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Abstract

When controlling a nonlinear mechanical system such as vehicles or ar-

tificial satellites, a combination of the feedforward control and feedback

control is often adopted. The feedforward control is a method of calcu-

lating the control inputs in advance, and the optimal control is classified

into this control method, for example. On the other hand, the feedback

control is a method in which the control inputs are calculated sequentially

based on the current state, and the stabilizing control, for example, is clas-

sified into this method. When controlling a vehicle, these two methods

are combined as follows; the ideal trajectory from the current location

to the destination is planned using the feedforward control, and then the

position and attitude of the vehicle are controlled to follow the planned

trajectory by the feedback control.

As these control techniques become more widespread, more difficult

control objectives have been set in various projects in recent years, and

there is a need to develop control methods that can cope with these ob-

jectives. For example, in the example mentioned above, it is required to

generate a trajectory that is easy to follow and to control the position and

posture so that there is no deviation from the generated trajectory while

suppressing the wobbling. In order to achieve such difficult objectives,

it is necessary to improve the performance of, for example, the optimal

control method used for trajectory generation and the stabilizing control

method for trajectory tracking.

This thesis focuses especially on sparse optimal control methods and

passivity-based stabilizing control methods and makes some proposals to

improve the performance of these control methods. The first part of this

thesis deals with the sparse optimal control that is one of the feedfor-

ward control techniques and has the property that the control input is

zero in large part, that is, sparse. While this method has the advantage

of minimizing energy consumption, it has the problem that it is difficult



to calculate the optimal input when the system is nonlinear. This the-

sis proposes several new methods for computing sparse optimal inputs

to conquer this difficulty. The proposed methods provide conditions for

computing the input reliably for a given control objective. This thesis

also proposes an application of a sparse optimal control method to the

problem of generating a trajectory that is easy to track. The second part

of this thesis deals with the passivity-based stabilizing control, one of the

feedback control methods. The passivity-based control stabilizes the sys-

tem at the desired state by designing the controller so that the energy of

the system monotonically decreases. This method is applicable to a wide

range of nonlinear mechanical systems but has the problem that it is dif-

ficult to adjust the output response of the system. To solve this problem,

this thesis proposes new passivity-based controllers that make it possible

to tune the output response through a frequency analysis approach. Nu-

merical simulations and experimental results listed in this thesis show that

those proposals improve the practicality of the optimal control and stabi-

lizing control techniques and thus make it possible to achieve challenging

control objectives.
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Notation

Symbols Meanings
Z+ Set of positive integers
R+ Set of positive real numbers
0n×m Zero matrix of size n×m
In Identity matrix of size n× n
bi The i-th element of a vector b
Bi,j The (i, j)-th element of a matrix B
Bi The (i, i)-th element of a matrix B
diag(Bi)

n
i=1 A diagonal matrix B, where (Bi)

n
i=1 = (B1, · · · , Bn)

|a| Absolute value of a scalar a
∥b∥ The Euclidean norm of a vector b
∥b∥1 ℓ1-norm of a vector b
∥b∥∞ ℓ∞-norm of a vector b
∥b∥2B := b⊤Bb The Euclidean norm of a vector b weighted by a matrix B
∥B∥p Induced norm of a matrix B with respect to the ℓp-norm
min(b) Minimum element of the vector b
max(b) Max element of the vector b
null(B) Null space of a matrix B
L [f(t)] Laplace transformation of a function f(t) : R→ Rn, n ∈ Z+

fi(x) The i-th component of a vector-valued function f(x) : Rn → Rm,
n,m ∈ Z+

∇xf(x) Vector-valued function whose i-th component is ∂f(x)/∂xi
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Chapter 1

Introduction

When controlling nonlinear mechanical systems, we often combine the feedforward

control and feedback control to achieve control objectives. For example, when con-

trolling a vehicle, a trajectory is calculated in advance using feedforward control, and

the position and posture of the vehicle are controlled to follow the trajectory using

feedback control.

In recent years, control objectives have become more complex, and therefore, it is

necessary to improve the performance of control methods. For example, in controlling

a vehicle, it is required to achieve complex objectives such as generating a trajectory

that is easy for the vehicle to follow and then controlling the vehicle to follow the

trajectory without wobbling and deviation. To satisfy such complex requirements,

it is essential to improve the performance of both feedforward and feedback control.

With the aim of improving the performance of each control technique, this thesis

focuses on the finite-time sparse optimal control, which is one of the feedforward

control techniques, and the passivity-based stabilizing control, which is one of the

feedback control techniques.

1.1 Numerical solution methods for sparse optimal

control problems

Finite-time optimal control is one of the feedforward control methods, where the

inputs are designed to minimize a given cost function. A wide range of control

methods, such as robust optimal control [1, 2] and model predictive control [3, 4], is

based on the optimal control method. In the application of the optimal control, it is

necessary to calculate the input by solving an optimal control problem in advance. In

recent years, the application of sparse optimal control to nonlinear mechanical systems

3



Chapter 1. Introduction

has become popular, and research has been conducted on methods for calculating such

optimal control inputs [5, 6, 7]. Sparse optimal control has the advantage of reducing

fuel consumption because its input becomes sparse, i.e., zero in large part, but has the

disadvantage that it is difficult to compute the input. The first part of this thesis is

devoted to numerical solution methods for sparse optimal control problems to conquer

this difficulty.

In the nonlinear case, finite-time optimal control problems are difficult to solve

analytically, so most of those problems are solved numerically. Numerical solution

methods for optimal control problems are basically classified into direct and indirect

methods [8]. The direct method obtains a solution by directly updating the input

and state variables so that the value of the evaluation function given in advance is

minimized [9, 10, 11, 7, 12]. On the other hand, the indirect method converts the

optimal control problem into a problem in finding solutions to ordinary differential

equations by using first-order optimality conditions [13, 14, 15, 16, 17, 6]. The direct

method has the advantage that constraints are easy to consider but has the disad-

vantage of the high space complexity, that is, the algorithm requires a lot of memory

space for the computation. On the other hand, the indirect method has the advantage

of reducing the space complexity by converting the original optimal control problem

into an initial value problem, but it has the disadvantage of increasing the time com-

plexity, the computer time required to execute the algorithm. This is because the

algorithm in this method involves integral computation. Both methods are widely

used, and various methods have been proposed in these frameworks in recent years.

However, it is still difficult to solve nonlinear sparse optimal control problems with

existing methods. This thesis proposes new numerical solution methods for solving

difficult optimal control problems like sparse optimal control problems.

First, we propose a new continuation method based on the shooting method in

the framework of the indirect method. The shooting method is often used to solve

optimal control problems as initial value problems, and it has the advantage of reduc-

ing the space complexity. In the shooting method, an estimate of the solution is given

first, and then the solution is obtained by updating the estimate. The problem is that

if the difference between the given estimate and the true solution is not less than a

certain value, that is, if the estimate is not within the convergence region, the result

of the updates will not converge to the true solution. Especially in the case of difficult

optimal control problems such as sparse optimal control problems, the convergence

region becomes small and it becomes difficult to find the solution with the shooting

method. To make up for this disadvantage, the shooting method is often combined
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1.1. Numerical solution methods for sparse optimal control problems

with the continuation method. The continuation method considers a parametrized

optimal control problem. The problem is designed so that its convergence region is

relatively large when the parameter is zero and it matches the original problem when

the parameter is one. The idea of the continuation method is to solve the problem

iteratively while gradually changing the parameter from 0 to 1. The specific algo-

rithm is as follows. First, a simple optimal control problem with the parameter 0

is solved, and its solution is saved. Since the convergence region of this problem is

large, it is easy to find the solution. Then, modify the problem slightly by setting

the parameter closer to 1 and solve the transformed problem using the previously

obtained solution as the estimate. If the deformation of the parameter is small, it is

expected that the solution to the problem before deformation and the solution to the

problem after deformation will be close. Therefore, by performing the above proce-

dure while repeating small deformations, it is possible to give an estimate that always

falls within the convergence region. Various versions of continuation methods have

been proposed [11, 18, 19, 20, 21, 22, 23, 24, 25], but in those existing methods, the

relationship between how to deform the parameter and the closeness of the solutions

before and after the deformation is unknown. Thus there are no clear guidelines for

the deformation. To conquer this difficulty, we propose a locally deforming contin-

uation method, in which the relationship between the deformation of the parameter

and the closeness of the solutions is explicitly given. In the proposed method, the

problem is transformed locally during the iterations of the continuation method, and

the upper bound of the difference of the solutions before and after the deformation

is given as a function of the continuation parameter. In other words, the proposed

method shows how to deform the continuation parameter to bring the solutions before

and after the deformation closer together.

Next, we propose a new numerical solution method in the framework of the direct

method for the nonlinear sparse optimal control problem, which is one of the difficult

optimal control problems. Several methods have been proposed for this problem

[11, 7, 12, 6], but the convergence of the algorithms is not discussed much in those

papers. Recently, for solving such problems, the sparse Newton method has been

proposed [26], which guarantees the quadratic convergence of the algorithm. However,

this method does not guarantee the ℓ1-optimality of the inputs. In this thesis, we

propose a modified version of this method that guarantees quadratic convergence of

the algorithm and ℓ1-optimality of the inputs.

Finally, an application of the sparse optimal control to a trajectory generation

problem is presented to illustrate the importance of solving nonlinear sparse optimal
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Chapter 1. Introduction

control problems. In an autonomous driving system, a vehicle moves autonomously by

tracking a trajectory generated beforehand, and thus generating a trajectory that is

easy to follow is essential. A circular-clothoid trajectory is one of the trajectories that

are easy to track, and a lot of trajectory planning methods use it [27, 28, 29]. In some

conventional methods for generating a circular-clothoid trajectory [30, 31], a designer

has to specify waypoints appropriately first. Then the trajectory is generated so that

it passes through the specified waypoints. In addition, the velocity of the generated

trajectory changes discontinuously at the turning points where the vehicle changes

the direction of travel. This thesis proposes a new method to generate a circular-

clothoid trajectory using the L1/L2-optimal control, one of the sparse optimal control

techniques. The proposed method is superior in that it does not require specifying

waypoints and that the velocity changes continuously at the turning point of the

generated trajectory where the vehicle switches the direction of travel.

1.2 Tuning methods for passivity-based controllers

Passivity-based control (PBC) is one of the feedback control methods for nonlinear

systems and has proven to be suitable to stabilize a variety of mechanical systems

represented in the port-Hamiltonian (pH) framework [32, 33]. The second part of this

thesis is devoted to the tuning method for PBC that stabilizes nonlinear mechanical

pH systems.

The port-Hamilton framework is characterized by its explicit representation of

physical phenomena and concepts such as energy, interconnection patterns, and dis-

sipation, which may provide some intuition to ease the analysis of the system and the

control design process. Due to the energy-based nature of the pH models, the PBC

technique is often used to develop stabilizing controllers for pH systems [34]. In the

PBC technique, the controller is designed by using the energy of the system as a Lya-

punov function candidate according to the following steps. First, the energy of the

system is shaped to move the equilibria of the closed-loop system to the target value,

and then the damping is injected via the controller so that the shaped energy always

decays except for at the designated equilibria. The advantage of the passivity-based

control is that the stabilizing controller can be designed easily by this procedure.

There are many applications of passivity-based control [35, 36, 37, 38, 39, 40, 41].

However, most of the existing PBC methods focus only on stabilization and do not

provide clear guidance on how to adjust the gain of the controller. As an answer to

this problem, this thesis proposes passivity-based controllers that can be interpreted
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1.3. Outline and contributions

as compensators such as lag compensators and lead-lag compensators. The proposed

controller can be tuned in the frequency domain to reduce steady-state errors or

suppress oscillations while ensuring the stability of the closed-loop system. The effec-

tiveness of the proposed controllers is confirmed through experiments and numerical

simulations on a planar manipulator.

1.3 Outline and contributions

This thesis is divided into two main parts. The first part focuses on the sparse opti-

mal control, one of the feedforward control techniques, and consists of Chapters 2-4

that propose several numerical solution methods for the optimal control problems

and some applications of sparse optimal control. These chapters deal with finite-

time sparse optimal control problems for nonlinear systems with boundary conditions

imposed on the initial and final states. In Chapter 2, a new continuation method,

the locally deforming continuation method, is proposed in the framework of the indi-

rect method. Chapter 3 proposes a new direct method, the modified sparse Newton

method that ensures quadratic convergence and ℓ1-optimality of the inputs, for sparse

optimal control problems that are particularly difficult to solve. In Chapter 4, ap-

plications of sparsity-based optimal control methods are presented. The second part

consists of Chapters 5 and 6 that propose new passivity-based controllers in the frame-

work of feedback control techniques. In these chapters, we propose passivity-based

compensators for nonlinear mechanical systems represented in the pH framework. In

Chapter 5, we propose a passivity-based lag compensator that guarantees stability

under input constraints without velocity measurements. In Chapter 6, we generalize

the result of Chapter 5 and propose higher-order compensators based on passivity.

The results obtained in these chapters improve the practicality of the feedforward

and feedback control and enable the achievement of challenging control tasks. The

remaining part of this section introduces the contributions of each chapter.

Chapter 2 - Locally deforming continuation method This chapter proposes

a new continuation method based on the shooting method as a numerical solution

method for optimal control problems. In the proposed method, the cost function of

an optimal control problem is locally deformed to find the solution of the problem

in a stable way. In addition, this chapter gives an analytical relation between the

variation of the continuation parameter and the proximity of the solutions before

and after deformation. The obtained relation provides guidelines on how to deform
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Chapter 1. Introduction

the continuation parameter. The effectiveness of this method is confirmed through

numerical examples.

Chapter 3 - Modified sparse newton method This chapter proposes an algo-

rithm classified into direct methods for solving nonlinear ℓ1-optimal control problems

based on a newton method. In the proposed algorithm, the inputs are updated ac-

cording to the Newton method so that the boundary conditions are satisfied. Since the

equation that an update direction must satisfy is underdetermined, there are multiple

candidates for the direction. By choosing the direction that minimizes the ℓ1-norm of

the inputs among those candidates, the algorithm finds ℓ1-optimal inputs satisfying

the boundary conditions. The proposed algorithm has quadratic convergence. To

demonstrate the effectiveness of the method, the proposed method is applied to a

trajectory generation problem of a nonlinear system.

Chapter 4 - Circular-clothoid trajectory generation method This chapter

introduces an example of the application of a kind of sparse optimal control. In this

chapter, L1/L2-optimal control, a control method based on the sparse optimal control

is applied to generate a vehicle trajectory whose curvature and velocity continuously

change while both are piecewise constant in large part. The generated trajectory

is called a circular-clothoid trajectory defined as the trajectory connecting circular

curves with clothoid curves, which is easy to track. The effectiveness of the proposed

method is confirmed through some examples.

Chapter 5 - Passivity-based lag-compensator with input saturation This

chapter proposes a passivity-based control technique, where the resulting controllers

can be interpreted as lag-compensators for nonlinear mechanical pH systems. The

proposed method considers a dynamic controller whose frequency properties can be

expressed in terms of a transfer function, that is, the controller gains can be tuned

through a frequency analysis approach. The proposed controllers can reduce the

steady-state error without velocity measurements, and they can cope with input sat-

uration. The applicability of the proposed method is illustrated through some exper-

iments with a planar manipulator.

Chapter 6 - Passivity-based high-order compensator This chapter generalizes

the results of chapter 6 and proposes passivity-based control techniques, where the re-

sulting controllers include the entire class of dynamic output feedback controllers that

8
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preserve the port-Hamiltonian structure and do not require velocity measurements.

The proposed controller can be interpreted as a high-order compensator, and thus the

gains can be tuned through a frequency analysis approach so that the steady-state

errors and the oscillations are suppressed. The applicability of the proposed method

is confirmed through a numerical simulation.

Chapter 7 - Conclusions In this chapter, we provide the conclusion and give

suggestions for future works.
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Chapter 2

Locally Deforming Continuation
Method Based on a Shooting
Method

This chapter proposes a new continuation method with a shooting method in the

framework of the indirect method. In the indirect method, the optimal control prob-

lem is replaced by a two-point boundary value problem (TPBVP), and the TPBVP

is solved numerically [13]. The shooting methods are one of the most popular indirect

methods. Since the shooting methods solve the TPBVP as an initial value problem,

the search parameters are only the initial values, and thus the computational com-

plexity is very small. However, there is a disadvantage that the convergence region

is small, and therefore a good estimate of the solution has to be given beforehand in

the shooting methods. The continuation method is one of the ways to mitigate this

difficulty.

The continuation method is a method to solve a difficult problem by iteratively

deforming the problem continuously with a continuation parameter, and various meth-

ods have been proposed [11, 18, 19, 20, 21, 22, 23, 24, 25]. The idea of the method is

to find a solution in a stable way by using the solution before deformation as an initial

guess of the solution after deformation. In the method, an easy optimal control prob-

lem is set up and solved first. Next, the cost function of the easy problem is deformed

slightly towards the original problem, and the deformed optimal control problem is

solved by using the previously obtained solution as an initial guess. By repeating

this procedure and transforming the problem into the original problem at the end,

the solution of the original problem is obtained. If each deformation is small, the

solutions before and after a deformation are expected to be close enough, hence the

method can solve the original problem in a stable way. The continuation method is

11
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widely used for solving various difficult problems such as obstacle avoidance problems

[42], model predictive control problems [43], and sparse optimal control problems like

an L1/L2-optimal control problem [44]. However, there is no continuation method

that is effective for all problems, and it is unclear how the change of the cost func-

tion affects the closeness of the solutions before and after the deformation in those

conventional methods.

In this chapter, we propose a new continuation method, named a locally deform-

ing continuation method, based on a shooting method. The idea of this method

is to transform the cost function of the optimal control problem locally during the

iterations of the continuation method. In addition, we provide a relation between

the variation of the continuation parameter and the closeness of the solutions before

and after the deformation in the form of an upper bound of the errors in the shoot-

ing method. This relation gives clear guidance on how to change the continuation

parameter during the algorithm for stably solving relatively difficult problems.

The rest of this chapter is organized as follows. In Section 2.1, we introduce

the problem formulation, and in Section 2.2, we briefly revisit some previous results.

Next, Section 2.3 proposes the locally deforming continuation method and a modified

shooting method, and the results of our method are illustrated in Section 2.4. We

summarize this chapter in Section 2.5.

2.1 Problem setting

Here we treat the optimal control problem to find the input which minimizes the cost

function

J =

∫ tf

0

l(x(t), u(t), t)dt, (2.1.1)

subject to the following dynamics and input constraints

dx(t)

dt
= f(x(t)) + g(x(t))u(t), (2.1.2)

x(0) = x0, x(tf) = xf , (2.1.3)

|ui(t)| ≤ ub,i, (i = 1, · · · ,m), (2.1.4)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector, ub ∈ Rm is a positive

constant vector, tf ∈ R+ is a terminal time, x0 ∈ Rn is an initial state vector, xf ∈ Rn

is a terminal state vector, f : Rn → Rn, g : Rn → Rn×m, and l : Rn ×Rm ×R→ R+.

In this chapter, it is assumed that l is continuously differentiable for x. This chapter

12
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also assumes that f(x) + g(x)u is continuously differentiable for x and u. If the

dynamics (2.1.2) is nonlinear, the input cannot be obtained analytically in general.

There are several ways to solve the problem, and these methods are mainly classified

into the direct method or the indirect method. In this study, we use a shooting

method classified into the indirect method for solving this problem.

