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Abstract

To find the essential nature of quantum theory has been an important prob-
lem for not only theoretical interest but also applications to quantum tech-
nologies. In those studies on quantum foundations, the notion of uncertainty;,
which appears in many situations, plays a primary role among several stun-
ning features of quantum theory. The purpose of this thesis is to investigate
fundamental aspects of uncertainty. In particular, we address this problem
focusing on convexity, which has an operational origin.

We first try to reveal why in quantum theory similar bounds are often
obtained for two types of uncertainty relations, namely, preparation and
measurement uncertainty relations. In order to do this, we consider uncer-
tainty relations in the most general framework of physics called generalized
probabilistic theories (GPTs). It is proven that some geometric structures
of states connect those two types of uncertainty relations in GPTs in terms
of several expressions such as entropic one. From this result, we can find
what is essential for the close relation between those uncertainty relations.

Then, we consider a broader expression of uncertainty in quantum theory
called quantum incompatibility. Motivated by an operational intuition, we
propose and investigate new quantifications of incompatibility which are
related directly to the convexity of states. It is also demonstrated that
there can be observed a notable phenomenon for those quantities even in the
simplest incompatibility, i.e., incompatibility for a pair of mutually unbiased
qubit observables.

Finally, we study thermodynamical entropy of mixing in quantum theory,
which also can be seen as a quantification of uncertainty. Similarly to the
previous approach, we consider its operationally natural extension to GPTs,
and then try to characterize how specific the entropy in quantum theory is.
It is shown that the operationally natural entropy is allowed to exist only
in classical and quantum-like theories among a class of GPTs called regular
polygon theories.
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Chapter 1

Introduction

Since its birth about a hundred years ago, quantum theory has been crucial
in modern physics because of its more accurate description of nature than
classical theory; in addition, it was particularly revealed that there are many
differences between the mathematical formulations of classical and quantum
theories [6]. Then, it is natural to ask the following questions. What is phys-
ically the most significant difference between them? Why is nature described
by quantum theory? Since the dawn of quantum theory, they have remained
central questions, and much effort has been devoted to finding an answer
to form the frontier of physics called quantum foundations [B, [@]. Many
significant results have been obtained in that field, and for results of partic-
ular importance such as uncertainty relations [8] and the violation of Bell
inequality [9, 00], active studies are still ongoing. While studies on quantum
foundations are motivated by the theoretical interest of exploring the root
of nature, it should be emphasized that pursuing fundamental aspects of
quantum theory also contributes to the development of its applications, i.e.,
quantum technologies. For example, the original ideas of quantum cryptog-
raphy (quantum key distribution) were derived using uncertainty relations
and Bell nonlocality [0, I2]. Quantum foundations are valuable research
objects from both theoretical and practical perspectives.

In this thesis, we are engaged in further developing of quantum foun-
dations. To elucidate how “special” quantum theory is, we focus on its
convexity. In quantum theory, convexity is one of the most fundamental
ingredients, and appears in many situations. A basic example that exhibits
convexity is the set of all states (the state space) for some quantum system,
which is in fact closed under operationally natural convex combinations [5].
There is one noteworthy approach to quantum foundations concentrating
on this primitive convexity, which we call the convexity approach [[3]. The
main aim of the convexity approach is to find what is needed to derive quan-
tum theory besides the convexity, i.e., to distinguish quantum theory from
other convex theories. Its mathematical formulation and physical motiva-



tion are today succeeded to the framework called generalized probabilistic
theories (GPTs). As was seen above or will be seen in detail in subsequent
chapters, GPTs are operationally the broadest framework to describe nature,
and have been studied actively in recent years in the context of quantum
foundations, followed by the intuition that seeing quantum theory from a
broader perspective will contribute to elucidating its essence. While this
primitive convexity for states is focused in the study of GPTs, there are
studies about quantum foundations based on other types of convexity such
as convexity for separable states [I4, 5] or compatibility [I6, I7]. Con-
sidering the above facts, in this thesis we regard convexity as a significant
concept for the research on quantum foundations, and demonstrate the re-
sults of several attempts to capture the essential nature of quantum theory
via convexity. In particular, in this study, we focus on “uncertainty”, which
is one of the most critical features in quantum theory, and try to reveal its
essence. We have to mention that all results were obtained for operational
convezity, which means that every type of convexity considered in this the-
sis has an operational origin. By means of the operational descriptions, our
results are easier to understand physically, and thus may contribute more to
the theoretical insights of quantum theory and technological applications.

In Chapter B, we review the mathematical foundations of GPTs. In re-
cent studies, GPTs are usually introduced in a mathematically refined man-
ner such as “the state space is a compact convex set in a finite-dimensional
Euclidean space.” There, we try to give a detailed explanation of how those
expressions are derived from physically abstract notions. We demonstrate
how the operational convexity associated with probability mixtures of states
or effects (observables) is expressed in terms of ordered Banach spaces. There
are also introduced additional topics for GPTs with physical or mathematical
motivations such as the descriptions of composite system and transforma-
tions or the notions of transitivity and self-duality.

Based on the mathematical foundations of GPTs, in Chapter B we ex-
tend the concept of uncertainty relations, which is one of the most astonish-
ing consequences in quantum theory, to GPTs, and investigate how specific
the quantum uncertainty is. It is explained that two types of uncertainty,
preparation uncertainty and measurement uncertainty, can also be naturally
considered in GPTs, and how they are related is examined under various
expressions such as entropic uncertainty relations. Following the quantum
results [IR, 9], we prove that there is a quantitatively close connection be-
tween the two types of uncertainty in GPTs with the assumptions of transi-
tivity and self-duality. We also present numerical evaluations of uncertainty
for GPTs called regular polygon theories from which we can observe how
quantum uncertainty for a single qubit system is specific in regular polygon
theories.



In Chapter @, we focus on another fundamental concept for quantum
foundations called quantum incompatibility. It is known that many aston-
ishing results in quantum theory, such as the no-cloning theorem [20] and
uncertainty relations, are examples of quantum incompatibility [21]. In this
way, quantum incompatibility provides such a unified framework to describe
what is impossible or what becomes uncertain in quantum theory that it
plays an essential role in the field of quantum foundations. Further, we con-
sider the operational convexity of quantum incompatibility, which is derived
from that of states and effects. There are introduced new quantifications
of incompatibility called compatibility dimension and incompatibility dimen-
sion from a very operational perspective, and properties of those quantities
are examined for several cases. In particular, for a pair of incompatible
qubit observables, we demonstrate that there is a difference of interest be-
tween these quantities. We note that similar quantities can also be defined
in GPTs because they are introduced based on the convexity for states and
effects, but we only concentrate on quantum incompatibility.

Finally, in Chapter B, we revisit GPTs, and consider thermodynamical
entropy there. We introduce operationally natural entropy which can be
defined in every theory of GPTs but is required to satisfy some operational
convexity for families of perfectly distinguishable states. Then, it is proven
that the only theories that admit the existence of the natural entropy are
classical and a quantum-like theories among regular polygon theories.



Chapter 2

Generalized Probabilistic
Theories

Quantum theory is the most successful theory which describes nature: it
does explain phenomena that cannot be recognized if we live in the classical
world. The existence of superposition or entanglement is an instance of
those remarkable phenomena, but probably the most drastic one is that
nature is probabilistic: even if we conduct a “perfect” preparation of a
physical system and measurement, we do not always obtain one determined
outcome. Generalized probabilistic theories (GPTs) are the framework that
focuses on those probabilistic behaviors of nature. The only requirement
for GPTs is the convexity for primitive notions of states and effects, and
there are in general not assumed any Hilbert space structures or operator
algebraic properties. In this sense, GPTs are a more general framework than
quantum theory and classical theory, and play an active role in the study of
quantum foundations [22, 23, 24, 25, 26, 274, PR, 29, B0, B1)] after their initial
proposition and development in the 1960s and 1970s [32, 33, 34, 35, 36, 37].7
In this chapter, we explore the mathematical foundations of GPTs in detail
to show how they give the most intuitive and fundamental description of
nature.

This chapter is organized as follows. In Section P, we give the two
most fundamental notions of GPTs, namely, states and effects. They are
introduced in a conceptual and operational way, and mathematically em-
bedded into a vector space and its dual (more generally, a Banach space and
its Banach dual) respectively. These embeddings form the mathematical
foundations of GPTs. In fact, thanks to this embedding theorem, studies
on GPTs usually begin with the assumption that the set of all states called
the state space is a compact convex set of a finite-dimensional vector space
(more generally, a base of a base norm Banach space). After giving the de-

1For historical review of GPTs, we recommend [30, B8].



scriptions of states and effects, we explain other basic but somewhat more
advanced topics, composite systems and transformations in GPTs, in Sec-
tion 2 and Section 3. It will be found that the previously introduced
embeddings into vector spaces make it mathematically convenient to discuss
those concepts. In Section 24, we introduce the notions of transitivity and
self-duality. These additional notions often appear in the field of GPTs, and
our main results in the following chapter are also obtained based on them.
In Section 23, we illustrate some examples of GPTs which include classical
and quantum theories with finite levels, and other important theories often
considered in the study of quantum foundations. Throughout this chapter,
explicit proofs of mathematical matters are given in principle, but some of
them are omitted when they are too technical or lengthy.

2.1 States and effects

A physical experiment is described by three procedures: to prepare an object
system, to perform a measurement, and to obtain an outcome. However, in
general, even if the same preparations are conducted and the same measure-
ments are performed, each outcome obtained is different, and we can only
predict from the preparation and measurement how frequently each outcome
is obtained, i.e., the probabilities [39, &40, &1, A2].2 Let us give a concrete
description. For a preparation procedure P, measurement apparatus A, and
a measurable set (X, A), where X is the nonempty set of outcomes associ-
ated with A and A is a o-algebra of subsets of X, we denote by u(A,P)(U)
the probability of obtaining an outcome in U € A when measuring A on
P. Then, each pair (A, U) reflects whether a measurement of A yields a re-
sult in the set U or not. We regard such “yes-no measurements” as a more
fundamental notion than the original measurement apparatuses because the
latter is an assemblage of the former.

preparation measurement probabilities
¢ o |\

X
P A (A, P)(")

Figure 2.1: Description of physical experiments.

2In [3¥], this primitive assumption of physics is called the statistical causality.
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In this section, we shall demonstrate how to describe two fundamen-
tal concepts of physics, preparations and measurements, in mathematical
language. As explained above, we focus mainly on yes-no measurements,
and write a yes-no measurement and the probability u(A,P)(U) simply as
M and p(M, P) respectively. It will be shown that they are reduced to the
notions of states and effects, and are embedded naturally into some vector
space and its dual space respectively. The embedding theorem enables us
to treat abstract concepts of preparations and measurements as mathemat-
ically well-defined objects, which is the very starting point for GPTs. After
their investigations, we will go back to descriptions of general measurement
apparatuses to obtain the notion of observables. This section is mainly in
accord with [30, B, @1, 43, 44, 45].

2.1.1 Axiomatic description

Let Prep and Meas be the set of all procedures of preparations and yes-no
measurements for some physical experiment respectively. For example, in
the experiment of detecting the spin of an electron, each element of Prep
represents an apparatus which emits an electron, and each element of Meas
represents a value of the meter of some measurement apparatus or the cor-
responding yes-no apparatus itself. What is specific to this description is
that apparatuses with different physical implementations are distinguished.
In the previous example, an apparatus that emits randomly (i.e., with prob-
abilities % and %) electrons with x4+ spin and x— spin, and apparatus which
emits randomly electrons with z+ spin and z— spin are different elements
of Prep, even though they describe the same quantum state %. In the field
of GPTs, we do not pay attention to those differences of “context” [d6] for
both preparations and measurements, but only focus on the statistics: if we
have two apparatuses that are different but output the same statistics, then

we identify those two apparatuses in our framework (see Figure 272).

10X0|

[+ X+
1 1
2 2
/ /
Apparatus 1 I Apparatus 2
\ \
1 1
2 2

[1X1]

Figure 2.2: We identify apparatuses that have dif-
ferent “contexts” but generate the same statistics.
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Let us present its mathematical expression. Preparation procedures
P1,P, € Prep are called operationally equivalent (denoted by Py ~ Pj) if
w(M, Py) = (M, P,) holds for all M € Meas. In a similar way, measurement
procedures M, M, € Meas are called operationally equivalent (denoted by
M; ~ My) if (M, P) = pu(My, P) for all P € Prep. The binary relation ~
defines an equivalence relation, and thus we can introduce the corresponding
quotient sets  := Prep/~ and £ := Meas/~. These two sets  and £ are
called the state space and effect space respectively, and each element of Q
and & are called a state and an effect respectively [33, 34, B9, 43]. Here, we
express those descriptions above as an axiom.

Axiom 1 (Separation principle)

States and effects separate each other. That is, for any distinct &y, Wy € Q,
there exists an effect & € £ such that p(é,dn) # u(é,@s), and also, for any
distinct €1, €5 € g, there exists a state & € Q such that p(é1,@) # pu(éz, ).

We note that in the statement above we regard the function p(-, -) on Meas x
Prep as on € x Q in an well-defined way. States and effects are two primitive
notions in GPTs.

Next, we focus on another fundamental concept, probabilistic mixtures. It
is operationally natural to assume that if we can prepare states Wy, W, . . ., Wy,
then we can also prepare a state through the probabilistic mixture of @y, Ws,
..., Wy, with respective probabilities A\j, A, ..., Ay, where \; = 0and > | \; =
1.7 We denote the newly introduced state by (A1, Ag, ..., Ap; @1, D2, . . ., Wi )g-
The notion of probabilistic mixtures should be considered also for effects,
and we denote the effect obtained through the mixture of effects {€;}7., < 5
with a probability weight {o;}7., by (o1,02,...,0m;€1,€2,...,Emn)s. Then,
the nature of probabilistic mixtures motivates us to give the following axiom.

Axiom 2 (Probabilistic mixtures)

For any finite set of states {0;}7—, < Q and probability weight {\;}"_, (i.e.,
Ni =0 and Y, N\ = 1), there exists a state (A1, Ao, ..., Ap; @1, W, ..., Wi )¢ €
Q satisfying

(& O, Aas o Any @1, @, @) = D AipalE, @) (2.1)
=1

for allé € €. Similarly, for any finite set of effects {&}7L, & and probabil-
ity weight {o;}72,, there exists an effect (o1,09,...,0m;€1,€2,...,6m)s € €

3From an operational viewpoint, it seems unnatural to consider mixtures with irra-
tional ratios because we can only conduct a finite number of experiments. However, in
this thesis, we focus on theories with the completeness assumption (see Mathematical
assumption M), so at this point assume implicitly that mixtures with irrational ratios are
admitted for simplicity.
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satisfying
2 (<O-17 02y .-+, 0m; éla é27 s 7é”m>£~ 7(D> = Z U]l’b(é]? (D) (22)
j=1

for all & € Q. From Aziom 1, they are uniquely determined.

Axiom 0 and Axiom B ensure that, in addition to (E), several proper-
ties that probabilistic mixtures should satisfy hold successfully for the state
M, A2, -0, A @1, W, ..., Wy g For example, we can derive easily that

<)\1,)\2,...,)\n;LDI,CDQ,...,C:)n>Q = <)\2,)\1,...,/\n;CZJQ,(Z}l,...,(I)n>Q

holds, i.e., the mixture does not depend on the “order” of the states and
probabilities (similar observations also can be obtained for effects).

We require additional conditions for € according to [30, &7, 48]. The first
requirement is that € includes the unit effect @ satisfying wu(t, ) =1 for all
@ € Q. In other words, we suppose the existence of a yes-no measurement
apparatus that always outputs “yes”, and this seems to be an operationally
natural condition. We note that such @ is unique due to Axiom 0. The
second one is that if € is an element of £, then the complement effect &t
such that pu(é+,@) = 1 — wu(é,@) for all @ € Q is also an element of £.
This condition comes from the operationally natural intuition that if we
admit a certain yes-no measurement apparatus, then we should also admit
an apparatus constituted by exchanging the “yes” and “no” of the original
one. We note similarly that such é' is unique. For the complement of the
unit effect %, we sometimes denote it by 0 in this thesis. These conditions
are summarized as follows.

Axiom 3 (Existence of unit and complement effects)

(i) There ezists the unit effect @ in € such that p(i, o) = 1 for all & € Q.
(ii) If € € &, then its complement &+ € € such that p(é+, &) = 1 — (e, &) for
all € Q.

We remark that those effects @ and é+ in Axiom B are consistent with Axiom
2.
Now we can give the definition of a GPT.

Definition 2.1 (Generalized probabilistic theories)

A triple (€, &, 1) of two sets Q and &, and a function p: Q x € — [0,1]
satisfying Axiom [, B, B is called a generalized probabilistic theory (a GPT
for short). The set Q and its element are called the state space and a state
of the theory, and £ and its element are called the effect space and an effect
of the theory respectively.

13



Let us consider infinite countable mixtures for states.® In the following,
we denote mixtures of two states (A, 1 — \; 01, @a)g simply by (X; @1, @2). In
order to treat infinite limits, some topological structure should be introduced
into Q. Here we define a topology on € in line with Gudder [43]. We suppose
that if states @; and @y are “close”, then

A5 @, @) = (A5 @, @a)

with small X holds for some &}, &, € Q. That is, the closeness between @y
and wy should be evaluated by

d(d)l,d)g) = mf{O <A<l |<>\,(IJ£,(D1> = <)\,(.:Jé,(122>

for some @}, @} € Q}.

(2.3)

We note that (E23) always can be defined since <%, w9, &11> = <%, W1, (Dg> holds
due to Axiom 0. We assume that infinite countable mixtures are allowed in
our framework. It is described in the following form.

Mathematical assumption 1 (Completeness)

If d defined in (233) satisfies lim,, ;o0 d(@O, W) = 0 for a family of states
{@0p )2 < Q, then there exists a unique @ € S such that lim, 4 d(©,,®) =
0.

There are two things to remark on Mathematical assumption M. The first one
is about the notion of completeness. In fact, we can prove that the function
d is a metric function on (see Subsection EZT2), and thus Mathematical
assumption M is equivalent to the requirement that (Q, CZ) is a complete metric
space, which especially admits infinite countable mixtures. The other remark
is about the terminology “Mathematical assumption”. In the field of GPTs,
the assumption of closedness or completeness for a state space with respect
to some physically natural topology is a common one [31]. Namely, if we can
prepare states which are very “close” to some fixed state, then it is usually
assumed that the fixed state can also be prepared. This seems to be a
natural, but at the same time more artificial assumption than the previous
ones, so in this thesis, we regard it as a mathematical assumption rather
than an axiom.

2.1.2 Convex structures and embedding theorems

In the previous section, we presented primitive descriptions of states and
effects from a physical perspective. We can rephrase them via the mathe-
matical notion of convex structures [B36, 43].

4For infinite countable mixtures of effects, see footnote I
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Definition 2.2
(i) A set S with a map (-;-) such that

1. (A, A9y ooy A 81, 89, - -+, Spy defines a unique element of S for any fi-
nite sq, o, ..., S, € S and probability weight {A1, Ao, ..., \,} (i.e., each
Ni=0and > N\ =1);

2. O, A, A8, S, ., 8) =S

is called a convex (pre-)structure. Elements of the form (A, 1 — A;s,t) are
denoted simply by (\; s, t).
(ii) Let S and T" be convex structures. A map F': S — T is called affine if

F (O Aoy A 81,82, 50))

(2.4)
= AL A2, A F(s1), F(s2), ..., F(sy)),

and the set of all affine maps from S to T is denoted by Aff(S,T). If
there exists an affine bijection J: S — T, then S and T are called affinely
isomorphic, and J is called an affine isomorphism.

(iii) Because a convex subset of a vector space is naturally a convex structure
with usual convex combinations®: (A, Mg, ..., An;S1,82,. .., S0y = Dy Nisi,
we can define successfully the set Aff(S,R) for a convex structure S, and
call its element an affine functional on S. In particular, the set of all f €
Aff(S,R) such that f(s) € [0,1] for all s € S is denoted by E. We regard
Aff(S,R) as a real vector space in a natural way.

(iv) A convex structure (.S, {:;-)) is called a total convex structure if

1. S is equipped with a function d defined in the same way as (Z3), and if

limy, ;o0 d(Sn,y ) = 0 for a family of elements {s,}, = S, then there

exists a unique s € S such that lim, ., d(s,,s) = 0;
2. f(s) = f(t) for every f e Eg implies s = t.

Let us consider a GPT with a state space Q and effect space &. Clearly, Q
satisfies conditions (i)-1 and (i)-2 in Definition 222, and thus it is a convex
structure. On the other hand, it is easy to see that the functional é° defined
for ¢ € £ as &°: & — pu(é,®) is an affine functional on Q due to Axiom
B. Because we are interested only in probabilities, it is not problematic to
identify the effect € representing the associated yes-no apparatus with the
affine functional €°, and we also call the latter an effect.5 In other words, if

°A subset A of a vector space L is called convex if Az + (1 — \)y € A whenever
z,y € Aand X € (0,1), and a vector sum > ;" | \jz; for z1,...,2, € A is called a convex
combination if {\1,...,\,} is a probability weight. For a more detailed description of
convex sets, see [d9, bl]

In [B¥], € is called an experimental proposition, while the term “effect” (also called
experimental function) is used for the induced affine functional é°.
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we define the map o: é — ¢&°, then it is an injection from & to g@ because
of Axiom [, and thus € and £° E:'Q can be identified with each other.
Moreover, we can observe from Axiom P that the notion of mixtures is
represented mathematically as

m
<O'1,0'2,...,O'm;él,ég,...,ém>%:ZUjé;, (25)
j=1

and from Axiom B that £° includes a special effect 4° such that @°(@) = 1
for all @ € Q and é-° = @° — &° € £° holds whenever é° € £°. We note that
£° is a convex subset of the vector space Aff(S,R) due to (23). In this way,
we regard the effect space £° as a convex subset of 5}2: & < S}z. In this
thesis, we require that the converse inclusion also holds, which is called the
no-restriction hypothesis [286].

Mathematical assumption 2 (No-restriction hypothesis)
Any affine functional €° on Q0 with é°(w) € [0, 1] for all © € Q is an effect.
That is, £° = &g.

The no-restriction hypothesis means that any mathematically valid affine
functional is also physically valid. There is no physical background for this
assumption, and GPTs without assuming it were investigated for example in
[@a, 4R, 51, 52]. However, in this thesis, we suppose that all theories satisfy
the no-restriction hypothesis based on the fact that it is satisfied both in
classical and quantum theory. Now we can conclude the following.

Proposition 2.3
A GPT is identified with (€2, Eg), where ) is a total conver structure and Eg
is the set of all affine functionals on it whose values lie in [0, 1].

It is known that a total convex structure can be embedded into a certain
Banach space. In order to show this, we need the following lemma.

Lemma 2.4

Let (S,{:;-)) be a total convex structure with a “metric” d defined in (23).
(i) If lim,,_, cz(sn,s) =0, then lim,_,, f(s,) = f(s) holds for all f € Es.
(11) Let (T,{-;-);) be another total convex structure equipped with a similar
“metric” dp. For all 1,5, € S and F € Aff(S,T), dp(F(sy), F(s3)) <

d(sy, s3) holds. If F is bijective, then dp(F(sy), F(s3)) = d(sy, s2).

Proof

(i) Because limy,_,o d(s,,s) = 0 holds, there exists N € N for any ¢ > 0
such that d(s,,s) < -5 holds whenever n > N. It implies that there are
A€ (0,-=%5) and ty,ty € S satisfying (A;ty, $,,) = {A; ta, s), which results in

P e+2

Af(t) + (1= A)f(sn) = Af(t2) + (1 = M) f(5)
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for f e Es. It follows that

£sa) = F5)] = o510 = £(00)] < 15

and thus |f(s,) — f(s)| < € holds because

2 _ 2\
T—A 1-A|,, -

e+2

= E&.

(i) It holds from the definition of d that

dr(F(s1), F(s2)) =inf{0 < A < 1]

ity, F(s1))p = Oita, F(89))p, t1,t2€ T}
<infl0 <A <1]

O F($), Flsi)y = 5 F(), Flsa)y, 5,5 € 5)
=inf{0 < A< 1| F((\;s8,81)) = F((\; 6, 82)), 8,8 €S}
<inf{l0 < A< 1|\ s8,8) =\ 5,89, 5,8 €S}
= d(sy, s5).

w__»

If F'is bijective, then the two “<” in the above consideration become “=",
and thus dp(F(s1), F'(s2)) = d(s1, s2) holds. O

We remember that Aff (S, R) is a real vector space for a convex structure S.
The set Aff(S,R) := {a | a: Aff(S,R) — R, linear} is naturally a vector
space called the algebraic dual of Aff(S,R). Then, there is a canonical

embedding J of S into Aff(S,R)" defined as [J(s)](f) = f(s) for all f €
Aff (S,R). We can prove the following proposition.

Proposition 2.5

Let (S,{;-)) be a total convex structure with a “metric” d defined in (23).
(i) The canonical embedding J: S — Aff(S,R)" is an affine isomorphism
between S and the convex subset J(S) of Aff(S,R)".

(i) If there is an affine isomorphism n between S and a conver subset Sy
of some real vector space Vy such that aff (Soy) does not include the origin 0
of Vi, then there is a linear bijection ®: span(Sy) — span(J(S)) satisfying
P(Sy) = J(S)."

(7ii) (S, d) is a complete metric space.

The claims (i) and (ii) demonstrate that the total convex structure S can be
identified with a convex set in some vector space in an essentially unique way

"For a subset A of a vector space W, its affine hull aff (A) and linear span span(A) are
defined as aff (A) :== {3, Na; | a; € A, N, € R, Y, N = 1, n: finite} and span(A) :=
{> Niai | a; € A, N\ € R, n: finite} respectively.
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via the canonical embedding J. We note that the functional 0 € Aff(S,R)’
defined as 0(f) = 0 for all f € Aff(S,R), which is the origin of the vector
space Aff(S,R)’, does not belong to J(S) because 0 € J(S) contradicts to
the existence of the unit effect. On the other hand, the claim (iii) shows
that d is indeed a metric (see Mathematical assumption ).

Proof (proof of Proposition 25)

(i) It is easy to see that J is an affine map from S to Aff(S,R) and J(S) is
a convex set in Aff (S,R)". Since S is total (see (iv)-2 in Definition 22), for
s,t € S with s # t, there exists an affine functional f € Aff(S,R) such that
f(s) # f(t), ie., [J(s)](f) # [J(@)](f). This implies J(s) # J(¢).

(ii) Let us introduce a subset K := {},", \jz; | A\; = 0, x; € Sp, n : finite},
i.e., the conic hull of Sy (see Definition Z8). Then, any y € K\{0} can be
represented as y = Axr with A > 0 and =z € Sy in a unique way. To see
this, assume that y € K\{0} satisfies y = Az = N2’ with A\, )’ > 0 and
x,x’ € J(S). If X # X, then it holds that

A N
O0=Xr—XNa'=(A=)\) <)\_)\/az— )\_XZU/>.

Because 0 ¢ aff (Sp), it implies A = X, which is a contradiction. Thus, we can
conclude A = X and z = 2/. Now let us construct the linear bijection ® from
the affine isomorphism 7. First, we define an affine bijection ¢q: Sy — J(5)
by ¢ = Jon™! (note that J is a bijection between S and J(S)). From the
above consideration, we can extend this ¢ successfully to a bijection ¢ from
K to the conic hull of J(S): ¢(y) = Ado(x) for y = Az with y € K, z € Sy,
and A > 0. It is easy to verify that ¢(Ay + pz) = Ap(y) + pug(z) holds for
y,z € K and A\, p = 0. Since any y € span(Sp) such that y = 37" | \;x; with
x; € So, A € R, and a finite n can be expressed as y = u— v, where u,v € K,
we can consider the extension of ¢ to a map ® from span(Sy) to span(J(S))
by ®(y) = ¢(u) —¢(v) for y = u—v with y € span(Sy) and u,v € K. We note
that this @ is well-defined: if y = u; — v1 = us — v9 with uq, us, v1,v9 € K
holds, then u; + vy = uy + vy holds, and thus ®(u; + va) = P(ug + v1),
e, ®(ur) + ®(v2) = P(ug) + ®(vq) follows, which implies ®(u1) — P(uz) =
O (v1) — P(v2). It is easy to confirm that ®: span(Sy) — span(J(S)) is linear
and bijective.

(iii) It is trivial that d(s,t) > 0 and d(s,t) = d(t,s) holds for all s,t €
S. Let d(s,t) = 0. Then, there exist a family of positive numbers {\;};
with lim; ., A; = 0 and families {s;}; and {t;}; of elements of S such that
Ni; 84, 8) = (s ty, t). Tt follows that

Aif (si) + (1= X)f(s) = Auf(ti) + (1 = X) f ()
holds for all f € €. Because 0 < f(s;), f(t;) < 1 holds, taking i — o in the
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above equation, we obtain f(s) = f(t) for all f € €. By the assumption of
totality, we can conclude s = t. To verify the triangle inequality for d, it is
enough to prove that d’: J(S) x J(S) — R defined on .J(S) in a similar way
to d satisfies it. This is because d'(J(s), J(t)) = d(s,t) holds for all s,t € S

as we have seen in Lemma 2. For the evaluation of d'(p,r) + d'(r, q) with
p,q,r € J(S), let us assume that A\j, Ay € (0, 1) satisfy

Apr+ (1= A)p = Mg + (1= Ay)r,
)\27"2 + (1 — )\2>7’ = /\2(]1 + (1 — /\2>q

for p1,q1,71,72 € J(S). We obtain from these equations

)\1(1 — )\2)]91 + )\2(1 — )\1)7"2 + (1 — )\1)(1 — /\Q)p
= )\2(1 — )\1)(]1 + )\1(1 — )\2)7"1 + (1 — )\1)(1 — )\2)(]

It can be rewritten as

Aop2 + (1 = Xo)p = Aogz + (1 — Xo)g, (2.6)
where
- A1 = Aa) + Aol = Ap) A 200
O NI = N) F A1 = A) + (=) (1= N) T— Mo
and
A(1 = Ao) Ao(1— A1)
— —|— ,
LC I W G W i W G WL S W G W DR WS RS WA
" Ao(1— Ap) A (1= o)

+ .
M=)+ 2l AT XA =) (- !

Because A\g < A1 + g, we can see from (Z8) that

d'(p,q) < d(p,r) +d(r,q)

holds, and thus we can conclude that (.S, d) is a metric space. The complete-
ness clearly holds due to (iv)-1 in Definition 2=2. O

We note that we can prove the same claim as (iii) also for the function dy
defined as

~ B d(s,t)
do(s,t) = T—de i) (2.7)

It was shown in [36] that this dy is a metric on S, and the completeness
holds similarly. Before proceeding to the main theorem of this section, we
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introduce the notion of convex cones [b0, b3, 54].

Definition 2.6

Let L be a vector space, and 0 € L be its origin.

(i) A subset C of L is called a cone of vertex 0 if \C' = C' for all A > 0. A
cone of vertex xg is a set of the form xy + C, where C' is a cone of vertex 0.

In this thesis, the vertex of a cone is always assumed to be 0.
(ii) A cone C' < L is called

1. convex if it is convex, i.e., satisfies C + C' < C;
2. pointed if C n —C = {0};
3. generating (or spanning) if span(C) =L, ie., C —C = L.

iii) The conic hull of a subset A of L is defined as cone(A) := {3, Nia; |

)
Ai =0, a; € A, n:finite}. It is easy to see that cone(A) is a convex cone.

Let us write cone(J(S)) and span(J(S)) generated by J(S) simply as K and
V respectively. It is easy to see that K is a convex, pointed, and generating
cone for V', and thus any v € V' is written in the form v = k, —k_ = ap—fq,
where ky € K, p,q € J(S), and a, 8 = 0. Tt follows that we can introduce
the following quantity for v € V:

lvo| =inf{a+ B |v=0ap—PBq, a,8=0, p,ge J(S)}. (2.8)

Now we can present the embedding theorem for a total convex structure as
follows. We shall omit the proof, but it is given in [43] (see the proofs of
Theorem 4.11 and Theorem 4.12 there).

Theorem 2.7

Let S be a total convex structure, and K and V be the cone and the real
vector space generated by the canonical embedding J(S) of S into Aff(S,R)’
respectively.

(i) The function || - | on V defined in (ER) is a norm on V satisfying
|J(s) — J(@)|| = 2do(s,t) for all s,t € S and |J(s)| = 1 for all s € S.
Moreover, (V,| -|) is a real Banach space, and K is closed.

(ii) Let f € Aff(S,R). Then, the affine functional fo J': J(S) — R on
J(S) has a unique linear extension f: V — R.

(i1i) If we let e: V' — R be the unique linear extension of & € £ < Aff (S, R)
described in (ii) above, then e is continuous, and thus belongs to the Banach
dual V* :={f | f: V = R, linear, bounded (continuous)} of V. In particu-
lar, the linear extension u of the unit effect u° such that u(J(s)) =1 for all
J(s) € J(S) satisfies u € V*.
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According to this theorem, together with Proposition 23, we can consider
the state space of a GPT Q as a closed convex set Q := J(Q) in a Ba-
nach space V' = span(Q2) equipped with the norm | - || in (E3) called
the base norm, and the effect space £y as a subset &, = {e | e(w) €
[0,1] for all w e €, linear} of the Banach dual V*. We also call Q and
Eq the state space and the effect space of the GPT respectively. In the next
part, we give further explanations about the Banach space V' and its Banach
dual V*.

