs. 4-19, 4-20 and 4-21, respectively, 

in the planes of 
max  and one of max

1:200  , max

50:200  and max

100:200 , where the solutions on the Pareto front 

are denoted by PF followed by the step number in the parentheses. It can be observed from Fig. 4-
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19(a) that the Pareto front is generated with good accuracy after step 30, and the optimal value of 
max  remains the same due to the addition of optimal solution of problem (4.19) into the initial 

population of problem (4.20). Figure 4-19(b) plots the detailed view of the Pareto optimal solutions 

and their corresponding trade-off relationships. We can see that the variation of max

1:200  at the Pareto 

front is greater than that of 
max . The same conclusions can be drawn from Figs. 4-20 and 4-21. 

 

 

 (a)     (b) 

Fig. 4-19 Stepwise Pareto front of objectives 
max and max

1:200 : (a) Overall review; (b) Detailed 

view 

 

 

 (a)     (b) 

Fig. 4-20 Stepwise Pareto front of objectives 
max and max

50:200 : (a) Overall review; (b) Detailed 

view 
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 (a)     (b) 

Fig. 4-21 Stepwise Pareto front of objectives 
max  and max

100:200 : (a) Overall review; (b) Detailed 

view 

 

Table 4-14 Objective values and structural volume of solutions A, B, C and D of problem (4.21) 

in Example 3 before removing thin elements 

Solution max  (Pa) 
max

1:200  (Pa) max

50:200  (Pa) max

100:200  (Pa) V (m3) 

A 4.7001×108 5.9733×109 2.8549×109 2.0861×109 1.0 

B 6.0353×108 7.7531×108 6.9560×108 6.5546×108 1.0 

C 5.8417×108 8.2934×108 6.8127×108 6.4418×108 1.0 

D 5.7499×108 8.7466×108 6.9079×108 6.3814×108 1.0 

 

Table 4-15 Objective values and structural volume of solutions A, B, C and D of problem (4.21) 

in Example 3 after removing thin elements 

Solution max  (Pa) 
max

1:200  (Pa) max

50:200  (Pa) max

100:200  (Pa) V (m3) 

A 4.7080×108 1.7213×1010 7.3785×109 4.1258×109 1.0 

B 6.0929×108 7.7872×108 6.9805×108 6.6848×108 1.0 

C 5.8482×108 8.3908×108 6.8469×108 6.4775×108 1.0 

D 5.8070×108 8.8895×108 6.9200×108 6.4595×108 1.0 

 

The Pareto optimal solutions that have the smallest values of 
max , max

1:200 , max

50:200  and max

100:200 , 

respectively, are denoted by solutions A, B, C and D, and shown in Fig. 4-22. The maximum edge 

stress of each element, which is calculated without considering uncertainty, are also depicted. Note 

that the thin elements, whose cross-sectional areas are less than 0.0001 m2, are removed from the 

optimal solutions in Fig. 4-22, and their objective values before and after removing the thin 
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elements are listed in Tables 4-14 and 4-15, respectively, together with their structural volume. 

The distribution of cross-sectional areas are plotted in Fig. 4-23. 

We can see from Fig. 4-22 and Tables 4-14 and 4-15 that solution A has obviously large 

values of objective functions max

1:200 , max

50:200  and max

100:200 . Solution B has the minimum value of max

1:200  

and some of the elements, which do not exist in solution A, have moderately large cross-sectional 

areas to reduce the effect of uncertainties in Young’s modulus and nodal locations, resulting in a 

large stiffness of the frame. 

 

    

 (a) (b) 

    

 (c)  (d) 

Fig. 4-22 Pareto optimal solutions of problem (4.20): (a) Solution A; (b) Solution B; (c) 

Solution C; (d) Solution D 

 

Moreover, as seen from Tables 4-14 and 4-15, the objective values of solutions B, C, and D 

as well as the objective value of 
max  in solution A before and after removing thin elements are 

very close. However, the objective values of max

1:200 , max

50:200  and max

100:200  in solution A after removing 

thin elements are greater than those before removal. This is mainly because although solution A 

has the minimum value of 
max  among 70 Pareto optimal solutions, it is unstable if bending 

stiffness is very small and become worse when the thin elements are removed,  making it more 

sensitive to the uncertainties. Thus, its maximum stress increases rapidly as deformation becomes 

asymmetric.  
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It is confirmed that solutions C and D have the smallest values of max

50:200  and max

100:200 , 

respectively, and elements 8 and 24 are removed in solution D. We can also observe from Tables 

4-14 and 4-15 that the nominal objective value 
max  decreases as order k is increased. However, 

the solutions A and D that minimize the nominal and median values are very different, indicating 

that a small asymmetric property leads to a large increase of the maximum stress, and accordingly 

leads to a significant difference in the optimal solutions. By contrast, the extreme value max

1:200  

increases as order k is increased. However, the increase is not very significant. The cross-sectional 

areas of solutions B, C and D have similar distribution as shown in Fig. 4-23.  

Solutions A, B, C and D have the same structural volume of 1.0 m3; however, they have 

different distributions of cross-sectional areas after solving problem (4.20), leading to different 

performances on minimizing the maximum stress. Furthermore, it can be seen that none of these 

four solutions has the minimum values for any of the two objectives, indicating that the optimal 

solution may vary with robustness level, and the designers can appropriately choose the optimal 

solution according to the various robustness levels. 

 

 

Fig. 4-23 Distribution of cross-sectional areas of solutions A, B, C and D of problem (4.20) in 

Example 3 

 

Moreover, in order to further investigate the effect of relaxing worst value of the structural 

response on the optimal solution, the worst value is approximated by order statistic with a larger 

confidence level 0.99k   and 0.99  . In this case, the minimum sample size that the worst 

sample (i.e., k=1) satisfies 0.99k   and 0.99  is 459 according to the theory of distribution-

free tolerance interval in Sections 2.3 and 4.2. The following optimization problem is formulated 

and solved by GA with the same parameter values as in problem (4.19): 
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 

 

max

1:459
Minimize  ;

subject to  ; 

                 ,   1, 2, ,16l

V V

A A A l





  

A θ

A   (4.22) 

The optimal solution of problem (4.22) is shown in Fig. 4-24, where the maximum stress for each 

element is calculated without considering uncertainty. The optimal value of max

1:459  is 7.9923 ×108 

Pa, which is a little larger than the objective value of max

1:200  of Solution B due to the trade-off 

relationship between robustness level and minimizing the maximum stress. Note that the value of 

β for max

1:200  at confidence level 0.99k   is 0.977. Compared to solution B in Fig. 4-22(b), it can 

be seen that the cross-sectional areas of elements 1, 4, 5, 28, 30 and 31, which do not exist in 

solution B, have moderately large values in Fig. 4-24 to reduce the extreme worst value, resulting 

in different performance on minimizing the maximum stress in the structure. Since the extreme 

worst case is a rare event and it may cost more to build a structure which satisfies the requirement 

of large worst value of maximum stress, we relax the worst value to some extent and assign the 

sample size ms=200 so that the computational effort will also be saved. 

 

 

Fig. 4-24 Optimal solution of problem (4.22) 

 

4.5.5 Example 4: multi-objective problem formulation in 4.3.2 

Example 4 involves a 4×1 grid with 10 nodes and 21 elements, and the initial structure is shown 

in Fig. 4-25(a). The structure is pin-supported at nodes 1 and 9, and a downward vertical load F 

with magnitude of 100 N is applied at node 5. The design variables are the cross-sectional areas 

of elements 1 to 11  1 2 11
= , ,A A AA  incorporating symmetry of the structure, and the uncertain 

parameters are Young’s modulus of each element and x- and y-coordinates of nodes 2, 3, 4, 6, 7, 

8 and 10. 
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(a) 

 

 (b) 

Fig. 4-25 (a) Initial ground structure of Example 4; (b) Optimal solution of problem (4.23) 

 

First, based on Eq. (4.9), the following single objective optimization problem to minimize the 

maximum stress is solved  

 

 

max max

1,2, ,11
Minimize  max

subject to  ;

                 ,   1, 2, ,11

i
i

l

V V

A A A l

 






  

A

A   (4.23) 

In a similar manner as Example 3, based on the optimal solution of problem (4.23), we formulate 

the following multi-objective optimization problem:  

       

 

max max max max

1:200 50:200 100:200
Minimize  ,  ; ,  ; ,  ;

subject to  ;

                 ,   1, 2, ,11l

V V

A A A l

   



  

A A θ A θ A θ

A   (4.24) 

The optimal solution of problem (4.23) using the parameter values in Table 4-5 is shown in 

Fig. 4-25(b), and the four solutions A, B, C and D from the 70 Pareto optimal solutions of problem 

(4.24), which have the minimum objective values of 
max , max

1:200 , max

50:200  and max

100:200  , respectively, 

are presented in Fig. 4-26, together with the corresponding maximum edge stress obtained without 

considering uncertainty. The computational efforts for solving problems (4.23) and (4.24) are also 

listed in Table 4-13. The elements with cross-sectional areas less than 0.0001 m2 have been 

removed from Fig. 4-26, and the distribution of cross-sectional areas are plotted in Fig. 4-27. As 
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seen from Figs. 4-26 and 4-27, although solutions B, C and D have the same structural topology, 

their distributions of cross-sectional areas are not exactly the same. 

 

    

 (a)  (b) 

    

  (c)  (d) 

Fig. 4-26 Pareto optimal solutions of problem (4.24): (a) Solution A; (b) Solution B; (c) 

Solution C; (d) Solution D 

 

 

Fig. 4-27 Distribution of cross-sectional areas of solutions A, B, C and D of problem (4.24) in 

Example 4 
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Table 4-16 Objective value and structural volume of solutions A, B, C and D of problem (4.24) 

in Example 4 before removing thin elements 

Solution max  (Pa)  
max

1:200  (Pa) max

50:200  (Pa) max

100:200  (Pa) V (m3) 

A 3949.13  15475.38 9526.87 7193.64 0.2 

B 5268.16 6618.92 5984.07 5615.98 0.2  

C 4780.90 6998.41 5742.66 5268.61 0.2 

D 4609.75 7091.41 5842.31 5178.45 0.2 

 

Based on Eq. (4.15), we further formulate the following optimization problem by using 

trimmed means as objective functions: 

       

 

max max max max

2:200 50:200 100:200
ˆ ˆ ˆMinimize  ,  ; ,  ; ,  ;

subject to  ;

                 ,   1, 2, ,11l

V V

A A A l

   



  

A A θ A θ A θ

A   (4.25) 

where 

   max max max max

:200 1:200 :200 1:200

1
ˆ ; ,   2,50,100

3
k k k k k       A θ   (4.26) 

Note that the arguments A  and θ  of order statistics in the right-hand side of Eq. (4.26) have 

been omitted for brevity. After solving problem (4.25), we select four solutions A*, B*, C* and D* 

among the Pareto optimal solutions which have the smallest objective values of 
max , max

2:200̂ ,  

max

50:200̂  and max

100:200̂ , respectively. These solutions and the corresponding distributions of cross-

sectional areas are plotted in Figs. 4-28 and 4-29, respectively. Compared to the results obtained 

by solving problem (4.24), we can see that although solutions A*, B*, C* and D* are not exactly 

the same as solutions A, B, C and D, respectively, they have similar shapes and topologies after 

removing thin elements with cross-sectional areas less than 0.0001 m2. Their distributions of cross-

sectional areas are also close, demonstrating that multi-objective optimization problems (4.24) and 

(4.25) would lead to similar structures. We list the objective values and structural volumes of 

solutions A*, B*, C* and D* before removing thin elements in Table 4-17, and the conclusions 

drawn from Table 4-16 can also apply for Table 4-17. 

 

Table 4-17 Objective values and structural volume of solutions A*, B*, C* and D* of problem 

(4.25) in Example 4 before thin elements 

Solution max  (Pa) 
max

2:200̂  (Pa) max

50:200̂  (Pa) max

100:200̂  (Pa) V (m3) 

A* 3962.36 14762.3 9432.21 7155.88 0.2 

B* 5150.72 6572.23 5925.88 5504.99 0.2 

C* 4790.73 6820.37 5700.54 5255.23 0.2 

D* 4580.95 6981.48 5842.58 5180.97 0.2 
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 (a) (b) 

    

 (c) (d) 

Fig. 4-28 Pareto optimal solutions of problem (4.25): (a) Solution A*; (b) Solution B*; (c) 

Solution C*; (d) Solution D* 

 

 

Fig. 4-29 Distribution of cross-sectional areas of solution A*, B*, C* and D* of problem (4.25) 

in Example 4 

 

Based on the solutions of problems (4.24) and (4.25), we further investigate the variations of 

solutions A, B, C, D and A*, B*, C*, D*, respectively. 2000 random seeds are used to generate 

2000 groups of 200 samples for  , ,   θ x y E , and the mean values and standard deviations of 

the objective functions 
max , max

1:200  , max

50:200 , max

100:200  and 
max , max

2:200̂ , max

50:200̂ , max

100:200̂  are listed in 
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Tables 4-18 and 4-19, respectively. It can be observed from Table 4-18 that the standard deviation 

of 
max  for each deterministic solution is 0, and the corresponding mean values are the same as 

those listed in Table 4-16. Besides, solutions A, B, C and D have the smallest mean value of 

objective functions 
max , max

1:200 , max

50:200  and max

100:200 , respectively, which confirms the accuracy of 

optimization process. It is worth noting that solution B has the largest standard deviation of max

1:200  

among all the objective functions and at the same time has the smallest standard deviation of max

1:200  

among all the four solutions, and the standard deviation of max

1:200  for solution B is larger than the 

standard deviations of max

50:200  and max

100:200  for solutions C and D, respectively. This verifies that the 

extreme value corresponding to k = 1 has more variation than the order statistics with larger values 

of k.  