When the cost is the L1 norm of the input, the problem becomes a sparse optimal

control problem, and the resulting optimal control input is sparse, i.e., the L0 norm

of the input is much smaller than tf [44]. However, in the case of nonlinear systems,

problems such as L1-optimal control problems are challenging to solve. The contin-

uation method is one of the techniques to overcome this difficulty. The next section

briefly reviews the conventional method.

2.2 Preliminaries

This section briefly reviews an existing indirect method to solve an optimal control

problem with a shooting method.

2.2.1 Transformation of the optimal control problem

Define a Hamiltonian function as follows.

H(x(t),λ(t), u(t), t) = l(x(t), u(t), t)

+ λ(t)⊤(f(x(t)) + g(x(t))u(t)),
(2.2.1)

It follows from Pontryagin’s minimum principle that the optimal control problem

with (2.1.1)-(2.1.4) is reduced to a problem of solving the following simultaneous

differential equation

dx(t)

dt
=

∂H(x(t), λ(t), u∗(t), t)

∂λ(t)
, (2.2.2)

dλ(t)

dt
= −∂H(x(t), λ(t), u∗(t), t)

∂x(t)
, (2.2.3)

u∗(t) = argmin
u(t)

H(x(t), λ(t), u(t), t), (2.2.4)

s.t.(2.1.3) and (2.1.4),

with λ(t) ∈ Rn that is the costate of x(t) [45, 46, 47]. This problem is called a

TPBVP. Assume that (2.2.4) can be rewritten as the following by using a function of

x(t), λ(t), and t.

u∗(t) = fu(x(t), λ(t), t), (2.2.5)

13



Chapter 2. Locally Deforming Continuation Method

where fu : Rn × Rn × R → Rm and u∗(t) is Lebesgue measurable. In this case, the

TPBVP is rewritten as follows with ξ(t) = (x(t)⊤, λ(t)⊤)⊤.

Find x(t) and λ(t), t ∈ [0, tf ] satisfying

dξ

dt
=

(
∂H(x,λ,u,t)

∂λ

−∂H(x,λ,u,t)
∂x

)∣∣∣∣∣
u=fu(x,λ,t)

=: F (ξ, t), (2.2.6)

(2.1.3) and (2.1.4).

Here the defined function F is F : R2n × [0, tf ] → R2n. There are several ways

to solve this TPBVP, such as the shooting methods and the collocation methods.

Among them, the shooting methods have an advantage that the number of the search

parameters is small. The next section briefly explains a standard shooting method.

2.2.2 Shooting method

If x(0) and λ(0) are given, x(t), λ(t) satisfying (2.2.6) is uniquely determined. The

shooting method takes advantage of this property and treats the TPBVP as an initial

value problem. Since x(0) is already given as the boundary condition, the method

searches for λ(0) that satisfies

ϵx := x(tf)− xf = 0, (2.2.6) and x(0) = x0. (2.2.7)

Define the solution of the problem as λ∗(0). In the algorithm, an initial guess of the

solution λ∗(0) is given as λg, and then update λ(0) so that the error ∥ϵx∥ decreases.
The difficulty of this method is that the error cannot be reduced to 0 if the initial

guess λg is far from λ∗(0). One of the way to mitigate this difficulty is to apply

the continuation method. In the continuation method, a relatively easy optimal

control problem is solved first. Then, the cost function is slightly changed towards

the original problem, and solve the changed problem by using the previous solution

as the initial guess. Since the previous solution is expected to be close to the solution

of the current problem, the shooting method successfully finds the solution with the

given initial guess. Iterating this procedure, and finally we can obtain the solution of

the original problem. There are several continuation methods for solving an optimal

control problem [11, 18, 19, 20, 21, 22, 23, 24, 25]. However, there is no continuation

method that is effective for all problems, and it is unclear how the change of the

cost function affects the closeness of the solutions before and after the deformation

in those conventional methods.
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This chapter proposes a new continuation method based on a shooting method

and analyzes the relation between the variation of the continuation parameter and the

deviation of the initial estimate from the solution. This relation gives a clear guidance

on how to change the continuation parameter during the algorithm for stably solving

relatively difficult problems. The next section explains the proposed method.

2.3 Proposed method

The proposed method solves the problem iteratively by successively transforming the

problem from a relatively easy one to the original problem, in the same way as the

existing methods. The characteristic feature of the proposed method is that the

cost function is locally deformed during the iterations. Define the cost function of a

relatively easy problem as

JE :=

∫ tf

0

lE(x(t), u(t), t)dt, (2.3.1)

and define the cost function of the original problem as

JO :=

∫ tf

0

lO(x(t), u(t), t)dt, (2.3.2)

with lE(x(t), u(t), t) ∈ R+ and lO(x(t), u(t), t) ∈ R+. Basically, the previous contin-

uation method gradually changes the cost function by transforming the continuation

parameter c from zero to one, where the cost function is defined as

J̄c :=

∫ tf

0

(1− c)lE(x(t), u(t), t) + clO(x(t), u(t), t)dt. (2.3.3)

In our new method, we define a cost function as

Jc :=

∫ tf

0

l(x(t), u(t), t, c)dt. (2.3.4)

The function l(x(t), u(t), t, c) is defined as

l(x(t), u(t), t, c) =


lE(x(t), u(t), t) t ≤ c,

lC(x(t), u(t), t) c ≤ t ≤ c+ h,

lO(x(t), u(t), t) c+ h ≤ t,

(2.3.5)

with a scalar h > 0. Here lC(x(t), u(t), t, c) ∈ R+ satisfies

lC(x(c), u(c), c) = lE(x(c), u(c), c),

lC(x(c+ h), u(c+ h), c+ h) = lO(x(c+ h), u(c+ h), c+ h),
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0 tf
t

c c+ h

l = lE(x(t), u(t), t)

l = lO(x(t), u(t), t)

l = l(x(t), u(t), t, c)

l(x(t), u(t), t)

Figure 2.1: Cost function of the proposed method

and continuously differentiable for x. Figure 2.1 shows an example of the shape of

lE(x(t), u(t), t), lO(x(t), u(t), t), and l(x(t), u(t), t, c), where the horizontal axis is time

and the vertical axis is the value of the function l(x(t), u(t), t). The black solid line

shows lE(x(t), u(t), t), the black dotted line shows lO(x(t), u(t), t), and the red dash-

dotted line shows l(x(t), u(t), t, c). Note that Jc = JE when c ≥ tf , and Jc = JO

when c ≤ −h. Our new continuation method transforms the cost function locally

by changing the value of c. Note that we assume that each optimal control problem

transformed iteratively has a solution. In the following, we define the solution of the

optimal control problem with the cost function (2.3.4) as xJc(t), λJc(t), and uJc(t)

for t ∈ [0, tf ]. The next section explains a shooting method used in the proposed

continuation method. In the shooting method, the condition (2.2.7) is modified.

2.3.1 Modified shooting method

Define a Hamiltonian function as

Hc(x(t),λ(t), u(t), t) = l(x(t), u(t), t, c)

+ λ⊤(f(x(t)) + g(x(t))u(t)),
(2.3.6)

for the optimal control problem defined in the previous section. Then, from the

Pontryagin’s minimum principle, x(t), λ(t), and u(t) minimizing Jc satisfy

dξ

dt
=

(
∂Hc(x,λ,u,t)

∂λ

−∂Hc(x,λ,u,t)
∂x

)∣∣∣∣∣
u=fc

u(x,λ,t)

=: Fc(ξ, t), (2.3.7)

(2.1.3) and (2.1.4).
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with the function f c
u : Rn × Rn × R→ Rm derived from

u∗(t) = argmin
u(t)

Hc(x(t), λ(t), u(t), t). (2.3.8)

Here we modify the shooting method in Section 2.2 as in the following definition.

Definition 2.3.1. Modified shooting method: Find λ(0) and λ(tf) that satisfy

∥ϵJc(tmid)∥ = 0, (2.3.9)

for the error ϵJc(tmid) defined as

ϵJc(tmid) :=

∫ tmid

0

Fc(ξc,+(t), t)dt+ ξ(0)

−
(∫ tmid

tf

Fc(ξc,−(t), t)dt+ ξ(tf)

)
,

(2.3.10)

with

ξ(0) =

(
x0

λ(0)

)
, ξ(tf ) =

(
xf

λ(tf)

)
. (2.3.11)

Here tmid ∈ [0, tf ], and ξc,+(t) and ξc,−(t) are defined as

ξc,+(t) :=

∫ t

0

Fc(ξc,+(s), s)ds+ ξ(0), (2.3.12)

ξc,−(t) :=

∫ t

tf

Fc(ξc,−(s), s)ds+ ξ(tf). (2.3.13)

The difference between this method and the shooting method introduced in Sec-

tion 2.2 is that there are two parameters to search for, not only λ(0) but also λ(tf),

and the boundary conditions are the continuity of x(t) and λ(t) at t = tmid. When

the initial guess of the solution is different from the solution, ∥ϵJc(tmid)∥ takes a value

greater than zero, and if the norm of the error is sufficiently small for the initial guess,

the guess is expected to be close enough to the solution. We define the error for the

initial guess as “initial error”.

Definition 2.3.2. Define the initial guess of λ(0) and λ(tf) as λ
g
0 and λg

f , respectively.

The corresponding initial error ϵIJc(tmid) is defined as

ϵJc(tmid) given by (2.3.10) with ξ(0) =

(
x0

λg
0

)
, ξ(tf ) =

(
xf

λg
f

)
.

In the next section, we explain the new continuation method and provides a clear

relation between the variation of the continuation parameter c and the initial error

∥ϵIJc(tmid)∥.
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0 tf
t

l(x(t), u(t), t)

l = lE(x(t), u(t), t)
l = lO(x(t), u(t), t)
l =(1− c)lE(x(t), u(t), t)

+ clO(x(t), u(t), t)

Figure 2.2: Transition of the function (1− c)lE + clO in the algorithm of the existing
continuation method for a given x(t) and u(t)

0 tf
t

c c+ h

l(x(t), u(t), t)

l = lE(x(t), u(t), t)
l = lO(x(t), u(t), t)
l = l(x(t), u(t), t, c)

Figure 2.3: Transition of the function l in the algorithm of the locally deforming
continuation method for a given x(t) and u(t)

2.3.2 Locally deforming continuation method

The idea of the locally deforming continuation method is to transform the cost func-

tion locally. In the existing methods, the cost function is deformed by changing the

continuation parameter c from 0 to 1 as in Fig. 2.2. On the other hand, the locally

deforming continuation method locally changes the cost function by changing c from

tf to −h, where the function l(x(t), u(t), t, c) changes as shown in Fig. 2.3. Both

Figs. 2.2 and 2.3 are depicted in the same way as Fig. 2.1. The algorithm of the

locally deforming continuation method with the modified shooting method is shown
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in Algorithm 1. Here tmid is set as

tmid = ftmid
(c), (2.3.14)

ftmid
(c) =


tf c ≥ tf − h,

c+ h tf − h > c > −h,
0 −h ≥ c,

(2.3.15)

The parameters tf , x
0, xf , h, δ are given before executing the algorithm, and assume

that xJE(t), uJE(t), and λJE(t) are obtained. Here h and δ are scalars satisfying

0 < δ ≤ h, and δ represents the variation of the continuation parameter c. In the

Algorithm 1 Locally deforming continuation method

Input: tf , x
0, xf , h, δ, xJE(t), uJE(t), λJE(t)

Output: xJO(t), uJO(t)
1: c← tf − δ
2: loop
3: tmid ← ftmid

(c)
4: λg

0 ← λJc+δ(0), λg
f ← λJc+δ(tf)

5: Find λJc(0), λJc(tf) by solving TPBVP (2.3.7) from the initial guess
6: if c ≤ −h then
7: return xJc(t), uJc(t)
8: else
9: c← c− δ

10: end if
11: end loop

next section, we analyze the relation between δ and the initial error ϵIJc(ftmid
(c)) with

respect to the proposed algorithm.

2.3.3 Analysis of the relation between δ and ϵIJc(ftmid
(c))

First, we prove the following lemmas for ϵIJc(ftmid
(c)) and then we introduce the

relation between δ and ϵIJc(ftmid
(c)).

Lemma 2.3.1. Select c so that tf − h ≤ c ≤ tf and tmid = ftmid
(c). Assume that

uJc(t), xJc(t), and λJc(t), t ∈ [0, tf ] are obtained. If we give λg
0 and λg

f as λJc(0) and

λJc(tf) respectively, the initial error ϵIJc−δ
(tmid) for Jc−δ satisfies

ϵIJc−δ
(tmid) =

∫ tf

c−δ

Fc−δ(ξc−δ,+(t), t)− Fc(ξc,+(t), t) dt. (2.3.16)
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Proof. It follows from (2.3.5) that

l(x(t), u(t), t, c) = l(x(t), u(t), t, c− δ), (2.3.17)

holds for t ∈ [0, c− δ], therefore

Fc(ξc,+(t), t) = Fc−δ(ξc−δ,+(t), t), (2.3.18)

also holds for t ∈ [0, c− δ]. Note that

ξf =

∫ tf

0

Fc(ξc,+(t), t)dt+ ξ0, (2.3.19)

with ξf := (xf⊤, λJc(tf)
⊤)⊤ and ξ0 := (x0⊤, λJc(0)⊤)⊤ holds for λJc(0) and λJc(tf).

Hence, for ϵIJc−δ
(tmid), (2.3.15), (2.3.18) and (2.3.19) lead

ϵIJc−δ
(tmid) =

∫ tf

0

Fc−δ(ξc−δ,+(t), t)dt+ ξ0

−
(∫ tf

tf

Fc−δ(ξc−δ,−(t), t)dt+ ξf
)

=

∫ tf

0

Fc−δ(ξc−δ,+(t), t)dt+ ξ0 − ξf

=

∫ tf

0

Fc−δ(ξc−δ,+(t), t)dt+ ξ0 −
(∫ tf

0

Fc(ξc,+(t), t)dt+ ξ0
)

=

∫ tf

c−δ

Fc−δ(ξc−δ,+(t), t)dt+

∫ c−δ

0

Fc−δ(ξc−δ,+(t), t)dt

−
(∫ tf

c−δ

Fc(ξc,+(t), t)dt+

∫ c−δ

0

Fc(ξc,+(t), t)dt

)
=

∫ tf

c−δ

Fc−δ(ξc−δ,+(t), t)dt−
∫ tf

c−δ

Fc(ξc,+(t), t)dt,

and this completes the proof.

Lemma 2.3.2. Select c so that δ ≤ c ≤ tf − h and tmid = ftmid
(c). Assume that

uJc(t), xJc(t), and λJc(t) are obtained. If we give λg
0 and λg

f as λJc(0) and λJc(tf)

respectively, the initial error ϵIJc−δ
(tmid) for Jc−δ satisfies

ϵIJc−δ
(tmid) =

∫ c+h

c−δ

Fc−δ(ξc−δ,+(t), t)− Fc(ξc,+(t), t)dt (2.3.20)

Proof. The proof of the lemma 2.3.2 is similar to the one of the lemma 2.3.1. It

follows from (2.3.5) that

l(x(t), u(t), t, c) = l(x(t), u(t), t, c− δ), (2.3.21)
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holds for t ∈ [0, c− δ] and t ∈ [c+ h, tf ], therefore

Fc(ξc,+(t), t) = Fc−δ(ξc−δ,+(t), t), (2.3.22)

also holds for t ∈ [0, c− δ] and

Fc(ξc,−(t), t) = Fc−δ(ξc−δ,−(t), t), (2.3.23)

holds for t ∈ [c+ h, tf ]. Note that

ξ(t) =

∫ t

0

Fc(ξc,+(t), t)dt+ ξ0

=

∫ t

tf

Fc(ξc,−(t), t)dt+ ξf ,

(2.3.24)

with ξf = (xf⊤, λJc(tf)
⊤)⊤ and ξ0 = (x0⊤, λJc(0)⊤)⊤ holds for λJc(0) and λJc(tf) from

the assumption. Hence, it follows from (2.3.15) and (2.3.22)-(2.3.24) that

ϵIJc−δ
(tmid) =

∫ c+h

0

Fc−δ(ξc−δ,+(t), t)dt+ ξ0

−
(∫ c+h

tf

Fc−δ(ξc−δ,−(t), t)dt+ ξf
)

=

∫ c+h

0

Fc−δ(ξc−δ,+(t), t)dt+ ξ0 −
(∫ c+h

tf

Fc(ξc,−(t), t)dt+ ξf
)

=

∫ c+h

0

Fc−δ(ξc−δ,+(t), t)dt+ ξ0 −
(∫ c+h

0

Fc(ξc,+(t), t)dt+ ξ0
)

=

∫ c+h

c−δ

Fc−δ(ξc−δ,+(t), t)dt+

∫ c−δ

0

Fc−δ(ξc−δ,+(t), t)dt

−
(∫ c+h

c−δ

Fc(ξc,+(t), t)dt+

∫ c−δ

0

Fc(ξc,+(t), t)dt

)
=

∫ c+h

c−δ

Fc−δ(ξc−δ,+(t), t)dt−
∫ c+h

c−δ

Fc(ξc,+(t), t)dt,

and this completes the proof.

Lemma 2.3.3. Select c so that −h ≤ c ≤ δ and tmid = ftmid
(c). Assume that uJc(t),

xJc(t), and λJc(t) are obtained. If we give λg
0 and λg

f as λ
Jc(0) and λJc(tf) respectively,

the initial error ϵIJc−δ
(tmid) for Jc−δ satisfies

ϵIJc−δ
(tmid) =

∫ c+h

0

Fc−δ(ξc−δ,+(t), t)− Fc(ξc,+(t), t)dt (2.3.25)

We omit the proof since it is proved in the same way as Lemma 2.3.1. In addition

to Lemmas 2.3.1-2.3.3, under certain conditions, the following theorem holds.
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Theorem 2.3.1. Assume that l(x(t), u(t), t, c) = l(u(t), t, c). Then the costate system

of (2.3.7) can be written as

dλ(t)

dt
= −∂Hc(ξ(t), u(t), t)

∂x(t)

∣∣∣∣
u(t)=fc

u(ξ(t),t)

= f̃(ξ(t)) + g̃(ξ(t))f c
u(ξ(t), t),

(2.3.26)

with f̃ : R2n → Rn, g̃ : R2n → Rn×m, and

dx(t)

dt
= f(x(t)) + g(x(t))f c

u(ξ(t), t). (2.3.27)

Assume that there exist constants α1, α2, β1,i, and β2,i, i = 1, · · ·m such that

∥f(x1)− f(x2)∥ ≤ α1∥x1 − x2∥, (2.3.28)

∥f̃(ξ1)− f̃(ξ2)∥ ≤ α2∥ξ1 − ξ2∥, (2.3.29)

∥gi(x∗(τ))∥ ≤ β1,i, (2.3.30)

∥g̃i(ξ∗(τ))∥ ≤ β2,i, (2.3.31)

where x1, x2 ∈ Rn, ξ1, ξ2 ∈ R2n, τ ∈ [max(c− δ, 0),min(c+ h, tf)], gi and g̃i are the

column vectors of g = (g1, · · · , gm) and g̃ = (g̃1, · · · , g̃m), and x∗(τ) and ξ∗(τ) are

arbitrary vectors that satisfy (2.1.3), (2.3.26) and (2.3.27) for τ . Then, if we give λg
0

and λg
f as λ

Jc(0) and λJc(tf) respectively, for tmid = ftmid
(c), c ∈ [−h, tf ], the following

relation

∥ϵIJc−δ
(tmid)∥ ≤

2
∑m

i=1(β1,i + β2,i)ub,i

α

(
eα(h+δ) − 1

)
. (2.3.32)

with α = α1 + α2 holds.