2.1.3 Ordered Banach spaces

The vector spaces V' and V* introduced in the previous part are equipped
with both order and Banach space structures, that is, they are ordered
Banach spaces. In this subsection, we make a brief review of ordered Banach
spaces. Mathematical terms shown in this subsection are according mainly
to [B0, B1, 44, b0, b3, b4, b6]. Also, there can be found the technical proofs
of some theorems which we omit. We begin with the definition of an ordered
vector space.

Definition 2.8

A real vector space L equipped with a partial ordering® < is called an ordered
vector space if it satisfies

(i) x <y implies z + z < y + z for all x,y, z € L;

(i) < y implies A\x < Ay for all z,y € L and A > 0.

We can prove easily the following (recall Definition I8).

Proposition 2.9

(i) Ly :={x e L|xz>=0}c L is a convex and pointed cone.

(ii) If (L, <) is directed, i,e, for every x,y € L there is z € L such that
x < z,y <z, then Ly in (i) is also generating.

Proof

(i) For z = 0, Ax = 0 (XA = 0) clearly holds, and thus L, is a cone. Because,

for z,y 20, pr > 0and (1 —p)y=>0(0<p<1)hold, pr+ (1 -py=0

follows, which implies L, is convex. The claim that L, is pointed follows

from the observation that x > 0 and = < 0 implies z = 0.

(ii) Because L is directed, for any x € L, there exists z € L such that z < z

and —x < z, equivalently, z—z > 0 and z+2z > 0 hold. Because 3 ( z)=0
(I

and 3(z + ) =0, z = (2 + ) — 3(z — z) implies that L, is generating.

8 A binary relation < on a set X is called a preorder if it is reflexive, i.e., * < x (z € X),
and transitive, i.e., x < y and y < z implies © < 2z (z,y,2 € X). A preorder < is called
a partial order if 1t is antisymmetric, i.e., z < y and y < z implies z = y (z,y € X). We
remark that some authors use the term partlal order” to represent a preorder here [57)].
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Definition 2.10

Let L be an ordered vector space.

(i) The cone Ly := {x € L | x = 0} is called the positive cone of L.

(ii) For the positive cone L, of L, its order dual cone LY is defined as
the set of all “positive” functionals on Ly, ie., LY = {f € L' | f(z) =
0 for all @ € Ly }. It is clear that LY is a convex cone in the algebraic dual
L' of L and in the subspace L® := LY — LY = span(L%) called the order
dual of L. Moreover, we can find that L is pointed in L' and L° if L, is

generating.

We have proven in Proposition 29 that a positive cone can be intro-
duced through an order vector space. Conversely, we can construct an order
structure for a vector space when there is a convex cone.

Proposition 2.11

Let C be a convex and pointed cone in a real vector space L.

(i) If we define a binary relation < asx <y <= y—x€C forz,yeV,
then the relation < is a partial ordering, and (L,<) is an ordered vector
space.

(ii) The positive cone L, for L defined via the order < in (1) is identical to
C,ie, L, =C.

(1ii) If C is in addition generating, then (L,<) is directed.

Proof

(i) Because C'is pointed, x —z = 0e€ C, and y —z € C and x —y € C
imply y — 2z = 0, ie., = y for x,y € L. Moreover, if y — 2z € C and
z—y € C (z,y,2 € L), then 2z —x = (z —y) + (y — x) € C. Therefore,
we can conclude that < is a partial ordering. On the other hand, because
y—zr=(y+z2)—(x+2)(z2,y,2€ L), z+ 2z < y+ z holds when = < y. Since
C'is a pointed cone, y —x € C (x,y € L) implies ANy —z) = \y — \x € C
(A= 0), ie., Az < Ay when z < y.

(ii) Ly = C is trivial since = > 0 is equivalent to z € C.

(iii) For x,y € L, because C is generating, there exist xi,2,y1,y2 € C
such that * = 1 — x5 and y = y; — yo. Defining z = z; + y;, we have
z—x =1y +x3€C and z —y = 1 + yo € C, which means that (L, <) is
directed. O

It follows from these propositions that a positive cone and a convex and
pointed cone can be identified naturally with each other.

Next, we give descriptions of ordered Banach spaces. An ordered vector
space L is called an ordered Banach space if L is also a Banach space (see [68]
for a review of Banach space). There are two important types of ordered
Banach space in the field of GPTs: base norm Banach spaces and order
unit Banach spaces, which are related with state spaces and effect spaces
respectively. Let us first introduce base norm Banach spaces.
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Definition 2.12
Let L be an ordered vector space with its positive cone L. A convex subset
B c L, is called a base of L, if for any x € L, there exists a unique A\ > 0
such that x € AB.

The following lemma is important.

Lemma 2.13
Let L be an ordered vector space with its positive cone L, and B be its base.
Then, aff (B) does not contain the origin 0 of L.

Proof

Suppose 0 € aff (B). Then, there exist real numbers {\;}7_; with > | A; = 1
and elements {x;}!", of B such that >, , \;z; = 0. Dividing {\;}}, into
positive and negative parts, we obtain

DA =D N,
i k

where {x]}; and {z; }; are subsets of {z;};",, and {A\]}; and {\ '} are
positive numbers satisfying >}, A\J7 =33, Ay = 1. If we assume K := 3}, A #
0, then we can rewrite the above equation as

K+1 1 + 4+ 1 -
K 'K+1ZWJ'ZE§AM“‘

J

Because y := g >, Afo) and i := & 33, A x; are convex combinations
of elements of B, they belong to B. Then, the above equation %y =/
contradicts to the uniqueness condition in the definition of the base B, and
thus we obtain K = 0. It implies 0 € B, but this also contradicts to the

uniqueness condition because any positive number \ satisfy A0 = 0. O

By means of this lemma, we can associate a base of a positive cone with a
linear functional in the following way [30, b6].

Proposition 2.14

Let L and L, be an ordered vector space and its positive cone respectively.
L, has a base B if and only if there exists a strictly positive functional ep
(i.e., eg € L° and satisfies eg(x) > 0 for all nonzero x € L) such that

B={xelL, |eg(x) =1} (2.9)

Proof

The if part is easy, so we prove the only if part. Let B be a base of L,.
Applying Zorn’s lemma to the set A of all affine sets which include aff (B)
but not {0}, we obtain the maximal affine set H in A. It can be shown [h9]
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that this H is a hyperplane in L, and thus there exists a linear functional
ep such that eg(x) = 1 for all z € H. This functional ep is easily found to
be strictly positive because B is a base. O

We call the functional ep the intensity functional for the base B [38].
Lemma 2.15

Let L be an ordered vector space, and L be its positive cone which is gen-
erating. For a base B < Ly of L, D := conv(B u —B) is a radial, circled,
and convex subset of L."

Proof

The convexity is clear. It is easy to see 0 € D, and thus D is circled. Because
L, is generating, any z € L can be written as z = A,z +A_x_ with Ay > 0
and ry € B,x_ € —B. Let \g = A\, + A_. For A > )¢, = can be rewritten as

=\ A £ At x —i——)\_ x
h A PV U VIS Uy

Because D is circled, /\Jrj\”\* (ﬁm + /\:‘ﬁm_> € D can be obtained. It
implies x € AD, and thus D is radial. O

According to Lemma P13, if L, is generating, then the Minkowski functional
of D = conv(B u —B) defined as

pp(z) :=inf{A>0|xe XD} (xel) (2.10)
is a seminorm on L [60]. It is not difficult to see that pp satisfies
pp(x) =infleg(xy) +ep(z_) |z =2, —x_, zo € L.} (xel) (2.11)
with ep introduced in Proposition 2214, or
pp(z) =infla+p |z =aby —Pb_, o, >0, by € B} (rel) (2.12)

since it holds that pp(z,) = eg(xy) for all z, € L,. Now we can give the
definition of a base norm space.

Definition 2.16

Let L be an ordered vector space with its positive cone L, generating. For
a base B of L, (L, B) is called a base norm space if the function pp defined
in (2I0)-(212) through B is a norm on L.™ In this case, we write pp(-) as

9A subset U of a vector space L (assumed to be on the field ' = R or C) is radial if
for any = € L there exists A\g € F such that |A| = || implies x € AU, and is circled if
AU c U for any A with |A| <1 [b0].

107t is not difficult to see that pp is a norm if and only if D = conv(B U —B) is linearly
bounded, i.e., M n D is a bounded subset of L whenever M is a one-dimensional subspace
[66].
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|- |z and call it the base norm. A base norm space (L, B) is called a base
norm Banach space if L is complete with respect to the base norm | - || 5.

In this thesis, for a Banach space X, we denote its Banach dual by X* =
{f|f: X =R, linear, bounded}. When X is in addition an ordered vector
space (i.e., an ordered Banach space) and X is its positive cone, we define a
set X7 as X} :={fe X" | f(x) >0 for all € X}, and call it the Banach
dual cone for X . It is verified easily that L% is a convex and closed (in the

L*™@ and is in addition pointed if L.

weak*™ and norm topologies) cone in
is generating.

We present miscellaneous facts about base norm Banach spaces.

Proposition 2.17

Let (L, B) be a base norm Banach space, and L, be the positive cone of L.
For a subset A of L, we denote its norm closure by A.

(i) The intensity functional ep in (Z9) is continuous, i.e., eg € L*.

(ii) B is closed if and only if Ly is closed.

(i4i) The unit ball of L is given by D = conv(B U —B).

(iv) The dual norm ||« on the Banach dual L* defined as || f |+ := sup{|f(z)] |
lells < 1} satisfies | . := sup{l ()| | o B} ~

(v) Ly is a convez, pointed, and generating cone in L, and B is a base of

L. with its intensity functional identical with that of the original base B:
B =L, neg'(1). Moreover, the base norm induced by B coincides with the
original one by B.

(vi) If L, is closed, then the Banach dual and order dual coincide with each
other: L* = L°.

Proof
(i) Representing z € L as x = v, —x_ (x4 € L), we have

les(@)] = le(zy) —ep(z-)| < ep(ry) + ep(z-).

It implies |ep(z)| < |z| s, i-e., ep is bounded.

(ii)) When L, is closed, its base B = L, n{x € L | eg(x) = 1} is also
closed. Assume conversely that B is closed. Since L is complete, for a
Cauchy sequence {a;z;}; in Ly such that a; > 0 and x; € B, there exists

HFor a Banach space X and its Banach dual X*, the weak topology of X often dented
by o(X, X*) is the weakest topology on X which makes all f € X* continuous, and the
weak™® topology of X* often dented by o(X™*, X) is the weakest topology on X* which
makes all x € X < X** continuous [60, 58].

'? Clearly, L% satisfies L} = (,op {f € L* | f(2) > 0}, and thus is weakly* closed.
On the other hand, let {f,} ba a Cauchy sequence in L% which converges to f € L* in
the norm topology, and suppose that there is xo € L, such that f(zg) < 0. If we set
f(zo) [f (@)= fu(@)] e, and thus |f (z0)—fn(zo)l < e

o [Ed] EY

It implies f,, () < 0, which is a contradiction. Thus, f(z) > 0 for all z € L.

€= , then for large n we have sup,.r,
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vy € L to which {a;x;}; converges. From the continuity of ep, we obtain
a; = eg(a;x;) — ep(vy). If ep(vy) = 0, then a; — 0. It implies ||oyz;|p — 0,
ie, v, = lim;oyz; = 0, and thus v, € L, because L, is pointed (see
Proposition Z9). If eg(v,) # 0, then

leB (V)T — V| B + [vs — ep(vi) )] B

ep(vi)llzi — 24 <
< lep(ve)xi — izl + oz — vi| B

|
|

+ [vs — a4l + [z — ep(vs)x;|B
= lep(vs) — | + |z — vil|B

+ v — ajzj|B + oy — ep(va)l.

The last equation converges to 0 as i,j — o0, and thus {z;}; is a Cauchy
sequence in L. Because B is closed, {x;}; converges to =, € B. Therefore,
we obtain lim; a;x; = eg(vy)Ty € L.

(iii) This claim follows directly from the definition of |- |5 as the Minkowski
functional of D.

(iv) It can be found that

[l = sup{lf ()] | 2]z <1}
= sup{|f(2)| | z € D}
= sup{|f ()| | z € D}
= sup{[f(z)| | # € B}.

For the proofs of (v) and (vi), see Proposition 1.40 in [30]. O

Roughly speaking, the base norm and the intensity functional correspond

to the trace norm and the identity operator in the usual formulation of

quantum theory respectively. In fact, if we let L be the set Lg(H) of all self-

adjoint operators on a finite-dimensional Hilbert space H, then any x € L is

decomposed as = x, —x_ with x4+ > 0 in the usual ordering for self-adjoint

operators, and thus the trace norm of x is given via the identity operator

1 by |zl = Tr[zy] + Tr[z_] = Tr[lz] + Tr[1z_], which corresponds to

Let us move to the introduction of order unit Banach spaces.

Definition 2.18

Let L be an ordered vector space equipped with an ordering <

(i) L is called Archimedean if x < 0 whenever there exists y € L such that
r < y for all n e N.

(ii) L is called almost Archimedean if x = 0 whenever there exists y € L such

that —y < nz <y for alln e N.

(iii) A positive element u of L is called an order unit if for any = € L there

exists some n € N such that —nu < z < nu.
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It is clear that if L is Archimedean, then it is almost Archimedean. For
a,b € L, we define the order interval [a,b] as [a,b] == {r € L | a < x < b}.
The following lemma is important.

Lemma 2.19

Let L be an ordered vector space with an ordering < and an order unit .
(i) The order interval A := [—u,u] is a radial, circled, and convex subset of
L.

(ii) The Minkowski functional of A of the form

pa = inf{\ > 0] x e \A} (2.13)

1s a norm on L if and only if L is almost Archimedean.

Proof

It is easy to see that (i) holds due to the definition of the order unit u, and
thus the Minkowski functional pa is a seminorm on L. Assume that pa is a
norm and x € L satisfies —y < nx < y for all n € N and some y € L. Since
there exists m € N such that —mu < y < mu, it holds that —mu < nx < mu,
or =y < x < Zufor all n. € N. Thus, inf{A > 0| —Au <z < A} =0, and

we can conclude z = 0 because | - [, is a norm. Conversely, assume that L
is almost Archimedean and x € L satisfies pa(z) = 0. Then, —u < 1z < u

holds for arbitrary small A\, and thus z = 0 follows from the assumption that
L is almost Archimedean, which concludes (ii). O

We can give the definition of an order unit Banach space.

Definition 2.20

Let L be an ordered vector space with an order unit u € L associated with the
ordering of L. (L, u) is called an order unit Banach space if L is Archimedean
and complete with respect to the norm pa. In this case, we write pa(-) as
| - |, and call it the order unit norm.

We present miscellaneous facts about base norm Banach spaces according
mainly to [30, 55].

Proposition 2.21

Let (L,u) be an order unit Banach space, and let < be the ordering of L.
(i) The positive cone Ly of L is generating and closed.

(ii) The unit ball of L is given by A = [—u,u] ={r e L | —u <z < u}.
(1) If f is a positive functional on L, then f is bounded, and its dual norm
on the Banach dual L* is given by ||f|. = f(u). Conversely, if a linear
functional f: L — R satisfies | f|« = f(u), then f is positive.

(w) If we define B, := {f € L} | f(u) = 1}, then B, is a base for the
Banach dual cone L7 .

(v) The Banach dual and order dual coincide with each other: L* = L°.
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Proof
(i) For = € L, there exists n € N such that —nu < = < nu. Then, x =
nu + (x — nu) shows v € Ly — L, i.e., Ly is generating. Let {z;}; be a

Cauchy sequence in L, and converge to x, € L. For any n € N, we have
1

u. Since this holds for all n € N and L is Archimedgan, we
obtain —x, <0, ie,x€ L,.

(ii) It follows easily from (i) that A is closed. Then, the definition of | - |,
as the Minkowski functional of A proves the claim.
(iii) Let * € A. From the positivity of f, —f(u) < f(z) < f(u), ie.,
|fle < f(u) holds. The equality clearly holds for = =

obtain | f|s = f(u) (in particular, f is bounded). Assume conversely that
Ifl« = f(uw). For x € L, with ||z|, = 1, we have —u < 2 < u, or 0 <
u—x < u. It follows that |u—z|, < 1, and because | f|l. = f(u), we obtain
|f(u) — f(x)] < f(u), which implies f(z) = 0.

(iv) It can be seen from (iii) that every f e L* satisfies | f[+ = f(u), and
thus when considered as an element of L**, u is a strictly positive functional

|lzw — x]y < £ for sufficiently large 7. It implies —Lu < z, — x; < 1u, and

thus —nx, <
<

u, and thus we

for L% . Then, applying Proposition 214, we obtain the claim.
(v) See Proposition 1.29 in [30]. O

It can be verified easily that the order unit norm corresponds to the usual
operator norm in the formulation of quantum theory.

Now we can give the most general description of GPTs in terms of base
norm Banach spaces and order unit Banach spaces. We present first of all
a fundamental theorem for our description on a close relationship between
base norm Banach spaces and order unit Banach spaces (see [30, b3, 56| for
the proof).

Theorem 2.22

(i) Let (L, B) be a base norm Banach space. Then, with ep the intensity
functional of B such that B = {x € L, | eg(x) = 1}, (L*,ep) is an order
unit Banach space, and L% = {f € L* | f(x) = 0 forallx e L.} is its
positive cone. Moreover, the order unit norm on L* coincides with the usual
Banach dual norm.

(ii) Let (L,u) be an order unit Banach space. Then, with B, := {f € L% |
f(u) = 1}, (L*,By) is a base norm Banach space, and L* := {f € L* |
f(z) =0 for all x € L} is its positive cone. Moreover, the base norm in L*

coincides with the usual Banach dual norm, and B, is a weakly* compact
subset of L*.

In the next subsection, we interpret this theorem in the language of GPTs
and present the most standard formulation of GPTs based on it.
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2.1.4 Standard formulations of GPTs

We adopt Theorem P22 (i) to our expression of GPTs. To do this, we
recall that in Subsection 212 (Theorem EZ1) the state space of a GPT was
shown to be represented as a convex subset {2 of some Banach space V' (note
that 0 ¢ € by its construction). We presented that the embedding vector
space V' is constructed by V' = span(€2), and there is a convex, pointed, and
generating cone K in V' given by K = cone(Q2). Moreover, we defined a
norm in V' such that

o] =inf{fa+ B |v=ap—PFq, a,8 >0, p,qgeQ}

(see (ZR)), and found that V' is a Banach space and §2 and K are closed with
respect to the norm. These observations can be interpreted in the language
of ordered Banach spaces. That is, V' is a base norm Banach space whose
positive cone V7 is given by V, = K = cone(2) with its closed base €2 and is
closed and generating. On the other hand, it follows from Proposition 2214
that there exists a strictly positive functional eq such that eq(w) = 1 for all
w € 2. Then, Proposition 217 (i) and Theorem 227 (i) result in that this
eq is an element of the Banach dual V*, and in fact is an order unit of V*
ordered via the cone V. Since V' = span(€2), we can find that the order unit
ep coincides with the unit effect u € V* (see Theorem 274 (iii)). Overall, we
have obtained the following observation.

Theorem 2.23
A GPT is given by (2,Eq), where

1. the state space €2 is a closed base of the closed positive cone V. in some
base norm Banach space V' such that Vi, = cone(2) and V' = span(2);

2. the effect space Eq is a subset [0,u] = {e € V* | 0 < e < u} of the order
unit Banach space V* such that V* is the Banach dual of V' ordered
via VI = {feV*| f(x) =0 for all z € L.} and u is the order unit
of V* determined by u(w) = 1 for all w e Q.

The contents of Theorem P23 are the most general formulation of GPTs.
We remark that the positive cone V, represents the set of all “unnormalized”
states, which are not necessarily mapped to 1 by the unit effect u, and that
Eq spans V* because V' is generating. We define another primitive notion

of observables based on this representation.™

13Observables can be introduced also in terms of the abstract description of convex
structures [43], but in this thesis, we present the definition of observables after embedding
them into vector spaces for simplicity.
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Definition 2.24

Let (Q,&,) be a GPT. An observable whose outcome space is given by a
measurable space (X, .A) is defined as a normalized effect-valued measure F
on (X, A), ie., E: A— &g such that

(i) BE(X) = u;

(i) (U, Ui) = >, E(U;) for any countable family {U;} of pairwise disjoint
sets in A (the sum converges in the weak* topology on V*).

When the outcome set X of an observable E is finite, we often describe
it as £ = {e;}sex with e, = E({z}) representing the yes-no measurement
corresponding to the outcome x € X. We also use the notation E = {e;}!_,
when | X| =1 (I < ), where e; represents the ith yes-no measurement. We
note that > e, = w and Y e, = u hold. In this thesis, we assume
that observables are composed of a finite number of nonzero effects, and the
trivial observable {u} is not considered.

Although those descriptions above are of the most general form including
theories with dim V' = oo, we are interested only in finite-dimensional cases
in this thesis, and present it explicitly as a mathematical assumption.

Mathematical assumption 3 (Finite dimensionality)
Any GPT (Q,Eq) is associated with a finite-dimensional Euclidean space R?
(d < o0).

We note that any Hausdorff topological vector space of finite dimension is
isomorphic linearly and topologically to the Euclidean space with the same
dimension, and the norm, weak, and weak™ topologies on a Banach space and
its dual are Hausdorff (thus these topologies coincide with each other to be
Euclidean in finite-dimensional cases) [b0, b&]. It should be also noted that
a finite-dimensional vector space is isomorphic to its dual. If a GPT satisfies
Mathematical assumption B, then we call it a finite-dimensional GPT. Let us
develop how we can simplify the formulation of GPTs shown in Theorem
when dealing with finite-dimensional theories. The following facts derived
for the standard Euclidean topology are useful [30, b0, 60].

Proposition 2.25

Let L = R? be a finite-dimensional ordered vector space (in particular, an
ordered Banach space with respect to the Fuclidean norm) whose positive
cone L, is generating.

(i) The condition that L, is generating is equivalent to the condition that
L. has an interior point.

(ii) Ly is closed if and only if L is Archimedean.

(111) If Ly is closed, then the following statements for e € L* are equivalent
(note that the Banach dual cone L% is a positive cone for L* because L is
generating, and thus makes L* an ordered vector space):
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1. e is strictly positive, i.e., e(x) > 0 for all x € L \{0};
2. e is an interior point of L7 ;
3. e is an order unit in L*.

() If Ly is closed and B is a base of L., then B is bounded.

(v) If Ly is closed, then L, admits a bounded base, i.e., there ezists a
bounded base for L. .

(vi) If L, is closed, then all types of dual L', L°, and L* coincide with each
other.

Proof

In this proof, we denote the ordering of L by < (thus, z > 0 if and only if
xelLy).

(i) Let uw be an interior point of L,. Then, there exists an open ball C' in
L such that u + C < L. For v € C, because C' is a ball and thus —v € C,
we have u £ v > 0, i.e., —u < v < u. Therefore, we obtain C' c [—u,u],
i.e., u is an order unit, which implies that L, is generating (see the proof
of Proposition 221 (i)). Assume conversely that L, is generating. It is
not difficult to see that the maximal set {v;}*_; of linearly independent el-
ements in L, is a basis of L (and thus & = d). Let us consider a subset
U:={veL|v=%" \v with 3% |\| <1} of L. Because a map |- || on
L given by | 2%, M|/ = 2%, |\s| defines a norm on L, the above U is an
open subset in L (remember that all norm topologies are equivalent to each
other in finite-dimensional cases). Defining v, := Z?Zl v; € Ly, we can see
that for any v = Zf;l Av; e U, v, +v = Zf;l(l + A\i)v; € L holds because
v; € Ly and 1+ A\; > 0. This implies v, + U < L, and thus v, is an interior
point of L.

(ii) Suppose that L, is closed. If x,y € L satisfy nx < y for all n € N, then
a sequence {%y — 1z}, in L, converges to —x € L, and thus we have x < 0.
Conversely, suppose that L is Archimedean, and consider z € L,. With
y € int(L,), where int(L, ) is the nonempty interior of L, (see (i)), we
can see that —<y + (1 — =)z € int(L,) holds for any n € N. It follows
that y + nx € int(L,) < L,, and thus —nz < y for all n € N. Since L is
Archimedean, we obtain z > 0, which means L, < L.

(ili) (1—2) Let e € L* be strictly positive, and consider a unit ball C':= {z €
L | |z| <1} and a unit sphere D := {f € L | |z|| = 1} in L, where | - | is
the Euclidean norm. Because L, is closed and L = R? is finite-dimensional,
S:= L, nD is acompact subset of L. It implies that there exists a mini-
mum value M > 0 for the strictly positive and continuous functional e on S.
On the other hand, if we define a unit ball C, := {f € L* | | f|+ < 1} in L*
with the Banach dual norm || - |, (which is equivalent to Euclidean norm in
this finite-dimensional case), then, for f € C,, we have | f|. = sup,cp [f(y)]
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[68], and thus —1 < f(y) < 1 holds for all y € S. It follows that if we take
0 < e < M, then the functional e + ¢ f satisfies (e +ef)(y) > 0 for all y € S.
Since this holds for every f € C, and any = € L, can be represented as
x = Ay with A = |z|| = 0 and y € S, we can conclude that e + eC, < L%,
i.e., e is an internal point of L7 .

(2—3) Because e is an interior point of L%, for every f € L*, there exist
a, B > 0 such that e + af € L% and e+ B(—f) € L% . It can be rewritten as
—ée < f < %6, and thus we can conclude that e is an order unit in L*.
(3—1) Suppose that there exists xy € L;\{0} such that e(zy) = 0. Since e
is an order unit, for f € L*, there exists n € N such that —ne < f < ne, i.e.,
f(zg) = 0. Because this holds for all f € L* we obtain xg = 0, which is a
contradiction.

(iv) Let ep be the intensity functional for B, which is strictly positive ac-
cording to Proposition ZT4. Since any linear functional is continuous in
a finite dimensional topological vector space (see Theorem 3.4 in [b0]), we
obtain ep € L%. It follows from (iii) that ep is an order unit in L*, and
thus, for f € L*, there exists n € N such that —neg < f < neg. We obtain
|f(z)| < n for all z € B, and because f € L* is arbitrary, we can conclude
that B is bounded.

(v) For the unit sphere D in L introduced above, consider T := L, n D and
its convex hull 7" := conv(T'). Clearly, 7" does not include 0, and we can find
that 7" is compact because T' is compact (see Theorem 10.2 in [60]). Thus,
there exists xy € T” such that the continuous norm function | - | takes its
minimum in 7”. Tt follows that any 2’ € T" satisfies |zo| < |zo — t(zo — 27|
for 0 < t < 1 because zg — t(xg — 2') = (1 — t)zo + tz’ € T". It can be
rewritten as ¢2||zg — 2'|* — 2¢(xg, xo — 2') g = 0, where (-, -)p is the Euclidean
inner product in L = R?. Since this holds for all 0 < ¢ < 1, it must hold
that (xg,zo—2')g < 0, that is, any 2’ € T" satisfies (zo, 2')g = (z0, o) > 0.
On the other hand, any = € L, can be written as z = |z|y with y € D (in
particular, y € 7). Therefore, we obtain (x,z)g > 0 for all z € L, \{0}. By
means of the Riesz representation theorem [568], we can identify the inner
product (zg,-)g as an element fy € L* such that fo(x) = (x¢,2z)p. This
fo is a strictly positive functional for L., and thus defines a base, which is
bounded as shown in (iv).

(vi) As we have seen in (iv) above, any linear functional on L = R is con-
tinuous, and thus we obtain L* = L' (and L* = LY). On the other hand, it
follows from (v) above that there are a base B in L and a strictly positive
functional ep € L* associated with B. Then, (iii) and (i) implies that the
Banach dual cone L7 generates the Banach dual L*, and because L7 = Li,
we can conclude the claim (remember that the order dual L° is given by
L® = span(L2)). O
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Remark 2.26

Proposition (iii)-(vi) do not necessarily hold when L, is not closed. To
confirm this, let us consider the case when L = R? and L, = {(z,y) € R? |
y > 0} u (0,0). It is easy to see that L, defines a convex, pointed, and

generating cone, but we cannot find a bounded base for this L, or verify
L* = L°.

Theorem P23 now can be rewritten as follows.

Corollary 2.27
A GPT is given by (2, Eq), where

1. the state space € is a compact convexr set of some finite-dimensional
Euclidean space V.= RNTL (N < o) such that span(Q) = V and
0¢ aff () (in particular, dim aff (Q) = N holds™);

2. the effect space Eq is a subset [0,u] = {e€ V* |0 < e < u} of the dual
space V* of V' such that u(w) =1 for all w e Q.

The mathematical expression given in Corollary 2221 is the standard for-
mulation of GPTs in this thesis, and all observations on GPTs are based
on this description. We note that order structures similar to the ones de-
scribed in Theorem P23 can be introduced for these finite-dimensional V'
and V*. In fact, in Corollary 2224, we can verify easily that an order struc-
ture can be introduced for V' by a generating cone V, := cone(2), and Q is
a compact (thus closed) base for V. with which V is a base norm Banach
space. There we can also find that V* can be ordered via a generating cone
VE:={feV*| f(x) = 0forall ze L}, and the functional u, which is
the intensity functional for the base €2, is an order unit with which V* is an
order unit Banach space.

Let us further introduce several notions about finite-dimensional GPTs.
For a state space €2, we can consider its extreme points™, and denote the
set of all extreme points of Q by Q= = {w},c7, where Z is an index
set. Because ) is a compact convex set in RV*! thanks to the Krein-
Milman theorem, Q°** is not empty and Q = conv(Q™*) [49, b0, 58|. Similar
arguments also hold for the corresponding effect space &g since £q = VI n
(u — V) and Proposition 220 (ii) imply &g is closed and bounded, i.e.,
compact.™

MFor an affine set A of a finite-dimensional vector space L, its dimension dim A is
defined as the dimension of the set A — ag(ag € A) as a vector subspace of L.

15 Although the dual space V* of V is isomorphic to R¥*!, we do not identify them
here (see Subsection ZZ2).

6For a convex subset C' in a vector space, z € C is called an extreme point of C if
x=Ay+ (1l =Xz with y,ze C and 0 < A < 1 implies y = z = x.

I"Therefore, the effect space &g is closed under infinite countable mixtures.
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Definition 2.28

(i) An extreme point of €2 is called a pure state, and a state which is not
pure is called a mized state.

(ii) An extreme point of & is called a pure effect, and an effect which is not
pure is called a mized effect.

(iii) An effect e is called indecomposable if e # 0 and a decomposition e =
e1 + ey, where eq, ey € &g, implies that both e; and ey are scalar multiples
of e. We denote the set of all pure and indecomposable effects (shown to be
nonempty [61]) by £5 = {€f*'};c7, where J is an index set.

It is easy to see that the unit effect u is pure and e' (= u — e € &, is
pure whenever e € & is pure. It can be also observed that pure and inde-
composable effects correspond to rank-1 projections in quantum theory (see
Subsection PZ52), and that an effect e € &, is indecomposable if and only if
e is on an extremal ray of V*™ We call two GPTs (1, &q,) and (s, Eq,)
equivalent if there exists an affine bijection (affine isomorphism) ¢ such that
¥(Q1) = Q. In this case, we can find easily that £g, = Eg, 0™, and thus
physical predictions are covariant (equivalent), which can be regarded as a
physical expression of Proposition P23 (ii). We remark that the affine iso-
morphism ¢ is indeed a linear isomorphism on the underlying vector space
Vi = span(§2;) and V, = span(§22) (see the proof of Proposition 23 (ii)). A
set of m states {wy, ws, - -+ ,wp} is called perfectly distinguishable if there ex-
ists an observable {eq, ea, - - - , €, } such that e;(w;) = 045, 4,5 =1, 2, -+, m.
In general, we can not identify the state of a system by a single measurement.
However, for perfectly distinguishable states, there exists a measurement by
which we can detect perfectly in which state the system is prepared.

Remark 2.29

There is a physical interpretation for the mathematical assumption of finite
dimensionality. In [22], Hardy assumed that any state is determined by a
finite set of effects named fiducial measurements. If we denote the finite
set of fiducial measurements by {4} = (N < o), then it is equivalent to

regarding a state w as a vector

Qo

a1
w= o, (2.14)

an

where the ith row a; represents the probability efid(w). It is easy to see that
Hardy’s formulation is consistent with ours: the state space €2 composed

18A ray P < V¥ is called an extremal ray of V¥ if z € P and z = y + z with y, z € V
imply y,z € P.
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by w of the form (E4) is a compact (or closed and bounded) convex set
in R¥*! (by requiring completeness), and the normalization u(w) = 1 for
the unit effect u yields the condition dim aff (2) = N. We note that similar
formulations for infinite-dimensional cases are given in [40]. That is, a state
w is regarded as an element of the product set [0, 1]¢ with a set of effects £
similarly to (2214), and the state space is a subset of [0, 1]¢ which is compact
with respect to the pointwise convergence topology (i.e., the weak™ topology)
because [0, 1]¢ is compact with respect to this topology due to Tychonoft’s
theorem [62] (see also Theorem P22 (ii)).

