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Abstract

To find the essential nature of quantum theory has been an important prob-

lem for not only theoretical interest but also applications to quantum tech-

nologies. In those studies on quantum foundations, the notion of uncertainty,

which appears in many situations, plays a primary role among several stun-

ning features of quantum theory. The purpose of this thesis is to investigate

fundamental aspects of uncertainty. In particular, we address this problem

focusing on convexity, which has an operational origin.

We first try to reveal why in quantum theory similar bounds are often

obtained for two types of uncertainty relations, namely, preparation and

measurement uncertainty relations. In order to do this, we consider uncer-

tainty relations in the most general framework of physics called generalized

probabilistic theories (GPTs). It is proven that some geometric structures

of states connect those two types of uncertainty relations in GPTs in terms

of several expressions such as entropic one. From this result, we can find

what is essential for the close relation between those uncertainty relations.

Then, we consider a broader expression of uncertainty in quantum theory

called quantum incompatibility. Motivated by an operational intuition, we

propose and investigate new quantifications of incompatibility which are

related directly to the convexity of states. It is also demonstrated that

there can be observed a notable phenomenon for those quantities even in the

simplest incompatibility, i.e., incompatibility for a pair of mutually unbiased

qubit observables.

Finally, we study thermodynamical entropy of mixing in quantum theory,

which also can be seen as a quantification of uncertainty. Similarly to the

previous approach, we consider its operationally natural extension to GPTs,

and then try to characterize how specific the entropy in quantum theory is.

It is shown that the operationally natural entropy is allowed to exist only

in classical and quantum-like theories among a class of GPTs called regular

polygon theories.
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Chapter 1

Introduction

Since its birth about a hundred years ago, quantum theory has been crucial

in modern physics because of its more accurate description of nature than

classical theory; in addition, it was particularly revealed that there are many

differences between the mathematical formulations of classical and quantum

theories [5]. Then, it is natural to ask the following questions. What is phys-

ically the most significant difference between them? Why is nature described

by quantum theory? Since the dawn of quantum theory, they have remained

central questions, and much effort has been devoted to finding an answer

to form the frontier of physics called quantum foundations [6, 7]. Many

significant results have been obtained in that field, and for results of partic-

ular importance such as uncertainty relations [8] and the violation of Bell

inequality [9, 10], active studies are still ongoing. While studies on quantum

foundations are motivated by the theoretical interest of exploring the root

of nature, it should be emphasized that pursuing fundamental aspects of

quantum theory also contributes to the development of its applications, i.e.,

quantum technologies. For example, the original ideas of quantum cryptog-

raphy (quantum key distribution) were derived using uncertainty relations

and Bell nonlocality [11, 12]. Quantum foundations are valuable research

objects from both theoretical and practical perspectives.

In this thesis, we are engaged in further developing of quantum foun-

dations. To elucidate how “special” quantum theory is, we focus on its

convexity. In quantum theory, convexity is one of the most fundamental

ingredients, and appears in many situations. A basic example that exhibits

convexity is the set of all states (the state space) for some quantum system,

which is in fact closed under operationally natural convex combinations [5].

There is one noteworthy approach to quantum foundations concentrating

on this primitive convexity, which we call the convexity approach [13]. The

main aim of the convexity approach is to find what is needed to derive quan-

tum theory besides the convexity, i.e., to distinguish quantum theory from

other convex theories. Its mathematical formulation and physical motiva-
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tion are today succeeded to the framework called generalized probabilistic

theories (GPTs). As was seen above or will be seen in detail in subsequent

chapters, GPTs are operationally the broadest framework to describe nature,

and have been studied actively in recent years in the context of quantum

foundations, followed by the intuition that seeing quantum theory from a

broader perspective will contribute to elucidating its essence. While this

primitive convexity for states is focused in the study of GPTs, there are

studies about quantum foundations based on other types of convexity such

as convexity for separable states [14, 15] or compatibility [16, 17]. Con-

sidering the above facts, in this thesis we regard convexity as a significant

concept for the research on quantum foundations, and demonstrate the re-

sults of several attempts to capture the essential nature of quantum theory

via convexity. In particular, in this study, we focus on “uncertainty”, which

is one of the most critical features in quantum theory, and try to reveal its

essence. We have to mention that all results were obtained for operational

convexity, which means that every type of convexity considered in this the-

sis has an operational origin. By means of the operational descriptions, our

results are easier to understand physically, and thus may contribute more to

the theoretical insights of quantum theory and technological applications.

In Chapter 2, we review the mathematical foundations of GPTs. In re-

cent studies, GPTs are usually introduced in a mathematically refined man-

ner such as “the state space is a compact convex set in a finite-dimensional

Euclidean space.” There, we try to give a detailed explanation of how those

expressions are derived from physically abstract notions. We demonstrate

how the operational convexity associated with probability mixtures of states

or effects (observables) is expressed in terms of ordered Banach spaces. There

are also introduced additional topics for GPTs with physical or mathematical

motivations such as the descriptions of composite system and transforma-

tions or the notions of transitivity and self-duality.

Based on the mathematical foundations of GPTs, in Chapter 3 we ex-

tend the concept of uncertainty relations, which is one of the most astonish-

ing consequences in quantum theory, to GPTs, and investigate how specific

the quantum uncertainty is. It is explained that two types of uncertainty,

preparation uncertainty and measurement uncertainty, can also be naturally

considered in GPTs, and how they are related is examined under various

expressions such as entropic uncertainty relations. Following the quantum

results [18, 19], we prove that there is a quantitatively close connection be-

tween the two types of uncertainty in GPTs with the assumptions of transi-

tivity and self-duality. We also present numerical evaluations of uncertainty

for GPTs called regular polygon theories from which we can observe how

quantum uncertainty for a single qubit system is specific in regular polygon

theories.
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In Chapter 4, we focus on another fundamental concept for quantum

foundations called quantum incompatibility. It is known that many aston-

ishing results in quantum theory, such as the no-cloning theorem [20] and

uncertainty relations, are examples of quantum incompatibility [21]. In this

way, quantum incompatibility provides such a unified framework to describe

what is impossible or what becomes uncertain in quantum theory that it

plays an essential role in the field of quantum foundations. Further, we con-

sider the operational convexity of quantum incompatibility, which is derived

from that of states and effects. There are introduced new quantifications

of incompatibility called compatibility dimension and incompatibility dimen-

sion from a very operational perspective, and properties of those quantities

are examined for several cases. In particular, for a pair of incompatible

qubit observables, we demonstrate that there is a difference of interest be-

tween these quantities. We note that similar quantities can also be defined

in GPTs because they are introduced based on the convexity for states and

effects, but we only concentrate on quantum incompatibility.

Finally, in Chapter 5, we revisit GPTs, and consider thermodynamical

entropy there. We introduce operationally natural entropy which can be

defined in every theory of GPTs but is required to satisfy some operational

convexity for families of perfectly distinguishable states. Then, it is proven

that the only theories that admit the existence of the natural entropy are

classical and a quantum-like theories among regular polygon theories.
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Chapter 2

Generalized Probabilistic

Theories

Quantum theory is the most successful theory which describes nature: it

does explain phenomena that cannot be recognized if we live in the classical

world. The existence of superposition or entanglement is an instance of

those remarkable phenomena, but probably the most drastic one is that

nature is probabilistic: even if we conduct a “perfect” preparation of a

physical system and measurement, we do not always obtain one determined

outcome. Generalized probabilistic theories (GPTs) are the framework that

focuses on those probabilistic behaviors of nature. The only requirement

for GPTs is the convexity for primitive notions of states and effects, and

there are in general not assumed any Hilbert space structures or operator

algebraic properties. In this sense, GPTs are a more general framework than

quantum theory and classical theory, and play an active role in the study of

quantum foundations [22, 23, 24, 25, 26, 27, 28, 29, 30, 31] after their initial

proposition and development in the 1960s and 1970s [32, 33, 34, 35, 36, 37].1

In this chapter, we explore the mathematical foundations of GPTs in detail

to show how they give the most intuitive and fundamental description of

nature.

This chapter is organized as follows. In Section 2.1, we give the two

most fundamental notions of GPTs, namely, states and effects. They are

introduced in a conceptual and operational way, and mathematically em-

bedded into a vector space and its dual (more generally, a Banach space and

its Banach dual) respectively. These embeddings form the mathematical

foundations of GPTs. In fact, thanks to this embedding theorem, studies

on GPTs usually begin with the assumption that the set of all states called

the state space is a compact convex set of a finite-dimensional vector space

(more generally, a base of a base norm Banach space). After giving the de-

1For historical review of GPTs, we recommend [30, 38].
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scriptions of states and effects, we explain other basic but somewhat more

advanced topics, composite systems and transformations in GPTs, in Sec-

tion 2.2 and Section 2.3. It will be found that the previously introduced

embeddings into vector spaces make it mathematically convenient to discuss

those concepts. In Section 2.4, we introduce the notions of transitivity and

self-duality. These additional notions often appear in the field of GPTs, and

our main results in the following chapter are also obtained based on them.

In Section 2.5, we illustrate some examples of GPTs which include classical

and quantum theories with finite levels, and other important theories often

considered in the study of quantum foundations. Throughout this chapter,

explicit proofs of mathematical matters are given in principle, but some of

them are omitted when they are too technical or lengthy.

2.1 States and effects

A physical experiment is described by three procedures: to prepare an object

system, to perform a measurement, and to obtain an outcome. However, in

general, even if the same preparations are conducted and the same measure-

ments are performed, each outcome obtained is different, and we can only

predict from the preparation and measurement how frequently each outcome

is obtained, i.e., the probabilities [39, 40, 41, 42].2 Let us give a concrete

description. For a preparation procedure P, measurement apparatus A, and

a measurable set pX,Aq, where X is the nonempty set of outcomes associ-

ated with A and A is a σ-algebra of subsets of X, we denote by µpA,PqpUq

the probability of obtaining an outcome in U P A when measuring A on

P. Then, each pair pA, Uq reflects whether a measurement of A yields a re-

sult in the set U or not. We regard such “yes-no measurements” as a more

fundamental notion than the original measurement apparatuses because the

latter is an assemblage of the former.

measurement probabilitiespreparation

Figure 2.1: Description of physical experiments.

2In [38], this primitive assumption of physics is called the statistical causality.
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In this section, we shall demonstrate how to describe two fundamen-

tal concepts of physics, preparations and measurements, in mathematical

language. As explained above, we focus mainly on yes-no measurements,

and write a yes-no measurement and the probability µpA,PqpUq simply as

M and µpM,Pq respectively. It will be shown that they are reduced to the

notions of states and effects, and are embedded naturally into some vector

space and its dual space respectively. The embedding theorem enables us

to treat abstract concepts of preparations and measurements as mathemat-

ically well-defined objects, which is the very starting point for GPTs. After

their investigations, we will go back to descriptions of general measurement

apparatuses to obtain the notion of observables. This section is mainly in

accord with [30, 31, 41, 43, 44, 45].

2.1.1 Axiomatic description

Let Prep and Meas be the set of all procedures of preparations and yes-no

measurements for some physical experiment respectively. For example, in

the experiment of detecting the spin of an electron, each element of Prep

represents an apparatus which emits an electron, and each element of Meas

represents a value of the meter of some measurement apparatus or the cor-

responding yes-no apparatus itself. What is specific to this description is

that apparatuses with different physical implementations are distinguished.

In the previous example, an apparatus that emits randomly (i.e., with prob-

abilities 1
2

and 1
2
) electrons with x` spin and x´ spin, and apparatus which

emits randomly electrons with z` spin and z´ spin are different elements

of Prep, even though they describe the same quantum state 1

2
. In the field

of GPTs, we do not pay attention to those differences of “context” [46] for

both preparations and measurements, but only focus on the statistics: if we

have two apparatuses that are different but output the same statistics, then

we identify those two apparatuses in our framework (see Figure 2.2).

Apparatus 1 Apparatus 2

Figure 2.2: We identify apparatuses that have dif-
ferent “contexts” but generate the same statistics.
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Let us present its mathematical expression. Preparation procedures

P1,P2 P Prep are called operationally equivalent (denoted by P1 „ P2) if

µpM,P1q “ µpM,P2q holds for all M P Meas. In a similar way, measurement

procedures M1,M2 P Meas are called operationally equivalent (denoted by

M1 „ M2) if µpM1,Pq “ µpM2,Pq for all P P Prep. The binary relation „

defines an equivalence relation, and thus we can introduce the corresponding

quotient sets Ω̃ :“ Prep{„ and Ẽ :“ Meas{„. These two sets Ω̃ and Ẽ are

called the state space and effect space respectively, and each element of Ω̃

and Ẽ are called a state and an effect respectively [33, 34, 39, 43]. Here, we

express those descriptions above as an axiom.

Axiom 1 (Separation principle)

States and effects separate each other. That is, for any distinct ω̃1, ω̃2 P Ω̃,

there exists an effect ẽ P Ẽ such that µpẽ, ω̃1q ‰ µpẽ, ω̃2q, and also, for any

distinct ẽ1, ẽ2 P Ẽ, there exists a state ω̃ P Ω̃ such that µpẽ1, ω̃q ‰ µpẽ2, ω̃q.

We note that in the statement above we regard the function µp¨, ¨q on Measˆ

Prep as on Ẽ ˆ Ω̃ in an well-defined way. States and effects are two primitive

notions in GPTs.

Next, we focus on another fundamental concept, probabilistic mixtures. It

is operationally natural to assume that if we can prepare states ω̃1, ω̃2, . . . , ω̃n,

then we can also prepare a state through the probabilistic mixture of ω̃1, ω̃2,

. . . , ω̃n with respective probabilities λ1, λ2, . . . , λn, where λi ě 0 and
řn
i“1 λi “

1.3 We denote the newly introduced state by xλ1, λ2, . . . , λn; ω̃1, ω̃2, . . . , ω̃nyΩ̃.

The notion of probabilistic mixtures should be considered also for effects,

and we denote the effect obtained through the mixture of effects tẽju
m
j“1 Ă Ẽ

with a probability weight tσju
m
j“1 by xσ1, σ2, . . . , σm; ẽ1, ẽ2, . . . , ẽmyẼ . Then,

the nature of probabilistic mixtures motivates us to give the following axiom.

Axiom 2 (Probabilistic mixtures)

For any finite set of states tω̃iu
n
i“1 Ă Ω̃ and probability weight tλiu

n
i“1 (i.e.,

λi ě 0 and
ř

i λi “ 1), there exists a state xλ1, λ2, . . . , λn; ω̃1, ω̃2, . . . , ω̃nyΩ̃ P

Ω̃ satisfying

µ pẽ, xλ1, λ2, . . . , λn; ω̃1, ω̃2, . . . , ω̃nyΩ̃q “

n
ÿ

i“1

λiµpẽ, ω̃iq (2.1)

for all ẽ P Ẽ. Similarly, for any finite set of effects tẽju
m
j“1 Ă Ẽ and probabil-

ity weight tσju
m
j“1, there exists an effect xσ1, σ2, . . . , σm; ẽ1, ẽ2, . . . , ẽmyẼ P Ẽ

3From an operational viewpoint, it seems unnatural to consider mixtures with irra-
tional ratios because we can only conduct a finite number of experiments. However, in
this thesis, we focus on theories with the completeness assumption (see Mathematical
assumption 1), so at this point assume implicitly that mixtures with irrational ratios are
admitted for simplicity.
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satisfying

µ pxσ1, σ2, . . . , σm; ẽ1, ẽ2, . . . , ẽmyẼ , ω̃q “

m
ÿ

j“1

σjµpẽj, ω̃q (2.2)

for all ω̃ P Ω̃. From Axiom 1, they are uniquely determined.

Axiom 1 and Axiom 2 ensure that, in addition to (2.1), several proper-

ties that probabilistic mixtures should satisfy hold successfully for the state

xλ1, λ2, . . . , λn; ω̃1, ω̃2, . . . , ω̃nyΩ̃. For example, we can derive easily that

xλ1, λ2, . . . , λn; ω̃1, ω̃2, . . . , ω̃nyΩ̃ “ xλ2, λ1, . . . , λn; ω̃2, ω̃1, . . . , ω̃nyΩ̃

holds, i.e., the mixture does not depend on the “order” of the states and

probabilities (similar observations also can be obtained for effects).

We require additional conditions for Ẽ according to [30, 47, 48]. The first

requirement is that Ẽ includes the unit effect ũ satisfying µpũ, ω̃q “ 1 for all

ω̃ P Ω̃. In other words, we suppose the existence of a yes-no measurement

apparatus that always outputs “yes”, and this seems to be an operationally

natural condition. We note that such ũ is unique due to Axiom 1. The

second one is that if ẽ is an element of Ẽ , then the complement effect ẽK

such that µpẽK, ω̃q “ 1 ´ µpẽ, ω̃q for all ω̃ P Ω̃ is also an element of Ẽ .

This condition comes from the operationally natural intuition that if we

admit a certain yes-no measurement apparatus, then we should also admit

an apparatus constituted by exchanging the “yes” and “no” of the original

one. We note similarly that such ẽK is unique. For the complement of the

unit effect ũ, we sometimes denote it by 0̃ in this thesis. These conditions

are summarized as follows.

Axiom 3 (Existence of unit and complement effects)

(i) There exists the unit effect ũ in Ẽ such that µpũ, ω̃q “ 1 for all ω̃ P Ω̃.

(ii) If ẽ P Ẽ, then its complement ẽK P Ẽ such that µpẽK, ω̃q “ 1 ´µpẽ, ω̃q for

all ω̃ P Ω̃.

We remark that those effects ũ and ẽK in Axiom 3 are consistent with Axiom

2.

Now we can give the definition of a GPT.

Definition 2.1 (Generalized probabilistic theories)

A triple pΩ̃, Ẽ , µq of two sets Ω̃ and Ẽ , and a function µ : Ω̃ ˆ Ẽ Ñ r0, 1s

satisfying Axiom 1, 2, 3 is called a generalized probabilistic theory (a GPT

for short). The set Ω̃ and its element are called the state space and a state

of the theory, and Ẽ and its element are called the effect space and an effect

of the theory respectively.
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Let us consider infinite countable mixtures for states.4 In the following,

we denote mixtures of two states xλ, 1 ´ λ; ω̃1, ω̃2yΩ̃ simply by xλ; ω̃1, ω̃2y. In

order to treat infinite limits, some topological structure should be introduced

into Ω̃. Here we define a topology on Ω̃ in line with Gudder [43]. We suppose

that if states ω̃1 and ω̃2 are “close”, then

xλ; ω̃1
1, ω̃1y “ xλ; ω̃1

2, ω̃2y

with small λ holds for some ω̃1
1, ω̃

1
2 P Ω̃. That is, the closeness between ω̃1

and ω̃2 should be evaluated by

d̃pω̃1, ω̃2q :“ inft0 ă λ ď 1 | xλ; ω̃1
1, ω̃1y “ xλ; ω̃1

2, ω̃2y

for some ω̃1
1, ω̃

1
2 P Ω̃u.

(2.3)

We note that (2.3) always can be defined since
@

1
2
; ω̃2, ω̃1

D

“
@

1
2
; ω̃1, ω̃2

D

holds

due to Axiom 1. We assume that infinite countable mixtures are allowed in

our framework. It is described in the following form.

Mathematical assumption 1 (Completeness)

If d̃ defined in (2.3) satisfies limn,mÑ8 d̃pω̃n, ω̃mq “ 0 for a family of states

tω̃nu8
n“1 Ă Ω̃, then there exists a unique ω̃ P Ω̃ such that limnÑ8 d̃pω̃n, ω̃q “

0.

There are two things to remark on Mathematical assumption 1. The first one

is about the notion of completeness. In fact, we can prove that the function

d̃ is a metric function on Ω̃ (see Subsection 2.1.2), and thus Mathematical

assumption 1 is equivalent to the requirement that pΩ̃, d̃q is a complete metric

space, which especially admits infinite countable mixtures. The other remark

is about the terminology “Mathematical assumption”. In the field of GPTs,

the assumption of closedness or completeness for a state space with respect

to some physically natural topology is a common one [31]. Namely, if we can

prepare states which are very “close” to some fixed state, then it is usually

assumed that the fixed state can also be prepared. This seems to be a

natural, but at the same time more artificial assumption than the previous

ones, so in this thesis, we regard it as a mathematical assumption rather

than an axiom.

2.1.2 Convex structures and embedding theorems

In the previous section, we presented primitive descriptions of states and

effects from a physical perspective. We can rephrase them via the mathe-

matical notion of convex structures [36, 43].

4For infinite countable mixtures of effects, see footnote 17.

14



Definition 2.2

(i) A set S with a map x¨; ¨y such that

1. xλ1, λ2, . . . , λn; s1, s2, . . . , sny defines a unique element of S for any fi-

nite s1, s2, . . . , sn P S and probability weight tλ1, λ2, . . . , λnu (i.e., each

λi ě 0 and
řn
i“1 λi “ 1);

2. xλ1, λ2, . . . , λn; s, s, . . . , sy “ s

is called a convex (pre-)structure. Elements of the form xλ, 1 ´ λ; s, ty are

denoted simply by xλ; s, ty.

(ii) Let S and T be convex structures. A map F : S Ñ T is called affine if

F pxλ1, λ2, . . . , λn; s1, s2, . . . , snyq

“ xλ1, λ2, . . . , λn;F ps1q, F ps2q, . . . , F psnqy ,
(2.4)

and the set of all affine maps from S to T is denoted by Aff pS, T q. If

there exists an affine bijection J : S Ñ T , then S and T are called affinely

isomorphic, and J is called an affine isomorphism.

(iii) Because a convex subset of a vector space is naturally a convex structure

with usual convex combinations5: xλ1, λ2, . . . , λn; s1, s2, . . . , sny “
řn
i“1 λisi,

we can define successfully the set Aff pS,Rq for a convex structure S, and

call its element an affine functional on S. In particular, the set of all f P

Aff pS,Rq such that fpsq P r0, 1s for all s P S is denoted by ẼS. We regard

Aff pS,Rq as a real vector space in a natural way.

(iv) A convex structure pS, x¨; ¨yq is called a total convex structure if

1. S is equipped with a function d̃ defined in the same way as (2.3), and if

limn,mÑ8 d̃psn, smq “ 0 for a family of elements tsnun Ă S, then there

exists a unique s P S such that limnÑ8 d̃psn, sq “ 0;

2. fpsq “ fptq for every f P ẼS implies s “ t.

Let us consider a GPT with a state space Ω̃ and effect space Ẽ . Clearly, Ω̃

satisfies conditions (i)-1 and (i)-2 in Definition 2.2, and thus it is a convex

structure. On the other hand, it is easy to see that the functional ẽ˝ defined

for ẽ P Ẽ as ẽ˝ : ω̃ ÞÑ µpẽ, ω̃q is an affine functional on Ω̃ due to Axiom

2. Because we are interested only in probabilities, it is not problematic to

identify the effect ẽ representing the associated yes-no apparatus with the

affine functional ẽ˝, and we also call the latter an effect.6 In other words, if

5A subset A of a vector space L is called convex if λx ` p1 ´ λqy P A whenever
x, y P A and λ P p0, 1q, and a vector sum

řn
i“1 λixi for x1, . . . , xn P A is called a convex

combination if tλ1, . . . , λnu is a probability weight. For a more detailed description of
convex sets, see [49, 50]

6In [38], ẽ is called an experimental proposition, while the term “effect” (also called
experimental function) is used for the induced affine functional ẽ˝.
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we define the map ˝ : ẽ ÞÑ ẽ˝, then it is an injection from Ẽ to ẼΩ̃ because

of Axiom 1, and thus Ẽ and Ẽ˝ Ă ẼΩ̃ can be identified with each other.

Moreover, we can observe from Axiom 2 that the notion of mixtures is

represented mathematically as

xσ1, σ2, . . . , σm; ẽ1, ẽ2, . . . , ẽmy
˝

Ẽ “

m
ÿ

j“1

σj ẽ
˝
j , (2.5)

and from Axiom 3 that Ẽ˝ includes a special effect ũ˝ such that ũ˝pω̃q “ 1

for all ω̃ P Ω̃ and ẽK˝ “ ũ˝ ´ ẽ˝ P Ẽ˝ holds whenever ẽ˝ P Ẽ˝. We note that

Ẽ˝ is a convex subset of the vector space Aff pS,Rq due to (2.5). In this way,

we regard the effect space Ẽ˝ as a convex subset of ẼΩ̃: Ẽ˝ Ă ẼΩ̃. In this

thesis, we require that the converse inclusion also holds, which is called the

no-restriction hypothesis [26].

Mathematical assumption 2 (No-restriction hypothesis)

Any affine functional ẽ˝ on Ω̃ with ẽ˝pω̃q P r0, 1s for all ω̃ P Ω̃ is an effect.

That is, Ẽ˝ “ ẼΩ̃.

The no-restriction hypothesis means that any mathematically valid affine

functional is also physically valid. There is no physical background for this

assumption, and GPTs without assuming it were investigated for example in

[47, 48, 51, 52]. However, in this thesis, we suppose that all theories satisfy

the no-restriction hypothesis based on the fact that it is satisfied both in

classical and quantum theory. Now we can conclude the following.