Proof. This proof refers the proof of Theorem 2.1 in [48]. Consider the case δ ≤ c ≤
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2.3. Proposed method

tf − h and define
(
xc,+

⊤, λc,+
⊤)⊤ := ξc,+. Here tmid = c+ h. For t ∈ [c− δ, c+ h],

d

dt
∥xc−δ,+ − xc,+∥+

d

dt
∥λc−δ,+ − λc,+∥

≤∥ẋc−δ,+ − ẋc,+∥+ ∥λ̇c−δ,+ − λ̇c,+∥

≤∥f(xc−δ,+)− f(xc,+)∥+ ∥f̃(ξc−δ,+)− f̃(ξc,+)∥

+ ∥g(xc−δ,+)f
c
u(ξc−δ,+, t)− g(xc,+)f

c
u(ξc,+, t)∥

+ ∥g̃(ξc−δ,+)f
c
u(ξc−δ,+, t)− g̃(ξc,+)f

c
u(ξc,+, t)∥

≤α1∥xc−δ,+ − xc,+∥+ α2∥ξc−δ,+ − ξc,+∥

+
m∑
i=1

(∥gi(xc−δ,+)∥+ ∥gi(xc,+)∥

+∥g̃i(ξc−δ,+)∥+ ∥g̃i(ξc−δ,+)∥)ub,i

≤α1∥xc−δ,+ − xc,+∥+ α2∥ξc−δ,+ − ξc,+∥+ 2
m∑
i=1

(β1,i + β2,i)ub,i

≤(α1 + α2)∥xc−δ,+ − xc,+∥+ α2∥λc−δ,+ − λc,+∥

+ 2
m∑
i=1

(β1,i + β2,i)ub,i

≤(α1 + α2)∥xc−δ,+ − xc,+∥+ (α1 + α2)∥λc−δ,+ − λc,+∥

+ 2
m∑
i=1

(β1,i + β2,i)ub,i.

Hence the following relation

d

dt
∥xc−δ,+ − xc,+∥ − (α1 + α2)∥xc−δ,+ − xc,+∥

+
d

dt
∥λc−δ,+ − λc,+∥ − (α1 + α2)∥λc−δ,+ − λc,+∥

≤2
∑

(β1,i + β2,i)ub,i,

(2.3.33)

holds. By multiplying the integrating factor e−(α1+α2)t to (2.3.33), we have

d

dt

(
e−(α1+α2)t(∥xc−δ,+ − xc,+∥+ ∥λc−δ,+ − λc,+∥)

)
≤ 2e−(α1+α2)t

∑
(β1,i + β2,i)ub,i.

(2.3.34)

From Lemma 2.3.2, the initial error is gained by integrating ξ̇c−δ,+− ξ̇c,+ with (2.3.26)

and (2.3.27) from c− δ to c+ h. The integration of (2.3.34) from c− δ to c+ h leads
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Chapter 2. Locally Deforming Continuation Method

to

e−α(c+h)∥xc−δ,+(c+ h)− xc,+(c+ h)∥

+ e−α(c+h)∥λc−δ,+(c+ h)− λc,+(c+ h)∥

− e−α(c−δ)∥xc−δ,+(c− δ)− xc,+(c− δ)∥

− e−α(c−δ)∥λc−δ,+(c− δ)− λc,+(c− δ)∥

≤ 2
∑

(β1,i + β2,i)ub,i

α

(
e−α(c−δ) − e−α(c+h)

)
.

(2.3.35)

Since xc−δ,+(c− δ) = xc,+(c− δ) and λc−δ,+(c− δ) = λc,+(c− δ) hold from (2.3.22), it

follows from (2.3.35) that

∥xc−δ,+(c+ h)− xc,+(c+ h)∥+ ∥λc−δ,+(c+ h)− λc,+(c+ h)∥

≤ 2
∑

(β1,i + β2,i)ub,i

α

(
eα(h+δ) − 1

)
,

and the relation

∥ξc−δ,+(c+ h)− ξc,+(c+ h)∥

≤ ∥xc−δ,+(c+ h)− xc,+(c+ h)∥+ ∥λc−δ,+(c+ h)− λc,+(c+ h)∥,

yields

∥ϵIJc−δ
(c+ h)∥ ≤ 2

∑
(β1,i + β2,i)ub,i

α

(
eα(h+δ) − 1

)
.

Here the relation ξc,+(c + h) = ξc,−(c + h) = ξc−δ,−(c + h) is used. In the same way,

for the case tf − h ≤ c ≤ tf , it follows from Lemma 2.3.1 that

∥ϵIJc−δ
(c+ h)∥ ≤ 2

∑
(β1,i + β2,i)ub,i

α

(
eα(tf−(c−δ)) − 1

)
≤ 2

∑
(β1,i + β2,i)ub,i

α

(
eα(h+δ) − 1

)
,

holds since tf − (c− δ) ≤ h+ δ, and for the case −h ≤ c < δ, it follows from Lemma

2.3.3 that

∥ϵIJc−δ
(c+ h)∥ ≤ 2

∑
(β1,i + β2,i)ub,i

α

(
eα(c+h) − 1

)
≤ 2

∑
(β1,i + β2,i)ub,i

α

(
eα(h+δ) − 1

)
,

holds since c+ h ≤ h+ δ. This completes the proof.

Remark 2.3.1. Theorem 2.3.1 provides a clear guideline for adjusting the parameters

δ and h in solving problems with the locally deforming continuation method. For
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2.4. Numerical example

example, the theorem shows that both h and δ should be decreased for reducing the

initial error, that is, reducing h+ δ brings the guess of the solution in each iteration

closer to the solution and thus makes the algorithm more likely to succeed. Hence,

h should be chosen so that it is as large as δ, and vice versa. In addition, if h + δ

is sufficiently small, the upper bound of the initial error ϵIJc−δ
(ftmid

(c)) varies linearly

with respect to h+ δ and ϵIJc−δ
(ftmid

(c)) is also expected to change linearly.

The next section shows the effectiveness of the proposed method through numer-

ical examples.

2.4 Numerical example

In this example, an L1/L2-optimal control [44] is applied to a two-wheeled rover

depicted in Fig. 2.4, where the horizontal axis is X, the vertical axis is Y, x1 is

the angle of the rover, and x2 and x3 are x-position and y-position of the rover,

respectively. The system of the rover is denoted by

dx(t)

dt
= g(x)u =

1 0
0 cos(x1(t))
0 sin(x1(t))

(u1(t)
u2(t)

)
, (2.4.1)

and the input is restricted by ub,1 = ub,2 = 5. Define an optimal control problem

with the cost function

JO =

∫ 2

0

1

2

2∑
i=1

(
ui(t)

2
)
+ 2|u1(t)|dt (2.4.2)

and a boundary condition

x(0) = (0, 0, 0)⊤, x(2) =
(π
5
, 1, 1

)⊤
∈ R3. (2.4.3)

The resultant trajectory of this optimal control problem is known as a hands-off

trajectory [5], where the input u1(t) takes zero in large part of the control sequence.

The details of the L1/L2-optimal control technique are explained in Chapter 4. The

next subsection first shows that the L1/L2-optimal control problem is difficult to solve

without the continuation method.

2.4.1 Solve the problem without the continuation method

In this example, we solve the problem with the shooting method in Section 2.2 without

using the continuation method. Since the shooting method requires an initial guess
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X

Y

(x2, x3)

x1

Figure 2.4: Two-wheeled rover

of the solution, we first solve an L2-optimal control problem with the cost function

JE =

∫ 2

0

1

2

2∑
i=1

(
ui(t)

2
)
dt, (2.4.4)

and set its solution as an initial guess for solving the L1/L2-optimal control problem.

Figures 2.5-2.7 show the responses of the states, the generated trajectory, and the

responses of the inputs, respectively. In Fig. 2.5, the first row shows x1(t), the

second row shows x2(t), and the third row shows x3(t). The horizontal axis is time

and the vertical axis is the state. The plus sign markers show the boundary conditions

of each state. Figure 2.6 shows the generated trajectory, where the horizontal axis is

X, the vertical axis is Y , the black asterisk and plus signs show the start and goal

point, and the red solid line is the generated trajectory. In Fig. 2.7, the blue dash-

dotted line is u1(t) and the blue dashed line is u2(t), where the horizontal axis is time

and the vertical axis is the input. As these figures show, the generated trajectories

do not satisfy the boundary conditions, that is, the shooting method fails to solve the

L1/L2-optimal control problem.

In the next example, the locally deforming continuation method is used for solving

the L1/L2-optimal control problem.

2.4.2 Solve the problem with the locally deforming continu-
ation method

In this example, we use the locally deforming continuation method for solving the

L1/L2-optimal control problem. In the method, JO and JE are defined as (2.4.2) and
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2.4. Numerical example

Table 2.1: Combinations of h and δ

Case 1 2 3 4

h h0

4
h0

5
h0

10
h0

20

δ δ0
4

δ0
5

δ0
10

δ0
20

(2.4.4), and Jc is defined by (2.3.4) and (2.3.5) with

lC(x(t), u(t), t) =
1

2

2∑
i=1

(
ui(t)

2
)
+ fw(t)|u1(t)|, (2.4.5)

fw(t) = cos

(
π(c+ h− t)

h

)
+ 1. (2.4.6)

To confirm the effectiveness of our method, we performed Algorithm 1 under several

combinations of h and δ listed in Table 2.1. Here we define h0 = 0.500 and δ0 = 0.125.

Figure 2.8 shows the log-log plot of the relation between the mean of the initial errors

of each case and h + δ. The horizontal axis is h + δ, and the vertical axis is the

mean of the Euclidean norm of the initial errors of the shooting method during the

Algorithm 1. The green line shows the line of y = 0.2x, where y is the mean of the

initial errors and x is h+δ. From Fig. 2.8, we can see that the error decreases linearly

with respect to h + δ if h + δ is small enough. Figures 2.9-2.11 show the responses

of the states, the generated trajectory, and the responses of the inputs in Case 4

in the same way as Figs. 2.5-2.7. As can be seen from Figs. 2.9-2.11, the proposed

method successfully generates trajectories satisfying the boundary conditions and the

generated input u1(t) takes zero in large part. These results show that the locally

deforming continuation method is effective for solving a relatively difficult optimal

control problem like an L1/L2-optimal control problem.

2.4.3 Comparison between the proposed method and the
conventional method

In the example, we compare the initial errors of the conventional method and the

proposed method in 5 cases, in which the number of iterations of each continuation

method is the same in each case. Here the boundary condition at tf = 2 is set to

x(2) = (1, 1, 1)⊤. The conventional method with the cost function (2.3.3) is solved by

the shooting method introduced in Section 2.2, and the initial error in this method

is defined as follows.
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Table 2.2: Iteration number of each case

Case 1 2 3 4 5

Iteration 2 3 4 5 9

Definition 2.4.1. Define the initial guess of λ∗(0) as λg
0. The corresponding initial

error ϵIx is defined as

ϵIx := x(tf)− xf with ξ(0) =

(
x0

λg
0

)
s.t. (2.2.6) (2.4.7)

In addition, the continuation parameter c in (2.3.3) is changed in each iteration

as c← c− δ̄ with δ̄ > 0, from 0 towards 1.

In Fig. 2.12, the upper figure shows the means of the initial errors of the con-

ventional method, and the lower figure shows those of the proposed one, where the

cases that succeeded to find the solutions are marked in blue and the failed cases are

colored in red. In each case, δ̄ and h+ δ take the values as in horizontal axes, where

δ̄0 = 1/2, h0 = 2, δ0 = 2 and h = δ. The vertical axes are the mean of the Euclidean

norm of the initial errors. The iteration number of each case is listed in Table 2.2.

In the conventional method, if the iteration number is increased, the estimate of the

solution is expected to become close to the solution. However, as shown in the upper

figure of Fig. 2.12, the means of the initial errors in Cases 1 and 2 are almost the

same in the conventional methods. On the other hand, the means of the initial errors

of the proposed method decrease as in the lower figure of Fig. 2.12, as mentioned in

Remark 2.3.1. Although there is no difference in the success or failure of searching

the solution, this example shows that the proposed method is superior to the conven-

tional method in terms that it provides a guideline on how to change the continuation

parameter for successfully obtaining the solution.

2.5 Conclusion

In this chapter, we proposed a new continuation method based on the modified shoot-

ing method for optimal control problems. We clarify the relationship between the

continuation parameter and the proximity of the solutions before and after a defor-

mation in terms of the error in the shooting method, which has been unclear in the

conventional continuation methods. This relation is useful in solving the optimal

control problem in the sense that it provides a guideline on how to change the contin-

uation parameter so that an initial guess falls within the convergence region at each
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iteration. In the next chapter, a new numerical solution method is proposed for a

sparse optimal control problem, in the framework of the direct method.
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Figure 2.5: States of the trajectory generated without continuation method

Goal

Vehicle
Start

Figure 2.6: Trajectory generated without continuation method
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Figure 2.7: Inputs of the trajectory generated without continuation method

Figure 2.8: The log-log plot of the mean of the errors in each case listed in Table 2.1
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Figure 2.9: States of the trajectory generated by the proposed method

Start
Vehicle

Goal

Figure 2.10: The trajectory generated by the proposed method

32



2.5. Conclusion

Figure 2.11: Inputs of the trajectory generated by the proposed method

Case 2

Case 3

Case 4

Case 5

Case 1

Case 1

Case 2

Case 3

Case 4

Case 5

Figure 2.12: Comparison of the means of the initial errors
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Chapter 3

Modified Sparse Newton Method

This chapter proposes a new direct method for solving ℓ1-optimal control problems.

Sparse optimal control is a control method whose inputs take zero in large part, i.e.,

they are sparse. The sparse optimal control problem is formulated as an ℓ0-optimal

control problem, which can only be solved by brute-force search in most cases, and is

therefore often replaced by a relatively easy problem, an ℓ1-optimal control problem

that is a good approximation of the ℓ0-optimal control problem [49, 44]. Due to the

sparsity of the inputs, ℓ1-optimal control has been applied to a variety of problems,

such as minimum fuel problems and vehicle trajectory generation problems [5, 6, 7].

There are two main types of methods for solving optimal control problems such as

ℓ1-optimal control problems: indirect methods and direct methods [8]. In recent years,

several methods for solving nonlinear ℓ1-optimal control problems are studied in both

approaches [6, 11, 7, 12]. In [6, 11], the problem is solved by collocation methods.

In the collocation method, if the system is linear, the ℓ1-optimal control problem is

equal to the linear programming problem and is solved easily. However, when the

system is nonlinear, the problem is reduced to a nonlinear programming problem

that is difficult to solve. Especially in the case of the ℓ1-optimal control problem, the

nonlinear programming problem is more difficult to solve since ℓ1-optimal solutions

are often non-differentiable. Hence, in those existing methods, the convergence and

the convergence rate of the algorithm have not been discussed much.

Recently, Polyak et al. have proposed a sparse Newton method that guarantees

convergence in the framework of the direct method [26, 50]. In this method, the

boundary conditions are regarded as a nonlinear function of the input sequence. In

the algorithm, the inputs are updated according to the Newton method so that the

boundary conditions are satisfied. In the Newton method, the update direction of

the inputs is obtained as a solution to linear equations determined by the boundary

conditions and their gradients with respect to the inputs. If the number of equations
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and the dimension of the direction are the same, the update direction is uniquely

determined. However, in the case of discretized optimal control problems, this direc-

tion is not uniquely determined because the dimension of the direction is significantly

larger than the number of equations. The method of Polyak et al. takes advantage

of the fact that there is a choice of update directions; that is, the method expects the

solution to be sparse by choosing the sparsest update direction. This method is good

because it has quadratic convergence, but it does not guarantee the ℓ1-optimality of

the input.

We propose a modified sparse Newton method ensuring that the obtained solution

is ℓ1-optimal. In our method, we choose the update direction so that the updated

inputs are ℓ1-optimal instead of the update direction being sparsest. By choosing the

update direction in this way, we can guarantee the ℓ1-optimality of the inputs, which

cannot be guaranteed by the sparse Newton method. In addition, the direction is

chosen so that its magnitude is restricted by the residual of the boundary condition

for ensuring the convergence. This restriction on the choice of the direction is an

analogy to the Newton method for a scalar case. As a result, quadratic convergence

is also guaranteed in the proposed method. This chapter also proposes a practical

algorithm for solving ℓ1-optimal control problems under input restrictions.

The rest of this chapter is organized as follows. In Section 3.1, we set up the

problem and introduce the existing methods. In Section 3.2, we explain the proposed

method. In Section 3.3, we apply the proposed method to a trajectory generation

problem to confirm that an ℓ1-optimal solution is obtained. Section 3.4 concludes this

chapter.

3.1 Problem setting and preliminaries

In this section, we formulate an ℓ1-optimal control problem to be solved and introduce

a previous approach for this problem.

3.1.1 Problem setting

Consider the following discretized nonlinear system

x[j + 1] = f(x[j], u[j]), j = 0, · · · , N − 1, (3.1.1)

where x[j] ∈ Rn is the state vector, u[j] ∈ Rm is the input vector, f : Rn×Rm → Rn

is a nonlinear map that is differentiable for x[j] and u[j]. Note that the value of

N ∈ Z+ is selected to be sufficiently large.
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Our objective is to find ℓ1-optimal inputs by solving the following optimal control

problem.

minimize ∥u∥1 =
N−1∑
j=0

∥u[j]∥1, (3.1.2)

s.t. (3.1.1),

x[0] = x0, x[N ] = xf , (3.1.3)

|ui[j]| ≤ ūi, (i = 1, · · · ,m), (3.1.4)

where u := (u[0]⊤, · · · , u[N − 1]⊤)⊤ ∈ RmN represents the control sequence, ūi ∈ R+

is the upper bound of the magnitude of ui, and x0, xf ∈ Rn are given initial and

terminal conditions, respectively. Note that (3.1.3) denotes the boundary condition

of the state and (3.1.4) denotes the input restrictions of the system.

Polyak have proposed a sparse Newton method for solving the defined problem

witout input restrictions [26]. Before introducing the sparse Newton method, the

standard Newton method is introduced in the next subsection.

3.1.2 Standard Newton method

Consider the problem of finding a root of the following nonlinear equation.

P (a) = 0, (3.1.5)

with a ∈ R and P : R → R. In the standard Newton method, the root is found

by starting from a certain initial value a0 and updating it according to the following

update rule.

ak+1 = ak − wk,

wk =
P (ak)

P ′(ak)
.