Remark 2.30

In our formulation, effects are constructed from states in the way how a
state space is given first as a closed base of a base norm Banach space and
then effects are given in its dual (see Theorem 23 and Corollary 2221). On
the other hand, as in the operator algebraic formulation of quantum theory
[0, B3], it should be allowed to construct theories starting with effects. In
fact, for a finite-dimensional GPT (€2, &), if we consider the set © := {z €
Vi | x(u) = 1}, where V** is the double Banach dual of V' or the Banach
dual of V* ie., V** = (V*)* | then by means of the canonical identification
of V with V** it holds that © = Q.™ This can be proven in a similar way
to Proposition 23 (i) by just regarding Q as S (an explicit proof is given
in [31]). For general cases, as was proven that states represented by a total
convex structure can be embedded into a base norm Banach space, one can
show that an abstract expression of effects called a convex effect algebra
(with some completeness) can be embedded into an order unit Banach space
(64, 65, 66]. Then, due to Theorem 223, we can obtain successfully the
corresponding state space in a base norm Banach space. Moreover, if € is
weakly compact, which is identical to the reflexivity of the base norm Banach
space V' (V' = V**) [67], then © = Q holds also in an infinite-dimensional
case.

2.2 Composite systems

In the previous section, we have presented the mathematical formulation of
single systems in GPTs. Then, it is natural to ask how a system composed
of several single systems, a composite system, is described mathematically in
GPTs. This is also motivated by another physical reason that it is in general
difficult to isolate perfectly a system from environments: a composite system

9A triple (V, V., u), where V is a finite-dimensional ordered vector space with a closed
positive cone V, and u € V* is a strictly positive functional on V', is sometimes called
an abstract state space [29]. The subset V. nu~1(1) in this formulation corresponds to a
state space in our formulation.
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of the target system and its environments emerges naturally [41]. In this
part, we establish the mathematical formulation of composite systems in
GPTs based on that of single systems. We note that we only study theories
for bipartite systems in this thesis. Our description may seem to be only
for limited cases and not general, but it is in fact an essential one also for
multipartite cases®, and we can develop sufficiently interesting observations
for this simplest scenario.

Let us consider a composite system composed of two single systems char-
acterized by GPTs (Q4, £q,) and (Qp, Eq,,). By convention, we suppose that
the two subsystems are controlled by Alice and Bob respectively. A funda-
mental assumption that is usually assumed implicitly is that the total system
is also expressed by a GPT. In the following, we follow this assumption, and
denote the GPT for the total system by (Q4g5,€q,,). Similarly to the pre-
vious section, we write the vector spaces that embed canonically 4, Qp,
and Qap as Va, Vg, and Vyp respectively (thus the dual vector space V
embeds canonically &, ,, for example). For the joint system, it is natural to
require that every individual and independent preparation or measurement
by Alice and Bob is a valid preparation or measurement in the bipartite
system respectively. It is also reasonable to assume that if such an inde-
pendent preparation by Alice or Bob is probabilistic with some probability
weight, then the total preparation is also probabilistic with the same prob-
ability weight (similarly for independent measurements). Its mathematical
expression is given as follows [30].

Axiom 4 (Validity of individual preparations and measurements)
There exist bi-affine maps ¢: Qa4 x Qp — Qap and V¥: Eq, x Eqp — Eaup
such that

[V(ea,ep)] (p(wa,wp)) = ealwa) - ep(wp) (2.15)

for all wa € Qa, wp € Qp and es € Eq,, ep € Eq,,. Fach ¢p(wa,wp) and
Y(ea,ep) are called a product state and a product effect respectively.

In the assumption, each product state ¢(wa,wp) represents the individual
preparation of ws and wg by Alice and Bob, and the individual convexity
is reflected via the notion of bi-affinity of the map ¢ (similarly for each
product effect ¥ (e4, ep) and the map ). We also require that if Alice and
Bob measure their respective unit effects u4 and upg individually on any joint
state (not necessarily a product state), then the observed probability is 1.
In other words, the unit effect of the total system is ¢)(u4, ug).

20For the description of multipartite systems, see [29, 51).
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Axiom 5 (Unit effect of the total system)
The unit effect uap of the joint system is given by the product effect (ua, up)
of each unit effect uq and ug of Alice and Bob respectively.

Let us give an easy consequence of these axioms according mainly to [30].

Lemma 2.31

Assume Aziom [ and Axiom E. There are linear injections ®: Vy ® Vg —
Vap and ¥: Vi Q@ Vi — Vi such that

(i) P(ws @wp) = P(wa,wp) for all wa € Q4 and wp € Qp;

(1i) V(ea ®ep) = Y(ea,ep) for alles € Eg, and ep € Eq;

(111) uap = V(ua @ up).

Proof

Let us first construct a bi-linear extension ® on V4 x Vg of the bi-affine
map ¢ on 24 x Qp. Due to the assumption of the bi-affinity, ¢(wa, -) defines
an affine map from Qp to Qup for a fixed wy € 24, and it can be extended
(uniquely) to a linear map [¢'(wa)](-) from span(Qp) = Vi to span(Qap) =
Vap such that [¢'(wa)](wp) = ¢(wa,wp) for all wp € Qp (see the proof of
Proposition 3 (ii)). In this way, we obtain a map P: Q4 — L(Vg, Vag),
where L£(Vp,Vap) is the set of all linear operators from Vg to Vap. It is
easy to see that P is affine, and thus, similarly to the above argument, it
has a unique linear extension P: V4 — L(Vp, Vap) such that [P(wa)](:) =
[/ (wa)](+) for all wq € Q4. The bi-linear extension @’ of ¢ is now obtained
by @ (va,vg) = [P(va)](vg) for v4 € V4,vp € V. Then, the existence of
the linear map ®: V,y ® Vp — Vyp satistying ®(vys ®vp) = &' (va, vp) for all
va € Vy,vp € Vg (in particular (i)) follows immediately from the universal
property of tensor product [68]. The existence of W satisfying (ii) is proved
similarly, and (iii) is an easy consequence of Axiom B.

The remaining problem is to show the injectivity of . Because (24 and
Qp span V4 and Vg respectively, any v4®ug € Va®Vp withvs € V4, vp € Vp
is expressed as vy Q vg € Vup = Z” aijwi‘ ® wé with a;; € R and wi‘ €
Qa,wh € Qp. Similarly, any ws ® wp € Vi ® Vi with wa € Vi, wp € Vi is
expressed as wa@wp = Y, brek @ el with by € R and ef € £q,, el € Eq,,.
Thus, we can observe from the linearity of ® and ¥ that

[V(wa ®@wp)[(P(va ®@vp)) = wa(va) - wp(vp).

Let vap € Vap satisfy ®(vap) = 0. Then, since vqp is expressed by vap =
> vy @ vl with vl € Vi, vl € Vp, it holds for all wy € Vi, wp € Vi that

[wa ® wg]|(vap) = ZwA(UfA) cwp(vp) = [¥(wa @wp)](®(vap)) = 0.
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Because {wa®uwp | wa € Vi, wp € Vii} spans Vi, we can conclude vap = 0,
which means that @ is injective. The injectivity of ¥ can be proved similarly.
O

Remark 2.32

It seems to be assumed implicitly in Axiom A and Axiom B that Alice’s ac-
tions do not influence Bob, and vice versa. For example, there we require
that Alice and Bob can prepare individually their states and effects with-
out influencing each other, or we can see from the bi-affinity (bi-linearity)
of ¢ that the statistics observed by Alice alone are independent of Bob’s
measurements: for any joint state wap, the probability of Alice observing
ea € Eq, does not depend on Bob’s measurement {f}}; because it holds
that

D (ea, fi)l(wan) = [Y(ea, up)](was)-
In fact, Axiom @ and Axiom B can be rephrased in terms of the so-called
no-signaling principle [24, 69, [Z0]7, or the requirement of causality [26, 277].

There is another important requirement for bipartite systems. We require
that every joint state can be determined by local measurements. This claim
called the tomographic locality for states [22, 24, [[1] is described mathemat-
ically as follows.

Axiom 6 (Tomographic locality for states)

If wap,wWhp € Qap satisfy [¢(ea, ep)l(wap) = [Y(ea, ep)|(Wap) for alles €
Ea, and eg € Eq,, then wap = Wyp.

Lemma 2.33
Assume Axiom [, Aziom E, and Axiom @. The linear injections ® and ¥

in Lemma 2231 are also surjective, that is, ® is a linear bijection between
Va® Vg and Vag, and ¥ between Vi Q@ Vi and Vig.

Proof

Assume that Vip\U(Vi ® V) is nonempty, and w'yz € Vig\U (Vi ® V).
Then, because w'yz and a basis of ¥(VF ® V) are linearly independent,
we can construct an element vy5 of Vi} such that v/yz(w)yz) = 1 and
Vyp(wap) = 0 for all wap € (VI ®VE). We note that Vi = Vyp holds
due to the assumption of finite dimensionality, and thus v,z above can be
regarded as an element of Vyp. It follows that if we define M := {vup €
Vap | wap(vap) = 0 for all wap € U(Vi® V5)}, then M\{0} is nonempty.
In the following, we prove that M = {0}, which implies Vi, = (Vi @ V).
Let vz € M. For a state wap € int(Vap,), where int(Vapy) is the interior
of the positive cone Vg, of Vip generated by Qap (see Proposition 223),

2'How the no-signaling principle is formulated in GPTs is explained in detail in [70].
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we can make wyp = wap + vy belong to Vypy if we take sufficiently
small ¢ > 0. Because uap = ¥(us ® up), it holds from the definition of
M that uap(wip) = uap(wap) = 1, i.e., wip € Qap. Moreover, we can
find in a similar way that [V(es ® ep)](whp) = [¥(ea®ep)](wap) holds for
all eq € Eq,,ep € Eq,, and thus, from Axiom B, w’); = wap holds. This
implies v% 5 = 0, which means M = {0} and Vi; = (VI ®V}). Therefore,
we can conclude V¥ is surjective (i.e., bijective). Then, it is easy to derive
dim Vyp = dim V4 ® Vg = dim V4 - dim Vi, and the surjectivity (bijectivity)
of ® follows from this observation. O

We assume Axiom B, Axiom B, and Axiom B (thus Lemma 2233) in this thesis.
Then, it does not cause any problem to identify the subsets ®~1(245) and
U1 (&, ) of Va® Ve and Vi ® V3 = (Vi ® Vp)* with the state space and
effect space of the joint system respectively (see the argument above Remark
229). We hereafter write @1 (Q45) simply as Qap, and V(&g ) as Eq 4,
and work with these expressions of states and effects where product states
and effects are represented as w4 ® wp and ex ® ep (wa € N4, wp € Qp and
ea € Eq,,ep € Eq,) respectively.

Remark 2.3/

One may consider Axiom H to be more artificial when compared to the other
axioms. In [B0], it was explained that uap = ua®up holds if the tomographic
locality for effects is imposed together with Axiom B and Axiom B.

Let us give more detailed specifications of bipartite systems. For GPTs
(Q4,&q,) and (Qp, Eq,,) of local systems, we define the following classes of
convex sets [[/2, [73].

Definition 2.35
Let (QA7(€QA> and (QB,EQB) be GPTs.
(i) The convex subset Q24 Qin 25 of V4 ® Vi defined as

Q4 Qmin g 1= {szwi;@sz |pz = 0, Zpl =1, CL)IZL‘ € QA, wa € QB}

is called the minimal tensor product of 24 and 5. The minimal tensor
product g, Qmin €a, of the effect spaces £, and &g, is defined in the
same way.

(ii) The convex subset Q4 ®maz 25 of V4 ® Vi defined as

Q4 Pmaz Vg = {wap € Va®Vp | (ea ®ep)(wagp) € [0, 1],

ea€a,, ep €y, (Ua®up)(wap) = 1}
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is called the maximal tensor product of 24 and Q2. The maximal tensor
product £o, Qmaz Eq, of the effect spaces £, and &g, is defined in the
same way.

It is verified easily that the minimal and maximal tensor products are dual
to each other in the sense that £q,,...05 = €a. Omaz €y ad €0 @005 =
Ea, Omin €a hold. A similar observation can be obtained if we start from
effects (see Remark PZ30). We also note that Q4 ®min 2 € Q4 Rmaz OB
clearly holds.

By means of the axioms introduced so far, we can specify the joint state
space €245 in the following way. First, it can be found that €2 4 must include
QA®minf2p because product states and probabilistic mixtures are required to
exist. Similarly, the existence of product effects are imposed, and it follows
that Q4p is included in Q24 ez 25. We have now obtained the following
description for bipartite systems.

Theorem 2.36
Let (Qap,Ea,p,) be a GPT describing a bipartite system composed of two
subsystems (4, Eq,) and (g, Eqy,). Then,

QA @mzn QB - QAB - QA ®mam QB (216)
holds. Dually,

EQA ®m7,n SQB - E’.QAB - SQA ®ma-l’ gQB (217)
holds.

It can be found that when a bipartite system (Qap,&q,,) composed of
(Q4,&q,) and (Qp,Eq,,) satisfies both (EI8) and (EI4), then Axiom @,
Axiom H, and Axiom B hold. In fact, Axiom @ and Axiom B clearly hold,
and because any element of V5 can be written as a linear combination of
effects of the form e4 ® ep (remember that £, and &g, span V; and V}
respectively), Axiom B also can be verified.

Definition 2.37

Each element of 24 ®,.:n (15 is called a separable state, and an element of
the form wy ® wp is particularly called a product state. FEach element of
Q4 Qmaz 2B\Q24 min Qg is called an entangled state. Separable effects,
product effects, and entangled effects are defined in the same way.

It should be noted that entangled states exist unless either theory is classical.
More precisely, it was shown in [74] that Q4 ®min Q5 = Q4 Qmin Q5 holds
if and only if either Q4 or Qp is a simplex (i.e., a classical theory).
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Ezample 2.38 (Quantum theory over a real Hilbert space)
Let K = R? (d < o) be a finite-dimensional real Hilbert space. We can
consider a GPT whose state space is given by Q,qr(K) = {pe Ls(K) | p =
0, Tr[p] = 1} with L£5(K) the set of all self-adjoint operators on K. The real
quantum theory described by Q,qr(K) often appears in the field of GPTs
when deriving the standard quantum theory (i.e., complex quantum theory)
from physical principles [22, B1]]. It is easy to see that aff (Q.qr(K)) and the
standard embedding vector space V(KC) are given by aff (Q.qr(K)) = {p €
Ls(K) | Tr[p] = 1} and V(K) = L5(K) respectively. We can also observe
that dim aff (qr(K)) = 3(d* + d) — 1 and dim V' (K) = 1(d® + d) hold (in
particular, dim V' (K) = dim aff (Q.qr(K)) + 1 holds). Suppose in analogy
with the formulation of a finite-dimensional quantum theory over a complex
Hilbert space that the state space of the composite system composed of two
identical state spaces Q,qr(K) is given by Qqr(K®K) = {pe Ls(KRK) |
p =0, Tr[p] = 1}. Then, we can derive

dimVy - dim Vg = [3 (&> + d)]?, dimVyp = 1 (d* + d°),
where V4 = Vg = V(K) and Va5 = V(K ®K) are the respective embedding
vector spaces of the individual and the total state spaces. It implies dim Vy -
dim Vg < dim Vyp, i.e., V4®Vp = Va1 does not hold. Thus, we can conclude
that the tomographic locality is not satisfied in a finite-dimensional quantum
theory over a real Hilbert space (it is not difficult to see that Axiom B and
Axiom B hold in this case).”

2.3 Transformations

In this section, we explain how transformations between systems are for-
mulated in GPTs, which completes our review for basic notions on GPTs.
It will be found that not only state changes such as time evolutions but
also measurements can be described in terms of transformations or chan-
nels, which are more refined forms of transformations. We also introduce
the notions of compatibility and incompatibility for channels, which play a
key role in the following chapters.

2.3.1 Channels in GPTs

In quantum theory, transformations of systems is described via the notion
of channels [A1, 76]. In this part, we explain how channels are generalized
in GPTs according mainly to [31, 77].

22We can also eliminate a finite-dimensional quantum theory over a quaternionic Hilbert
space by a similar observation [I75].
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Definition 2.39

Let (21, &q,) and (22, Eq,) be GPTs. An affine map 7': 0y — Qs is called a
channel from Q; to €25. A linear map T': V; — V5, where V; and V5 are the
embedding vector spaces of €2 and )y respectively, is equivalently called a
channel from € to Qs if T'(2;) < Qy (thus it is positive in the sense that
T((V1)y) € T((V2);+)®). We denote the set of all channels from ; to Qy by
C(€1,€s), and denote the set C(£2y, ;) simply by C(€;)

A channel T': Vi — V5 in the above definition induces a map 7": V¥ — V/*
such that [T"e](w) = e(Tw) for all e € &, and w € Q;. In this way, we can
focus on transformations between effects instead of transformations between
states. However, in this thesis, when channels are considered, they always
represent transformations between states, that is, the Schrodinger picture is
adopted although similar arguments can be developed with channels consid-
ered as transformations between effects (the Heisenberg picture).
It is easy to obtain the following observations.

Proposition 2.40

Let (21, &q,), (22,&q,), and (23,Eq,) be GPTs.

(i) For S,T € C(Q21,Qs), if we define \T'+(1—=XN)T" as [NT+ (1 —=N)T"](w1) =
AT (w1) + (1 = A)T"(w1) (0 <A<, then AT + (1 = N)T" € C(4, )

(i1) If S € C(Q,2) and T € C(Qa,Q3), then T oS € C(24,3).

Let us give several examples of channels.

Ezample 2.41 (Basic examples of channels)

Let (21, &q,), (2, Eq,) be GPTs, and V; and V4, be the canonical embedding
vector spaces of €); and €2y respectively.

(i) If we define a map idg, : 1 — Q by idg, (w1) = w; for all wy € Q, then
idg, € C(21). We call idg, the identity channel on Q.

(i) If we define a map Ti,: Q3 — Qg by Tx(wi) = w* (w* € Q) for all
wy € Q, then T« € C(2, Q).

(iii) Consider a bipartite system (€42, £q,,) composed of (21, Eq, ), (22, Eay)-
For the linear maps idg, : V1 — V; and us: Vo — R, where idq, is the identity
channel on €27 and us is the unit effect on €25, we define their tensor product
tdo, ® ug. Then, idg, ® uy as a linear map from V; ® V5 to V; is a channel
from Q45 to 21, and called the partial trace.

We can demonstrate that even the fundamental notions of states and ob-
servables can be represented in terms of channels. To show this, we need to
define the following convex sets.

23Tt is sometimes more convenient to consider a linear map T: Vi — Vi satisfying
T(V1)4+) € T((V2)4+) and ua(T(w)) < 1 (w € Q1), where uy is the unit effect for Qq, as
representing a transformation of states. Such positive and normalization-nonincreasing
maps in GPTs correspond to the notion of operations in quantum theory [7%], although
operations in quantum theory are sometimes assumed also to be completely positive [76].
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Definition 2.42

Let {z;}7! be a set of affinely independent™ vectors in R? (d > n). The
convex set conv({x;}71!) is called an n-dimensional simplex [49]. In partic-
ular, we denote the simplex generated by orthonormal vectors {p;}"]' with
p1 = (1,0,...,0), po = (0,1,0,...,0),... simply by A,, and call it the n-
dimensinoal standard simplex. It is trivial that any n-dimensional simplex
is isomorphic to A,,.

Ezample 2.43 (States, observables, and instruments as channels)

Let (921,&q,), (Q2,&q,) be GPTs, and let us follow the similar notations in
Definition 242 above.

(i) A state w € €2 is equivalent to a channel from A; to ; by the identifi-
cation of w with a channel P,: A; — ; defined as P,(p;) = w. Similarly,
we can introduce a conditional preparation channel P{wi}?:ll e C(A,,)
by P{wi}?j(v) = Z?:ll viw;, where v; is the ith element of the vector v e
R™*!1. The channel P{wi}?:f represents an apparatus which outputs the

states {w;}1"! according to the proportion determined by a classical input

v=(V1,..., Upy1)-

(ii) An observable E = {e;}"*! on € with (n + 1) outcomes is equiva-
lent to a channel from €y to A,, by the identification of E with a channel
Mg: Q — A, defined as Mp(w) = (e1(w), ..., ent1(w)) = S0 ei(w)ps.
(iii) For a conditional preparation channel Py €C (A, €s) and a mea-
surement channel Mg: Q; — A, the composition P{wi}?:f o Mg € C(€q,)
is called a measure-and prepare channel. Preparation channels or measure-
ment channels in (i) or (ii) above respectively are examples of measure-and
prepare channels (see [31] for other examples).

(iv) A channel from €y to Qi ®uin A, is called an instrument. It outputs
the measurement outcomes of an observable and the ensemble of the post
measurement states.

Remark 2.44

In this part, we introduce channels in GPTs as positive and normalization-
preserving maps, while in quantum theory channels are defined as trace-
preserving (normalization-preserving) and completely positive maps [41, [76,
79]. The notion of complete positivity can be introduced also in GPTs based
on the above formulation of bipartite systems [31]. However, completely pos-
itive maps do not always correspond to physical processes in GPTs. This
is because, while in quantum theory all completely positive maps are physi-
cally valid transformations in the sense that their physical implementations
exist via the Steinspring’s theorem [80], there is in general not ensured the
existence of such physical implementations in GPTs.

24Vectors vy, v1, ..., v, in a vector space V are called affinely independent if the
vectors v; — vg, ..., U, — Vg are linearly independent.

43



2.3.2 Compatibility and incompatibility for channels

In quantum theory, we cannot always obtain simultaneously statistics for a
pair of observables such as position and momentum, or cannot always dupli-
cate a family of states [20]. These impossibilities are essential ingredients of
quantum theory: for example, without them, the violation of Bell inequality
or the security of quantum cryptography never occurs. Those impossibilities
can be described by the notion of incompatibility in a unified way [21]. In this
part, we demonstrate that the notion of incompatibility can be introduced
successfully also in GPTs.

Definition 2.45

Let (21, &q,), (Q2,&q,), and (23, Eq,) be GPTs, and (a3, £q,,) be a GPT
which describe a joint system of (€9,&q,) and (23,&q,). Channels S €
C(21,89) and T € C(24,Q3) are called compatible if there exists a channel
R € C(€)y,Qy3) called the joint channel of S and T such that the marginal
actions of R reproduce each action of S and T, that is,

(ZdQQ ®U3) oR = S>
(UQ ®ZdQ3) o R = T,

where idg, ® us and us ® idg, are the partial traces in {293 (see Example
). If S and T are not compatible, then they are called incompatible

This definition of incompatibility applies to cases when three or more chan-
nels are considered. For incompatibility of observables, we can derive a
simpler expression.

Proposition 2.46

Let (2, Eq) be a GPT, and Mg and Mp be the measurement channels asso-
ciated with observables E = {e;}i_, and F = {f;}7-, on Q respectively (see
Ezxample 273 (ii)). Then, Mg and Mg are compatible if and only if there
exists an observable (called a joint observable) G = {gij}é’zmljj:l on € such

that l
Zgij = €4, Zgij = fi-
j=1 i=1

Proof
If there exists an observable G = {gij}ﬁﬂ’jzl on 2 such that

m l
Zgij = 6, Zgij:fja
j=1 =1

then it is easy to see that the measurement channel Mg € C(2, A;_1 Qmin
A1) defined as Mg(w) = (mi(w), ..., mum(w)) = X, ; mij(w)pi®p;, where
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p1 = (1,0,0,...), po = (0,1,0,...), (see Definition 24%), is a joint channel
of Mg and M. We note that the composite of two simplices is always given
by their minimal tensor product. Conversely, if there exists a joint channel
M € C(, A1 Qmin Am_1) of Mg and Mp, then, representing M (w) €
D21 Qmin Am—1 as M(w) = >, M(w)ip; @ pj (M(w);; € [0,1]), we obtain
2 Mw)i; = ei(w) and >, M(w);; = fj(w). We can naturally introduce
effects m;;: Q@ — [0,1] by my;(w) = M(w);j, and it is easy to verify that
2mig = e and Y;my; = f; (and thus >, mi; = u, ie., {my};; is an
observable). O

In [RT], it was shown that there exists an incompatible pair of observables
in every finite-dimensional GPT unless it is classical. We can present the
existence of another type of incompatibility.

Ezxample 2.47 (Generalized no-broadcasting theorem)

Let (Q,&q) be a GPT, and let (212, &q,,) be a GPT describing a composite
system of (€q,&q,) and (€, E&q,), where Q1 = Qy = Q. A set of states
{wi}i € Qs called broadcastable if there exists a channel T' € C(£2,€);2) such
that (idg, ® u2)(T(w;)) = w; and (u; ® idg,) (T (w;)) = w; hold for all 7. Tt
was shown in [23, 25] (see also [31]) that {w;}; < Q is broadcastable if and
only if it lies in a simplex. In other words, the identity channels idg, and
idg, are compatible if and only if ; = s = 2 is a simplex (i.e., the theory
is classical).

These results on GPTs manifest interesting facts that properties once thought
to be specific to quantum theory are in fact more universal ones.

2.4 Additional notions

So far we have reviewed fundamental notions in GPTs especially focusing
on states and effects. It was shown that states and effects are represented in
terms of ordered Banach spaces, and under the assumption of finite dimen-
sionality, they are reduced to elements of Euclidean spaces. In this part,
based on those descriptions, we develop additional notions on states and
effects which will play significant roles in demonstrating several results of
this thesis. To do this, we follow the notations that have been used so far.
That is, a GPT is given by a pair (£2,&q) of a state space and the corre-
sponding effect space where Q < V = R¥*! with span(Q) = V and 0 ¢ Q
and &, < V*. We should also recall that the set of all pure states is denoted

ext

by Q°* and the set of all pure and indecomposable effects by EZ.
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2.4.1 Physical equivalence of pure states

It is known that in quantum theory all pure states are physically equivalent
via unitary (and antiunitary) transformations [41]. A similar notion to this
physical equivalence of pure states can be introduced also in GPTs.

Let € be a state space. A map T': 2 — € is called a state automorphism
on 2 if T is an affine bijection. We denote the set of all state automorphisms
on 2 by GL(?), and say that a state wy € € is physically equivalent to a
state wy € Q if there exists a T € GL(R) such that Tw; = wy. It was
shown in [45] that the physical equivalence of wy,ws € 2 is equal to the
existence of some unit-preserving affine bijection 77: & — &g satisfying
e(wy) = T'(e)(wq) for all e € &, which means w; and wy have the same
physical contents on measurements. Because any affine map on ) can be
extended uniquely to a linear map on V, it holds that GL(Q?) = {T": V —
V| T : linear, bijective, T'(Q2) = Q}. It is clear that GL(Q2) forms a group,
and we can represent the notion of physical equivalence of pure states by
means of the transitive action of GL(€2) on Q.

Definition 2.48 (Transitive state space)
A state space Q is called transitive if GL()) acts transitively on Q% that
is, for any pair of pure states w§*", w§*

Tj; € GL(Q) such that w§** = Tjw™.

€ Q°* there exists an affine bijection

We remark that the equivalence of pure states does not depend on how
the theory is expressed. In fact, when () is a transitive state space and
Q' = 1(Q) is equivalent to Q with a linear bijection 1, it is easy to check
that GL(QY) = ¢ o GL(Q) oy~ ! and ' is also transitive.

In the remaining of this subsection, we let {2 be a transitive state space.
In a transitive state space, we can introduce successfully the maximally
mixed state as a unique invariant state with respect to every state automor-
phism.

Proposition 2.49 ([82])

For a transitive state space ), there ezists a unique state wy € 0 (which we
call the mazimally mized state) such that Twy = wy for all T € GL(Q).
The unique maximally mized state wys 1S given by

wy = f Tw™" du(T),
GL(Q)

t

where w™" is an arbitrary pure state and p is the normalized two-sided in-

variant Haar measure on GL(S2).

Note in Proposition 249 that the transitivity of ) guarantees the indepen-
dence of wys on the choice of w™'. When Q%* is finite and Q™ = {w™*}7,,

[
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wys has a simpler form

We should recall that the action of the linear bijection 7 : = ol ”E 1y on

does not change the theory, where |wy/|g = (wM,wM)}E/ with the standard
Euclidean inner product (-,-)p and 1y is the identity map on V. Since
nTn~ =T holds for all T € GL(2), GL(Q) is invariant under the rescaling
by 1, i.e. GL(n(2)) = GL(Q). It follows that the unique maximally mixed
state of the rescaled state space n(£2) is |

lwall e
thesis, when a transitive state space is discussed, we apply this rescaling and

wys. In the remaining of this

assume that |lwy/|z = 1 holds. This assumption makes it easy to prove our
main theorems in Chapter B via Proposition introduced in the following.

The Haar measure p on GL(€2) makes it possible for us to construct
a convenient representation of the theory. First of all, we define an inner
product (-, -)gr) on V as

e = f (T, Ty)p du(T) (z,ye V).
GL(9)

Remark that in this thesis we adopt (-, )z as the reference inner product of
(-, Dar(q) although the following discussion still holds even if it is not (-,-)g.
Thanks to the properties of the Haar measure p, it holds that

<T:L‘, Ty>GL(Q) = <:L”, y>GL(Q) VT € GL(Q),

which proves that any 7' e GL(£2) to be an orthogonal transformation on V'
with respect to the inner product {-,-)qr). Therefore, together with the
transitivity of {2, we can see that all pure states of {2 are of equal norm, that
is,

i loz@) = @i 9Pz
- T TS (2.15)

= (W5 e

= w5l

holds for all wi™* € Q™ where w§*" is an arbitrary reference pure state. We
remark that when |wy/||g = 1, we can obtain from the invariance of wy, for
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GL(Q)

Jwaelriey = f (Twnr, Tons) s dyu(T)
GL(Q)

_ j (warswnr)e du(T)
GL(Q)

= Joonl J du(T)
GL(Q)
— Joontl,

and thus |lwa|gr) = 1 . The next proposition allows us to give a useful
representation of the theory (the proof is given in Appendix Al).

Proposition 2.50

For a transitive state space Q, there exists a basis {v;}; ' of V orthonormal

with respect to the inner product (-,-)qr) such that vy, = wy and

N N
z € aff () = $=2alvl+vzv+1 =2aﬂ)z+wM (a1, ,an € R).
=1 =1

By employing the representation shown in Proposition 50, an arbitrary
x € aff () can be written as a vector form that

x:<”1”> with wMz((1)>, (2.19)

where the vector @ is sometimes called the Bloch vector [83, 84] correspond-
ing to .

2.4.2 Self-duality

In this part, we introduce the notion of self-duality, which also plays an
important role in our work.

Let V. be the positive cone generated by a state space 2. We define the
internal dual cone of V. relative to an inner product (-,-) on V' as Vj_"g”t) =
{y e V| (z,y) =0, Yz € V.}, which is isomorphic to the dual cone V}
because of the Riesz representation theorem [68].% The self-duality of V,
can be defined as follows.

Definition 2.51 (Self-duality)
V., is called self-dual if there exists an inner product (-,-) on V such that

Ve = v

25In the field of GPTs, effects are often defined as elements of V' = R¥*! through the
identification V* = Vj(if‘.t), and the action of effects on states is represented via the inner
product (-, ).
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We remark similarly to Definition 2748 that if V, generated by a state space
1 is self-dual, then the cone V) generated by Q' := () with a linear
bijection ¢ (i.e. V] = 1(V})) is also self-dual. In fact, we can confirm that
if V, = f(mt) holds for some inner product (-,-), then V] = V:‘Em)t, holds,
where the inner product (-, -)"is defined as (z,y)" = (v 'z, Y 1y) (x,y e V).

Let us consider the case when 2 is transitive and V, is self-dual with
respect to the inner product (-, -)gr(q). Since V, = Vfé%cum’ we can regard
V. also as the set of unnormalized effects. In particular, every pure state

Wt € Q°** can be considered as an unnormalized effect, and if we define

ext ext
i := e:‘.c)l2 = e:Z2 ) (220)
e HGL(Q) e HGL(Q)

then from Cauchy-Schwarz inequality

(e, wiar) < leilar@|wiere) =1

holds for any pure state w** € Q™ (thus e, is indeed an effect). The equality
holds if and only if wg* is parallel to e;, i.e. W™ = W™, and we can also
conclude that an effect is pure and indecomposable if and only if it is of the

form defined as (E220) together with the fact that effects on the extremal

rays of Vfé%cum = V., are indecomposable (for more details see [G1]):
wf)(t w?(t ext ext
€ = T oxti3 = = el e £(O). (2.21)
s HGL(Q) | HGL(Q)

When Q%] < oo, it is sufficient for the discussion above that 2 is transitive
and self-dual with respect to an arbitrary inner product.

Proposition 2.52
Let Q be transitive with |Q°| < o0 and V.. be self-dual with respect to some
inner product. There exists a linear bijection Z: V. — V' such that €Y := =0

is transitive and the generating positive cone V. is self-dual with respect to
<', '>GL(Q/), ’L@ V+ = V‘*‘?T;GL(Q/)'

The proof is given in Appendix B. Proposition 2202 reveals that if a theory
with finite pure states is transitive and self-dual, then the theory can be
expressed in the way it is self-dual with respect to (-, )ar ).