Proposition 2.3

A GPT is identified with pΩ̃, ẼΩ̃q, where Ω̃ is a total convex structure and ẼΩ̃
is the set of all affine functionals on it whose values lie in r0, 1s.

It is known that a total convex structure can be embedded into a certain

Banach space. In order to show this, we need the following lemma.

Lemma 2.4

Let pS, x¨; ¨yq be a total convex structure with a “metric” d̃ defined in (2.3).

(i) If limnÑ8 d̃psn, sq “ 0, then limnÑ8 fpsnq “ fpsq holds for all f P ẼS.
(ii) Let pT, x¨; ¨yT q be another total convex structure equipped with a similar

“metric” d̃T . For all s1, s2 P S and F P Aff pS, T q, d̃T pF ps1q, F ps2qq ď

d̃ps1, s2q holds. If F is bijective, then d̃T pF ps1q, F ps2qq “ d̃ps1, s2q.

Proof

(i) Because limnÑ8 d̃psn, sq “ 0 holds, there exists N P N for any ε ą 0

such that d̃psn, sq ă ε
ε`2

holds whenever n ą N . It implies that there are

λ P p0, ε
ε`2

q and t1, t2 P S satisfying xλ; t1, sny “ xλ; t2, sy, which results in

λfpt1q ` p1 ´ λqfpsnq “ λfpt2q ` p1 ´ λqfpsq
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for f P ẼS. It follows that

|fpsnq ´ fpsq| “
λ

1 ´ λ
|fpt2q ´ fpt1q| ď

2λ

1 ´ λ
,

and thus |fpsnq ´ fpsq| ă ε holds because

2λ

1 ´ λ
ă

2λ

1 ´ λ

ˇ

ˇ

ˇ

ˇ

λÑ ε
ε`2

“ ε.

(ii) It holds from the definition of d̃ that

d̃T pF ps1q, F ps2qq “ inft0 ă λ ď 1 |

xλ; t1, F ps1qyT “ xλ; t2, F ps2qyT , t1, t2 P T u

ď inft0 ă λ ď 1 |

xλ;F psq, F ps1qyT “ xλ;F ps1q, F ps2qyT , s, s
1 P Su

“ inft0 ă λ ď 1 | F pxλ; s, s1yq “ F pxλ; s1, s2yq, s, s1 P Su

ď inft0 ă λ ď 1 | xλ; s, s1y “ xλ; s1, s2y , s, s
1 P Su

“ d̃ps1, s2q.

If F is bijective, then the two “ď” in the above consideration become ““”,

and thus d̃T pF ps1q, F ps2qq “ d̃ps1, s2q holds. 2

We remember that Aff pS,Rq is a real vector space for a convex structure S.

The set Aff pS,Rq1 :“ tα | α : Aff pS,Rq Ñ R, linearu is naturally a vector

space called the algebraic dual of Aff pS,Rq. Then, there is a canonical

embedding J of S into Aff pS,Rq1 defined as rJpsqspfq “ fpsq for all f P

Aff pS,Rq. We can prove the following proposition.

Proposition 2.5

Let pS, x¨; ¨yq be a total convex structure with a “metric” d̃ defined in (2.3).

(i) The canonical embedding J : S Ñ Aff pS,Rq1 is an affine isomorphism

between S and the convex subset JpSq of Aff pS,Rq1.

(ii) If there is an affine isomorphism η between S and a convex subset S0

of some real vector space V0 such that aff pS0q does not include the origin 0

of V0, then there is a linear bijection Φ: spanpS0q Ñ spanpJpSqq satisfying

ΦpS0q “ JpSq.7

(iii) pS, d̃q is a complete metric space.

The claims (i) and (ii) demonstrate that the total convex structure S can be

identified with a convex set in some vector space in an essentially unique way

7For a subset A of a vector space W , its affine hull aff pAq and linear span spanpAq are
defined as aff pAq :“ t

řn
i“1 λiai | ai P A, λi P R,

ř

i λi “ 1, n: finiteu and spanpAq :“
t
řn

i“1 λiai | ai P A, λi P R, n: finiteu respectively.
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via the canonical embedding J . We note that the functional 0 P Aff pS,Rq1

defined as 0pfq “ 0 for all f P Aff pS,Rq, which is the origin of the vector

space Aff pS,Rq1, does not belong to JpSq because 0 P JpSq contradicts to

the existence of the unit effect. On the other hand, the claim (iii) shows

that d̃ is indeed a metric (see Mathematical assumption 1).

Proof (proof of Proposition 2.5)

(i) It is easy to see that J is an affine map from S to Aff pS,Rq1 and JpSq is

a convex set in Aff pS,Rq1. Since S is total (see (iv)-2 in Definition 2.2), for

s, t P S with s ‰ t, there exists an affine functional f P Aff pS,Rq such that

fpsq ‰ fptq, i.e., rJpsqspfq ‰ rJptqspfq. This implies Jpsq ‰ Jptq.

(ii) Let us introduce a subset K :“ t
řn
i“1 λixi | λi ě 0, xi P S0, n : finiteu,

i.e., the conic hull of S0 (see Definition 2.6). Then, any y P Kzt0u can be

represented as y “ λx with λ ą 0 and x P S0 in a unique way. To see

this, assume that y P Kzt0u satisfies y “ λx “ λ1x1 with λ, λ1 ą 0 and

x, x1 P JpSq. If λ ‰ λ1, then it holds that

0 “ λx ´ λ1x1 “ pλ ´ λ1q

ˆ

λ

λ ´ λ1
x ´

λ1

λ ´ λ1
x1

˙

.

Because 0 R aff pS0q, it implies λ “ λ1, which is a contradiction. Thus, we can

conclude λ “ λ1 and x “ x1. Now let us construct the linear bijection Φ from

the affine isomorphism η. First, we define an affine bijection ϕ0 : S0 Ñ JpSq

by ϕ “ J ˝ η´1 (note that J is a bijection between S and JpSq). From the

above consideration, we can extend this ϕ0 successfully to a bijection ϕ from

K to the conic hull of JpSq: ϕpyq “ λϕ0pxq for y “ λx with y P K, x P S0,

and λ ě 0. It is easy to verify that ϕpλy ` µzq “ λϕpyq ` µϕpzq holds for

y, z P K and λ, µ ě 0. Since any y P spanpS0q such that y “
řn
i“1 λixi with

xi P S0, λi P R, and a finite n can be expressed as y “ u´v, where u, v P K,

we can consider the extension of ϕ to a map Φ from spanpS0q to spanpJpSqq

by Φpyq “ ϕpuq´ϕpvq for y “ u´v with y P spanpS0q and u, v P K. We note

that this Φ is well-defined: if y “ u1 ´ v1 “ u2 ´ v2 with u1, u2, v1, v2 P K

holds, then u1 ` v2 “ u2 ` v1 holds, and thus Φpu1 ` v2q “ Φpu2 ` v1q,

i.e., Φpu1q ` Φpv2q “ Φpu2q ` Φpv1q follows, which implies Φpu1q ´ Φpu2q “

Φpv1q ´Φpv2q. It is easy to confirm that Φ: spanpS0q Ñ spanpJpSqq is linear

and bijective.

(iii) It is trivial that d̃ps, tq ě 0 and d̃ps, tq “ d̃pt, sq holds for all s, t P

S. Let d̃ps, tq “ 0. Then, there exist a family of positive numbers tλiui
with limiÑ8 λi “ 0 and families tsiui and ttiui of elements of S such that

xλi; si, sy “ xλi; ti, ty. It follows that

λifpsiq ` p1 ´ λiqfpsq “ λifptiq ` p1 ´ λiqfptq

holds for all f P ẼS. Because 0 ď fpsiq, fptiq ď 1 holds, taking i Ñ 8 in the
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above equation, we obtain fpsq “ fptq for all f P ẼS. By the assumption of

totality, we can conclude s “ t. To verify the triangle inequality for d̃, it is

enough to prove that d̃1 : JpSq ˆ JpSq Ñ R defined on JpSq in a similar way

to d̃ satisfies it. This is because d̃1pJpsq, Jptqq “ d̃ps, tq holds for all s, t P S

as we have seen in Lemma 2.4. For the evaluation of d̃1pp, rq ` d̃1pr, qq with

p, q, r P JpSq, let us assume that λ1, λ2 P p0, 1q satisfy

λ1p1 ` p1 ´ λ1qp “ λ1r1 ` p1 ´ λ1qr,

λ2r2 ` p1 ´ λ2qr “ λ2q1 ` p1 ´ λ2qq

for p1, q1, r1, r2 P JpSq. We obtain from these equations

λ1p1 ´ λ2qp1 ` λ2p1 ´ λ1qr2 ` p1 ´ λ1qp1 ´ λ2qp

“ λ2p1 ´ λ1qq1 ` λ1p1 ´ λ2qr1 ` p1 ´ λ1qp1 ´ λ2qq.

It can be rewritten as

λ0p2 ` p1 ´ λ0qp “ λ0q2 ` p1 ´ λ0qq, (2.6)

where

λ0 “
λ1p1 ´ λ2q ` λ2p1 ´ λ1q

λ1p1 ´ λ2q ` λ2p1 ´ λ1q ` p1 ´ λ1qp1 ´ λ2q
“
λ1 ` λ2 ´ 2λ1λ2

1 ´ λ1λ2

and

p2 “
λ1p1 ´ λ2q

λ1p1 ´ λ2q ` λ2p1 ´ λ1q
p1 `

λ2p1 ´ λ1q

λ1p1 ´ λ2q ` λ2p1 ´ λ1q
r2,

q2 “
λ2p1 ´ λ1q

λ1p1 ´ λ2q ` λ2p1 ´ λ1q
q1 `

λ1p1 ´ λ2q

λ1p1 ´ λ2q ` λ2p1 ´ λ1q
r1.

Because λ0 ď λ1 ` λ2, we can see from (2.6) that

d̃1pp, qq ď d̃1pp, rq ` d̃1pr, qq

holds, and thus we can conclude that pS, d̃q is a metric space. The complete-

ness clearly holds due to (iv)-1 in Definition 2.2. 2

We note that we can prove the same claim as (iii) also for the function d̃0
defined as

d̃0ps, tq “
d̃ps, tq

1 ´ d̃ps, tq
. (2.7)

It was shown in [36] that this d̃0 is a metric on S, and the completeness

holds similarly. Before proceeding to the main theorem of this section, we
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introduce the notion of convex cones [50, 53, 54].

Definition 2.6

Let L be a vector space, and 0 P L be its origin.

(i) A subset C of L is called a cone of vertex 0 if λC Ă C for all λ ą 0. A

cone of vertex x0 is a set of the form x0 ` C, where C is a cone of vertex 0.

In this thesis, the vertex of a cone is always assumed to be 0.

(ii) A cone C Ă L is called

1. convex if it is convex, i.e., satisfies C ` C Ă C;

2. pointed if C X ´C “ t0u;

3. generating (or spanning) if spanpCq “ L, i.e., C ´ C “ L.

(iii) The conic hull of a subset A of L is defined as conepAq :“ t
řn
i“1 λiai |

λi ě 0, ai P A, n : finiteu. It is easy to see that conepAq is a convex cone.

Let us write conepJpSqq and spanpJpSqq generated by JpSq simply as K and

V respectively. It is easy to see that K is a convex, pointed, and generating

cone for V , and thus any v P V is written in the form v “ k` ´k´ “ αp´βq,

where k˘ P K, p, q P JpSq, and α, β ě 0. It follows that we can introduce

the following quantity for v P V :

}v} “ inftα ` β | v “ αp ´ βq, α, β ě 0, p, q P JpSqu. (2.8)

Now we can present the embedding theorem for a total convex structure as

follows. We shall omit the proof, but it is given in [43] (see the proofs of

Theorem 4.11 and Theorem 4.12 there).

Theorem 2.7

Let S be a total convex structure, and K and V be the cone and the real

vector space generated by the canonical embedding JpSq of S into Aff pS,Rq1

respectively.

(i) The function } ¨ } on V defined in (2.8) is a norm on V satisfying

}Jpsq ´ Jptq} “ 2d̃0ps, tq for all s, t P S and }Jpsq} “ 1 for all s P S.

Moreover, pV, } ¨ }q is a real Banach space, and K is closed.

(ii) Let f P Aff pS,Rq. Then, the affine functional f ˝ J´1 : JpSq Ñ R on

JpSq has a unique linear extension f̌ : V Ñ R.
(iii) If we let e : V Ñ R be the unique linear extension of ẽ˝ P ẼS Ă Aff pS,Rq

described in (ii) above, then e is continuous, and thus belongs to the Banach

dual V ˚ :“ tf | f : V Ñ R, linear, bounded (continuous)u of V . In particu-

lar, the linear extension u of the unit effect ũ˝ such that upJpsqq “ 1 for all

Jpsq P JpSq satisfies u P V ˚.
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According to this theorem, together with Proposition 2.3, we can consider

the state space of a GPT Ω̃ as a closed convex set Ω :“ JpΩ̃q in a Ba-

nach space V “ spanpΩq equipped with the norm } ¨ } in (2.8) called

the base norm, and the effect space ẼΩ̃ as a subset EΩ :“ te | epωq P

r0, 1s for all ω P Ω, linearu of the Banach dual V ˚. We also call Ω and

EΩ the state space and the effect space of the GPT respectively. In the next

part, we give further explanations about the Banach space V and its Banach

dual V ˚.

2.1.3 Ordered Banach spaces

The vector spaces V and V ˚ introduced in the previous part are equipped

with both order and Banach space structures, that is, they are ordered

Banach spaces. In this subsection, we make a brief review of ordered Banach

spaces. Mathematical terms shown in this subsection are according mainly

to [30, 31, 44, 50, 53, 55, 56]. Also, there can be found the technical proofs

of some theorems which we omit. We begin with the definition of an ordered

vector space.

Definition 2.8

A real vector space L equipped with a partial ordering8 ď is called an ordered

vector space if it satisfies

(i) x ď y implies x ` z ď y ` z for all x, y, z P L;

(ii) x ď y implies λx ď λy for all x, y P L and λ ě 0.

We can prove easily the following (recall Definition 2.6).

Proposition 2.9

(i) L` :“ tx P L | x ě 0u Ă L is a convex and pointed cone.

(ii) If pL,ďq is directed, i,e, for every x, y P L there is z P L such that

x ď z, y ď z, then L` in (i) is also generating.

Proof

(i) For x ě 0, λx ě 0 (λ ě 0) clearly holds, and thus L` is a cone. Because,

for x, y ě 0, px ě 0 and p1 ´ pqy ě 0 (0 ď p ď 1) hold, px ` p1 ´ pqy ě 0

follows, which implies L` is convex. The claim that L` is pointed follows

from the observation that x ě 0 and x ď 0 implies x “ 0.

(ii) Because L is directed, for any x P L, there exists z P L such that x ď z

and ´x ď z, equivalently, z´x ě 0 and z`x ě 0 hold. Because 1
2
pz´xq ě 0

and 1
2
pz ` xq ě 0, x “ 1

2
pz ` xq ´ 1

2
pz ´ xq implies that L` is generating. 2

8A binary relation ď on a set X is called a preorder if it is reflexive, i.e., x ď x px P Xq,
and transitive, i.e., x ď y and y ď z implies x ď z px, y, z P Xq. A preorder ď is called
a partial order if it is antisymmetric, i.e., x ď y and y ď x implies x “ y (x, y P X). We
remark that some authors use the term “partial order” to represent a preorder here [57].
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Definition 2.10

Let L be an ordered vector space.

(i) The cone L` :“ tx P L | x ě 0u is called the positive cone of L.

(ii) For the positive cone L` of L, its order dual cone L3
` is defined as

the set of all “positive” functionals on L`, i.e., L3
` :“ tf P L1 | fpxq ě

0 for all x P L`u. It is clear that L3
` is a convex cone in the algebraic dual

L1 of L and in the subspace L3 :“ L3
` ´ L3

` “ spanpL3
`q called the order

dual of L. Moreover, we can find that L3
` is pointed in L1 and L3 if L` is

generating.

We have proven in Proposition 2.9 that a positive cone can be intro-

duced through an order vector space. Conversely, we can construct an order

structure for a vector space when there is a convex cone.

Proposition 2.11

Let C be a convex and pointed cone in a real vector space L.

(i) If we define a binary relation ď as x ď y ðñ y ´ x P C for x, y P V ,

then the relation ď is a partial ordering, and pL,ďq is an ordered vector

space.

(ii) The positive cone L` for L defined via the order ď in (i) is identical to

C, i.e., L` “ C.

(iii) If C is in addition generating, then pL,ďq is directed.

Proof

(i) Because C is pointed, x ´ x “ 0 P C, and y ´ x P C and x ´ y P C

imply y ´ x “ 0, i.e., x “ y for x, y P L. Moreover, if y ´ x P C and

z ´ y P C (z, y, z P L), then z ´ x “ pz ´ yq ` py ´ xq P C. Therefore,

we can conclude that ď is a partial ordering. On the other hand, because

y´x “ py` zq ´ px` zq (z, y, z P L), x` z ď y` z holds when x ď y. Since

C is a pointed cone, y ´ x P C (x, y P L) implies λpy ´ xq “ λy ´ λx P C

(λ ě 0), i.e., λx ď λy when x ď y.

(ii) L` “ C is trivial since x ě 0 is equivalent to x P C.

(iii) For x, y P L, because C is generating, there exist x1, x2, y1, y2 P C

such that x “ x1 ´ x2 and y “ y1 ´ y2. Defining z “ x1 ` y1, we have

z ´ x “ y1 ` x2 P C and z ´ y “ x1 ` y2 P C, which means that pL,ďq is

directed. 2

It follows from these propositions that a positive cone and a convex and

pointed cone can be identified naturally with each other.

Next, we give descriptions of ordered Banach spaces. An ordered vector

space L is called an ordered Banach space if L is also a Banach space (see [58]

for a review of Banach space). There are two important types of ordered

Banach space in the field of GPTs: base norm Banach spaces and order

unit Banach spaces, which are related with state spaces and effect spaces

respectively. Let us first introduce base norm Banach spaces.
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Definition 2.12

Let L be an ordered vector space with its positive cone L`. A convex subset

B Ă L` is called a base of L` if for any x P L` there exists a unique λ ě 0

such that x P λB.

The following lemma is important.

Lemma 2.13

Let L be an ordered vector space with its positive cone L`, and B be its base.

Then, aff pBq does not contain the origin 0 of L.

Proof

Suppose 0 P aff pBq. Then, there exist real numbers tλiu
n
i“1 with

řn
i“1 λi “ 1

and elements txiu
n
i“1 of B such that

řn
i“1 λixi “ 0. Dividing tλiu

n
i“1 into

positive and negative parts, we obtain

ÿ

j

λ`
j x

`
j “

ÿ

k

λ´
k x

´
k ,

where tx`
j uj and tx´

k uk are subsets of txiu
n
i“1, and tλ`

j uj and tλ´
k uk are

positive numbers satisfying
ř

j λ
`
j ´

ř

k λ
´
k “ 1. If we assume K :“

ř

k λ
´
k ‰

0, then we can rewrite the above equation as

K ` 1

K
¨

1

K ` 1

ÿ

j

λ`
j x

`
j “

1

K

ÿ

k

λ´
k x

´
k .

Because y :“ 1
K`1

ř

j λ
`
j x

`
j and y1 :“ 1

K

ř

k λ
´
k x

´
k are convex combinations

of elements of B, they belong to B. Then, the above equation K`1
K
y “ y1

contradicts to the uniqueness condition in the definition of the base B, and

thus we obtain K “ 0. It implies 0 P B, but this also contradicts to the

uniqueness condition because any positive number λ satisfy λ0 “ 0. 2

By means of this lemma, we can associate a base of a positive cone with a

linear functional in the following way [30, 56].

Proposition 2.14

Let L and L` be an ordered vector space and its positive cone respectively.

L` has a base B if and only if there exists a strictly positive functional eB
(i.e., eB P L3 and satisfies eBpxq ą 0 for all nonzero x P L`) such that

B “ tx P L` | eBpxq “ 1u. (2.9)

Proof

The if part is easy, so we prove the only if part. Let B be a base of L`.

Applying Zorn’s lemma to the set A of all affine sets which include aff pBq

but not t0u, we obtain the maximal affine set H in A. It can be shown [59]
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that this H is a hyperplane in L, and thus there exists a linear functional

eB such that eBpxq “ 1 for all x P H. This functional eB is easily found to

be strictly positive because B is a base. 2

We call the functional eB the intensity functional for the base B [38].

Lemma 2.15

Let L be an ordered vector space, and L` be its positive cone which is gen-

erating. For a base B Ă L` of L`, D :“ convpB Y ´Bq is a radial, circled,

and convex subset of L.9

Proof

The convexity is clear. It is easy to see 0 P D, and thus D is circled. Because

L` is generating, any x P L can be written as x “ λ`x` `λ´x´ with λ˘ ě 0

and x` P B, x´ P ´B. Let λ0 “ λ` ` λ´. For λ ě λ0, x can be rewritten as

x “ λ ¨
λ` ` λ´

λ

ˆ

λ`

λ` ` λ´

x` `
λ´

λ` ` λ´

x´

˙

.

Because D is circled, λ``λ´

λ

´

λ`

λ``λ´
x` `

λ´

λ``λ´
x´

¯

P D can be obtained. It

implies x P λD, and thus D is radial. 2

According to Lemma 2.15, if L` is generating, then the Minkowski functional

of D “ convpB Y ´Bq defined as

pDpxq :“ inftλ ą 0 | x P λDu px P Lq (2.10)

is a seminorm on L [50]. It is not difficult to see that pD satisfies

pDpxq “ infteBpx`q ` eBpx´q | x “ x` ´ x´, x˘ P L`u px P Lq (2.11)

with eB introduced in Proposition 2.14, or

pDpxq “ inftα ` β | x “ αb` ´ βb´, α, β ě 0, b˘ P Bu px P Lq (2.12)

since it holds that pDpx`q “ eBpx`q for all x` P L`. Now we can give the

definition of a base norm space.

Definition 2.16

Let L be an ordered vector space with its positive cone L` generating. For

a base B of L`, pL,Bq is called a base norm space if the function pD defined

in (2.10)-(2.12) through B is a norm on L.10 In this case, we write pDp¨q as

9A subset U of a vector space L (assumed to be on the field F “ R or C) is radial if
for any x P L there exists λ0 P F such that |λ| ě |λ0| implies x P λU , and is circled if
λU Ă U for any λ with |λ| ď 1 [50].

10It is not difficult to see that pD is a norm if and only if D “ convpB Y ´Bq is linearly
bounded, i.e., M XD is a bounded subset of L whenever M is a one-dimensional subspace
[56].

24



} ¨ }B and call it the base norm. A base norm space pL,Bq is called a base

norm Banach space if L is complete with respect to the base norm } ¨ }B.

In this thesis, for a Banach space X, we denote its Banach dual by X˚ “

tf | f : X Ñ R, linear, boundedu. When X is in addition an ordered vector

space (i.e., an ordered Banach space) and X` is its positive cone, we define a

set X˚
` as X˚

` :“ tf P X˚ | fpxq ě 0 for all x P X`u, and call it the Banach

dual cone for X`. It is verified easily that L˚
` is a convex and closed (in the

weak*11 and norm topologies) cone in L˚12, and is in addition pointed if L`

is generating.

We present miscellaneous facts about base norm Banach spaces.

Proposition 2.17

Let pL,Bq be a base norm Banach space, and L` be the positive cone of L.

For a subset A of L, we denote its norm closure by A.

(i) The intensity functional eB in (2.9) is continuous, i.e., eB P L˚.

(ii) B is closed if and only if L` is closed.

(iii) The unit ball of L is given by D “ convpB Y ´Bq.

(iv) The dual norm }¨}˚ on the Banach dual L˚ defined as }f}˚ :“ supt|fpxq| |

}x}B ď 1u satisfies }f}˚ :“ supt|fpxq| | x P Bu.

(v) L` is a convex, pointed, and generating cone in L, and B is a base of

L` with its intensity functional identical with that of the original base B:

B “ L` X e´1
B p1q. Moreover, the base norm induced by B coincides with the

original one by B.

(vi) If L` is closed, then the Banach dual and order dual coincide with each

other: L˚ “ L3.

Proof

(i) Representing x P L as x “ x` ´ x´ (x˘ P L`), we have

|eBpxq| “ |eBpx`q ´ eBpx´q| ď eBpx`q ` eBpx´q.

It implies |eBpxq| ď }x}B, i.e., eB is bounded.

(ii) When L` is closed, its base B “ L` X tx P L | eBpxq “ 1u is also

closed. Assume conversely that B is closed. Since L is complete, for a

Cauchy sequence tαixiui in L` such that αi ě 0 and xi P B, there exists

11For a Banach space X and its Banach dual X˚, the weak topology of X often dented
by σpX,X˚q is the weakest topology on X which makes all f P X˚ continuous, and the
weak* topology of X˚ often dented by σpX˚, Xq is the weakest topology on X˚ which
makes all x P X Ă X˚˚ continuous [50, 58].

12 Clearly, L˚
` satisfies L˚

` “
Ş

xPL`
tf P L˚ | fpxq ě 0u, and thus is weakly* closed.