(3.1.6)

Here P ′(a) denotes the derivative of P (a) with respect to a, k is the iteration number

that starts from 0, and wk ∈ R. The important features of the Newton method

are that the update direction wk satisfies the relation P ′(ak)wk = P (ak) and wk

becomes 0 when P (ak) = 0. The standard Newton method is known to have quadratic

convergence [51]. The sparse Newton method proposed by Polyak is based on this

Newton method.
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3.1.3 Sparse Newton method

Noting that x[N ] can be regarded as a function of u, rewrite the boundary condition

(3.1.3) as

P (u) := x[N ](u)− xf = 0n×1 ∈ Rn,u ∈ Rq, (3.1.7)

with q := mN , q ≫ n. In the sparse Newton method, the inputs are updated as

wk = argmin
w∈Wk

∥w∥1,

Wk := {w | P ′(uk)w = P (uk)},

uk+1 = uk − wk,

(3.1.8)

where k is the iteration number that starts from 0, P ′(u) ∈ Rn×q denotes the Jacobian

matrix of P (u) with respect to u, uk is the value of u at the k-step in the algorithm,

and wk ∈ Rq is an update direction at that step. Since the direction wk is determined

to satisfy

P ′(uk)wk = P (uk), (3.1.9)

and wk = 0q×1 when P (uk) = 0n×1, this algorithm is a Newton method and is proved

to converge to the solution quadratically under certain conditions. If P ′(uk) is a

square and non-singular matrix, wk is determined uniquely. However, in the case of

our problem, (3.1.9) is strongly underdetermined since q ≫ n. Thus, there are a lot of

candidates of wk that satisfies (3.1.9). The key idea of the sparse Newton method is to

choose wk among those candidates so that the ℓ1-norm of wk is minimized. Since the

minimization of the ℓ1-norm makes wk sparse at each iteration, the obtained solution

is expected to be sparse providing that the algorithm starts from zero initial solution

u0 = 0q×1 and can find the solution in a few steps. However, ℓ1-optimality is not

guaranteed in this algorithm. Motivated by this problem, we propose another type

of Newton method that ensures ℓ1-optimality of the solution.

3.2 Proposed method

The basic idea of our method is to modify the update law (3.1.8) so that ∥uk+1∥1 is

optimized instead of ∥wk∥1. The input sequence is updated according to the following

equations.

wk = argmin
w∈Wk

∥uk − w∥1,

Wk :=
{
w
∣∣P ′(uk)w = P (uk)

}
,

uk+1 = uk − wk,

(3.2.1)

38



3.2. Proposed method

A similar idea was used in [12]. However, no analysis on convergence was made in

that paper. We combine (3.1.8) and (3.2.1) to ensure the convergence.

3.2.1 Modified sparse Newton method

Similar to the sparse Newton method, consider the case that there are no input

restrictions. In our method, we update u according to the following equation.

uk+1 = uk − wk,

wk := wk
min + wk

null,
(3.2.2)

where wk
min is determined first by

wk
min = argmin

w∈Wk

∥w∥1, (3.2.3)

Wk :=
{
w
∣∣P ′(uk)w = P (uk)

}
,

and then, wk
null is determined as

wk
null = argmin

w∈Wk
null

∥uk − (wk
min + w)∥1, (3.2.4)

Wk
null :=

{
w

∣∣∣∣ P ′(uk)w = 0m×1,
∥w∥1 ≤ α∥P (uk)∥1

}
,

with a scalar α > 0. Note that wk
min is a solution of P ′(uk)wk = P (uk). Since

wk
null ∈ null(P ′(uk)),

P ′(uk)wk = P ′(uk)wk
min = P (uk), (3.2.5)

always holds and wk is actually an Newton direction. In addition, wk = 0q×1 holds

when P (uk) = 0n×1 because of the restriction ∥w∥1 ≤ α∥P (uk)∥1. Therefore, this

method also has the characteristics of the standard Newton method. The next theo-

rem shows the condition for the convergence of this algorithm.

Theorem 3.2.1. Define S = {u | ∥u − u0∥1 ≤ ρ}. Consider the case that the

input vector uk is updated according to (3.2.2)-(3.2.4). Assume that the following

conditions are satisfied on S:

1. P (u) is differentiable with respect to u ∈ S.

2. ∃µ0 ∈ R+, ∥P ′(u)⊤h∥∞ ≥ µ0∥h∥∞, µ0 > 0, ∀h ∈ Rn, u ∈ S,

3. ∃L ∈ R+, ∥P ′(x)− P ′(y)∥1 ≤ L∥x− y∥1, ∀x,y ∈ S,
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4. δ0 := Lλ2∥P (u0)∥1/2 < 1,

λ := (1/µ0) + α.

Then, if r1 := λ∥P (u0)∥1/(1 − δ0) ≤ ρ holds, uk converges to u∗ in S that satisfies

P (u∗) = 0m×1 and ∥u0 − u∗∥1 ≤ r1. In addition, the convergence rate is quadratic,

that is, for large k > 0, ∃M ∈ R+, s.t. ∥P (uk+1)∥1 ≤M∥P (uk)∥21.

Proof. This proof refers to [52]. It follows from (3.2.3) and Assumption 2 that there

exists a solution P ′(uk)wk = P (uk), and

∥wk
min∥1 ≤

1

µ0

∥P (uk)∥1, (3.2.6)

holds (See Lemma 3.1 in [53] for details). Hence, wk satisfies

∥wk∥1 = ∥wk
min + wk

null∥1
≤ ∥wk

min∥1 + ∥wk
null∥1

≤
(

1

µ0

+ α

)
∥P (uk)∥1

≤ λ∥P (uk)∥1. (3.2.7)

The third line of (3.2.7) follows from the relation ∥wk
null∥1 ≤ α∥P (uk)∥1 in (3.2.4).

Since

P (uk+1) = P (uk)

+

∫ 1

0

P ′(uk + t(uk+1 − uk))(uk+1 − uk)dt,

always holds, by calculating the Euclidean norm of P (uk+1), we have

∥P (uk+1)∥1 =
∥∥P (uk)− P ′(uk)wk

+

∫ 1

0

{
P ′(uk)wk −P ′(uk − twk)wk

}
dt
∥∥
1

≤
∫ 1

0

{
∥(P ′(uk)− P ′(uk − twk))wk∥1

}
dt.

The last line of the relation follows from P ′(uk)wk = P (uk). It follows from Assump-

tion 3 and the consistency of the induced norm that

∥P (uk+1)∥1 ≤
∫ 1

0

L∥twk∥1∥wk∥1dt

≤ L∥wk∥21
∫ 1

0

∥t∥1dt

=
L

2
∥wk∥21.
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3.2. Proposed method

Hence, by using (3.2.7), we have

∥P (uk+1)∥1 ≤
Lλ2

2
∥P (uk)∥21, (3.2.8)

and this proves the quadratic convergence of the algorithm. Define δk as δk =

Lλ2∥P (uk)∥1/2, then

∥P (uk+1)∥1 ≤ δk∥P (uk)∥1, (3.2.9)

and the relation ∥P (u1)∥1 ≤ δ0∥P (u0)∥1 < ∥P (u0)∥1 follows from Assumption 4.

Thus,

∥P (u2)∥1 ≤
Lλ2

2
∥P (u1)∥21

<
Lλ2

2
∥P (u0)∥21

≤ δ0∥P (u0)∥1
< ∥P (u0)∥1,

and, by using induction, we have ∥P (uk)∥1 < ∥P (u0)∥1. In addition, the following

relation holds for δk.

δk =
Lλ2

2
∥P (uk)∥1

<
Lλ2

2
∥P (u0)∥1

= δ0.

Hence, for ∥P (uk)∥1,

∥P (uk)∥1 ≤ ∥P (u0)∥1
k−1∏
i=0

δi < (δ0)k∥P (u0)∥1, (3.2.10)

holds, and this leads to ∥P (uk)∥1 → 0 as k →∞.

On the other hand, the relation

∥uk+1 − uk∥1 = ∥wk∥1
≤ λ∥P (uk)∥1
< λ(δ0)k∥P (u0)∥1,
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leads to

∥uk+ℓ − uk∥1 ≤
k+ℓ−1∑
i=k

∥ui+1 − ui∥1

< λ∥P (u0)∥1
k+ℓ−1∑
i=k

(δ0)i

=
λ

1− δ0
∥P (u0)∥1((δ0)k − (δ0)k+ℓ)

= r1((δ
0)k − (δ0)k+ℓ).

Thus, uk is a Cauchy sequence from the fact that (δ0)k → 0 as k → ∞, and there

exists u∗ that satisfies

u∗ = lim
k→∞

uk, P (u∗) = 0. (3.2.11)

Note that ∥uk−u0∥1 ≤ r1(1−(δ0)k) ≤ ρ holds, and all uk remain in S. This completes

the proof.

Remark 3.2.1. The assumptions in Theorem 3.2.1 are reasonable. Assumption 2

is a condition that P ′(u) has full row rank equal to m and P ′(u)w = P (u) has

some solutions. Assumption 3 mentions that P ′(u) is Lipschitz continuous on S.

Assumption 4 shows a condition for convergence, and from the condition, one can

know how to choose u0. Note that Assumption 4 is satisfied easily by choosing the

value of ∥P (u0)∥1 small.

Remark 3.2.2. Since wk
null is chosen so that ∥uk+1∥1 is minimized, the obtained

solution with this algorithm is an ℓ1-optimal solution.

Although the modified sparse Newton method is ensured to converge quadratically,

the obtained solution is local optimal because of the limitation on the search area

∥wk
null∥1 ≤ α∥P (uk)∥1. In the next subsection, we propose a more practical algorithm

for the modified sparse Newton method, where the limitation is relaxed and the input

restrictions are considered.

3.2.2 Practical algorithm for the modified sparse Newton
method

In order to relax the limitation on the search area, we propose an algorithm that

combines (3.2.1) and (3.2.2)-(3.2.4). Before describing the details of the algorithm,

we explain how to perform the computation of the proposed update rule, including

the case that input constraints exist.
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3.2. Proposed method

Corollary 3.2.1. Direction wk
min is obtained as the solution of the following problem.

wk
min = argmin

w
∥w∥1,

s.t. P ′(uk)w = P (uk),

|ui − wi| ≤ ūi,

(3.2.12)

with a vector ū := (ū⊤, · · · , ū⊤)⊤ ∈ Rq
+. Similarly, wk

null is obtained by solving

wk
null = argmin

w
∥u− w − wk

min∥1,

s.t. P ′(uk)w = 0m×1,

∥w∥1 ≤ α∥P (uk)∥1,

|uk
i − wi − wk

min,i| ≤ ūi.

(3.2.13)

As in Corollary 3.2.1, update directions wk
min and wk

null defined as (3.2.3) and

(3.2.4) under the input restrictions are obtained easily by solving linear programming

problems. Note that wk in (3.2.1) under the input restrictions is also obtained by

solving the following linear programming problem.

wk = argmin
w∈Wk

∥uk − w∥1,

s.t. P ′(uk)w = P (uk),∣∣uk
i − wi

∣∣ ≤ ūi.

(3.2.14)

When solving (3.2.12)-(3.2.14), it is necessary to calculate P ′(uk) and P (uk). As in

[26], the following result immediately follows.

P (u) = x[N ](u)− xf = f(x[N − 1], u[N − 1])− xf

= f(f(· · · f(x[0], u[0]), · · · ), u[N − 1])− b. (3.2.15)

In addition, the chain rule leads to the following equation for P ′(u).

∂P (u)

∂u
=
(

∂P (u)
∂u[0]

, ∂P (u)
∂u[1]

, · · · , ∂P (u)
∂u[N−1]

)
, (3.2.16)

where

∂P (u)

∂u[N − 1]
=

∂f

∂u
(x[N − 1], u[N − 1]),

∂P (u)

∂u[i]
=

i+1∏
j=N−1

∂f

∂x
(x[j], u[j])

∂f

∂u
(x[i], u[i]),

0 ≤ i ≤ N − 2.
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Our method is summarized in Algorithm 2. In the algorithm, we first try to update uk

with (3.2.1). If the error ∥P (uk −wk)∥1 calculated with wk obtained from (3.2.14) is

less than the prior error, the input is updated by using the obtained direction. If the

error increases with the update law (3.2.1), then we update the input by using (3.2.2)

with wk obtained from (3.2.12) and (3.2.13). If there are no input restrictions, these

steps ease the limitation on the search area of the proposed method while ensuring

convergence. Under the input constraints, the algorithm can often find an ℓ1-optimal

solution, although convergence cannot always be guaranteed. Before performing this

algorithm, N , x0, xf , ū, u0, α and ε have to be given, where α is a design parameter

for the algorithm and ε is the user-defined acceptable error.

Algorithm 2 Modified sparse Newton method

Input: N, x0, xf , ū,u0, α, ε
Output: uk+1

1: k ← 0
2: while ∥P (uk)∥1 > ε do
3: P (uk)←(3.2.15)
4: P ′(uk)←(3.2.16)
5: wk ← the solution of (3.2.14)
6: P (uk − wk)← (3.2.15)
7: if ∥P (uk − wk)∥1 ≥ ∥P (uk)∥1 then
8: wk

min ← the solution of (3.2.12)
9: wk

null ← the solution of (3.2.13)
10: wk ← wk

min + wk
null

11: end if
12: uk+1 ← uk − wk

13: k ← k + 1
14: end while

To show the effectiveness of our approach, we apply this algorithm to an ℓ1-optimal

trajectory generation problem in the next section.

3.3 Numerical example

In this example, we use CVX, a package for solving convex problems [54, 55], to solve

(3.2.12)-(3.2.14). Consider the following continuous nonlinear system

dx

dt
= F (x, u) :=

(
(x1 − sin(x2/10))/10

1− cos((x1 − x2)/10) + u

)
, (3.3.1)
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and discretize this system by using the Heun method as follows.

f(x[j], u[j]) =
F1(x[j], u[j]) + F2(x[j], u[j])

2
,

F1(x[j], u[j]) = F (x[j], u[j])∆t+ x[j],

F2(x[j], u[j]) = F (F1(x[j], u[j]), u[j])∆t+ x[j],

(3.3.2)

where x ∈ R2, u ∈ R, ∆t is the sampling time. In this simulation, we solve an ℓ1-

optimal control problem given as (3.1.2)-(3.1.4) with the sparse Newton method and

the proposed method. We set parameters as ∆t = 0.05, N = 800, x0 = (0.2, 0.2)⊤,

xf = (0, 0)⊤, ū = (0.8, · · · , 0.8)⊤ ∈ Rq, u0 = 0q×1, α = 1, ε = 10−3.

Figures 3.1 and 3.2 show the responses of x in the existing method and the pro-

posed method, respectively. The horizontal axes are time, the vertical axes are the

values of the states, the red solid lines with asterisks show x1, and the yellow solid

lines with plus signs show x2. In both cases, the boundary conditions are satisfied.

In terms of the number of steps, the existing method converges in 9 steps as in Fig.

3.3 and the proposed method converges in 5 steps as in Fig. 3.4, where the horizontal

axes show the number of the Newton steps and the vertical axes show the values of

∥P (uk)∥1. These figures show that both methods converge rapidly. However, there

is a significant difference in the response of u as in Figs. 3.5 and 3.6, where the

horizontal axes show the time step, the vertical axes show the values of the input, the

red solid lines with asterisks show u1. Regarding the value of the cost, as listed in

Table 3.1, ∥u∥1 in the case of the existing method is 1.057×102, while the cost in the

proposed method is 0.997× 102, that is, the proposed method successfully obtains an

ℓ1-optimal solution while the existing method cannot. These results show that the

proposed method is effective for solving ℓ1-optimal control problems.

3.4 Conclusion

In this chapter, we have proposed a method to solve ℓ1-optimal control problems for

nonlinear systems. Our method is superior in that the convergence is ensured while

the method successfully obtains ℓ1-optimal inputs. We have also shown a practical

algorithm that makes it possible to expand the search area and obtain a more optimal

solution under the input restrictions. The next chapter shows an application of a

sparse optimal control technique to a nonlinear system.
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Chapter 3. Modified Sparse Newton Method

Table 3.1: The cost of the obtained solutions.

Existing method Proposed method

1.057× 102 0.997× 102
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Figure 3.1: The responses of x in the existing method.
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Figure 3.2: The responses of x in the proposed method.
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Figure 3.3: The value of ∥P (uk)∥1 (the error) at each Newton step k in the existing
method.
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Figure 3.4: The value of ∥P (uk)∥1 (the error) at each Newton step k in the proposed
method.
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Figure 3.5: The response of u in the existing method.

0 200 400 600 800
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 3.6: The response of u in the proposed method.
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Chapter 4

Circular-Clothoid Trajectory
Generation Based on
L1/L2-Optimal Control

This chapter introduces an application of a sparse optimal control technique, that is

useful for developing an autonomous driving system. Autonomous driving systems

become essential in various areas in recent years. For example, the aging population

causes skilled workers shortage at the construction site in Japan. Therefore, there

is a need to develop unmanned construction systems in which the construction ve-

hicles move autonomously [56]. Such systems are also useful for works under severe

environments as the Moon [57].

In such a system, a vehicle moves autonomously by tracking a trajectory gener-

ated beforehand. A lot of trajectory generation (or path planning) methods have

been proposed [58, 59, 60, 61, 62]. A circular-clothoid trajectory is one of the tra-

jectories that are easy to track. In this trajectory, circular curves are connected by

clothoid curves so that the curvature of the trajectory changes continuously. Since

vehicles do not have to steer in a circular curve, such trajectories are easy to track.

Besides, these trajectories are useful to avoid the abrupt change of the curvature

that causes trouble like a slip. Because of these reasons, such trajectories are often

used in trajectory planning [27, 28, 29]. D. H. Shin et al. proposed a method of

generating a path using clothoid segments [30]. In that paper, a path composed of

clothoid segments is shown to be easier to track than a path consisting of circular

curves and straight lines. The method proposed by Kelly et al. focuses on generating

a smooth trajectory, for example, clothoid curves [31], in which the proposed method

generates a trajectory by using polynomial spirals with the assumption that the lon-

gitudinal velocity is constant. In some of those conventional methods, a designer
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first has to specify waypoints appropriately, and then the trajectory is generated so

that it passes through the defined waypoints. Besides, even though the continuous

change of the velocity is desirable for tracking, the velocity of the generated trajectory

changes discontinuously at the turning points where the vehicle changes the direc-

tion of travel. Some conventional methods are able to generate a trajectory whose

velocity is continuous. Howard et al. presented a method for trajectory generation,

in which they consider energy consumption and obstacle avoidance [63]. Tocker et

al. also proposed a trajectory planning method [64], where a path is generated first,

and then its velocity profile is optimized. In these methods, although the velocity

is continuous, the generated trajectories have a property that the curvature of the

trajectory changes discontinuously. The abrupt change of the curvature causes the

steep change of the centrifugal force, and vehicles following such trajectories will slip.

Hence such a trajectory is not always easy to track.

This chapter presents a method to generate a trajectory whose curvature and

velocity are continuous while they are constant in large part by using an L1/L2-

optimal control technique, which is one of the sparse optimal control techniques. The

generated trajectory becomes circular or clothoid in the part where the longitudinal

velocity is constant. Since the trajectory becomes circular or clothoid almost ev-

erywhere, we call the generated trajectory as a circular-clothoid trajectory. In this

trajectory, the velocity and curvature change continuously even at the turning point

where the vehicle switches the direction of travel. Hence the vehicle can track the

generated trajectory with smooth steering and accelerator operation.

The specific procedure for generating a circular-clothoid trajectory is as follows.

First, a vehicle system is transformed into a system whose inputs are the longitudi-

nal velocity and the time derivative of the curvature. A circular-clothoid trajectory

generation problem for the system is then interpreted as a problem of finding the

inputs such that the longitudinal velocity input and the input of the time derivative

of the curvature is piecewise constant in large part. This problem is solved as an

L1/L2-optimal control problem. The desired trajectory is obtained numerically by

applying the locally deforming continuation method proposed in Chapter 2.

This chapter is organized as follows. Section 4.1 gives the problem setting. Sec-

tion 4.2 describes some existing mathematical results. In Section 4.3, we propose a

circular-clothoid trajectory generation method based on L1/L2-optimal control. Sec-

tion 4.4 shows the effectiveness of the proposed method by a numerical simulation.