2.5 Examples of GPTs

In this section, we present some examples of GPTs with relevant structures
to transitivity or self-duality.
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2.5.1 Classical theories with finite levels

Let us denote by Qcr the state space of a classical system with a finite
level. Qcr can be represented by means of some finite N € N as the set of
all probability distributions (probability vectors) {p = (p1, -+, pPys+1)} <
V = RY¥*! on some sample space {ai, -, ani1}, i.e., Qcr is the N-

dimensional standard simplex Ay. It is easy to justify that the set of all
R
ext

distribution satisfying (p§**); = d,;, and the positive cone V; by V, = {0 =
(01, - ,on41) €V |0 =0, Vz'}. Remark that the set

ext
1

pure states Q&G is given by Q37 = {p where p®* is the probability

(SN — {(1,0,---,0),(0,1,---,0),---,(0,0,--- ,1)}

forms a standard orthonormal basis of V. Since any state automorphism
maps pure states to pure states, it can be seen that the set GL(Qcr) of all
state automorphisms on ¢t is exactly the set of all permutation matrices
with respect to the orthonormal basis {p**} N 1! of V. Therefore, Qcr is a
transitive state space, and any T € GL(Q¢r) is orthogonal, which results in

(&, Y)ar@er) = J (Tx, Ty)g du(T)
GLOQGT)
= J (z,y)e du(T)
GLQoT)

- (z)s LL(%T) du(T)
= (z,y)p- (2.22)

The set of all positive linear functionals on Q¢ can be identified with the
internal dual cone Vfé."f)E, and every h € sz'?t)E can be identified with
h = (R(p?*), -+, h(PRY,)) with all entries nonnegative since

h(py™) = (h, ) = (h); =0

holds for all 7. Therefore, we can conclude together with (222) V. =
Vf(i,’?f)E = V:é%cL(QCT). Note that we can find the representation (2-T9)
to be valid for this situation by taking a proper basis of V' = R¥*! and

normalization.

2.5.2 Quantum theories with finite levels

The state space of a quantum system with a finite level denoted by Qg is
the set of all density operators on N-dimensional Hilbert space H (N < o),
that is, Qqr = {p € Ls(H) | p = 0,Tr[p] = 1}, where Lgs(H) is the set
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of all self-adjoint operators on H. The set of all pure states Qa‘% is given
by the rank-1 projections: Q& = {[Y)X¥| | [¢) € H,(Y|¢) = 1}. Tt has
been demonstrated in [85] that with the identity operator 1y on H and the
generators {0;}' 7! of SU(N) satisfying

0; € Es(H), TI'[O'i] = 07 TI‘[O'iO'j] = 25@', (223)

any A € Lg(H) can be represented as

N2-1
A=coly+ Z cioi (co,c1, -+ ,enz_q €R) (2.24)
i=1
and any B € aff (Qqr) as
1 N2-1
B=ln+ 2 cioi (c1,-+ ,cn2_1 €R). (2.25)
Since (223) implies that {1y,0q, - ,0n2_1} forms an orthogonal basis of

Ls(H) with respect to the Hilbert-Schmidt inner product (-, ) s defined by
(X,Y) s = Tr[XTY],

and (ZZ24) and (ZZ3) prove dim(Lg(#H)) = dim(aff (Qqr)) + 1, it seems
natural to consider (gt to be embedded in V' = Lg(H) equipped with
(+,")us. Because it holds that

E(Qqr) ={E e Ls(H)
={Ee Ls(H)

0

<
0< E <1y},

we can see V) = V:E_’?SHS ={A e Lg(H) | A = 0}, and rank-1 projections
are pure and indecomposable effects in quantum theories. We note that
while higher dimensional classical theories are represented by simplices as
shown in the previous example, higher dimensional quantum theories have
more complicated structures [85, BG]: we cannot represent them with higher
dimensional balls just generalizing the three dimensional ball for the qubit
case (the Bloch ball).

On the other hand, it is known that in quantum theory any state auto-
morphism is either a unitary or antiunitary transformation [41], and for any
pair of pure states one can find a unitary operator which links them. Thus,
Qqr is transitive, and any state automorphism is of the form

p—UpU" "peQqr,
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where U is unitary or antiunitary. Considering that

(UXUN,UYUY s = Tr [UXTUTUY U]
= Tr[XTY]
= (X,Y)nus

holds for any unitary or antiunitary operator U, we can obtain in a similar
way to (E222)

(X, Y)ar@qr) = (X, Y )us. (2.26)

int _ *int

(ms T HCanegn)”
larly to the classical cases that we may rewrite (2223) as (ZZ19) by taking a
suitable normalization and considering that wy, = 1x/N.

Therefore, we can conclude V, = V¥ We remark simi-

2.5.3 Regular polygon theories

If the state space of a GPT is in the shape of a regular polygon with n(= 3)
sides, then we call it a reqular polygon theory and denote the state space by
Q,. We set V = R? when considering regular polygon theories, and it can
be seen in [87] that the pure states of 2, are described as

0 = (N

with
Tn cos(%”f) ]
wi'=| 7, Slri(%) , Th = ES (2.27)

when n is finite, and when n = oo (the state space €y is a disc),

Q5" = {wy Yoefo.2m)
with

cos 0
wg = | sinf |. (2.28)
1

The state space €23 represents a classical trit system (the 2-dimensional stan-
dard simplex), while €2, represents a qubit system with real coefficients (the
unit disc can be considered as an equatorial plane of the Bloch ball). Regular
polygon theories can be regarded as intermediate theories of those theories.
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The state space of the regular polygon theory with n sides (including
n = o) defines its positive cone V,, and it is also shown in [87] that the
corresponding internal dual cone V™ ~ < R? is given by the conic hull of
the following extreme effects (in fact, those effects are also indecomposable)

(2i—1)7
L cos( - )

e?zé rnsin((m;l)ﬂ) , i=0,1,---,n—1 (n:even);

1

] T COS(%)
?:1—1—7‘% rnsin(z%) , 1=0,1,--- ,;n—1 (n:odd); (2.29)
1
cos
62025 sinf |, 0€[0,2r) (n=0).
1

Moreover, for finite n, we can see that the group GL(2,) (named the dihe-
dral group) is composed of orthogonal transformations with respect to (-, )g
[88], which also holds for n = co. Similar calculations to (E222) or (228)
demonstrate (-,-)g = -, )ar@,) for n = 3,4,---  00. Therefore, from (2Z21)
- (ZZ29), we can conclude that V, is self-dual, i.e. V, = Vf(mt)E = Vjé?:”gumn)?
when n is odd or oo, while V, is not identical but only isomorphic to
int
:<'»'>GL(QH)
Among regular polygon theories, the square theory described by the state

when n is even (in that case, V, is called weakly self-dual [29, 87]).

space () is physically of particular importance, and is often called a gbit
(generalized bit) system [24]. It can be observed that the so-called PR-
box [6Y] is represented by a pure entangled state of the composite system
Q4 maz 4 [24], and thus can violate the CHSH inequality maximally in the
sense that it attains the value 4 for that entangled state [87]. The square
theory is also known for its interesting behavior on incompatibility. It was
demonstrated in [89] that a pair of two-outcome observables for €2, exhibits
maximal incompatibility, which means that we need maximal noise to make
them compatible (see also Example BR).
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Chapter 3

Preparation uncertainty implies

measurement uncertainty in a
class of GPT's

Since it was propounded by Heisenberg [R], the existence of uncertainty rela-
tions, which is not observed in classical theory, has been regarded as one of
the most significant features of quantum theory. The importance of uncer-
tainty relations lies not only in their conceptual aspects but also in practical
use such as the security proof of quantum key distribution [0, G0]. There
have been researches to capture and formulate the notion of “uncertainty”
in several ways. One of the most outstanding works was given by Robert-
son [90]. There was shown an uncertainty relation in terms of standard
derivation which stated that the probability distributions obtained by the
measurements of a pair of noncommutative observables cannot be simultane-
ously sharp. While this type of uncertainty (called preparation uncertainty)
has been studied also in a more direct way [92, B3, 94] or the entropic way
(95, 96, 97, 98, 99, 100], another type of uncertainty called measurement un-
certainty is known to exist in quantum theory [d1]. It describes that when
we consider measuring jointly a pair of noncommutative observables, there
must exist measurement error for the joint measurement, that is, we can only
conduct their approzimate joint measurement. There have been researches
on measurement uncertainty with measurement error formulated in terms of
standard derivation [I01, (02, [03] or entropy [19]. Their measurement un-
certainty relations were proven by using preparation uncertainty relations.
It implies that there may be a close connection between those two kinds of
uncertainty. From this perspective, in [I8], simple inequalities were proven
which demonstrate in a more explicit way than other previous studies that
preparation uncertainty indicates measurement uncertainty and the bound
derived from the former also bounds the latter. The main results of [I8] were
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obtained with preparation uncertainty quantified by overall widths and min-
imum localization error, and measurement uncertainty by error bar widths,
Werner’s measure, and [, distance [[04, 05, 006, [07]. Concerning about
uncertainty, both preparation and measurement uncertainty can be intro-
duced naturally also in GPTs. For example, both types of uncertainty for
GPTs analogical with a qubit system were investigated in [T08], and there are
also researches on joint measurability of observables [81, 09, 10, [T, [12],
which are related with measurement uncertainty, in GPTs. It is of inter-
est to give further research on how two types of generalized uncertainty are
related with each other.

In this part, we study the relations between two kinds of uncertainty in
GPTs. We focus on a class of GPTs that are transitive and self-dual in-
cluding finite-dimensional classical and quantum theories, and demonstrate
similar results to [I8] in the GPTs: preparation uncertainty relations indicate
measurement uncertainty relations. More precisely, it is proven in a certain
class of GPTs that if a preparation uncertainty relation gives some bound,
then it is also a bound on the corresponding measurement uncertainty rela-
tion with the quantifications of uncertainty in [I8] generalized to GPTs. We
also prove its entropic expression by generalizing the quantum results in [1Y]
to those GPTs. Our results manifest that the close connections between two
kinds of uncertainty exhibited in quantum theory are more universal ones.
We also present, as an illustration, concrete expressions of our uncertainty
relations in regular polygon theories.

This part is organized as follows. In Section BT, we introduce measures
that quantify the width of a probability distribution. These measures are
used for considering whether it is possible to localize jointly two probability
distributions obtained by two kinds of measurement on one certain state,
that is, they are used for describing preparation uncertainty. We also in-
troduce measures quantifying measurement error by means of which we can
formulate measurement uncertainty resulting from approximate joint mea-
surements of two incompatible observables. After the introductions of those
quantifications, we present the main theorems and their proofs. In Section
B2, we demonstrate that similar contents of those theorems can be also
expressed in an entropic way. In Section BZ3, we investigate uncertainty
relations in regular polygon theories.

3.1 Preparation uncertainty and measurement

uncertainty in GPT's

In this section, our main results on the relations between preparation uncer-
tainty and measurement uncertainty are given in GPTs with transitivity and
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self-duality with respect to (-, -)ar(q) (see Section 24). Measures quantifying
the width of a probability distribution or measurement error are also given
to describe those results. Throughout this section, we consider observables
whose sample spaces are finite metric spaces.

3.1.1 Widths of probability distributions

In this subsection, we give two kinds of measure to quantify how concen-
trated a probability distribution is.

Let A be a finite metric space equipped with a metric function dy4, and
O, (a; w) be the ball defined by Og4, (a; w) := {r € A | da(z,a) < w/2}. For
e € [0,1] and a probability distribution p on A, we define the overall width
(at confidence level 1 — ¢) [IR, 104] as

We(p) :=inf{w>0]|3Jae A:p(Oy,(a; w)) =1—¢}. (3.1)

We can give another formulation for the width of p. We define the minimum
localization error [18] of p as

LE(p) :=1- max p(a). (3.2)
ae
Both (B) and (B2) can be applied to probability distributions observed in
physical experiments. Let us consider a GPT with €2 its state space. For
a state w € Q and an observable F' = {f,}qea on A, we denote by w’ the
probability distribution obtained by the measurements of F' on w, i.e.

WF = {fa(w)}aeA-

The overall width and minimum localization error for w’ can be defined as

W (w") :=inf{w >0|3Jaec A : Z fo(w)=1—¢€} (3.3)

a’€0q 4 (a;w)

and

LEW") =1~ max fa(w) (3.4)

respectively. Note that as in [IR, [04], overall widths can be defined prop-
erly even if the sample spaces of probability distributions are infinite. For
example, overall widths are considered in [I04] for probability measures on
R derived from the measurement of position or momentum of a particle.
Those two measures above are used for the mathematical description of
preparation uncertainty relations (PURs). As a simple example, we con-
sider a qubit system with Hilbert space H = C2. For two projection-valued
measures (PVMs) Z = {|0X0[, |1X1|} and X = {|+X+]|,|—X—|}, where
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{10), [} and {[+),[=)} = {5(10) + 1)), 75(|0) — [1))} are the z-basis and
x-basis of H respectively, it holds from [93, B9] that

1
LE(p”)+LE(p*) 21— —>0 3.5
(p7) V) 7 (3.5)
for any state p (see also (B23d)). The inequality (B3) shows that there is
no state p which makes both LE(p?) and LE(p*) zero, that is, p? and
p~ cannot be localized simultaneously even if the observables are ideal ones
(PVMs). PURs in terms of overall widths were also discussed in [[04] for

the position and momentum observables.

3.1.2 Measurement error

In this part, we introduce the concept of measurement error in GPT's, which
derives from joint measurement problems, and describe how to quantify it.

Let us consider a GPT with its state space €, and two observables
F = {filaea and G = {g}rep on Q. Although general descriptions of
(in)compatibility was already given in Subsection 2232, here we show the
definition again. We call F' and G are compatible or jointly measurable if
there exists a joint observable M*C = {mEC} , pyeaxp of F and G satisfying

dimh = f. forallae A,
beB
Y mli =g, forallbe B,
acA

and if /' and G are not jointly measurable, then they are called incom-
patible [20, [10]. As was mentioned in Subsection 232, there exist pairs
of observables that are incompatible in all non-classical GPTs, but we can
nevertheless conduct their approximate joint measurements allowing mea-
surement error. Assume that F and G are incompatible. It is known that
one way to compose their approximate joint measurement is adding some
trivial noise to them. To see this, we consider as a simple example the incom-
patible pair of observables Z = {|0X0], [1X1|} and X = {|+X+]|,|—X—]|} in
a qubit system described in the last subsection. It was demonstrated in [I13]
that the observables

2N =M+ (1=NI
1— A 1— A
={A|O><O\+ 5 To, A|1X1] + 5 12},
XM= AX + (1=,

1—A 1—A
- Db+ 2 A+ 20

(3.6)
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are jointly measurable for 0 < A < \/Li’ where [ := {15/2,15/2} with 1,
the identity operator on H = C? is a trivial observable. The joint measur-
ablity of (BH) implies that the addition of trivial noise described by a trivial
observable makes incompatible observables compatible in an approximate
way. In fact, it is observed also in GPTs that adding trivial noise results in
approximate joint measurements of incompatible observables |10, [T, I13].

Because the notion of measurement error derives from the difference be-
tween ideal and approximate observables as discussed above, we have to de-
fine ideal observables in GPT's to quantify measurement error. In this chap-
ter, they are defined in an analogical way with the ones in finite-dimensional
quantum theories, where PVMs are considered to be ideal [&1]. If we denote

a PVM by E = {P,},, then each effect is of the form

Pa = Z ‘¢i(a)xwi<a>’ .

i(a)

In particular, every effect is a sum of pure and indecomposable effects, and
we call in a similar way an observable F' = {f,}sca on € ideal if each effect
fa satisfies

fa 2262’:3), or f, zu—Zez‘?(’j), (3.7)

ia) i(a)

where we should recall that the set of all pure and indecomposable effects
is denoted by {e$**};, and we do not consider the trivial observable F' = {u}.
It is easy to see that observables defined as (BZ) result in PVMs in finite-
dimensional quantum theories. This type of observable was considered also
in [B1].

The introduction of ideal observables makes it possible for us to quantify
measurement error. Consider an ideal observable F' = {f,}, and a general
observable F = {fa}a, and suppose similarly to the previous subsection that
A is a finite metric space with a metric d4. F may be understood as the
measurement intended to be measured, while F' as a measurement conducted
actually. Taking into consideration the fact that for each nonzero pure effect
there exists at least one state which is mapped to 1 (an “eigenstate” [61]),
we can define for € € [0, 1] the error bar width of F relative to F [TR, IT4] as

W.(F,F)=inf{w>0] Yac A, "weQ:
W =1= Y Juw) =1-¢. 38

W.(F, F) represents the spread of probabilities around the “eigenvalues” of
F' observed when the corresponding “eigenstates” of F' are measured by F,
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and thus it can be thought to be one of the quantifications of measurement
error. Note that although error bar widths in general (not necessarily finite)
metric spaces were defined in [I04], we consider only finite metric spaces
in this chapter, so we employ their convenient forms (B=) in finite metric
spaces shown in [I8]. Another measure is the one given by Werner [107]
as the difference of expectation values of “slowly varying functions” on the
probability distributions obtained when £’ and F are measured. It is defined
as

D (F, F) := sup sup (F[h])(w) = (F[A]) ()|, (3.9)

we) heA

where
A:={h: A—>R||h(a1) — h(as)| < da(ay,as), Yay,as € A}

is the set of all “slowly varying functions” (called the Lipshitz ball of (A, d4))
and
F[h] := ) h(a)fa
acA

is a map which gives the expectation value of h € A when F is measured
on a state w (similarly for F[h]). There is known a simple relation between
(BR) and (B9).

Proposition 3.1 ([I8, 104])

Let (A,dy) be a finite metric space, and F = {fulacn and F = {fo}aca be

an ideal and general observable respectively. Then,

€

holds for € € (0, 1].

Proof i

Let us define n := w for € € (0, 1], and consider for a € A a state w €
satisfying f,(w) = 1. Remember that such state does exist for every a € A
because F' is ideal. We also define a function h,, on A as

ho(z) = {” —da(w,a) (d(z,a) <n)
0 (d(z,a) > n).

It can be seen that
| (21) — hn(22)] < da(2q, 22)

holds for z1, x5 € A, and thus we can obtain from the definition of DW(F )
(B9)

(Flha))(w) = (Flha]) ()| < Dw (F, F).
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It results in

_ Dy (F,F)

(Flgal)(@) = (Flga])(w)| < — =6 (3.10)

where we set g, := h,/n. Since it holds that g,(z) < X0g, (a; ony(2) < 1 for
all z € A, where XOg, (a; 2n) 1 the indicator function of the ball Oy, (a; 2n) =
{xre A|da(z,a) <n}, and

(Flgal)(@) = X 90(@) fo(w) = gnla) falw) =1

€A

because f,(w) = 1, (BI0) can be rewritten as

1 - (F[XOdA(a; o)) (W) <€,

that is,

o hw=1-e (3.11)

2€04 , (a; 2n)

(B1) holds for all @ € A and all w € Q such that f,(w) = 1, and thus

o = 2DW(F, F) = W.(F, F)
€
is concluded (see the definition of WE(]} ,F) (BR)). O

On the other hand, there can be introduced a more intuitive quantification
of measurement error called o, distance [106]:

~ ~

Dy (F, F) := sup max | f,(w) — fa(w)]. (3.12)
weQ aeA

By means of those quantifications of measurement error above, we can
formulate measurement uncertainty relations (MURs). As an illustration,
we again consider the joint measurement problem of incompatible observ-
ables Z and X in a qubit system. Suppose that MZX is an approximate
joint observable of Z and X, and MZ and M are its marginal observables

corresponding to Z and X respectively. It was proven in [I0G] that
Dy (M?,Z) + Do (M*, X) > 1 — 1o (3.13)

V2

(B13) gives a quantitative representation of the incompatibility of Z and
X that DOO(MZ,Z) and DOO(MX,X) cannot be simultaneously zero, that
is, measurement error must occur when conducting any approximate joint
measurement of Z and X (see [I05] for another inequality). MURs for the
position and momentum observables were given in [I04] and [I07] in terms
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of (BR) and (BM) respectively.

3.1.3 Relations between preparation uncertainty and
measurement uncertainty in a class of GPT's

In the previous subsections, we have introduced several measures to review
two kinds of uncertainty, preparation uncertainty and measurement uncer-
tainty. In this part, we shall manifest as our main results how they are
related with each other in GPTs, which is a generalization of the quantum
ones in [I¥].

Before demonstrating our main theorems, we confirm the physical set-
tings and mathematical assumptions to state them. In the following, we
focus on a GPT with a state space (2, and suppose that {2 is transitive and
the positive cone V, is self-dual with respect to (-, -)ar) (see Section 24).
While our assumptions may seem curious, it can be observed in [84] that
those two conditions are satisfied simultaneously if the state space is bit-
symmetric. There are also researches where they are derived from certain
conditions possible to be interpreted physically [61, IT4]. In addition, we
consider ideal observables F' = { f,}4,ca and G = {gy}sep on £, whose sample
spaces are finite metric spaces (A, d4) and (B, dp) respectively, and consider
an observable MFC = {ﬁ”bbe}(a’b)e AxB as an approximate joint observable
of F and GG, whose marginal observables are given by

BIF = () L = Y WA
beB
MC = (g, g =Y mhe.
acA
Remember that, as shown in Subsection B2, the ideal observable F' = { f,},
satisfies
— ext _ _ ext
fo= Z €igyr  OF Ja=u Ze%) (3.14)
i(a) i(a)
in terms of the pure and indecomposable effects {e{**}; shown in (2221 (sim-
ilarly for G = {gp}»). The following lemmas are needed to prove our main

results.
Lemma 3.2

If Q) is transitive, then the unit effect u € Vfé"gmm) c V is identical to the

mazimally mized state wyy, i.e. u = wyy.

Proof
It is an easy consequence of Proposition EZ250. In fact, (Z19) gives

e (2)
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Lemma 3.3
If Q) is a transitive state space and its positive cone Vi is self-dual with
respect to (-, )ar), then for any effect e € E(Y) on Q it holds that

e

(u,€) GL(Q)

€ Q, (3.15)

and for any ideal observable F' = {fo}aea on Q) it holds that

L> =1 3.16
<fa7 <U, fa>GL(Q) GL(Q) ( . )

for all a e A. In particular, each f,/{u, fa)ar) is an “eigenstate” of F.

Proof
In this proof, we denote the inner product (-, -)gr) and the norm | - |qr)
simply by {-,-) and | - | respectively.

For any element e € V*é“%, e/(u, ey defines a state because (u, e/{u,e)) =

+

1 and e € V. due to the the self-duality: V, = V*ént>, which proves (BI3).

To prove (BI8H), we focus on the fact that f, in (Bd4) is an effect (thus
u — f, is also an effect), that is, > €' is an effect and it satisfies 0 <

Ya) Ma)
<Z eXt, w)y < 1 for any state w € Q. However, if we act Zi( : ef(’;t) on the
pure state we"t then (E2211) shows that <e§z‘t), ;’z‘t) = 1, and thus we have
Xt xt . .
<€f<a)7 wiey) =0 for i) # jia),
that is,
6;}();1;)7 ;ez(t) =0 for Z # j(a)- (317)
Because
1 1
ext ext \ __ ext\ _
W) “Ya)/ ||W8XtH2 and <u, el(a) Hwext”Q

hold from (EZZ1), we obtain together with (B4)

<Z eext Z ext #Z < Z ext ))
i(a)’ z(a) Hwext ||2 ) z(a) Hwe"t H2 )
i(a) i(a) i(a)
(#2 #Z(a )
ext ext ext
(u— Z Ciyr U Z Ciy/ = L= Hwextnz’ - Z > HwextH27
i(a) i(a)
(3.18)

where (#i(,)) is the number of elements of the index set {i,)} and we use
(uyuy = (u,wpry = 1 (Lemma B3). Therefore, we can conclude that every
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_ ext o ext : ;
effect f, = Zi(a) Ciry OF U Z%) €y composing F' satisfies

(& ) =

Now, we can state our main theorems connecting PURs and MURs.

O

Similar results to ours were proven [[8] for finite-dimensional quantum the-
ories. Because GPTs shown above include those theories, our theorems can
be considered to demonstrate that the relations between PURs and MURs
introduced in [I8] are more general ones.

Theorem 3.4

Let ) be a transitive state space and its positive cone V., be self-dual with
respect to (-, )ar(), and let (F,G) be a pair of ideal observables on €. For
an arbitrary approzimate joint observable MFC of (F,G) and €, € € [0,1]
satisfying €1 + €3 < 1, there exists a state w € Q) such that

Wﬁl (MFa F) = W61+62(WF)7
W62 (MG” G) = W€1+€2 (wG>‘

Theorem B4 manifests that if one cannot make both W,, ; ., (w!) and W, ,, (w%)
vanish, then one also cannot make both W,, (]\7 F F) and WQ(M ,G) van-
ish. That is, if there exists a PUR, then there also exists a MUR. Moreover,
Theorem B4 also demonstrates that bounds for MURs in terms of error bar
widths can be given by ones for PURs described by overall widths.

Proof (Proof of Theorem B4)
In this proof, we denote again the inner product {-,-)cr() and the norm
| - ler) simply by {-,-) and | - | respectively. N
From Lemma B3 and the definition of W, (M*, F) (BR), for any w; >
W, (MF F) we have
a eOd (a;w1) < ’ fa>

m /b/ >
b’EB a Eod a w1 < < fa

for all a € A. Multiplying both sides by (u, f,) = {wu, fo)(> 0) (Lemma
B2) and taking the summation over a yield

22 2 (g fopzl-e, (3.19)

acAbeB a’EOdA (a;w1)

equivalently,
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where we use the relation ) _,{u, f,) = (u,u) = (u,wp;) = 1. Defining a
function x(4,,,,) on A x A such that

L (dafa,d) < 5

X[dawi(a,a’) =
o 0 (da(a,d) > %),

it holds that

Z 2 <m v f“> - Z X[dA:wl](a7 a,) <m5’((jv fa>

a€A a’€0q , (a;w1) (a,a’)EAX A

=2 X s fa)

a’€A a0y , (a’;w1)

because of the symmetric action of X[4,,] on @ and a’. Therefore, (BTU)
can be rewritten as

Z Z Z <~a’b’ >>1—61.

a'€Ab'eB a0y , (a’;w1)

Overall, we obtain

Z Z Z <U m ’b’><fa7 +?7IG = 1-— €1. (320)

a’'eAbeB andA (a’;w1) ’b’

Similar calculations show that for any wy > W,, (M MC ,G)

mks

Z Z Z (u, m /b/><9b, ﬁ =>1—6 (3.21)
d'€AVEB b0, (b w2) My

holds. We obtain from (B20) and (B=21)

~FG
~ F'G /b/
2 2 Cus g <fa, wnra

a’'eAbeB and (a5 w1) My

/b/
+ <gb7 NFG_ =2 — €1 — €9,
bGOd b/ U)Q
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which implies that there exists a (a(, bj) € A x B such that

a0y 4 (ap; w1)

3.22
e, 522
+ Z b, <'Z,L T’T/LFG = 2_6]_ — €9
b0 (by; w2) T agby
since > s D, MESY = (u,uy = 1 and 0 < (u,mES) < 1 for all
(a',0') e A x B. We can see from (B=22) that
re,
Z fa7< ~TG zl-—ea—e
aEOdA (ag; w1) 0b0
~ FG
Mgy

beOqp (bp; w2)

>1—¢€ —€ (3.23)

holds for an arbitrary wy > W,, (]\7 F_F), where we use

mes, mrg,
Z b <u mF, Z Yo ~—FG =1
beOq  (by; wa) ag b’ beB U, apbh

and similarly

"FG
> <gb, NFG > >1—6 -6 (3.24)
wa)

b0, (by; U Magt,

holds for an arbitrary we = W, (M MC, G). Because

G

> FG

"~ lu, Mgy

defines a state ((BH) in Lemma B33), (B323) and (B=4) together with the
definition of the overall width (B33) result in

These equations hold for any w; > W€1(1\7F, F) and wy > WEQ(MG, G), so
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we finally obtain

O

The next corollary results immediately from Proposition B. It describes a

similar content to Theorem B3 in terms of another measure.
Corollary 3.5

Let Q) be a transitive state space and its positive cone V., be self-dual with
respect to {-,-)ar(), and let (F,G) be a pair of ideal observables on €. For
an arbitrary approzimate joint observable MFG of (F,G) and €,€; € (0,1]
satisfying €1 + €3 < 1, there exists a state w € 2 such that

€1

Dw(MF,F) 2 E W€1+62(MF)7

€2

DW(MG>G) = 5 W61+62(WG)'

There is also another formulation by means of minimum localization error
and [, distance.

Theorem 3.6

Let Q) be a transitive state space and its positive cone V., be self-dual with
respect to (-, )ar(), and let (F,G) be a pair of ideal observables on €. For
an arbitrary approrimate joint observable MFG of (F,G), there exists a state
w € € such that

Do(MP,F) + Dy (MC,G) > LE(w") + LE(w%).

Proof
We can see from (BO8) in Lemma B33 and the definition of the [, distance

(ET2) that
(o s ) =t s )| < P

holds for all a € A, which can be rewritten as

1_Z< ab7 f}a>><DOO(MF7F>7

beB
for all @ € A. Multiplying both sides by (u, f,) and taking the summation
over a, we have

L= Y ke, fa Dy, (MF, F),

acA beB
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namely

1= 3 Sl o T <DAE) (a2)

a’'eAbeB /b/

In a similar way, we also have

mEG —
L= >0 uymbsh <gb/ +§;’G < D, (M€, Q). (3.26)

a’eAbeB My

Since Y e 4 et MESY =1, (B25) and (B28) give

5 S| (1= L) 4 (1 (oo L)
WA beB My Cu, Mgy
< Do (MF,F) + Do (M, @),

which indicates that there exists a (a, bf,) € A x B satisfying

; G G
1—{ fu, —2% N) (1 gy, —%
0’ ~FG b > FG
Cu, mbS s gy
<

Dy (MF,F) + D, (M%,G). (3.27)

Because o
ma/ b/
w6 _ 070

~FC

{u, Mg

is a state ((B1H) in Lemma B33), we can conclude from (B=27) and the defi-
nition of the minimum localization error (84) that

LE(W?) + LE(WS) < Do(MF, F) + Do (MC,G),
which proves the theorem. O

It is easy to see from the proofs that our theorems can be generalized to the
case when three or more observables are considered.

Remark 3.7

It was claimed in [[08] similarly to our theorems that PURs imply MURs
in GPTs. However, the result in [T08] was obtained for a pair of binary (i.e.
two-outcome), extreme, sharp, and postprocessing clean [IT5] observables.
It is known that any effect of a sharp and postprocessing clean observable
is pure and indecomposable, and such observables do not always exist for
a GPT [I15, 61]. The only finite-dimensional quantum theory admitting
those observables is a qubit system (remember that pure and indecompos-
able effects correspond to rank-1 projections in finite-dimensional quantum
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theories). On the other hand, although our GPTs are assumed to be tran-
sitive and self-dual, or regular polygon theories, our theorems are obtained
for more general forms of observables (B71) always possible to be defined.

Theorem BB (and Theorem BT2) has an application to evaluate the de-
gree of incompatibility [10, TT1, T3] of a GPT.

Ezample 3.8 (Evaluation of degree of incompatibility)

Suppose that €2 is an arbitrary state space, and F' and G are two-outcome
observables on Q, namely F' = {fo, f1} and G = {go, 91}, and consider simi-
larly to (BM) their “fuzzy” versions

~ 1—A 1—A

F’\:z)\F—l—(l—/\){g, E}z{)\fo—i- u, A1+ u},
2" 2 2 2

(3.28)

éA::)\G—l—(l—/\){;, g} = {)\go—k ! 2>\u, Ag1 + ! 2)\u}
for A € [0,1]. It is known that we can find a Ape > 1 such that the
distorted observables F* and G* in (B2R) are jointly measurable for any
A€ [0, Apc], and Agpt := infpg A can be thought describing the degree of
incompatibility of the theory. Ao, has been calculated in various theories:
for example, Aopt = \/Li in finite-dimensional quantum theories [I13], and
Aopt = % in the square theory (a regular polygon theory with n = 4) [89].

To see how Theorem B8 contributes to the degree of incompatibility,
we consider the situations in Theorem BB (and Theorem BT?) with the
marginals MF and MC of the approximate joint observable being F* and
G* in (BZR) for A € [0, A rc] respectively. In this case, we can represent the
measurement error Do (F*, F) in a more explicit way:

~ 1—
DOO(F’\, F) = sup max (/\fl + )\u) (W) — fi(w)
we 1€{0,1} 2
1
-0 mp e -
1—A
_ 2
2 (3.29)
where we use the relation
1 1 1
o) = | = = fe) = 3| = | -

and the fact that there is an “eigenstate” w; for each ideal effect f; satisfying
fi(w;) = 1 as we have seen in (B8) or (B2xd). Therefore, we can conclude
from Theorem B (and Theorem BT2) that for any A € [0, A\p¢] and for
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some state wy

i€{0,1} Jje{0,1}

1—\> <1 - maxfz(w0)> (1 — max gj(wo)>

holds, that is,

Ar < mae () + () ) ~ 1 (3:30)
holds, and A.pt can be evaluated by taking the infimum of both sides of (8230)
over all two-outcome observables. We remark that the maximum value in
the right hand side of (B=30) does exist due to the compactness of Q. The
concrete value of the right hand side of (B=30) for regular polygon theories
will be given in Subsection B3

3.2 Entropic uncertainty relations in a class
of GPTs

Entropic uncertainty relations have the advantages of their compatibility
with information theory and independence from the structure of the sample
spaces. They indeed have been applied to the field of quantum informa-
tion in various ways [[16]. In this section, we present our main results on
two types of entropic uncertainty in a certain class of GPTs. While our re-
sults reproduce entropic uncertainty relations obtained in finite-dimensional
quantum theories, they indicate that similar relations hold also in a broader
class of physical theories.