On the other hand, let tfnu ba a Cauchy sequence in L˚
` which converges to f P L˚ in

the norm topology, and suppose that there is x0 P L` such that fpx0q ă 0. If we set

ε “

ˇ

ˇ

ˇ

fpx0q

}x0}

ˇ

ˇ

ˇ
, then for large n we have supxPL

|fpxq´fnpxq|

}x}
ă ε, and thus |fpx0q´fnpx0q|

}x0}
ă ε.

It implies fnpxq ă 0, which is a contradiction. Thus, fpxq ě 0 for all x P L`.
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v˚ P L to which tαixiui converges. From the continuity of eB, we obtain

αi “ eBpαixiq Ñ eBpv˚q. If eBpv˚q “ 0, then αi Ñ 0. It implies }αixi}B Ñ 0,

i.e., v˚ “ limi αixi “ 0, and thus v˚ P L` because L` is pointed (see

Proposition 2.9). If eBpv˚q ‰ 0, then

eBpv˚q}xi ´ xj}B ď }eBpv˚qxi ´ v˚}B ` }v˚ ´ eBpv˚qxj}B

ď }eBpv˚qxi ´ αixi}B ` }αixi ´ v˚}B

` }v˚ ´ αjxj}B ` }αjxj ´ eBpv˚qxj}B

“ |eBpv˚q ´ αi| ` }αixi ´ v˚}B

` }v˚ ´ αjxj}B ` |αj ´ eBpv˚q|.

The last equation converges to 0 as i, j Ñ 8, and thus txiui is a Cauchy

sequence in L. Because B is closed, txiui converges to x˚ P B. Therefore,

we obtain limi αixi “ eBpv˚qx˚ P L`.

(iii) This claim follows directly from the definition of } ¨ }B as the Minkowski

functional of D.

(iv) It can be found that

}f}˚ “ supt|fpxq| | }x}B ď 1u

“ supt|fpxq| | x P Du

“ supt|fpxq| | x P Du

“ supt|fpxq| | x P Bu.

For the proofs of (v) and (vi), see Proposition 1.40 in [30]. 2

Roughly speaking, the base norm and the intensity functional correspond

to the trace norm and the identity operator in the usual formulation of

quantum theory respectively. In fact, if we let L be the set LSpHq of all self-

adjoint operators on a finite-dimensional Hilbert space H, then any x P L is

decomposed as x “ x`´x´ with x˘ ě 0 in the usual ordering for self-adjoint

operators, and thus the trace norm of x is given via the identity operator

1 by }x}Tr “ Trrx`s ` Trrx´s “ Trr1x`s ` Trr1x´s, which corresponds to

(2.11).

Let us move to the introduction of order unit Banach spaces.

Definition 2.18

Let L be an ordered vector space equipped with an ordering ď.

(i) L is called Archimedean if x ď 0 whenever there exists y P L such that

nx ď y for all n P N.

(ii) L is called almost Archimedean if x “ 0 whenever there exists y P L such

that ´y ď nx ď y for all n P N.

(iii) A positive element u of L is called an order unit if for any x P L there

exists some n P N such that ´nu ď x ď nu.
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It is clear that if L is Archimedean, then it is almost Archimedean. For

a, b P L, we define the order interval ra, bs as ra, bs :“ tx P L | a ď x ď bu.

The following lemma is important.

Lemma 2.19

Let L be an ordered vector space with an ordering ď and an order unit u.

(i) The order interval ∆ :“ r´u, us is a radial, circled, and convex subset of

L.

(ii) The Minkowski functional of ∆ of the form

p∆ “ inftλ ą 0 | x P λ∆u (2.13)

is a norm on L if and only if L is almost Archimedean.

Proof

It is easy to see that (i) holds due to the definition of the order unit u, and

thus the Minkowski functional p∆ is a seminorm on L. Assume that p∆ is a

norm and x P L satisfies ´y ď nx ď y for all n P N and some y P L. Since

there existsm P N such that ´mu ď y ď mu, it holds that ´mu ď nx ď mu,

or ´m
n
u ď x ď m

n
u for all n P N. Thus, inftλ ą 0 | ´λu ď x ď λuu “ 0, and

we can conclude x “ 0 because } ¨ }u is a norm. Conversely, assume that L

is almost Archimedean and x P L satisfies p∆pxq “ 0. Then, ´u ď 1
λ
x ď u

holds for arbitrary small λ, and thus x “ 0 follows from the assumption that

L is almost Archimedean, which concludes (ii). 2

We can give the definition of an order unit Banach space.

Definition 2.20

Let L be an ordered vector space with an order unit u P L associated with the

ordering of L. pL, uq is called an order unit Banach space if L is Archimedean

and complete with respect to the norm p∆. In this case, we write p∆p¨q as

} ¨ }u, and call it the order unit norm.

We present miscellaneous facts about base norm Banach spaces according

mainly to [30, 55].

Proposition 2.21

Let pL, uq be an order unit Banach space, and let ď be the ordering of L.

(i) The positive cone L` of L is generating and closed.

(ii) The unit ball of L is given by ∆ “ r´u, us “ tx P L | ´u ď x ď uu.

(iii) If f is a positive functional on L, then f is bounded, and its dual norm

on the Banach dual L˚ is given by }f}˚ “ fpuq. Conversely, if a linear

functional f : L Ñ R satisfies }f}˚ “ fpuq, then f is positive.

(iv) If we define Bu :“ tf P L˚
` | fpuq “ 1u, then Bu is a base for the

Banach dual cone L˚
`.

(v) The Banach dual and order dual coincide with each other: L˚ “ L3.
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Proof

(i) For x P L, there exists n P N such that ´nu ď x ď nu. Then, x “

nu ` px ´ nuq shows x P L` ´ L`, i.e., L` is generating. Let txiui be a

Cauchy sequence in L` and converge to x‹ P L. For any n P N, we have

}x‹ ´ xi}u ď 1
n

for sufficiently large i. It implies ´ 1
n
u ď x‹ ´ xi ď 1

n
u, and

thus ´nx‹ ď u. Since this holds for all n P N and L is Archimedean, we

obtain ´x‹ ď 0, i.e., x P L`.

(ii) It follows easily from (i) that ∆ is closed. Then, the definition of } ¨ }u

as the Minkowski functional of ∆ proves the claim.

(iii) Let x P ∆. From the positivity of f , ´fpuq ď fpxq ď fpuq, i.e.,

}f}˚ ď fpuq holds. The equality clearly holds for x “ u, and thus we

obtain }f}˚ “ fpuq (in particular, f is bounded). Assume conversely that

}f}˚ “ fpuq. For x P L` with }x}u “ 1, we have ´u ď x ď u, or 0 ď

u´ x ď u. It follows that }u´ x}u ď 1, and because }f}˚ “ fpuq, we obtain

|fpuq ´ fpxq| ď fpuq, which implies fpxq ě 0.

(iv) It can be seen from (iii) that every f P L˚
` satisfies }f}˚ “ fpuq, and

thus when considered as an element of L˚˚, u is a strictly positive functional

for L˚
`. Then, applying Proposition 2.14, we obtain the claim.

(v) See Proposition 1.29 in [30]. 2

It can be verified easily that the order unit norm corresponds to the usual

operator norm in the formulation of quantum theory.

Now we can give the most general description of GPTs in terms of base

norm Banach spaces and order unit Banach spaces. We present first of all

a fundamental theorem for our description on a close relationship between

base norm Banach spaces and order unit Banach spaces (see [30, 55, 56] for

the proof).

Theorem 2.22

(i) Let pL,Bq be a base norm Banach space. Then, with eB the intensity

functional of B such that B “ tx P L` | eBpxq “ 1u, pL˚, eBq is an order

unit Banach space, and L˚
` :“ tf P L˚ | fpxq ě 0 for all x P L`u is its

positive cone. Moreover, the order unit norm on L˚ coincides with the usual

Banach dual norm.

(ii) Let pL, uq be an order unit Banach space. Then, with Bu :“ tf P L˚
` |

fpuq “ 1u, pL˚, Buq is a base norm Banach space, and L˚
` :“ tf P L˚ |

fpxq ě 0 for all x P L`u is its positive cone. Moreover, the base norm in L˚

coincides with the usual Banach dual norm, and Bu is a weakly* compact

subset of L˚.

In the next subsection, we interpret this theorem in the language of GPTs

and present the most standard formulation of GPTs based on it.
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2.1.4 Standard formulations of GPTs

We adopt Theorem 2.22 (i) to our expression of GPTs. To do this, we

recall that in Subsection 2.1.2 (Theorem 2.7) the state space of a GPT was

shown to be represented as a convex subset Ω of some Banach space V (note

that 0 R Ω by its construction). We presented that the embedding vector

space V is constructed by V “ spanpΩq, and there is a convex, pointed, and

generating cone K in V given by K “ conepΩq. Moreover, we defined a

norm in V such that

}v} “ inftα ` β | v “ αp ´ βq, α, β ě 0, p, q P Ωu

(see (2.8)), and found that V is a Banach space and Ω and K are closed with

respect to the norm. These observations can be interpreted in the language

of ordered Banach spaces. That is, V is a base norm Banach space whose

positive cone V` is given by V` “ K “ conepΩq with its closed base Ω and is

closed and generating. On the other hand, it follows from Proposition 2.14

that there exists a strictly positive functional eΩ such that eΩpωq “ 1 for all

ω P Ω. Then, Proposition 2.17 (i) and Theorem 2.22 (i) result in that this

eΩ is an element of the Banach dual V ˚, and in fact is an order unit of V ˚

ordered via the cone V ˚
` . Since V “ spanpΩq, we can find that the order unit

eB coincides with the unit effect u P V ˚ (see Theorem 2.7 (iii)). Overall, we

have obtained the following observation.

Theorem 2.23

A GPT is given by pΩ, EΩq, where

1. the state space Ω is a closed base of the closed positive cone V` in some

base norm Banach space V such that V` “ conepΩq and V “ spanpΩq;

2. the effect space EΩ is a subset r0, us “ te P V ˚ | 0 ď e ď uu of the order

unit Banach space V ˚ such that V ˚ is the Banach dual of V ordered

via V ˚
` :“ tf P V ˚ | fpxq ě 0 for all x P L`u and u is the order unit

of V ˚ determined by upωq “ 1 for all ω P Ω.

The contents of Theorem 2.23 are the most general formulation of GPTs.

We remark that the positive cone V` represents the set of all “unnormalized”

states, which are not necessarily mapped to 1 by the unit effect u, and that

EΩ spans V ˚ because V ˚
` is generating. We define another primitive notion

of observables based on this representation.13

13Observables can be introduced also in terms of the abstract description of convex
structures [43], but in this thesis, we present the definition of observables after embedding
them into vector spaces for simplicity.
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Definition 2.24

Let pΩ, EΩq be a GPT. An observable whose outcome space is given by a

measurable space pX,Aq is defined as a normalized effect-valued measure E

on pX,Aq, i.e., E : A Ñ EΩ such that

(i) EpXq “ u;

(ii) Ep
Ť

i Uiq “
ř

iEpUiq for any countable family tUiu of pairwise disjoint

sets in A (the sum converges in the weak* topology on V ˚).

When the outcome set X of an observable E is finite, we often describe

it as E “ texuxPX with ex “ Eptxuq representing the yes-no measurement

corresponding to the outcome x P X. We also use the notation E “ teiu
l
i“1

when |X| “ l pl ă 8q, where ei represents the ith yes-no measurement. We

note that
ř

xPX ex “ u and
řl
i“1 ei “ u hold. In this thesis, we assume

that observables are composed of a finite number of nonzero effects, and the

trivial observable tuu is not considered.

Although those descriptions above are of the most general form including

theories with dimV “ 8, we are interested only in finite-dimensional cases

in this thesis, and present it explicitly as a mathematical assumption.

Mathematical assumption 3 (Finite dimensionality)

Any GPT pΩ, EΩq is associated with a finite-dimensional Euclidean space Rd

pd ă 8q.

We note that any Hausdorff topological vector space of finite dimension is

isomorphic linearly and topologically to the Euclidean space with the same

dimension, and the norm, weak, and weak* topologies on a Banach space and

its dual are Hausdorff (thus these topologies coincide with each other to be

Euclidean in finite-dimensional cases) [50, 58]. It should be also noted that

a finite-dimensional vector space is isomorphic to its dual. If a GPT satisfies

Mathematical assumption 3, then we call it a finite-dimensional GPT. Let us

develop how we can simplify the formulation of GPTs shown in Theorem 2.23

when dealing with finite-dimensional theories. The following facts derived

for the standard Euclidean topology are useful [30, 50, 60].

Proposition 2.25

Let L “ Rd be a finite-dimensional ordered vector space (in particular, an

ordered Banach space with respect to the Euclidean norm) whose positive

cone L` is generating.

(i) The condition that L` is generating is equivalent to the condition that

L` has an interior point.

(ii) L` is closed if and only if L is Archimedean.

(iii) If L` is closed, then the following statements for e P L˚
` are equivalent

(note that the Banach dual cone L˚
` is a positive cone for L˚ because L` is

generating, and thus makes L˚ an ordered vector space):
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1. e is strictly positive, i.e., epxq ą 0 for all x P L`zt0u;

2. e is an interior point of L˚
`;

3. e is an order unit in L˚.

(iv) If L` is closed and B is a base of L`, then B is bounded.

(v) If L` is closed, then L` admits a bounded base, i.e., there exists a

bounded base for L`.

(vi) If L` is closed, then all types of dual L1, L3, and L˚ coincide with each

other.

Proof

In this proof, we denote the ordering of L by ď (thus, x ě 0 if and only if

x P L`).

(i) Let u be an interior point of L`. Then, there exists an open ball C in

L such that u ` C Ă L`. For v P C, because C is a ball and thus ´v P C,

we have u ˘ v ě 0, i.e., ´u ď v ď u. Therefore, we obtain C Ă r´u, us,

i.e., u is an order unit, which implies that L` is generating (see the proof

of Proposition 2.21 (i)). Assume conversely that L` is generating. It is

not difficult to see that the maximal set tviu
k
i“1 of linearly independent el-

ements in L` is a basis of L (and thus k “ d). Let us consider a subset

U :“ tv P L | v “
řd
i“1 λivi with

řd
i“1 |λi| ă 1u of L. Because a map } ¨ }1 on

L given by }
řd
i“1 λivi}

1 “
řd
i“1 |λi| defines a norm on L, the above U is an

open subset in L (remember that all norm topologies are equivalent to each

other in finite-dimensional cases). Defining v‹ :“
řd
i“1 vi P L`, we can see

that for any v “
řd
i“1 λivi P U , v‹ ` v “

řd
i“1p1 ` λiqvi P L` holds because

vi P L` and 1 ` λi ą 0. This implies v‹ `U Ă L`, and thus v‹ is an interior

point of L`.

(ii) Suppose that L` is closed. If x, y P L satisfy nx ď y for all n P N, then

a sequence t 1
n
y ´ xun in L` converges to ´x P L`, and thus we have x ď 0.

Conversely, suppose that L is Archimedean, and consider x P L`. With

y P intpL`q, where intpL`q is the nonempty interior of L` (see (i)), we

can see that 1
n`1

y ` p1 ´ 1
n`1

qx P intpL`q holds for any n P N. It follows

that y ` nx P intpL`q Ă L`, and thus ´nx ď y for all n P N. Since L is

Archimedean, we obtain x ě 0, which means L` Ă L`.

(iii) (1Ñ2) Let e P L˚ be strictly positive, and consider a unit ball C :“ tx P

L | }x} ď 1u and a unit sphere D :“ tf P L | }x} “ 1u in L, where } ¨ } is

the Euclidean norm. Because L` is closed and L “ Rd is finite-dimensional,

S :“ L` X D is a compact subset of L. It implies that there exists a mini-

mum value M ą 0 for the strictly positive and continuous functional e on S.

On the other hand, if we define a unit ball C˚ :“ tf P L˚ | }f}˚ ď 1u in L˚

with the Banach dual norm } ¨ }˚ (which is equivalent to Euclidean norm in

this finite-dimensional case), then, for f P C˚, we have }f}˚ “ supyPD |fpyq|
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[58], and thus ´1 ď fpyq ď 1 holds for all y P S. It follows that if we take

0 ă ε ă M , then the functional e` εf satisfies pe` εfqpyq ą 0 for all y P S.

Since this holds for every f P C˚ and any x P L` can be represented as

x “ λy with λ “ }x} ě 0 and y P S, we can conclude that e ` εC˚ Ă L˚
`,

i.e., e is an internal point of L˚
`.

(2Ñ3) Because e is an interior point of L˚
`, for every f P L˚, there exist

α, β ą 0 such that e` αf P L˚
` and e` βp´fq P L˚

`. It can be rewritten as

´ 1
α
e ď f ď 1

β
e, and thus we can conclude that e is an order unit in L˚.

(3Ñ1) Suppose that there exists x0 P L`zt0u such that epx0q “ 0. Since e

is an order unit, for f P L˚, there exists n P N such that ´ne ď f ď ne, i.e.,

fpx0q “ 0. Because this holds for all f P L˚, we obtain x0 “ 0, which is a

contradiction.

(iv) Let eB be the intensity functional for B, which is strictly positive ac-

cording to Proposition 2.14. Since any linear functional is continuous in

a finite dimensional topological vector space (see Theorem 3.4 in [50]), we

obtain eB P L˚
`. It follows from (iii) that eB is an order unit in L˚, and

thus, for f P L˚, there exists n P N such that ´neB ď f ď neB. We obtain

|fpxq| ď n for all x P B, and because f P L˚ is arbitrary, we can conclude

that B is bounded.

(v) For the unit sphere D in L introduced above, consider T :“ L` XD and

its convex hull T 1 :“ convpT q. Clearly, T 1 does not include 0, and we can find

that T 1 is compact because T is compact (see Theorem 10.2 in [50]). Thus,

there exists x0 P T 1 such that the continuous norm function } ¨ } takes its

minimum in T 1. It follows that any x1 P T 1 satisfies }x0} ď }x0 ´ tpx0 ´ x1q}

for 0 ď t ď 1 because x0 ´ tpx0 ´ x1q “ p1 ´ tqx0 ` tx1 P T 1. It can be

rewritten as t2}x0 ´x1}2 ´ 2tpx0, x0 ´x1qE ě 0, where p¨, ¨qE is the Euclidean

inner product in L “ Rd. Since this holds for all 0 ď t ď 1, it must hold

that px0, x0 ´x1qE ď 0, that is, any x1 P T 1 satisfies px0, x
1qE ě px0, x0qE ą 0.

On the other hand, any x P L` can be written as x “ }x}y with y P D (in

particular, y P T 1). Therefore, we obtain px0, xqE ą 0 for all x P L`zt0u. By

means of the Riesz representation theorem [58], we can identify the inner

product px0, ¨qE as an element f0 P L˚ such that f0pxq “ px0, xqE. This

f0 is a strictly positive functional for L`, and thus defines a base, which is

bounded as shown in (iv).

(vi) As we have seen in (iv) above, any linear functional on L “ Rd is con-

tinuous, and thus we obtain L˚ “ L1 (and L˚
` “ L3

`). On the other hand, it

follows from (v) above that there are a base B in L and a strictly positive

functional eB P L˚
` associated with B. Then, (iii) and (i) implies that the

Banach dual cone L˚
` generates the Banach dual L˚, and because L˚

` “ L3
`,

we can conclude the claim (remember that the order dual L3 is given by

L3 “ spanpL3
`q). 2
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Remark 2.26

Proposition (iii)-(vi) do not necessarily hold when L` is not closed. To

confirm this, let us consider the case when L “ R2 and L` “ tpx, yq P R2 |

y ą 0u Y p0, 0q. It is easy to see that L` defines a convex, pointed, and

generating cone, but we cannot find a bounded base for this L` or verify

L˚ “ L3.

Theorem 2.23 now can be rewritten as follows.

Corollary 2.27

A GPT is given by pΩ, EΩq, where

1. the state space Ω is a compact convex set of some finite-dimensional

Euclidean space V “ RN`1 pN ă 8q such that spanpΩq “ V and

0 R aff pΩq (in particular, dim aff pΩq “ N holds14);

2. the effect space EΩ is a subset r0, us “ te P V ˚ | 0 ď e ď uu of the dual

space V ˚ of V such that upωq “ 1 for all ω P Ω.15

The mathematical expression given in Corollary 2.27 is the standard for-

mulation of GPTs in this thesis, and all observations on GPTs are based

on this description. We note that order structures similar to the ones de-

scribed in Theorem 2.23 can be introduced for these finite-dimensional V

and V ˚. In fact, in Corollary 2.27, we can verify easily that an order struc-

ture can be introduced for V by a generating cone V` :“ conepΩq, and Ω is

a compact (thus closed) base for V` with which V is a base norm Banach

space. There we can also find that V ˚ can be ordered via a generating cone

V ˚
` :“ tf P V ˚ | fpxq ě 0 for all x P L`u, and the functional u, which is

the intensity functional for the base Ω, is an order unit with which V ˚ is an

order unit Banach space.

Let us further introduce several notions about finite-dimensional GPTs.

For a state space Ω, we can consider its extreme points16, and denote the

set of all extreme points of Ω by Ωext “ tωext
i uiPI , where I is an index

set. Because Ω is a compact convex set in RN`1, thanks to the Krein-

Milman theorem, Ωext is not empty and Ω “ convpΩextq [49, 50, 58]. Similar

arguments also hold for the corresponding effect space EΩ since EΩ “ V ˚
` X

pu ´ V ˚
` q and Proposition 2.21 (ii) imply EΩ is closed and bounded, i.e.,

compact.17

14For an affine set A of a finite-dimensional vector space L, its dimension dimA is
defined as the dimension of the set A ´ a0pa0 P Aq as a vector subspace of L.

15Although the dual space V ˚ of V is isomorphic to RN`1, we do not identify them
here (see Subsection 2.4.2).

16For a convex subset C in a vector space, x P C is called an extreme point of C if
x “ λy ` p1 ´ λqz with y, z P C and 0 ă λ ă 1 implies y “ z “ x.

17Therefore, the effect space EΩ is closed under infinite countable mixtures.
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Definition 2.28

(i) An extreme point of Ω is called a pure state, and a state which is not

pure is called a mixed state.

(ii) An extreme point of EΩ is called a pure effect, and an effect which is not

pure is called a mixed effect.

(iii) An effect e is called indecomposable if e ‰ 0 and a decomposition e “

e1 ` e2, where e1, e2 P EΩ, implies that both e1 and e2 are scalar multiples

of e. We denote the set of all pure and indecomposable effects (shown to be

nonempty [61]) by Eext
Ω “ teextj ujPJ , where J is an index set.

It is easy to see that the unit effect u is pure and eK :“ u ´ e P EΩ is

pure whenever e P EΩ is pure. It can be also observed that pure and inde-

composable effects correspond to rank-1 projections in quantum theory (see

Subsection 2.5.2), and that an effect e P EΩ is indecomposable if and only if

e is on an extremal ray of V ˚
` .18 We call two GPTs pΩ1, EΩ1q and pΩ2, EΩ2q

equivalent if there exists an affine bijection (affine isomorphism) ψ such that

ψpΩ1q “ Ω2. In this case, we can find easily that EΩ2 “ EΩ1 ˝ ψ´1, and thus

physical predictions are covariant (equivalent), which can be regarded as a

physical expression of Proposition 2.5 (ii). We remark that the affine iso-

morphism ψ is indeed a linear isomorphism on the underlying vector space

V1 “ spanpΩ1q and V2 “ spanpΩ2q (see the proof of Proposition 2.5 (ii)). A

set of m states tω1, ω2, ¨ ¨ ¨ , ωmu is called perfectly distinguishable if there ex-

ists an observable te1, e2, ¨ ¨ ¨ , emu such that eipωjq “ δij, i, j “ 1, 2, ¨ ¨ ¨ , m.

In general, we can not identify the state of a system by a single measurement.

However, for perfectly distinguishable states, there exists a measurement by

which we can detect perfectly in which state the system is prepared.

Remark 2.29

There is a physical interpretation for the mathematical assumption of finite

dimensionality. In [22], Hardy assumed that any state is determined by a

finite set of effects named fiducial measurements. If we denote the finite

set of fiducial measurements by tefidi uNi“0 pN ă 8q, then it is equivalent to

regarding a state ω as a vector

ω “

¨

˚

˚

˚

˝

a0
a1
...

aN

˛

‹

‹

‹

‚

, (2.14)

where the ith row ai represents the probability efidi pωq. It is easy to see that

Hardy’s formulation is consistent with ours: the state space Ω composed

18A ray P Ă V ˚
` is called an extremal ray of V ˚

` if x P P and x “ y ` z with y, z P V ˚
`

imply y, z P P .
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by ω of the form (2.14) is a compact (or closed and bounded) convex set

in RN`1 (by requiring completeness), and the normalization upωq “ 1 for

the unit effect u yields the condition dim aff pΩq “ N . We note that similar

formulations for infinite-dimensional cases are given in [40]. That is, a state

ω is regarded as an element of the product set r0, 1sE with a set of effects E
similarly to (2.14), and the state space is a subset of r0, 1sE which is compact

with respect to the pointwise convergence topology (i.e., the weak* topology)

because r0, 1sE is compact with respect to this topology due to Tychonoff’s

theorem [62] (see also Theorem 2.22 (ii)).