Section 4.5 concludes this chapter.
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4.1. Problem setting

4.1 Problem setting

The objective of the proposed method is to generate a trajectory whose curvature

and longitudinal velocity are continuous while they are constant in large part. The

generated trajectory is classified into a circular-clothoid trajectory. Here we define

the circular-clothoid trajectory as follows.

Definition 4.1.1. If the time derivative of the curvature and the longitudinal velocity

are piecewise constant in a trajectory, the trajectory is a circular-clothoid trajectory.

The target of the method is a front steering vehicle. The physical parameters of

the vehicle are defined as in Fig. 4.1. The symbol x1,c denotes the attitude angle, v

denotes the longitudinal velocity, and x4,c denotes the steering angle. The coordinate

of the center of the axle of the front wheel and the rear wheel are (x2,a, x3,a) and

(x2,c, x3,c), respectively. The distance between (x2,a, x3,a) and (x2,c, x3,c) is defined as

L. Defining ẋ1,c and v as inputs u1, u2, respectively, the state space model of the

vehicle is denoted by

d

dt


x1,c

x2,c

x3,c

x4,c

 =


0 tanx4,c

L

0 cos x1,c

0 sin x1,c

1 0

(u1

u2

)
. (4.1.1)

For simplicity, we use the following notation

ẋ = G(x)u (4.1.2)

instead of (4.1.1), where

G(x) :=


0 tanx4,c

L

0 cos x1,c

0 sin x1,c

1 0

 . (4.1.3)

In (4.1.2), x := (x1,c, x2,c, x3,c, x4,c)
T and u := (u1, u2)

T are the states and the inputs

of the system, respectively. The input vector u(t) is constrained in magnitude by

|ui(t)| ≤ mi, (4.1.4)

where mi ∈ R, mi > 0 (i = 1, 2). The value of mi is determined by the performance

of the vehicle.

The problem setting is shown in Fig. 4.2. The axis X and Y denote the Cartesian

coordinates of the horizontal plane. The time interval of the trajectory is set to
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Figure 4.1: A front steering vehicle model.
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Figure 4.2: Problem setting.

[0, tf ], where tf > 0 is the terminal time. The objective of the proposed method is to

generate a circular-clothoid trajectory from the initial state x0 ∈ R4 to the terminal

state xf ∈ R4 for the front steering vehicle, illustrated as the dotted curve in Fig. 4.2.

4.2 Preliminaries

The mathematical results used in the proposed method are reviewed in this section.

The following discussion is based on the system (4.1.2) and the problem explained in

Section 4.1.
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4.2.1 L1/L2-optimal control theory

The objective of an L1/L2-optimal control problem is to find an optimal input vector

u∗(t), t ∈ [0, tf ] which is a solution of the following problem.

minimize
u

J12 :=

∫ tf

0

2∑
i=1

(
wi|ui(t)|+ ri|ui(t)|2

)
dt

s.t. x(0) = x0, x(tf) = xf ,

(4.2.1)

where wi > 0, ri > 0 (i = 1, 2) are the weights of the norm. The time tf has to be

larger enough than the minimum time t∗f that is obtained by solving a minimum time

optimal control problem [65].

The optimal input is obtained analytically as a function of x(t) and p(t) by an-

alyzing a Hamiltonian function with respect to the L1/L2-optimal control problem,

where p(t) ∈ R4 is a costate vector of x(t), p(t) ∈ R4. The Hamiltonian function is

defined as

H(x(t), p(t), u(t))

:=
2∑

i=1

(
wi|ui(t)|+

ri
2
ui(t)

2
)
+ p(t)TG(x(t))u(t).

(4.2.2)

According to the Pontryagin’s minimum principle [45, 46, 47], the optimal state x∗(t),

the optimal costate p∗(t), and the optimal input u∗(t) minimizing the Hamiltonian

function (4.2.2) also minimize the cost function (4.2.1).

Assume that x∗(t) and p∗(t) are given. By completing the square, the Hamiltonian

function is written by

H(x∗(t), p∗(t), u(t))

=
2∑

i=1

(
wi|ui(t)|+ p∗(t)Tgi(x

∗(t))ui(t) +
ri
2
ui(t)

2
)

=
2∑

i=1


ri
2

(
ui +

(wi+p∗Tgi(x∗))
ri

)2
+ Ci if ui ≥ 0,

ri
2

(
ui − (wi−p∗Tgi(x∗))

ri

)2
+ C̃i if ui < 0

(4.2.3)

with x∗(t) and p∗(t). In the last line of (4.2.3), we omit t for simplicity. The symbols

gi (i = 1, 2) denote the column vectors of G, and they are in the relation G(x(t)) =

(g1(x(t)), g2(x(t))). In (4.2.3), Ci and C̃i (i = 1, 2) are functions of x∗(t) and p∗(t),

and they are independent of u(t). Hence, from (4.2.3), the optimal input u∗(t) =

(u∗
1(t), u

∗
2(t))

T minimizing the Hamiltonian function (4.2.2) is denoted by

u∗
i (t) = −satmi

(
Sαi

(
p∗(t)Tgi(x

∗(t))

ri

))
(4.2.4)
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−u
∗

i

p
∗⊤

gi(x
∗)

ri

αi

−αi

mi

−mi

Figure 4.3: Shape of the L1/L2-optimal input u∗(x∗, p∗).

with x∗(t) and p∗(t), where αi is the ratio of wi to ri, defined as αi = wi/ri. The

symbol Sα(·) denotes the shrinkage function represented by

Sα(v) :=


v + α if v < −α,
0 if − α ≤ v ≤ α,

v − α if α < v,

(4.2.5)

and satm(·) denotes the saturation function

satm(v) :=


−m if v < −m,

v if −m ≤ v ≤ m,

m if m < v.

(4.2.6)

Figure 4.3 shows the optimal input (4.2.4) as a red solid line. As the figure shows,

the optimal input is more likely to become zero. The L1/L2-optimal input becomes

like a bang-off-bang form when the weight of the L1 norm becomes greater enough

than the weight of the L2 norm. This property is explained in the next subsection.

4.2.2 Bang-off-bang property of L1/L2-optimal control

To show that the L1/L2-optimal control input has a form like bang-off-bang, we

explain the limiting property of L1/L2-optimal control. The L1/L2-optimal control

is a mixture of L1-optimal control and L2-optimal control. A cost function of an

L1-optimal control problem is defined as

J1 :=

∫ tf

0

2∑
i=1

(wi|ui(t)|) dt

s.t. x(0) = x0, x(tf) = xf .

(4.2.7)
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The L1-optimal input u∗ minimizing (4.2.7) is given by

u∗
i (t) = −Dmi,wi

(
p∗(t)Tgi(x

∗(t))
)
, (4.2.8)

where Dmi,wi
is a dead-zone function defined as

Dm,w(v) =


−m if v < −w,
0 if − w < v < w,

m if w < v,

Dm,w(v) ∈ [−m, 0] if v = −w,

Dm,w(v) ∈ [0,m] if v = w.

(4.2.9)

Note that the value of the dead-zone function Dm,w is not uniquely determined when

the argument is equal to ±w. The problem is called normal if the L1-optimal control

input is uniquely determined at almost all t ∈ [0, tf ] [66].

On the other hand, the cost function of an L2-optimal control problem is defined

as

J2 :=

∫ tf

0

2∑
i=1

(ri
2
· |ui(t)|2

)
dt

s.t. x(0) = x0, x(tf) = xf .

(4.2.10)

The L2-optimal input u∗(t) minimizing (4.2.10) is given by

u∗
i (t) = −satmi

(
p∗(t)Tgi(x

∗(t))

ri

)
. (4.2.11)

The L1/L2-optimal input has the following limiting property with respect to the

L1-optimal input and the L2-optimal input [66].

Proposotion 4.2.1. Assume the L1-optimal control problem is normal. Let uL1
(w),

uL2
(r), and uL1/L2

(w, r) be the L1-optimal input, the LL2
-optimal input, and the

L1/L2-optimal input with weight parameters w := (w1, w2), r := (r1, r2), respec-

tively. For any fixed w > 0,

lim
r→02×1

uL1/L2

(w, r) = uL1

(w) (4.2.12)

holds. In addition, for any fixed r > 0,

lim
w→02×1

uL1/L2

(w, r) = uL2

(r) (4.2.13)

holds.

Hence, if the weight of the L1 norm becomes greater enough than the weight of

the L2 norm, the L1/L2-optimal input becomes like a bang-off-bang form. Note that

the L1/L2-optimal input is continuous though the L1-optimal input is discontinuous.

The proposed method generates a circular-clothoid trajectory by using this property.
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4.3 Proposed method

The objective of the proposed method is to generate a trajectory whose curvature and

longitudinal velocity are continuous while they are piecewise constant in large part.

The proposed method is based on two new ideas. One is to transform the original plant

system into another system that has two inputs, the longitudinal velocity and the

time derivative of the curvature. The other is to formulate the trajectory generation

problem with the transformed system as an L1/L2-optimal control problem. The

optimal control problem is transformed into a TPBVP, and the solution is obtained

numerically by the shooting method with the locally deforming continuation method.

4.3.1 Transformation of the vehicle system

From the definition, the curvature κc of the trajectory of the vehicle is denoted as

κc =
dx1,c

ds
=

dx1,c

dt

dt

ds
, (4.3.1)

where s is the arc length of the trajectory. Since the time derivative of s is equal to

u2 in the problem,

dx1,c

dt
= κcu2 =

tanx4,c

L
u2 (4.3.2)

holds from (4.3.1). Define a new input vector ũ = [ũ1, ũ2]
T as

ũ1 = κ̇, (4.3.3)

ũ2 = u2, (4.3.4)

and use κc instead of x4,c, (4.1.1) is transformed to

d

dt


x1,c

x2,c

x3,c

κc

 =


0 κc

0 cos x1,c

0 sin x1,c

1 0

(ũ1

ũ2

)
. (4.3.5)

For simplicity, we use the following notation

˙̃x = G̃(x̃)ũ (4.3.6)

instead of (4.3.5), where

G̃(x̃) :=


0 κc

0 cos x1,c

0 sin x1,c

1 0

 . (4.3.7)
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In (4.3.6), x̃ := (x1,c, x2,c, x3,c, κc)
T is the state of the system. In the proposed method,

ũ(t) is constrained in magnitude by the new relation

|ũi(t)| ≤ m̃i, (4.3.8)

where m̃i ∈ R, m̃i > 0 (i = 1, 2). The value of m̃i is determined by the performance

of the vehicle.

4.3.2 Design of the optimal control problem

Next, the trajectory generation problem is formulated as an L1/L2-optimal control

problem in the proposed method. The cost function of the optimal control problem

is defined as follows.

J :=

∫ tf

0

w1 |ũ1(t)|+ w2 |ũ2(t)|+
r1
2
|ũ1(t)|2 +

r2
2
|ũ2(t)|2dt

s.t. x̃(0) = x̃0, x̃(tf) = x̃f .

(4.3.9)

The weights satisfy wi > 0 and ri > 0 (i = 1, 2). The boundary conditions are defined

as

x̃0 = Φ(x0), x̃f = Φ(xf), (4.3.10)

where

Φ :
(
x1,c x2,c x3,c x4,c

)T → (
x1,c x2,c x3,c tan (x4,c)/L

)T
. (4.3.11)

It follows from (4.2.4) that the optimal input ũ∗(t) minimizing the cost function

(4.3.9) is denoted by the following equation :

ũ∗
i (t) = −satmi

(
Swi

ri

(
p̃∗(t)Tg̃i(x̃

∗(t))

ri

))
(i = 1, 2), (4.3.12)

where G̃(x̃(t)) = (g̃1(x̃(t)), g̃2(x̃(t))), and p̃∗(t) is the optimal costate of the optimal

state x̃∗(t). Note that a circular trajectory and a clothoid trajectory are characterized

in terms of the time derivative of the curvature with the constant longitudinal velocity,

as κ̇c = 0 and κ̇c = const., respectively. Since the L1/L2-optimal input is more likely

to become zero, the curvature becomes constant in the large part of the trajectory.

Besides, because of the bang-off-bang property of L1/L2-optimal control, the optimal

inputs ũ∗
1(t) = κ̇c(t) and ũ∗

2(t) become like bang-off-bang if the weight wi is set to

be larger enough than ri. Hence, the trajectory generated with the L1/L2-optimal

inputs is classified into the circular-clothoid trajectory.
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4.4 Numerical example

This section shows several examples of generating a circular-clothoid trajectory. In

these examples, given L1/L2-optimal control problems are solved with the locally

deforming continuation method proposed in Chapter 2, where JE and JO are set to

JE =

∫ tf

0

2∑
i=1

1

2
ũi(t)

2dt, (4.4.1)

JO =

∫ tf

0

2∑
i=1

1

2
ũi(t)

2 + 2|ũi|dt, (4.4.2)

and lC(x̃(t), ũ(t), t) is given as

lC(x̃(t), ũ(t), t) =
2∑

i=1

1

2
ũi(t)

2 + fw(t)|ũi|, (4.4.3)

fw(t) = 2(t− c)/h, (4.4.4)

with h = δ = 0.2.

4.4.1 Example 1 : reduction of the steering operation

The parameters are defined as x0 = (0, 0, 0, 0)T, xf = (0, 4, 0.5, 0)T, tf = 4, r1 = r2 =

1, w1 = w2 = 2, m̃1 = 0.3, m̃2 = 0.8, in this example.

Figure 4.4 shows the generated trajectory. The horizontal and vertical axes are

X and Y , respectively. The solid line illustrates the generated trajectory. Figure 4.5

shows the responses of the inputs, where the horizontal axis is time and the vertical

axis is the input. In the figure, the thick solid line denotes the input of the time

derivative of the curvature ũ∗
1(t) while the thin solid line is the longitudinal velocity

input ũ∗
2(t) of the vehicle. The dashed lines illustrate the upper and lower bounds

of ũ∗
1(t) and ũ∗

2(t). As Fig. 4.5 shows, the time derivative of the curvature is zero in

large part, that is, the curvature is constant in large part. Since the time derivative

of the curvature and the longitudinal velocity are piecewise constant in large part,

the generated trajectory is classified into the circular-clothoid trajectory.

To make clear the advantage of the proposed method, Fig. 4.6 shows the trajectory

generated by the conventional method, and Fig. 4.7 shows the responses of the inputs

of the generated trajectory. The trajectory is generated by solving the L2-optimal

control problem whose cost function is given as (4.3.9) with the parameters r1 =

r2 = 1, w1 = w2 = 0, tf = 4, where the boundary conditions are given as x0 =

(0, 0, 0, 0)T, xf = (0, 4, 0.5, 0)T. The inputs are restricted by m̃1 = 0.3, m̃2 = 1.1. In
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Fig. 4.6, the horizontal and vertical axes are X and Y , respectively. The solid line

illustrates the generated trajectory. In Fig. 4.7, the horizontal axis is time, and the

vertical axis is the input. In the figure, the thick solid line denotes the input of the time

derivative of the curvature ũ∗
1(t) while the thin solid line is the longitudinal velocity

input ũ∗
2(t) of the vehicle. The dashed lines illustrate the upper and lower bounds of

ũ∗
1(t) and ũ∗

2(t). As Fig. 4.7 shows, both the time derivative of the curvature and the

longitudinal velocity are not piecewise constant. Hence the trajectory generated by

the conventional method requires much steering operation.

4.4.2 Example 2 : automatic generation of the turning point

The parameters are defined as x0 = (π/4, 0, 0, 0)T, xf = (0, 1, 0.5, 0)T, tf = 4, r1 =

r2 = 1, w1 = w2 = 2, m̃1 = 0.3, m̃2 = 1.1, in this example.

Figure 4.8 shows the generated circular-clothoid trajectory, in which the vehicle

goes forward first and then goes backward. Note that any waypoint is not specified.

The horizontal and vertical axes are X and Y , respectively. The solid line illustrates

the generated trajectory. Figure 4.9 shows the responses of the inputs, where the

horizontal axis is time and the vertical axis is the input. In the figure, the thick

solid line denotes the input of the time derivative of the curvature ũ∗
1(t), while the

thin solid line is the longitudinal velocity input ũ∗
2(t) of the vehicle. The dashed

lines illustrate the upper and lower bounds of ũ∗
1(t) and ũ∗

2(t). As Fig. 4.9 shows,

though the curvature is not constant in large part because of the boundary conditions,

the generated trajectory is a circular-clothoid trajectory. Besides, the longitudinal

velocity changes continuously, even at the turning point.

4.5 Conclusion

In this chapter, we have proposed the method for generating a trajectory whose

curvature and longitudinal velocity are continuous while they are piecewise constant in

large part. The method is based on L1/L2-optimal control. In the proposed method,

the vehicle system is transformed to the system whose inputs are the time derivative

of the curvature and the longitudinal velocity. The trajectory generation problem

is then formulated as the specific L1/L2-optimal control problem. This problem is

successfully solved by the locally deforming continuation method propose in Chapter

2. The trajectory generated by the proposed method is confirmed to be classified into

the circular-clothoid trajectory through numerical simulations.
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Chapter 4. Circular-Clothoid Trajectory Generation

In the previous chapters, we have focused on sparse optimal control, one of the

feedforward control techniques, and have made some proposals on its applications and

how to obtain such inputs. Those proposals will make it possible to use feedforward

control based on sparse optimal control techniques in practical applications. The next

chapter focuses on feedback control and proposes several control methods.
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Vehicle

Start

Goal

Figure 4.4: The generated circular-clothoid trajectory.

Figure 4.5: The response of the inputs.

Vehicle

Start

Goal

Figure 4.6: The generated trajectory with the conventional method.
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Chapter 4. Circular-Clothoid Trajectory Generation

Figure 4.7: The responses of the inputs of the generated trajectory with the conven-
tional method.

Vehicle

Start

Goal

Figure 4.8: The generated circular-clothoid trajectory.

Figure 4.9: The responses of the inputs.
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Chapter 5

Passivity-Based Lag Compensator

This chapter and the next chapter focus on feedback control techniques for nonlinear

mechanical systems represented in the pH framework and propose feedback controllers

with which the output response can be easily tuned. The pH framework has proven

to be suitable to represent a broad class of mechanical systems [32, 33]. An advantage

of the pH approach is the explicit representation of physical phenomena and concepts

such as energy, interconnection patterns, and dissipation, which may provide some

intuition to ease the analysis of the system and the control design process. Due to

the energy-based nature of the pH models, passivity-based control (PBC) techniques

arise as a natural option to devise controllers to stabilize these systems [34], where the

control design process consists of two steps: energy-shaping and damping injection.

Concerning the stabilization of mechanical systems via PBC techniques, the liter-

ature is vast, e.g., [35, 36, 37, 38, 39, 40, 41]. However, most of PBC methods focus

only on stabilizing the system under study. Therefore, there are no clear guidelines on

how to tune the controller gains to ensure desired responses of the closed-loop system.

To address this issue, several recent studies have focused on the tuning method of the

control gains as in [67, 68, 69, 70]. For example, in [67, 68], the authors presented

a tuning policy for PBC techniques to suppress overshoots and oscillations. Espe-

cially in [68], the authors introduce a passivity-based dynamic feedback controller

and propose to tune it using a transfer function representation. In this approach, the

obtained controller admits a lead compensator interpretation, and the control gains

can be chosen based on frequency analysis. It is noteworthy that, while this control

approach can improve the responsiveness of the closed-loop system, it cannot reduce

the steady-state error since these compensators cannot change the characteristics of

low-frequency signals. An alternative to overcome this issue is given by the so-called

lag-compensators, which amplify the input signals at low frequencies. This property
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Chapter 5. Passivity-Based Lag Compensator

makes it possible to reduce the steady-state error without changing the responsiveness

property [71].