The same conclusion can be drawn from Table 4-19 for solutions A*, B*, C* and D* and 

objective functions 
max , max

2:200̂ , max

50:200̂  and max

100:200̂ . Comparison between Tables 4-18 and 4-19 

shows that the standard deviations of max

2:200̂  for solution B*, max

50:200̂  for solution C* and max

100:200̂  

for solution D* are smaller than those of max

1:200  for solution B, max

50:200  for solution C and max

100:200  for 

solution D, respectively, indicating that the robust optimization using trimmed means as objective 

functions will lead to solutions which are less sensitive to the uncertain parameters. 

Table 4-18 Mean value (Pa) and standard deviation (Pa) of objective values of solutions A, B, C 

and D of problem (4.24) in Example 4 

Solution A B C D 

Variation Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
max  3949.13 0 5268.16 0 4780.91 0 4609.75 0 
max

1:200  15585.87 878.94 7018.64 206.94 7447.45 248.3 7495.61 251.74 
max

50:200  9344.63 288.23 5923.11 44.57 5757.67 86.42 5817.05 87.49 
max

100:200  7457.03 226.38 5646.81 32.03 5251.68 63.66 5218.24 58.97 

 

Table 4-19 Mean value (Pa) and standard deviation (Pa) of objective values of solutions A*, B*, 

C* and D* of problem (4.25) in Example 4 

Solution A* B* C* D* 

Variation Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
max  3962.36 0 5150.72 0 4790.73 0 4580.94 0 
max

2:200̂  14842.48 674.77 6877.83 150.88 7094.47 168.92 7320.2 184.88 
max

50:200̂  9274.31 291.96 5841.14 50.08 5701.11 79.4 5812.24 88.97 
max

100:200̂  7368.72 226.08 5532.99 34.3 5229.55 65.68 5206.35 53.4 
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In order to compare the convergence properties of the optimization process, we solve problems 

(4.24) and (4.25), respectively, 10 times with different random seeds. From each trial we can obtain 

the sets of solutions A, B, C, D and A*, B*, C* and D* which have the smallest values of the 

corresponding four objective functions, respectively, among the Pareto optimal solutions. Then we 

calculate the mean value, standard deviation, and maximum and minimum values of these solution 

sets as listed in Table 4-20. It can be observed that for 
max  the difference of the statistical 

information between the two solution sets is very small. This is because the optimal solution of 

problem (4.23) is added into the initial population of both problems (4.24) and (4.25). By contrast, 

the standard deviations of max

1:200 , max

50:200  and max

100:200  are larger than those of max

2:200̂ , max

50:200̂  and 

max

100:200̂ , respectively. This is mainly because the trimmed means are less sensitive to the outliers 

in the samples and can be referred as a robust estimator of quantile structural response. Therefore, 

the multi-objective optimization problem (4.25) is more stable than those of problem (4.24) due to 

the smoothness of the objective functions during the optimization process.  

 

Table 4-20 Statistical information of problems (4.24) and (4.25) in Example 4 

Solution set Problem (4.24) Problem (4.25) 

Objective max  
max

1:200  max

50:200  max

100:200  max  
max

2:200̂  max

50:200̂  max

100:200̂  

Max. (Pa) 3971.81  7255.42 5813.48 5219.33 3969.66 7056.81 5815.25 5203.84 

Min. (Pa) 3949.13 6618.92 5555.50 5039.94 3948.07 6565.64 5611.88 5067.77 

Mean (Pa) 3965.95 6904.60 5696.22 5144.06 3965.49 6742.10 5699.17 5138.22 

Std. Dev. (Pa) 5.86 227.70 70.56 50.37 5.67 162.50 60.67 46.38 

 

4.6 Conclusions  

In this chapter a worst case approach is proposed for RSO of plane frame structures. To avoid large 

computational cost, the worst structural response is represented by the quantile response, and 

uncertainties are modeled by random variations without any assumption on their distribution 

information. Based on the theory of distribution-free one-side tolerance interval, order statistic is 

used for approximation of the quantile response and defining the robustness level. Robustness is 

indicated by the order k with specified sample size and confidence level. With this definition of 

structural robustness, two kinds of RSO problem formulations are presented, one is a robust 

simultaneous shape and topology optimization of plane frames under volume and global stability 

constraints, and the other is a multi-objective robust shape and topology optimization of plane 

frames under volume constraint, in which the order statistics or trimmed means with various orders 

serve as objectives to obtain solutions with different robustness levels. For each problem 

formulations two kinds of numerical examples are investigated to illustrate the effectiveness of the 

proposed method, and the conclusions are drawn as follows: 

(1) For the optimization with global stability constraint, the problem is converted into an RSO 

problem with semi-infinite constraints, and a numerical penalization method is used to alleviate 
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the singularity phenomenon, whose effectiveness is confirmed by a simple example to 

minimize the maximum stress without considering uncertainty. 

(2) It is shown that solutions of deterministic and robust optimization problems have different 

shapes and topologies. While the solution of robust optimization contains some elements which 

are not effective to minimize the stress without considering uncertainty, those elements are 

helpful to reduce the worst value of stress and increase the global linear buckling load factor, 

resulting in a structure less sensitive to the uncertainty. 

(3) Unexpectedly large stress in the short member should be neglected during the optimization 

procedure to provide an accurate stress to be minimized. The numerical results confirm that 

the differences of the solutions before and after further modification are sufficiently small.  

(4) For multi-objective optimization the values of order k of order statistics and trimmed means 

are selected in accordance with the maximum, quartile, and median structural responses, and 

they are served as multiple objectives, together with the one without considering uncertainty. 

It is shown that some elements have increased their cross-sectional areas after robust 

optimization, while they have little contribution to the reduction of stresses of optimal solution 

without considering uncertainty.  

(5) The solutions obtained by using trimmed means have smaller standard deviations than those 

obtained by using simple order statics. In addition, comparison of results obtained from 10 

different random seeds shows that multi-objective optimization procedure with trimmed means 

is more stable than the one with order statistics, indicating that trimmed means is less sensitive 

to the outliers in the samples and referred to a better indicator of the structure robustness. 

(6) However, the computational effort is relatively intensive since ms analyses are needed to 

calculate the objective and constraint values every time, and the computational time could be 

long when eigenvalue analysis is included as shown in Table 4-13. With regard to the 

application to real engineering problem, surrogate model and other truncated approximation 

could be used to replace the FEA to improve the efficiency when it is time consuming. 
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Chapter 5 

Reliability-based optimization  

 

 

5.1 Brief introduction 

Chapter 5 is to present a quantile-based SORA method for RBSO of plane frames, in which the 

reliability of constraints are estimated using L-moments, and a brief introduction is given as 

follows.  

In Section 5.2, the framework of quantile-based SORA is presented, which is formulated based 

on the equivalence between reliability constraint and the quantile of structural response. The 

optimal solution of original RBSO problem is asymptotically obtained by solving a series of 

deterministic optimization problems by shifting the limits of constraints, and a reduction 

coefficient is introduced to avoid drastic shifting between two consecutive iterations. Moreover, a 

stopping criteria is also proposed to prevent obtaining an excessively conservative result.  

In Section 5.3, the details of quantile estimation using L-moments are given. The quantile 

function is obtained by integrating the corresponding density-quantile function, which is estimated 

using MEM subject to sample L-moment constraints. The original constrained MEM problem is 

first transformed to Lagrangian functional, and then the values of unknown Lagrangian multipliers 

are found by solving another unconstrained convex optimization problem. 

In Section 5.4, two kinds of quantile-based SORA problem formulations are presented. One is 

to minimize the structural volume under nodal displacement constraints, and the other is to 

minimize the structural volume under both displacement and global stability constraints. A 

penalization method using approximated Heaviside function is used to alleviate singularity 

phenomenon in global stability, and the corresponding formulations of sensitivity analysis are also 

derived. 

In Section 5.5, four numerical examples are explored to demonstrate the effectiveness of the 

two methods proposed in Section 5.4, and the influence of global stability constraint on the optimal 

result is also investigated. Finally, some conclusions are drawn in Section 5.6.  
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5.2 Quantile-based SORA 

Let d and θ denote the vectors of design variables and random variables representing the 

uncertainties, respectively. The RBSO problem can be generally given as [18] 

 

  

Miminize 

subject to Pr ; ,  1, 2, , ;

                

j j j g

W

g g R j n  

 

d

d θ

d d d

  (5.1) 

Where  W d  is the objective function to be minimized;  ;jg d θ  is the jth performance function 

under uncertainty and ng is the number of performance functions; 
jg  is the prescribed upper 

bound of  ;jg d θ ; 
jR  is the target probability of 

jR  not to exceed 
jg ; d and d are the vectors 

of lower and upper bounds for d, respectively. Note that the vector of design variables d in problem 

(5.1) includes deterministic design variables and the mean values of random design variables. 

Based on Eq. (5.1) and the equivalent description between the reliability constraint and the 

quantile of structural response [145], we define the ng quantiles 

     ; inf : Pr ; ,  1, 2, ,
jR j j gQ Q g Q R j n   d θ d θ   (5.2) 

as alternatives for the ng reliability constraints in problem (5.1), where  ;
jRQ d θ  is the jth quantile 

corresponding to the jth performance function  ;jg d θ  and target probability 
jR . Then, we can 

rewrite the problem (5.1) in terms of quantiles as follows: 

 

 

Miminize 

subject to ; ,  1, 2, , ;

                

jR j g

W

Q g j n 

 

d

d θ

d d d

  (5.3) 

It can be observed that the target values of ng probabilities  1,2, ,j gR j n  are now implicitly 

incorporated in problem (5.3) by the corresponding quantiles defined in Eq. (5.2), bridging the 

equivalence between problems (5.1) and (5.3) [145]. The random variables in problem (5.3) are 

assumed to be mutually independent. For general cases where some or all the random variables 

are correlated, they can be transformed into independent random variables by various methods like 

the well-known Rosenblatt or Nataf transformations [146][147] or other transformation methods 

without requiring the marginal PDF of each random variable [148]. Therefore, for simplicity the 

discussion of RBSO problem is limited to independent random variables. 

According to the quantile-based SORA [93][94], the optimal solution of problem (5.3) can be 

obtained by solving a series of deterministic optimization problems where the upper bounds for 
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performance functions are shifted at each iteration to ensure that the quantile  ;
jRQ d θ  is on the 

boundary. Denote the shifting value of 
jg  at the (k+1)th iteration as  1k

jc    which is calculated as 

   1 ; , 1,2, ,
j

k k k

j R j gc Q g j n   d θ d   (5.4) 

Then the (k+1)th deterministic optimization problem of quantile-based SORA is formulated as  

 

  1

Miminize 

subject to ,  1, 2, , ;

                

k

j j j j g

W

g g c j n 
  

 

d

d

d d d

  (5.5) 

where in Eq. (5.4) 
k

d is the solution of problem (5.5) at the kth iteration, and  k

jg d  is the value 

of jth performance function without uncertainty;  ;
j

k

RQ d θ  represents the jth quantile 

corresponding to the solution 
k

d  and random variables θ ; the reduction coefficient 
j  is 

employed to avoid drastically shifting the boundaries determined as follows  

1

1

0.1 2

0.5 if  2 ,  1, 2, ,

1 otherwise

k

j j

k

j j j j g

g c

g c g j n





 


  



  (5.6) 

Because the solution of problem (5.5) has not been found yet at the initial iteration (i.e., k = 0) and 

there is no information about the corresponding quantile, the value of 1

jc   is set to 0 for the initial 

iteration [89].  