Remark 2.30

In our formulation, effects are constructed from states in the way how a

state space is given first as a closed base of a base norm Banach space and

then effects are given in its dual (see Theorem 2.23 and Corollary 2.27). On

the other hand, as in the operator algebraic formulation of quantum theory

[40, 63], it should be allowed to construct theories starting with effects. In

fact, for a finite-dimensional GPT pΩ, EΩq, if we consider the set Θ :“ tx P

V ˚˚
` | xpuq “ 1u, where V ˚˚ is the double Banach dual of V or the Banach

dual of V ˚, i.e., V ˚˚ “ pV ˚q˚ , then by means of the canonical identification

of V with V ˚˚ it holds that Θ “ Ω.19 This can be proven in a similar way

to Proposition 2.5 (i) by just regarding Ω as S (an explicit proof is given

in [31]). For general cases, as was proven that states represented by a total

convex structure can be embedded into a base norm Banach space, one can

show that an abstract expression of effects called a convex effect algebra

(with some completeness) can be embedded into an order unit Banach space

[64, 65, 66]. Then, due to Theorem 2.23, we can obtain successfully the

corresponding state space in a base norm Banach space. Moreover, if Ω is

weakly compact, which is identical to the reflexivity of the base norm Banach

space V (V “ V ˚˚) [67], then Θ “ Ω holds also in an infinite-dimensional

case.

2.2 Composite systems

In the previous section, we have presented the mathematical formulation of

single systems in GPTs. Then, it is natural to ask how a system composed

of several single systems, a composite system, is described mathematically in

GPTs. This is also motivated by another physical reason that it is in general

difficult to isolate perfectly a system from environments: a composite system

19A triple pV, V`, uq, where V is a finite-dimensional ordered vector space with a closed
positive cone V` and u P V ˚ is a strictly positive functional on V , is sometimes called
an abstract state space [29]. The subset V` X u´1p1q in this formulation corresponds to a
state space in our formulation.
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of the target system and its environments emerges naturally [41]. In this

part, we establish the mathematical formulation of composite systems in

GPTs based on that of single systems. We note that we only study theories

for bipartite systems in this thesis. Our description may seem to be only

for limited cases and not general, but it is in fact an essential one also for

multipartite cases20, and we can develop sufficiently interesting observations

for this simplest scenario.

Let us consider a composite system composed of two single systems char-

acterized by GPTs pΩA, EΩA
q and pΩB, EΩB

q. By convention, we suppose that

the two subsystems are controlled by Alice and Bob respectively. A funda-

mental assumption that is usually assumed implicitly is that the total system

is also expressed by a GPT. In the following, we follow this assumption, and

denote the GPT for the total system by pΩAB, EΩAB
q. Similarly to the pre-

vious section, we write the vector spaces that embed canonically ΩA, ΩB,

and ΩAB as VA, VB, and VAB respectively (thus the dual vector space V ˚
A

embeds canonically EΩA
, for example). For the joint system, it is natural to

require that every individual and independent preparation or measurement

by Alice and Bob is a valid preparation or measurement in the bipartite

system respectively. It is also reasonable to assume that if such an inde-

pendent preparation by Alice or Bob is probabilistic with some probability

weight, then the total preparation is also probabilistic with the same prob-

ability weight (similarly for independent measurements). Its mathematical

expression is given as follows [30].

Axiom 4 (Validity of individual preparations and measurements)

There exist bi-affine maps ϕ : ΩA ˆ ΩB Ñ ΩAB and ψ : EΩA
ˆ EΩB

Ñ EΩAB

such that

rψpeA, eBqs pϕpωA, ωBqq “ eApωAq ¨ eBpωBq (2.15)

for all ωA P ΩA, ωB P ΩB and eA P EΩA
, eB P EΩB

. Each ϕpωA, ωBq and

ψpeA, eBq are called a product state and a product effect respectively.

In the assumption, each product state ϕpωA, ωBq represents the individual

preparation of ωA and ωB by Alice and Bob, and the individual convexity

is reflected via the notion of bi-affinity of the map ϕ (similarly for each

product effect ψpeA, eBq and the map ψ). We also require that if Alice and

Bob measure their respective unit effects uA and uB individually on any joint

state (not necessarily a product state), then the observed probability is 1.

In other words, the unit effect of the total system is ψpuA, uBq.

20For the description of multipartite systems, see [29, 31].
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Axiom 5 (Unit effect of the total system)

The unit effect uAB of the joint system is given by the product effect ψpuA, uBq

of each unit effect uA and uB of Alice and Bob respectively.

Let us give an easy consequence of these axioms according mainly to [30].

Lemma 2.31

Assume Axiom 4 and Axiom 5. There are linear injections Φ: VA b VB Ñ

VAB and Ψ: V ˚
A b V ˚

B Ñ V ˚
AB such that

(i) ΦpωA b ωBq “ ϕpωA, ωBq for all ωA P ΩA and ωB P ΩB;

(ii) ΨpeA b eBq “ ψpeA, eBq for all eA P EΩA
and eB P EΩB

;

(iii) uAB “ ΨpuA b uBq.

Proof

Let us first construct a bi-linear extension Φ1 on VA ˆ VB of the bi-affine

map ϕ on ΩAˆΩB. Due to the assumption of the bi-affinity, ϕpωA, ¨q defines

an affine map from ΩB to ΩAB for a fixed ωA P ΩA, and it can be extended

(uniquely) to a linear map rϕ1pωAqsp¨q from spanpΩBq “ VB to spanpΩABq “

VAB such that rϕ1pωAqspωBq “ ϕpωA, ωBq for all ωB P ΩB (see the proof of

Proposition 2.5 (ii)). In this way, we obtain a map P : ΩA Ñ LpVB, VABq,

where LpVB, VABq is the set of all linear operators from VB to VAB. It is

easy to see that P is affine, and thus, similarly to the above argument, it

has a unique linear extension P : VA Ñ LpVB, VABq such that rP pωAqsp¨q “

rϕ1pωAqsp¨q for all ωA P ΩA. The bi-linear extension Φ1 of ϕ is now obtained

by Φ1pvA, vBq “ rP pvAqspvBq for vA P VA, vB P VB. Then, the existence of

the linear map Φ: VA bVB Ñ VAB satisfying ΦpvA b vBq “ Φ1pvA, vBq for all

vA P VA, vB P VB (in particular (i)) follows immediately from the universal

property of tensor product [68]. The existence of Ψ satisfying (ii) is proved

similarly, and (iii) is an easy consequence of Axiom 5.

The remaining problem is to show the injectivity of Φ. Because ΩA and

ΩB span VA and VB respectively, any vAbvB P VAbVB with vA P VA, vB P VB
is expressed as vA b vB P VAB “

ř

i,j aijω
i
A b ωjB with aij P R and ωiA P

ΩA, ω
j
B P ΩB. Similarly, any wA b wB P V ˚

A b V ˚
B with wA P V ˚

A , wB P V ˚
B is

expressed as wA bwB “
ř

k,l bkle
k
A b elB with bkl P R and ekA P EΩA

, elB P EΩB
.

Thus, we can observe from the linearity of Φ and Ψ that

rΨpwA b wBqspΦpvA b vBqq “ wApvAq ¨ wBpvBq.

Let vAB P VAB satisfy ΦpvABq “ 0. Then, since vAB is expressed by vAB “
ř

i v
i
A b viB with viA P VA, v

i
B P VB, it holds for all wA P V ˚

A , wB P V ˚
B that

rwA b wBspvABq “
ÿ

i

wApviAq ¨ wBpviBq “ rΨpwA b wBqspΦpvABqq “ 0.
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Because twAbwB | wA P V ˚
A , wB P V ˚

Bu spans V ˚
AB, we can conclude vAB “ 0,

which means that Φ is injective. The injectivity of Ψ can be proved similarly.

2

Remark 2.32

It seems to be assumed implicitly in Axiom 4 and Axiom 5 that Alice’s ac-

tions do not influence Bob, and vice versa. For example, there we require

that Alice and Bob can prepare individually their states and effects with-

out influencing each other, or we can see from the bi-affinity (bi-linearity)

of ψ that the statistics observed by Alice alone are independent of Bob’s

measurements: for any joint state ωAB, the probability of Alice observing

eA P EΩA
does not depend on Bob’s measurement tf 1 i

B ui because it holds

that
ÿ

i

rψpeA, f
1 i
B qspωABq “ rψpeA, uBqspωABq.

In fact, Axiom 4 and Axiom 5 can be rephrased in terms of the so-called

no-signaling principle [24, 69, 70]21, or the requirement of causality [26, 27].

There is another important requirement for bipartite systems. We require

that every joint state can be determined by local measurements. This claim

called the tomographic locality for states [22, 24, 71] is described mathemat-

ically as follows.

Axiom 6 (Tomographic locality for states)

If ωAB, ω
1
AB P ΩAB satisfy rψpeA, eBqspωABq “ rψpeA, eBqspω1

ABq for all eA P

EΩA
and eB P EΩB

, then ωAB “ ω1
AB.

Lemma 2.33

Assume Axiom 4, Axiom 5, and Axiom 6. The linear injections Φ and Ψ

in Lemma 2.31 are also surjective, that is, Φ is a linear bijection between

VA b VB and VAB, and Ψ between V ˚
A b V ˚

B and V ˚
AB.

Proof

Assume that V ˚
ABzΨpV ˚

A b V ˚
B q is nonempty, and w1

AB P V ˚
ABzΨpV ˚

A b V ˚
B q.

Then, because w1
AB and a basis of ΨpV ˚

A b V ˚
B q are linearly independent,

we can construct an element v1
AB of V ˚˚

AB such that v1
ABpw1

ABq “ 1 and

v1
ABpwABq “ 0 for all wAB P ΨpV ˚

A b V ˚
B q. We note that V ˚˚

AB “ VAB holds

due to the assumption of finite dimensionality, and thus v1
AB above can be

regarded as an element of VAB. It follows that if we define M :“ tvAB P

VAB | wABpvABq “ 0 for all wAB P ΨpV ˚
A b V ˚

B qu, then Mzt0u is nonempty.

In the following, we prove that M “ t0u, which implies V ˚
AB “ ΨpV ˚

A b V ˚
B q.

Let v‹
AB P M . For a state ωAB P intpVAB`q, where intpVAB`q is the interior

of the positive cone VAB` of VAB generated by ΩAB (see Proposition 2.25),

21How the no-signaling principle is formulated in GPTs is explained in detail in [70].
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we can make ω‹
AB :“ ωAB ` εv‹

AB belong to VAB` if we take sufficiently

small ε ą 0. Because uAB “ ΨpuA b uBq, it holds from the definition of

M that uABpω‹
ABq “ uABpωABq “ 1, i.e., ω‹

AB P ΩAB. Moreover, we can

find in a similar way that rΨpeA b eBqspω‹
ABq “ rΨpeA b eBqspωABq holds for

all eA P EΩA
, eB P EΩB

, and thus, from Axiom 6, ω‹
AB “ ωAB holds. This

implies v‹
AB “ 0, which means M “ t0u and V ˚

AB “ ΨpV ˚
A b V ˚

B q. Therefore,

we can conclude Ψ is surjective (i.e., bijective). Then, it is easy to derive

dimVAB “ dimVA b VB “ dimVA ¨ dimVB, and the surjectivity (bijectivity)

of Φ follows from this observation. 2

We assume Axiom 4, Axiom 5, and Axiom 6 (thus Lemma 2.33) in this thesis.

Then, it does not cause any problem to identify the subsets Φ´1pΩABq and

Ψ´1pEΩAB
q of VA b VB and V ˚

A b V ˚
B “ pVA b VBq˚ with the state space and

effect space of the joint system respectively (see the argument above Remark

2.29). We hereafter write Φ´1pΩABq simply as ΩAB, and Ψ´1pEΩAB
q as EΩAB

,

and work with these expressions of states and effects where product states

and effects are represented as ωA b ωB and eA b eB (ωA P ΩA, ωB P ΩB and

eA P EΩA
, eB P EΩB

) respectively.

Remark 2.34

One may consider Axiom 5 to be more artificial when compared to the other

axioms. In [30], it was explained that uAB “ uAbuB holds if the tomographic

locality for effects is imposed together with Axiom 4 and Axiom 6.

Let us give more detailed specifications of bipartite systems. For GPTs

pΩA, EΩA
q and pΩB, EΩB

q of local systems, we define the following classes of

convex sets [72, 73].

Definition 2.35

Let pΩA, EΩA
q and pΩB, EΩB

q be GPTs.

(i) The convex subset ΩA bmin ΩB of VA b VB defined as

ΩA bmin ΩB :“

#

ÿ

i

piω
i
A b ωiB | pi ě 0,

ÿ

i

pi “ 1, ωiA P ΩA, ω
i
B P ΩB

+

is called the minimal tensor product of ΩA and ΩB. The minimal tensor

product EΩA
bmin EΩB

of the effect spaces EΩA
and EΩB

is defined in the

same way.

(ii) The convex subset ΩA bmax ΩB of VA b VB defined as

ΩA bmax ΩB :“ tωAB P VAbVB | peA b eBqpωABq P r0, 1s,

eA P EΩA
, eB P EΩB

, puA b uBqpωABq “ 1u
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is called the maximal tensor product of ΩA and ΩB. The maximal tensor

product EΩA
bmax EΩB

of the effect spaces EΩA
and EΩB

is defined in the

same way.

It is verified easily that the minimal and maximal tensor products are dual

to each other in the sense that EΩAbminΩB
“ EΩA

bmax EΩB
and EΩAbmaxΩB

“

EΩA
bmin EΩB

hold. A similar observation can be obtained if we start from

effects (see Remark 2.30). We also note that ΩA bmin ΩB Ă ΩA bmax ΩB

clearly holds.

By means of the axioms introduced so far, we can specify the joint state

space ΩAB in the following way. First, it can be found that ΩAB must include

ΩAbminΩB because product states and probabilistic mixtures are required to

exist. Similarly, the existence of product effects are imposed, and it follows

that ΩAB is included in ΩA bmax ΩB. We have now obtained the following

description for bipartite systems.

Theorem 2.36

Let pΩAB, EΩAB
q be a GPT describing a bipartite system composed of two

subsystems pΩA, EΩA
q and pΩB, EΩB

q. Then,

ΩA bmin ΩB Ă ΩAB Ă ΩA bmax ΩB (2.16)

holds. Dually,

EΩA
bmin EΩB

Ă EΩAB
Ă EΩA

bmax EΩB
(2.17)

holds.

It can be found that when a bipartite system pΩAB, EΩAB
q composed of

pΩA, EΩA
q and pΩB, EΩB

q satisfies both (2.16) and (2.17), then Axiom 4,

Axiom 5, and Axiom 6 hold. In fact, Axiom 4 and Axiom 5 clearly hold,

and because any element of V ˚
AB can be written as a linear combination of

effects of the form eA b eB (remember that EΩA
and EΩB

span V ˚
A and V ˚

B

respectively), Axiom 6 also can be verified.

Definition 2.37

Each element of ΩA bmin ΩB is called a separable state, and an element of

the form ωA b ωB is particularly called a product state. Each element of

ΩA bmax ΩBzΩA bmin ΩB is called an entangled state. Separable effects,

product effects, and entangled effects are defined in the same way.

It should be noted that entangled states exist unless either theory is classical.

More precisely, it was shown in [74] that ΩA bmin ΩB “ ΩA bmin ΩB holds

if and only if either ΩA or ΩB is a simplex (i.e., a classical theory).
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Example 2.38 (Quantum theory over a real Hilbert space)

Let K “ Rd (d ă 8) be a finite-dimensional real Hilbert space. We can

consider a GPT whose state space is given by ΩrQTpKq “ tρ P LSpKq | ρ ě

0, Trrρs “ 1u with LSpKq the set of all self-adjoint operators on K. The real

quantum theory described by ΩrQTpKq often appears in the field of GPTs

when deriving the standard quantum theory (i.e., complex quantum theory)

from physical principles [22, 51]. It is easy to see that aff pΩrQTpKqq and the

standard embedding vector space V pKq are given by aff pΩrQTpKqq “ tρ P

LSpKq | Trrρs “ 1u and V pKq “ LSpKq respectively. We can also observe

that dim aff pΩrQTpKqq “ 1
2
pd2 ` dq ´ 1 and dimV pKq “ 1

2
pd2 ` dq hold (in

particular, dimV pKq “ dim aff pΩrQTpKqq ` 1 holds). Suppose in analogy

with the formulation of a finite-dimensional quantum theory over a complex

Hilbert space that the state space of the composite system composed of two

identical state spaces ΩrQTpKq is given by ΩrQTpK b Kq “ tρ P LSpK b Kq |

ρ ě 0, Trrρs “ 1u. Then, we can derive

dimVA ¨ dimVB “ r1
2

`

d2 ` d
˘

s2, dimVAB “ 1
2

`

d4 ` d2
˘

,

where VA “ VB “ V pKq and VAB “ V pK bKq are the respective embedding

vector spaces of the individual and the total state spaces. It implies dimVA ¨

dimVB ă dimVAB, i.e., VAbVB “ VAB does not hold. Thus, we can conclude

that the tomographic locality is not satisfied in a finite-dimensional quantum

theory over a real Hilbert space (it is not difficult to see that Axiom 4 and

Axiom 5 hold in this case).22

2.3 Transformations

In this section, we explain how transformations between systems are for-

mulated in GPTs, which completes our review for basic notions on GPTs.

It will be found that not only state changes such as time evolutions but

also measurements can be described in terms of transformations or chan-

nels, which are more refined forms of transformations. We also introduce

the notions of compatibility and incompatibility for channels, which play a

key role in the following chapters.

2.3.1 Channels in GPTs

In quantum theory, transformations of systems is described via the notion

of channels [41, 76]. In this part, we explain how channels are generalized

in GPTs according mainly to [31, 77].

22We can also eliminate a finite-dimensional quantum theory over a quaternionic Hilbert
space by a similar observation [75].
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Definition 2.39

Let pΩ1, EΩ1q and pΩ2, EΩ2q be GPTs. An affine map T : Ω1 Ñ Ω2 is called a

channel from Ω1 to Ω2. A linear map T : V1 Ñ V2, where V1 and V2 are the

embedding vector spaces of Ω1 and Ω2 respectively, is equivalently called a

channel from Ω1 to Ω2 if T pΩ1q Ă Ω2 (thus it is positive in the sense that

T ppV1q`q Ă T ppV2q`q23). We denote the set of all channels from Ω1 to Ω2 by

CpΩ1,Ω2q, and denote the set CpΩ1,Ω1q simply by CpΩ1q

A channel T : V1 Ñ V2 in the above definition induces a map T 1 : V ˚
2 Ñ V ˚

1

such that rT 1espωq “ epTωq for all e P EΩ2 and ω P Ω1. In this way, we can

focus on transformations between effects instead of transformations between

states. However, in this thesis, when channels are considered, they always

represent transformations between states, that is, the Schrodinger picture is

adopted although similar arguments can be developed with channels consid-

ered as transformations between effects (the Heisenberg picture).

It is easy to obtain the following observations.

Proposition 2.40

Let pΩ1, EΩ1q, pΩ2, EΩ2q, and pΩ3, EΩ3q be GPTs.

(i) For S, T P CpΩ1,Ω2q, if we define λT`p1´λqT 1 as rλT`p1´λqT 1spω1q “

λT pω1q ` p1 ´ λqT 1pω1q p0 ď λ ď 1q, then λT ` p1 ´ λqT 1 P CpΩ1,Ω2q

(ii) If S P CpΩ1,Ω2q and T P CpΩ2,Ω3q, then T ˝ S P CpΩ1,Ω3q.

Let us give several examples of channels.

Example 2.41 (Basic examples of channels)

Let pΩ1, EΩ1q, pΩ2, EΩ2q be GPTs, and V1 and V2 be the canonical embedding

vector spaces of Ω1 and Ω2 respectively.

(i) If we define a map idΩ1 : Ω1 Ñ Ω1 by idΩ1pω1q “ ω1 for all ω1 P Ω1, then

idΩ1 P CpΩ1q. We call idΩ1 the identity channel on Ω1.

(ii) If we define a map Tω˚ : Ω1 Ñ Ω2 by Tω˚pω1q “ ω˚ pω˚ P Ω2q for all

ω1 P Ω1, then Tω˚ P CpΩ1,Ω2q.

(iii) Consider a bipartite system pΩ12, EΩ12q composed of pΩ1, EΩ1q, pΩ2, EΩ2q.

For the linear maps idΩ1 : V1 Ñ V1 and u2 : V2 Ñ R, where idΩ1 is the identity

channel on Ω1 and u2 is the unit effect on Ω2, we define their tensor product

idΩ1 b u2. Then, idΩ1 b u2 as a linear map from V1 b V2 to V1 is a channel

from Ω12 to Ω1, and called the partial trace.

We can demonstrate that even the fundamental notions of states and ob-

servables can be represented in terms of channels. To show this, we need to

define the following convex sets.

23It is sometimes more convenient to consider a linear map T : V1 Ñ V2 satisfying
T ppV1q`q Ă T ppV2q`q and u2pT pωqq ď 1 (ω P Ω1), where u2 is the unit effect for Ω2, as
representing a transformation of states. Such positive and normalization-nonincreasing
maps in GPTs correspond to the notion of operations in quantum theory [78], although
operations in quantum theory are sometimes assumed also to be completely positive [76].
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Definition 2.42

Let txiu
n`1
i“1 be a set of affinely independent24 vectors in Rd pd ě nq. The

convex set convptxiu
n`1
i“1 q is called an n-dimensional simplex [49]. In partic-

ular, we denote the simplex generated by orthonormal vectors tpiu
n`1
i“1 with

p1 “ p1, 0, . . . , 0q, p2 “ p0, 1, 0, . . . , 0q, . . . simply by ∆n, and call it the n-

dimensinoal standard simplex. It is trivial that any n-dimensional simplex

is isomorphic to ∆n.

Example 2.43 (States, observables, and instruments as channels)

Let pΩ1, EΩ1q, pΩ2, EΩ2q be GPTs, and let us follow the similar notations in

Definition 2.42 above.

(i) A state ω P Ω1 is equivalent to a channel from ∆1 to Ω1 by the identifi-

cation of ω with a channel Pω : ∆1 Ñ Ω1 defined as Pωpp1q “ ω. Similarly,

we can introduce a conditional preparation channel Ptωiu
n`1
i“1

P Cp∆n,Ω1q

by Ptωiu
n`1
i“1

pvq “
řn`1
i“1 viωi, where vi is the ith element of the vector v P

Rn`1. The channel Ptωiu
n`1
i“1

represents an apparatus which outputs the

states tωiu
n`1
i“1 according to the proportion determined by a classical input

v “ pv1, . . . , vn`1q.

(ii) An observable E “ teiu
n`1
i“1 on Ω1 with pn ` 1q outcomes is equiva-

lent to a channel from Ω1 to ∆n by the identification of E with a channel

ME : Ω1 Ñ ∆n defined as MEpωq “ pe1pωq, . . . , en`1pωqq “
řn`1
i“1 eipωqpi.

(iii) For a conditional preparation channel Ptωiu
n`1
i“1

P Cp∆n,Ω2q and a mea-

surement channel ME : Ω1 Ñ ∆n, the composition Ptωiu
n`1
i“1

˝ME P CpΩ1,Ω2q

is called a measure-and prepare channel. Preparation channels or measure-

ment channels in (i) or (ii) above respectively are examples of measure-and

prepare channels (see [31] for other examples).

(iv) A channel from Ω1 to Ω1 bmin ∆n is called an instrument. It outputs

the measurement outcomes of an observable and the ensemble of the post

measurement states.

Remark 2.44

In this part, we introduce channels in GPTs as positive and normalization-

preserving maps, while in quantum theory channels are defined as trace-

preserving (normalization-preserving) and completely positive maps [41, 76,

79]. The notion of complete positivity can be introduced also in GPTs based

on the above formulation of bipartite systems [31]. However, completely pos-

itive maps do not always correspond to physical processes in GPTs. This

is because, while in quantum theory all completely positive maps are physi-

cally valid transformations in the sense that their physical implementations

exist via the Steinspring’s theorem [80], there is in general not ensured the

existence of such physical implementations in GPTs.

24Vectors v0, v1, . . . , vn in a vector space V are called affinely independent if the
vectors v1 ´ v0, . . . , vn ´ v0 are linearly independent.
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2.3.2 Compatibility and incompatibility for channels

In quantum theory, we cannot always obtain simultaneously statistics for a

pair of observables such as position and momentum, or cannot always dupli-

cate a family of states [20]. These impossibilities are essential ingredients of

quantum theory: for example, without them, the violation of Bell inequality

or the security of quantum cryptography never occurs. Those impossibilities

can be described by the notion of incompatibility in a unified way [21]. In this

part, we demonstrate that the notion of incompatibility can be introduced

successfully also in GPTs.