3.2.1 Entropic PURs

We continue following the notations in the previous section. Let us consider a
GPT with its state space €2, and two ideal observables (see (BX1)) F' = {f,}aca
and G = {gp}rep on . Here we do not assume that A and B are metric
spaces but assume that they are finite sets. For the probability distribution

= {f.s(w)}, obtained in the measurement of F' on a state w € Q (and
similarly for {g,(w)}s), its Shannon entropy is defined as

= =) faw)log fa(w). (3.31)

acA

Note that H (w”) > 0 and H (w”) = 0 if and only if w” is definite, i.e.
fax(w) = 1 for some a* and f,(w) = 0 for a # a*. If there exists a relation
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such as
H(wF) +H(wG) >T're Ywe

with a constant I'r > 0, then it is called an entropic PUR because it
demonstrates that we cannot prepare a state which makes simultaneously
H (w") and H (w%) vanish, or w® and w® definite. One way to obtain an
entropic PUR is to consider the Landau-Pollak-type relation [92, 93, B4]:

max f,(w) + max gy(w) < yre  ‘we (3.32)
acA beB

with a constant vr¢ € (0,2]. Remark that relations of the form (BZ32)
always can be found for any pair of observables. It is known [99, I17] that
maXge s fo(w) is related with H (w”) by

exp [—H (") ] < max fu(w),

and thus we can observe from (B232)
exp [—H (wF)] + exp [—H (wG)] < VRG-

Considering that

exp [_H (WF)] + exp [—H (wc)] > 2exp [—H (wF)Q_ H (wG)]

holds, we can finally obtain an entropic relation

H (W) + H (&%) > -2l 2% “weq. (3.33)
If v < 2, then (B333) gives an entropic PUR because it indicates that it is
impossible to prepare a state which makes both H (wF ) and H (wG) Z€ro,
that is, there is no state preparation on which F' and G take simultaneously
definite values (note that (B232) also gives a PUR if yp¢ < 2). In a finite-
dimensional quantum theory with its state space {2qr, it can be shown that

v

max f,(w) + max gpw) <1+ max | {falgp)| w € Qqr, (3.34)

where F' = {|foXfa|}a and B = {|g»Xgs|}s are rank-1 PVMs. In that case,
(B233) can be rewritten as

2

Ywe Qaor, 3.35
T+ ma] CFlgn) | ar, - (339)

H(wF) —|—H(wG) > 2log
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which is the entropic PUR proven by Deutsch [98]. There have been studies
to find a better bound [99] or generalization [T00] of (B233).

Remark 3.9

Entropic PURs in quantum theory can be derived also by means of ma-
jorization [IIR, 019, 020, 021, 122, 123]. This method of majorization can
be also applied to GPTs. To see this, let us introduce probability vectors
f(w) and g(w) defined simply through w? = {f,(w)}, and w = {gy(w)}s
respectively. By adding outcomes to either A or B, we can assume without
loss of generality that their cardinalities are equal: |A| = |B| = d, and f(w)
and g(w) are d-dimensional vectors. If d-dimensional probability vectors

p= (pz)z and q= (qz)z satisfy

k k
Zp]l<ZQj Vk:1727”'ad7
j=1 j=1

where pj ’s are obtained thorough ordering the components of p in decreasing
order: {pji-}j — {p;}; and p! = p} = pb > --- (similarly for qjl-’s), then p is
called majorized by q and we write p < q. For f(w) and g(w), a relation of
the form

f)gw)<r “wel, (3.36)

where v = (r;); is a d*-dimensional probability vector defined below, was
proven in [I19]. The vector r was given by

r=(R,Ry—Ry,--- ,Rg— R4_1,0,0,---,0)
with

R, = max max Z falw

we)
(z,y)eZy

Ik = {(al,bl), s ,(ak,bk) ‘ (az,b) € Ax B (ai,bi) 7+ (aj,b ) for 1 #* ]}

(thus we can see Ry = 1 for d < k < d* because F and G are ideal). From
(B238), we can derive [I1]]

H (W) + H (W% = H({ri}) ‘weq, (3.37)

which gives a similar entropic relation to (B=33). Note that when F' and G
are binary, the vector r is completely determined by

&=%§hWMW)
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In [IT9], R; was evaluated as
2
Ry =max fa(w)gn(w) <

with

7 = max (fa + gp)(w),

and it was shown that in quantum theory the equality holds:

2
_ _r
Ry = max fa(w)gp(w) T

We will consider in Subsection BZ32 similar cases when R; = 7?2 holds, and
give concrete value of ~.

3.2.2 Entropic MURs

Let Q be a state space which is transitive and its positive cone V, satisfy

V, = Vfé.’fgm(m, and we hereafter denote the inner product (-, -)¢r,q) simply

by (-, -) as in the previous section. There can be defined measurement error in
terms of entropy in the identical way with the quantum one by Buscemi et al.
[T9]. Let in the GPT E = {e;},ex be an ideal observable and M = {m;}, ¢
be an observable with finite outcome sets X, X. Since

€x
(oo ) = e .
holds for all x, 2’ € X, and

Wy = Uu = 2 €
’ e (3.39)
= Zm:<u, 6x>—<u, e

holds from Lemma B™ and Lemma B=3, the joint probability distribution

(9,2} = {Ceasmadlas = {uen) (72 m>} (3.40)

is considered to be obtained in the measurement of M on the “eigenstates”
{ex/{u, e.)}, of E (see (BZ38)) with the initial distribution

{p(0)}, = {(u, e}, (3.41)
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According to 9], the conditional entropy

N(M;E):= H(E|M)
= Zp(f)H({p(ﬂi“)}z)

~Stwmo ({(en 20 )

calculated via (B20) describes how inaccurately the actual observable M

(3.42)

can estimate the input eigenstates of the ideal observable F. In fact, if we
consider measuring M on e, /(u, e,y and estimating the input state from the
output probability distribution

{p(@lz)}s = {<m’6 <ue—zex>>}x

by means of a guessing function f : X — X, then the error probability

Pleo(@) = 1= > pllz) = D p(@l).

i:f(2)=a 2:f(2)#a

When similar procedures are conducted for all x € X with the probability
distribution {p(z)}, in (8ZM), the total error probability p/ _ is

Plivor = D (@) Phuo(@) = D0 D plad), (3.43)

zeX 3:f(2)#x
and it was shown in [19] that

mfmpgm -0 <= N(M;E)=H(E|M)— 0.

We can conclude from the consideration above that the entropic quantity
(B22) represents the difference between E to be measured ideally and M
measured actually, and thus we can define their entropic measurement error
as (B42).

We are now in the position to derive a similar entropic relation to [1Y]
with the generalized entropic measurement error (842). We continue focus-
ing on a GPT with its state space (2 being transitive and V, being self-dual
with respect to the inner product (-, )ar) = (-, ), that is, V. = Vj:g”g Let
F = {fa}aca and G = {gp}sep be a pair of ideal observables defined in (B=7),
and consider their approximate joint observable MFG .= {ﬁzﬂc}(mb)e Axp and
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its marginals
MF = {mF,, ml = Z mhC
beB
MC = i}y, g = mhe.
acA
as in the previous section. We can prove the following theorem.
Theorem 3.10
Suppose that € is a transitive state space with its positive cone V. being
self-dual with respect to (-, )ar) = (), F = {fa}a and G = {gs}s are ideal
observables on ), and MFG s an arbitrary approximate joint observable of
(F,G) with its marginals M and MC. If there exists a relation

H(wF) —|—H(wG) >Tpg "weQ
with a constant I'r ¢, then it also holds that
N(MT; F) + N(MS; G) = T'pg.

Proof
Since for every @ € A and b € B w,; := T?LZ;G/<U, m,;,) is a state due to the
self-duality, it holds that

H (wh) + H (W) = Tpg

foralla € A and b e B. Therefore, taking into consideration that (u, ﬁlFbG> >

0 for all a,b and D0l mZ)G> = (u,uy = (u,wy ) = 1, we have

25 2w g [H (wg) + H (w@G)] = Tap,
acAjeB
or equivalently (see (B22))

H(A | MF) + H(B | M") = T'pg. (3.44)

Note that the conditional entropy H(A | MF @) is obtained through a joint
probability distribution {p(a, a, [;)}a,d,i) = {{fa, m(Z;G>}, and we can also ob-
tain H(A | MF) from its marginal distribution {p(a,@)}es = {(fa, M}
The quantity

H(A | M") = H(A | M)

defined from those two conditional entropies is called the (classical) condi-
tional mutual information, and it is known [124] to be nonnegative:

H(A| MF)y— H(A| MFS) > 0.
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A similar relation holds also for H(G | MFC) and H (G | M), and thus,
together with (B24), we can conclude that

H(F | M") + H(G | M%) > Tpg
holds, which proves the theorem. O

Theorem B0 is a generalization of the quantum result [19] to a class of
GPTs. In fact, when we consider a finite-dimensional quantum theory and a
pair of rank-1 PVMs F' = {|fo X fa|}a and G = {|gy Xgs|}s, our theorem results
in the one in [19] with the quantum bound I'r¢ = —2logmax, | {fa|gs) |
by Maassen and Uffink [99]. Theorem B0 demonstrates that if there is an
entropic PUR, i.e. I'rg > 0, then there is also an entropic MUR which
shows that we cannot make both N(M¥; F) and N(M% G) vanish. It is
again easy to prove that this theorem holds for three or more observables.

Remark 3.11

There is another type of entropic uncertainty relation on successive measure-
of transformations associated with ideal observables, we can derive similar
entropic relations also in GPTs considered above. For an ideal observable
E = {e;}zex, we define the corresponding (Schrodinger) channel ®g, which
gives the post-measurement states as

Cx

in analogy with the channel associated with a rank-1 projective measurement
(Liiders measurement [A1] for a rank-1 PVM) in quantum theory (remember
(B238)). Note that this channel is found easily to be a measure-and-prepare
channel (see Example 243). In the Heisenberg picture, it becomes

* . Ca

Let F = {f.}o and G = {gp}, be ideal observables associated with the
channel defined in (B23) (or (B2M)). It is easy to see that

H(wF)%—H(wG))FRG Ywe

with
I'pg :=inf [H (wF) +H (wG)]

holds. We consider measuring successively F' and G on a state w: measur-
ing F first, and then G. The observed statistics are w!” = {f,(w)}, and
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Pr(w)¥ = {g(Pr(w))}s, and we can derive

H (w") + H (®p(w)%) = Tpg (3.47)

with
Thg:= AL [H (W) + H (®r(w))] (3.48)
- <I>i,4n(£ | [H (Pp(w)") + H (Pp(w))] (3.49)

because f,(w) = fo(Pr(w)). We can see that I, = 'pe holds, and thus
there is more uncertainty in the successive measurement than the individual
measurements of /' and G. The entropic relation(821) together with (B2R)
can be considered as a generalization of the quantum result [I25]. Note
that similarly to [I25] we can present another bound for (BZ1) in terms of
the joint entropy. In fact, considering that {f,}, and {®%(gy)} are jointly
measurable ( {<gb, o >> fa} " is the joint observable), that is, the proba-
bility distributions {f,(w)}, and {gy(®Pr(w))}, are obtained from the joint
distribution {<gb, m><fa,w>} it can be shown [124] that

It is easy to see that the right hand side is also greater than or equal to I'p¢.

3.3 Uncertainty relations in regular polygon
theories

In this section, we restrict ourselves to regular polygon theories, and consider
similar situations to the previous sections.

3.3.1 Extensions of previous theorems

Our theorems in Section Bl and Section B=2 have been proven only for a class
of theories such as finite-dimensional classical and quantum theories, and
regular polygon theories with odd sides (see Section EZ3). What is essential
to the proofs of the theorems is that we can see effects as states (the self-
duality), and that every effect of an ideal observable is an “eigenstate” of
itself (Lemma B=3). In fact, taking those points into consideration, although
it may be a minor generalization, we can demonstrate similar theorems for
even-sided regular polygon theories.
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Theorem 3.12
Theorem B4, Corollary B3, Theorem [Zd, and Theorem BID hold for every
reqular polygon theory.

Proof
We only need to prove the claim for even-sided regular polygon theories. The
proof is done by confirming that the claim of Lemma B=3 holds for even-sided
regular polygon theories with modified parametrizations. We again denote
the inner product (-, )gr,) by {:,-) in this proof.

In the n-sided regular polygon theory with even n, if F' = {f,}, is an
ideal observable, then it is of the form

F = {fo, 1} (3.50)

with

fo=¢€! and fi=u—e=el\n (3.51)
for some i (remember that we do not consider the trivial observable F' =
{u}). Let us introduce an affine bijection

r, 0 0
(RS 0O r, O (3.52)
0 0 1

on R3. Because (e,w)p = (¥ 7'(e),¥(w))g holds for any w € Q, and e €
E(Qy,), we can consider an equivalent expression of the theory with ¢ (£2,,) =:
Q,, and P~ (E(Q,)) being its state and effect space respectively (remember
that (-, ) is the standard Euclidean inner product). The pure states (2227)
and the extreme effects (229) shown in Subsection ZZ23 are modified as

r2 cos(%2)
wp — wf =YWl = | rZsin(ZE) |; (3.53)
1
COS((m;Ll)Tr)
er — =gl (el) = sin(ZUT) (3.54)

respectively, and their conic hull (the positive cone and the internal dual
cone) as

Vi — ‘A/+ = (Vi)
VIS = VIS = 0 (V)

respectively. Note in the equations above that GL(€,) = GL(QH) and
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(v e = ¢ oan@n) = s Dar@,y = ¢ hold, and wy = u = %(0,0,1) is
invariant for ¢ (and ¢~!). We can also find that an observable F = {e,},
in the original expression is rewritten as E := {¢,}, with &, := ©"(e,), and
that an ideal observable F' in (B50) and (B75d) gives

F = {fo, fi} (3.55)

with
fo=¢ and fi=u—¢ =é}n (3.56)

which is also ideal in the rewritten theory. Since

(@ ) = (357)

holds for any i (see (B54)), we can conclude together with (B253) and (B250)
that any ideal observables F' = { fk}k:o,1 satisfies

On the other hand, it can be seen from (853) and () that V, generated
by (B53) includes V*m> generated by (354), i.e. Vj:é”g < V, (see FIG B).

| a
cos() .i é?
T
i’;\;,/\\l
P
V.,
xint
v

Figure 3.1: Ilustration of (aff () N Vi) = Qn
generated by {dj" ?_, (B33) and (aff () N Vj:é”g)
generated by {26 1 (B312) for n = 4. It is observed
that V*é”g c V+, Wthh holds also for every even n.

78



Therefore,

(& ~

ok Q, (3.59)

holds for any effect é € ‘V/j_‘é"’; It follows from (B0R) and (BY) that the
claim of Lemma BZ3 holds also for even-sided regular polygon theories in a
rewritten expression (B53) and (B354).

We also need to confirm that all of our measures (83), (34), (BR), (B9),
(B12), (B331W), and (B22) depend only on probabilities, and thus they are

invariant for the modification above. For example, for a pair of observables

M = {my}, and F = {f,}, on the original state space €2,, we can see easily
from (B4) and (B12) that

LE(W") =1 —max f,(w)

aceA
=1 —max f,(&)
= LE(@Y)

and

Do (M, F) = sup max [mq(w) — fo(w)]
WE, acA

= sup max |1, () — fa(@)
&)Efln acA

= D (M, F)

respectively. It results in that if Theorem B holds in the modified the-
ory, then it holds also in the original theory. In fact, by virtue of (B358) and
(B:59) (the “generalized version of Lemma BZ3"), we can repeat the same cal-
culations as in Theorem B8, and obtain a similar result to it in the modified
theory. Similar considerations can be adapted also for the other measures,
and it proves Theorem BT2. O

3.3.2 Concrete values for Landau-Pollak-type bounds

In this part, we shall concentrate on the Landau-Pollak-type relation (see
(8234)) for the n-sided regular polygon theory of the form

max f,(w) + max W) <Tran) “we,, (3.60)

where F' = {f,}, and G = {g,}, are ideal observables as usual, and show a
concrete calculation for the bound I'p(n) of uncertainty.

Let us focus on the state space {2,. Any nontrivial ideal observable is
of the form {el, u — €'} (see (ZZ29)). Note that although {e}'};—o12 is also
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an ideal observable when n = 3 (a classical trit system), we focus only on
ideal observables with two outcomes in this subsection. Thus, if we consider
a pair of ideal observables I’ and G, then we can suppose that they are
binary: F'= F; = {f?, fl} and G = G; = {g}, gj} with f) = ¢} and ¢ = ¢/
fori,j€{0,1,--- ,n—1} (or 4,j € [0,27) when n = c0). On the other hand,
it holds that

ma fi () + maxgy(w) < sup max (S + g7)(@)]

3.61
= max max [(flx-i—g;/)(w)] | )

weext (z,y)e{0,1}2
because €2, is a compact set and any state can be represented as a convex
combination of pure states. Therefore, if we let w! be a pure state ((2-22)
and (Z228)), then the value

Vg, = max  max [(f7+ g7)(wq)] (3.62)

gives a Landau-Pollak-type relation

max f'(w) + m%)%g?(w) <Y  weQ,. (3.63)
y=0, )

From this inequality, we can derive, for example, entropic relations

n
TF.G; v

5 weQ, (3.64)

H (wF) +H (wG) > —2log

and

n
VF;,G;

N(MT; F) +N(M%;G) = —2log (3.65)

Table 3.1: The value (fF + g;’)(wg) when n is even.

x=0,y=0 1+ 72 cos [aizej — ¢k] cos [9’;93']
r=1y=0 1+ r2sin [91-;9]- — gbk} sin [01-;91-]
r=0y=1 (i «<— 7 in the case of x = 1,y = 0)
r=1y=1 1 — 172 cos [91;91 - ¢k] cos [%]
Qi:%;lﬂ-a ej:%ﬂ-a Cbk:%ﬂ' (Zaj7k:07177n_1)
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Table 3.2: The value (f7 + g7)(w}) when n is odd.

0,40 0;—0,
r=0,y=0 1JrTQ—i—HTQCOS[ ;J gzﬁk]cos[ ]

c=14=0 1+f+’"§2sin[9*ﬂ ¢,€]sm[%]

r=0y=1 (1 «<— j in the case of z = 1,y = 0)

_ _ 2r2 2r2 0;+0; 0;—0;
r=1y=1 Ewr i cos[ 5 gzﬁk]cos[—]

0; =2, 0, = Lr, ¢p =2 (i,j,k=0,1,--- ,n—1)

Table 3.3: The value (f + gé/)(wg) when n is .

r=0,y=0 1+cos[9;9 —gbk]cos[@]

r=1y=0 1—|—sm[9;9 —gbk]sin[@]

x=0,y=1| (i < 7 in the case of x = 1,y = 0)

r=1Ly=1 1—cos[9+3 gbk]cos[u]

0;=1i, 0; =7, op =k (0<i,jk<2nm)

Table BT - Table B3 show the value of (f7 + g7)(wp) in terms of the angles
0i, 0, and ¢; between the z-axis and the effects f) = e}, ¢) = €7, and
the state wy respectively when viewed from the z-axis (see (2221) - (2229) in
Subsection Z53). Maximizing the values in those tables over all pure states,
we can obtain the optimal bound Vi, 0 (B2) for each regular polygon

n

theory. Note that focusing only on the case when j = 0 and 0 < 1 < 3
(0 <@ < m when n = o) is sufficient for the universal description of v}, .
due to the geometric symmetry of the regular polygon theories. 7 o, for
the regular polygon theory with n(< o) sides is exhibited in Table B4 and
Table B3, and 7 4, for the disc theory (the regular polygon theory with

n = oo sides) can be calculated from Table as
n ; .Y
Vi G, = Max { 1 + cos 3 1 + sin 5[ (3.66)

where 0, = 6; — 6y = 0, similarly to Table B4 and Table BH. (B68) can be
regarded as giving the quantum bound in (BZ34) for a qubit system in terms
of the usual Bloch representation. Note that when n is even or oo, due to
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the geometric symmetry, (ff +g7)(wy) takes its maximum where wj! lies just
“halfway” between the effects ff and gj, that is, ff(w) = gj(w) and thus
fH(w)gd(w) = 1 (fF(w) + gY(w))? holds (see Remark 1), while this does not
hold generally when n is odd. From Table B4, Table B3 and (BTH), we
can obtain the corresponding entropic inequalities (B564) (also (B231)) and
(B1H) for an arbitrary regular polygon theory. We should recall that the
value Vg, ¢, can be used also to evaluate the nonlocality of the theory via its
degree of incompatibility (see Example BS).

Table 3.4: The value vf, ., when n is even.

n =0 (mod 4), i: even max{l + cos ’ , 1 +sm€ }

n =0 (mod 4), i: odd max{l—i—r cos , 1472 smi}

n =2 (mod 4), i: even max{l ~|—cos , 1+ 7r2sin ;}

n =2 (mod 4), i: odd max{l + 72 cos & , 1 —i—smgi}

0;:%71':91—00

Table 3.5: The value vf, ., when n is odd.

27‘7% + 2
1+r2 1+r2

. .0
1. even max { COS ]. + —— SIIl 51}
2n

i odd || max{-Za 4+ 2 COS , L+ - sin &
) 1+r2 1+r2 2 ’; 2

0;:%7(:61—00:01

Remark 3.13

With the angle 0. fixed, we can see from Table B, Table B3, and (B58)
that v 5, = V£ g, holds for all n. In fact, if we assume, for example, n is
odd and i is even, then

" 2r2 2 o, 1 g,
VE, G, = Max + cos —, 1+ — sin —

1+r2 14712 2’ cosg- 2

(see Table BH), and it can be easily shown that

2r2 N 2 9;>1+ 0!
cos — = cos —,

1+7r2  1+12 2 2
1 0’ 0’

1+ —sin—+ >1+sin 2
oS 5~ 2 2
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hold for 0 <i < § (or 0 < ¢ < 7). Thus, we can conclude V. ¢ = Vg o,

23 optimal bounds for polygons with n=3m sides —— -

|3

2 4 6 8 10 12 14 16

Figure 3.2: The optimal bound 725’% for the
Landau-Pollak-type inequality on a pair of observ-
ables (Fy,,Gp) in the regular polygon theory with
n = 3m.

To see this in a more explicit way, let us consider, as an illustration,
regular polygon theories with n = 3m (m = 1,2,---), and let the angle
0, be 0 = 2= (ie. @ = m). We can calculate the corresponding optimal
bound 7,3 = 723’:/’5 for any m from Table B4, Table B3 and (B%H), and
describe its behavior as a function of m in Figure B2. There can be ob-
served that theories with m = 1,2 (n = 3,6) admit 722% = 2, that is, there
is a state on which both F; = F,,, and G| take simultaneously exact values
when m = 1,2. It exhibits that when m > 3, there exists preparation un-
certainty for this (F;, Gy). Hence, it follows from our theorems that there
also exists measurement uncertainty for (F;, Gy), and their entropic repre-
sentations (entropic PUR and MUR) are given by similar inequalities with
the same bound. Also, it can be observed that 727?;% > 72730/3 =1+ \/75 holds
for all m, which has been shown in the argument above. Note that we can
derive easily an observable-independent relation

: n : Q0
min g g, > minyg g,

In other words, the disc theory shows the “maximum uncertainty” in terms
of the Landau-Pollak-type formulation.
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Chapter 4

Testing incompatibility of
quantum devices with few states

Quantum information processing, including the exciting fields of quantum
communication and quantum computation, is ultimately based on the fact
that there are new types of resources that can be utilized in carefully de-
signed information processing protocols. The best-known feature of quan-
tum information is that quantum systems can be in superposition and en-
tangled states, and these resources lead to applications such as superdense
coding and quantum teleportation. While superposition and entanglement
are attributes of quantum states, quantum measurements have also features
that can power a new type of applications. The best known and most studied
property is the incompatibility of pairs (or collections) of quantum measure-
ments [21]. It is crucial e.g. in the BB84 quantum key distribution protocol
(1] that the used measurements are incompatible.

From the resource perspective, it is important to quantify the incompat-
ibility. There have been several studies on incompatibility robustness, i.e.,
how incompatibility is affected by noise. This is motivated by the fact that
noise is unavoidable in any actual implementation of quantum devices and
similar to other quantum properties (e.g. entanglement), large amount of
noise destroys incompatibility. Earlier studies have mostly focused on quan-
tifying noise [29] and finding those pairs or collections of measurements
that are most robust to certain types of noise [I30], or to find conditions
under which all incompatibility is completely erased [[31]. In this work,
we introduce quantifications of incompatibility which are motivated by an
operational aspect of testing whether a collection of devices is incompatible
or not. We focus on two integer valued quantifications of incompatibility,
called compatibility dimension and incompatibilility dimension. We formu-
late these concepts for arbitrary collections of devices. Roughly speaking,
the first one quantifies how many states we minimally need to use to detect
incompatibility if we choose the test states carefully, whereas the second
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one quantifies how many (affinely independent) states we may have to use
if we cannot control their choice. We study some of the basic properties of
these quantifications of incompatibility and we present several examples to
demonstrate their behaviour.

This part is organized as follows. In Section B, we introduce the no-
tion of compatibility and incompatibility dimension, which reflects opera-
tionally how easy it is to detect the incompatibility of quantum devices
considered. We also give brief reviews on related studies recently reported
in [32, 33, 134, [35] for the case of quantum observables, and explain the
interconnections of these studies to ours. In Section B2, we show that in-
compatibility dimension is related with the concept of incompatibility witness
(16, 77, T12]. We also derive a useful bound for incompatibility dimension by
means from the relation between them. In Section B3, we give a particular
analysis for compatibility and incompatibility dimensions of a pair of mu-
tually unbiased qubit observables. We show that, remarkably, even for the
standard example of noisy orthogonal qubit observables the incompatibil-
ity dimension has a jump in a point where all noise robustness measures are
continuous and indicate nothing special to happen. More precisely, the noise
parameter has a threshold value where the number of needed test states to
reveal incompatibility shifts from 2 to 3. This means that even in this simple
class of incompatible pairs of qubit observables there is a qualitative differ-
ence in the incompatibility of less noisy and more noisy pairs of observables.
An interesting additional fact is that the compatibility dimension of these
pairs of observables does not depend on the noise parameter.

For simplicity and clarity, we will restrict to finite-dimensional Hilbert
spaces and observables with a finite number of outcomes. Our definitions
apply not only to quantum theory but also to any GPT. However, for the
sake of concreteness, we keep the discussion in the realm of quantum theory.
The main definitions work in any GPT without any changes. We expect
that similar findings as the aforementioned result on noisy orthogonal qubit
observables can be made in subsequent studies on other collections of devices.

4.1 (In)compatibility on a subset of states

In this section, we introduce the notion of incompatibility dimension and
compatibility dimension as quantifications of incompatibility. We again men-
tion that we focus on compatibility and incompatibility in quantum theory
in this chapter, but those quantities can be defined naturally also in GPTs.

85



4.1.1 (In)compatibility for quantum devices

We start with presenting explicit descriptions of compatibility and incom-
patibility for quantum observables, although we have already given their
definitions in the general framework of GPTs (see Definition 243 and Propo-
sition Z48). A quantum observable is mathematically described as a positive
operator valued measure (POVM) [76]. A quantum observable with finite
number of outcomes is hence a map x — A(z) from the outcome set to the
set of linear operators on a Hilbert space. The compatibility of quantum
observables Ay, ..., A, with outcome sets Xi,..., X, means that there ex-
ists an observable G, called joint observable, defined on the product outcome
set X7 x -+ x X, such that from an outcome (zy,...,x,) of G, one can
infer outcomes for every Ay,..., A, by ignoring the other outcomes. More
precisely, the requirement is that

Ai(x1) = Z G(z1, 22, ..., xy),
T2,...,Tp
AQ(CL’Q) = Z G(Il,l‘g,...,l‘n),
Z1,%3...,Tn (4.1)

A, (z,) = Z G(x1, T2, ..., xy).

Tl Tn—1

If Ay,..., A, are not compatible, then they are called incompatible.

Ezxample 4.1
(Unbiased qubit observables) We recall a standard example to fix the nota-
tion that we will use in later examples. An unbiased qubit observable is a
dichotomic observable with outcomes + and determined by a vector a € R?,
la| <1 via

A (+)=2(1+ta-o0),

where a - 0 = a101 + as05 + azoz and o;, 1 = 1,2, 3, are the Pauli matrices.
The Euclidean norm |a| of a reflects the noise in A?; in the extreme case
of |a| = 1 the operators A®(+) are projections and the observable is called
sharp. As shown in [I36], two unbiased qubit observables A* and AP are
compatible if and only if

la+b|+]a—Db|<2. (4.2)

There are two extreme cases. Firstly, if A* is sharp then it is compatible
with some AP if and only if b = ra for some —1 < r < 1. Secondly, if
la] = 0, then A*(+) = 31 and it is called a trivial qubit observable, in which
case it is compatible with all other qubit observables.
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How can we test if a given family of observables is compatible or incom-
patible? From the operational point of view, the existence of an observable
G satisfying (B-T) is equivalent to the existence of G such that for any state
o the equation

Tr[oA(x1)] = ). Tr[oG(w1, 22, ..., 7)) (4.3)

T2y Tn

holds. Before contemplating into these questions, we recall that analogous
definitions of quantum compatibility and incompatibility make sense for
other types of quantum devices, in particular, for instruments and chan-
nels [20, 37, 138, 39, 140, 141, 142]. We denote by S(H) the set of all
density operators on a Hilbert space H. The input space of all types of de-
vices must be S(H;,,) on the same Hilbert space H,;, as the devices operate
on a same system. We denote S(H,;,) simply by S. A device is a completely
positive map and the “type” of the device is characterized by its output
space. Output spaces for the three basic types of devices are:

e observable: P(X) := {p = {p(2)}sex | 0 < p(z) <1, >, p(x) = 1},
e channel: S(Hou),
e instrument: S(Hou) ® P(X).

In this classification, an observable A is identified with a map g — Tr[pA(z)]
from S(H;,) to P(X). We limit our investigation to the cases where the
number of outcomes in X is finite and the output Hilbert space Hoy is
finite-dimensional. Regarding P(X) < S(CXI) as the set of all diagonal
density operators, we can summarize that quantum devices are normalized
completely positive maps to different type of output spaces.

Devices Dq,...,D, are compatible if there exists a device D that can
simulate Dy, ..., D, simultaneously, meaning that by ignoring disjoint parts
of the output of D we get the same actions as Dy,...,D, (see [21]). This
kind of device is called a joint device of Dy,...,D,. The input space of D
is the same as for Dq,...,D,, but the output space is the tensor product
of their output spaces. As an illustration, let D;: S(Hiyn) — S(H;) (4 =
1,...,n) be quantum channels. They are compatible iff there exists a channel
D: S(Hin) — S(X))_, H;) satistying

Di(0) = tru,,..1,D(0),
D2(0) = tra, 15,1, D(0),

Dn(Q) = tr’Hl,n-,’anl D(Q)
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for all p € S(Hip) (see (B)). If Dy,. .., D, are not compatible, then they are
incompatible. We recall a qubit example to exemplify the general definition.

Example 4.2

(Unbiased qubit observable and partially depolarizing noise) A measurement
of an unbiased qubit observable A?* necessarily disturbs the system. This
trade-off is mathematically described by the compatibility relation between
observables and channels. Let us consider partially depolarizing qubit chan-
nels, which have the form

Ip(0) =po+ (1-p)il (4.4)

for 0 < p < 1. A joint device for a channel and observable is an instrument.
Hence, A* and I', are compatible if there exists an instrument z — &, such
that

2, %:(0) =Ty(0) and Tr[®,(0)] = Tr[oA*()]

for all states g and outcomes x. It has been proven in [140] that A* and I,
are compatible if and only if

|a| <%(1—p—|—\/(1—p)(1+3p)) . (4.5)

This shows that higher is the norm |a|, smaller must p be.

4.1.2 (In)compatibility dimension of devices

To test the incompatibility we should hence check the validity of (E23) in a
subset of states that spans the whole state space. An obvious question is
then if we really need all those states, or if a smaller number of test states
is enough. Further, does the number of needed test states depend on the
given family of observables? How does noise affect the number of needed
test states? The earlier discussion motivates the following definition, which
is central to our investigation.

Definition 4.3
Let Sy € S. Devices Dy, ..., D, are Sy-compatible if there exist compatible
devices D, ..., D/, of the same type such that

Dj(e) = Dj(e) (4.6)
for all 7 = 1,...,n and states o € Sy. Otherwise, Dy,...,D, are Sp-
imcompatible.

The definition is obviously interesting only when Dq,...,D,, are incompat-

ible in the usual sense, i.e., with respect to the full state space. In that
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case the definition means that if devices Dy, ..., D,, are Sp-compatible, their
incompatibility cannot be verified by taking test states from &y only, and
vice versa, if devices Dq,...,D, are Sp-incompatible, their actions on &
cannot be simulated by any collection of compatible devices and therefore
their incompatibility should be able to be observed in some way.