Eqs. (5.4) and (5.5) constitute one iteration of quantile-based SORA, and in order to prevent 

obtaining an excessively conservative result, the optimization procedure is considered convergent 

at the kth iteration if: (1) All the reliability constraints are satisfied; (2) At least one of the reliability 

constraints retains equality. The mathematical expressions of the two criteria are given as 

     ; , 1,2, ,  and ; ,  1,2, ,
j j ee

k k

R j g R j e gQ g j n Q g j n    d θ d θ   (5.7) 

 

5.3 Estimation of quantile using L-moments 

As discussed in Section 5.2, one of the main steps in quantile-based SORA is to calculate the 

quantile  ;
j

k

RQ d θ  in Eq. (5.4) after solving problem (5.5) at each iteration. In this section, a 

quantile estimation method is proposed for obtaining the desired quantile  ;
j

k

RQ d θ , which 

utilizes the MEM subject to constraints specified in terms of sample L-moments [101][103]. 
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Suppose after the kth iteration the jth (j=1,2,∙∙∙,ng) performance function under  uncertainty is 

a continuous random variable  ;k k

j jZ g d θ   with CDF  k k

j jF z   and PDF  k k

j jf z . Let 

 k

jQ q   and  k

jQ q  denote the quantile function and density-quantile function of k

jZ  for 

0 1q   , respectively. It can be observed from Eqs. (5.2) and (5.4) that the value of   ;
j

k

RQ d θ  

in Eq. (5.4) can be calculated using quantile function as  k

j jQ R .  

Since  k

jQ q  is the inverse function of  k k

j jF z ,  k k

j jf z  and  k

jQ q  are reciprocals with 

each other, and the entropy of k

jZ  , denote by k

jH , can be written in terms of  k

jQ q  as follows 

[106]: 

      
1

0
ln lnk k k k k k k

j j j j j j jH f z f z dz Q q dq



      (5.8) 

According to MEM, the most unbiased estimation of  k

jQ q  maximizes the entropy in Eq. (5.8) 

subject to available statistical information such as central moments. Assuming the exact 

distribution of k

jZ  is unknown beforehand and the central moments can only be inferred from 

limited data of samples, it is recognized that the estimation of higher order central moment from a 

set of random samples tends to be biased when the sample size is small [99][102]. Therefore, 

instead of using central moments, L-moments are used as alternatives of the available statistical 

information in MEM. Let 
,

k

j rLM  denote the rth (r≥1) order L-moment of k

jZ , and according to Eq. 

(2.14) it can be rewritten with respect to  k

jQ q  as follows 

       
1 1

1 *

, 1: 1
0

0

1
1 E

r
kk k

j r k r r j

k

r
LM r Z P q Q q dq

k




 



 
   

 
    (5.9) 

where  *

1rP q


 is the (r-1)th order shifted Legendre polynomial. Define the indefinite integral as  

   
1

*

1r r
q

K q P v dv    (5.10) 

Then the integration in Eq. (5.9) can be further rewritten in terms of  k

jQ q  using Eq. (5.10) and 

the technique of integration by parts as follows [106]: 

       
1 1

, 00

k k k

j r r j r jLM K q Q q dq K q Q q        (5.11) 

where    
1

0

k

r jK q Q q    represents the difference of    k

r jK q Q q   at q equal to 0 and 1. As 

discussed in Section 2.3, when only a set of random samples are available, 
,

k

j rLM  can be estimated 

by sample L-moments which are calculated using order statistics [118]. Let 
s1 2, , , mθ θ θ  denote 

the ms i.i.d. vectors of uncertainties, and the corresponding ms values of  ;k k

j jZ g d θ  are 
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denoted by  ,1 1;k k

j jZ g d θ ,  ,2 2;k k

j jZ g d θ , …,  
s s, ;

k k

j m j mZ g d θ . We further define 

s s s s,1: ,2: , :
, , ,k k k

j m j m j m mZ Z Z as the permutation of 
s,1 ,2 ,

, , ,k k k

j j j mZ Z Z in an descending order, i.e., 

s s s s,1: , : , :

k k k

j m j i m j m mZ Z Z    , and 
s, :

k

j i mZ is called the ith order statistic. Then based on Eqs. 

(2.15) and (2.16), the rth order sample L-moment of k

jZ , denoted by 
,

k

j rlm , are calculated by  

 
1

1

,

0

1 1
1

r
r sk

j r s

s

r r s
lm b

s s


 



    
    

  
   (5.12) 

     

     

s

s

s s s1

s , :

1

1 1

1 2

m
k

s j i m

i

m i m i m i s
b m Z

n n n s





     


  
   (5.13) 

where 
sb  in Eq. (5.13) is the sample PWMs of k

jZ . According to Ref. [106], the MEM estimates 

 k

jQ q   by maximizing the entropy defined as Eq. (5.8) subject to the first nL L-moments, and the 

problem reads 

 

       

1

0

1 1

, L00

Maximize ln

subject to  ,  1, 2, ,

k

j

k k k

j r r j r j

Q q dq

lm K q Q q dq K q Q q r n



     




  (5.14) 

Note that in Eq. (5.14) the value of 
,

k

j rlm  is calculated by Eqs. (5.12) and (5.13) from a set of 

available data. Let    
1

, , 0

k k k

j r j r r jh lm K q Q q      and rewrite problem (5.14) as  

 

   

1

0

1

, L
0

Maximize ln

subject to  ,  1, 2, ,

k

j

k k

j r r j

Q q dq

h K q Q q dq r n



 




  (5.15) 

From the definition of  rK q  in Eq. (5.10), it can be observed that the value of  rK q  at q=1 is 

0 with any arbitrary order r due to the integration range, and at q=0 the value of  rK q  is also 0 

for order 2r   and  0 1rK    for 1r   due to the form of shifted Legendre polynomial. 

Therefore, 
,

k

j rh  can be reduced to 
,

k

j rlm  for 2r   and  ,
0k k

j r jlm Q  for 1r  .  

Instead of directly solving problem (5.15), we seek to maximize the following Lagrangian 

functional of the entropy: 

        
L1 1

, ,
0 0

1

ln
n

k k k k

j j j r r j j r

r

H q Q q dq K q Q q dq h


       (5.16) 

where  , L
1, 2, ,j r r n  represent the unknown Lagrangian multipliers. The optimality 

condition (Euler-Lagrangian equation) for maximizing  k

jH q   with respect to  k

jQ q  yields the 

estimated  k

jQ q  as 
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   
L

,

1

1
n

k

j j r r

r

Q q K q


     (5.17) 

and the Lagrangian multipliers in Eq. (5.17) are determined by finding the stationary point of the 

following functional: 

   
L L1

, , ,
0

1 1

ln
n n

k

j j r r j r j r

r r

K q dq h 
 

 
    

 
 λ   (5.18) 

where  
L,1 ,2 ,, , ,j j j j n  λ . It can be observed that the stationary point of Eq. (5.18) satisfies 

the equality constraints given in problem (5.14), and it can be efficiently found using numerical 

algorithms since  j λ  in Eq. (5.18) is a convex function. A brief proof for the convexity of   j λ  

is given in Appendix A3. Once the values of 
jλ  and  k

jQ q  are determined, the quantile function 

 k

jQ q  can be obtained by integral 

     
0

0
q

k k k

j j jQ q Q Q v dv     (5.19) 

Because the exact value of  0k

jQ  is usually unknown beforehand, one can estimate  0k

jQ  by 

the corresponding smallest order statistic 
s s, :

k

j m mZ  , and  k

jQ q   in Eq. (5.19) is approximated by  

   
s s, :

0

q
k k k

j j m m jQ q Z Q v dv     (5.20) 

and then the quantile  ;
j

k

RQ d θ in Eq. (5.4) can be estimated as    
s s, :

0

jR
k k k

j j j m m jQ R Z Q v dv    .  

It is worth noting that in the proposed method the quantile function is obtained by integrating 

the density-quantile function Eq. (5.17). The original constrained MEM problem is first 

transformed to Lagrangian functional, and then the values of unknown Lagrangian multipliers are 

found by solving another unconstrained convex optimization problem which is similar to the 

traditional MEM in PDF estimation [149]. Therefore, unlike the method in Ref. [94], the proposed 

method does not depend on the initial guesses of the Lagrangian multipliers. Moreover, since the 

value of  rK q  at q = 1 is 0 for any arbitrary order r, it can be expected that the estimated density-

quantile function    
L

,

1

1
n

k

j j r r

r

Q q K q


    will tend to be infinite as q approaches 1. Therefore, in 

the following numerical examples Eq. (5.20) is integrated to q = 0.9999 to avoid numerical 

difficulty for obtaining the quantile function.   

5.4 Problem formulation 

In the following two formulations of quantile-based SORA are presented for shape and topology 

optimization of plane frames. One is to minimize the structural volume under displacement 

constraints, and the other includes both displacement and global stability constraints, where a 
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continuous strategy is used to penalize the geometrical stiffness matrices of thin elements using 

approximated Heaviside function. 

 

5.4.1 Problem with displacement constraints 

Let d be the design variables for shape and topology optimization including x- and y-coordinates 

x and y of nodes and cross-sectional areas A of Euler-Bernoulli beam elements. Based on Eq. (5.5), 

the (k+1)th deterministic shape and topology optimization problem of plane frames of quantile-

based SORA to minimize structural volume with displacement constraints can be written as 

 

  1

Miminize , ,

subject to , , , 1, 2, , ;

                ;  ;  

k

j j j j g

V

g g c j n 
  

     

x y A

x y A

x x x y y y A A A

  (5.21) 

where
jg represents the jth displacement constraint, 1k

jc   is calculated by Eq. (5.4) as

   1

g, , ; , , ,  1,2, ,
j

k k k k k k k

j R jc Q g j n   x y A θ x y A  , and  , ,V x y A   is the total structural 

volume. 

In order to prevent the existence of extremely short members during shape optimization, the 

method in Chapter 3 is introduced in which the FDM is applied on an auxiliary truss structure to 

optimize the shape of plane frame. Let xfree, yfree and xfix, yfix denote the x- and y-coordinates of free 

nodes and fixed nodes, respectively, and t be the force densities of the members of auxiliary truss. 

Problem (5.21) is rewritten as  

    

    

free free

1

free free

Miminize , ,

subject to , , , 1, 2, , ;

                ;  

k

j j j j g

V

g g c j n   

   

x t y t A

x t y t A

t t t A A A

  (5.22) 

with          1

free free free free, , ; , , , 1, 2, ,
j

k k k k k k k

j R j gc Q g j n

  x t y t A θ x t y t A  . Note that 

in problem (5.22) the design variables are the force densities t and the cross-sectional areas A, and 

xfree and yfree can be obtained by solving Eq. (2.4) in Section 2.2. 

In the numerical examples, problem (5.22) is solved using an SQP library, and the sensitivity 

coefficients are calculated based on Eqs. (3.14)-(3.17) as given in Section 3.4. Flowchart of the 

corresponding quantile-based SORA is given in Fig. 5-1. 
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Fig. 5-1 Flowchart of quantile-based SORA in Section 5.4.1 

 

5.4.2 Problem with both displacement and global stability constraints 

In order not to confuse the global stability constraint with displacement constraints in a general 

problem formulation as given in Section 5.2, let 
cr  be the linear buckling load factor and  be 

the corresponding lower bound, and denote their reciprocals as cr cr
1   and 1   as in 

Section 4.3.1, respectively. Then by adding a global stability constraint to problem (5.22), the 

(k+1)th deterministic optimization of quantile-based SORA with both displacement and global 

stability constraints is formulated as  

    

    

    

free free

1

free free

cr 1

free free

Minimize , ,

subject to , , , 1, 2, , ;

                , , ;

                ;  ;  

k

j j j j g

k

V

g g c j n

c 



  





  

 

   

x t y t A

x t y t A

x t y t A

t t t A A A

  (5.23) 



89 

 

with          1 cr

free free free free, , ; , ,
k k k k k k k

Rc Q
 

 x t y t A θ x t y t A  , where 
RQ

and 

 are the 

quantile and coefficient with respect to cr which are defined by Eqs. (5.3) and (5.6), respectively.  

Similar to Section 4.3.1, the penalization method is used to exclude the contributions of 

geometrical stiffness matrices of thin elements to the global geometrical stiffness matrix. In order 

to solve problem (5.23) using SQP in the similar manner as Section 5.2.1, the geometrical stiffness 

matrix of a thin element should be penalized by a continuous numerical scheme for conveniently 

deriving the sensitivity coefficient. Therefore, the element geometrical stiffness matrix is penalized 

using an approximate Heaviside function  

 
e e e e e,  1, 2, ,Gk k GkH A k m K K   (5.24) 

where 
ekA , 

eGkK  and 
eGkK are the cross-sectional area, and the 6-by-6 original and penalized 

element geometrical stiffness matrices of element ke, respectively, and me is the number of beam 

elements in the structure;  
ekH A  is the approximated Heaviside function defined as  

  e

e

1
1 erf

2 2

k

k

A
H A





   
   

   
  (5.25) 

where erf(·) is the error function with two parameters  and  . It can be seen from Eq. (5.25) that 

the approximate Heaviside function is continuous and differentiable, and the parameter   controls 

the threshold value of cross-sectional area below which the element geometrical stiffness matrix 

is penalized, whereas the parameter   controls the band of transition around  . Figure 5-2 shows 

the shape of  
ekH A  in Eq. (5.25) with a positive value of   and different values of  . It is 

confirmed that that when the value of   decreases, the band of transition becomes narrower and 

sharper. Therefore, the values of  and   should be small enough to exclude the geometrical 

stiffness matrices of thin elements from the global geometrical stiffness matrix. 