Definition 2.45

Let pΩ1, EΩ1q, pΩ2, EΩ2q, and pΩ3, EΩ3q be GPTs, and pΩ23, EΩ23q be a GPT

which describe a joint system of pΩ2, EΩ2q and pΩ3, EΩ3q. Channels S P

CpΩ1,Ω2q and T P CpΩ1,Ω3q are called compatible if there exists a channel

R P CpΩ1,Ω23q called the joint channel of S and T such that the marginal

actions of R reproduce each action of S and T , that is,

pidΩ2 b u3q ˝ R “ S,

pu2 b idΩ3q ˝ R “ T,

where idΩ2 b u3 and u2 b idΩ3 are the partial traces in Ω23 (see Example

2.41). If S and T are not compatible, then they are called incompatible

This definition of incompatibility applies to cases when three or more chan-

nels are considered. For incompatibility of observables, we can derive a

simpler expression.

Proposition 2.46

Let pΩ, EΩq be a GPT, and ME and MF be the measurement channels asso-

ciated with observables E “ teiu
l
i“1 and F “ tfju

m
j“1 on Ω respectively (see

Example 2.43 (ii)). Then, ME and MF are compatible if and only if there

exists an observable (called a joint observable) G “ tgiju
l,m
i“1,j“1 on Ω such

that
m
ÿ

j“1

gij “ ei,
l

ÿ

i“1

gij “ fj.

Proof

If there exists an observable G “ tgiju
l,m
i“1,j“1 on Ω such that

m
ÿ

j“1

gij “ ei,
l

ÿ

i“1

gij “ fj,

then it is easy to see that the measurement channel MG P CpΩ,∆l´1 bmin

∆m´1q defined asMGpωq “ pm11pωq, . . . ,mlmpωqq “
ř

i,jmijpωqpibpj, where
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p1 “ p1, 0, 0, . . .q, p2 “ p0, 1, 0, . . .q, (see Definition 2.42), is a joint channel

of ME and MF . We note that the composite of two simplices is always given

by their minimal tensor product. Conversely, if there exists a joint channel

M P CpΩ,∆l´1 bmin ∆m´1q of ME and MF , then, representing Mpωq P

∆l´1 bmin ∆m´1 as Mpωq “
ř

Mpωqijpi b pj (Mpωqij P r0, 1s), we obtain
ř

jMpωqij “ eipωq and
ř

iMpωqij “ fjpωq. We can naturally introduce

effects mij : Ω Ñ r0, 1s by mijpωq “ Mpωqij, and it is easy to verify that
ř

jmij “ ei and
ř

imij “ fj (and thus
ř

i,jmij “ u, i.e., tmijui,j is an

observable). 2

In [81], it was shown that there exists an incompatible pair of observables

in every finite-dimensional GPT unless it is classical. We can present the

existence of another type of incompatibility.

Example 2.47 (Generalized no-broadcasting theorem)

Let pΩ, EΩq be a GPT, and let pΩ12, EΩ12q be a GPT describing a composite

system of pΩ1, EΩ1q and pΩ2, EΩ2q, where Ω1 “ Ω2 “ Ω. A set of states

tωiui Ă Ω is called broadcastable if there exists a channel T P CpΩ,Ω12q such

that pidΩ1 b u2qpT pωiqq “ ωi and pu1 b idΩ2qpT pωiqq “ ωi hold for all i. It

was shown in [23, 25] (see also [31]) that tωiui Ă Ω is broadcastable if and

only if it lies in a simplex. In other words, the identity channels idΩ1 and

idΩ2 are compatible if and only if Ω1 “ Ω2 “ Ω is a simplex (i.e., the theory

is classical).

These results on GPTs manifest interesting facts that properties once thought

to be specific to quantum theory are in fact more universal ones.

2.4 Additional notions

So far we have reviewed fundamental notions in GPTs especially focusing

on states and effects. It was shown that states and effects are represented in

terms of ordered Banach spaces, and under the assumption of finite dimen-

sionality, they are reduced to elements of Euclidean spaces. In this part,

based on those descriptions, we develop additional notions on states and

effects which will play significant roles in demonstrating several results of

this thesis. To do this, we follow the notations that have been used so far.

That is, a GPT is given by a pair pΩ, EΩq of a state space and the corre-

sponding effect space where Ω Ă V “ RN`1 with spanpΩq “ V and 0 R Ω

and EΩ Ă V ˚. We should also recall that the set of all pure states is denoted

by Ωext, and the set of all pure and indecomposable effects by Eext
Ω .
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2.4.1 Physical equivalence of pure states

It is known that in quantum theory all pure states are physically equivalent

via unitary (and antiunitary) transformations [41]. A similar notion to this

physical equivalence of pure states can be introduced also in GPTs.

Let Ω be a state space. A map T : Ω Ñ Ω is called a state automorphism

on Ω if T is an affine bijection. We denote the set of all state automorphisms

on Ω by GLpΩq, and say that a state ω1 P Ω is physically equivalent to a

state ω2 P Ω if there exists a T P GLpΩq such that Tω1 “ ω2. It was

shown in [45] that the physical equivalence of ω1, ω2 P Ω is equal to the

existence of some unit-preserving affine bijection T 1 : EΩ Ñ EΩ satisfying

epω1q “ T 1peqpω2q for all e P EΩ, which means ω1 and ω2 have the same

physical contents on measurements. Because any affine map on Ω can be

extended uniquely to a linear map on V , it holds that GLpΩq “ tT : V Ñ

V | T : linear, bijective, T pΩq “ Ωu. It is clear that GLpΩq forms a group,

and we can represent the notion of physical equivalence of pure states by

means of the transitive action of GLpΩq on Ωext.

Definition 2.48 (Transitive state space)

A state space Ω is called transitive if GLpΩq acts transitively on Ωext, that

is, for any pair of pure states ωext
i , ωext

j P Ωext there exists an affine bijection

Tji P GLpΩq such that ωext
j “ Tjiω

ext
i .

We remark that the equivalence of pure states does not depend on how

the theory is expressed. In fact, when Ω is a transitive state space and

Ω1 :“ ψpΩq is equivalent to Ω with a linear bijection ψ, it is easy to check

that GLpΩ1q “ ψ ˝ GLpΩq ˝ ψ´1 and Ω1 is also transitive.

In the remaining of this subsection, we let Ω be a transitive state space.

In a transitive state space, we can introduce successfully the maximally

mixed state as a unique invariant state with respect to every state automor-

phism.

Proposition 2.49 ([82])

For a transitive state space Ω, there exists a unique state ωM P Ω (which we

call the maximally mixed state) such that TωM “ ωM for all T P GLpΩq.

The unique maximally mixed state ωM is given by

ωM “

ż

GLpΩq

Tωext dµpT q,

where ωext is an arbitrary pure state and µ is the normalized two-sided in-

variant Haar measure on GLpΩq.

Note in Proposition 2.49 that the transitivity of Ω guarantees the indepen-

dence of ωM on the choice of ωext. When Ωext is finite and Ωext “ tωext
i uni“1,
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ωM has a simpler form

ωM “
1

n

n
ÿ

i“1

ωext
i .

We should recall that the action of the linear bijection η :“ 1
}ωM }E

1V on Ω

does not change the theory, where }ωM}E “ pωM , ωMq
1{2
E with the standard

Euclidean inner product p¨, ¨qE and 1V is the identity map on V . Since

ηTη´1 “ T holds for all T P GLpΩq, GLpΩq is invariant under the rescaling

by η, i.e. GLpηpΩqq “ GLpΩq. It follows that the unique maximally mixed

state of the rescaled state space ηpΩq is 1
}ωM }E

ωM . In the remaining of this

thesis, when a transitive state space is discussed, we apply this rescaling and

assume that }ωM}E “ 1 holds. This assumption makes it easy to prove our

main theorems in Chapter 3 via Proposition 2.50 introduced in the following.

The Haar measure µ on GLpΩq makes it possible for us to construct

a convenient representation of the theory. First of all, we define an inner

product x¨, ¨yGLpΩq on V as

xx, yyGLpΩq :“

ż

GLpΩq

pTx, TyqE dµpT q px, y P V q.

Remark that in this thesis we adopt p¨, ¨qE as the reference inner product of

x¨, ¨yGLpΩq although the following discussion still holds even if it is not p¨, ¨qE.

Thanks to the properties of the Haar measure µ, it holds that

xTx, TyyGLpΩq “ xx, yyGLpΩq
@T P GLpΩq,

which proves that any T P GLpΩq to be an orthogonal transformation on V

with respect to the inner product x¨, ¨yGLpΩq. Therefore, together with the

transitivity of Ω, we can see that all pure states of Ω are of equal norm, that

is,

}ωext
i }GLpΩq “ xωext

i , ωext
i y

1{2
GLpΩq

“ xTi0ω
ext
0 , Ti0ω

ext
0 y

1{2
GLpΩq

“ xωext
0 , ωext

0 y
1{2
GLpΩq

“ }ωext
0 }GLpΩq

(2.18)

holds for all ωext
i P Ωext, where ωext

0 is an arbitrary reference pure state. We

remark that when }ωM}E “ 1, we can obtain from the invariance of ωM for
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GLpΩq

}ωM}2GLpΩq “

ż

GLpΩq

pTωM , TωMqE dµpT q

“

ż

GLpΩq

pωM , ωMqE dµpT q

“ }ωM}2E

ż

GLpΩq

dµpT q

“ }ωM}2E,

and thus }ωM}GLpΩq “ 1 . The next proposition allows us to give a useful

representation of the theory (the proof is given in Appendix A).

Proposition 2.50

For a transitive state space Ω, there exists a basis tvlu
N`1
l“1 of V orthonormal

with respect to the inner product x¨, ¨yGLpΩq such that vN`1 “ ωM and

x P aff pΩq ðñ x “

N
ÿ

l“1

alvl ` vN`1 “

N
ÿ

l“1

alvl ` ωM pa1, ¨ ¨ ¨ , aN P Rq.

By employing the representation shown in Proposition 2.50, an arbitrary

x P aff pΩq can be written as a vector form that

x “

ˆ

x

1

˙

with ωM “

ˆ

0

1

˙

, (2.19)

where the vector x is sometimes called the Bloch vector [83, 84] correspond-

ing to x.

2.4.2 Self-duality

In this part, we introduce the notion of self-duality, which also plays an

important role in our work.

Let V` be the positive cone generated by a state space Ω. We define the

internal dual cone of V` relative to an inner product p¨, ¨q on V as V ˚int
`p¨,¨q :“

ty P V | px, yq ě 0, @x P V`u, which is isomorphic to the dual cone V ˚
`

because of the Riesz representation theorem [58].25 The self-duality of V`

can be defined as follows.

Definition 2.51 (Self-duality)

V` is called self-dual if there exists an inner product p¨, ¨q on V such that

V` “ V ˚int
`p¨,¨q.

25In the field of GPTs, effects are often defined as elements of V “ RN`1 through the
identification V ˚ “ V ˚int

`p¨,¨q, and the action of effects on states is represented via the inner

product p¨, ¨q.
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We remark similarly to Definition 2.48 that if V` generated by a state space

Ω is self-dual, then the cone V 1
` generated by Ω1 :“ ψpΩq with a linear

bijection ψ (i.e. V 1
` “ ψpV`q) is also self-dual. In fact, we can confirm that

if V` “ V ˚int
`p¨,¨q holds for some inner product p¨, ¨q, then V 1

` “ V
1˚int

`p¨,¨q1 holds,

where the inner product p¨, ¨q1 is defined as px, yq1 “ pψ´1x, ψ´1yq px, y P V q.

Let us consider the case when Ω is transitive and V` is self-dual with

respect to the inner product x¨, ¨yGLpΩq. Since V` “ V ˚int
`x¨,¨yGLpΩq

, we can regard

V` also as the set of unnormalized effects. In particular, every pure state

ωext
i P Ωext can be considered as an unnormalized effect, and if we define

ei :“
ωext
i

}ωext
i }2GLpΩq

“
ωext
i

}ωext
0 }2GLpΩq

, (2.20)

then from Cauchy-Schwarz inequality

xei, ω
ext
k yGLpΩq ď }ei}GLpΩq}ω

ext
k }GLpΩq “ 1

holds for any pure state ωext
k P Ωext (thus ei is indeed an effect). The equality

holds if and only if ωext
k is parallel to ei, i.e. ωext

k “ ωext
i , and we can also

conclude that an effect is pure and indecomposable if and only if it is of the

form defined as (2.20) together with the fact that effects on the extremal

rays of V ˚int
`x¨,¨yGLpΩq

“ V` are indecomposable (for more details see [61]):

ei “
ωext
i

}ωext
i }2GLpΩq

“
ωext
i

}ωext
0 }2GLpΩq

” eexti P EextpΩq. (2.21)

When |Ωext| ă 8, it is sufficient for the discussion above that Ω is transitive

and self-dual with respect to an arbitrary inner product.

Proposition 2.52

Let Ω be transitive with |Ωext| ă 8 and V` be self-dual with respect to some

inner product. There exists a linear bijection Ξ: V Ñ V such that Ω1 :“ ΞΩ

is transitive and the generating positive cone V 1
` is self-dual with respect to

x¨, ¨yGLpΩ1q, i.e. V
1

` “ V
1˚int

`x¨,¨yGLpΩ1q
.

The proof is given in Appendix B. Proposition 2.52 reveals that if a theory

with finite pure states is transitive and self-dual, then the theory can be

expressed in the way it is self-dual with respect to x¨, ¨yGLpΩq.

2.5 Examples of GPTs

In this section, we present some examples of GPTs with relevant structures

to transitivity or self-duality.
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2.5.1 Classical theories with finite levels

Let us denote by ΩCT the state space of a classical system with a finite

level. ΩCT can be represented by means of some finite N P N as the set of

all probability distributions (probability vectors) tp “ pp1, ¨ ¨ ¨ , pN`1qu Ă

V “ RN`1 on some sample space ta1, ¨ ¨ ¨ , aN`1u, i.e., ΩCT is the N -

dimensional standard simplex ∆N . It is easy to justify that the set of all

pure states Ωext
CT is given by Ωext

CT “ tpext
i uN`1

i“1 , where pext
i is the probability

distribution satisfying ppext
i qj “ δij, and the positive cone V` by V` “ tσ “

pσ1, ¨ ¨ ¨ , σN`1q P V | σi ě 0, @iu. Remark that the set

tpext
i uN`1

i“1 “ tp1, 0, ¨ ¨ ¨ , 0q, p0, 1, ¨ ¨ ¨ , 0q, ¨ ¨ ¨ , p0, 0, ¨ ¨ ¨ , 1qu

forms a standard orthonormal basis of V . Since any state automorphism

maps pure states to pure states, it can be seen that the set GLpΩCTq of all

state automorphisms on ΩCT is exactly the set of all permutation matrices

with respect to the orthonormal basis tpext
i uN`1

i“1 of V . Therefore, ΩCT is a

transitive state space, and any T P GLpΩCTq is orthogonal, which results in

xx, yyGLpΩCTq “

ż

GLpΩCTq

pTx, TyqE dµpT q

“

ż

GLpΩCTq

px, yqE dµpT q

“ px, yqE

ż

GLpΩCTq

dµpT q

“ px, yqE. (2.22)

The set of all positive linear functionals on ΩCT can be identified with the

internal dual cone V ˚int
`p¨,¨qE

, and every h P V ˚int
`p¨,¨qE

can be identified with

h “ phppext
1 q, ¨ ¨ ¨ , hppext

N`1qq with all entries nonnegative since

hppext
i q “ ph,pext

i qE “ phqi ě 0

holds for all i. Therefore, we can conclude together with (2.22) V` “

V ˚int
`p¨,¨qE

“ V ˚int
`x¨,¨yGLpΩCTq

. Note that we can find the representation (2.19)

to be valid for this situation by taking a proper basis of V “ RN`1 and

normalization.

2.5.2 Quantum theories with finite levels

The state space of a quantum system with a finite level denoted by ΩQT is

the set of all density operators on N -dimensional Hilbert space H (N ă 8),

that is, ΩQT :“ tρ P LSpHq | ρ ě 0,Trrρs “ 1u, where LSpHq is the set
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of all self-adjoint operators on H. The set of all pure states Ωext
QT is given

by the rank-1 projections: Ωext
QT “ t|ψyxψ| | |ψy P H, xψ|ψy “ 1u. It has

been demonstrated in [85] that with the identity operator 1N on H and the

generators tσiu
N2´1
i“1 of SUpNq satisfying

σi P LSpHq, Trrσis “ 0, Trrσiσjs “ 2δij, (2.23)

any A P LSpHq can be represented as

A “ c01N `

N2´1
ÿ

i“1

ciσi pc0, c1, ¨ ¨ ¨ , cN2´1 P Rq (2.24)

and any B P aff pΩQTq as

B “
1

N
1N `

N2´1
ÿ

i“1

ciσi pc1, ¨ ¨ ¨ , cN2´1 P Rq. (2.25)

Since (2.23) implies that t1N , σ1, ¨ ¨ ¨ , σN2´1u forms an orthogonal basis of

LSpHq with respect to the Hilbert-Schmidt inner product p¨, ¨qHS defined by

pX,Y qHS “ TrrX:Y s,

and (2.24) and (2.25) prove dimpLSpHqq “ dimpaff pΩQTqq ` 1, it seems

natural to consider ΩQT to be embedded in V “ LSpHq equipped with

p¨, ¨qHS. Because it holds that

EpΩQTq “ tE P LSpHq | 0 ď TrrEρs ď 1, @ρ P ΩQTu

“ tE P LSpHq | 0 ď E ď 1Nu,

we can see V` “ V ˚int
`p¨,¨qHS

“ tA P LSpHq | A ě 0u, and rank-1 projections

are pure and indecomposable effects in quantum theories. We note that

while higher dimensional classical theories are represented by simplices as

shown in the previous example, higher dimensional quantum theories have

more complicated structures [85, 86]: we cannot represent them with higher

dimensional balls just generalizing the three dimensional ball for the qubit

case (the Bloch ball).

On the other hand, it is known that in quantum theory any state auto-

morphism is either a unitary or antiunitary transformation [41], and for any

pair of pure states one can find a unitary operator which links them. Thus,

ΩQT is transitive, and any state automorphism is of the form

ρ ÞÑ UρU : @ρ P ΩQT,
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where U is unitary or antiunitary. Considering that

pUXU :, UY U :qHS “ Tr
“

UX:U :UY U :
‰

“ TrrX:Y s

“ pX,Y qHS

holds for any unitary or antiunitary operator U , we can obtain in a similar

way to (2.22)

xX,Y yGLpΩQTq “ pX,Y qHS. (2.26)

Therefore, we can conclude V` “ V ˚int
`p¨,¨qHS

“ V ˚int
`x¨,¨yGLpΩQTq

. We remark simi-

larly to the classical cases that we may rewrite (2.25) as (2.19) by taking a

suitable normalization and considering that ωM “ 1N{N .

2.5.3 Regular polygon theories

If the state space of a GPT is in the shape of a regular polygon with npě 3q

sides, then we call it a regular polygon theory and denote the state space by

Ωn. We set V “ R3 when considering regular polygon theories, and it can

be seen in [87] that the pure states of Ωn are described as

Ωext
n “ tωni un´1

i“0

with

ωni “

¨

˝

rn cosp2πi
n

q

rn sinp2πi
n

q

1

˛

‚, rn “

d

1

cospπ
n

q
(2.27)

when n is finite, and when n “ 8 (the state space Ω8 is a disc),

Ωext
8 “ tω8

θ uθPr0,2πq

with

ω8
θ “

¨

˝

cos θ

sin θ

1

˛

‚. (2.28)

The state space Ω3 represents a classical trit system (the 2-dimensional stan-

dard simplex), while Ω8 represents a qubit system with real coefficients (the

unit disc can be considered as an equatorial plane of the Bloch ball). Regular

polygon theories can be regarded as intermediate theories of those theories.
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The state space of the regular polygon theory with n sides (including

n “ 8) defines its positive cone V`, and it is also shown in [87] that the

corresponding internal dual cone V ˚int
`p¨,¨qE

Ă R3 is given by the conic hull of

the following extreme effects (in fact, those effects are also indecomposable)

eni “
1

2

¨

˚

˝

rn cosp
p2i´1qπ

n
q

rn sinp
p2i´1qπ

n
q

1

˛

‹

‚

, i “ 0, 1, ¨ ¨ ¨ , n ´ 1 pn : evenq ;

eni “
1

1 ` r2n

¨

˝

rn cosp2iπ
n

q

rn sinp2iπ
n

q

1

˛

‚, i “ 0, 1, ¨ ¨ ¨ , n ´ 1 pn : oddq ;

e8
θ “

1

2

¨

˝

cos θ

sin θ

1

˛

‚, θ P r0, 2πq pn “ 8q.

(2.29)

Moreover, for finite n, we can see that the group GLpΩnq (named the dihe-

dral group) is composed of orthogonal transformations with respect to p¨, ¨qE
[88], which also holds for n “ 8. Similar calculations to (2.22) or (2.26)

demonstrate p¨, ¨qE “ x¨, ¨yGLpΩnq for n “ 3, 4, ¨ ¨ ¨ ,8. Therefore, from (2.27)

- (2.29), we can conclude that V` is self-dual, i.e. V` “ V ˚int
`p¨,¨qE

“ V ˚int
`x¨,¨yGLpΩnq

,

when n is odd or 8, while V` is not identical but only isomorphic to

V ˚int
`x¨,¨yGLpΩnq

when n is even (in that case, V` is called weakly self-dual [29, 87]).

Among regular polygon theories, the square theory described by the state

space Ω4 is physically of particular importance, and is often called a gbit

(generalized bit) system [24]. It can be observed that the so-called PR-

box [69] is represented by a pure entangled state of the composite system

Ω4 bmaxΩ4 [24], and thus can violate the CHSH inequality maximally in the

sense that it attains the value 4 for that entangled state [87]. The square

theory is also known for its interesting behavior on incompatibility. It was

demonstrated in [89] that a pair of two-outcome observables for Ω4 exhibits

maximal incompatibility, which means that we need maximal noise to make

them compatible (see also Example 3.8).
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Chapter 3

Preparation uncertainty implies

measurement uncertainty in a

class of GPTs

Since it was propounded by Heisenberg [8], the existence of uncertainty rela-

tions, which is not observed in classical theory, has been regarded as one of

the most significant features of quantum theory. The importance of uncer-

tainty relations lies not only in their conceptual aspects but also in practical

use such as the security proof of quantum key distribution [11, 90]. There

have been researches to capture and formulate the notion of “uncertainty”

in several ways. One of the most outstanding works was given by Robert-

son [91]. There was shown an uncertainty relation in terms of standard

derivation which stated that the probability distributions obtained by the

measurements of a pair of noncommutative observables cannot be simultane-

ously sharp. While this type of uncertainty (called preparation uncertainty)

has been studied also in a more direct way [92, 93, 94] or the entropic way

[95, 96, 97, 98, 99, 100], another type of uncertainty called measurement un-

certainty is known to exist in quantum theory [41]. It describes that when

we consider measuring jointly a pair of noncommutative observables, there

must exist measurement error for the joint measurement, that is, we can only

conduct their approximate joint measurement. There have been researches

on measurement uncertainty with measurement error formulated in terms of

standard derivation [101, 102, 103] or entropy [19]. Their measurement un-

certainty relations were proven by using preparation uncertainty relations.

It implies that there may be a close connection between those two kinds of

uncertainty. From this perspective, in [18], simple inequalities were proven

which demonstrate in a more explicit way than other previous studies that

preparation uncertainty indicates measurement uncertainty and the bound

derived from the former also bounds the latter. The main results of [18] were
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obtained with preparation uncertainty quantified by overall widths and min-

imum localization error, and measurement uncertainty by error bar widths,

Werner’s measure, and l8 distance [104, 105, 106, 107]. Concerning about

uncertainty, both preparation and measurement uncertainty can be intro-

duced naturally also in GPTs. For example, both types of uncertainty for

GPTs analogical with a qubit system were investigated in [108], and there are

also researches on joint measurability of observables [81, 109, 110, 111, 112],

which are related with measurement uncertainty, in GPTs. It is of inter-

est to give further research on how two types of generalized uncertainty are

related with each other.

In this part, we study the relations between two kinds of uncertainty in

GPTs. We focus on a class of GPTs that are transitive and self-dual in-

cluding finite-dimensional classical and quantum theories, and demonstrate

similar results to [18] in the GPTs: preparation uncertainty relations indicate

measurement uncertainty relations. More precisely, it is proven in a certain

class of GPTs that if a preparation uncertainty relation gives some bound,

then it is also a bound on the corresponding measurement uncertainty rela-

tion with the quantifications of uncertainty in [18] generalized to GPTs. We

also prove its entropic expression by generalizing the quantum results in [19]

to those GPTs. Our results manifest that the close connections between two

kinds of uncertainty exhibited in quantum theory are more universal ones.

We also present, as an illustration, concrete expressions of our uncertainty

relations in regular polygon theories.

This part is organized as follows. In Section 3.1, we introduce measures

that quantify the width of a probability distribution. These measures are

used for considering whether it is possible to localize jointly two probability

distributions obtained by two kinds of measurement on one certain state,

that is, they are used for describing preparation uncertainty. We also in-

troduce measures quantifying measurement error by means of which we can

formulate measurement uncertainty resulting from approximate joint mea-

surements of two incompatible observables. After the introductions of those

quantifications, we present the main theorems and their proofs. In Section

3.2, we demonstrate that similar contents of those theorems can be also

expressed in an entropic way. In Section 3.3, we investigate uncertainty

relations in regular polygon theories.