The Sy-compatibility depends not only on the size of Sy but also on its
structure. We start with a simple example showing that there exist sets Sy
such that an arbitrary family of devices is Sy-compatible.

Ezxample 4.4

Any set of devices Dy, ...,D, is Sp-compatible if Sy = {o1, ..., ox} consists
of perfectly distinguishable states. In fact, one may construct a device Dj,
which outputs Dy (p;) after confirming an input state is p; by measuring an
observable that distinguishes the states in Syp. It is easy to see that the
devices D/, ..., D! are compatible. The same argument works for devices in
general probabilistic theories and one can use the same reasoning for a subset
Sy that is broadcastable [25]. (We recall that a subset Sy is broadcastable
if there exists a channel B : § — § ® S such that the bipartite state B(p)
has marginals equal to ¢ for all p € Sy.) For instance, two qubit states 1/2
and |0)(0| are broadcastable even though not distinguishable. Any pair of
qubit channels Ay and As is Sp-compatible for Sy = {1/2,]0)(0|} as we can
define A’(o) = S iloliyA;(|iXi|) for j = 1,2. The channel A’ has clearly
the same action as A; on Sp. A joint channel A for A} and A is given as

Ae) = Z@'\QW A (Ji)Cl) @ Ao (12)<E),

and it is clear that, in fact, Tra[A(0)] = A1(e) and Tri[A(0)] = Ax(0).

For a subset Sy — S, we denote by Sy the intersection of the linear hull
of Sy with S, i.e.,

!
Sy = {‘QES‘QZZCiQi for some ¢; € C and g; € Sp}

=1

In this definition we can assume without restriction that ¢; e R and }, ¢; =
1 as they follow from the positivity and unit-trace of states. Since the
condition (E8) is linear in p, we conclude that devices Dy,...,D,, are Sp-
compatible if and only if they are Sy-compatible. This makes sense: if we
can simulate the action of devices for states in Sy, we can simply calculate
the action for all states that are linear combinations of those states. This
observation also shows that a reasonable way to quantify the size of a subset
Sy for the task in question is the number of affinely independent states. We
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consider the following questions. Given a collection of incompatible devices
Dy,...,D,,

(a) what is the smallest subset Sy such that Dy, .. ., D, are Sp-incompatible?
(b) what is the largest subset Sy such that Dy, ..., D, are Sy-compatible?

Smallest and largest here mean the number of affinely independent states in
So. It agrees with the linear dimension of the linear hull of Sy, or dimaff Sy +
1, where dimaffS, is the affine dimension of the affine hull affSy of S
(@9, b4]. The answer to (a) quantifies how many states we need to use to
detect incompatibility if we choose them carefully, whereas the answer to
(b) quantifies how many (affinely independent) states we may have to use
if we cannot control their choice. Hence for both of these quantities lower
number means more incompatibility in the sense of easier detection. The
precise mathematical definitions read as follows.

Definition 4.5
For a collection of incompatible devices Dy, ..., D,, we denote

Xincomp(D1, ..., Dp) = gli%{dimaﬁSo +1|Dy,...,D,: Sp-incompatible}
0
and
Xecomp(D1, ..., Dy) = gl&)é{dimaﬁSo +1|Dy,...,D,: Sp-compatible}.
0

We call these numbers the incompatibility dimension and compatibility di-
mension of Dy, ..., D, respectively.

From Example B4 and the fact that the linear dimension of the linear hull
of S is d? we conclude that

2 < Xincomp(Dh ey Dn> < d2 (47)

and
d < Xeomp(D1,...,Dp) < d* — 1. (4.8)

Further, from the definitions of these quantities it directly follows that

Xincomp(Dly ceey Dn) < Xcomp(Dla ceey Dn) + 1. (49)

We note that based on their definitions, both Xincomp and Xcomp are expected
to be smaller for collections of devices that are more incompatible. The
following monotonicity property of Xincomp and Xeomp under pre-processing
is a basic property that any quantification of incompatibility is expected to
satisty.
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Proposition 4.6

Let A : § — S be a quantum channel and let [~)j be a pre-processing of D; with
A for each j =1,...,n, i.ec., Sj(g) = D;(A(0))). If 5j ’s are incompatible,
then also D;’s are incompatible and

~ ~

Xincomp(Dla te Dn) = Xincomp(Dh R Dn) (410)

and

~

Xeomp(D1, -+ Dn) = Xeomp(D1, - - -, D) . (4.11)
Proof
Suppose that Dq,...,D, are Sy-compatible for some subset Sy. Let D’ be
a device that gives devices D},...,D! as marginals and these marginals
satisfy (A1) in Sy. Then the pre-processing of D’ with A gives 51, . D, as
marginals in §y. The claimed inequalities then follow. O

The post-processing map of a device D depends on type of the device. For
instance, the output set of an observable is P(X) and post-processing is then
described as a stochastic matrix [I43]. We formulate and prove the following
monotonicity property of Xincomp and Xcomp under post-processing only for
observables. The formulation is analogous for other types of devices.
Proposition 4.7

Let E\j be a post-processing of A; (i.e. Aj(x’) = > vi(@', x)Aj(x) for some
stochastic matriz v;) for each j = 1,... ,n. If Aj ’s are Sp-incompatible, then
also A;’s are Sy-incompatible and

Xincomp('ala s 7'Kn) = Xincomp(Ah s 7An) (412)
and
Xeomp(Ats - AR) = Xeomp(At, .., Ay) (4.13)
Proof
Suppose that Aq, ..., A, are Sp-compatible for some subset Sy. This means

that there exists an observable G satisfying for all p € Sy, any j and z;,

Tr[oA;(z;)] = >. > Tr[oG(a1, ..., )] (4.14)

l#5

~

We define an observable G

G(al, ..o ap) = ) w(@hey) - v o) Gy, . wn),

L1y--9Tn

and it then satisfies

~

Te[oA; ()] = D) Tr[oG(a}, ... a))] (4.15)

I#j xi
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for all p € Sy, any j and x; This shows that Kl, e ,/E\n are Sp-compatible.
The claimed inequalities then follow. O

We will now have some examples to demonstrate the values of Xincomp and
Xcomp i some standard cases.

Example 4.8

Let us consider the identity channel id : S(C%) — S(C?). It follows from
the definitions that two identity channels are Sp-compatible if and only if S
is a broadcastable set. It is known that a subset of states is broadcastable
only if the states commute with each other [I44], and for this reason the
pair of two identity channels is Sp-incompatible whenever S, contains two
noncommuting states. Therefore, we have Xincomp(id,id) = 2. On the other
hand, Sy consisting of distinguishable states makes the identity channels Sy-
compatible. As Sy consisting of commutative states has at most d affinely
independent states, we conclude that X omp(id,id) = d.

A comparison of the results of Example B8 to the bounds (EZ4) and (E=R)
shows that the pair of identity channels has the smallest possible incompat-
ibility and compatibility dimensions. This is quite expectable as that pair is
consider to be the most incompatible pair - any device can be post-processed
from the identity channel. Perhaps surprisingly, the lower bound of Xincomp
can be attained already with a pair of dichotomic observables; this is shown
in the next example.

Ezxample 4.9

Let P and () be two noncommuting one-dimensional projections in a d-
dimensional Hilbert space H. We define two dichotomic observables A and
B as

A(l)=P,A0)=1—-P, B(1)=Q,B(0)=1-0Q.
Let us then consider a subset consisting of two states,
So=1{0", 0% = {51~ P), ;51-Q)}.

We find that the dichotomic observables A and B are Sp-incompatible. To
see this, let us make a counter assumption that A and B are Sy-compatible,
in which case there exists G such that the marginal condition (2=3) holds for

both observables and for all g € Sg. We have Tr[o”A(1)] = 0 and therefore
0=Tr[(1 - P)G(1,1)] = Tr[(1 — P)G(1,0)].

It follows that G(1,1) = aP and G(1,0) = BP. Further, Tr[PA(1)] =
1 and hence o + f = 1. In a similar way we obtain G(1,1) = @ and
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G(0,1) = 6Q with v+ ¢ = 1. It follows that « = v =0 and § = 4§ = 1.
But G(1,0) + G(0,1) = P + @ contradicts G(1,0) + G(0,1) < 1. Thus we
conclude Xincomp(A, B) = 2.

For two incompatible sharp qubit observables (Example B) the previous
example gives a concrete subset of two states such that the observables
are incompatible and proves that Xincomp(A®, AP) = 2 for such a pair. The
incompatibility dimension for unsharp qubit observables is more complicated
and will be treated in Section E=3.

FExample 4.10
Let us consider two observables A and B. Fix a state gy € S and define

So ={0e S : Tr[oA(x)] = Tr[ooA(z)] Yz} .
Then A and B are Sp-compatible. To see this, we define an observable G as

G(z,y) = Tr[ooA(z)]B(y) .

It is then straightforward to verify that (E=3) holds for all p € Sp. As a
special instance of this construction, let A? be a qubit observable and a # 0
(see Example ET). We choose Sy = {0 € S | Tr[pA?(+)] = 1}. We then have
So = {3(1+r-0) | r-a =0} and hence dimaff S, = 2. Based on the previous
argument, A? is Sy-compatible with any AP. Therefore, omp(A?, AP) = 3
for all incompatible qubit observables A2 and AP.

4.1.3 Remarks on other formulations of incompatibil-
ity dimension

The notion of Sp-compatibility for quantum observables has been introduced
in [I32] and in that particular case (i.e. quantum observables) it is equivalent
to Definition B=3. In the current investigation, our focus is on the largest
or smallest Sy on which devices Dy, ..., D, are compatible or incompatible,
and this has some differences to the earlier approaches. In [[34], the term
“compatibility dimension” was introduced and for observables A, ... A, on
a d-dimensional Hilbert space H = C%: it is given by

R(A,...,A,) =max{r <d|3IV:C" — C? isometry
st. VALV, ..., V*ALV are compatible},

Evaluations of R(Aj,...,A,) in various cases such as n = 2 and A; and

Ay are rank-1 were presented in [T34]. To describe it in our notions, let us
denote C” by K, and define S and Sk as the set of all density operator on
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‘H and K respectively. We also introduce Sy as
Syx :={0€ S |suppoc VK} = VEV* < Sy.

Then, we can see that the Si-compatibility of V*AV,, ..., V*A,V is equiv-
alent to the Sy -compatibility of Ay, ..., A,. Therefore, if we focus only on
sets of states such as Sy (i.e. states with fixed support), then there is no
essential difference between our compatibility dimension and the previous
one: R(A1,...,A,) =7 iff Xeomp(Ar, ..., A,) =72 In [[33] also the concept
of “strong compatibility dimension” was defined as

R(AL,...,A,) =max{r < d|VV:C" — C? isometry
s.t. VALV, ..., V*A,V are compatible}.

It is related to our notion of incompatibility dimension. In fact, if we only
admit sets of states such as Sy, then R(Aq,...,A,) and Xincomp(A1s - -, Ay)
are essentially the same: R(A1,...,A,) = 7 iff Xincomp(AL, ..., A) = (r+1)2

Similar notions have been introduced and investigated also in [I33, [35].
As in [34], these works focus on quantum observables and on subsets of
states that are lower dimensional subspaces of the original state space.
Therefore, the notions are not directly applicable in GPTs. In [I35] in-
compatibility is classified into three types. They are explained exactly in
terms of [[334] as

(i) incompressive incompatibility: (Aq,...,A,) are Sy-compatible for all
and V
(ii) fully compressive incompatibility: (Aq,...,A,) are Syx-incompatible for

all nontrivial IC and V'

(iii) partly compressive incompatibility: there is a V' and K such that
(A1,...,A,) are Syx-compatible, and some V' and K’ such that (Aq, ..., A,)
are Sy x-incompatible.

In [I35] concrete constructions of these three types of incompatible observ-
ables were given.

4.2 Incompatibility dimension and incompat-
ibility witness

In this section we show how the notion of incompatibility dimension is related
to the notion of incompatibility witness.
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4.2.1 Relation between incompatibility dimension and
incompatibility witness for observables

An incompatibility witness is an affine functional ¢ defined on n-tuples of
observables such that £ takes non-negative values on all compatible n-tuples
and a negative value at least for some incompatible n-tuple [I6, ['7, IT2].
Every incompatibility witness £ is of the form

E(@®j_1A)) = 0 — f(@ILA)), (4.16)

where § € R and f is a linear functional on @®}_, L,(H)™ with L,(#) being
the set of all self-adjoint operators on H and m; the number of outcomes of
A;. It can be written also in the form

f(A1,..., Z Z ]%Tr ij ( j)]v (417)

where ¢;,;’s are real numbers, and g;,,’s are states. This result has been
proven in [I7] for incompatibility witnesses acting on pairs of observables
and the generalization to n-tuples is straightforward. A witness £ detects the
incompatibility of observables Ay, ... A, if £(Aq,...,A,) < 0. The following
proposition gives a simple relation between incompatibility dimension and
incompatibility witness.

Proposition 4.11

Assume that an incompatibility witness £ has the form (EI4) and it de-
tects the incompatibility of observables Ay, ..., A,. Then Aq,... A, are So-
incompatible for Sy = {0z, | j=1,...,n,2; = 1,...,m;}.

Proof
Let Ay,..., A, be Sy-compatible. Then we have compatible observables
Ay, ..., A, such that Tr[oA;(z;)] = Tr[gﬂj (z;)] for all p € Sp. This implies
that

E(Ar,.. . A) = E(Ay,... A, =0,

which contradicts to the assumption that & detects the incompatibility of
observables Ay, ..., A,. O

It has been shown in [I7] that any incompatible pair of observables is de-
tected by some incompatibility witness of the form (B=T74). The proof is
straightforward to generalize to n-tuples of observables, and thus, together
with Proposition BT, we can obtain

Xincomp(Alw'-yAn) Smp+ -+ my. (418)
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That is, the incompatibility dimension of Ay,..., A, can be evaluated via
their incompatibility witness (we will derive a better upper bound later in
this section). We can further prove the following proposition.

Proposition 4.12
The statements (i) and (i) for a set of incompatible observables {Aq, ..., Ay}
are equivalent:

(Z) Xincomp(Al, e 7An) <N

(i) There exist a family of linearly independent states {1, ..., on} and real
numbers 6 and {¢ o }ije; (=1,...,N,j=1,....,n,2; =1,...,m;)
such that the incompatibility witness £ defined by

N n
§(Bi,...,By) =0 )] Z CLja;trl 0By (25)]

detects the incompatibility of {A1,...,A,}.

The claim (¢) = (i7) may be regarded as the converse of the previous ar-
gument to obtain (EI8). It manifests that we can find an incompatibility
witness detecting the incompatibility of {Aq,...,A,} reflecting their incom-
patibility dimension.

Proof

(7) = (i) can be proven in the same way as Proposition B11. Thus, we fo-
cus on proving (7) = (4). Suppose that a family of observables {A;, ..., A,}
satisfies Xincomp(A1,-..,A,) = N. Then there exists a family of linearly
independent states {1, 02,...,0n} in Ls(H) on which {A,... A,} are in-

compatible. We can regard the family {Ay, ..., A,} as an element of a vector
space L defined as £ := @j_L,(H)™, that is, A := @]_;A; € L. For
eachl =1,...,N,j=1,...,n,and x; = 1,...,m;, let us define a subset

K(A7 Ql;jv m]) of L as

K(A, a,j,;) = {Be L [{alBj(z;))ns = {alA;(x;))ns} (4.19)

where (g|Aj(x;))ns := tr[o/A;(x;)] is the Hilbert-Schmidt inner product on
L;(H). Note that this inner product can be naturally extended to an inner
product {({:|-)) on L:

CABY = 3 S A () By (;)has.

j=lz;j=1

Embedding g; into £ by @{’xj = @i, D2, 0ij0ye; 01 for each j,x; and I, we
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obtain another representation of (E-19) as

K(A, 01, ;) = {B| ((]"B)) = (& |AN} - (4.20)

Thus this set is a hyperplane in £. Note that {@{’x}l,mj is a linearly inde-
pendent set in £. Consider an affine set K := nfY, Ni_y mzj;lK(A, 01, J,%j).
Because {Aq,...,A,} is incompatible in {1, - , on}, it satisfies

KnC =g, (4.21)

where C' := {C e L | {Cy,...C,} is compatible}. Thus, by the separating
hyperplane theorem [49], there exists a hyperplane in £ which separates
strongly the (closed) convex sets K and C. In the following, we will show
that one of those separating hyperplanes can be constructed from {@{’x}ljj,zj.

Let us extend a family of linearly independent vectors {g"* }1.j.2, to form

1111

,,,,,

satisfying ((vg|wp)) = d4p. Because K can be written as
K = {B (& |(B~A)) =05z},
it is represented in terms this (dual) basis as
K = A+ K,

where K is an affine set defined by

dim £
Ko:={ Y, cawe|cicR} (4.22)

a:N(Zj mj;)+1

Now we can construct a hyperplane separating K and C. To do this, let
us focus on the convex sets Ky and C’ := C — A instead of K and C,
which satisfy Ky n C" = ¢J because of (2211). We can apply the separating
hyperplane theorem (Theorem 11.2 in [49]) for the affine set K and convex
set C’. There exists a hyperplane Hy in £ such that Ky and C” are contained
by Hy and one of its associating open half-spaces respectively. That is, there
exists h € L satistying

Hy = {B e L[{Bh)) =0}

with Ky c Hy, and ((C'|h)) < 0 for all C" € C". Let us examine the vector
h. It satisfies

(walhy) =0 foralla= N3 ;m;) +1,...,dimL
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because Ky < Hy (see (B222)). Thus, if we write h as h = Zjiznic CaVq, then
we can find that ¢, = 0 holds for all a = N(};;m;) +1,...,dim L. It follows
that

N(ijj)
N
h= Dy ave=2,00 8"
a=1 Il j z

holds, and the hyperplane H, can be written as
Hy={BeL|Y Y cjuTrlaB;(z;)] = 0}.
I j =z

Then, the hyperplane H' := A + H,, a translation of Hy, of the form

H ={BeL| ZZZCl,j,ijr[QlBj(xj)] =0’}

contains the original sets K, and satisfy
Z ZZ Clja; Tr[0iCj(x5)] < 0
I J =

for all C € C. We can displace H' slightly in the direction of C' to obtain a
hyperplane H defined as

H={BeL]| ZZZCl,j,ijr[plBj(xj)] = 4},
]

J oz

which (strongly) separates H’ (in particular K') and C' because H' is closed
and C' is compact (see Corollary 11.4.2 in [49]). The claim now follows as
Ae K. O

4.2.2 An upper bound on the incompatibility dimen-
sion of observables via incompatibility witness

We can give a better upper bound than (EZI8) for the incompatibiliy dimen-
sion by slightly modifing the previous argument in [I7] on incompatibility
witness.

Proposition 4.13

Let Ay, ..., A, be incompatible observables with mq,...,m, outcomes, re-
spectively. Then

Xincomp(Al, . 7An) < ij —n+1.
j=1
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Proof

We continue following the same notations as the proof of Proposition E12.
Let us assume that the incompatibility of Ay,... A, is detected by an in-
compatibility witness £&. The functional £ is of the form

§(A) =0 f(A)

with a real number ¢ and a functional f on £ (see (EI8)). Then, Riesz
representation theorem shows that the functional f can be represented as

FA) => 2<17j($j)|Aj(Ij)>Hs

i=1 z;

with some Fj(z;) € Ls(H) (j = 1,...,n, z; = 1,...,m;). If we define
Fi(z;) = Fj(r;) + ¢;1, then we find
EA) =d+dY e — D D (Fila)Ai(a;)s.
J

j=lz;=1

We choose ¢€; so that

Sl Fy ()] = Y(Fi ) 1ms = 0

holds. The choice of {Fj(z;)};., has still some freedom. Each F(z;) can
be replaced with F}/(z;) = Fj(x;) + T}, where T; € L(H) satisfies tr[7T}] =
(T3|1)gs = 0. In fact, it holds that

D F! ()| A (i) s = D CFN )| (i) ms + > CTilA () as
= Y (Fj(@)A(x5) s + (T3 |1ns

= (F)(@;)A; () s

We choose T} as m;T; = — 3,7 F/(x;) which indeed satisfies

zj=1

My Wms = — 3 (Flay) Lms = 0,

zj=1

i.e., Tr[T;] = 0, to obtain

S () = 0.

Zj
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We further choose large numbers o > 0 so that G;(z;) := F}(z;) + a1 = 0
for all j and x;. Now we obtain a representation of the witness which is
equivalent to & for n-tuples of observables as

£ (A) =6 + dZ(ej + ;) = 1 D LG ()|A (x;)us,

J oz

where positive operators Gj(x;)’s satisfy >}, Gj(x;) = mjo;1. Defining

density operators o;j(x;) by o;(z;) = % we obtain yet another repre-
sentation
E(A) =6+ dZ &+ ) ZZtr j(@)]trfoj(z;)A; (2]
J T4
with g;(z;)’s satisfying constraints
Ztr )oj(x;) = mjo;L. (4.23)

Thus, according to Proposition 1, Aq,..., A, are Sy-incompatible with
So = {0j(7))}je;- To evaluate dimaff Sy, we focus on the condition (E=23).
Introducing parameters p;(z;) := tr[G;(z;)]/dm a; such that ij pji(x;) =
1, we obtain

1
ij(fj)ej(%) =L

or

ij (2;)0i(z;) = 0,

Ty

where g;(z;) := gj(z;)—31. It follows that {g;(x;)}., are linearly dependent,
and thus
dimspan{g;(v;)}.; < mi — 1.

Similar arguments for the other j’s result in
dimspan{g;(v;)};.;, < Z(mj —-1) = ij —n.
J J

Considering that

dimspan{gj(xj)}j,xj = dimaﬁ{gj(fj)}j,xj

holds, we can obtain the claim of the proposition. O

The bound in Proposition B3 is not tight in general since the right-hand
side of the inequality can exceed the bound obtained in (221). However, for
small n and m;’s, the bound can be tight. In fact, while for n = 2 and
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my = my = 2 it gives Xincomp(A1,A2) < 3, we will construct an example
which attains this upper bound in the next section.

4.3 (In)compatibility dimension for mutually
unbiased qubit observables

In this section we study the incompatibility dimension of pairs of unbiased
qubit observables introduced in Example B0 We concentrate on pairs that
are mutually unbiased, i.e., Tr[A?(£)AP(4)] = 1/2 (this terminology orig-
inates from the fact that if the observables are sharp, then the respective
orthonormal bases are mutually unbiased. In the previously written form
the definition makes sense also for unsharp observables [[45]). The condition
of mutual unbiasedness is invariant under a global unitary transformation,
hence it is enough to fix the basis x = (1,0,0), y = (0,1,0), z = (0,0,1) in
R3 and choose two of these unit vectors. We will study the observables A
and A%, where 0 <t < 1. The observables are written explicitly as

Atx(‘f_') _ %(1 + tO‘l), Aty(i) = %(]l + tO‘z)-

The condition (E2) shows that A™ and A% are incompatible if and only if
1/4/2 < t < 1. The choice of having mutually unbiased observables as well as
using a single noise parameter instead of two is to simplify the calculations.
We have seen in Example B0 that yeomp(A™, A%) = 3 for all values ¢
for which the pair is incompatible. We have further seen (discussion after
Example B9) that Xincomp(A*,AY) = 2, and from Prop. B3 follows that
Xincomp(AZ, A®) < 3 for all 1/4/2 <t < 1. The remaining question is then
about the exact value of Xincomp(A™, A¥), which can depend on the noise
parameter ¢ and will be in our focus in this section (see Table B).

Xincomp (Atx’ Aty) Xcomp (Atx’ Aty)
T
t < 7 - -
2o0r3
L <t<1 3
% .
(Proposf;lon A1) (Example £TT)
t=1 (Example 29)

Table 4.1: Xincomp and Xcomp for (A™ AW) with
0 <t <1 Fort < 1/y/2 the observables A™ and

A% are compatible and Xincomp and Xcomp are not
defined.

Let us first make a simple observation that follows from Prop. EZ1. Con-
sidering that A®* is obtained as a post-processing of A™ if and only if s < ¢,
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we conclude that

1
Xincomp(A8x7 Asy) =2 = Xincomp(AtX7 Aty) =2 for —=<s < ta

V2

and

Xincomp(A* A*Y) =3 = Xineomp(AT<,ATY) =3 for s’ >t >

-

Interestingly, there is a threshold value to where the value of Xincomp(A™, A%)
changes; this is the content of the following proposition.

Proposition 4.14
There exists 1/v/2 < tg < 1 such that Xincomp(A™, A¥) = 3 for 1/4/2 <t < tg
and Xincomp(Atx, Aty) =2 fOT t() <t< 1.

The main line of the lengthy proof of Proposition BI4 is the following.
Defining two subsets L and M of (\%, 1] as

L= {1 | Xoncomp(A™, A%) = 2}, M = {t | Xineomp (A, A%) = 3}, (4.24)
we see that
inf L = sup M(=: tg) (4.25)
holds unless L and M are empty. By its definition, the number t{, satisfies
Xincomp(A™, AY) =2 for t >t} Xincomp(A™, AY) =3 for t < .

Based on the considerations above, the proof of Proposition E=I4 proceeds
as follows. First, in Part 1 - 3 (Subsection B=310 - B=373), we prove that M
is nonempty while L has already been shown to be nonempty as ¢t =1¢€ L.
It will be found that Yincomp(A™, AY) = 3 for ¢ sufficiently close to \%, and
thus ¢; introduced above can be defined successfully. Then, we demonstrate
in Part 4 (Subsection B=34) that sup M = max M, i.e. t; equals to ¢y in the

claim of Prop. EI4.

Remark 4.15
In [37] a similar problem to ours was considered. While in that work
the focus was on several affine sets, and a threshold value ¢ty was given for
each of them by means of their semidefinite programs where observables
{A> A% A} become compatible, we are considereding all affine sets with
dimension 2.
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4.3.1 Proof of Proposition 214 : Part 1

In order to prove that M is nonempty, let us introduce some relevant notions:

D:={v||v|<1l, v,=0tc B:={v]|v|<1},
Sp:={0"|veD}cS={p |ve B},

where v = v, x + v,y + v,z € R? and ¢¥ := %(]l +v-0). Since Sp is a convex
set, we can treat Sp almost like a quantum system. In the following, we
will do it without giving precise definitions because they are obvious. For an
observable E on S with effects {E(x)},, we write its restriction to Sp as E|p
with effects {E(x)|p}., which is an observable on Sp. It is easy to obtain
the following Lemma.

Lemma 4.16
The followings are equivalent:

(i) A™ and AW are incompatible (thus 5 <t <1).
(i1) A™ and A% are Sp-incompatible.

(iii) A™|p and A¥|p are incompatible as observables on Sp.

Proof

(i) = (iii). Suppose that A™|p and A¥|p are compatible in Sp. There exists
an observable M on 8p whose marginals coincide with A™|p and A¥|p. One
can extend this M to the whole S so that it does not depend on z (for
example, one can simply regard its effect ¢yl + c107 + co09 as an effect on
S). Since both A™|p and A¥|p also do not depend on z, the extension of M
gives a joint observable of A™ and A%,

(iii) = (ii). Suppose that A™ and AY are Sp-compatible. There exists an
observable M on S whose marginals coincide with A™ and A% in Sp. The
restriction of M on Sp proves that (iii) is false.

(ii) = (i). Suppose that A™ and A% are compatible, then they are Sp-
compatible. O

This lemma demonstrates that the incompatibility of A® and A% means the
incompatibility of A™|p and A¥|p. We can present further observations.
Lemma 4.17

Let us consider two pure states o' and o™ (r1,r9 € 0B, r1 # r3), and a
convez subset Sy of S generated by them: Sy := {po™ +(1—p)o™ | 0 < p < 1}.
We also introduce an affine projection P by Po¥ = opy, where o¥ € S with
V = U,X + vy + 0.2 and Pv = v,x 4+ vy, and extend it affinely. The affine
hull of Sy s projected to Sp as

PSy:={A\Po™ + (1 - AN)Po™ | e R} n Sp. (4.26)
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If A™ and AY are Sy-incompatible, then their restrictions A™|p and AY|p

are PSy-incompatible.

Proof

Suppose that A and AY are Sy-incompatible. It implies Pr; # Prs, i.e.,
Po*t # Po* (see Example B10), and thus PSy is a segment in Sp. If A™|p
and AY|p are PSp-compatible, then there exists a joint observable M on Sp
such that its marginals coincide with A™|, and A%¥|p on PSy; < Sp. This
M can be extended to an observable on S so that the extension does not
depend on z. Because

Tr[A™(+)Po™ ] = Ta[A™(
Tr[A™(£) Po"] = Tr[A™(

H-

)™,
)o"™]

H

(and their y-counterparts) hold due to the independence of A™(+) from
o3, the marginals of M coincide with A®™ and A% on Sy. It results in the
So-compatibility of A™ and A%, which is a contradiction. O

It follows from this lemma that X;ncomp(A™|p, A¥|p) is two when Xincomp (A, AY)
is two, equivalently Xincomp(A™, A%) is three when Xincomp(A™|p, A¥|p) is
three (remember that Yincomp(A™, AY) < 3). In fact, the converse also
holds.

Lemma 4.18
Xincomp(A™|p, A¥|p) is three when Xincomp(A™, A%) is three.

Proof

Let Xincomp(A™, AY) = 3. Tt follows that for any line S < S, A™ and A% are
S-compatible. In particular, A™ and A% are S’-compatible for any line S’ in
Sp, and thus there is an observable M such that its marginals coincide with
A™ and A" on S’. Tt is easy to see that the marginals of M|p coincide with
A™|p and A%¥|p on S’, which results in the S’-compatibility of A™|p and
A¥|p. Because S’ is arbitrary, we can conclude Xincomp(A™|p, A¥|p) = 3.0

The lemmas above manifest that if A™ and A" are incompatible, then A™|p,
and A% |p are also incompatible and

Xz'ncomp (Atx7 Aty) = Xincomp(Atx|D7 Aty |D)

Therefore, in the following, we denote A™|p and A¥|p simply by A% and
Ag respectively, and focus on the quantity chomp(A’f)‘,Ag) instead of the
original Xincomp(A™, AWY).

Before proceeding to the next step, let us confirm our strategy in the
following parts. In Part 2 (Subsection B237), we will consider a line (seg-
ment) S; in Sp, and consider for 0 < ¢ < 1 all pairs of observables (AL, AL)
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on Sp that coincide with (A%, A%Y) on S;. Then, in Part 3 (Subsection
A=333), we will investigate the (in)compatibility of those Al and Al in order
to obtain X ncomp (A, A%’). It will be shown that when ¢ is sufficiently small,
there exists a compatible pair (/Xg, Kg) for any Sy, that is, A% and A are
Si-compatible for any line S;. It results in Xincomp (A, Ag) = 3, and thus

M # &.

4.3.2 Proof of Proposition 414 : Part 2

Let us consider two pure states ¢! and o™ with ry,res € 0D (r; # ), and a
convex set Sy 1= {po™ + (1 —p)o™ | 0 < p < 1}. We set parameters ¢; and

P2 as

ry = COS P1X + sin Y1y, (4.27)

Iy = COS PoX + Sin Yoy, (4.28)

where —m < 1 < @9 < 7. By exchanging + properly, without loss of
generality we can assume the line connecting ry and ry passes through above
the origin (instead of below). In this case, from geometric consideration, we

have
0<@s—¢1<m,
2 2
Note that when s — @1 = 7, "' and o™ are perfectly distinguishable, which
results in the S-compatibility of A% and A% (see Example B4). On the
other hand, when 2222 = 0 or Z, Tr[pA%(+)] or Tr[pAJ(+)] is constant
for o € S respectively, so A% and AtDy are Si-compatible (see Example B10).

Thus, instead of (E229), we hereafter assume

0<

O<502_('01

<

Y

p1+ 2 (4.30)

2

0< <

[\3'|>]l\3|>1

Next, we consider a binary observable A’i on Sp that coincides with A%¥ on
S1 © Sp. There are many possible K’i, and each /Z\ﬁ is determined completely
by its effect K’i(—k) corresponding to the outcome ‘+’ because it is binary.
The effect AL (+) is associated with a vector v; € D defined as

vy = argmaa:veDtr[QvKﬁ(+)]. (4.31)

Let us introduce a parameter &; € [—m, 7) by

vi = cos&1X + sin &y, (4.32)
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and express AL(+) as

~ 1
Al(+) = 5((1+w(£1))11—|—m1(51) o), (4.33)
where we set
my (&) = Cy(&)vy with 0<Cy(§) < 1. (4.34)
Because
Te[o™ A% (+)] = Tr[g" Al (+)],
Te[o™ AR (+)] = Te[™AL(+)],
namely
! + Ecos P = L+ (&) + Gi(&) cos(p1 — &),
22 2 2 (4.35)
1—I—zcos = L+ un(&) + G(&) cos(p2 — &)
2 2 2 2 9 Y2 —&1),
hold, we can obtain
Cil) = — AP0 e) _Lsiy (4.36)

cos(p1 — &) —cos(p2 — &) sin(po — &)’
i) = -t (SNo ) (b ) ctestuiih g

2sin(£522) sin(ypg — &) sin(pg — &1)

where we set ¢ := % and ¢y 1= 252 (0 < @9 < 5,0 < g < ).
Note that if sin(¢g — &) = 0 or cos(p; — &) — cos(ps — &) = 0 holds,
then cosy; — cosgs = 0 holds (see (E238)). It means ¢y = 0, which is
a contradiction, and thus sin(gy — &) # 0 (that is, C1(&) and wy(&) in
(B238), (E=37) are well-defined). Moreover, because C(&;) = 0, we can see

from (E238) that sin(¢g — &1) > 0 holds, which results in
0 <& < o, (4.38)
or
—m + @y < & <0. (4.39)

In addition, & is restricted also by the condition that Af(+) are positive.