 

Fig. 5-2 Approximate Heaviside function with different values of   
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Moreover, the sensitivity coefficients of 
cr  with respect to design variables t and A are given 

as follows. Let cr
φ  be the buckling mode corresponding to the linear buckling load factor 

cr  

which satisfies the following normalization condition [8]: 

cr cr 1T

G φ K φ   (5.26) 

where 
GK  is the ndof-by-ndof global geometrical stiffness matrix. Then, based on Eqs. (2.4) and 

(5.26), the sensitivity coefficients of linear buckling load factor 
cr  with respect to the design 

variables ti and 
ei

A  can be computed as follows [8]: 

 

free

e

e e e

e

ee e e e e

cr cr cr
free, free,

1 free, free,

cr
cr cr cr cr cr

e e

1

, 1, 2, , ;

,  1, 2, ,

n
j j

ji j i j i

m
k Gk kT T T

Gk

ki i i k i

x y
i m

t x t y t

H A N
i m

A A A N A

  








    
         

    
    
     
 




KK

φ φ φ K φ

  (5.27) 

where m is the number of members and me is the number of beam elements; K is the ndof-by-ndof 

global elastic stiffness matrix and
ekN  is the axial force of element ke. Note that in Eq. (5.27) the 

sizes of 
eGkK  and 

eGkK  are ndof-by-ndof  which are different from those in Eq. (5.24), and the entries 

of
eGkK and 

eGkK in Eq. (5.27) corresponding to the DOFs of element ke are given by those in Eq. 

(5.24), where the other entries are all zero. Besides, me is no less than m since some of the members 

will be modeled by four beam elements for linear buckling analysis as stated in Section 2.4.   

 By denoting the length of element ke as 
ekl , the derivatives of cr

free, jx   and cr

free, jy   

are calculated by 

e e e e

e e e

e e e e

e e e

e

e

cr
cr cr cr cr cr

1free, free, free, free,

cr
cr cr cr cr cr

1free, free, free, free,

m
Gk k Gk kT T T

kj j k j k j

m
Gk k Gk kT T T

kj j k j k j

l N

x x l x N x

l N

y y l y N y











     
   

       

     
   

       





K KK
φ φ φ φ

K KK
φ φ φ φ

  (5.28) 

It can be seen from Eqs. (5.27) and (5.28) that the derivatives of approximate Heaviside function

 
e ek iH A A    is nonzero only when elements ke and ie belong to the same member, and the 

derivatives of axial force with respect to the cross-sectional area and the coordinates of free nodes 

in Eqs. (5.27) and (5.28), namely, 
e ek iN A  , 

e free,k jN x   and 
e free,k jN y  , can be obtained by 

directly differentiating the equilibrium equation Eq.(3.1) at element level, that is [125] 

e e ek k kf k u   (5.29) 
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where 
e e e e e e e1 2

, , , , ,
T

k k k k k k kN M S N M S    f  is nodal force vector, in which 
e1kM  and 

e 2kM  are 

the bending moments at the two ends of element ke, and 
ekS  is the shear force. For simplicity the 

details of differentiations of Eq. (5.29) with respect to
ekA , 

free, jx  and 
free, jy  are referred to Ref. 

[125]. 

 

5.5 Numerical examples 

In this section, four numerical examples are presented to investigate effectiveness of the methods 

proposed in Section 5.4, where examples 1 and 2 include displacement constraints only, and 

examples 3 and 4 include both displacement and global stability constraints. The deterministic 

optimization problems (5.22) and (5.23) are solved using an SQP algorithm in fmincon of 

Optimization Toolbox of MATLAB 2018a [124]. For each example the members of the frame 

structure are assumed to have solid circular cross-section, and the crossing members are not 

connected at their intersection. Besides, the node number and the member number shown in the 

initial structures of the examples are indicated by those with and without parentheses, respectively. 

 

5.5.1 Parameter settings 

Assuming that the fixed nodes are precisely located for simplicity, the uncertainties in x- and y-

coordinates are considered only in the free nodes and denoted as 
freex  and 

freey , respectively. 

Therefore, the vector of random variables is given as  free free
, , ,    θ x y A E . The eccentricity 

e in Section 2.4 is set to 0.01 in accordance with Ref. [143], and the random variables are 

characterized by uniform distribution, i.e., free free,lower free,upper,     x x x  ,

free free,lower free,upper,     y y y , lower upper,     A A A  and lower upper,     E E E , and the 

subscripts of lower and upper represent the lower and upper bounds, respectively, for the 

corresponding uncertain parameters. The first four sample L-moments (i.e., nL=4) in Eqs. (5.14)-

(5.18) are used to estimate the quantile function with sample size ms=50, and the MCS with sample 

size 1×105 is implemented to investigate accuracy of the quantile estimation by MEM using sample 

L-moments. To compare with the result at the final iteration, the result at the initial iteration is also 

displayed in the numerical examples. Moreover, as discussed in Section 2.4, for examples 3 and 4 

the number of beam elements to simulate one frame member is dependent on the member length 

during optimization process. It will be simulated by four beam elements if the member length is 

longer than 0.1m, otherwise it will be simulated by only one beam element, and the correlation 

length Lexp in Eq. (2.20) in Section 2.4 is 0.1m. The parameter values listed in Table 5-1 are used 

for the four numerical examples of shape and topology optimization of plane frames if not 

specified explicitly, where I is the vector with all entries equal to 1.  
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Table 5-1 Parameter settings of examples 1-4 

Parameters Examples 1 and 2 Examples 3 and 4 

Lower bound 
free,lowerx   (m) 0.02 I    0.02 I   

Upper bound 
free,upperx  (m) 0.02I   0.02I  

Lower bound 
free,lowery  (m) 0.02 I   0.02 I   

Upper bound 
free,uppery  (m) 0.02I  0.02I  

Lower bound 
lowerA  (m2) 0.02 A   0.02 A  

Upper bound 
upperA  (m2) 0.02A   0.02A  

Lower bound lowerE  (m2) 0.05 E   0.05 E  

Upper bound 
upperE  (m2) 0.05E   0.05E  

Nominal value of E  (Pa) 113 10 I   
113 10 I   

Sample size ms of sample L-moments 50 50 

Sample size 
MCSm of MCS 5

1 10   
5

1 10   

Upper bound A  (m2) 0.02I  0.02I  

Lower bound A  (m2) 71 10 I   
71 10 I  

Upper bound t  (N/m) 1000I   1000I  

Lower bound t  (N/m) 1000 I   1000 I  

Target probability 
jR  0.99 0.99 

Target probability R    -- 0.99 

Upper bound for displacement 
jg (m) 3

3 10


  
3

3 10


   

Lower bound    -- 20 

Upper bound    -- 0.05 

Correlation length Lexp (m) -- 0.1 

Eccentricity e -- 0.01 

Parameter   in Eq. (5.25) (m2) -- 6×10-5 

Parameter   in Eq. (5.25) (m2) -- 1×10-5 

 

5.5.2 Example 1: Problem with displacement constraints in 5.4.1 

The first example considers a 3×2 grid cantilever frame with 12 nodes and 27 members, and the 

initial structure is shown in Fig. 5-3. The structure is pin-supported at nodes 1, 2 and 3 and a 

downward vertical load F = 1000 kN is applied at node 11; therefore the fixed nodes for FDM are 

selected as nodes 1, 2, 3 and 11. Based on Eq. (5.22) and Table 5-1, the optimization problem is 

formulated to minimize the structural volume subject to reliability constraint on the downward 

vertical displacement of node 11 as follows 

    

    

free free

3 1

11 free free 11 11

Minimize , ,

subject to , , 3 10 ;  ;  ;  
k

V

g c 
      

x t y t A

x t y t A t t t A A A
  (5.30) 
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where 
11g  is the vertical displacement of node 11 without considering uncertainty, and 1

11

kc  is the 

shifting value on the upper bound of 
11g  at the (k+1)th iteration. The optimization procedure 

converged at k=3, and the results at the initial and final iteration are presented in Fig. 5-4. The 

structural volume and quantile 
11RQ  at initial and final iteration are listed in Table 5-2, where the 

quantiles obtained by MCS with sample size 
MCSm  are listed in the parentheses. The nodal 

locations, force densities, cross-sectional areas and member lengths are also given in Tables 5-3 

and 5-4. As can be seen from Fig. 5-4 and Tables 5-2 to 5-4, the results at the initial and final 

iteration have similar shapes, however, the cross-sectional area of each member has increased 

before reaching the final iteration to satisfy the displacement constraint at node 11, leading to a 

larger structural volume and a smaller 
11RQ compared to the result at the initial iteration.   

 

 

Fig. 5-3 Initial structure of Example 1 

 

 

 (a) (b) 

Fig. 5-4 Results of Example 1 at: (a) initial iteration; (b) final iteration 
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Table 5-2 Structural volumes and quantiles 
11RQ  of the results of Example 1 at the initial and 

final iterations 

Result Initial iteration Final iteration 

Structural volume (m3) 9.2167×10-2 9.8017×10-2 

Quantile 
11RQ  (m) 3.199×10-3 (3.175×10-3) 3.0×10-3 (2.973×10-3) 

 

Table 5-3 Location of nodes of the results of Example 1 at the initial and final iteration  

Node 
Initial iteration Final iteration 

x-coordinate (m) y-coordinate (m) x-coordinate (m) y-coordinate (m) 

1 0 0 0 0 

2 0 1 0 1 

3 0 2 0 2 

4 1.8857 0.3067 1.8852 0.3068 

5 1.5154 1.0144 1.5149 1.0144 

6 1.9414 1.6754 1.9409 1.6753 

7 2.2633 0.4784 2.2625 0.4787 

8 2.0518 0.3718 2.0511 0.3718 

9 2.9785 1.0144 2.9776 1.0148 

10 2.4708 0.6290 2.4701 0.6291 

11 3 1 3 1 

12 2.9785 0.9886 2.9777 0.9882 

 

   

 (a)  (b) 

Fig. 5-5 Quantile functions of vertical displacement of node 11 of Example 1 at the results of: 

(a) initial iteration; (b) final iteration 
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Moreover, the quantile functions of vertical displacement of node 11 obtained by MCS and 

MEM with sample L-moments are given in Fig. 5-5 for both results at initial and final iteration. It 

can be observed from Fig. 5-5(a) and Table 5-2 that when uncertainty is taken into consideration 

for the result at the initial iteration, the probability of the vertical displacement of node 11 

exceeding the upper bound 3×10-3 m is about 0.8, which means the structure has low reliability. 

On the other hand, although the structural volume at the final iteration increased about 7% from 

the initial iteration, the reliability constraint on the vertical displacement of node 11 is satisfied, 

and the estimated quantile 
11RQ using the proposed MEM is close to the one obtained by MCS 

where the relative error is around 2% as shown in Fig. 5-5 (b), indicating that the proposed method 

is able to estimate the quantile function with satisfactory accuracy. 

 

Table 5-4 Force densities, cross-sectional areas and member lengths of the results of Example 1 

at the initial and final iterations  

Member  

Initial iteration Final iteration 

Force density 

(N/m) 

Cross-

sectional area 

(m2) 

Member 

length (m) 

Force density 

(N/m) 

Cross-

sectional area 

(m2) 

Member 

length (m) 

1 0.7491 0.0102 1.9104 0.7489 0.0109 1.9101 

2 1.3772 1.00×10-7 0.4148 1.3774 1.00×10-7 0.4146 

3 0.7021 3.59×10-7 0.2563 0.7021 1.00×10-7 0.2563 

4 0.3807 1.00×10-7 1.5155 0.3809 1.00×10-7 1.5150 

5 0.1951 0.00207 0.8370 0.1951 0.00218 0.8368 

6 0.7478 1.00×10-7 1.1373 0.7484 1.00×10-7 1.1379 

7 -0.7517 0.0100 1.9683 -0.7516 0.0107 1.9678 

8 -0.6716 0.00921 1.2298 -0.6720 0.00982 1.2293 

9 -0.2787 0.00452 0.0257 -0.2788 0.00484 0.0266 

10 0.2944 0.00218 0.7987 0.2942 0.00230 0.7986 

11 1.0208 3.93×10-7 0.2368 1.0210 3.95×10-7 0.2368 

12 0.3521 4.54×10-7 0.6462 0.3521 1.00×10-7 0.6467 

13 0.2404 0.00392 0.7864 0.2402 0.00417 0.7863 

14 -0.6716 1.00×10-7 1.1276 -0.6710 1.00×10-7 1.1277 

15 -2.4518 0.00517 0.0243 -2.4517 0.00555 0.0252 

16 0.2554 0.00609 1.8236 0.2553 0.00645 1.8232 

17 -0.4243 1.00×10-7 2.0091 -0.4243 1.00×10-7 2.0086 

18 1.2129 0.00977 0.1784 1.21291 0.0105 0.1782 

19 -0.1673 1.00×10-7 0.9201 -0.1657 1.00×10-7 0.9196 

20 0.6315 1.00×10-7 0.9026 0.6315 1.00×10-7 0.9031 

21 0.0970 1.00×10-7 0.4916 0.0973 1.00×10-7 0.4917 

22 0.3322 1.00×10-7 2.0555 0.3319 1.00×10-7 2.0550 

23 0.3549 0.00629 1.8077 0.3553 0.00667 1.8073 

24 0.8960 1.00×10-7 1.4630 0.8957 1.00×10-7 1.4627 

25 -0.1406 1.00×10-7 1.3083 -0.1404 1.00×10-7 1.3082 

26 -0.0568 0.00933 1.1132 -0.0589 0.00996 1.1128 

27 -0.3659 0.00506 0.02588 -0.3659 0.00542 0.0268 
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To further investigate effectiveness of introducing FDM into quantile-based SORA for shape 

and topology optimization of plane frames, the result at the final iteration is modified by combining 

the three closely spaced nodes 9, 11 and 12 to the single node 11, and removing the members 2, 3, 

4, 6, 11, 12, 14, 17, 19, 20, 21, 22, 24 and 25, which have very small cross-sectional areas, from 

the structure to obtain a distinct structural shape and topology as shown in Fig. 5-6(a), and the 

corresponding locations of nodes, cross-sectional areas and member lengths are listed in Tables 5-

5 and 5-6. The quantile functions of vertical displacement of node 11 obtained by MCS and MEM 

with sample L-moments are given in Fig. 5-6 (b), and the structural volumes, nominal values and 

quantiles of the displacement constraint functions before and after modification are also given in 

Table 5-7 for comparison, in which the quantiles obtained by MCS are listed in the parentheses. 