3.1 Preparation uncertainty and measurement

uncertainty in GPTs

In this section, our main results on the relations between preparation uncer-

tainty and measurement uncertainty are given in GPTs with transitivity and
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self-duality with respect to x¨, ¨yGLpΩq (see Section 2.4). Measures quantifying

the width of a probability distribution or measurement error are also given

to describe those results. Throughout this section, we consider observables

whose sample spaces are finite metric spaces.

3.1.1 Widths of probability distributions

In this subsection, we give two kinds of measure to quantify how concen-

trated a probability distribution is.

Let A be a finite metric space equipped with a metric function dA, and

OdApa; wq be the ball defined by OdApa; wq :“ tx P A | dApx, aq ď w{2u. For

ϵ P r0, 1s and a probability distribution p on A, we define the overall width

(at confidence level 1 ´ ϵ) [18, 104] as

Wϵppq :“ inftw ą 0 | Da P A : ppOdApa; wqq ě 1 ´ ϵu. (3.1)

We can give another formulation for the width of p. We define the minimum

localization error [18] of p as

LEppq :“ 1 ´ max
aPA

ppaq. (3.2)

Both (3.1) and (3.2) can be applied to probability distributions observed in

physical experiments. Let us consider a GPT with Ω its state space. For

a state ω P Ω and an observable F “ tfauaPA on A, we denote by ωF the

probability distribution obtained by the measurements of F on ω, i.e.

ωF :“ tfapωquaPA.

The overall width and minimum localization error for ωF can be defined as

Wϵpω
F q :“ inftw ą 0 | Da P A :

ÿ

a1POdA
pa;wq

fa1pωq ě 1 ´ ϵu (3.3)

and

LEpωF q :“ 1 ´ max
aPA

fapωq (3.4)

respectively. Note that as in [18, 104], overall widths can be defined prop-

erly even if the sample spaces of probability distributions are infinite. For

example, overall widths are considered in [104] for probability measures on

R derived from the measurement of position or momentum of a particle.

Those two measures above are used for the mathematical description of

preparation uncertainty relations (PURs). As a simple example, we con-

sider a qubit system with Hilbert space H “ C2. For two projection-valued

measures (PVMs) Z “ t|0yx0| , |1yx1|u and X “ t|`yx`| , |´yx´|u, where
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t|0y , |1yu and t|`y , |´yu “ t 1?
2
p|0y ` |1yq, 1?

2
p|0y ´ |1yqu are the z-basis and

x-basis of H respectively, it holds from [93, 99] that

LEpρZq ` LEpρXq ě 1 ´
1

?
2

ą 0 (3.5)

for any state ρ (see also (3.34)). The inequality (3.5) shows that there is

no state ρ which makes both LEpρZq and LEpρXq zero, that is, ρZ and

ρX cannot be localized simultaneously even if the observables are ideal ones

(PVMs). PURs in terms of overall widths were also discussed in [104] for

the position and momentum observables.

3.1.2 Measurement error

In this part, we introduce the concept of measurement error in GPTs, which

derives from joint measurement problems, and describe how to quantify it.

Let us consider a GPT with its state space Ω, and two observables

F “ tfauaPA and G “ tgbubPB on Ω. Although general descriptions of

(in)compatibility was already given in Subsection 2.3.2, here we show the

definition again. We call F and G are compatible or jointly measurable if

there exists a joint observable MFG “ tmFG
ab upa,bqPAˆB of F and G satisfying

ÿ

bPB

mFG
ab “ fa for all a P A,

ÿ

aPA

mFG
ab “ gb for all b P B,

and if F and G are not jointly measurable, then they are called incom-

patible [21, 110]. As was mentioned in Subsection 2.3.2, there exist pairs

of observables that are incompatible in all non-classical GPTs, but we can

nevertheless conduct their approximate joint measurements allowing mea-

surement error. Assume that F and G are incompatible. It is known that

one way to compose their approximate joint measurement is adding some

trivial noise to them. To see this, we consider as a simple example the incom-

patible pair of observables Z “ t|0yx0| , |1yx1|u and X “ t|`yx`| , |´yx´|u in

a qubit system described in the last subsection. It was demonstrated in [113]

that the observables

rZλ : “ λZ ` p1 ´ λqI

“

"

λ |0yx0| `
1 ´ λ

2
12, λ |1yx1| `

1 ´ λ

2
12

*

,

rXλ : “ λX ` p1 ´ λqI,

“

"

λ |`yx`| `
1 ´ λ

2
12, λ |´yx´| `

1 ´ λ

2
12

*

(3.6)
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are jointly measurable for 0 ď λ ď 1?
2
, where I :“ t12{2,12{2u with 12

the identity operator on H “ C2 is a trivial observable. The joint measur-

ablity of (3.6) implies that the addition of trivial noise described by a trivial

observable makes incompatible observables compatible in an approximate

way. In fact, it is observed also in GPTs that adding trivial noise results in

approximate joint measurements of incompatible observables [110, 111, 113].

Because the notion of measurement error derives from the difference be-

tween ideal and approximate observables as discussed above, we have to de-

fine ideal observables in GPTs to quantify measurement error. In this chap-

ter, they are defined in an analogical way with the ones in finite-dimensional

quantum theories, where PVMs are considered to be ideal [41]. If we denote

a PVM by E “ tPaua, then each effect is of the form

Pa “
ÿ

ipaq

|ψipaq
yxψipaq

| .

In particular, every effect is a sum of pure and indecomposable effects, and

we call in a similar way an observable F “ tfauaPA on Ω ideal if each effect

fa satisfies

fa “
ÿ

ipaq

eextipaq
, or fa “ u ´

ÿ

ipaq

eextipaq
, (3.7)

where we should recall that the set of all pure and indecomposable effects

is denoted by teexti ui and we do not consider the trivial observable F “ tuu.

It is easy to see that observables defined as (3.7) result in PVMs in finite-

dimensional quantum theories. This type of observable was considered also

in [51].

The introduction of ideal observables makes it possible for us to quantify

measurement error. Consider an ideal observable F “ tfaua and a general

observable rF “ t rfaua, and suppose similarly to the previous subsection that

A is a finite metric space with a metric dA. F may be understood as the

measurement intended to be measured, while rF as a measurement conducted

actually. Taking into consideration the fact that for each nonzero pure effect

there exists at least one state which is mapped to 1 (an “eigenstate” [61]),

we can define for ϵ P r0, 1s the error bar width of rF relative to F [18, 104] as

Wϵp rF , F q “ inftw ą 0 | @a P A, @ω P Ω :

fapωq “ 1 ñ
ÿ

a1POdA
pa;wq

rfa1pωq ě 1 ´ ϵu. (3.8)

Wϵp rF, F q represents the spread of probabilities around the “eigenvalues” of

F observed when the corresponding “eigenstates” of F are measured by rF ,
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and thus it can be thought to be one of the quantifications of measurement

error. Note that although error bar widths in general (not necessarily finite)

metric spaces were defined in [104], we consider only finite metric spaces

in this chapter, so we employ their convenient forms (3.8) in finite metric

spaces shown in [18]. Another measure is the one given by Werner [107]

as the difference of expectation values of “slowly varying functions” on the

probability distributions obtained when F and rF are measured. It is defined

as

DW p rF, F q :“ sup
ωPΩ

sup
hPΛ

ˇ

ˇ

ˇ
pF̃ rhsqpωq ´ pF rhsqpωq

ˇ

ˇ

ˇ
, (3.9)

where

Λ :“ th : A Ñ R | |hpa1q ´ hpa2q| ď dApa1, a2q,
@a1, a2 P Au

is the set of all “slowly varying functions” (called the Lipshitz ball of pA, dAq)

and

F rhs :“
ÿ

aPA

hpaqfa

is a map which gives the expectation value of h P Λ when F is measured

on a state ω (similarly for rF rhs). There is known a simple relation between

(3.8) and (3.9).

Proposition 3.1 ([18, 104])

Let pA, dAq be a finite metric space, and F “ tfauaPA and rF “ t rfauaPA be

an ideal and general observable respectively. Then,

Wϵp rF, F q ď
2

ϵ
DW pF̃ , F q

holds for ϵ P p0, 1s.

Proof

Let us define n :“ DW pF̃ ,F q

ϵ
for ϵ P p0, 1s, and consider for a P A a state ω P Ω

satisfying fapωq “ 1. Remember that such state does exist for every a P A

because F is ideal. We also define a function hn on A as

hnpxq :“

#

n ´ dApx, aq pdpx, aq ď nq

0 pdpx, aq ą nq.

It can be seen that

|hnpx1q ´ hnpx2q| ď dApx1, x2q

holds for x1, x2 P A, and thus we can obtain from the definition of DW pF̃ , F q

(3.9)
ˇ

ˇ

ˇ
pF̃ rhnsqpωq ´ pF rhnsqpωq

ˇ

ˇ

ˇ
ď DW pF̃ , F q.
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It results in

ˇ

ˇ

ˇ
pF̃ rgnsqpωq ´ pF rgnsqpωq

ˇ

ˇ

ˇ
ď
DW pF̃ , F q

n
“ ϵ, (3.10)

where we set gn :“ hn{n. Since it holds that gnpxq ď χOdA
pa; 2nqpxq ď 1 for

all x P A, where χOdA
pa; 2nq is the indicator function of the ball OdApa; 2nq “

tx P A | dApx, aq ď nu, and

pF rgnsqpωq “
ÿ

xPA

gnpxqfxpωq “ gnpaqfapωq “ 1

because fapωq “ 1, (3.10) can be rewritten as

1 ´ pF̃ rχOdA
pa; 2nqsqpωq ď ϵ,

that is,
ÿ

xPOdA
pa; 2nq

rfxpωq ě 1 ´ ϵ. (3.11)

(3.11) holds for all a P A and all ω P Ω such that fapωq “ 1, and thus

2n “
2

ϵ
DW pF̃ , F q ě Wϵp rF , F q

is concluded (see the definition of Wϵp rF , F q (3.8)). 2

On the other hand, there can be introduced a more intuitive quantification

of measurement error called l8 distance [106]:

D8p rF , F q :“ sup
ωPΩ

max
aPA

ˇ

ˇ

ˇ

rfapωq ´ fapωq

ˇ

ˇ

ˇ
. (3.12)

By means of those quantifications of measurement error above, we can

formulate measurement uncertainty relations (MURs). As an illustration,

we again consider the joint measurement problem of incompatible observ-

ables Z and X in a qubit system. Suppose that ĂMZX is an approximate

joint observable of Z and X, and ĂMZ and ĂMX are its marginal observables

corresponding to Z and X respectively. It was proven in [106] that

D8pĂMZ , Zq ` D8pĂMX , Xq ě 1 ´
1

?
2

ą 0. (3.13)

(3.13) gives a quantitative representation of the incompatibility of Z and

X that D8pĂMZ , Zq and D8pĂMX , Xq cannot be simultaneously zero, that

is, measurement error must occur when conducting any approximate joint

measurement of Z and X (see [105] for another inequality). MURs for the

position and momentum observables were given in [104] and [107] in terms

60



of (3.8) and (3.9) respectively.

3.1.3 Relations between preparation uncertainty and

measurement uncertainty in a class of GPTs

In the previous subsections, we have introduced several measures to review

two kinds of uncertainty, preparation uncertainty and measurement uncer-

tainty. In this part, we shall manifest as our main results how they are

related with each other in GPTs, which is a generalization of the quantum

ones in [18].

Before demonstrating our main theorems, we confirm the physical set-

tings and mathematical assumptions to state them. In the following, we

focus on a GPT with a state space Ω, and suppose that Ω is transitive and

the positive cone V` is self-dual with respect to x¨, ¨yGLpΩq (see Section 2.4).

While our assumptions may seem curious, it can be observed in [84] that

those two conditions are satisfied simultaneously if the state space is bit-

symmetric. There are also researches where they are derived from certain

conditions possible to be interpreted physically [51, 114]. In addition, we

consider ideal observables F “ tfauaPA and G “ tgbubPB on Ω, whose sample

spaces are finite metric spaces pA, dAq and pB, dBq respectively, and consider

an observable ĂMFG :“ t rmFG
ab upa,bqPAˆB as an approximate joint observable

of F and G, whose marginal observables are given by

ĂMF :“ t rmF
a ua, rmF

a :“
ÿ

bPB

rmFG
ab ;

ĂMG :“ t rmG
b ub, rmG

b :“
ÿ

aPA

rmFG
ab .

Remember that, as shown in Subsection 3.1.2, the ideal observable F “ tfaua
satisfies

fa “
ÿ

ipaq

eextipaq
, or fa “ u ´

ÿ

ipaq

eextipaq
(3.14)

in terms of the pure and indecomposable effects teexti ui shown in (2.21) (sim-

ilarly for G “ tgbub). The following lemmas are needed to prove our main

results.
Lemma 3.2

If Ω is transitive, then the unit effect u P V ˚int
`x¨,¨yGLpΩq

Ă V is identical to the

maximally mixed state ωM , i.e. u “ ωM .

Proof

It is an easy consequence of Proposition 2.50. In fact, (2.19) gives

u “ ωM “

ˆ

0

1

˙

.
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2

Lemma 3.3

If Ω is a transitive state space and its positive cone V` is self-dual with

respect to x¨, ¨yGLpΩq, then for any effect e P EpΩq on Ω it holds that

e

xu, eyGLpΩq

P Ω, (3.15)

and for any ideal observable F “ tfauaPA on Ω it holds that

B

fa,
fa

xu, fayGLpΩq

F

GLpΩq

“ 1 (3.16)

for all a P A. In particular, each fa{xu, fayGLpΩq is an “eigenstate” of F .

Proof

In this proof, we denote the inner product x¨, ¨yGLpΩq and the norm } ¨ }GLpΩq

simply by x¨, ¨y and } ¨ } respectively.

For any element e P V ˚int
`x¨,¨y, e{xu, ey defines a state because xu, e{xu, eyy “

1 and e P V` due to the the self-duality: V` “ V ˚int
`x¨,¨y, which proves (3.15).

To prove (3.16), we focus on the fact that fa in (3.14) is an effect (thus

u ´ fa is also an effect), that is,
ř

ipaq
eextipaq

is an effect and it satisfies 0 ď

x
ř

ipaq
eextipaq

, ωy ď 1 for any state ω P Ω. However, if we act
ř

ipaq
eextipaq

on the

pure state ωext
jpaq

, then (2.21) shows that xeextjpaq
, ωext

jpaq
y “ 1, and thus we have

xeextipaq
, ωext

jpaq
y “ 0 for ipaq ‰ jpaq,

that is,

xeextipaq
, eextjpaq

y “ 0 for ipaq ‰ jpaq. (3.17)

Because

xeextipaq
, eextipaq

y “
1

}ωext
0 }2

and xu, eextipaq
y “

1

}ωext
0 }2

hold from (2.21), we obtain together with (3.17)

x
ÿ

ipaq

eextipaq
,

ÿ

ipaq

eextipaq
y “

p#ipaqq

}ωext
0 }2

, xu,
ÿ

ipaq

eextipaq
y “

p#ipaqq

}ωext
0 }2

,

xu ´
ÿ

ipaq

eextipaq
, u ´

ÿ

ipaq

eextipaq
y “ 1 ´

p#ipaqq

}ωext
0 }2

, xu, u ´
ÿ

ipaq

eextipaq
y “ 1 ´

p#ipaqq

}ωext
0 }2

,

(3.18)

where p#ipaqq is the number of elements of the index set tipaqu and we use

xu, uy “ xu, ωMy “ 1 (Lemma 3.2). Therefore, we can conclude that every
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effect fa “
ř

ipaq
eextipaq

or u ´
ř

ipaq
eextipaq

composing F satisfies

B

fa,
fa

xu, fay

F

“ 1.

2

Now, we can state our main theorems connecting PURs and MURs.

Similar results to ours were proven [18] for finite-dimensional quantum the-

ories. Because GPTs shown above include those theories, our theorems can

be considered to demonstrate that the relations between PURs and MURs

introduced in [18] are more general ones.

Theorem 3.4

Let Ω be a transitive state space and its positive cone V` be self-dual with

respect to x¨, ¨yGLpΩq, and let pF,Gq be a pair of ideal observables on Ω. For

an arbitrary approximate joint observable ĂMFG of pF,Gq and ϵ1, ϵ2 P r0, 1s

satisfying ϵ1 ` ϵ2 ď 1, there exists a state ω P Ω such that

Wϵ1pĂMF , F q ě Wϵ1`ϵ2pωF q,

Wϵ2pĂMG, Gq ě Wϵ1`ϵ2pωGq.

Theorem 3.4 manifests that if one cannot make bothWϵ1`ϵ2pωF q andWϵ1`ϵ2pωGq

vanish, then one also cannot make both Wϵ1pĂMF , F q and Wϵ2pĂMG, Gq van-

ish. That is, if there exists a PUR, then there also exists a MUR. Moreover,

Theorem 3.4 also demonstrates that bounds for MURs in terms of error bar

widths can be given by ones for PURs described by overall widths.

Proof (Proof of Theorem 3.4)

In this proof, we denote again the inner product x¨, ¨yGLpΩq and the norm

} ¨ }GLpΩq simply by x¨, ¨y and } ¨ } respectively.

From Lemma 3.3 and the definition of Wϵ1pĂMF , F q (3.8), for any w1 ě

Wϵ1pĂMF , F q we have

ÿ

a1POdA
pa;w1q

B

rmF
a1 ,

fa
xu, fay

F

ě 1 ´ ϵ1,

equivalently,
ÿ

b1PB

ÿ

a1POdA
pa;w1q

B

rmFG
a1b1 ,

fa
xu, fay

F

ě 1 ´ ϵ1

for all a P A. Multiplying both sides by xu, fay “ xωM , faypą 0q (Lemma

3.2) and taking the summation over a yield

ÿ

aPA

ÿ

b1PB

ÿ

a1POdA
pa;w1q

@

rmFG
a1b1 , fa

D

ě 1 ´ ϵ1, (3.19)
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where we use the relation
ř

aPAxu, fay “ xu, uy “ xu, ωMy “ 1. Defining a

function χrdA,w1s on A ˆ A such that

χrdA,w1spa, a
1q “

$

&

%

1 pdApa, a1q ď
w1

2
q

0 pdApa, a1q ą
w1

2
q,

it holds that

ÿ

aPA

ÿ

a1POdA
pa;w1q

@

rmFG
a1b1 , fa

D

“
ÿ

pa,a1qPAˆA

χrdA,w1spa, a
1q

@

rmFG
a1b1 , fa

D

“
ÿ

a1PA

ÿ

aPOdA
pa1;w1q

@

rmFG
a1b1 , fa

D

because of the symmetric action of χrdA,w1s on a and a1. Therefore, (3.19)

can be rewritten as

ÿ

a1PA

ÿ

b1PB

ÿ

aPOdA
pa1;w1q

@

rmFG
a1b1 , fa

D

ě 1 ´ ϵ1.

Overall, we obtain

ÿ

a1PA

ÿ

b1PB

ÿ

aPOdA
pa1;w1q

xu, rmFG
a1b1y

B

fa,
rmFG
a1b1

xu, rmFG
a1b1y

F

ě 1 ´ ϵ1. (3.20)

Similar calculations show that for any w2 ě Wϵ2pĂMG, Gq

ÿ

a1PA

ÿ

b1PB

ÿ

bPOdB
pb1;w2q

xu, rmFG
a1b1y

B

gb,
rmFG
a1b1

xu, rmFG
a1b1y

F

ě 1 ´ ϵ2 (3.21)

holds. We obtain from (3.20) and (3.21)

ÿ

a1PA

ÿ

b1PB

xu, rmFG
a1b1y

»

–

¨

˝

ÿ

aPOdA
pa1;w1q

B

fa,
rmFG
a1b1

xu, rmFG
a1b1y

F

˛

‚

`

¨

˝

ÿ

bPOdB
pb1;w2q

B

gb,
rmFG
a1b1

xu, rmFG
a1b1y

F

˛

‚

fi

fl ě 2 ´ ϵ1 ´ ϵ2,

64



which implies that there exists a pa1
0, b

1
0q P A ˆ B such that

¨

˝

ÿ

aPOdA
pa1

0;w1q

C

fa,
rmFG
a1
0b

1
0

xu, rmFG
a1
0b

1
0
y

G

˛

‚

`

¨

˝

ÿ

bPOdB
pb1

0;w2q

C

gb,
rmFG
a1
0b

1
0

xu, rmFG
a1
0b

1
0
y

G

˛

‚ě 2 ´ ϵ1 ´ ϵ2

(3.22)

since
ř

a1PA

ř

b1PBxu, rmFG
a1b1y “ xu, uy “ 1 and 0 ď xu, rmFG

a1b1y ď 1 for all

pa1, b1q P A ˆ B. We can see from (3.22) that

ÿ

aPOdA
pa1

0;w1q

C

fa,
rmFG
a1
0b

1
0

xu, rmFG
a1
0b

1
0
y

G

ě 1 ´ ϵ1 ´ ϵ2

`

¨

˝1 ´
ÿ

bPOdB
pb1

0;w2q

C

gb,
rmFG
a1
0b

1
0

xu, rmFG
a1
0b

1
0
y

G

˛

‚

ě 1 ´ ϵ1 ´ ϵ2 (3.23)

holds for an arbitrary w1 ě Wϵ1pĂMF , F q, where we use

ÿ

bPOdB
pb1

0;w2q

C

gb,
rmFG
a1
0b

1
0

xu, rmFG
a1
0b

1
0
y

G

ď
ÿ

bPB

C

gb,
rmFG
a1
0b

1
0

xu, rmFG
a1
0b

1
0
y

G

“ 1,

and similarly

ÿ

bPOdB
pb1

0;w2q

C

gb,
rmFG
a1
0b

1
0

xu, rmFG
a1
0b

1
0
y

G

ě 1 ´ ϵ1 ´ ϵ2 (3.24)

holds for an arbitrary w2 ě Wϵ2pĂMG, Gq. Because

ω1
0 :“

rmFG
a1
0b

1
0

xu, rmFG
a1
0b

1
0
y

defines a state ((3.15) in Lemma 3.3), (3.23) and (3.24) together with the

definition of the overall width (3.3) result in

w1 ě Wϵ1`ϵ2pω1F
0 q,

w2 ě Wϵ1`ϵ2pω1G
0 q.

These equations hold for any w1 ě Wϵ1pĂMF , F q and w2 ě Wϵ2pĂMG, Gq, so
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we finally obtain

Wϵ1pĂMF , F q ě Wϵ1`ϵ2pω1F
0 q

Wϵ2pĂMG, Gq ě Wϵ1`ϵ2pω1G
0 q.

2

The next corollary results immediately from Proposition 3.1. It describes a

similar content to Theorem 3.4 in terms of another measure.
Corollary 3.5

Let Ω be a transitive state space and its positive cone V` be self-dual with

respect to x¨, ¨yGLpΩq, and let pF,Gq be a pair of ideal observables on Ω. For

an arbitrary approximate joint observable ĂMFG of pF,Gq and ϵ1, ϵ2 P p0, 1s

satisfying ϵ1 ` ϵ2 ď 1, there exists a state ω P Ω such that

DW pĂMF , F q ě
ϵ1
2
Wϵ1`ϵ2pωF q,

DW pĂMG, Gq ě
ϵ2
2
Wϵ1`ϵ2pωGq.

There is also another formulation by means of minimum localization error

and l8 distance.

Theorem 3.6

Let Ω be a transitive state space and its positive cone V` be self-dual with

respect to x¨, ¨yGLpΩq, and let pF,Gq be a pair of ideal observables on Ω. For

an arbitrary approximate joint observable ĂMFG of pF,Gq, there exists a state

ω P Ω such that

D8pĂMF , F q ` D8pĂMG, Gq ě LEpωF q ` LEpωGq.