In this work, we propose a PBC approach to stabilize nonlinear mechanical sys-

tems, where the controllers can be interpreted as lag compensators. Therefore, the

resulting controllers can effectively reduce the steady-state error while mitigating the

windup phenomenon often exhibited by integral control [72]. To this end, we pro-

pose a dynamic extension such that the pH structure is preserved for the closed-loop

system, which eases the stability proof. Moreover, the proposed control method does

not require velocity measurements and can deal with input constraints by naturally

saturating the control signals.

The rest of this chapter is organized as follows. In Section 5.1, we introduce the

pH representation of mechanical systems, the problem formulation, and briefly revisit

some previous results regarding PBC techniques with dynamic extension. Next, in

Section 5.2 we propose a passivity-based lag compensator and a modified passivity-

based lag compensator where the controller is saturated. In Section 5.3, we illustrate

experimental results of the implementation of the lag compensators in a two degrees-

of-freedom (DoF) planar manipulator with flexible joints. We summarize this chapter

in Section 5.4.

5.1 Problem setting and previous results

Let us consider mechanical systems whose behavior is represented by(
q̇
ṗ

)
=

(
0n×n In
−In −D(q, p)

)(
∇qH(q, p)
∇pH(q, p)

)
+

(
0n×m

G

)
u, (5.1.1)

H(q, p) =
1

2
p⊤M(q)−1p+ V (q), (5.1.2)

where q, p ∈ Rn are the generalized positions and momenta, respectively, u ∈ Rm is

the input vector, with n,m ∈ Z+, n < m, D : Rn×Rn → Rn×n is the positive definite

symmetric damping matrix, H : Rn × Rn → R+ is the Hamiltonian function of the

system, where V : Rn → R+ is the potential energy of the system andM : Rn → Rn×n

is the positive definite inertia matrix, and the input gain matrix G is defined as

G :=

(
0k×m

Im

)
; k := n−m. (5.1.3)

Hence, we can split the state vector as follows

q =

(
qu
qa

)
, p =

(
pu
pa

)
, (5.1.4)
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where

qu := G⊥q, qa := G⊤q, pu := G⊥p, pa := G⊤p, (5.1.5)

with G⊥ =
(
Ik 0k×m

)
. To formulate the problem under study, we first define the set

of assignable equilibria for (5.1.1), which is given by

E = {q ∈ Rn | ∇quV (q) = 0k×1}, (5.1.6)

and we define the error qe = q− q∗ and qea = G⊤qe, where q∗ ∈ E . Then, the problem
under study can be formulated as follows

Problem Setting 5.1.1. Given the mechanical system (5.1.1) and the desired equi-

librium point (q∗, 0n), find a controller u that renders asymptotically stable (q∗, 0n)

while ensuring that:

• No velocity measurements are required to achieve the control task.

• There is a systematic method to select the control gains to reduce the steady-state

error caused by modeling errors of nonlinear friction.

5.1.1 Some previous results on PBC with dynamic extension

In this section, we briefly revisit the results reported in [68]-[73], where the reported

controllers are suitable to suppress oscillations or reject disturbances. The main idea

of these methods is to propose a dynamic extension xc ∈ Rm and a dynamic control

law of the form

u = fu(q, p, xc), (5.1.7)

ẋc = fxc(q, p, xc), (5.1.8)

such that the closed-loop system takes the form

ξ̇ =

0n×n In F13

−In −D(q, p) F23

−F⊤
13 −F⊤

23 F33

∇ξHd(ξ), (5.1.9)

Hd(ξ) = H(q, p) + H̄(ξ), (5.1.10)

where ξ = (q⊤, p⊤, x⊤
c )

⊤, F13 ∈ Rn×m, F23 ∈ Rn×m, F33 ∈ Rm×m. Following this

approach, passivity-based controllers that can be interpreted as lead-compensators

are reported in [68], while in [74], a kind of integrator is proposed for removing

matched disturbances. Additionally, in [68, 75, 73], the dynamic extension removes

the necessity of velocity measurements to inject damping into the closed-loop system
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and ensure the asymptotic convergence towards the desired equilibrium. Inspired

by these results, in the following section, we propose a new PBC method where the

controller can be interpreted as a lag-compensator.

5.2 Proposed method

The lead-compensator in [68] is effective for removing oscillations without measuring

velocities, but cannot deal with steady-state errors. On the other hand, the integrator

in [74] ensures that the steady-state error equals zero and is suitable to reject some

disturbances. Alas, this controller requires velocity measurements. To address these

issues, in this section, we present the main contribution of this chapter, namely,

a passivity-based lag compensator that can reduce the steady-state error without

measuring velocities. To this end, we implement a dynamic extension that leads to a

pH system different from (5.1.9).

5.2.1 Passivity-based lag compensator

The following theorem introduces a dynamic extension and a control law such that the

closed-loop system admits a pH representation. Additionally, it provides conditions

to ensure the stability of the desired equilibrium.

Theorem 5.2.1. Consider system (5.1.1), the virtual state xc ∈ Rm with nonlinear

dynamics

ẋc = −D̃∇xcH̄(qa, xc), (5.2.1)

and the nonlinear control law

u = −∇qaH̄(qa, xc)− 2∇xcH̄(qa, xc). (5.2.2)

Then, the closed-loop system takes the form of a pH system

ξ̇ = (J −D)∇ξHd(ξ), (5.2.3)

J =

0n×n In 0n×m

−In 0n×n −G
0m×n G⊤ 0m×m

 , (5.2.4)

D =

0n×n 0n×n 0n×m

0n×n D G

0m×n G⊤ D̃

 , (5.2.5)
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if the following condition holds. (
D(q, p) G

G⊤ D̃

)
⪰ 0, (5.2.6)

where D̃ ∈ Rm×m is a positive definite symmetric matrix, and Hd(ξ) := H(q, p) +

H̄(ξ), with H̄(ξ) to be defined. Furthermore, the desired equilibrium point ξ∗ =

(q∗⊤, 0⊤n×1, 0
⊤
m×1)

⊤ is asymptotically stable if the following conditions hold.

C1.

(
D(q, p) G

G⊤ D̃

)
≻ 0. (5.2.7)

C2. Hd(ξ) has an isolated minimum at ξ = ξ∗.

C3. ∇pHd(ξ)=0n×1,∇xcHd(ξ)=0m×1⇒q=q∗,xc=0m×1.

Proof. Note that

∇qHd(ξ) = ∇qH(q, p) +∇qH̄(qa, xc), (5.2.8)

∇pHd(ξ) = ∇pH(q, p),∇xcHd(ξ) = ∇xcH̄(qa, xc). (5.2.9)

By substituting (5.2.2) in (5.1.1), we have

q̇ = ∇pH(q, p) = ∇pHd(ξ), (5.2.10)

ṗ =−∇qH(q, p)−D(q, p)∇pH(q, p) +Gu

=−∇qH(q, p)−D(q, p)∇pH(q, p)

+G
(
−∇qaH̄(qa, xc)− 2∇xcH̄(qa, xc)

)
=−∇qHd(ξ)−D(q, p)∇pHd(ξ)− 2G∇xcHd(ξ),

(5.2.11)

and (5.2.1) leads to

ẋc = −D̃∇xcH̄(qa, xc) = −D̃∇xcHd(ξ). (5.2.12)

Hence, the dynamic extension (5.2.2) and (5.2.1) transforms (5.1.1) into (5.2.3), and

if (5.2.6) holds, D ⪰ 0 holds and this shows that (5.2.3) is a pH system from the

fact that J ⊤ = −J . Hereafter, we omit the arguments q, p in D in this proof for

simplicity. It follows from (5.2.4) and (5.2.5) that

Ḣd = −(∇ζHd(ξ))
⊤
(
D G

G⊤ D̃

)
∇ζHd(ξ) ≤ 0

and Ḣd = 0 holds if and only if ∇pHd(ξ) = 0n×1, ∇xcHd(ξ) = 0m×1, holds, where

ζ = (p⊤, x⊤
c )

⊤. Hence it follows from the assumptions that Krasovskii-Barbashin

theorem [76] proves asymptotic stability.
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The following theorem establishes a linear relationship between the control input

and the error in positions such that the controller (5.2.2) with (5.2.1) admits a lag

compensator interpretation.

Theorem 5.2.2. Design the function H̄(qa, xc) as

H̄(qa, xc) =
1

2
∥qea∥2KP

+
1

2
∥xc − qea∥2KI

, (5.2.13)

and D̃ as D̃ = Rc, where KP, KI, Rc ∈ Rm×m are diagonal positive definite matrices.

When KP,i − KI,i > 0 (i = 1, 2, · · · ,m) holds, the controller (5.2.2) with (5.2.1)

represents a lag compensator, where the relation between qea and u

U (s) = diag (Gi(s))
m
i=1 Qe

a(s), (5.2.14)

is given by

Gi(s) = Ki
Tis+ 1

αiTis+ 1
, (5.2.15)

Ki = KP,i, Ti =
KP,i −KI,i

KP,iKI,iRc,i

, αi =
KP,i

KP,i −KI,i

,

where Qe
a(s) = L[qea(t)], U (s) = L[u(t)].

Proof. The dynamic extension (5.2.2) and (5.2.1) with (5.2.13) is calculated as

u = −KPq
e
a −KI(xc − qea),

ẋc = −RcKI(xc − qea).
(5.2.16)

Since the matrices KP, KI, Rc are diagonal, for each element,

Ui = −KP,iQ
e
a,i −KI,i(Xc,i −Qe

a,i), (5.2.17)

sXc,i = −Rc,iKI,i(Xc,i −Qe
a,i), (5.2.18)

hold, where Ui(s) = L[ui(t)], Xc,i(s) = L[xc,i(t)], Qe
a,i(s) = L[qea,i(t)]. Hence we have

the following relation

Ui = −KP,iQ
e
a,i −KI,i

(
Rc,iKI,i

s+Rc,iKI,i

Qe
a,i −Qe

a,i

)
= −(KP,i −KI,i)s+KP,iRc,iKI,i

s+Rc,iKI,i

Qe
a,i.

(5.2.19)

It follows from (5.2.19) that (5.2.14) with (5.2.15) holds.

68



5.2. Proposed method

M
a

g
n

it
u

d
e

 (
d

B
)

Frequency (rad/s)

P
h

a
s
e

 (
d

e
g

)

K=1,T=2, =2

K=1,T=2, =4

K=1,T=4, =2

K=2,T=2, =2

Bode Diagram

frequency  (rad/s)

!"#$%#&'()*"+,-./

Figure 5.1: Bode plot of the lag compensator (5.2.15) (©2020 IEEE)

As Theorem 5.2.2 claims, the value of αi in (5.2.15) takes more than one if KP,i−
KI,i > 0 (i = 1, 2, · · · ,m) holds, which implies that the controller (5.2.2) with (5.2.1)

works as a lag-compensation. Figure 5.1 shows the Bode plot of the transfer function

(5.2.15), where the values of Ki, Ti, αi are varied as in the legends of the figure. As in

the figure, the lag compensator keeps the gain high at low frequencies and low at high

frequencies. Hence, this compensator can improve the steady-state characteristics.

The tuning of the controller can also be done intuitively. It follows from (5.2.19) that

KP,i = Ki, KI,i =
αi − 1

αi

Ki, Rc,i =
1

(αi − 1)TiKi

, (5.2.20)

hold, so the parameters in (5.2.13) and Rc are decided by specifying K,α, T . When

tuning the gains, one can choose K,α, T appropriately, referring the Bode plot of the

lag compensator. In practical applications, inputs are often restricted. In the next

subsection, we propose another passivity-based controller that represents a passivity-

based lag compensator dealing with input saturation.

5.2.2 Passivity-based lag compensator with input saturation

In [75], Wesselink et al. propose a lead-compensator considering input saturation.

Inspired by this method, we propose a passivity-based lag compensator that takes

into account input saturation.

Theorem 5.2.3. Select the function H̄(qa, xc) as

H̄(qa, xc) = ϕ1
(KP)

(qea) + ϕ2
(KI)

(xc − qea), (5.2.21)
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and D̃ as D̃ = Rc, where KP, KI, Rc ∈ Rm×m are diagonal positive definite matrices

and ϕl
(·)(·) (l = 1, 2) are given as

ϕl
(C)(z) =

m∑
i

Ci
αl,i

βl,i

log(cosh(βl,izi)), (5.2.22)

with design parameters αl,i > 0, and βl,i > 0. Then, the input (5.2.2) always satisfies

|ui| ≤ KP,iα1,i +KI,iα2,i. (5.2.23)

In addition, the linear approximation of the controller (5.2.2) with (5.2.1) represents

a lag compensator under the condition

KP,iα1,iβ1,i −KI,iα2,iβ2,i > 0.

Proof. The input (5.2.2) is calculated as

ui =−∇qa,iϕ
1
(KP)

(qea)−∇qa,iϕ
2
(KI)

(xc − qea)

− 2∇xcϕ
2
(KI)

(xc − qea)

=−KP,iα1,i tanh(β1,iq
e
a,i)

−KI,iα2,i tanh(β2,i(xc,i − qea,i)).

(5.2.24)

Since | tanh(·)| ≤ 1, it follows from (5.2.24) that

|ui| ≤ KP,iα1,i +KI,iα2,i.

Maclaurin series of tanh(z) is tanh(z) = z + o(∥z∥) as z → 0, hence, if β1,iq
e
a and

β2,i(xc,i− qea,i) are small enough that tanh(·) can be linearly approximated, the input

(5.2.2) and the dynamics (5.2.1) are given as

ui = −KP,iα1,iβ1,iq
e
a,i −KI,iα2,iβ2,i(xc,i − qea,i),

ẋc,i = −Rc,iKI,iα2,iβ2,i(xc,i − qea,i).
(5.2.25)

Replacing KP,iα1,iβ1,i and KI,iα2,iβ2,i with K̃P,i and K̃I,i immediately confirms that

(5.2.25) represents a lag compensator, and this completes the proof.

The parameters of the controller (5.2.2)-(5.2.1) with (5.2.21) are designed in the

same way as the proposed lag compensator by specifying K,T , and α of (5.2.15). If

the input is saturated as |ui| ≤ Umaxi , the parameters α1,i and α2,i are chosen so that

(KP,iα1,i +KI,iα2,i) ≤ Umaxi is satisfied. The parameters β1,i and β2,i, that affect the

region where the controller can be linearly approximated, can be freely chosen.
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5.3. Practical implementation of the passivity-based lag compensator

5.3 Practical implementation of the passivity-based

lag compensator

To confirm the effectiveness of the proposed controllers in Section 5.2, this section

shows experimental results of the implementation of the controllers in the 2 DoF

manipulator by Quanser depicted in Fig. 5.2. The first experiment consists in ap-

plying the passivity-based lag compensator to the manipulator and corroborate its

suitability to deal with steady-state errors by choosing appropriate gains. The second

experiment compares the performance of a PID controller and the passivity-based lag

compensator, where the inputs are saturated.

Figure 5.2: 2 DoF serial flexible joint by Quanser and its corresponding schematic
(©2020 IEEE)

In these experiments, only the positions q are measured, and the inputs are the

currents supplied to the motors. Note that, strictly speaking, the control inputs

we analytically devise should be torques. However, there exists a static relationship

between the torque of each motor and the corresponding current. Such relationships

are considered during the practical implementation of the controllers. We refer the

reader to [77] for further details.
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5.3.1 Control design

The 2 DoF planar robot with flexible joints in Fig. 5.2 admits a pH representation of

the form (5.1.1) where

D =

(
Du 02×2

02×2 Da

)
,

Du = diag (du1 , du2) , Da = diag (da1 , da2) ,

M(q) =

(
Mu(q) 02×2

02×2 Ma

)
,Ma = diag (I1, I2) ,

Mu(q) =

(
a1 + a2 + 2b cos (qu2) a2 + b cos (qu2)

a2 + b cos (qu2) a2

)
,

V (q) =
1

2
∥qu − qa∥2Ks

, Ks = diag (Ks1 , Ks2) .

For this system, n = 4 and m = 2. Furthemore, qa1 and qa2 denote the angle of

the first and second motor, qu1 and qu2 denote the angle of the first and second link,

respectively, where each link is connected to a motor through springs. The parameters

of this system are provided in Table 5.1.

Note that the assignable equilibria for this system are characterized by the con-

straint qa = qu. Accordingly, the control objective is to stabilize the manipulator at

the desired configuration

qa = qu = q∗a, (5.3.1)

where q∗a ∈ R2. To this end, the following corollary proves that the passivity-lag

compensator proposed in Section 5.2 solves the control problem.

Corollary 5.3.1. The desired equilibrium positions of the system defined in (5.3.1)

are asymptotically stabilized by the controller (5.2.2)-(5.2.1) with (5.2.13) or (5.2.21)

if Rc,i > 1/Da,i holds.

Proof. We only prove the case of (5.2.13) due to space constraints. Since the pH

system (5.1.1) is transformed into the new pH system (5.2.3) by the controller, if

an isolated minimum of Hd(ξ) is the equilibrium point q∗ := (q∗a, q
∗
a)

⊤ and if (5.2.7)

holds, the desired positions (5.3.1) are asymptotically stable. We first check whether

(5.2.7) holds. Define

D̂ =

 Du 0×2 02×2

02×2 Da I2
02×2 I2 Rc

 . (5.3.2)
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Since Du ≻ 0 hold, the condition (5.2.7), that can be written as D̂ ≻ 0, holds if and

only if (
Da I2
I2 Rc

)
≻ 0. (5.3.3)

From the Schur complement condition, (5.3.3) holds if and only if Da ≻ 0 and Rc −
I⊤2 D

−1
a I2 ≻ 0 hold. Noting that Rc, Da, I2 are all positive diagonal matrices, this

condition can be rewritten as Rc,i > 1/Da,i, hence (5.2.7) holds.

Since the time derivative of Hd(ξ) is

Ḣd(ξ) = −(∇ζHd(ξ))
⊤D̂∇ζHd(ξ) ≤ 0, (5.3.4)

the equilibrium point q∗ is asymptotically stabilized if both

∇pHd(ξ) = 04×1, ∇xcHd(ξ) = 02×1, (5.3.5)

hold only at the desired point. It follows from (5.3.5) that p = 04×1 hold since M(q)

has full rank. In addition, since ṗ is also zero at the equilibrium point, we have

ṗ =04×1 = −∇qHd(ξ)−D∇pHd(ξ)

=−∇qHd(ξ)− 04×1

=− ∂

∂q

(
1

2
p⊤M(q)−1p

)
+

(
02×1

KI(xc − qea)

)
−
(

Ks(qu − qa)
−Ks(qu − qa) +KP(qa − q∗a)

)
.

(5.3.6)

It follows from (5.3.5) that the first term and the second term of the bottom row of

(5.3.6) become zero. Hence, qu − qa = 02×1, qa − q∗a = qea = 02×1, xc = 02×1 always

hold under the condition (5.3.5) and this completes the proof. The proof of the case

(5.2.21) is the same as above.

The following subsections are devoted to the experimental results.

5.3.2 Experiment 1: reduction of the steady-state error

The objective of this experiment is to confirm that the proposed passivity-based lag

compensator (5.2.2)-(5.2.1) with (5.2.13) is effective for reducing steady-state errors.