 

     

 (a) (b) 

Fig. 5-6 Results of Example 1 after modification: (a) Optimal shape; (b) Quantile functions of 

vertical displacement of node 11 

 

Table 5-5 Location of nodes of optimal result of Example 1 after modification 

Node 1 2 3 4 5 6 11 

x-coordinate (m) 0 0 1.8852 1.5149 1.9409 2.0511 3 

y-coordinate (m) 0 2 0.3068 1.0144 1.6753 0.3718 1 

 

It can be observed from Table 5-7 that due to regularity of the stiffness matrix, the nominal 

value of the displacement constraint after modification is only slightly smaller than that before 

modification. This is mainly because the removal of thin members from the structure results in a 

small decrease in structural volume and stiffness. However, the quantile after modification is 

smaller than that before modification, resulting in a structure with a little higher reliability than the 

requirement. The main reason for this result is that since the closely spaced nodes are merged to a 

single node and thin members are removed, only 7 nodes and 10 members are left in the distinct 
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result as displayed in Fig. 5-6(a) and Tables 5-5 and 5-6. Accordingly, the quantile of the stochastic 

displacement decreases a little after modification because less uncertainties are involved in the 

structure, indicating that by introducing the FDM into quantile-based SORA a feasible result can 

be obtained without melting nodes, and the feasibility still remains in the final distinct structure 

with no extremely thin members or closely space nodes. This way, an optimal shape with small 

numbers of nodes and members satisfying reliability constraint can easily be obtained by 

combining FDM and SORA methods.  

 

Table 5-6 Cross-sectional areas and member lengths of optimal result of Example 1 after 

modification 

Element 
Cross-sectional area (m2) Member length (m) 

Node 1 Node 2 

1 3 0.0109 1.9100 

4 6 0.00218 0.8368 

2 5 0.0107 1.9678 

5 11 0.00982 1.2293 

3 4 0.00230 0.7986 

4 5 0.00417 0.7863 

1 4 0.00645 1.8232 

3 6 0.0105 0.1782 

2 4 0.00667 1.8073 

6 11 0.00996 1.1128 

 

Table 5-7 Structural volumes, quantiles and nominal values of constraints of Example 1 before 

and after modification 

Result Before modification After modification 

Structural volume (m3) 9.8017×10-2 9.8016×10-2 

Nominal value of constraint (m) 2.820×10-3 2.828×10-3 

Quantile of constraint (m) 3.0×10-3 (2.973×10-3) 2.932×10-3 (2.933 ×10-3) 

 

5.5.3 Example 2: Problem with displacement constraints in 5.4.1 

In the second numerical example, we investigate the optimal shape and topology of a 6×1 grid 

bridge-frame where the 14 nodes are connected by 31 members, and the initial structure is shown 

in Fig. 5-7. The structure is pin-supported at node 1 and roller-supported at node 13. At each of 

the nodes 3, 5, 7, 9 and 11, a downward vertical load with magnitude 1000 kN is applied. 

Accordingly, these 7 nodes are considered as fixed nodes for shape optimization using FDM. 
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Fig. 5-7 Initial structure of Example 2 

 

The optimization problem is to minimize the structural volume subject to reliability constraints 

on the downward vertical displacements of nodes 3, 5, 7, 9 and 11. Based on Eq. (5.22) and Table 

5-1, the (k+1)th deterministic optimization in quantile-based SORA is formulated as 

    

    

free free

3 1

free free

Minimize , ,

subject to , , 3 10 , 3,5,7,9,11

                ;  ;  

k

j j j

V

g c j    

   

x t y t A

x t y t A

t t t A A A

  (5.31) 

where 
jg  is the vertical displacement of node j without uncertainty, and 1k

jc   is the shifting value 

on the upper bound of 
jg at the (k+1)th iteration. 

 

        

 (a)   (b) 

Fig. 5-8 Results of Example 2 at: (a) initial iteration; (b) final iteration 

  

The optimization procedure converged at k=34, and the results at the initial and final iteration 

are shown in Fig. 5-8. Table 5-8 shows the structural volumes and quantiles of the results at the 

initial and final iteration where the quantiles obtained by MCS are listed in the parentheses. The 

locations of nodes, force densities, cross-sectional areas and member lengths at the initial and final 

iteration are listed in Tables 5-9 and 5-10. We can see from Fig. 5-8(a) and Tables 5-9 and 5-10 
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that the structure obtained at the initial iteration is unstable in horizontal direction if the bending 

stiffness is small, and therefore the quantiles of vertical displacements of nodes 3, 5, 7, 9 and 11 

are significantly larger than 3×10-3 m as shown in Table 5-8. The quantile functions of the 

displacements of these five nodes obtained by the proposed MEM and MCS are presented in Fig. 

5-9(a) for the result at the initial iteration. It can be observed that the upper bound of the 

displacements 3×10-3 m corresponds to the probability of only about 0.4 for these five quantile 

functions, while the quantile functions obtained by the proposed MEM approximately fit those 

obtained by MCS. Moreover, the quantile 
7RQ  of node 7 is smaller than quantiles 

jRQ of the other 

four nodes 3, 5, 9 and 11, which are indicated by the solid vertical line in Fig. 5-9(a). The main 

reason for this would be that node 7 is symmetrically connected by two thick horizontal members 

12 and 17 and one vertical member 16, making the nodal stiffness less sensitive to the asymmetric 

uncertainties.  

 

 

 (a)      (b) 

Fig. 5-9 Quantile functions of vertical displacements of nodes 3, 5, 7, 9 and 11 of Example 2 at 

the results of: (a) initial iteration; (b) final iteration 

 

On the contrary, the result at the final iteration is stable in both vertical and horizontal 

directions due to the increase of cross-sectional areas of members 2 and 27 as shown in Fig. 5-

8(b), Tables 5-9 and 5-10. Figure 5-9(b) displays the quantile functions of vertical displacements 

of nodes 3, 5, 7, 9 and 11 of the result at the final iteration. We can see from Table 5-8 and Fig. 5-

9(b) that the relative error between quantile functions obtained by the proposed MEM with sample 

L-moments and MCS is around 3%. The equality holds for the displacement constraint of node 5, 

while the constraints of other four nodes are also satisfied with slightly higher reliability than the 

requirement. 
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Table 5-8 Structural volumes and quantiles 
jRQ  of the results of Example 2 at the initial and final 

iterations  

Result Initial iteration Final iteration 

Structural volume (m3) 0.2728 0.3861 

Quantile 
3RQ  (m) 4.490×10-3 (4.516×10-3) 2.926×10-3 (2.840×10-3) 

Quantile 
5RQ  (m) 4.962×10-3 (4.625×10-3) 3.0×10-3 (2.954×10-3) 

Quantile 
7RQ  (m) 3.866×10-3 (3.988×10-3) 2.992×10-3 (2.908×10-3) 

Quantile 
9RQ  (m) 4.883×10-3 (4.606×10-3) 2.994×10-3 (2.936×10-3) 

Quantile 
11RQ  (m) 4.866×10-3 (4.502×10-3) 2.993×10-3 (2.974×10-3) 

 

Table 5-9 Location of nodes of the results of Example 2 at initial and final iterations 

Node 
Initial iteration Final iteration 

x-coordinate (m) y-coordinate (m) x-coordinate (m) y-coordinate (m) 

1 0 0 0 0 

2 0.00161 0.8611 0.0817 0.9028 

3 1 0 1 0 

4 0.7276 1.8660 1.0733 2.1766 

5 2 0 2 0 

6 1.3225 2.2903 2.6415 2.6477 

7 3 0 3 0 

8 3.0000 2.8149 3.4190 2.6472 

9 4 0 4 0 

10 4.6772 2.2904 5.0011 2.1695 

11 5 0 5 0 

12 5.2722 1.8662 5.9590 0.8813 

13 6 0 6 0 

14 5.9984 0.8611 5.7428 0.7927 
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Table 5-10 Force densities, cross-sectional areas and member lengths of the results of Example 2 

at initial and final iterations 

Member  

Initial iteration Final iteration 

Force density 

(N/m) 

Cross-

sectional area 

(m2) 

Member 

length (m) 

Force density 

(N/m) 

Cross-

sectional area 

(m2) 

Member 

length (m) 

1 -4.2451 0.01950 0.8611 -8.0102 0.0200 0.9065 

2 -0.4437 1.00×10-7 1 -1.6791 0.005013 1 

3 0.6192 1.00×10-7 2.0029 2.1740 1.00×10-7 2.4269 

4 0.4073 0.01138 1.3184 -2.1750 0.01529 1.2878 

5 0.30179 0.01476 1.2397 0.3018 0.02 1.6143 

6 1.4748 1.00×10-7 1.8858 6.1282 1.00×10-7 2.1779 

7 0.6607 0.00854 1 2.3062 0.01335 1 

8 -0.9181 1.00×10-7 2.3129 -3.9185 1.00×10-7 3.1153 

9 1.5906 0.004665 2.2585 0.78232 0.01277 2.3657 

10 -0.1634 0.01388 0.7306 -0.1635 0.01931 1.6374 

11 -0.4086 0.00433 2.3884 4.0304 1.00×10-7 2.7243 

12 2.7744 0.01255 1 6.5428 0.01847 1 

13 -0.3667 1.00×10-7 2.9873 -4.2966 1.00×10-7 3.0036 

14 -0.0961 1.00×10-7 2.8389 2.1693 0.005614 2.6719 

15 -0.0376 0.01315 1.7576 -0.0375 0.01925 0.7775 

16 -0.06201 0.007858 2.8149 -4.9602 0.005586 2.6802 

17 1.5919 0.01255 1 1.6626 0.01834 1 

18 0.6089 1.00×10-7 2.8388 3.8661 1.00×10-7 2.9515 

19 -0.2899 1.00×10-7 2.9873 0.8785 1.00×10-7 2.7103 

20 0.2262 0.01314 1.7573 0.2263 0.01919 1.6526 

21 -0.7517 0.004327 2.3884 -2.6384 0.01302 2.3894 

22 -0.6006 0.008546 1 -4.9624 0.01254 1 

23 1.8957 0.004668 2.2586 4.9905 1.00×10-7 2.1482 

24 0.6664 1.00×10-7 2.3131 3.3449 1.00×10-7 2.1695 

25 -0.02156 0.01388 0.7307 -0.0215 0.0200 1.6053 

26 0.01296 1.00×10-7 1.8859 -1.2331 1.00×10-7 1.3025 

27 0.2494 1.00×10-7 1 1.0612 0.005001 1 

28 -0.6394 0.01138 1.3184 -6.5217 0.01441 1.0864 

29 -0.3378 1.00×10-7 2.0031 1.0221 0.0200 0.8823 

30 0.1868 0.01476 1.23999 0.1868 0.01251 0.2336 

31 -2.1711 0.01950 0.86109 -4.2898 0.006430 0.8334 

 

Furthermore, in order to illustrate how Eq. (5.7) prevents obtaining a conservative result, Fig. 

5-10 displays the iteration histories of the total structural volume, which is the objective function, 

and the maximum value of the five quantiles 
jRQ of the vertical displacements of nodes 3, 5, 7, 9 

and 11, where the horizontal line represents the limit of displacement constraint (i.e., 3×10-3 m). 