Since the eigenvalues of Al(+) are (1 + wi(&)) + Ci(&)), the restriction

comes from both
1L+ wi(&) + Ci(&)

L +wi (&) — Ci(6)

Y

2
0,

A\YAR/AN

(4.40)
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equivalently

When (E239) (i.e. siné&; < 0) holds, wy(&) = 0 holds, and thus (EZT) is

sufficient. It is written explicitly as

sin (o — &) + tsin&; cos Yy = tsin o,

or

1
7 cos &+ (t cos g — cospp) sin&; > 1. (4.43)

t sin g

In order to investigate (E43), we adopt a geometric method here while it
can be solved in an analytic way. Let us define

ha(t, o, o) = Fsin o (t cos thy — cos pp) . (4.44)
Then, we can rewrite (E=23) as
: 1 :
(COS 517 S 51) ’ [(;a hl) - (COS gla S gl)] = 0. (445)

In fact, it can be verified easily that (%, hl) is the intersection of the line

I == {Ar; + (1 = A\)r2 | A € R} and the line = § in R%. Considering this

fact, we can find that & satisfies (A23) if and only if
Tt 0, 10) < & <0, (4.46)

min

where " (¢, po, o) is determined by the condition

[(%, h1> — (cos f’f”",sinf{”m)] L (cos &M, sin ) (4.47)

(see FIG. E). Analytically, it corresponds to the case when the equality of
(8223) holds:

min __
1 — 1

: (4.48)

1 )
7 cos &t + (t cos g — cos pg) sin &

t sin g

or
L= wi (™) = G ™).
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ll ro

& _ G’hl)

g]ln m

(cos&y,sinéy)

\\/

(cos&y,sin&y) - K%.h.) — (cos&.,,sin{l)} <0

Figure 4.1: Geometric description of determining
min

1

It can be represented explicitly as

(t2 cos? 1y — 2t cos g cos 1y + 1) sin? ¢
— 2t sin @ (t cos by — cos @p) sin & + (#* — 1) sin® gy = 0,
(4.49)
and sin £/ is obtained as its negative solution. Note that since the coef-
ficient (#2 cos? ¢y — 2t cos g cos 1y + 1) is strictly positive, the solutions do
not show any singular behavior. In summary, we have obtained

Im:n(ta ©o, 1/10) < 51 < 0 (450)

with £ (t, g, o) uniquely determined for ¢, oo, and 1y by

— T4y < EMM(E, o, <0,
{ Yo < & (<Po %) (4.51)

- wl( {niTL(t’ng’wO)) = Cl( Tin(twOawO))-

On the other hand, when (EZ38) (i.e. siné; > 0) holds, (E42) is sufficient.
It results in a tight condition for &;:

0 < & < EM(t, 0o, o), (4.52)

max

where £ (¢, o, 1p) is a constant uniquely determined for ¢y and g by

{0 < EM(t, 0, %0) < o (4.53)

1+ wi (&7 (¢, w0, %0)) = CL(E (1, po, o).
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We remark that this can be obtained by a similar geometric method to the
previous case: consider the intersection of the line /; and the line x = —% in

turn (see FIG. B3). Overall, we have demonstrated that &; for z\ﬁ satisfies

Iy
lh

a'm axr
1

Figure 4.2: Geometric description of determining
max

1

Tt o, 1h0) < & < EP(E, o, tho), (4.54)

where 7" (t, 0o, 1) and £(t, pg, 1) are obtained thorough (EZ51) and
(£R3) respectively. Note that (¢, g, 1) and (¢, @g, o) depend con-
tinuously on ¢ (and @1, o through ¢ and y).

Similarly, we consider a binary observable Kg on Sp which coincides with
A in S, and focus on its effect Ké(—i—) We define parameters v, € D and

& e |—m, ) as

Vo = Sin&oX + cos &y = argma:vveDtr[K;(+)gv]. (4.55)

~

AL(+) is represented as

Ay(+) = 5 (1 + wa(&))1 + ma(&2)) (4.56)

N | —

with
my (&) = Ca(§2)va (0 < Ca(§2) < 1).

(A=33) becomes

1t 7 T+ a(6)  Co(&a) i

§—|—§cos (E—%Ol) = 5 B CoS (5—901—51); (4.57)
o .

%—l—%cos (%—902) = 1+x22(§2) + 2;&) cos (g—%—fl) )
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so defining ¥y := § — ¢ and @3 := § — 2, we can obtain similarly to (E=38)

and (2=37)

t sin g

Co(&2) = i@ — &)’ (4.58)
—t cos g sin &,
wa(&2) = S —5) (4.59)

where @g := 2722 = Z— . It follows that properties of Ké can be obtained

just by replacing & and ¢, exhibited in the argument for Aﬁ by & and g

respectively. Remark that 0 < iy < 7 holds similarly to ¢g, and that the
change vy — 1 := ﬁ’—;@ = —1)g does not affect the equations above, so we
dismiss it. From (E358) and (E59), we have

5 (t, 00, %0) < €2 < &5 (L, o, o), (4.60)
where
5" (5 0, o) = & (8,0, o) = & <t; g - <P0;¢o> ; (4.61)
and
5" (t, o, Yo) = & (¢, 0, Yo) = & (tvg - 900,?/10> : (4.62)

which satisfy

T .
__+SO <§mznt7¢7¢ <0
g + o <&t w0, th) (4.63)

1 — wa(E57(t, po, 1ho)) = Ca(E™ (¢, o, o))

and
O < mam(t w ) < ™
= 62 » 0, Yo 9 Yo (464)
1+ w2( ;n(lr(t7 ¢07¢0)) = CQ( ;na:ﬂ(t 90072/}0))
respectively.

4.3.3 Proof of Proposition 414 : Part 3

In this part, we shall consider the (in)compatibility of the observables Ktl
and AL defined in (a) for ¢ close to \/Li (t ~ \%) It is related directly with
the S;-(in)compatibility of A% and AY as we have shown in the beginning of

this section. Let us examine the behavior of £ (¢, g, g) for t ~ \/ig We
denote 5{7”11(t = %7@0%7\/)0) and hl(t = \/Li)§007¢0) Slmply by ginln(¢07¢0)
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and ?Ll(goo, 1) respectively. The following lemma is useful.

Lemma 4.19
With ¢q fixed, fmm 1s a strictly decreasing function of .

Proof

The claim can be observed to hold by a geometric consideration in terms of
FIG. E. In fact, increasing v with ¢q fixed corresponds to moving the line
[y down with its inclination fixed. The movement makes hy (or k) and hence

min (or 5”””) smaller, which proves the claim. Here we show an analytic
proof of this fact. We can see from (E44)) and (E48) that

V2 cos EM 4 Ry sin &M = 1, (4.65)
ie. ~ |

hy =
SlIl émzn

(1 —/2cos fmm>

holds (note that sin fmm # 0 because sin fmm = 0 contradicts (E6H)). Then,
the claim follows from the observation that

dh 1
AL —— <\@—cos§mm> > 0,
A sy
and hy = SIW (cos Yo — /2 cos gpo) is a decreasing function of 1. O

From this lemma, it follows that
&7 (0o, o) < ol fmm(soo,%) = EP"" (o), (4.66)

and

5" (00, 10) < E5(90) (4.67)

hold for all g € (0, 5) and 9 € (0, 5), where

£ (o, o) 1= € (t = \%’(’00’%) <: e <g N SOO?wO)) 7

) (4.68)
Hmln(@ﬂ) = hm £mm(90071/10) ( Hmm (g N SOO)) '

We can prove the following lemma.
Lemma 4.20

2T (o) + 25" (o) <

holds for all 0 < ¢ < 3.

2
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Proof
Let us define

. ~ . 1
Hy(po) = ¢g1_ff}r0 hi(po,¥o) = lim My (t = —,90(),%)

o—+0 V2
1
= — (1—\/§cosgoo>.
sin g
It holds similarly to (E-63) that
V2cos MM 4 M sin E = 1, (4.69)
Hence, together with sin® 2" 4 cos? 21" = 1, we can obtain
—min 1 2+ Hi\/2H? +2
cos =" = — - 5 : (4.70)
V2 H? +2

or its more explicit form

—min 1 4 — 3v/2cos g

cos = = —- . 4.71
! V2 3 —2v2cos Yo ( )
It results in
. 1 4-3v2
=1"" (o) = — arccos (— : VZcos 900) , (4.72)
V2 3—2v/2cos Yo

where we follow the convention that arccos: [—1,1] — [0, 7], and thus Z/"" €
(—7 + ¢, 0] is obtained through — arccos: [—1,1] — [—m,0]. Because

d (1 4—3\/§COSQO0>_ sin g
dpo \V2 3 —2v2cos g (3 — 2v/2cos ¢g)?’

and

. (1 4—3\/§cos<p0)2_ ( sin g )2_ sin g
V2 3—2\/5008@0 3—2\/5005@0 3—2\/§COSQO0’

we can observe that

d=mn < sin @ > ! sin B 1
deg 3 — 2v/2cos ¢

(3—2v2cos)? 3 —2v2cos g’
and

BP9\ /2si
L V2sin gy <0, (4.73)
dpg (3 —2v/2cos p)?
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which means Z{"" is concave. Therefore, for any ¢, € (0, %), the concavity

results in
Hmzn mzn _ 1'—~min 1—~min ™
ST (p0) + 5E5 (o) = SE (o) + 5E1 (5 = o)
< —min 1 + 1 (ﬂ- )
X =1 2900 5 \9 %o
—min ™
== (3):
Since we can see form (E-72) that =" (%) = -z,
'_‘mZn mln 7T
(0) + 35" (0) < 1
holds for any ¢g € (0, 7). O

According to Lemma ET19 and Lemma B0,

£ (00, o) + €5 (9o, o) < T (o) + E3 (o) < — 5

that is,

e <t = \1@7%’%) & ( = \%79007%) < —g

holds for any ¢, and vy (i.e. for any ¢; and ¢s). However, we cannot
conclude that

2

" (¢, 9o, %0) + &5 (¢, 9o, %0) < — (4.74)

holds for ¢ ~ \%: it may fail when

On the other hand, because we can observe similarly to Lemma ATY that
mzn

is a Strlctly decreasing function of vy, it is anticipated that (E274) holds

for t~ T and for ¢y sufficiently close to 7. In fact, for ¢ € [§ we can

4 5)
prove the following proposition.

Proposition 4.21

There exists a constant C < —% such that

mm(@o;%) + 52 "(@o, ) < C
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1.€.

1 1
mZTL t _ , , _|_ min — , , < C’
< oA @Do) 3 ( NN @Do)
holds for all 1y € [,5) and @o € (0,7).

Proof

Because

£ (0, 10) + EF™ (0, o) = EM™ (o, o) + ET ( Po, %)

2
we can assume without loss of generality that 0 < ¢ < §. Due to Lemma
A9, it holds for any g € [Z, Z) that

102

mzn cmin m
(0, %0) < & <900,¢0 = Z) )

Smin (T Smin (T m (475)
1 <2 %ﬂﬂo) <& (5—8007% = Z>

Let us denote 5””” (¢0, %0 = %) simply by = m’” (o). In order to investigate
mm (po) and Jm” (2 — o), we have to recall (ATH). Similarly to (E5Y)
and (EZ70) in the proof of Lemma E20, it results in

I7 I72
oin _ L 2T YR A2 (4.76)

cos =" =

V2 H? 42
where
~ ~ T 1 1
Hi (po) = I (@o,wo = Z) = S 20 (75 —V2cos @0) . (4.77)

Note that in this case we cannot apply a similar method to the one in Lemma
0 because =7 does not have a clear form like (ZEZZ) Alternatively,
we focus on the following monotone relations between Jlm” Hy, and ¢

(referring to the proof of Lemma B-T9 may be helpful):

A=y dH A=
L >0, — >0 [thus ——>0]. (4.78)
dH, dipo dipo

From these relations, it can be seen that our restriction 0 < ¢y < 7§ is
equivalent to the condition H, < 1 — /2 since H; (0) = —oo and H, (%) =
1 — /2. The claim of the proposition can be shown easily when H; < —1

(or 0 < g < ™ := arccos %ﬁ, where H,(*) = —1). In fact,
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Figure 4.3: Geometric descrlptlon of Jm". It can
be observed that :T’” = —5 when H, =

'—*mzn(soo) Nmin (90*) _ _§

and

Emin (T —min m 2\/§+\/§
R M GR

hold (see FIG. E=3 and (EZ78)), and thus we can conclude

'—'mzn mzn 7T
(¢o) + <§ - 900) < (y,

where

22+ /3 (< o >
5 2/

When —1 < H; < 1—+/2 (or ¢* < ¢y < §), we need a bit complicated

evaluations. It holds similarly to the previous calculations that

T
Cy = 5 arccos

'—*mzn '—mzn ’/T
(900) <Z> )

=min (E _ ) < = =min <E _ *)

:;iIlCe
—min r7 T
=9 = —— < H1 =0 < Yo = =

4 3’7

é{”m(l—r) <-I= :TZ"( ) holds due to the monotone relations (E=78). On
the other hand, we have

T 2+4/10 3

*® 4 _NyNY _
CoS ™ — cos 5 5 5 0.0056... < 0,
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that is,
xS T
SO 6 *
It follows that 7 — ¢* < %, and thus _mm (% — cpo) < —7%. Therefore, we
can conclude also in this case

’_‘mln ’_‘m']/n 7T
(¢o) + =7 (5 - 900> < Oy,

Smin (T Emin (T m
=2 (7) +3m (5-¢) (< -3).

Overall, we have obtained

where

'—mm m'm T
(v0, Yo) + 25" (@0, ¥o) < max{C, Cy} << _§>
for all ¢y € (0,%) and v € [F, F). O

By virtue of this proposition, for ¢ sufficiently close to \%,

™

Tt 0o, o) + €5 (t, 0o, o) < 3

follows from the continuity of gmm and fgm'n with respect to ¢ when T <
Yo < Z. It means that there always exist £ > & and & > &M for

such ¢ and for any ¢; and ¢, satisfying §§ + §5 = —5. For these £§ and &3,
Vi = —v; holds, and thus A} and A} are compatible, i.e. A% and A are
Si-compatible.

On the other hand, when 0 < ¢y < 7, it may not hold for ¢ ~ \/Li that

T (t, o, o) + €5 (t, @0, 1) < =5, and thus we cannot apply the same

argument. Nevertheless, we can demonstrate that there exist & and &, such
s

that z\ﬁ and ;&g are compatible even when 0 < ¢y < §. To see this, let us

assume 0 < 1p < 7 and apply the necessary and sufficient condition for
(in)compatibility. According to the result proven in |46, [47, T48], K\ﬁ and
AL with (E233) and (E250) respectively are compatible if and only if

P (1o oy my 2 4.79
( h 2) =) S (m; - my — wyws) (4.79)
1 2

holds, where

F1 =

(\/(1+w1)2—Cf+\/(1—w1)2—0%), (4.80)
(\/(sz CQ+\/1—w2 ) (4.81)

F2 =

N~ DN~
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For £" and &5, since it holds that

I- w1( Imn) = Cl( Tm)a (4-82)
L —wy(&™) = Ca(&™), (4.83)

they become
Py = Jwi(§),  Fo =4/ wa (&) (4.84)

Therefore, (B279) can be rewritten as

[ Sin (€™ + €8 yuon (6" (€°)
— (1 sin(EP™ + ) (1—wn () —wa(E™))] (4:85)
(= wa €™ (1 — () (1 = sin(e"™ + )] >

If 1 — sin(&Mim + &rin) = 0, then (A85) holds, that is, AL and AL for &
and £ respectively are compatible. Therefore, we hereafter assume 1 —
sin(& + €M) > 0, and rewrite (E83) as (note that 0 < wq (&™) < 1,
0 < wo (&) < 1)

(14 sin(EP™ + ) (1L~ wa(€) — wa(§™))

. . (4.86)
< (1= sin(EP™ + )y (€7 (€.

In other words, Aﬁ and ,Kg with respect to 7" and &5 are incompatible if
and only if

(1 +sin(€"" + &™) (1 —wi (") — wa(€5"™))

, | | (4.87)
> (1= sin(€™ + ) Ju (6w (€7

holds. In order to investigate whether (B=87) holds, it is helpful to introduce
a function Z defined as

Z(t,@o,d]g) = [1+Sln( mzn( 9007¢O)+§m2n( a9007¢0))]
[14 w1 (&7 (¢, @0, o)) + w2 (€5 (, o, ¥0)) ]
— [1 = sin(&" (¢, @o, 1ho) + £ (£, 0, 10))]

wy ( mm( ©0, %0) w2 (&3 Z( ©0,%0))-
(4.88)

Because

(L -+ sin(gf™ + ™) (1 — wn(&1"") — wa(&5™))
< (1 + sin(€7™ 4+ 7" (1 + w (E7™) + wq (£5™)),
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Z(t, 0, v%0) >0 (4.89)

holds if At and At with respect to & and " are incompatible. Let us

focus on the case when ¢t = —2 (i.e. &nin = E{”m) If a pair (g, 1) satisfies

Emin (00, 10) < —T or EF™ (g, o) < —7, then

mm(@o o) + §2 " (o, o) < C
with

™

24/2
O _g n lim gmm <9007w0) — _g — arccos < {) <=3

po—5—0 2
111()—>+0

holds due to similar monotone relations to (EZZ8) between ¢y, 1y, and f;m"
(remember that fmm(goo,wo) = A{”i” (3 — ¢o,%0)). Therefore, in this case,
we can apply the same argument as Proposition EZ21, which results in the
compatibility of AL and AL for ¢ ~ \/Lﬁ On the other hand, let us examine
the case when (¢, ) satisfies ¥y € (0,7%), and f'mm(goo,@bg) > —7 and
g;ni”(goo,wo) > —7. Because ¢ € (0, ]), we obtain for general ¢ (see (E=37))

t sin £in

t
"~ V2smlge - & ya

wy (&7 sin £, (4.90)

For t = \%, since

_T gmm(gpo,%) < lim fmm (0, %0) ,

900—>*—
1bo—>+0

it gives a bound

min

1 -
wy (E777) > isin&), (4.91)

where we define

~ 24/2

§o=— lim 51 (¢0, %0) = arccos (T) :

P0—>5—0
¢o—>+0

Let ¢ be a positive constant satisfying & < = (sin 50) Due to the continuity
of sine, there exists a positive constant 5 such that sinz € ( 1,—1+¢)

whenever z € (—2 — 4, —Z). If (o, ¥o) satisfies fmm(9007¢0)+5mm(900,1/10) <
—45 — 0, then it again leads to the same argument as Proposition E=Z1, and

we can see that AL and AL for this (¢, 1) are compatible. Conversely, if
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(@0, %) satisfies —F — 4§ < {mm(go(),@bo) + 5’”’"(@0,%) < —7% (remember
Lemma B720), then

—1 < sin( mm(@oﬂﬂo) + 52 "(¢0,%0)) < =1 +¢

follows from the definition of §. Therefore, by virtue of (E=8R), we have

Z (t = \%,wo,%) = [1 + sin( mm(@oﬂﬁo) +§2 (900,1/)0))]

|1+ (& (o, v0)) + wa & (0o, v0))
- [1 — sin(€]"" (g0, o) + &" (900,%))]
wi (67 (0, v0) w2 (65" (00, o))
e 1+ @ o ) + o o)
— (2= 2)wi(§™ (9o, %0)) w25 (0, 1))
= & |1+ wa(E (o, v0)) | |1+ wa @ (0, )

— 21 (£ (99, 10) w2 (€5 (0, o))
< 4e — 2w1( min (@0;%))102(52 "(0,%0)).

Because

i(m&)? _ %(singo)z

1 ~
= —Z(sin 50)2,

45—2w1(§m (900,1/)0))102(5 " (o, 1)) <

it holds that ) .
Z|t=——=, o, < —~(sin&)? < 0.
< V2 Yo %) 4( £o)
Therefore, for t ~ \%, Z (t, 0, %0) < 0 holds, that is, Kg and Kg with respect

to fmm and 7" are compatible. Overall, we have demonstrated that when
t~ ﬁ, there exist compatible observables Al and Al for any line S; < Sp

such that they agree with A% and Atg on &) respectively. That is, when
t~ \%, A% and AtDy are Si-compatible for any line §; € Sp. Therefore, we
can conclude that chomp(A%‘,Atg) =3 fort ~ \%, and thus the set M in
(E=24) is nonempty.

4.3.4 Proof of Proposition 14 : Part 4

In this part, we shall show that
=inf L =supM e M,
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where L and M are defined in (B=24). In order to prove this, we will see that
if t € L, then t — 6 € L for sufficiently small § > 0, that is, t{ ¢ L.

Let us focus again on a system described by a two-dimensional disk
state space Sp. It is useful to identify this system with the system of a
quantum bit with real coefficients by replacing {01, 02} with {03, 01}. Then,
defining £p as the set of all effects on Sp, we can see that any E € £p can
be expressed as a real-coefficient positive matrix smaller than 1. We also
define Op(2) < Ep x Ep as the set of all binary observables on Sp, which
is isomorphic naturally to £p since a binary observable A is completely
specified by its effect A(+) € Ep. With introducing a topology (e.g. norm
topology) on Ep, it also can be observed that Op(2) is homeomorphic to Ep.
Note that because the system is described by finite-dimensional matrices,
any (natural) topology (norm topology, weak topology, etc.) coincides with
each other. For a pair of states {o", 0"} in Sp, and a binary observable
A € Op(2), we define a set of observables C'(A : o', 0*?) as the set of all
binary observables A € Op(2) such that

It can be confirmed easily that C(A : o™, 0*?) is closed in Op(2) ~ Ep. Let
us denote by Op(4) the set of all observables with four outcomes, which is a
compact (i.e. bounded and closed) subset of £},. For each M = {M(x,y)} €
Op(4), we can introduce a pair of binary observables by

m(M) = {Z M(I,y)} , ma(M) = {Z M(fc,y)} :

Since 7;: Op(4) — Op(2) is continuous, the set of all compatible binary
observables denoted by

TM(2,2) := {(m1 (M), 72(M)) | M € Op(4)}

is compact in Op(2) x Op(2) ~ Ep x Ep as well. As we have seen in the
previous part, Xincomp(A™, AY) =2 (i.e. Xincomp(AX, A%’) = 2) if and only if
there exists a pair of vectors ry,ry € 0D such that

(C(A : 0™, 0™) x C(AY = 0™, 0™)) n M (2:2) = .
Let us examine concrete representations of the sets. Each effect £ € &p

is written as E = 1(eol + e-0) = (el + €101 + €x02) with (eg,e) =
(eg, €1, €9) € R? satisfying 0 < ey + |e| < 2.
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If we consider another effect F' = %( fol + f - o), the operator norm of
E — I is calculated as

1
|1E = Fl =5 (leo = fol + e —£]). (4.92)

We may employ this norm to define a topology on &p and Op(2) ~ Ep. On
the other hand, each state in Sp is parameterized as o™ = %(]l + 101 +Yy102),
where ry = (z1,y;) satisfies |r;| < 1. For an effect ' and a state ¢**, we have
tr[o" E] = %(ep+r1-€). In particular, when considering A™(+) = (1 +t0y),
a binary observable C determined by the effect C(+) = (¢l + ¢ 0) =
%(coﬂ + ¢101 + cp09) satisfies C € C'(A™ : g™t 0*2) if and only if

Tr[o" A™(+)] = Tr[o™ C(+)],
Tr[o™A™(+)] = Tr[o™C(+)],

1.e.

14+try =co+r1r1-C=cy+ 2107 + Y100,

1+txg=coy+re-Cc=co+ 2201 + Yo0o.

hold, where we set ro = (x2,y2). The set of their solutions for (co,c) is
represented as

(CO,C) = (l,t,()) + N <_$1y2 — T2 Y1 — Yo 1>

T1 — T2 ’ T — ZEQ’
with ) € R. Let us define a vector n € R? such that

(I,n)-(1,ry) = (1,n)- (1,ry) =0

(iie. n-r;y =n-ry = —1). It is easy to see that
T1Y2 — Y1 —
(_ 1Y2 — 27 Y yz’ 1) oc(l,n),
1 — T 1 — T2

and thus the set of solutions can be rewritten as
(co.€) = (1,£,0) + A(L,m) (4.93)

with A\ € R. Note that because we are interested in the case when A% and
A%' are Sp-incompatible, we do not consider the case when r; and ry are
parallel or when x; = x5 corresponding to 1y = 5 or ¢ = 0 in Part 1
respectively. Therefore, the vector n = (n,,n,) can be defined successtully,

and it is easy to verify that [n| = \/n2 +nZ > 1. Moreover, because ¢y is
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n . !~"

Figure 4.4: Geometric description of n: we can ob-
serve that it lies in the third quadrant.

supposed to be 0 < g < 7 as shown in Part 1, we can assume without loss
of generality that its components n, and n, are negative (see FIG. £4). In
order for C to be an element of C(A™ : o', ¢™2), (E993) should also satisfy

0<1+A+][(t,0)+ An| < 2,
i.e.
T+ A—[(t0)+An| =0, 1+X+][(£0)+ | <2

It can be reduced to

N <A< (4.94)
with
v Lt — (1 =n.t)2 + (In2 —1)(1 — %)
- mf -1 | 4.95
. , —1 —n,t + /(1 +nt)2+ (In]2 - 1)(1 - #2) (4.95)
Ay = min< 1, mZ—1 ,

where we used |n| > 1 and n, < 0 (see FIG. B3). Overall, C(A% : o™, o"?)
is isomorphic to the set parameterized as

[(1,£,0) + A(Ln) | A < A < AL, (4.96)

where A} and A, are shown in (E995). Remark that the same argument can
be applied for C(AY : o™t o*2).

We shall now prove tf, = inf L ¢ L. Suppose that t € L, i.e. Xincomp(A, A%’) =
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14+ X+ (t,0)+ An| <2

1+A—|(t,0) + An| >0

X X /.

Figure 4.5: Solutions for .

2. It follows that there exist r; and ry in 0D such that
(C(A% 2 0™, ™) x C(AY : 0™, 0™)) n JM(2:2) = &.

Denoting C'(A% : g™, 02) and C(A% : o™, 0"2) simply by X* and Y respec-
tively, we can rewrite it as

X' x Y aJM(2:2) = &.

We need the following lemma.

Lemma 4.22
Let 6 > 0. There exists A > 0 such that for all 7 € [0,A] and for all
Ce X7, there exists A € X' satisfying

d(C,A) :=||C(+) = A(+)|| < ¢

where d is a metric on Op(2) defined through the operator norm | - | on

SD =~ OD<2)

Proof
By its definition, X* is a convex set of Op(2), and thus for all E € Op(2) we
can define successfully the distance between E and X*:

d(E, X") = min d(E, F).

FeXt

In particular, for E' € X'=%" < Op(2) with A’ > 0 and E'(+) = 3(ej1+¢€'-0),
it becomes

1
A(E', X*) = min d(E',F) = min = (e, — fol + e — £]) (4.97)
c t

FeX? FeX

where F(+) = 2(fol+f-0) (see (92)). Since, in terms of (A-9A), E' € X*~4'
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and F e Xt imply
(e, €)= (1,t — A’,0) + N (1,n)
with A2 < X < A5 and
(fo.£) = (1,£,0) + A(1,n)
with Al < X\ < AL respectively, (BEI7) can be rewritten as

2d(E',X") = min (N — Al + (=A%, 0) + (N — M)n).

Ae[A, 5]
It follows that

2d(E', X") < A’ + min [N = X1+ |n]). (4.98)

AE[ATAL]
Let us evaluate its right hand side. It is easy to see that
A= N (N < \b)
in [N -\ = 0 A< N <) .
\in | | (A1 2)
N =\ (X' > \b)

Suppose that A < A! holds, for example. In this case, because Ai’A/ < N,

we can obtain
t / t t—A

In a similar way, it can be demonstrated that

sup min |\ — \| = max {)\i — MR, AR - )\tz} :

ve[g s 2 A A

By virtue of (E9H), the right hand side converges to 0 as A’ — 0, and thus
we can see from (A98) that

sup d(E,X") — 0

N A0
It results in that there exists A > 0 such that for all 7 € [0, A],

sup d(E', X") <46

Elext-T

holds, that is, d(C, X*) < § holds for any C € X*~7. Moreover, because X" is
convex, there exists A € X' satisfying d(C, X*) = d(C,A), which proves the
claim of the lemma. O
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Note that a similar statement also holds for Y?: there exists A > 0 such
that for all ¥ € [0, A] and for all D € Y*7, there exists B € Y satisfying
d(D,B) < 6. Let V := Op(2) x Op(2)(~ Ep x Ep) and let dy be a product
metric on V defined as

dy ((A,B), (C,D)) = max{d(A, C), d(B, D)}.

According to Lemma E=Z2 and its Y‘-counterpart, if we take Ay = min{A, A}(>
0), then there exists (A,B) € X* x Y* for all (C,D) € X*20 x Y*=%0 guch
that dy ((A,B),(C,D)) < 6. On the other hand, as we have seen, it holds
that

X'xY'nJM(2:2) =,

Since X' xY* and JM (2 : 2) are closed in V', and V' is a metric space, we can
apply Urysohn’s Lemma [62]. Tt follows that there exists a continuous (in fact
uniformly continuous since V' is compact) function f: V' — [0, 1] satisfying
f(U)=0forany U e X' x Y" and f(W) =1 for any W € JM(2: 2). The
uniform continuity of f implies that for some ¢ € (0, 1), there is ¢ > 0 such
that

dy ((E,F),(EF)) <é = [f((E,F)) - F(EF)<e (4.99)

holds for any (E,F) € V. For this §, we can apply the argument above: we
can take Ag > 0 such that for any (C,D) € X720 x Y!=20_ there exists
(A,B) € X' x Y satisfying dy((A,B),(C,D)) < 4. Because f((A,B)) = 0,
we have f((C,D)) < e < 1 (see (A799)), and thus (C,D) ¢ JM(2 :2) . It
indicates that X!=20 x Y1=580 ~ JM(2: 2) = ¢, that is, there is Ay > 0 for
any t € L satisfying t — Ag € L. Therefore, ¢, = inf L ¢ L can be concluded.
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Chapter 5

Thermodynamical entropy of
mixing in regular polygon
theories

The concept of entropy plays an important role in thermodynamics [149,
I50]. It is possible to calculate the thermodynamical entropy of a mixture
of classically different kinds of particles (such as a mixture of nitrogens and
oxygens), and similar ideas were applied by von Neumann to the case when
the system was composed of particles with different quantum internal states
[6]. Similarly to the previous parts, it is expected that generalizing the no-
tion of entropy to GPTs will help us to understand how entropy can affect
our world. In fact, there have been researches which aim to introduce and
investigate the concept of entropy in GPTs from informational perspectives
(61, I51, 152, 053]. In those researches, some kinds of entropy were de-
fined in all theories of GPTs and their information-theoretical properties
were investigated. Meanwhile, there have been also researches referring to
the thermodynamical entropy in terms of the microcanonical or canonical
formulation in GPTs [I54, I55], and researches referring to the thermody-
namical entropy of mixing in GPTs [[14, 156]. However, in those works,
the entropy was only defined in or applied to some restricted theories of
GPTs with special assumptions such as the existence of a spectral decompo-
sition for any state into perfectly distinguishable pure states. In particular,
it can be found that regular polygon theories do not always satisfy those
assumptions, and thus entropy in regular polygon has never been investi-
gated although they can be regarded as intermediate theories of a classical
trit system and a qubit-like system, where entropy is defined successfully.
It seems natural to ask how entropy of mixing behaves in regular polygon
theories.

In this part, we consider thermodynamical entropy of mixing in regular
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polygon theories. It is proven that the operationally natural thermody-
namical entropy of a mixture of ideal particles with different internal states
described by a regular polygon theory exists if and only if the state space
of theory is triangle-shaped or disc-shaped, i.e., the theory is either classical
or quantum-like. More precisely, we demonstrate that the thermodynamical
entropy of mixing satisfying conditions imposed in [I14], where the concrete
operational construction of the entropy was given as von Neumann did un-
der the assumption of the existence of semipermeable membranes, does not
exist in all the regular polygon theories except for classical and quantum-like
ones.

This part is organized as follows. In Section B, we present a general-
ization of thermodynamically natural entropy of mixing in GPTs. We will
see that the notion of perfect distinguishability plays an important role to
define entropy also in GPTs. Then, we demonstrate our main theorem and
its proof in Section b=2.

5.1 Entropy of mixing in GPTs

In this section, we introduce the thermodynamically consistent definition of
entropy of mixing in GPTs based on the notion of perfect distinguishability.