Towards this end, we perform two experiments with different gains. In the first case,

the response of the closed-loop system exhibits steady-state errors, which are probably

the result of non-modeled phenomena, e.g., dry friction. In the second experiment, we

successfully reduce these errors by modifying the control gains. For the experiments,
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Table 5.1: System parameters

du1 0.38 [N ·m · s/rad] du2 0.30 [N ·m · s/rad]
da1 0.30 [N ·m · s/rad] da2 0.14 [N ·m · s/rad]
a1 0.068 [kg ·m2] a2 0.013 [kg ·m2]
b 0.018 [kg ·m2]
I1 0.042 [kg ·m2] I2 0.0070 [kg ·m2]
Ks1 9.4 [N ·m/rad] Ks2 4.2 [N ·m/rad]

we consider q∗a = (1,−1)⊤. Figs. 5.3 and 5.4 show the response of q and u respectively,

where the blue lines are the results of applying the controller designed with K =

diag(0.2, 0.4), and the red lines are the case that K = diag(0.4, 0.6). For both cases,

we select T = diag(0.4, 0.2), α = diag(1.7, 1.01). As mentioned before, the steady-

state error present in the first experiment–the blue case–may be caused by nonlinear

friction that is neglected in the model. On the other hand, in the red case with a

greater gain K, the steady-state error is zero. This result shows that the proposed

controller actually works as a lag compensator, where the deviations are reduced by

amplifying the low frequency signals. Note that the removal of oscillations is outside

the scope of our control objectives.

5.3.3 Experiment 2: suppressing the wind-up phenomenon

The objective of this experiment is to confirm that the proposed passivity-based lag

compensator mitigates the windup phenomenon under input restrictions. Consider

the case that the system is physically constrained for a certain amount of time such

that the state cannot reach the desired values (5.3.1) during this interval. Conse-

quently, applying a PID will cause that the internal variables of the integrator to

continue increasing while constrained, producing an overshoot in the response after

the constraints are removed if the inputs are saturated. Such a problem does not

occur when the lag compensator is applied. In the experiment, first we just ap-

plied the lag compensator and a PID controller to the system and verify that the

control objective is achieved by both approaches under normal operation conditions.

Next, we fix the links so that all the angles remain 0 while t ≤ 2 [s]. Then, we

release the links. The desired values are set to q∗a = (1,−1)⊤. The saturated lag

compensator (5.2.2)-(5.2.1) with (5.2.21) is designed by specifying the parameters

as K = diag(0.15, 1.2), T = diag(2, 1), α = diag(1.7, 1.01), α1 = (1.7, 0.29), α2 =
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Figure 5.3: The resulting responses of q(t) with the proposed compensator

(4, 0.7), β1 = (0.8, 2.8), β2 = (0.8, 2.8), and the PID controller is designed as

u(t) = −GPq
e
a(t)−GDq̇

e
a(t)−GI

∫ t

0

qea(t)dt,

with GP = diag(1.5, 4), GD = diag(1, 2), and GI = diag(0.4, 1), where the magnitude

of each input is restricted as |u1(t)| ≤ 0.5, |u2(t)| ≤ 0.35. The velocities q̇ea are

estimated from qea by using a derivative filter provided by Quanser. Note that such

a filter is not necessary for the lag compensator since we use a dynamic extension.

Figs. 5.5 and 5.6 show the result of the experiments. Fig. 5.5 shows the case

when the system is not constrained, and Fig. 5.6 depicts the case when the system is

constrained for 2 seconds, where the first row figures show the response of the angle

q(t), the second row figures show the response of u1(t), and the third row figures show
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Figure 5.4: The resulting responses of u(t) with the proposed compensator

the response of u2(t), the blue lines are the result of the PID controller and the red

lines are the result of the lag compensator. In the right figures, the dashed black line

and the black solid line show the saturation values of u1 and u2, respectively. Figs.

5.5 and 5.6 show that, although the steady-state error is almost zero in both cases,

there is overshoot in the PID case, while the lag compensator does not evoke such

an overshoot. This result proves that the passivity-based lag compensator is also

effective for mitigating the windup phenomena.

5.4 Conclusion

In this chapter, we have proposed a PBC method suitable to stabilize a class of

nonlinear mechanical systems, where the control law admits a lag compensator in-
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terpretation. Some additional properties of the resulting controllers are that they do

not require velocity measurements and can be designed to deal with input constraints

via the saturation of their signals. The proposed method has two main advantages:

first, the pH preservation simplifies the stability analysis of the closed-loop system.

Second, the lag compensator interpretation provides clear insight, via frequency anal-

ysis, into the performance of the closed-loop system. These advantages have been

illustrated through the implementation of the proposed method to stabilize a planar

robot, where the frequency analysis provided guidelines to select control gains that

ensures the reduction of the steady-state error in the closed-loop system. In the next

chapter, we generalize the result of this chapter.
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Figure 5.5: The case that the physical constraint is not imposed
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Figure 5.6: The case that the system is constrained for 2 seconds
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Chapter 6

Passivity-Based High-Order
Compensators

This chapter gives a generalized result of the PBC technique proposed in Chapter

5. As mentioned in Chapter 5, Dirksz has proposed a passivity-based dynamic feed-

back controller that can be interpreted as a lead compensator [68]. In Chapter 5, we

have also proposed a passivity-based lag compensator using the dynamic extension

and provided some guidelines on designing the controller for reducing steady-state er-

rors. These passivity-based approaches are useful because they do not require velocity

measurement and guarantee stability while allowing one to tune the responses in the

frequency domain. However, in those methods, the transfer function of the result-

ing controllers is first-order, which reduces the flexibility in shaping the closed-loop

responses.

The scope of this chapter is to propose passivity-based dynamic output feedback

controllers with high-order transfer function representations that ensure both stability

and high flexibility in tuning them. Referring to [68] and Chapter 5, we design

output dynamic feedback controllers so that they preserve the pH structure and are

parametrized by transfer function representations, where the outputs have only the

information of positions. The resulting controllers include lead-lag compensators, so

they effectively suppress oscillations and reduce steady-state errors while ensuring

stability. In addition, it is not required to measure the velocity for these controllers.

The remainder of this chapter is organized as follows. Section 6.1 defines the

problem we tackle. Next, Section 6.2 gives our main result and strategies to choose

control gains. In Section 6.3, we show the effectiveness of our controller through a

numerical example. Finally, we provide the conclusions in Section 6.4.
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6.1 Problem setting

Let us consider a class of mechanical systems represented by (5.1.1), and define the

output as y(q, p) : Rn × Rn → Rj with j ∈ Z+. Our goal is to solve the following

problem.

Problem Setting 6.1.1. To avoid velocity measurements, restrict the output to y(q).

Find an output dynamic feedback controller u such that

• The closed-loop system is asymptotically stable at q = q∗ and p = 0n×1.

• There is a guideline to tune the gains for suppressing oscillations and steady-

state errors.

6.2 Passivity-based compensators

This section presents a passivity-based dynamic output feedback controller and a

tuning method for the controller. Note that y(q) is not the passive output of (5.1.1).

The next subsection introduces a PBC method to find an entire class of dynamic

output feedback controllers that preserve the port-Hamiltonian structure.

6.2.1 Passivity-based output feedback controller

The following theorem studies an entire class of passivity-based output feedback con-

trollers by parameterizing the closed-loop system in the pH framework.

Theorem 6.2.1. Consider the dynamic output feedback controller

ẋc = f c(xc, y(q)), u = hc(xc, y(q)), (6.2.1)

with xc ∈ Rmℓ, fc : Rmℓ × Rj → Rmℓ and hc : Rmℓ × Rj → Rm, and parametrize a

closed-loop system (5.1.1) with (6.2.1) as1

ξ̇ = F (q, p, xc, y(q))∇ξHd(ξ), (6.2.2)

F (q, p, xc, y(q)):=

 F11(xc, y(q)) F12(xc, y(q)) F13(xc, y(q))
F21(xc, y(q)) −D(q, p) + F22(xc, y(q)) F23(xc, y(q))
F31(xc, y(q)) F32(xc, y(q)) F33(xc, y(q))

 .

1Note that we omit the arguments of Fi,j , i, j = 1, 2, 3, and D.
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Consider that M(q) in (5.1.1) is not constant. Then, the closed-loop system (6.2.2)

is a pH system if and only if the the following conditions hold.

F11(xc, y(q)) = F22(xc, y(q)) = 0n×n,

F13(xc, y(q)) = F31(xc, y(q))
⊤ = 0n×mℓ,

F12(xc, y(q)) = −F21(xc, y(q))
⊤ = In,

F32(xc, y(q)) = 0mℓ×n,

Ghc(xc, y(q)) = −∇qH̄(xc, y(q)) + F23(xc, y(q))∇xcH̄(xc, y(q)),

f c(xc, y(q)) = F33(xc, y(q))∇xcH̄(xc, y(q)),

(6.2.3)

(
2D(q, p) −F23(xc, y(q))

−F23(xc, y(q))
⊤ −F33(xc, y(q))− F33(xc, y(q))

⊤

)
⪰ 0. (6.2.4)

Here ξ :=(q⊤, p⊤, x⊤
c )

⊤, Hd(ξ) :=H(q, p)+H̄(xc, y(q)), H̄(xc, y(q)) :Rmℓ × Rj → R+,

and F11(xc, y(q)), F12(xc, y(q)), F21(xc, y(q)), F22(xc, y(q)) ∈ Rn×n, F13(xc, y(q)),

F23(xc, y(q)) ∈ Rn×mℓ, F31(xc, y(q)), F32(xc, y(q)) ∈ Rmℓ×n, F33(xc, y(q)) ∈ Rmℓ×mℓ

are the matrices for the parameterization.

See Appendix A for the proof of Theorem 6.2.1. Note that (6.2.3) and (6.2.4) are

only sufficient conditions if M(q) is a constant matrix. The next theorem establishes

conditions that guarantee that the closed-loop system has an equilibrium point at the

desired configuration.

Theorem 6.2.2. Consider the closed-loop system (6.2.2) satisfying (6.2.3) and (6.2.4).

Then, the equilibrium point ξ∗ := (q∗⊤, 01×n, 01×mℓ)
⊤ ∈ E is asymptotically stable if

the following conditions hold.

C1.

(
2D(q, p) −F23(xc, y(q))

−F23(xc, y(q))
⊤ −F33(xc, y(q))− F33(xc, y(q))

⊤

)
≻ 0,

C2. Hd(ξ) has an isolated minimum at ξ = ξ∗,

C3. ∇pHd(ξ) = 0n×1, ∇xcHd(ξ) = 0mℓ×1

⇒ q = q∗, xc = 0mℓ×1.

Proof. Hereafter, we omit the argument of the functions for the sake of readability.

It follows from (6.2.3) that

Ḣd = −(∇ζHd)
⊤
(

2D −F23

−F⊤
23 −F33 − F⊤

33

)
∇ζHd ≤ 0, (6.2.5)

with ζ = (p⊤, x⊤
c )

⊤, and from condition C1, Ḣd = 0 holds if and only if ∇pHd = 0n×1

and ∇xcHd = 0mℓ×1 hold. Therefore, if conditions C2 and C3 hold, then Krasovskii-

Barbashin’s theorem (see [76]) proves that ξ∗ is asymptotically stable.

The next subsection studies how to tune the controllers described in (6.2.1), based

on the transfer function representation.
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6.2.2 Tuning method

In the tuning of the controller, the transfer function representation is useful since the

adjustment of the gains based on frequency analysis is possible. The following remark

shows the conditions under which the linear approximation of the proposed controller

has a transfer function representation. Hereafter, we design y(q) so that j = m and

q = q∗ → y(q) = 0m×1.

Remark 6.2.1. Suppose that the Laplace transformations of the input and output

signals of system (5.1.1) exist. Define f c and hc such that f c(0mℓ×1, 0m×1) = 0mℓ×1

and hc(0mℓ×1, 0m×1) = 0m×1 hold. Then, the linearization of the dynamic output

feedback controller

ẋc = Acxc +Bcy, u = Ccxc +Dcy, (6.2.6)

has a transfer function representation

Ui(s) = ki
sl + bl−1,is

l−1 + · · ·+ b1,is+ b0,i
sl + al−1,isl−1 + · · ·+ a1,is+ a0,i

Yi(s)

= Ψi(s)Yi(s),

(6.2.7)

if and only if the following relation holds for a nonsingular matrix T .

Ac = T−1AT, Bc = T−1B, Cc = CT, Dc = D. (6.2.8)

Here Ui(s) = L[ui(t)], Yi(s) = L[yi(q(t))],

Ac :=
∂f c

∂xc

∣∣∣∣
ζ̄=0(m+mℓ)×1

, Bc :=
∂f c

∂y

∣∣∣∣
ζ̄=0(m+mℓ)×1

,

Cc :=
∂hc

∂xc

∣∣∣∣
ζ̄=0(m+mℓ)×1

, Dc :=
∂hc

∂y

∣∣∣∣
ζ̄=0(m+mℓ)×1

,

(6.2.9)

for ζ̄ := (y⊤, x⊤
c )

⊤, and A ∈ Rmℓ×mℓ, B ∈ Rmℓ×m, C ∈ Rm×mℓ, and D ∈ Rm×m are
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given as

A :=


A1 0ℓ×ℓ . . . 0ℓ×ℓ

0ℓ×ℓ A2
. . .

...
...

. . . . . . 0ℓ×ℓ

0ℓ×ℓ . . . 0ℓ×ℓ Am

 ,Ai :=


0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . .
. . . . . . 0

0 . . . . . . 0 1
−a0,i −a1.i . . . . . . −al−1,i

 ,

B :=


B1 0ℓ×1 . . . 0ℓ×1

0ℓ×1 B2
. . .

...
...

. . . . . . 0ℓ×1

0ℓ×1 . . . 0ℓ×1 Bm

 ,Bi :=


0
...
0
1

 ,

C :=


C1 01×ℓ . . . 01×ℓ

01×ℓ C2
. . .

...
...

. . . . . . 01×ℓ

01×ℓ . . . 01×ℓ Cm

 , Ci := ki

 b0,i − a0,i
...

bl−1,i − al−1,i


⊤

,

D :=


D1 0 . . . 0
0 D2

. . .
...

...
. . . . . . 0

0 . . . 0 Dm

 ,Di := ki.

Now we present how to select the parameters of (6.2.7) so that the closed-loop

system is asymptotically stable at ξ∗. The following theorem establishes conditions

over Ac, Bc, Cc and Dc to satisfy C1.

Theorem 6.2.3. Assume that the matrix D(q, p) ≻ 0 in (5.1.1) satisfies

D(q, p) =

(
Du(q, p) 0k×m

0m×k Da(q, p)

)
, (6.2.10)

with Du ∈ Rk×k and Da(q, p) ∈ Rm×m. Consider the linearized controller (6.2.6)

satisfying (6.2.3) under the conditions that y(q) is selected to y(q) = qea, H̄(xc, q
e
a)

is selected to be a strictly convex function satisfying (∂H̄(xc, q
e
a)/∂ζ̄)|ζ̄=0(m+mℓ)×1

=

0(m+mℓ)×1, and both F23(xc, q
e
a) and F33(xc, q

e
a) are chosen to be constant so that

G⊥F23(xc, q
e
a) = 0k×mℓ. Then, C1 holds if and only if the following condition holds.(

Ac Bc

D−1
a Cc D−1

a Dc

)
is a Hurwitz matrix, (6.2.11)

where we omit the arguments of Da.

Proof. Parameterize H̄(xc, y(q)) as

H̄(xc,q
e
a) = H̄0 +

(
H̄1 H̄2

)(qea
xc

)
+

1

2

(
qe⊤a x⊤

c

)(H̄11 H̄12

H̄⊤
12 H̄22

)(
qea
xc

)
+ o(∥ζ̄∥2),

(6.2.12)
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where H̄0 ∈ R, H̄1 ∈ R1×m, H̄2 ∈ R1×mℓ, H̄11 = H̄⊤
11 ∈ Rm×m, H̄22 = H̄⊤

22 ∈ Rmℓ×mℓ,

H̄12 ∈ Rm×mℓ, and o(x) is a function satisfying |o(x)|/|x| → 0 as x → 0. It follows

from conditions (6.2.3), (∂H̄(xc, q
e
a)/∂ζ̄)|ζ̄=0(mℓ+m)×1

= 0(mℓ+m)×1, and (6.2.9) that

Ac =F33
∂∇xcH̄(xc, q

e
a)

∂xc

∣∣∣∣
ζ̄=0mℓ+m

= F33H̄22, (6.2.13)

Bc =F33
∂∇xcH̄(xc, q

e
a)

∂qea

∣∣∣∣
ζ̄=0mℓ+m

= F33H̄
⊤
12, (6.2.14)

Cc =

(
−
∂∇qeaH̄(xc, q

e
a)

∂xc

+G⊤F23
∂∇xcH̄(xc, q

e
a)

∂xc

)∣∣∣∣
ζ̄=0mℓ+m

=− H̄12 +G⊤F23H̄22,

(6.2.15)

Dc =

(
−
∂∇qeaH̄(xc, q

e
a)

∂qea
+G⊤F23

∂∇xcH̄(xc, q
e
a)

∂qa

)∣∣∣∣
ζ̄=0mℓ+m

=− H̄11 +G⊤F23H̄
⊤
12,

(6.2.16)

and these are summarized as follows.(
Ac Bc

Cc Dc

)
=

(
F33 0mℓ×m

G⊤F23 −Im

)(
H̄22 H̄⊤

12

H̄12 H̄11

)
. (6.2.17)

Since H̄(xc, q
e
a) is strictly convex,(

H̄22 H̄⊤
12

H̄12 H̄11

)
≻ 0, (6.2.18)

and it is nonsingular. Hence, the following relation

XP =

(
F33 0mℓ×m

G⊤F23 −Im

)
, (6.2.19)

holds with

P :=

(
H̄22 H̄⊤

12

H̄12 H̄11

)−1

, X :=

(
Ac Bc

Cc Dc

)
. (6.2.20)

By multiplying the following matrix

T̃ :=

(
Imℓ×mℓ 0mℓ×m

0m×mℓ Da

)
, (6.2.21)
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by (6.2.19) from the left, the following relation is obtained.

XPT̃ =

(
F33 0mℓ×m

G⊤F23 −Da

)
. (6.2.22)

Hence, noting that T̃ = T̃⊤ ≻ 0 and P = P⊤ ≻ 0, the following relation

X̃P + PX̃⊤ + T̃−1QT̃−⊤ = 0(mℓ+m)×(mℓ+m), (6.2.23)

have to hold with

X̃ := T̃−1X =

(
Ac Bc

D−1
a Cc D−1

a Dc

)
, (6.2.24)

Q :=

(
−F33 − F⊤

33 −F⊤
23G

−G⊤F23 2Da

)
. (6.2.25)

It follows from the standard Lyapunov theory that for any Q ≻ 0 (this is equal to

T̃−1QT̃−⊤ ≻ 0), P ≻ 0 satisfying (6.2.23) exists if and only if X̃ is a Hurwitz matrix.

Note that if Q ≻ 0 holds, then C1 holds, and vice versa. This means that if C1

holds, P ≻ 0 satisfying (6.2.23) exists if and only if X̃ is a Hurwitz matrix, and if X̃

is a Hurwitz matrix, we can choose Q ≻ 0 (this means that C1 holds) and P ≻ 0

that satisfy (6.2.23).