As shown in Figs. 5-8 and 5-10, since the result at initial iteration is unstable in x-direction when 

the bending stiffness is small, the maximum value of the five quantiles 
jRQ  at k = 0 is about 0.49 



102 

 

and large shifting values would be applied to the upper bounds of constraints for the next iteration 

where an extremely narrow feasible domain is constructed. Therefore, it can be expected that the 

result at k = 1 would have large structural volume to satisfy the displacement constraints, and as 

displayed in Fig. 5-10 the maximum value of the five quantiles 
jRQ  for k=1 is far less than 3×10-

3m, which indicates the result is highly reliable. In order to prevent obtaining such excessively 

conservative result, the upper bounds of the constraints for the next iteration are relaxed by Eqs. 

(5.4) and (5.5), and we can see from Fig. 5-10 that the structural volume of the result at k = 2 is 

reduced compared to that at k = 1; however, the maximum value of the five quantiles 
jRQ  also 

increases and exceeds 3×10-3m. Hence, the quantile-based SORA procedure keeps going until 

stopping criteria Eq. (5.7) is reached, where the structural volume and the maximum value of the 

five quantiles 
jRQ  increases and decreases alternatively. In this example the SORA procedure 

converged to the final result at k = 34 with all the constraints are satisfied and at least one of them 

holds equality. However, the structural volume is significantly reduced compared to the result at k 

= 1, showing that instead of obtaining a conservative result, a result with smaller objective value 

which satisfies all the reliability constraints can be found by using Eq. (5.7) as stopping criteria. 

Note that because none of the shifting values is smaller than 
jg , the five coefficients 

j  are 

always 1 according to Eq. (5.6). 

 

 

Fig. 5-10 Iteration histories of objective and maximum 0.99 quantile of constraints of Example 2 

 

5.5.4 Example 3: Problem with displacement and buckling constraints in 5.4.2 

The third example is to optimize a cantilever frame with same initial structure, supporting and 

loading conditions as in Example 1. Based on Table 5-1 and Eq. (5.23), the deterministic 

optimization problem at the (k+1)th iteration of quantile-based SORA is to minimize the structural 
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volume subject to constraints on global stability and downward vertical displacement of node 11, 

and the problem is formulated as 

    

    
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  (5.32) 

The optimization procedure converged at k = 4, and the results at the initial and final iteration are 

presented in Fig. 5-11. The structural volumes and quantiles 
11RQ and 

RQ

of the results at the initial 

and final iteration are listed in Table 5-11 in which the quantiles obtained by MCS are listed in the 

parentheses. The nodal locations, force densities, cross-sectional areas and member lengths are 

also given in Tables 5-12 and 5-13.  

 

 

 (a) (b) 

Fig. 5-11 Results of Example 3 at: (a) initial iteration; (b) final iteration 

 

Table 5-11 Structural volumes and quantiles 
11RQ  of the results of Example 3 at the initial and 

final iterations 

Result Initial iteration Final iteration 

Structural volume (m3) 9.3190×10-2 9.9652×10-2 

Quantile 
11RQ  (m) 3.2548×10-3 (3.2378×10-3) 2.9926×10-3 (2.9789×10-3) 

Quantile 
RQ

 6.6555×10-2 (6.0751×10-2) 5×10-2 (4.9815×10-2) 

 

As we can see from Fig. 5-11 and Tables 5-11 to 5-13, although the results at the initial and 

final iteration have similar shapes, the cross-sectional areas of elements have increased at the final 

iteration to satisfy the constraints, leading to a larger structural volume and different structural 
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performance. Compared to the results obtained in Example 1, it is observed that when the global 

stability constraint is included, the structural volumes at the initial and final iteration are larger 

than those obtained without global stability constraint, respectively, while their shapes are similar 

to each other.  

 

   

  (a)    (b) 

Fig. 5-12 Quantile functions of vertical displacement of node 11 and global stability of Example 

3 at the results of: (a) initial iteration; (b) final iteration 

 

Table 5-12 Location of nodes of the results Example 3 at the initial and final iteration  

Node 
Initial iteration Final iteration 

x-coordinate (m) y-coordinate (m) x-coordinate (m) y-coordinate (m) 

1 0 0 0 0 

2 0 1 0 1 

3 0 2 0 2 

4 0.5046 0.0594 0.5287 0.0622 

5 1.4183 0.9417 1.4251 0.9435 

6 1.8185 1.7237 1.8263 1.7224 

7 1.8492 0.2706 1.8553 0.2738 

8 2.0183 1.6508 2.0235 1.6499 

9 1.9991 1.3383 2.0693 1.3373 

10 2.1500 0.2804 2.1110 0.4799 

11 3 1 3 1 

12 2.5243 1.3838 2.2019 1.5325 

 

Furthermore, the quantile functions of vertical displacement of node 11 and global stability are 

presented in Fig. 5-12 for the results at the initial and final iteration, where the quantile functions 

obtained by MCS are also included. It can be seen from Fig. 5-12 and Table 5-11 that at the initial 

iteration, both the probabilities of exceeding the limits 3

11 3 10 mg    and 0.5   are over 0.9; 
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however, at the final iteration the quantiles of 
11RQ and 

RQ


for both reliability constraints are 

satisfied with target probabilities listed in Table 5-1. Besides, compared to Fig. 5-5(a) in Example 

1, the probability of vertical displacement of node 11 exceeding the upper bound in Fig. 5-12(a) is 

larger than that in Fig. 5-5(a). This is because in this example the uncertainties in nodal locations 

are not only considered in the two end nodes of the member, but also in the intermediate nodes 

along the member as discussed in Section 5.4.2, making the structural response more sensitive to 

the uncertainty.  

 

Table 5-13 Force densities, cross-sectional areas and member lengths of the results of Example 3 

at the initial and final iterations  

Member  

Initial iteration Final iteration 

Force density 

(N/m) 

Cross-

sectional area 

(m2) 

Member 

length (m) 

Force density 

(N/m) 

Cross-

sectional area 

(m2) 

Member 

length (m) 

1 -2.5317 0.01067 0.5081 -2.5095 0.01135 0.5324 

2 0.5260 0.0098 1.3610 0.4951 0.01046 1.3433 

3 0.5616 1.00×10-7 0.3009 0.6733 1.00×10-7 0.3284 

4 0.2360 1.00×10-7 1.4195 0.2448 1.00×10-7 1.4262 

5 0.4526 0.002526 0.9288 0.5024 0.002665 0.9257 

6 0.3017 0.009038 1.1778 -0.0333 0.009664 1.1729 

7 -0.3780 0.010006 1.8394 -0.3955 0.01073 1.8472 

8 -1.4593 1.00×10-7 0.4256 -1.4349 1.00×10-7 0.4553 

9 0.3531 1.00×10-7 0.5271 0.01065 1.28×10-7 0.2360 

10 -1.0288 1.00×10-7 1.2701 -1.1026 1.00×10-7 1.2570 

11 -0.2141 1.00×10-7 1.3905 -0.3370 1.00×10-7 1.3863 

12 0.1844 1.00×10-7 1.1136 0.19672 1.00×10-7 1.02990 

13 0.6330 0.002183 0.8784 0.62648 0.002332 0.8761 

14 2.04083 1.00×10-7 0.3131 2.0854 1.00×10-7 0.3159 

15 -0.8579 2.44×10-7 0.6112 -0.3943 1.9257×10-7 0.9594 

16 1.4628 0.007401 1.7025 1.4743 0.007857 1.7091 

17 1.1859 1.00×10-7 1.0674 1.1791 1.00×10-7 1.0765 

18 -0.2949 1.00×10-7 2.1963 -0.2487 1.00×10-7 2.1806 

19 0.03922 0.004095 0.7974 0.09156 0.004352 0.7959 

20 0.51392 0.008948 1.3624 0.5073 0.009566 1.3555 

21 -0.0928 1.00×10-7 1.3767 0.03121 7.64×10-7 1.1731 

22 0.01814 1.00×10-7 1.9572 -0.00013 1.00×10-7 1.963 

23 -0.4770 0.005956 1.7696 -0.4710 0.006369 1.7740 

24 0.43262 1.00×10-7 0.7032 0.3088 1.00×10-7 0.7549 

25 -0.6887 0.009572 0.2127 -0.6216 0.01025 0.2101 

26 -1.1730 3.68×10-7 0.5720 -1.7719 1.9339×10-7 0.2135 

27 -0.2367 1.00×10-7 1.0565 -0.05994 1.00×10-7 0.9899 
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5.5.5 Example 4: Problem with displacement and buckling constraints in 5.4.2 

The last example is to investigate the optimal shape and topology of a bridge frame which has the 

same initial structure, supporting and loading conditions as in Example 2. The optimization 

problem is to minimize the structural volume subject to constraints on the downward vertical 

displacements of nodes 3, 5, 7, 9 and 11 and global stability. According to Eq. (5.23) and Table 5-

1, the (k+1)th optimization problem of quantile-based SORA is formulated as 
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  (5.33) 

The optimization procedure converged at k = 59, and the results at the initial and final iterations 

are presented in Fig. 5-13. Table 5-14 lists the structural volumes and quantiles 

 3,5,7,9,11
jRQ j   and 

RQ

 of the results at the initial and final iteration where those obtained 

by MCS are given within the parenthesis. The locations of nodes, force densities, cross-sectional 

areas and member lengths are listed in Tables 5-15 and Table 5-16.  

 

   

 (a)    (b) 

Fig. 5-13 Results of Example 4 at: (a) initial iteration; (b) final iteration 

 

Compared to the result at the initial iteration of Example 2 shown in Fig. 5-8(a), the structure 

in Fig. 5-13(a) is stable in both x- and y-directions due to the inclusion of global stability constraint 

in problem (5.33). The structural volume also increased to 0.2899 m3 which is about 6.3% larger 

than that listed in Table 5-8. However, the quantiles  3,5,7,9,11
jRQ j    listed in Table 5-14 are 

all larger than the corresponding values in Table 5-8 of Example 2, which is similar to the 

comparison of quantiles of displacements of nodes 11 between Examples 1 and 3. The main reason 

may also be the consideration of uncertainties in the locations of intermediate nodes of members 

in problem (5.33). The quantile functions of the displacements of these five nodes and global 

stability are presented in Fig. 5-14(a) for the result at initial iteration, in which the solid and dashed 

horizontal lines represent the upper bounds for displacement and global stability constraints, 
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respectively. Similar to Fig. 5-9(a) in Example 2, since node 7 is connected by three thick members 

12, 16 and 17, the frame will be less influenced by the uncertainties and has the smallest quantile 

7RQ  of vertical displacement among these five nodes. 

 

Table 5-14 Structural volumes and quantiles 
jRQ  of the results of Example 4 at the initial and 

final iterations  

Result Initial iteration Final iteration 

Structural volume (m3) 0.2899 0.4089 

 Quantile 
3RQ  (m) 5.0161×10-3 (4.9594×10-3) 2.6982×10-3 (2.6932×10-3) 

Quantile  
5RQ  (m) 5.4799×10-3 (5.2825×10-3) 2.5572×10-3 (2.5558×10-3) 

Quantile  
7RQ  (m) 4.7125×10-3 (4.5265×10-3) 3×10-3 (2.9941×10-3) 

Quantile  
9RQ  (m) 5.6177×10-3 (5.2786×10-3) 2.8440×10-3 (2.8547×10-3) 

Quantile 
11RQ  (m) 6.1215×10-3 (5.7181×10-3) 2.8955×10-3 (2.8036×10-3) 

Quantile 
RQ

 5.2116×10-2 (5.1335×10-2) 3.5231×10-2 (3.6008×10-2) 

 

Table 5-15 Locations of nodes of the results of Example 4 at initial and final iterations 

Node 
Initial iteration Final iteration 

x-coordinate (m) y-coordinate (m) x-coordinate (m) y-coordinate (m) 

1 0 0 0 0 

2 0.1145 1.3210 0.04184 0.8624 

3 1 0 1 0 

4 0.1284 0.8102 0.8173 1.9570 

5 2 0 2 0 

6 1.2724 2.0538 1.5929 2.4143 

7 3 0 3 0 

8 3.0000 2.5370 3.0186 2.7936 

9 4 0 4 0 

10 4.7276 2.0538 4.5333 2.3730 

11 5 0 5 0 

12 5.8716 0.8102 5.3451 1.7818 

13 6 0 6 0 

14 5.680 1.0813 5.9785 0.9060 
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Table 5-16 Force densities, cross-sectional areas and member lengths of the results of Example 4 

at initial and final iterations 

Member  

Initial iteration Final iteration 

Force density 

(N/m) 

Cross-

sectional area 

(m2) 

Member 

length (m) 

Force 

density 

(N/m) 

Cross-

sectional 

area (m2) 

Member 

length 

(m) 