Proof

We can see from (3.16) in Lemma 3.3 and the definition of the l8 distance

(3.12) that

ˇ

ˇ

ˇ

ˇ

B

fa,
fa

xu, fay

F

´

B

rmF
a ,

fa
xu, fay

Fˇ

ˇ

ˇ

ˇ

ď D8pĂMF , F q

holds for all a P A, which can be rewritten as

1 ´
ÿ

bPB

B

rmFG
ab ,

fa
xu, fay

F

ď D8pĂMF , F q,

for all a P A. Multiplying both sides by xu, fay and taking the summation

over a, we have

1 ´
ÿ

aPA

ÿ

bPB

@

rmFG
ab , fa

D

ď D8pĂMF , F q,
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namely

1 ´
ÿ

a1PA

ÿ

b1PB

xu, rmFG
a1b1y

B

fa1 ,
rmFG
a1b1

xu, rmFG
a1b1y

F

ď D8pĂMF , F q (3.25)

In a similar way, we also have

1 ´
ÿ

a1PA

ÿ

b1PB

xu, rmFG
a1b1y

B

gb1 ,
rmFG
a1b1

xu, rmFG
a1b1y

F

ď D8pĂMG, Gq. (3.26)

Since
ř

a1PA

ř

b1PBxu, rmFG
a1b1y “ 1, (3.25) and (3.26) give

ÿ

a1PA

ÿ

b1PB

xu, rmFG
a1b1y

„ˆ

1 ´

B

fa1 ,
rmFG
a1b1

xu, rmFG
a1b1y

F˙

`

ˆ

1 ´

B

gb1 ,
rmFG
a1b1

xu, rmFG
a1b1y

F˙ȷ

ď D8pĂMF , F q ` D8pĂMG, Gq,

which indicates that there exists a pa1
0, b

1
0q P A ˆ B satisfying

˜

1 ´

C

fa1
0
,

rmFG
a1
0b

1
0

xu, rmFG
a1
0b

1
0
y

G¸

`

˜

1 ´

C

gb1
0
,

rmFG
a1
0b

1
0

xu, rmFG
a1
0b

1
0
y

G¸

ď D8pĂMF , F q ` D8pĂMG, Gq. (3.27)

Because

ω1
0 :“

rmFG
a1
0b

1
0

xu, rmFG
a1
0b

1
0
y

is a state ((3.15) in Lemma 3.3), we can conclude from (3.27) and the defi-

nition of the minimum localization error (3.4) that

LEpω1F
0 q ` LEpω1G

0 q ď D8pĂMF , F q ` D8pĂMG, Gq,

which proves the theorem. 2

It is easy to see from the proofs that our theorems can be generalized to the

case when three or more observables are considered.

Remark 3.7

It was claimed in [108] similarly to our theorems that PURs imply MURs

in GPTs. However, the result in [108] was obtained for a pair of binary (i.e.

two-outcome), extreme, sharp, and postprocessing clean [115] observables.

It is known that any effect of a sharp and postprocessing clean observable

is pure and indecomposable, and such observables do not always exist for

a GPT [115, 61]. The only finite-dimensional quantum theory admitting

those observables is a qubit system (remember that pure and indecompos-

able effects correspond to rank-1 projections in finite-dimensional quantum

67



theories). On the other hand, although our GPTs are assumed to be tran-

sitive and self-dual, or regular polygon theories, our theorems are obtained

for more general forms of observables (3.7) always possible to be defined.

Theorem 3.6 (and Theorem 3.12) has an application to evaluate the de-

gree of incompatibility [110, 111, 113] of a GPT.

Example 3.8 (Evaluation of degree of incompatibility)

Suppose that Ω is an arbitrary state space, and F and G are two-outcome

observables on Ω, namely F “ tf0, f1u and G “ tg0, g1u, and consider simi-

larly to (3.6) their “fuzzy” versions

rF λ : “ λF ` p1 ´ λq

!u

2
,
u

2

)

“

"

λf0 `
1 ´ λ

2
u, λf1 `

1 ´ λ

2
u

*

,

rGλ : “ λG ` p1 ´ λq

!u

2
,
u

2

)

“

"

λg0 `
1 ´ λ

2
u, λg1 `

1 ´ λ

2
u

* (3.28)

for λ P r0, 1s. It is known that we can find a λF,G ě 1
2

such that the

distorted observables rF λ and rGλ in (3.28) are jointly measurable for any

λ P r0, λF,Gs, and λopt :“ infF,G λF,G can be thought describing the degree of

incompatibility of the theory. λopt has been calculated in various theories:

for example, λopt “ 1?
2

in finite-dimensional quantum theories [113], and

λopt “ 1
2

in the square theory (a regular polygon theory with n “ 4) [89].

To see how Theorem 3.6 contributes to the degree of incompatibility,

we consider the situations in Theorem 3.6 (and Theorem 3.12) with the

marginals ĂMF and ĂMG of the approximate joint observable being rF λ and
rGλ in (3.28) for λ P r0, λF,Gs respectively. In this case, we can represent the

measurement error D8p rF λ, F q in a more explicit way:

D8p rF λ, F q “ sup
ωPΩ

max
iPt0,1u

ˇ

ˇ

ˇ

ˇ

ˆ

λfi `
1 ´ λ

2
u

˙

pωq ´ fipωq

ˇ

ˇ

ˇ

ˇ

“ p1 ´ λq sup
ωPΩ

max
iPt0,1u

ˇ

ˇ

ˇ

ˇ

fipωq ´
1

2

ˇ

ˇ

ˇ

ˇ

“
1 ´ λ

2
, (3.29)

where we use the relation
ˇ

ˇ

ˇ

ˇ

f0pωq ´
1

2

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

pu ´ f1qpωq ´
1

2

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

f1pωq ´
1

2

ˇ

ˇ

ˇ

ˇ

and the fact that there is an “eigenstate” ωi for each ideal effect fi satisfying

fipωiq “ 1 as we have seen in (3.16) or (3.57). Therefore, we can conclude

from Theorem 3.6 (and Theorem 3.12) that for any λ P r0, λF,Gs and for
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some state ω0

1 ´ λ ě

ˆ

1 ´ max
iPt0,1u

fipω0q

˙

`

ˆ

1 ´ max
jPt0,1u

gjpω0q

˙

holds, that is,

λF,G ď max
ωPΩ

ˆ

max
iPt0,1u

fipωq ` max
jPt0,1u

gjpωq

˙

´ 1 (3.30)

holds, and λopt can be evaluated by taking the infimum of both sides of (3.30)

over all two-outcome observables. We remark that the maximum value in

the right hand side of (3.30) does exist due to the compactness of Ω. The

concrete value of the right hand side of (3.30) for regular polygon theories

will be given in Subsection 3.3.2.

3.2 Entropic uncertainty relations in a class

of GPTs

Entropic uncertainty relations have the advantages of their compatibility

with information theory and independence from the structure of the sample

spaces. They indeed have been applied to the field of quantum informa-

tion in various ways [116]. In this section, we present our main results on

two types of entropic uncertainty in a certain class of GPTs. While our re-

sults reproduce entropic uncertainty relations obtained in finite-dimensional

quantum theories, they indicate that similar relations hold also in a broader

class of physical theories.

3.2.1 Entropic PURs

We continue following the notations in the previous section. Let us consider a

GPT with its state space Ω, and two ideal observables (see (3.7)) F “ tfauaPA

and G “ tgbubPB on Ω. Here we do not assume that A and B are metric

spaces but assume that they are finite sets. For the probability distribution

ωF “ tfapωqua obtained in the measurement of F on a state ω P Ω (and

similarly for tgbpωqub), its Shannon entropy is defined as

H
`

ωF
˘

“ ´
ÿ

aPA

fapωq log fapωq. (3.31)

Note that H
`

ωF
˘

ě 0 and H
`

ωF
˘

“ 0 if and only if ωF is definite, i.e.

fa˚pωq “ 1 for some a˚ and fapωq “ 0 for a ‰ a˚. If there exists a relation
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such as

H
`

ωF
˘

` H
`

ωG
˘

ě ΓF,G
@ω P Ω

with a constant ΓF,G ą 0, then it is called an entropic PUR because it

demonstrates that we cannot prepare a state which makes simultaneously

H
`

ωF
˘

and H
`

ωG
˘

vanish, or ωF and ωG definite. One way to obtain an

entropic PUR is to consider the Landau-Pollak-type relation [92, 93, 94]:

max
aPA

fapωq ` max
bPB

gbpωq ď γF,G
@ω P Ω (3.32)

with a constant γF,G P p0, 2s. Remark that relations of the form (3.32)

always can be found for any pair of observables. It is known [99, 117] that

maxaPA fapωq is related with H
`

ωF
˘

by

exp
“

´H
`

ωF
˘‰

ď max
aPA

fapωq,

and thus we can observe from (3.32)

exp
“

´H
`

ωF
˘‰

` exp
“

´H
`

ωG
˘‰

ď γF,G.

Considering that

exp
“

´H
`

ωF
˘‰

` exp
“

´H
`

ωG
˘‰

ě 2 exp

«

´H
`

ωF
˘

´ H
`

ωG
˘

2

ff

holds, we can finally obtain an entropic relation

H
`

ωF
˘

` H
`

ωG
˘

ě ´2 log
γF,G

2
@ω P Ω. (3.33)

If γF,G ă 2, then (3.33) gives an entropic PUR because it indicates that it is

impossible to prepare a state which makes both H
`

ωF
˘

and H
`

ωG
˘

zero,

that is, there is no state preparation on which F and G take simultaneously

definite values (note that (3.32) also gives a PUR if γF,G ă 2). In a finite-

dimensional quantum theory with its state space ΩQT, it can be shown that

max
a
fapωq ` max

b
gbpωq ď 1 ` max

a,b
| xfa|gby | @ω P ΩQT, (3.34)

where F “ t|fayxfa|ua and B “ t|gbyxgb|ub are rank-1 PVMs. In that case,

(3.33) can be rewritten as

H
`

ωF
˘

` H
`

ωG
˘

ě 2 log
2

1 ` max
a,b

| xfa|gby |

@ω P ΩQT, (3.35)
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which is the entropic PUR proven by Deutsch [98]. There have been studies

to find a better bound [99] or generalization [100] of (3.35).

Remark 3.9

Entropic PURs in quantum theory can be derived also by means of ma-

jorization [118, 119, 120, 121, 122, 123]. This method of majorization can

be also applied to GPTs. To see this, let us introduce probability vectors

fpωq and gpωq defined simply through ωF “ tfapωqua and ωG “ tgbpωqub

respectively. By adding outcomes to either A or B, we can assume without

loss of generality that their cardinalities are equal: |A| “ |B| “ d, and fpωq

and gpωq are d-dimensional vectors. If d-dimensional probability vectors

p “ ppiqi and q “ pqiqi satisfy

k
ÿ

j“1

pÓ
j ď

k
ÿ

j“1

qÓ
j

@k “ 1, 2, ¨ ¨ ¨ , d,

where pÓ
j ’s are obtained thorough ordering the components of p in decreasing

order: tpÓ
juj “ tpiui and pÓ

1 ě pÓ
2 ě pÓ

3 ě ¨ ¨ ¨ (similarly for qÓ
j ’s), then p is

called majorized by q and we write p ă q. For fpωq and gpωq, a relation of

the form

fpωq b gpωq ă r @ω P Ω, (3.36)

where r “ priqi is a d2-dimensional probability vector defined below, was

proven in [119]. The vector r was given by

r “ pR1, R2 ´ R1, ¨ ¨ ¨ , Rd ´ Rd´1, 0, 0, ¨ ¨ ¨ , 0q

with
$

’

&

’

%

Rk “ max
Ik

max
ωPΩ

ÿ

px,yqPIk

fapωqgbpωq

Ik “ tpa1, b1q, ¨ ¨ ¨ , pak, bkq | pai, biq P A ˆ B, pai, biq ‰ paj, bjq for i ‰ ju

(thus we can see Rk “ 1 for d ď k ď d2 because F and G are ideal). From

(3.36), we can derive [118]

H
`

ωF
˘

` H
`

ωG
˘

ě Hptriuiq
@ω P Ω, (3.37)

which gives a similar entropic relation to (3.33). Note that when F and G

are binary, the vector r is completely determined by

R1 “ max
pa,bq

fapωqgbpωq.
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In [119], R1 was evaluated as

R1 “ max
pa,bq

fapωqgbpωq ď
γ2

4

with

γ “ max
pa,bq

pfa ` gbqpωq,

and it was shown that in quantum theory the equality holds:

R1 “ max
pa,bq

fapωqgbpωq “
γ2

4
.

We will consider in Subsection 3.3.2 similar cases when R1 “
γ2

4
holds, and

give concrete value of γ.

3.2.2 Entropic MURs

Let Ω be a state space which is transitive and its positive cone V` satisfy

V` “ V ˚int
`x¨,¨yGLpΩq

, and we hereafter denote the inner product x¨, ¨yGLpΩq simply

by x¨, ¨y as in the previous section. There can be defined measurement error in

terms of entropy in the identical way with the quantum one by Buscemi et al.

[19]. Let in the GPT E “ texuxPX be an ideal observable and M “ tmx̂ux̂PX̂

be an observable with finite outcome sets X, X̂. Since

B

ex1 ,
ex

xu, exy

F

“ δx1x (3.38)

holds for all x, x1 P X, and

ωM “ u “
ÿ

x

ex

“
ÿ

x

xu, exy
ex

xu, exy

(3.39)

holds from Lemma 3.2 and Lemma 3.3, the joint probability distribution

tppx, x̂qux,x̂ “ txex,mx̂yux,x̂ “

"

xu, exy

B

ex
xu, exy

, mx̂

F*

x,x̂

(3.40)

is considered to be obtained in the measurement of M on the “eigenstates”

tex{xu, exyux of E (see (3.38)) with the initial distribution

tppxqux “ txu, exyux . (3.41)
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According to [19], the conditional entropy

NpM ;Eq : “ HpE|Mq

“
ÿ

x̂

ppx̂qH ptppx|x̂quxq

“
ÿ

x̂

xu,mx̂yH

ˆ"B

ex,
mx̂

xu,mx̂y

F*

x

˙

(3.42)

calculated via (3.40) describes how inaccurately the actual observable M
can estimate the input eigenstates of the ideal observable E. In fact, if we

consider measuring M on ex{xu, exy and estimating the input state from the

output probability distribution

tppx̂|xqux̂ “

"B

mx̂,
ex

xu, exy

F*

x̂

by means of a guessing function f : X̂ Ñ X, then the error probability

pferrorpxq is given by

pferrorpxq “ 1 ´
ÿ

x̂:fpx̂q“x

ppx̂|xq “
ÿ

x̂:fpx̂q‰x

ppx̂|xq.

When similar procedures are conducted for all x P X with the probability

distribution tppxqux in (3.41), the total error probability pferror is

pferror “
ÿ

x

ppxq pferrorpxq “
ÿ

xPX

ÿ

x̂:fpx̂q‰x

ppx, x̂q, (3.43)

and it was shown in [19] that

min
f
pferror Ñ 0 ðñ NpM ;Eq “ HpE|Mq Ñ 0.

We can conclude from the consideration above that the entropic quantity

(3.42) represents the difference between E to be measured ideally and M
measured actually, and thus we can define their entropic measurement error

as (3.42).

We are now in the position to derive a similar entropic relation to [19]

with the generalized entropic measurement error (3.42). We continue focus-

ing on a GPT with its state space Ω being transitive and V` being self-dual

with respect to the inner product x¨, ¨yGLpΩq ” x¨, ¨y, that is, V` “ V ˚int
`x¨,¨y. Let

F “ tfauaPA and G “ tgbubPB be a pair of ideal observables defined in (3.7),

and consider their approximate joint observable ĂMFG :“ t rmFG
ab upa,bqPAˆB and
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its marginals
ĂMF :“ t rmF

a ua, rmF
a :“

ÿ

bPB

rmFG
ab ;

ĂMG :“ t rmG
b ub, rmG

b :“
ÿ

aPA

rmFG
ab .

as in the previous section. We can prove the following theorem.

Theorem 3.10

Suppose that Ω is a transitive state space with its positive cone V` being

self-dual with respect to x¨, ¨yGLpΩq ” x¨, ¨y, F “ tfaua and G “ tgbub are ideal

observables on Ω, and ĂMFG is an arbitrary approximate joint observable of

pF,Gq with its marginals ĂMF and ĂMG. If there exists a relation

H
`

ωF
˘

` H
`

ωG
˘

ě ΓF,G
@ω P Ω

with a constant ΓF,G, then it also holds that

NpĂMF ;F q ` NpĂMG;Gq ě ΓF,G.

Proof

Since for every â P A and b̂ P B ωâb̂ :“ rmFG
âb̂

{xu, rmâb̂y is a state due to the

self-duality, it holds that

H
`

ωF
âb̂

˘

` H
`

ωG
âb̂

˘

ě ΓF,G

for all â P A and b̂ P B. Therefore, taking into consideration that xu, rmFG
âb̂

y ě

0 for all â, b̂ and
ř

âb̂xu, rmFG
âb̂

y “ xu, uy “ xu, ωMy “ 1, we have

ÿ

âPA

ÿ

b̂PB

xu, rmFG
âb̂

y
“

H
`

ωF
âb̂

˘

` H
`

ωG
âb̂

˘‰

ě ΓA,B,

or equivalently (see (3.42))

HpA | ĂMFGq ` HpB | ĂMFGq ě ΓF,G. (3.44)

Note that the conditional entropy HpA | ĂMFGq is obtained through a joint

probability distribution tppa, â, b̂qua,â,b̂ :“ txfa, rmFG
âb̂

yu, and we can also ob-

tain HpA | ĂMF q from its marginal distribution tppa, âqua,â “ txfa, rmF
â yu.

The quantity

HpA | ĂMF q ´ HpA | ĂMFGq

defined from those two conditional entropies is called the (classical) condi-

tional mutual information, and it is known [124] to be nonnegative:

HpA | ĂMF q ´ HpA | ĂMFGq ě 0.
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A similar relation holds also for HpG | ĂMFGq and HpG | ĂMGq, and thus,

together with (3.44), we can conclude that

HpF | ĂMF q ` HpG | ĂMGq ě ΓF,G

holds, which proves the theorem. 2

Theorem 3.10 is a generalization of the quantum result [19] to a class of

GPTs. In fact, when we consider a finite-dimensional quantum theory and a

pair of rank-1 PVMs F “ t|fayxfa|ua and G “ t|gbyxgb|ub, our theorem results

in the one in [19] with the quantum bound ΓF,G “ ´2 log maxa,b | xfa|gby |

by Maassen and Uffink [99]. Theorem 3.10 demonstrates that if there is an

entropic PUR, i.e. ΓF,G ą 0, then there is also an entropic MUR which

shows that we cannot make both NpĂMF ;F q and NpĂMG;Gq vanish. It is

again easy to prove that this theorem holds for three or more observables.

Remark 3.11

There is another type of entropic uncertainty relation on successive measure-

ments in quantum theory [125, 126, 127, 128]. With a suitable introduction

of transformations associated with ideal observables, we can derive similar

entropic relations also in GPTs considered above. For an ideal observable

E “ texuxPX , we define the corresponding (Schrödinger) channel ΦE, which

gives the post-measurement states as

ΦE : Ω Ñ Ω: ω ÞÑ
ÿ

x

xex, ωy
ex

xu, exy
(3.45)

in analogy with the channel associated with a rank-1 projective measurement

(Lüders measurement [41] for a rank-1 PVM) in quantum theory (remember

(3.38)). Note that this channel is found easily to be a measure-and-prepare

channel (see Example 2.43). In the Heisenberg picture, it becomes

Φ˚
E : EΩ Ñ EΩ : e ÞÑ

ÿ

x

B

e,
ex

xu, exy

F

ex. (3.46)

Let F “ tfaua and G “ tgbub be ideal observables associated with the

channel defined in (3.45) (or (3.46)). It is easy to see that

H
`

ωF
˘

` H
`

ωG
˘

ě ΓF,G
@ω P Ω

with

ΓF,G :“ inf
ω

“

H
`

ωF
˘

` H
`

ωG
˘‰

holds. We consider measuring successively F and G on a state ω: measur-

ing F first, and then G. The observed statistics are ωF “ tfapωqua and
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ΦF pωqG “ tgbpΦF pωqqub, and we can derive

H
`

ωF
˘

` H
`

ΦF pωqG
˘

ě Γ1
F,G (3.47)

with

Γ1
F,G : “ inf

ΦF pωq

“

H
`

ωF
˘

` H
`

ΦF pωqG
˘‰

(3.48)

“ inf
ΦApωq

“

H
`

ΦF pωqF
˘

` H
`

ΦF pωqG
˘‰

(3.49)

because fapωq “ fapΦF pωqq. We can see that Γ1
F,G ě ΓF,G holds, and thus

there is more uncertainty in the successive measurement than the individual

measurements of F and G. The entropic relation(3.47) together with (3.48)

can be considered as a generalization of the quantum result [125]. Note

that similarly to [125] we can present another bound for (3.47) in terms of

the joint entropy. In fact, considering that tfaua and tΦ˚
F pgbqu are jointly

measurable (
!A

gb,
fa

xu,fay

E

fa

)

ab
is the joint observable), that is, the proba-

bility distributions tfapωqua and tgbpΦF pωqqub are obtained from the joint

distribution
!A

gb,
fa

xu,fay

E

xfa, ωy

)

ab
, it can be shown [124] that

H
`

ωF
˘

` H
`

ΦF pωqG
˘

ě H

ˆ"B

gb,
fa

xu, fay

F

xfa, ωy

*

ab

˙

.

It is easy to see that the right hand side is also greater than or equal to ΓF,G.

3.3 Uncertainty relations in regular polygon

theories

In this section, we restrict ourselves to regular polygon theories, and consider

similar situations to the previous sections.

3.3.1 Extensions of previous theorems

Our theorems in Section 3.1 and Section 3.2 have been proven only for a class

of theories such as finite-dimensional classical and quantum theories, and

regular polygon theories with odd sides (see Section 2.5). What is essential

to the proofs of the theorems is that we can see effects as states (the self-

duality), and that every effect of an ideal observable is an “eigenstate” of

itself (Lemma 3.3). In fact, taking those points into consideration, although

it may be a minor generalization, we can demonstrate similar theorems for

even-sided regular polygon theories.
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Theorem 3.12

Theorem 3.4, Corollary 3.5, Theorem 3.6, and Theorem 3.10 hold for every

regular polygon theory.

Proof

We only need to prove the claim for even-sided regular polygon theories. The

proof is done by confirming that the claim of Lemma 3.3 holds for even-sided

regular polygon theories with modified parametrizations. We again denote

the inner product x¨, ¨yGLpΩnq by x¨, ¨y in this proof.

In the n-sided regular polygon theory with even n, if F “ tfaua is an

ideal observable, then it is of the form

F “ tf0, f1u (3.50)

with

f0 “ eni and f1 “ u ´ eni “ eni`n
2

(3.51)

for some i (remember that we do not consider the trivial observable F “

tuu). Let us introduce an affine bijection

ψ :“

¨

˝

rn 0 0

0 rn 0

0 0 1

˛

‚ (3.52)

on R3. Because pe, ωqE “ pψ´1peq, ψpωqqE holds for any ω P Ωn and e P

EpΩnq, we can consider an equivalent expression of the theory with ψ pΩnq “:
pΩn and ψ´1 pEpΩnqq being its state and effect space respectively (remember

that p¨, ¨qE is the standard Euclidean inner product). The pure states (2.27)

and the extreme effects (2.29) shown in Subsection 2.5.3 are modified as

ωni Ñ ω̂ni :“ ψ pωni q “

¨

˝

r2n cosp2πi
n

q

r2n sinp2πi
n

q

1

˛

‚; (3.53)

eni Ñ ěni :“ ψ´1 peni q “
1

2

¨

˚

˝

cosp
p2i´1qπ

n
q

sinp
p2i´1qπ

n
q

1

˛

‹

‚

(3.54)

respectively, and their conic hull (the positive cone and the internal dual

cone) as

V` Ñ pV` :“ ψ pV`q ;

V ˚int
`x¨,¨y Ñ qV ˚int

`x¨,¨y :“ ψ´1
`

V ˚int
`x¨,¨y

˘

,

respectively. Note in the equations above that GLpΩnq “ GLppΩnq and
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p¨, ¨qE “ x¨, ¨yGLpΩnq “ x¨, ¨yGLppΩnq
“ x¨, ¨y hold, and ωM “ u “ tp0, 0, 1q is

invariant for ψ (and ψ´1). We can also find that an observable E “ teaua
in the original expression is rewritten as qE :“ těaua with ěa :“ ψ´1peaq, and

that an ideal observable F in (3.50) and (3.51) gives

qF “ tf̌0, f̌1u (3.55)

with

f̌0 “ ěni and f̌1 “ u ´ ěni “ ěni`n
2

(3.56)

which is also ideal in the rewritten theory. Since

B

ěni ,
ěni

xu, ěni y

F

“ 1 (3.57)

holds for any i (see (3.54)), we can conclude together with (3.55) and (3.56)

that any ideal observables qF “ tf̌kuk“0,1 satisfies

B

f̌k,
f̌k

xu, f̌ky

F

“ 1. (3.58)

On the other hand, it can be seen from (3.53) and (3.54) that pV` generated

by (3.53) includes qV ˚int
`x¨,¨y generated by (3.54), i.e. qV ˚int

`x¨,¨y Ă pV` (see FIG 3.1).

1

Figure 3.1: Illustration of paff pΩnq X pV`q “ pΩn
generated by tω̂ni uni“1 (3.53) and paff pΩnq X qV ˚int

`x¨,¨yq

generated by t2ěni uni“1 (3.54) for n “ 4. It is observed

that qV ˚int
`x¨,¨y Ă pV`, which holds also for every even n.
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Therefore,
ě

xu, ěy
P pΩn (3.59)

holds for any effect ě P qV ˚int
`x¨,¨y. It follows from (3.58) and (3.59) that the

claim of Lemma 3.3 holds also for even-sided regular polygon theories in a

rewritten expression (3.53) and (3.54).