5.1.1 Perfect distinguishablity for regular polygon the-

ories

We recall that a family of states {w;}; is called perfectly distinguishable if
there exists an observable {e;}; such that e;(w;) = d;;. Let us characterize
perfectly distinguishable states in regular polygon theories. We first consider
the regular polygon theory with n sides, where n is an even number greater
than two. Calculating the Euclidean inner product (denoted by (-,-) here)
of pure effects and pure states in Subsection 2223, we obtain

(en wn) = (en W?_l) = ]—7 (en wzn-i- —1) = (en UJ::_%) = 0.

i ()

These equations indicate that any state in Qli-t g perfectly distinguishable
i+5—1, i+%

from any state in Q,EH ], where we define

QI = fwe Q [w=pupy + (L -pluf, 0<p <1},

n

since the measurement {el', u —el'} distinguishes perfectly those two states.
For odd n (> 3), we obtain

(6?7 Wf) =1, (‘8?7 eranl) = (6?7 w?+"7“> = 0.
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jon=1 ., ntl
Hence, w! and an arbitrary state in Q,[fr 7 5 e perfectly distinguish-

able. Finally, when n = oo,
(eg', wg) =1, (&g, wiis) =0

hold, so there is only one perfectly distinguishable state for each pure state
(see Figure B).

n woo
o) e A

perfectly

perfectly perfectly

distinguishable

distinguishable

distinguishable

I,r' ler ngl
T e =3 n SO " n
Witn_1 Witz Wipnpt Wotr
(a) n is an even number. (b) n is an odd number. (¢) n = .

Figure 5.1: Pairs of perfectly distinguishable states
in the n-gon state space.

5.1.2 Entropy of mixing in GPTs

In this part, we consider the thermodynamical entropy of mixing in a system
composed of ideal gases with different internal degrees of freedom described
by a GPT. In thermodynamics, it is well known that a mixture of several
classically distinct ideal gases, such like a mixture of ideal hydrogens and
nitrogens, causes an increase of entropy. The amount of increase by the
mixture can be calculated under the assumption of the existence of semiper-
meable membranes which distinguish perfectly those particles. We assume
in a similar way that if the internal states wq, ws, - - - ,w; described by a GPT
are perfectly distinguishable, then there exist semipermeable membranes
which can identify completely a state among them without disturbing every
w; (5 =1,2,---,1).

We consider ideal gases in thermal equilibrium with its temperature 7',
volume V', and N particles, and do not focus on the mechanical part of the
particles in the following. All of these N particles are in the same inter-
nal state w = Zizlpiwi, where {wy,ws, -+ ,w;} is a perfectly distinguishable
set of states, and Vi, p; > 0, and Zﬁ:lpi = 1, meaning that this system
is composed of the mixture of [ different kinds of particles whose internal
states are wy,ws, - -+ ,w; with a probability weight {p1,ps2, -+ ,p}. We note
again that in this chapter, classical species of particles are also regarded as
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the internal states of them. In classical thermodynamics, thermodynamical
entropy is calculated by constructing concrete thermodynamical operations
such as isothermal or adiabatic quasistatic operations. We follow this doc-
trine of thermodynamics also in GPTs that thermodynamical entropy, espe-
cially thermodynamical entropy of mixing, should be operationally-derived
quantity. In fact, as shown in [IT4], our assumption of the existence of
semipermeable membranes makes it possible to realize concrete thermody-
namical operations to calculate the thermodynamical entropy of mixing of
the system mentioned above in the same way as von Neumann did when the
internal degrees of freedom were quantum [H]. Strictly speaking, it has been
demonstrated operationally in [I[T4] that the thermodynamical entropy of
mixing in the system is

S(w) = 2 piS(w;) — Z pilogpi | (5.1)

where S(o) means the per-particle thermodynamical entropy of mixing in
the system which consists of particles in the same state o, and we set the
Boltzmann constant kg = 1 (also 0log0 = 0). In the process of deriving
(B32), the additivity and extensivity of the thermodynamical entropy, and the
continuity of S with respect to states are assumed. The latter one is needed
in order to apply (B) to arbitrary states with an arbitrary probability
weight, while its operational derivation has been given only when each p; /N
is the number of particles in the state w; and thus each p; is rational. We
impose additional assumption that the entropy of any pure state equals to
zero, that is, S(o) = 0 whenever ¢ is a pure state.

5.2 Main result

Our main result is in the following form.

Theorem 5.1

Consider a system in thermal equilibrium composed of ideal gases whose
internal states are described an element of the state space €, of the reqular
polygon theory with n sides (n = 3). The (per-particle) thermodynamical
entropy of mixing S : ), — R satisfying

S(w) = ZpiS(wi) - Zp@- log pi, (5.2)

where {w;}; is a family of perfectly distinguishable states, exists if and only
if n =3 or o, that is, the state space is classical or quantum-like.
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Proof

For n = 3, because it is a classical system, any w € ()3 is decomposed
uniquely into perfectly distinguishable pure states as w = pwj +qw? + (1—p—
q)ws, where w? (i = 0,1, 2) are the three pure states in 3 and {p, ¢, 1 —p—q}
is a probability weight. In this settings, we define S as

S(w) = —plogp — qlogg — (1 —p —q)log(1 —p — q).

This S gives the well-defined entropy satisfying (62). Similarly, when n =
o0, any state has only one decomposition into perfectly distinguishable (pure)
states except for the central state of {2y, (the maximally mixed state). For
states that are not maximally mixed, we define S as

where we decompose a non-maximally-mixed w € Q, as w = pwy® + (1 —
pwgr, (0 < p < 1)and H(p) = —plogp — (1 — p)log(l — p) is the I-bit
Shannon entropy. We can apply this S to the maximally mixed state, for the
probability weight does not depend on the way of decompositions and they
are always {2, 2} Therefore, we can define successfully the thermodynamical
entropy S which meets (62) for n = 3,00. In the following, we prove the
only if part.

n
w; Wit1 ¢
wz‘n+1 Z
e s €T
w
wp P
t
Yy
n
Witz 2
n n T ™
W1 n Ww:  n — — —
. S Z+ P +2 Z+§ - o 2 n
W S
i+ 2 n

Figure 5.2: Illustration of the state wp.

The case when n = 4 was proven in [I14], so we only consider n > 5. At
first, we assume n is an even number, and consider the state wp represented
in Figure b3, that is,

x
Y w +

wp = .
i r+y ' x+y

—uwl

n S
Wipn = s1t z+1+ T it

NE

where x,y, s,t are all nonnegative, and x < y and s <t as shown in Figure
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B2. Note that {w}', w? »} and {w]', W} 2
2
able pairs of pure states. From the observations in the previous section, we

} are two perfectly distinguish-

obtain two forms of the thermodynamical entropy of mixing:
x s
S = H =H 5.3
(wr) <x+y> (s+t>’ (5:3)

r S
rT+y s+t

which means

because r < y and s < t. On the other hand, applying sine theorem to
Figure b2 we can see that

T S Y t

)

sin(3 —2)  sin(f—-I) sin(f-Z%)  sin(f —

n

namely

holds. It follows from these two equations that

2
COS %’T 1
cos T ’

n

and because for even n, this equation holds if and only if n = o (cos(%) = 1),

the entropy in (63) has been proven to be ill-defined.
Next, we consider the case when n is an odd number greater than three.

We define the state wp as wa = %(w"

i+
: : s n+l n—1 :
wq and wgr shown in Figure b3, where j = "= or “= corresponding to

the case when n = 3 or n = 1 (mod 4) respectively Note that {w!, wa}
)} in Figure B30 are

no1 H W2 na ), and consider two states
2 2

and {w? |, w n+1} in Figure b33, and {w},;, w o (n—j)

perfectly dlstlngulshable pairs of states. Then,

S(wq) = I%QS(WA) +H (I%Q) = (uj—v) ’

S(n) = —=—S(wa) + H (wl—uk Z> - G)

hold. We assume that the entropies of the two states wq, wg are well-defined

and
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n—2j
™

7y, sin( " )
n
y R I
w
L TC,up{ o
“itit i+(n—j)
z
n e —" n W e
Wipnot WA T Winp i+t WA i+t

(a) Ilustration of the state wq.

Figure 5.3: Illustration of the states wq and wrg.
(so is wa). Then,

s(m)i%{ﬂ(wv) i (55)
()

(b) Tlustration of the state wg.

(5.4)

(5.5)

holds. Let us give the explicit expressions of (5H). From Figure 54, we
obtain
n
)
T_T
2 n
P
VUV m 3rm
2 2n
S . n
W. | nti
n o™ I A &
wi+"T_1 wA wiJr”T“‘l "o sin

Figure 5.4: The decomposition for wq.

n—2 1 2T
T sin =
= (55 = —=2 =2008Z,

sin =~ n
n

U Tpsin

v Ty Sin =
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and by sine theorem,

D U 3m
. s s = T T\’ q = VCos —
Sll’l(i — %) SID(E — E) 2n

hold. Therefore,

s 3
v COS " COS on

4
T
p u COSs o
3T
COs o

U

2n

1
= - <4(:os21 — )
2 2n

1 s
- (2 ——1).
2(COSn

2 cos

On the other hand, from Figure 630, we obtain

z _ 2 cos? = — 2, cos? (22 )
w 2r, cos?(“2Lm)
0082%—Sin2% for i n+1
— i % or j=—,
Since ) ] 9
sin? JT_ 2 (1 — oS ﬂ)
n 2 n
1 +1
2 2n
1

.o
= (1 + sin —) ,
2 2n

the equation above can be written as

2(1 + sin 5-)(1 —sin g-) — (1 £ sin 5-)

z
w 1isin2i
n

m
—1F2sin—
T sm2n,

(5.6)

where the double sign corresponds to the ones in (50) and (b7), and the
upper and lower sign correspond to the case of n = 3 and n = 1 (mod 4)

respectively. Substituting these results to (b4) and (B3H), we obtain

2cos T +1 1
S = —2— Hl— | -H|——nw—
(wa) ( 2 ){ (200:5%—#1) (2008%4—1
1 1
=(2$ZSini> H(=)-H(—
2n 2 2+281n%
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5) minus (6
(5) minus (6) ® ©

G
a =sin —

.
m « —511’1% B

|

(a) n=3. (b) n=1.

Figure 5.5: The difference between (68) and (619).

By letting a = sin o, it can be rewritten as

1 —4a?

S(wa) = 2a”1log2 +

= (1 F2a)log(l F2a) — (2 F 2a) log(1l F ), (5.9)

log(1 — 4a?) — (1 —2a%)log(1 —2a2)  (5.8)

where the upper and lower signs correspond to the case of n =3 and n =1
(mod 4) respectively. The differences between (58) and (59) in the case of
n = 3 and n = 1 are displayed in Figures bha and BLH respectively, and
we can see that the two forms of S(wa) shown in (B8) and (69) do not
agree with each other. In conclusion, it has been proven that if n # 3, oo,

then there exists some state whose thermodynamical entropy of mixing is
ill-defined. O

We can see the ill-defined values of entropy become well-defined if n = 3, o
in our proof. For example, when n is an odd number, o = sin 5 equals to
% or 0 if n equals to three or infinite, respectively, and two values (A8) and
(61) coincide with each other in these cases (see Figure b3).

Remark 5.2

Similar results were obtained in [IT4], where it was assumed that any state
could be represented as a convex combination of perfectly distinguishable
pure states. However, a state of a regular polygon theory is not always
represented by a convex combination of perfectly distinguishable pure states.
For instance, we can see from Figure b1 that the state wa in Figure b=3a or
Figure B30 can not be decomposed into perfectly distinguishable pure states.
Thus, regular polygon theories generally do not satisfy the assumption in
the previous study [I14], and our result is the one about the exsistence of
well-defined thermodynamical entropy in such a broader class of theories
where “spectral decompositions” of states are not generally possible.
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Chapter 6

Summary

In this thesis, we have studied the notion of uncertainty in quantum the-
ory via convexity. We focused on three expressions of uncertainty: uncer-
tainty relations, incompatibility, and thermodynamical entropy. Our estab-
lishments were based on the idea that to see quantum uncertainty from a
broader point of view makes it possible to understand its essence. In fact,
in each chapter, we considered uncertainty relations and thermodynamical
entropy in a broader class of theories than quantum theory, and investigated
quantum incompatibility, which is a broader notion than uncertainty.

In Chapter B, we introduced the mathematical framework of GPTs. We
saw that GPTs are constructed by requiring only primitive convexity origi-
nating from probability mixtures, and thus in this sense, they are the most
general description of nature (in particular, broader than quantum theory).
There were proven that GPTs can be expressed mathematically in terms of
ordered Banach spaces, and that it indeed reproduce the usual formulation
of quantum theory.

In Chapter B, several generalizations of uncertainty relations such as en-
tropic uncertainty relations were considered in a class of GPTs which can
be considered as generalized theories of quantum theory. It was revealed
that similar quantitative relations between preparation and measurement
uncertainty to quantum case hold also in GPTs although only theories with
transitivity and self-duality with respect to a certain inner product were
considered. We also gave concrete calculations of our results for regular
polygon theories. What is also specific to theorems is that they were ob-
tained without considering entanglement or even composite systems while
the quantum results of the previous studies were based on the “ricochet”
property of maximally entangled states. It may be indicated that some
of the characteristics of quantum theory can be obtained without entan-
glement. Future research should reveal the relations between the maximal
entanglement and self-duality, which will be a key to generalizing our theo-
rems to infinite-dimensional cases (remember that the maximally entangled
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states cannot be defined in infinite-dimensional quantum theories such as
H = L*(R)). To find information-theoretic applications of our results is also
left for future work.

In Chapter B, we focused on incompatibility in quantum theory, and
introduced the notions of compatibility and incompatibility dimensions for
collections of quantum devices. They describe the minimum number of
states which are needed to detect incompatibility and the maximum num-
ber of states on which incompatibility vanishes, respectively. We have not
only presented general properties of those quantities but also examined con-
crete behaviors of them for a pair of unbiased qubit observables. We have
proven that even for this simple pair of incompatible observables there exist
two types of incompatibility with different incompatibility dimensions which
cannot be observed if we focus only on robustness of incompatibility under
noise. We expect that it is possible to apply this difference to some quantum
protocols such as quantum cryptography. Future work will be needed to in-
vestigate whether similar results can be obtained for observables in higher
dimensional Hilbert space or other quantum devices. As the definitions ap-
ply to devices in GPTs, an interesting task is further to see how quantum
incompatibility dimension differs from incompatibility dimension in general.

In Chapter B, we returned to GPTs and considered theremodynamical
entropy in regular polygon theories. We showed that only classical and
quantum-like theories (i.e. the triangle and disc theories respectively) al-
low the operationally natural entropy to be consistent. Further research is
required to reveal if we can obtain the same results in higher dimensional
cases. Moreover, the proof of our main theorem indicates that the entropy
discussed above is defined successfully in other theories where the probabil-
ity coefficients obtained when a state is decomposed into perfectly distin-
guishable states are unique even though the state space is neither classical
nor quantum. This means that we need to impose additional conditions on
the entropy to remove those “unreasonable” theories, which is also a future
problem.
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Appendix

A Proof of Proposition 2.50
In this part, we give a proof of Proposition Z50. We need the following
proposition, which holds without the assumption of the transitivity of 2.

Proposition A.1
For a state space €2, define a linear map Py : 'V — V by

Pyx = J Tx du(T).
GL(Q)

Then, Py is an orthogonal projection with respect to the inner product

<'7 ‘>GL(Q)7 i.e.

Py =Py and {(Puz, Yerw) =<, Puy)cra) for all z,yeV.

Proof
We denote the inner product (-, -)qr ) simply by (-, -) in this proof.

Let Viy :={z €V | Te = x for all T € GL(Q)} be the set of all fixed
points with respect to GL(£2). Then, it is easy to see that Pyxy = xpy
for any x); € Viy and V) = ImP); (in particular V), is a subspace of V).
Therefore,

Pj%mf = PM<PM$) = PMJI

holds for any x € V, and thus P, = Pj;. On the other hand, we can observe

(Pyz, y) = dp(T) (T Pyz, Ty)g
GL()

_ j du(T) (P, Ty)e
GL(Q)

B LL(m ) <LL<Q) ) Ty)E‘ .

Let us fix an orthonormal basis {w;}* ! of V compatible with the standard
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Euclidean inner product of V, i.e.
(wi, wj)p = 0ij.

We can consider representing the vector SGL(Q) du(S)Sx € V by means of
the orthonormal basis {w;}; as

L’L(Q) dp(5)Se = 2 (wi’ LL(Q) dM(S)Sx>EwZ-.

7

In fact, the “ith-element” (wi, SGL(Q) du(S)Saz) is given by (see [157] for
E

more details)

(wi’ LL(Q) d,u(S)Sx)E - LL(Q) 4u(5) (wi, So)p-

It results in

Therefore, we obtain

LL(Q) 4lT) (LL( )du(S)Sx, Ty)
R

41 | [ ) 55 70
:.»LL(Q) Au(5) ( o LL(Q)d (T)Ty)E,

where we use Fubini’s theorem for the finite Haar measure p on GL(2). We
can conclude together with (A0) that

(Sz, Ty)n ]

(&

holds. O

Proposition A71 enables us to give an orthogonal decomposition of a

139



vector x € V such that
where (1 — Py)z € Vi; and Pyx € Vi, When the transitivity of Q is

assumed, (A=) is reduced to Proposition PZ50.

Proposition
For a transitive state space Q, there exists a basis {v;}; ' of V orthonormal
with respect to the inner product (-, )qrq) such that vy, = wy and

N N
reaff(Q) < =z =Zalvl + Un 41 ZZGWH‘WM (a1, ,ay € R).
=1 =1

Proof

Since we set dimaff (€2) = N, there exists a set of N linear independent vec-
tors {1}, < [aff () —wys] which forms a basis of the N-dimensional vector
subspace [aff (2) —wpr] < V, and we can assume by taking an orthonormal-
ization that they are orthonormal with respect to the inner product {-,-).
Hence, = € aff () if and only if it is represented as

N
szam—i—a}M (a1, -+ ,ay € R). (A.3)

=1

Moreover, because of the definition of aff (2), for every v, € [aff () — was]
there exist k € N, real numbers {b;}* | satisfying 3% | b; = 1, and states
{w;}%_ | such that v, = Zle bjw; — wyr. By means of Proposition P49, we
obtain forall [ =1,2,--- | N

k
Pyrup = ZbiPMWi — Pywnr

=1

k
= 2 bin —Wp = 0. (A4)
i=1
Therefore, because of Proposition ATl

<wM, Ul> = <PMWM7 Uz>
= {wm, Pyupy
=0

holds for all [ = 1,2,--- , N, and we can conclude together with the unit
norm of wyy that {vy,--- , vy, wp} in (A33) forms an orthonormal basis of
the (IV +1)-dimensional vector space V' with respect to (-, -) and Proposition
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2250 is proven (we can also find that (A=3) corresponds to (A=2)). O

B Proof of Proposition

In this part, we prove Proposition ZZ52. As we have so far, we let Q be a
state space, V. be the positive cone generated by €2, and GL(2) be the set
of all state automorphisms on €2 in the following.

Lemma B.1

VféngL(Q) is a GL(Q)-invariant set. That is, TVféngL(m = Vfé%cmz) for
al T € GL(S).
Proof
Let w € Vfé’%cum‘ It holds that (w,v)qr@) = 0 for all v € V. Because
any T' e GL(2) is an orthogonal transformation with respect to (-, )gr(q),
we obtain

(Tw,v)arm) = <w,T’1v>GL(Q) >0
for all v € V,. Therefore, TV:Z}EGL(Q) c Vfé?fgcumholds, and a similar
argument for 7! € GL(2) proves the lemma. O

Lemma B.2

Let (-,-) be an arbitrary inner product on V. V. is self-dual if and only
if there exists a linear map J:V — V such that J is strictly positive with
respect to (+,-), i.e. (x,Jy) = (Jx,y) for all z,y € V and (x,Jx) > 0 for all
zeV, and J(Vy) = VI,

Proof
If part: We introduce an inner product (-,-); = (+,J-). Vf(i,”.t)J is written as

Vj:gntb ={v|(v,w); =0, Y e Vi)
o] (v w) 20, Ywe Vi)

=
={v|(Jv,w) =0, "weV,}.

Thus, v € VI | is equivalent to Ju e VF™. It concludes VI = =
V) =V

Only if part: Let V, be self-dual with respect to an inner product {,-).
There exists some K: V — V strictly positive with respect to (-,-) such
that (-,-) = (-, K-). We obtain

V+ = V:érfg = {U’ <'U7w> > Oa V,w € V—‘r}
~ (o] (v.Kw) 0, "we Vi)
= {v| (Kv,w) >0, "weV.,}
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Thus,ve V. = Vfé% is equivalent to Kv € Vf(i_"f), ie. KV, = Vf(i_”f). Define

J =K. O

In Lemma B2, we gave a necessary and sufficient condition for V, with
an inner product (-,-) to be self-dual. The condition was the existence of a
strictly positive map J satisfying J(V, ) = V:Z”t) This map J may not be
unique. For instance, let us consider a classical system in R? whose extreme
points are two points (1,1) and (1,—1). The positive cone is a “forward

lightcone” Vi = {(xg,z1)| 2o = 0,22 — 23 > 0}. It is easy to see that
V., = Vf("ﬁf)E with the standard Euclidean inner product (-, )g. However,

if we choose an orthogonal basis {vg,v1} of R? given by vy = (1,1) and
vy = (1, —1), then every linear map of the form

Vo )\Q"U()
U1 A1vg

for Ag, Ay > 0 (which contains “Lorentz transformations” in 1+ 1 dimension)
is strictly positive and makes V, invariant. Nevertheless, when [Q%| < oo,
we can demonstrate that such strictly positive maps are “equivalent” to each
other .

Lemma B.3

Let |Q=*| < 0. If a linear map J : V — V is strictly positive with respect to
an inner product (-,-), i.e. (z,Jy) = (Jx,y) for allx,y €V and (z,Jr) >0
for allx € V', and satisfies J(V,) = V., then for each w™* € Q™ there exists
pw(w™*) > 0 such that J(w™") = p(w™*)w™.

Proof
Any w®™t € Q% is represented as w™' = ¢(w™)w with ¢(w™") := |w™'|| =
(wt, w12 and w satisfying |w|| = 1. Suppose that there exists a family

{wd hio = {e(wiMwio, =

such that there is no p(wf™) > 0 for every k = 1,2,---,Z satisfying
J(wP) = p(wPh)wet and define W := {wy}7_,. Since J maps each ex-
treme ray of V. to an extreme ray of V., J(wy) with wy € W is proportional
to some W™ € Q™ (remember that an extreme ray of V, is the set of positive
scalar multiples of an extreme point of 2). We can see that J(wy) is pro-
portional to some w, € W with p # k considering that J(J(wy)) = pJ(wy)
holds if and only if J(wg) = pwy holds.

We shall show in the following that there is a w, € W such that J(w,) ¢
W despite of the argument above. To prove the claim, let us diagonalize J. It
is written as J = 224:1 TuRpn, where 71 > 75 > -+ > 73y > 0 and {R,}M | are
orthogonal projections. We choose w; so that 0 # (wy, Rywy) = (wg, Rywy,)
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for all wy, € W. Although such w; may not be unique, the following argument
does not depend on the choice. If it happens that (wy, Riwy) = 0 for all
wy € W, we choose wy so that 0 # (wy, Rowy) = (wy, Rowy,) for all wy, € W.
If still (wg, Rowy) = 0 for all wy, € W, we repeat the argument for Rs, Ry, - - -
For simplicity, we assume hereafter that (w;, Rjw;) # 0 holds. The general
cases can be treated similarly. Let r; := Ryw; /| Ryw]|| # 0, then J is written
as

J = T |7"1><7"1’ + 7'1(R1 — |7’1><7“1D + Z TnEn = TlR[) + T1R1 + Z Tan,

n=2 n=2

where we define Ry := |1 X1, Ry =Ry — |1 Xr1| and R, =R, forn =2
satisfying R.Ry, = 6,4 R, for a,b=20,1,--- , M. Now we consider a vector

J(wy) 7 Rowy + 1 Rywy + D2 7. R,w,
| (w

~ ~ 1/27
1)H <7'12(w1, Rowl) + ’7'12(11}1, lel) + Zn>2 n(wl, Rnw1)>

which must coincide with some w, € W. Its “RO -element” can be calculated

Jw) o J(w)
<1J< oy \J(wn)

as

7—12<w17 éowﬁ
72 (w1, Rowy) + 72(wy, Rywy) + Do T (wi, Rywy)

_ (w1, Row) B
(wy, Row) + (wy, Rywy) + 3L, 3 %% (wy, Ryuwn)

On the other hand, we can obtain that

wl, nwl

M
(w1, Rowy) + (wy, lel Z

’-‘wlﬁ )

M
< (wl,fﬁgwl) + wl,lel Z wl,R w1 =1

because there exists a n > 2 such that (wl,f%nwl) # 0 (otherwise w; =
(Ro + Ry)w; = Ryw; and thus J(w;) = 7w, hold, which contradicts w; €
W). Therefore, (B1l) results in

J(wy) J(wy)
(u( 07 T

This observation concludes a contradiction to J(wy)/|[J(w1)| = w, € W

> > (wl, Rowl).
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because w; satisfies (wy, ngl) > (wy, ngk) for all wy, € W. Overall, we find
that every w®™* e Q%" has some p(w®™*) > 0 such that J(w™") = p(w™")w™".
O

Lemma B.4

Let || < oo, and suppose that linear maps J and K strictly positive
with respect to an inner product (-,-) satisfy J(Vy) = K(V,) = Vf(mt) (in
particular, V. is self-dual). Then, there exists a pu(w®™*) > 0 for each w™" €
Q¢ such that K(w™") = pu(w™)J(w™*) holds.

Proof

As was seen in Lemma B™, the inner products (-,-); := (-, J-) and (-, ) :=
(-, K-) satisfy Vfé"t)J =V, and Vf(iff)K = V, respectively. Because (-, )x
is represented as (-,-)x = (-, L-); with some linear map L strictly positive
with respect to (-, ), we have for arbitrary v,w e V

(v, W)k = (v, Kw) = (v, Lw); = (v, JLw),
and thus L = J~! o K holds. On the other hand, L satisfies

Vf(i-??-t)x ={v | (v,w)g =0, Yw e V. }
= {v| (v, Lw)
)

J>07 vwev-l‘}
={v|(Lv,w); =

720, "we Vi) = L_I(fof-tn)-
That is, L(V,) = V, holds. Therefore, we can apply Lemma B33 to L, and
conclude that

L(wext) _ M(wext)wext _ J_l(K(weXt)),

Le. K(w™) = pu(w™)J(w™") holds. 0

Proposition
Let Q be transitive with |Q°| < oo and V.. be self-dual with respect to some
inner product. There exists a linear bijection Z: V. — V such that €Y := =Q

is transitive and the generating positive cone V. is self-dual with respect to

. Ty wint
<', '>GL(Q’); (A V+ - V+<'7'>GL(Q’)'

Proof

Because of the transitivity of €2, we can adopt the orthogonal coordinate
system of V' introduced in Proposition 0. Since V. is self-dual, there
exists a linear map J: V' — V strictly positive with respect to (-, )ar(0)
such that J(V,) = V*int : (Lemma B™2). We can assume without loss of

+( Ve
generality that J satisfies (war, Jwar)ar) = 1. Let us introduce

0= V:é.%GL(Q) nlz=1]={ve V:éfch(Q) | <v’wM>GL(Q) =1
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where we identify the “wjs-coordinate” with “z-coordinate” in V' and define
[z =1] == {z e V | x,wm)cr) = 1}(= aff () (see Proposition Z50).
Note that since both Vj‘g"@cu o, and [z = 1] are GL(Q)-invariant, * is
also GL(Q)-invariant. It is easy to demonstrate that Q* is convex (and
compact), and we denote by Q**' the set of all extreme points of Q*. We
can also see that Q**' generates the extreme rays of Vfg"gGL(Q Because J

satisfying J(V,) = V:Z”gGL(Q) is bijective and maps extreme rays of V. to

extreme rays of Vjé”g it holds that [Q***| = |Q®*|. Thus, there exists
a bijection f: Q¢ — Q”‘ext and S(w™") > 0 for each w™* € Q' gatisfying
J(w™) = B(ws) f(we).

For each T' € GL(f), we introduce Jr := T 1o JoT. It is easy to see that
Jr satisfies Jp(Vy) = Vj‘é”@cm o by virtue of Lemma B1. Furthermore, Jr is
shown to be strictly positive with respect to (-, )qr ) because T' € GL() is
an orthogonal transformation with respect to (-, -)qrq). Therefore, applying
Lemma B4 to J and Jr, there exists pr : Q2 — R such that Jp(w®™*) =

pr (W) J(w™) for w™* € Q™ that is,

JT (wext) _ ( ext

—- ﬁT(wext)f(wext)’

where we define O7(w®™*) := pup(w™")B(w™*). We calculate this Sp(w™*). Tt
holds that
JT( ext) T 1 o J(Twext>

= T (B(Tw™) f(Tw™))

_ B(TweXt)T_lf(TweXt)

— ﬁT(weXt) ( ext)
This relation shows that 7! f(Tw™?) is proportional to f(w®"). Considering
that the z-coordinates of f(Tw™") and f(w®") are 1 and that T~! preserves

z-coordinates, we find that T~ f(Tw™") = f(w®™") (equivalently, f(Tw®™") =
T f(w*™")) holds. Consequently, we obtain

JT(wext) _ B(TweXt)f(weXt).

Now we introduce

Ty 1= |GL Z Jr.

TeGL(Q)

We note that |GL(Q)| < oo when |Q*| < o0 because |GL(Q)| < |Q=|!. J
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acts on w™' e O™t as

Jav(WeXt) _ ‘GL( ) Z B TWeXt) f( ext) Cf( ext)

TeGL(Q)

where C' := =7y GL(Q  2recri) P (Tw™*") is a positive constant which does not
depend on the choice of w®™* € Q°** because of the transitivity of Q. Thus, the

map satisfies J, (Vi) = Vi7" o Since Jau () = CQ** and is strictly

positive with respect to (-, >GL since it is a summation of the strictly
positive operators {Jr}reari)- Moreover, it satisfies

Jow o T =T o0 Jy.

for any T' € GL(Q2). We thus find that J,, o Py = Py o Jy, holds for the
orthogonal projection P,; introduced in Proposition BT. In fact,

1
Jav(PMx) J T{E
|GL(Q)| Te(;(m

1
e, 2, "

TeGL(Q)
= PM(Javx>
holds for all x € V. Therefore, J,, is decomposed into two parts as

Jav:PMOJavOPM+PAJ20JaUOPAJ27 (BQ)

where P;; = 1 — Py. We note that Vi; = ImPi; = [aff () —wa] = RY and
dim Vj; = dim ImP,; = 1 hold by virtue of Proposition Z50. Therefore,
the first part of (B32) is proportional to 1y,, = 1, = P, and because we
set {war, Jwm)ar) = 1 and thus

<WM7 PyroJgy 0 PMWM>GL(Q) = <WMa Java>GL(Q)
= (wur, Pudwar)cro)

= <WM7 JWM>GL(Q)
=1

= (W, Puwararo)
holds, it is proven that
PMOJaUOPM:PM.

Let us examine the second part. Suppose that there exists a nonzero x € Vj;
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such that Tx = « for all T € GL(Q2). Then, Pyxz = x # 0 holds, and
it contradicts to (A=). Thus, we can find that GL(2) acts irreducibly
on Vi, that is, only {0} and Vj; = RY itself are invariant subspaces. It
concludes that Py J,, Py, which commutes with every element in GL(€), is
proportional to lyy = Igy = Pji; due to Schur’s lemma. Consequently, we
obtain for some & > 0

ch = PM + €P]\l47
and thus

Jow(Vi) = (P + EPy) (V) = VM . (B.3)

+{Dar@)

Let us introduce a linear bijection

= \/Juw = Pur + /EP,

strictly positive with respect to (-, )gr(q), and define Q' := ZQ. It is easy to
check that the positive cone V. generated by €' is given by V| = ZV,, and
GL(QY) = ZGL(Q)="! = GL(Q) (moreover, the unique maximally mixed
state of Q' is still wy,). In addition, we can find that

Vi oo = W 0 whar@ 2 0, "w' e V)

= {v | (v, Bw)ar@) = 0, "we V,}

——1y/%int
= +(Dern@)”

holds. Since (B3) can be rewritten as

— _ =1y *int
=Vy == V+<'7‘>GL(Q)’

we can conclude

!y wint
V= V+<','>GL(Q’)'

Remark
In the case of [2®**| = oo, there exists a counterexample of Lemma BZ3. Let
us consider a state space

Q={"1L,z)= "(1,zy,20,23) e R* | |2|* = 2] + 25 + 75 < 1}
(the Bloch ball). Q defines a corresponding positive cone V, as

Ve ={zeR"| 25— |z|* = 0,20 = 0},
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which can be identified with a forward light cone of a Minkowski spacetime.
We examine a pure Lorentz transformation A defined for A € R as

coshA sinhA 0 0O

A~ sinh A coshA 0 O
0 0 10

0 1

0 0

It is easy to prove that this A is strictly positive. Since the pure Lorentz
transformation preserves the Minkowski metric, it satisfies A(V,) = V,.
However, A transforms an extreme point z = (1,0, 1,0) to

A(x) = “(cosh \,sinh A, 1,0),

which is not proportional to x. Investigating whether Proposition 22522 still
holds when [Q®*| = oo is a future problem.
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