1 -3.5482 1.00×10-7 1.3259 -12.7318 0.02 0.8634 

2 0.05967 0.002781 1 -3.0087 0.0027 1 

3 2.6996 0.01838 0.8203 4.3328 1.00×10-7 2.1208 

4 0.8656 1.00×10-7 1.5903 -4.4735 0.01614 1.2891 

5 -0.1519 1.00×10-7 0.5109 -0.1519 0.02 1.3415 

6 0.2983 0.009777 1.1901 9.2649 1.00×10-7 1.9655 

7 1.1373 0.009830 1 -2.3428 0.01256 1 

8 -0.1875 1.00×10-7 2.0717 -5.4980 1.00×10-7 2.4860 

9 0.7001 1.00×10-7 2.0394 -2.2410 0.00975 2.2866 

10 -0.00071963 0.01815 1.6897 -0.0007190 0.02 0.9003 

11 0.3248 0.008201 2.1789 5.8366 0.005683 2.4483 

12 2.7764 0.01242 1 0.5568 0.01937 1 

13 -0.09239 1.00×10-7 2.7270 -3.1163 1.00×10-7 2.9734 

14 0.4847 1.00×10-7 2.6838 6.1722 2.74×10-7 2.7944 

15 0.1919 0.01965 1.7939 0.1918 0.02 1.4752 

16 -0.8754 0.007428 2.5370 -5.2474 0.01105 2.7936 

17 1.7418 0.01241 1 8.8494 0.01929 1 

18 1.0835 1.00×10-7 2.6838 0.3192 1.00×10-7 2.8253 

19 0.01611 1.00×10-7 2.7270 -9.1797 1.00×10-7 2.9609 

20 -0.1081 0.01964 1.7939 -0.1081 0.02 1.5720 

21 0.4574 0.008201 2.1789 11.9002 0.007966 2.4322 

22 1.3799 0.009829 1 -5.3019 0.01204 1 

23 0.02414 1.00×10-7 2.0395 -0.8953 0.007978 2.2325 

24 0.07711 1.00×10-7 2.0718 -0.3331 1.00×10-7 2.4184 

25 0.2903 0.01815 1.6897 0.2902 0.02 1.0042 

26 -0.6404 0.009776 1.1900 3.7135 1.00×10-7 1.8149 

27 1.1027 0.002781 1 -1.5264 0.0027 1 

28 1.2582 1.00×10-7 1.2777 -5.3269 0.01564 1.3336 

29 3.2862 0.01838 0.8203 2.5879 0.005636 1.8983 

30 -0.07498 1.00×10-7 0.3315 -0.07498 0.02 1.0808 

31 -4.7744 1.00×10-7 1.1274 -7.8486 0.02 0.9063 

 

On the other hand, the result at the final iteration has different shape and topology from the 

result at the initial iteration, and the corresponding quantile functions of the displacements of nodes 

3, 5, 7, 9 and 11 and global stability are presented in Fig. 5-14(b). It can be observed from Fig. 5-

14 and Table 5-14 that for the result at final iteration, only the displacement constraint of node 7 

is active and the quantile 
RQ

 is much smaller than the limit 0.05  , indicating that the global 

stability can be enhanced to some extent by applying displacement constraints on some nodes of 
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the structure. This phenomenon is also mentioned in the Ref. [61] by discussing the relation 

between nodal and global stabilities. Therefore, in this example the reliability of global stability is 

higher than those of displacements of nodes 3, 5, 7, 9 and 11, and all the constraints are satisfied 

with a equality on the displacement constraint of node 7.  

 

  

 (a)  (b) 

Fig. 5-14 Quantile functions of vertical displacements of nodes 3, 5, 7, 9 and 11 and global 

stability of Example 4 at the results of: (a) initial iteration; (b) final iteration 

 

 

Fig. 5-15 Iteration histories of objective and maximum 0.99 quantile of constraints of Example 4 

 

Moreover, Fig. 5-15 displays the iteration histories of the total structural volume, maximum 

value of quantiles  3,5,7,9,11
jRQ j   of displacements and quantile 

RQ

of global stability. It 

can be seen from Fig. 5-15 that at k = 0 the maximum value of the five quantiles 
RQ

 is larger than 
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6×10-3 m, resulting in a shifting value greater than the limit 33 10 mjg   . Hence, based on Eq. 

(5.6), the reduction coefficient 
j  in problem (5.33) is 0.5 to avoid drastically shifting the limit of 

the constraint. Similarly, as for quantile 
RQ

 of global stability, it is close to 0.17 at k = 37 which 

results in a shifting value greater than twice of the limit 0.05  , and then the reduction coefficient 

  is 0.1 according to Eq. (5.6) to smoothly continue the optimization procedure. Compared to Fig. 

5-10 in Example 2, although the iteration histories of objective and maximum 0.99 quantile of 

constraints in Fig. 5-15 are more oscillatory, it is also able to converge to the final result, where 

Eq. (5.6) is used to alleviate the oscillation caused by the large shifting values on the limit of 

constraints. Besides, the structural volume at the final iteration is smaller than that at k = 1 with all 

the constraints satisfied, showing the effectiveness of stopping criteria Eq. (5.7) to prevent 

obtaining conservative result in the same manner as Example 2. 

 

5.6 Conclusions 

In this chapter a quantile-based SORA is proposed for reliability-based shape and topology 

optimization of plane frames. The shifting value on the limit of constraint is calculated in terms of 

quantile, and a reduction coefficient is employed to avoid drastic shifting. The MEM subject to 

sample L-moments is integrated to estimate the density-quantile function of constraint, and the 

original MEM problem is solved by using Lagrangian multiplier method, while the unknown 

Lagrangian multipliers are determined by solving an unconstrained convex optimization problem. 

Then the quantile function is obtained by integrating the corresponding density-quantile function. 

Moreover, two stopping criteria are used to prevent obtaining excessively conservative result. 

Based on the above framework, two kinds of optimization problems is formulated. One is to 

minimize the structural volume under single or multiple displacement constraints, and the other is 

to minimize the structural volume under both displacement and global stability constraints, on 

which a penalization method is applied to exclude pseudo buckling modes by using approximate 

Heaviside function. For each problem formulation two numerical examples are investigated to 

illustrate effectiveness of the proposed method, and the conclusions are drawn as follows: 

(1) The proposed method is able to obtain an optimal result satisfying single or multiple 

reliability constraints, and the quantile function of the constraint can be properly estimated using 

MEM subject to sample L-moment constraints, while the number of samples for estimating the 

quantiles are limited to a small size. 

 (2) An excessively conservative result can be avoided by the proposed stopping criteria, and 

the drastic shifting on the limit of constraint is also alleviated by the reduction coefficient when 

the structure is sensitive to the uncertainty.  

(3) It can be seen from Examples 2 and 4 that compared to the iteration history of optimization 

procedure without global stability constraint, the one with global stability constraint is more 

oscillatory mainly due to the jump of quantile of global stability. However, it is also able to 

converge to a feasible optimal result where the structure is more stable than the requirement as 
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shown in Table 5-14, indicating that the global stability could be enhanced to some extent by 

applying displacement constraints on some nodes of the structure.
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Chapter 6 

Summaries and future study  

 

 

6.1 Summaries 

This research focuses on exploring new shape and topology optimization methods and problem 

formulations for frame structures considering uncertainties in variables and parameters. In order 

to alleviate difficulty due to melting nodes when shape optimization is considered, FDM is 

introduced to indirectly control the member length by limiting force density, where an auxiliary 

pin-jointed structure is used for applying FDM to determine the shape of frame structure to be 

optimized. Moreover, since uncertainties are unavoidable in the real physical world, and their 

distribution information are usually unknown in the early stage of design process, order statistics 

and the corresponding L-moments are employed into the problem formulations of RSO and RBSO, 

respectively, to assess the structural robustness and reliability in which no prior assumption is 

made on the distribution information of uncertainty. Besides, global stability constraint is also 

included by implementing linear buckling analysis, and the penalization method is used to handle 

the singularity phenomenon due to superficial member buckling. Chapter 1 gives the background 

and literature review of the present research, and the summaries of Chapters 2-5 are listed as 

follows. 

Chapter 2 introduces some concepts and techniques which will be used for optimization of 

frame structures in this research. First, the basic idea of FDM is given with definitions of force 

density, connectivity matrix and fixed and free nodes. Unlike traditional FDM, the fixed nodes are 

defined as the supporting nodes, loading nodes and the nodes with specific requirements, and the 

locations of free nodes are obtained by solving equilibrium equations, which will be used for shape 

optimization of frame structure in Chapters 3-5. Second, in order to conveniently approximate 

maximum structural response, the order statistics of structural response under uncertainty is 

defined in a descending order, and some useful properties of order statistics are also discussed to 

derive the theory of distribution-free tolerance interval, which will be used to define the structural 

robustness in Chapter 4. Based on the order statistics, the calculations of L-moments and sample 

L-moments are also given, and they will be used to estimate the structural reliability in Chapter 5. 

Third, the detailed implementations of modeling uncertainties in nodal locations, cross-sectional 

areas and Young’s modulus are illustrated, where no assumption is made on their distribution 

information, and they will be incorporated into RSO and RBSO problems in Chapters 4 and 5, 

respectively. Finally, a simple example is used to demonstrate the singularity phenomenon in 
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global stability, which is caused by the negative contributions of geometrical stiffness matrices of 

thin elements to the global geometrical stiffness matrix. 

Chapter 3 presents a new method for simultaneous optimization of shape, topology and cross 

section of plane frames. Compliance against specified loads is minimized under volume constraint. 

Difficulty caused by the melting nodes can be alleviated to some extent by introducing force 

densities as design variables for defining the geometry, where the side constraints are assigned for 

force densities to indirectly avoid the existences of extremely short members. Sensitivity 

coefficients of the objective and constraint functions with respect to the design variables are also 

explicitly calculated. After the optimal shape and cross-section of the frame are obtained, the shape 

and topology are further improved by removing the thin members and combining closely spaced 

nodes. In the numerical examples, two kinds of optimization problems Case N and Case P with 

negative and positive lower bound for force density, respectively, are solved to find the optimal 

results. It is shown that in both problems rational shape and topology of frame structure can be 

achieved using the proposed method, while Case P is more stable than Case N, and the effect of 

bending moment on the optimal solution is also discussed. 

Chapter 4 presents a worst-case approach to RSO problem of plane frames. Since the exact 

worst value of structural response is difficult to calculate, it is firstly relaxed to a quantile response. 

Then, based on the distribution-free one-side tolerance theory in order statistics, the quantile 

response is further approximated by the kth order statistic with given confidence level. Therefore, 

the structural robustness is represented by the kth order statistic and the corresponding order k. 

With this robustness definition, two kinds of RSO problems are formulated and for each problem 

formulation, two numerical examples are investigated to illustrate its effectiveness. On the one 

hand, a single-objective optimization is proposed to minimize the structural stress under volume 

and global stability constraints, and the FDM is introduced for determining the shape of frame 

structure. The singularity phenomenon due to superficial member buckling is alleviated by the 

penalization method which is confirmed by a simple example. It is shown in the numerical 

examples that the solution of robust optimization obtained by the proposed method is less sensitive 

to the uncertainty, and the stability constraint is also satisfied under uncertainty with the specified 

robustness and confidence level. On the other hand, a multi-objective optimization is proposed to 

minimize the structural stress at various robustness levels with structural volume constraint, where 

the order statistics or trimmed means of the response values are served as multiple objectives, 

together with the response value without considering uncertainty. The optimization procedure 

consists of two stage. In the first stage, the design variables are selected as nodal locations and 

cross-sectional areas, and the single-objective optimization problem is solved without uncertainty. 

Based on the optimal solution of the first stage, we select only cross-sectional areas as design 

variables and solve the multi-objective optimization problem. Examples show that optimal 

topology of the structure varies with the change of robustness level, and the convergence by using 

trimmed mean as indicator of structural robustness is better than that of the simple order statistics. 

Chapter 5 presents a quantile-based SORA method for RBSO problem of plane frames. The 

reliability constraint is expressed in terms of quantile response with specified reliability, and the 

original RBSO problem is transformed into a series of deterministic optimization problems by 
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using the framework of SORA. Two stopping criteria are proposed to prevent obtaining an 

excessively conservative result with high reliability, which requires the satisfaction of all the 

constraints and at least one of the constraints holds in equality. The shifting value on the constraint 

limit is also calculated based on the quantile response, and a reduction coefficient is used to avoid 

oscillation caused by drastic change of the shifting value. The quantile response with specified 

reliability is estimated as follows: first the density-quantile function (i.e., the derivative of quantile 

function) is estimated using MEM subject to sample L-moments, which is less influenced by the 

sample size than traditional sample central moments. The MEM problem is solved by Lagrangian 

multiplier method, and the unknown Lagrangian multipliers are determined by further solving an 

unconstrained convex problem. Then, the quantile response is obtained by integrating the density-

quantile function to the specified reliability. Besides, the FDM is also introduced for shape 

optimization to alleviate the difficulty caused by the existences of extremely short members. Based 

on the proposed quantile-based SORA method, two kinds of optimization problems are formulated. 