Remark 6.2.2. Theorem 6.2.3 provides a guideline on how to choose poles and zeros

to guarantee stability while tuning the controller (6.2.6). The controller (6.2.6) can be

tuned by the following steps: firstly choose poles and zeros so that (6.2.11) is satisfied.

Then check whether there exists a pair of matrices F23, F33, H̄0, H̄1, H̄2, H̄11, H̄12,

and H̄22 that satisfy the conditions (6.2.17) (this is equal to condition (6.2.3)), C1,

C2, and C3. Note that when choosing poles and zeros, T in (6.2.8) is also a free

parameter.

Since the controller (6.2.6) with the representation (6.2.7) includes lead-lag com-

pensators, it is possible to suppress steady-state errors and oscillations while ensuring

stability by using Theorem 6.2.3. In the next section, we show an example of the ap-

plication of our controller.

6.3 Numerical example

To illustrate the applicability of the controllers proposed in Section 6.2, in this sec-

tion, we present an example in which the objective is to stabilize the system at an

equilibrium point with reducing steady-state errors and oscillations. In the example,
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Figure 6.1: 2 DoF planar manipulator with flexible links

a lead-lag compensator is applied to a 2 DoF planar manipulator depicted in Fig. 6.1.

In the figure, qa1 and qa2 denote the angle of the motors, and qu1 and qu2 denote the

angle of the arms. Each arm is connected to a motor through a spring. Consequently,

only qa1 and qa2 are actuated. In addition, unknown kinetic friction is imposed on the

motors. Define the inertia of the i-th link as Ii and the input to the i-th motor as ui,

where the input vector is defined as u = (u1, u2)
T. The inputs of the system are the

torque of the motors. Moreover, this manipulator moves only in the horizontal plane.

The next subsection analyzes stability of the closed-loop system with the controller

(6.2.6).

6.3.1 Stability analysis

As described in Section 5.3.1, this system admits a pH representation of the form

(5.1.1) with n = 4, m = 2, and

D(q, p) =

(
Du 02×2

02×2 Da

)
,

Du = diag (du1 , du2) , Da = diag (da1 , da2) ,

M(q) =

(
Mu(q) 02×2

02×2 Ma(q)

)
,Ma(q) = diag (I1, I2) ,

Mu(q) =

(
a1 + a2 + 2b cos (qu2) a2 + b cos (qu2)

a2 + b cos (qu2) a2

)
,

V (q) = ∥qa − qu∥2Ks
, Ks = diag (Ks1 , Ks2) ,

where du1 , du2 , da1 , da2 , a1, a2, b, I1, I2, Ks1 , and Ks1 are constant parameters. The de-

sired positions are set to

qa = qu = q∗a. (6.3.1)
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6.3. Numerical example

Proposotion 6.3.1. Assume that F23(xc, q
e
a) and F33(xc, q

e
a) are constant, and H̄(xc, q

e
a)

are chosen to be a strictly convex quadratic function parametrized as (6.2.12) with

H̄0 = 0, H̄1 = 01×2, H̄2 = 01×2ℓ. If a controller (6.2.6) satisfies (6.2.3) and C1, the

conditions C2 and C3 are satisfied, that is, the desired equilibrium point q∗ of the

closed-loop system is asymptotically stable.

Proof. Since

Ḣd(ξ)=−(∇ζHd(ξ))
⊤
(

2D(q, p) −F23

−F⊤
23 −F33 − F⊤

33

)
∇ζHd(ξ),

holds, it follows from condition C1 that the equilibrium point q∗ is asymptotically

stabilized if both

∇pHd(ξ) = 04×1, ∇xcHd(ξ) = 02ℓ×1, (6.3.2)

hold only at q = q∗. Since M(q) is positive definite, p = 04×1 holds, and it follows

from (5.1.1), (6.2.3), (6.2.6) and (6.3.2) that

02ℓ×1 =∇xcHd(ξ) = H̄⊤
12q

e
a + H̄22xc,

ṗ = 04×1 =−
(

Ks(qu − qa)
−Ks(qu − qa)

)
−
(

02×1

H̄11q
e
a + H̄12xc

)
.

Hence, qu = qa hold, which leads to the following relation.

02ℓ×1 = H̄⊤
12q

e
a + H̄22xc, 02×1 = H̄11q

e
a + H̄12xc. (6.3.3)

Equation (6.3.3) can be summarized as

0(2ℓ+2)×1 =

(
H̄11 H̄12

H̄⊤
12 H̄22

)(
qea
xc

)
. (6.3.4)

Thus, from the positive definiteness of the Hessian of H̄(xc, q
e
a), 02×1 = qea = qeu always

holds. This completes the proof.

The next section shows a simulation result of applying a lead-lag compensator

designed according to Theorem 6.2.3, Remark 6.2.2, and Proposition 6.3.1.

6.3.2 Simulation results

In this example, the parameters of the system are set to du1= du2= 0.1, da1= da2 = 1,

a1 = a2 = 5, b = 1, I1 = I2 = 1, Ks1 = Ks1 = 1, and q∗ is set as q∗ = (1,−1, 1,−1)⊤.
Note that this is the case satisfying the assumption in Theorem 6.2.3. To simulate the

89



Chapter 6. Passivity-Based High-Order Compensators

situation where kinetic friction force is imposed, the simulation is performed assuming

that an external force h̃(p) = −(sign(pa,1), sign(pa,2))⊤ × 10−2 is added to the input,

where sign(·) is a sign function. Figure 6.2 shows the responses of the positions and

inputs of system (5.1.1) in the case that a proportional controller

u = − 3

10
qea (6.3.5)

is applied. The horizontal axes are time, and the vertical axes show positions and

inputs, respectively. In the left side of Fig. 6.2, qu,1, qu,2, qa,1 and qa,2 are depicted by

the red solid line, the blue solid line, the red dashed line, and the blue dashed line,

respectively. In the right side of Fig. 6.2, u1 is colored in red and u2 is colored in blue.

As shown in Fig. 6.2, the proportional controller exhibits oscillations. To suppress the

oscillations, we design a lead compensator satisfying (6.2.11), where transfer function

Ψi(s) is designed as

Ψi(s) = −2
s+ 1

s+ 10
. (6.3.6)

In this controller, there exist matrices F23, F33, H̄11, H̄12, and H̄22 (to ensure the

asymptotical stability, H̄(xc, q
e
a) is selected to be a strictly convex quadratic form as

in Proposition 6.3.1) that satisfy (6.2.17) and C1, for example,

F23 =


0 0
0 0

−8.76× 10−2 0
0 −8.76× 10−2

 , F33 =

(
−6.92× 10−3 0

0 −6.92× 10−3

)
,

H̄11 =

(
1.47× 10 0

0 1.47× 10

)
, H̄12 =

(
−1.45× 102 0

0 −1.45× 102

)
,

H̄22 =

(
1.45× 103 0

0 1.45× 103

)
.

The responses of q and u are depicted in Fig. 6.3 in the same way as in Fig. 6.2.

Figure 6.3 shows that the lead compensator successfully suppresses the oscillations,

but the steady-state errors caused by kinetic friction remain. To reduce the steady-

state errors, we add a lag compensator to controller (6.3.6) so that (6.2.11) is satisfied,

where the transfer function is designed as

Ψi(s) = −
2

3

s+ 1

s+ 10

s+ 1

s+ 1/3
. (6.3.7)
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In this controller, as in the case of the lead compensator, there exist matrices F23,

F33, H̄11, H̄12, and H̄22 that satisfy (6.2.17) and C1, for example,

F23 =


0 0 0 0
0 0 0 0

−3.18× 10−1 9.87× 10−3 0 0
0 0 −3.18× 10−1 9.87× 10−3

 ,

F33 =


−3.03× 10−2 1.03× 10−2 0 0
−8.69× 10−3 −5.02× 10−3 0 0

0 0 −3.03× 10−2 1.03× 10−2

0 0 −8.69× 10−3 −5.02× 10−3

 ,

H̄11 =

(
1.29× 10 0

0 1.29× 10

)
,

H̄12 =

(
−4.25× 10 −1.26× 102 0 0

0 0 −4.25× 10 −1.26× 102

)
,

H̄22 =


1.42× 102 4.18× 102 0 0
4.18× 102 1.33× 103 0 0

0 0 1.42× 102 4.18× 102

0 0 4.18× 102 1.33× 103

 .

The responses of q and u are depicted in Fig. 6.4 in the same way as in Fig. 6.2.

Figure 6.4 shows that the lead-lag compensator achieves a reduction of the steady-

state errors and suppression of the oscillations while ensuring stability.

6.4 Conclusion

This chapter proposed a PBC technique that is suitable to stabilize a class of me-

chanical systems, where the resulting output feedback controller can be tuned based

Figure 6.2: Simulation result for the proportional controller
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Figure 6.3: Simulation result for the lead compensator

Figure 6.4: Simulation result for the lead-lag compensator

on frequency analysis. The proposed tuning method is useful for adding first-order

transfer functions such as lead or lag compensators intuitively while guaranteeing sta-

bility. In addition, the controller has the advantage that the velocity measurements

are not required. These advantages are shown through the numerical examples of the

application of the controller to a mechanical system.
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Chapter 7

Conclusions

7.1 Summary

In this thesis, we have proposed several methods to improve the performance of the

feedforward and feedback control. The first part of this thesis focuses on feedforward

control techniques and is devoted to proposing several numerical solution methods for

finite-time sparse optimal control problems with focusing on the convergence property.

In Chapter 2, we have proposed the locally deforming continuation method that gives

the analytical relation between the variation of the continuation parameter and the

proximity of the solutions before and after deformation. This relation tells us how to

transform the continuation parameter so that the initial guess of the solution always

falls within the convergence region. In Chapter 3, we have proposed the modified

sparse Newton method that ensures quadratic convergence and can find an ℓ1-optimal

solution. In addition, the chapter proposed a practical algorithm that considers the

input restrictions. The results obtained in these chapters will enable us to reliably

calculate the input of the feedforward control and thus improve the practicality of

the feedforward control techniques, including the sparse optimal control. One of the

practical examples is shown in Chapter 4. In Chapter 4, we have introduced the

application of the L1/L2-optimal control technique to the circular-clothoid trajectory

generation problem. This application is useful for developing autonomous driving

systems. In the application example, the locally deforming continuation method

successfully obtains the desired trajectory. The second part of this thesis has focused

on the feedback control techniques. Chapters 5 and 6 have proposed the passivity-

based compensators that do not require velocity measurements and can be tuned in

the frequency domain. The passivity-based lag compensator proposed in Chapter 5

can consider the input restrictions while ensuring stability and improving steady-state

responses. In addition, the high-order compensators proposed in Chapter 6 enable us
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to reduce both oscillations and steady-state errors. These proposals give guidelines

on how to tune the controller and contribute to improving the practicality of the

feedback control techniques. The results obtained in this thesis will contribute to the

development of control technology and enable the achievement of more challenging

control tasks.

7.2 Discussion and future work

This section discusses future directions for research based on the results presented in

this thesis.

7.2.1 Numerical solution methods for sparse optimal control
problems

In Chapters 2 and 3, we focused on the convergence of algorithms and proposed

the numerical solution methods in the framework of indirect and direct methods,

respectively. When discussing convergence, the convergence rate and the radius of

convergence become important. The convergence rate depends on how to reduce the

error on the boundary conditions. Existing methods, such as the Newton method,

consider the error as a function of the search parameters and use the information of

the gradient of the function to achieve fast convergence. In other words, information

on the gradient of the error function is necessary to discuss the convergence rate.

For example, in the case of the indirect shooting method like the locally deforming

continuation method, it is difficult to obtain the information of the gradient because

the relationship between the search parameter and the error is given by integration.

Therefore, it is difficult to improve the convergence rate for methods that cannot

obtain gradient information, and for such methods, the goal should be to improve

the algorithm in terms of the convergence region, as proposed in this thesis. On the

other hand, if the gradient can be calculated easily, such as in the direct method or

collocation method, the convergence rate can be improved by using the information on

the gradient. The convergence region can also be easily studied in these methods. For

example, in the modified sparse Newton method, the radius of convergence is given

by using parameters such as the Lipschitz constant of the error function. However,

it is difficult to estimate the radius of convergence concretely. In the modified sparse

Newton method, for example, the radius of convergence is determined by the constants

L and µ0, but it is currently difficult to estimate these constants. Therefore, it is

necessary to study how to estimate the radius of convergence in the future.
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7.2.2 Tuning method for passivity-based controllers

In Chapters 5 and 6, we proposed methods to tune the output response while guar-

anteeing stability by expressing the passivity-based controllers in terms of a transfer

function and organizing the relationship between the parameters of the transfer func-

tion and the stability condition. There is room for improvement in these methods.

The first is the extension of the class of systems that the proposed method can handle.

The systems under consideration in the proposed method do not have non-holonomic

constraints and thus the proposed method cannot be applied to non-holonomic sys-

tems such as vehicles. In addition, the damping matrix of the system is assumed to

have a specific structure. The first direction of improvement is to relax these con-

straints and expand the class of systems that can be handled. The second point to be

improved is the constraint on the outputs. The proposed controllers use only the in-

formation of the actuated state variables, and therefore it cannot guarantee stability

when using only the information of the unactuated variables. However, in practi-

cal use, it may be required to control using the information of unactuated variables

due to the conditions of sensor installation. Therefore, we should consider extending

the proposed method to use unactuated variables in control. The third point is the

quantitative evaluation of the control performance. In the proposed method, it is pos-

sible to tune the responses around the desired equilibria intuitively by designing the

transfer function, but no analytical result on to what extent the steady-state errors

can be reduced. Therefore, in the future, it is necessary to provide some analytical

evaluation of the response obtained as a result of tuning.
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Appendix A

Proof of Theorem 6.2.1

Proof. Assume that (6.2.3) and (6.2.4) holds. It follows from (6.2.3) that (6.2.2) takes

the form

ξ̇ =

 0n×n In 0n×mℓ

−In −D(q, p) F23(xc, y(q))
0mℓ×n 0mℓ×n F33(xc, y(q))

∇ξHd(ξ)

=
1

2


 0n×n 2In 0n×mℓ

−2In 0n×n F23

0mℓ×n −F⊤
23 F33 − F⊤

33


−

 0n×n 0n×n 0n×mℓ

0n×n 2D −F23

0mℓ×n −F⊤
23 −F33 − F⊤

33

∇ξHd(ξ)

=
1

2
(J −D)∇ξHd(ξ). (A.0.1)

Since J ⊤ = −J and D ⪰ 0 hold from the condition (6.2.4), closed-loop system (6.2.2)

is a pH system. Note that the arguments of the matrices are omitted in the second

and subsequent lines. By expanding (A.0.1), we have

q̇ =∇pHd(ξ) = ∇pH(q, p),

ṗ =−∇qHd(ξ)−D(q, p)∇pHd(ξ)

+ F23(xc, y(q))∇xcHd(ξ)

=−∇qH(q, p)−D(q, p)∇pH(q, p)−∇qH̄(xc, y(q))

+ F23(xc, y(q))∇xcH̄(xc, y(q))

=−∇qH(q, p)−D(q, p)∇pH(q, p) +Ghc(xc, y(q)),

ẋc =F33(xc, y(q))∇xcHd(ξ)

=F33(xc, y(q))∇xcH̄(xc, y(q))

=f c(xc, y(q)),
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and thus (6.2.2) represents closed-loop system (5.1.1) with (6.2.1) under the conditions

(6.2.3) and (6.2.4). This completes the proof of the sufficient condition. Next, we

prove the necessity. Substituting (6.2.1) in (5.1.1) leads to

q̇ =∇pH(q, p), (A.0.2)

ṗ =−∇qH(q, p)−D(q, p)∇pH(q, p)

+Ghc(xc, y(q)),
(A.0.3)

ẋc =f c(xc, y(q)), (A.0.4)

and expanding (6.2.2) leads to

q̇ =F11(xc, y(q))∇qHd(ξ) + F12(xc, y(q))∇pHd(ξ)

+ F13(xc, y(q))∇xcHd(ξ),
(A.0.5)

ṗ =F21(xc, y(q))∇qHd(ξ)

+ (F22(xc, y(q))−D(q, p))∇pHd(ξ)

+ F23(xc, y(q))∇xcHd(ξ),

(A.0.6)

ẋc =F31(xc, y(q))∇qHd(ξ) + F32(xc, y(q))∇pHd(ξ)

+ F33(xc, y(q))∇xcHd(ξ),
(A.0.7)

Noting that

∇qH(q, p) =
∂

∂q

(
1

2
p⊤M(q)−1p

)
+

∂V (q)

∂q
,

∇pH(q, p) = M(q)−1p,

∇pH̄(xc, y(q)) = 0n×1,

∇xcH(q, p) = 0mℓ×1,

comparison of (A.0.2) and (A.0.5) yields

0n×1 =F11(xc, y(q))
∂

∂q

(
1

2
p⊤M(q)−1p

)
+ F11(xc, y(q))

∂V (q)

∂q

+ F11(xc, y(q))∇qH̄(xc, y(q))

+ (F12(xc, y(q))− In)M(q)−1p

+ F13(xc, y(q))∇xcH̄(xc, y(q)).

(A.0.8)

SinceM(q)−1 is not constant, (A.0.8) is a quadratic equation for p, and the coefficients

of the quadratic term and the linear term have to be zero so that (A.0.8) holds for
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any p. Thus, we have the following relation.

F11(xc, y(q)) = 0n×n, (A.0.9)

F12(xc, y(q)) = In, (A.0.10)

F13(xc, y(q)) = 0n×mℓ. (A.0.11)

In the same way, by comparing (A.0.3) and (A.0.6), we have

0n×1 =(F21(xc, y(q)) + In)

(
∂

∂q

(
1

2
p⊤M(q)−1p

))
+ (F21(xc, y(q)) + In)

(
∂V (q)

∂q

)
+ F21(xc, y(q))∇qH̄(xc, y(q))

+ F22(xc, y(q))M(q)−1p

+ F23(xc, y(q))∇xcH̄(xc, y(q))−Ghc(xc, y(q)),

and this yields the following relation.

F21(xc, y(q)) =− In (A.0.12)

F22(xc, y(q)) =0n×n (A.0.13)

Ghc(xc, y(q)) =−∇qH̄(xc, y(q))

+ F23(xc, y(q))∇xcH̄(xc, y(q))
(A.0.14)

As for the (A.0.4) and (A.0.7), the equality

0mℓ×1 =F31(xc, y(q))
∂

∂q

(
1

2
p⊤M(q)−1p

)
+ F31(xc, y(q))

∂V (q)

∂q

+ F31(xc, y(q))∇qH̄(xc, y(q))

+ F32(xc, y(q))M(q)−1p

+ F33(xc, y(q))∇xcH̄(xc, y(q))− f c(xc, y(q))

holds, and thus we have

F31 = 0mℓ×n, (A.0.15)

F32 = 0mℓ×n, (A.0.16)

f c(q, xc) = F33(xc, y(q))∇xcH̄(xc, y(q)). (A.0.17)
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Appendix A. Proof of Theorem 6.2.1

At the last thing, it follows from (A.0.9)-(A.0.17) that the parametrized closed-loop

system is rewritten as (A.0.1), and since the closed-loop system is a pH system, we

have (
2D(q, p) −F23(xc, y(q))

−F23(xc, y(q))
⊤ −F33(xc, y(q))− F33(xc, y(q))

⊤

)
⪰ 0. (A.0.18)

The conditions (A.0.9)-(A.0.18) equal to (6.2.3) and (6.2.4), which completes the

proof.
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