One is to minimize the structural volume with only displacement constraint, and the other is with 

both displacement and global stability constraints. In order to solve the problems using SQP, 

approximate Heaviside function is incorporated as penalization method to exclude the pseudo 

buckling mode, and the corresponding formulations of sensitivity coefficients are also derived. For 

each problem formulation two numerical examples are investigated to illustrate its effectiveness, 

and comparisons between the examples are also made to discuss the influence of global stability 

constraint on the optimal result and convergence property of SORA. It is shown that the result 

satisfying the reliability constraints can be found by both methods, and excessively conservative 

results can be avoided using the proposed stopping criteria. Compared to the optimization problem 

with only displacement constraints, the optimization procedure of the problem with displacement 

and global stability constraints is more oscillatory due to the drastic shifting on linear buckling 

load factor; however, such difficulty can be alleviated to some extent using the proposed reduction 

coefficient, and the optimization procedure is also able to converge to a feasible result. 

 

6.2 Future studies 

In the present research, various methods are proposed for shape and topology optimization of 

frame structures and their performances are investigated by a number of 2-dimensional examples. 

However, the uncertainties in RSO and RBSO problems are only considered in the structural and 

material properties. Therefore, some simple suggestions for the future study can be accordingly 

given as follows: 

 Extending the proposed methods to 3-dimensional optimization problems. 

 Considering the uncertainty in loading direction or magnitude. 

 Applying the methods of RSO and RBSO to continuum structures. 

In addition, in Chapter 3 the shape and topology optimization of frame structure is considered 

only in linear elastic case, where Young’s modulus of each member is invariant during deformation. 

However, in practical engineering the material will exhibit inelastic or nonlinear behavior, which 
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is usually described by a path-dependent material model. Moreover, the external load considered 

in the present research is static, where dynamic excitation, such as earthquake or wind load, is also 

important in the structural design process, which results in a time-dependent structural response. 

Therefore, in order to make the results more applicable to design practice, for further study it is 

suggested to include the material nonlinearity and dynamic property of loads into the structural 

optimization problem. Existing studies have been contributed to considering optimization of 

nonlinear and dynamic structure systems, and a number of techniques are proposed for the design 

sensitivity analysis or heuristic optimization algorithms [150–154]. However, balancing the 

accuracy and efficiency is still a challenging work due to the fact that the path-dependent structural 

deformation is discontinuous and even non-differential [155]. The number of constraints rapidly 

increases because structural responses are evaluated at a number of time points in the time history, 

leading to a large computational effort [156]. One of the possible alternatives is to use a simplified 

and equivalent model and methodology to respectively describe the material nonlinearity and 

dynamical structural response, and efforts can be made in the future study to improve and provide 

more appropriate and easy-to-use approaches.  

As for RSO problem using worst-case approach, although the optimal results obtained by the 

proposed methods are robust under uncertainty, it can be seen in Chapter 4 that the computational 

cost is expensive and the problem is limited to a small size. Its main reason is that for each objective 

and constraint evaluation, the number of FEA processes is equal to the sample size of order 

statistics, and it will increase with the increase of structural robustness and confidence level. 

Moreover, as discussed by Sigmund [157], when the sensitivity analysis is available for both 

objective and constraint functions, one should solve the optimization problem by a gradient-based 

method rather than a non-gradient method due to its computational efficiency. Therefore, in order 

to make the worst-case approach applicable to large-scale problems, in the future study it is 

suggested that asymptotic analysis or truncated approximation of structural response could be used 

to replace the real FEA for generating order statistics to save computational time [158], where the 

analytical or semi-analytical sensitivity analysis under uncertainty can be efficiently derived. 

Besides, due to the development of machine learning in the field of structural optimization, some 

researchers have applied the so-called stochastic gradient method to RSO and RBSO problems to 

reduce the computational costs, and Yamakawa and Ohsaki [97] discussed the applicability of 

order statistics-based method for fail-safe topology optimization by using stochastic gradient 

method. Further study can be implemented on this direction by enhancing its efficiency and 

accuracy 

It is worth noting that for RBSO problem, not only the component reliability but also the 

system reliability has been the main concern for researchers and engineers, while in Chapter 5 only 

the component reliability is discussed in RBSO. Moreover, the structural reliability may vary due 

to time-variant operation condition and structural deterioration throughout the life-cycle of the 

structure, and thus including time-variant reliability constraint in RBSO problem is also important 

in practical engineering applications [159]. One of the main difficulties for considering system and 

time-variant reliability constraints is the high computational cost on handling dependent failure 

events among different components or time-variant limit states. Therefore, in the future study it is 

suggested to explore the possibility of efficiently implementing system and time-variant reliability 
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analysis using order statistics and L-moments, whereas some researches have proposed to 

accurately calculate the failure probability of extreme event using order statistics [160]. 
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Appendix 

 

 

A1 Optimization procedure of Example 1 in Chapter 3 

The intermediate solutions in optimization procedure of Example 1 in Chapter 3 with 
3

1mV   are 

shown in Figs. A1 and A2 for Cases P and N, respectively. The red and blue colors of members 

stand for positive and negative member forces, respectively. The figure at the top-right of Fig. A2 

is trimmed to be consistent with the others, although some of the nodes and members are cut off. 

As seen from Figs. A1 and A2, in Case N the structure undergoes drastic variation at the beginning 

mainly due to the change of signs of the force densities; on the other hand, iteration in optimization 

procedure with Case P has “smoother” shape variation leading to a monotonic convergence to the 

solution. 

 

               

      Step 1                                             Step 120                                          Step 240 

               

Step 360                                             Step 480                                         Step 600 

Fig. A1 Intermediate solutions of Example 1 in Chapter 3 for Case P 
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Step 1                                             Step 100                                         Step 200 

             

Step 300                                             Step 400                                         Step 500 

Fig. A2 Intermediate solutions of Example 1 in Chapter 3 for Case N 

 

A2 Statistical investigation of Example 1 in Chapter 4 

According to Eq. (4.1), the confidence level k  of the first order statistic (k = 1) with sample size 

ms=150 to approximate the 95% quantile should be 0.9995, which means the probabilities of 1:150   

and 1:150  no less than the corresponding 95% quantiles should be no less than 0.9995. In order to 

verify this property, a total of 1000 random seeds are used to generate 1000 groups of 150 samples 

for the uncertainties to investigate the variations of solution R of Example 1 in Chapter 4 due to 

difference in sample sets. The mean values, standard deviations, maximum and minimum values 

of 1:150   and 1:150  are listed in Table A1. The values of 95% quantiles of   and  obtained by 

MCS with sample size 1×104 are also listed in Table A1. Based on the results of 1:150  and 1:150  

from the 1000 groups of 150 samples, the number of 1:150  less than 226.315 MPa is 2 and the 

number of 1:150  less than 0.0904 is 0, indicating that the confidence levels of both of 1:150  and 

1:150  approximating the 95% quantile are greater than 0.9995 for the solution R. Moreover, 

because the order statistics 1:150  and 1:150  approximate the extreme quantiles at the tails of the 

unknown distributions, the mean values of 1:150  and 1:150  from 1000 groups of 150 samples 

should be greater than the corresponding 99.3% quantiles using the connection between the order 

statistics of standard uniform distribution and arbitrary distribution, which is written as 
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 

  (A1) 

where F   and F
 are the CDFs corresponding to   and cr  in Eq. (4.7), respectively, and E in 

Eq. (A1) represents the expectation operator as in Section 2.3; U1:150 represents the first order 

statistic of standard uniform distribution with sample size 150. Comparing the results listed in 

Table A1, it can be seen that the mean values of 
1:150  and 

1:150  are all greater than the 

corresponding 99.3% quantiles, indicating that solution R of Example 1 in Chapter 4 is able to 

preserve the robustness of the structure under different sample sets in statistical sense. Besides, it 

should be noted that there might be an over-fitting phenomenon if the same uncertainty set is used 

during optimization procedure; however, the statistical property of solution R of Example 1 in 

Chapter 4 indicates that the confidence level is satisfied with different sample sets of uncertainties.  

 

Table A1 Statistical information of solution R of Example1 in Chapter 4 

Structural 

response 
Mean Std. dev. Max Min 95% quantile 99.3% quantile 

1:150  (MPa) 247.2407 8.1407 275.7838 223.4451 226.3159 243.1942 

1:150  0.09268 8.424×10-4 0.09572 0.09052 0.09041 0.09219 

 

Furthermore, in order to investigate the variations of order statistics caused by difference in 

samples, the following two problems, in which the first and second order statistics are taken 

respectively, are formulated and solved 10 times for Example 1 in Chapter 4 with different random 

seeds for the uncertain objective and global stability constraint functions: 

    

    

    

1:150 free free

cr

1:150 free free U

free free U

Minimize 

subject to , , ; ;

                , , ; ;   

                , , ; ;   

s

s

V V



 





    

x t y t A Θ

x t y t A Θ

x t y t A t t t A A A

 (A2) 

    

    

    

2:150 free free

cr

2:150 free free U
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Minimize 

subject to , , ; ;

                , , ; ;   

                , , ; ;   
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

    
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 (A3) 
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The mean values, standard deviations, maximum and minimum values of 
1:150 , 

2:150 , 
1:150  and 

2:150  of both problems (A2) and (A3) are listed in Tables A2 and A3, respectively. It can be 

observed from Table A2 that although 
1:150  and 

1:150  vary due to difference in sample sets, their 

standard deviations are not relatively large compared to the corresponding mean values. The 

standard deviations of 
1:150  and 

1:150  in Table A2 are larger than the standard deviations of 
2:150  

and 
2:150  in Table A3. However, the ranges between the maximum and minimum values of 

1:150  

and 
1:150  in Table A2 are smaller than those of 

2:150  and 
2:150  in Table A3, indicating that the 

results obtained by using first order statistics vary in a narrower range due to difference in sample 

sets, while the results obtained by using second order statistics vary mostly close to the mean 

values but in a wider range. Moreover, a trade-off relationship is observed such that the mean 

values and standard deviations of the first order statistics 
1:150  and 

1:150 in Table A3 are larger 

than those of 
1:150  and 

1:150 listed in Table A2, and similar relationship can be also found by 

comparing the results of second order statistics 
2:150  and 

2:150  in Tables A2 and A3. Therefore, 

the standard deviations of the extreme order statistics, such as  
1:150  and 

1:150 , of the final result 

would be smaller if the extreme order statistics are selected as the objective and constraint 

functions, while the standard deviations of the non-extreme order statistics of the final result would 

be smaller than that of extreme order statistics. However, since the extreme order statistics can 

provide a higher robustness level of the structure, where the probability of the structural response 

exceeding the extreme order statistics is lower than that of non-extreme order statistics, the extreme 

order statistics can serve as objective and constraint functions to obtain a structure with prescribed 

higher robustness level.  

 

Table A2 Statistical information of problem (A1) for Example 1 in Chapter 4 

Structural response Mean Std. dev. Max Min 

1:150  (MPa) 237.9236 7.6261 252.3201 229.3373 

1:150  0.0932 0.001797 0.0943 0.0906 

2:150  (MPa) 237.1836 7.1678 252.0981 229.3365 

2:150  0.0927 0.001528 0.0942 0.0899 

 

Table A3 Statistical information of problem (A2) for Example 1 in Chapter 4 

Structural response Mean Std. dev. Max Min 

1:150  (MPa) 245.6271 12.7975 271.7269 234.6596 

1:150  0.0989 0.001904 0.1090 0.0948 

2:150  (MPa) 227.3847 7.1650 248.0602 220.0783 

2:150  0.0985 0.001351 0.1009 0.0943 
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A3 Proof for convexity of   λ  in Chapter 5 

Consider the following function 

   
1

0
1 1

ln
n n

r r r r

r r

K u du h 
 

 
    

 
 λ  (A4) 

where the n variables are  1 2
, , , n  λ ; 

rh and  1, 2, ,rK r n  are n constant functions 

and polynomials with arbitrary orders, respectively, which are kept constant during the 

optimization process for finding the variables λ . Obviously, the part 
1

n

r r

r

h


   is convex since it is 

a linear combination of variables, and the other part  
1

0
1

ln
n

r r

r

K u du


 
  

 
 is also convex which 

can be proven by using the following two properties [161]: 

Property 1: Suppose  ,f uλ  is convex in λ  for each u , and   0u   for each u , 

then the function g defined as  

     ,g u f u du


 λ λ   (A5) 

is convex in λ . 

Property 2: Suppose : ,
n n m

f R R A R


  , and 
n

b R . Define :
m

g R R  by 

   g f A b λ λ   (A6) 

with  domain domain g A b f  λ λ . Then if f is convex, so is g; if f is concave, so is g. 

Because the negative logarithmic function is convex,  
1

ln
n

r r

r

K u


 
  

 
  is convex with respect to 

λ  for a specific value of u according to Property 2, and the integration  
1

0
1

ln
n

r r

r

K u du


 
  

 
  

with respect to u is also convex according to Property 1 as   1u   for  0,1u . Thus, Eq. (A4) 

is convex. 
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