We also need to confirm that all of our measures (3.3), (3.4), (3.8), (3.9),

(3.12), (3.31), and (3.42) depend only on probabilities, and thus they are

invariant for the modification above. For example, for a pair of observables

M “ tmaua and F “ tfaua on the original state space Ωn, we can see easily

from (3.4) and (3.12) that

LEpωF q “ 1 ´ max
aPA

fapωq

“ 1 ´ max
aPA

f̌apω̂q

“ LEpω̂
qF q

and

D8pM,F q “ sup
ωPΩn

max
aPA

|mapωq ´ fapωq|

“ sup
ω̂PpΩn

max
aPA

ˇ

ˇm̌apω̂q ´ f̌apω̂q
ˇ

ˇ

“ D8p|M, qF q

respectively. It results in that if Theorem 3.6 holds in the modified the-

ory, then it holds also in the original theory. In fact, by virtue of (3.58) and

(3.59) (the “generalized version of Lemma 3.3”), we can repeat the same cal-

culations as in Theorem 3.6, and obtain a similar result to it in the modified

theory. Similar considerations can be adapted also for the other measures,

and it proves Theorem 3.12. 2

3.3.2 Concrete values for Landau-Pollak-type bounds

In this part, we shall concentrate on the Landau-Pollak-type relation (see

(3.34)) for the n-sided regular polygon theory of the form

max
a
fapωq ` max

b
gbpωq ď ΓF,Gpnq @ω P Ωn, (3.60)

where F “ tfaua and G “ tgbub are ideal observables as usual, and show a

concrete calculation for the bound ΓF,Gpnq of uncertainty.

Let us focus on the state space Ωn. Any nontrivial ideal observable is

of the form teni , u ´ eni u (see (2.29)). Note that although teni ui“0,1,2 is also
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an ideal observable when n “ 3 (a classical trit system), we focus only on

ideal observables with two outcomes in this subsection. Thus, if we consider

a pair of ideal observables F and G, then we can suppose that they are

binary: F “ Fi ” tf 0
i , f

1
i u and G “ Gj ” tg0j , g

1
j u with f 0

i “ eni and g0j “ enj
for i, j P t0, 1, ¨ ¨ ¨ , n´ 1u (or i, j P r0, 2πq when n “ 8). On the other hand,

it holds that

max
x“0,1

fxi pωq ` max
y“0,1

gyj pωq ď sup
ωPΩn

max
px,yqPt0,1u2

rpfxi ` gyj qpωqs

“ max
ωPΩext

n

max
px,yqPt0,1u2

rpfxi ` gyj qpωqs
(3.61)

because Ωn is a compact set and any state can be represented as a convex

combination of pure states. Therefore, if we let ωnk be a pure state ((2.27)

and (2.28)), then the value

γnFi,Gj
:“ max

k
max

px,yqPt0,1u2
rpfxi ` gyj qpωnk qs (3.62)

gives a Landau-Pollak-type relation

max
x“0,1

fxi pωq ` max
y“0,1

gyj pωq ď γnAi,Bj
@ω P Ωn. (3.63)

From this inequality, we can derive, for example, entropic relations

H
`

ωF
˘

` H
`

ωG
˘

ě ´2 log
γnFi,Gj

2
@ω P Ωn (3.64)

and

NpĂMF ;F q ` NpĂMG;Gq ě ´2 log
γnFi,Gj

2
. (3.65)

Table 3.1: The value pfxi ` gyj qpωnk q when n is even.

x “ 0, y “ 0 1 ` r2n cos
”

θi`θj
2

´ ϕk

ı

cos
”

θi´θj
2

ı

x “ 1, y “ 0 1 ` r2n sin
”

θi`θj
2

´ ϕk

ı

sin
”

θi´θj
2

ı

x “ 0, y “ 1 (i ÐÑ j in the case of x “ 1, y “ 0)

x “ 1, y “ 1 1 ´ r2n cos
”

θi`θj
2

´ ϕk

ı

cos
”

θi´θj
2

ı

θi “ 2i´1
n
π, θj “

2j´1
n
π, ϕk “ 2k

n
π pi, j, k “ 0, 1, ¨ ¨ ¨ , n ´ 1q
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Table 3.2: The value pfxi ` gyj qpωnk q when n is odd.

x “ 0, y “ 0 2
1`r2n

`
2r2n
1`r2n

cos
”

θi`θj
2

´ ϕk

ı

cos
”

θi´θj
2

ı

x “ 1, y “ 0 1 `
2r2n
1`r2n

sin
”

θi`θj
2

´ ϕk

ı

sin
”

θi´θj
2

ı

x “ 0, y “ 1 (i ÐÑ j in the case of x “ 1, y “ 0)

x “ 1, y “ 1 2r2n
1`r2n

´
2r2n
1`r2n

cos
”

θi`θj
2

´ ϕk

ı

cos
”

θi´θj
2

ı

θi “ 2i
n
π, θj “

2j
n
π, ϕk “ 2k

n
π pi, j, k “ 0, 1, ¨ ¨ ¨ , n ´ 1q

Table 3.3: The value pfxi ` gyj qpωnk q when n is 8.

x “ 0, y “ 0 1 ` cos
”

θi`θj
2

´ ϕk

ı

cos
”

θi´θj
2

ı

x “ 1, y “ 0 1 ` sin
”

θi`θj
2

´ ϕk

ı

sin
”

θi´θj
2

ı

x “ 0, y “ 1 (i ÐÑ j in the case of x “ 1, y “ 0)

x “ 1, y “ 1 1 ´ cos
”

θi`θj
2

´ ϕk

ı

cos
”

θi´θj
2

ı

θi “ i, θj “ j, ϕk “ k p0 ď i, j, k ă 2πq

Table 3.1 - Table 3.3 show the value of pfxi ` gyj qpωnk q in terms of the angles

θi, θj, and ϕk between the x-axis and the effects f 0
i “ eni , g0j “ enj , and

the state ωnk respectively when viewed from the z-axis (see (2.27) - (2.29) in

Subsection 2.5.3). Maximizing the values in those tables over all pure states,

we can obtain the optimal bound γnFi,Gj
in (3.62) for each regular polygon

theory. Note that focusing only on the case when j “ 0 and 0 ă i ă n
2

(0 ă i ă π when n “ 8) is sufficient for the universal description of γnFi,Gj

due to the geometric symmetry of the regular polygon theories. γnFi,G0
for

the regular polygon theory with npă 8q sides is exhibited in Table 3.4 and

Table 3.5, and γnFi,G0
for the disc theory (the regular polygon theory with

n “ 8 sides) can be calculated from Table 3.3 as

γnFi,G0
“ max

"

1 ` cos
θ1
i

2
, 1 ` sin

θ1
i

2

*

, (3.66)

where θ1
i “ θi ´ θ0 “ θi similarly to Table 3.4 and Table 3.5. (3.66) can be

regarded as giving the quantum bound in (3.34) for a qubit system in terms

of the usual Bloch representation. Note that when n is even or 8, due to
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the geometric symmetry, pfxi `gyj qpωnk q takes its maximum where ωnk lies just

“halfway” between the effects fxi and gyj , that is, fxi pωq “ gyj pωq and thus

fxi pωqgyj pωq “ 1
4
pfxi pωq ` gyj pωqq2 holds (see Remark 3.9), while this does not

hold generally when n is odd. From Table 3.4, Table 3.5 and (3.66), we

can obtain the corresponding entropic inequalities (3.64) (also (3.37)) and

(3.65) for an arbitrary regular polygon theory. We should recall that the

value γnFi,G0
can be used also to evaluate the nonlocality of the theory via its

degree of incompatibility (see Example 3.8).

Table 3.4: The value γnFi,G0
when n is even.

n ” 0 (mod 4), i: even max
!

1 ` cos
θ1
i

2
, 1 ` sin

θ1
i

2

)

n ” 0 (mod 4), i: odd max
!

1 ` r2n cos
θ1
i

2
, 1 ` r2n sin

θ1
i

2

)

n ” 2 (mod 4), i: even max
!

1 ` cos
θ1
i

2
, 1 ` r2n sin

θ1
i

2

)

n ” 2 (mod 4), i: odd max
!

1 ` r2n cos
θ1
i

2
, 1 ` sin

θ1
i

2

)

θ1
i “ 2i

n
π “ θi ´ θ0

Table 3.5: The value γnFi,G0
when n is odd.

i: even max
!

2r2n
1`r2n

` 2
1`r2n

cos
θ1
i

2
, 1 ` 1

cos π
2n

sin
θ1
i

2

)

i: odd max
!

2r2n
1`r2n

`
2r2n
1`r2n

cos
θ1
i

2
, 1 ` 1

cos π
2n

sin
θ1
i

2

)

θ1
i “ 2i

n
π “ θi ´ θ0 “ θi

Remark 3.13

With the angle θ1
i fixed, we can see from Table 3.4, Table 3.5, and (3.66)

that γnFi,G0
ě γ8

Fi,G0
holds for all n. In fact, if we assume, for example, n is

odd and i is even, then

γnFi,G0
“ max

"

2r2n
1 ` r2n

`
2

1 ` r2n
cos

θ1
i

2
, 1 `

1

cos π
2n

sin
θ1
i

2

*

(see Table 3.5), and it can be easily shown that

2r2n
1 ` r2n

`
2

1 ` r2n
cos

θ1
i

2
ě 1 ` cos

θ1
i

2
,

1 `
1

cos π
2n

sin
θ1
i

2
ě 1 ` sin

θ1
i

2
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hold for 0 ă i ă n
2

(or 0 ă θ1
i ă π

2
). Thus, we can conclude γnFi,G0

ě γ8
Fi,G0

.

Figure 3.2: The optimal bound γ 3m
2π{3 for the

Landau-Pollak-type inequality on a pair of observ-
ables pFm, G0q in the regular polygon theory with
n “ 3m.

To see this in a more explicit way, let us consider, as an illustration,

regular polygon theories with n “ 3m (m “ 1, 2, ¨ ¨ ¨ ), and let the angle

θ1
i be θ1

i “ 2π
3

(i.e. i “ m). We can calculate the corresponding optimal

bound γ n
2π{3 ” γ 3m

2π{3 for any m from Table 3.4, Table 3.5 and (3.66), and

describe its behavior as a function of m in Figure 3.2. There can be ob-

served that theories with m “ 1, 2 (n “ 3, 6) admit γ 3m
2π{3 “ 2, that is, there

is a state on which both Fi “ Fm and G0 take simultaneously exact values

when m “ 1, 2. It exhibits that when m ě 3, there exists preparation un-

certainty for this pFi, G0q. Hence, it follows from our theorems that there

also exists measurement uncertainty for pFi, G0q, and their entropic repre-

sentations (entropic PUR and MUR) are given by similar inequalities with

the same bound. Also, it can be observed that γ 3m
2π{3 ě γ 8

2π{3 “ 1 `
?
3
2

holds

for all m, which has been shown in the argument above. Note that we can

derive easily an observable-independent relation

min
i
γnFi,G0

ě min
i
γ8
Fi,G0

.

In other words, the disc theory shows the “maximum uncertainty” in terms

of the Landau-Pollak-type formulation.
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Chapter 4

Testing incompatibility of

quantum devices with few states

Quantum information processing, including the exciting fields of quantum

communication and quantum computation, is ultimately based on the fact

that there are new types of resources that can be utilized in carefully de-

signed information processing protocols. The best-known feature of quan-

tum information is that quantum systems can be in superposition and en-

tangled states, and these resources lead to applications such as superdense

coding and quantum teleportation. While superposition and entanglement

are attributes of quantum states, quantum measurements have also features

that can power a new type of applications. The best known and most studied

property is the incompatibility of pairs (or collections) of quantum measure-

ments [21]. It is crucial e.g. in the BB84 quantum key distribution protocol

[11] that the used measurements are incompatible.

From the resource perspective, it is important to quantify the incompat-

ibility. There have been several studies on incompatibility robustness, i.e.,

how incompatibility is affected by noise. This is motivated by the fact that

noise is unavoidable in any actual implementation of quantum devices and

similar to other quantum properties (e.g. entanglement), large amount of

noise destroys incompatibility. Earlier studies have mostly focused on quan-

tifying noise [129] and finding those pairs or collections of measurements

that are most robust to certain types of noise [130], or to find conditions

under which all incompatibility is completely erased [131]. In this work,

we introduce quantifications of incompatibility which are motivated by an

operational aspect of testing whether a collection of devices is incompatible

or not. We focus on two integer valued quantifications of incompatibility,

called compatibility dimension and incompatibilility dimension. We formu-

late these concepts for arbitrary collections of devices. Roughly speaking,

the first one quantifies how many states we minimally need to use to detect

incompatibility if we choose the test states carefully, whereas the second
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one quantifies how many (affinely independent) states we may have to use

if we cannot control their choice. We study some of the basic properties of

these quantifications of incompatibility and we present several examples to

demonstrate their behaviour.

This part is organized as follows. In Section 4.1, we introduce the no-

tion of compatibility and incompatibility dimension, which reflects opera-

tionally how easy it is to detect the incompatibility of quantum devices

considered. We also give brief reviews on related studies recently reported

in [132, 133, 134, 135] for the case of quantum observables, and explain the

interconnections of these studies to ours. In Section 4.2, we show that in-

compatibility dimension is related with the concept of incompatibility witness

[16, 17, 112]. We also derive a useful bound for incompatibility dimension by

means from the relation between them. In Section 4.3, we give a particular

analysis for compatibility and incompatibility dimensions of a pair of mu-

tually unbiased qubit observables. We show that, remarkably, even for the

standard example of noisy orthogonal qubit observables the incompatibil-

ity dimension has a jump in a point where all noise robustness measures are

continuous and indicate nothing special to happen. More precisely, the noise

parameter has a threshold value where the number of needed test states to

reveal incompatibility shifts from 2 to 3. This means that even in this simple

class of incompatible pairs of qubit observables there is a qualitative differ-

ence in the incompatibility of less noisy and more noisy pairs of observables.

An interesting additional fact is that the compatibility dimension of these

pairs of observables does not depend on the noise parameter.

For simplicity and clarity, we will restrict to finite-dimensional Hilbert

spaces and observables with a finite number of outcomes. Our definitions

apply not only to quantum theory but also to any GPT. However, for the

sake of concreteness, we keep the discussion in the realm of quantum theory.

The main definitions work in any GPT without any changes. We expect

that similar findings as the aforementioned result on noisy orthogonal qubit

observables can be made in subsequent studies on other collections of devices.

4.1 (In)compatibility on a subset of states

In this section, we introduce the notion of incompatibility dimension and

compatibility dimension as quantifications of incompatibility. We again men-

tion that we focus on compatibility and incompatibility in quantum theory

in this chapter, but those quantities can be defined naturally also in GPTs.
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4.1.1 (In)compatibility for quantum devices

We start with presenting explicit descriptions of compatibility and incom-

patibility for quantum observables, although we have already given their

definitions in the general framework of GPTs (see Definition 2.45 and Propo-

sition 2.46). A quantum observable is mathematically described as a positive

operator valued measure (POVM) [76]. A quantum observable with finite

number of outcomes is hence a map x ÞÑ Apxq from the outcome set to the

set of linear operators on a Hilbert space. The compatibility of quantum

observables A1, . . . ,An with outcome sets X1, . . . , Xn means that there ex-

ists an observable G, called joint observable, defined on the product outcome

set X1 ˆ ¨ ¨ ¨ ˆ Xn such that from an outcome px1, . . . , xnq of G, one can

infer outcomes for every A1, . . . ,An by ignoring the other outcomes. More

precisely, the requirement is that

A1px1q “
ÿ

x2,...,xn

Gpx1, x2, . . . , xnq,

A2px2q “
ÿ

x1,x3...,xn

Gpx1, x2, . . . , xnq,

...

Anpxnq “
ÿ

x1,...,xn´1

Gpx1, x2, . . . , xnq.

(4.1)

If A1, . . . ,An are not compatible, then they are called incompatible.

Example 4.1

(Unbiased qubit observables) We recall a standard example to fix the nota-

tion that we will use in later examples. An unbiased qubit observable is a

dichotomic observable with outcomes ˘ and determined by a vector a P R3,

|a| ď 1 via

Aap˘q “ 1
2
p1 ˘ a ¨ σq ,

where a ¨ σ “ a1σ1 ` a2σ2 ` a3σ3 and σi, i “ 1, 2, 3, are the Pauli matrices.

The Euclidean norm |a| of a reflects the noise in Aa; in the extreme case

of |a| “ 1 the operators Aap˘q are projections and the observable is called

sharp. As shown in [136], two unbiased qubit observables Aa and Ab are

compatible if and only if

|a ` b| ` |a ´ b| ď 2 . (4.2)

There are two extreme cases. Firstly, if Aa is sharp then it is compatible

with some Ab if and only if b “ ra for some ´1 ď r ď 1. Secondly, if

|a| “ 0, then Aap˘q “ 1
2
1 and it is called a trivial qubit observable, in which

case it is compatible with all other qubit observables.
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How can we test if a given family of observables is compatible or incom-

patible? From the operational point of view, the existence of an observable

G satisfying (4.1) is equivalent to the existence of G such that for any state

ϱ the equation

TrrϱA1px1qs “
ÿ

x2,...,xn

TrrϱGpx1, x2, . . . , xnqs (4.3)

holds. Before contemplating into these questions, we recall that analogous

definitions of quantum compatibility and incompatibility make sense for

other types of quantum devices, in particular, for instruments and chan-

nels [21, 137, 138, 139, 140, 141, 142]. We denote by SpHq the set of all

density operators on a Hilbert space H. The input space of all types of de-

vices must be SpHinq on the same Hilbert space Hin as the devices operate

on a same system. We denote SpHinq simply by S. A device is a completely

positive map and the “type” of the device is characterized by its output

space. Output spaces for the three basic types of devices are:

• observable: P pXq :“ tp “ tppxquxPX | 0 ď ppxq ď 1,
ř

x ppxq “ 1u,

• channel: SpHoutq,

• instrument: SpHoutq b P pXq.

In this classification, an observable A is identified with a map ϱ ÞÑ TrrϱApxqs

from SpHinq to P pXq. We limit our investigation to the cases where the

number of outcomes in X is finite and the output Hilbert space Hout is

finite-dimensional. Regarding P pXq Ă SpC|X|q as the set of all diagonal

density operators, we can summarize that quantum devices are normalized

completely positive maps to different type of output spaces.

Devices D1, . . . ,Dn are compatible if there exists a device D that can

simulate D1, . . . ,Dn simultaneously, meaning that by ignoring disjoint parts

of the output of D we get the same actions as D1, . . . ,Dn (see [21]). This

kind of device is called a joint device of D1, . . . ,Dn. The input space of D

is the same as for D1, . . . ,Dn, but the output space is the tensor product

of their output spaces. As an illustration, let Dj : SpHinq Ñ SpHjq pj “

1, . . . , nq be quantum channels. They are compatible iff there exists a channel

D : SpHinq Ñ Sp
Ân

j“1Hjq satisfying

D1pϱq “ trH2,...,HnDpϱq,

D2pϱq “ trH1,H3,...,HnDpϱq,

...

Dnpϱq “ trH1,...,Hn´1Dpϱq
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for all ϱ P SpHinq (see (4.1)). If D1, . . . ,Dn are not compatible, then they are

incompatible. We recall a qubit example to exemplify the general definition.

Example 4.2

(Unbiased qubit observable and partially depolarizing noise) A measurement

of an unbiased qubit observable Aa necessarily disturbs the system. This

trade-off is mathematically described by the compatibility relation between

observables and channels. Let us consider partially depolarizing qubit chan-

nels, which have the form

Γppϱq “ pϱ ` p1 ´ pq1
2
1 (4.4)

for 0 ď p ď 1. A joint device for a channel and observable is an instrument.

Hence, Aa and Γp are compatible if there exists an instrument x ÞÑ Φx such

that
ÿ

x

Φxpϱq “ Γppϱq and TrrΦxpϱqs “ TrrϱAapxqs

for all states ϱ and outcomes x. It has been proven in [140] that Aa and Γp
are compatible if and only if

|a| ď
1

2

´

1 ´ p `
a

p1 ´ pqp1 ` 3pq

¯

. (4.5)

This shows that higher is the norm |a|, smaller must p be.

4.1.2 (In)compatibility dimension of devices

To test the incompatibility we should hence check the validity of (4.3) in a

subset of states that spans the whole state space. An obvious question is

then if we really need all those states, or if a smaller number of test states

is enough. Further, does the number of needed test states depend on the

given family of observables? How does noise affect the number of needed

test states? The earlier discussion motivates the following definition, which

is central to our investigation.

Definition 4.3

Let S0 Ă S. Devices D1, . . . ,Dn are S0-compatible if there exist compatible

devices D1
1, . . . ,D

1
n of the same type such that

D1
jpϱq “ Djpϱq (4.6)

for all j “ 1, . . . , n and states ϱ P S0. Otherwise, D1, . . . ,Dn are S0-

incompatible.

The definition is obviously interesting only when D1, . . . ,Dn are incompat-

ible in the usual sense, i.e., with respect to the full state space. In that
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case the definition means that if devices D1, . . . ,Dn are S0-compatible, their

incompatibility cannot be verified by taking test states from S0 only, and

vice versa, if devices D1, . . . ,Dn are S0-incompatible, their actions on S0

cannot be simulated by any collection of compatible devices and therefore

their incompatibility should be able to be observed in some way.

The S0-compatibility depends not only on the size of S0 but also on its

structure. We start with a simple example showing that there exist sets S0

such that an arbitrary family of devices is S0-compatible.

Example 4.4

Any set of devices D1, . . . ,Dn is S0-compatible if S0 “ tϱ1, . . . , ϱku consists

of perfectly distinguishable states. In fact, one may construct a device D1
k

which outputs Dkpϱjq after confirming an input state is ϱj by measuring an

observable that distinguishes the states in S0. It is easy to see that the

devices D1
1, . . . ,D

1
n are compatible. The same argument works for devices in

general probabilistic theories and one can use the same reasoning for a subset

S0 that is broadcastable [25]. (We recall that a subset S0 is broadcastable

if there exists a channel B : S Ñ S b S such that the bipartite state Bpϱq

has marginals equal to ϱ for all ϱ P S0.) For instance, two qubit states 1{2

and |0yx0| are broadcastable even though not distinguishable. Any pair of

qubit channels Λ1 and Λ2 is S0-compatible for S0 “ t1{2, |0yx0|u as we can

define Λ1
jpϱq “

ř1
i“0xi|ϱ|iyΛjp|iyxi|q for j “ 1, 2. The channel Λ1

j has clearly

the same action as Λj on S0. A joint channel Λ for Λ1
1 and Λ1

2 is given as

Λpϱq “

1
ÿ

i“0

xi|ϱ|iy Λ1p|iyxi|q b Λ2p|iyxi|q,

and it is clear that, in fact, Tr2rΛpϱqs “ Λ1pϱq and Tr1rΛpϱqs “ Λ2pϱq.

For a subset S0 Ă S, we denote by S̄0 the intersection of the linear hull

of S0 with S, i.e.,

S̄0 “ tϱ P S | ϱ “

l
ÿ

i“1

ciϱi for some ci P C and ϱi P S0u

In this definition we can assume without restriction that ci P R and
ř

i ci “

1 as they follow from the positivity and unit-trace of states. Since the

condition (4.6) is linear in ϱ, we conclude that devices D1, . . . ,Dn are S0-

compatible if and only if they are S̄0-compatible. This makes sense: if we

can simulate the action of devices for states in S0, we can simply calculate

the action for all states that are linear combinations of those states. This

observation also shows that a reasonable way to quantify the size of a subset

S0 for the task in question is the number of affinely independent states. We
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consider the following questions. Given a collection of incompatible devices

D1, . . . ,Dn,

(a) what is the smallest subset S0 such that D1, . . . ,Dn are S0-incompatible?

(b) what is the largest subset S0 such that D1, . . . ,Dn are S0-compatible?

Smallest and largest here mean the number of affinely independent states in

S̄0. It agrees with the linear dimension of the linear hull of S0, or dimaff S0`

1, where dimaff S0 is the affine dimension of the affine hull aff S0 of S0

[49, 54]. The answer to (a) quantifies how many states we need to use to

detect incompatibility if we choose them carefully, whereas the answer to

(b) quantifies how many (affinely independent) states we may have to use

if we cannot control their choice. Hence for both of these quantities lower

number means more incompatibility in the sense of easier detection. The

precise mathematical definitions read as follows.

Definition 4.5

For a collection of incompatible devices D1, . . . ,Dn, we denote

χincomppD1, . . . ,Dnq “ min
S0ĂS

tdimaff S0 ` 1 | D1, . . . ,Dn: S0-incompatibleu

and

χcomppD1, . . . ,Dnq “ max
S0ĂS

tdimaff S0 ` 1 | D1, . . . ,Dn: S0-compatibleu.

We call these numbers the incompatibility dimension and compatibility di-

mension of D1, . . . ,Dn respectively.

From Example 4.4 and the fact that the linear dimension of the linear hull

of S is d2 we conclude that

2 ď χincomppD1, . . . ,Dnq ď d2 (4.7)

and

d ď χcomppD1, . . . ,Dnq ď d2 ´ 1 . (4.8)

Further, from the definitions of these quantities it directly follows that

χincomppD1, . . . ,Dnq ď χcomppD1, . . . ,Dnq ` 1 . (4.9)

We note that based on their definitions, both χincomp and χcomp are expected

to be smaller for collections of devices that are more incompatible. The

following monotonicity property of χincomp and χcomp under pre-processing

is a basic property that any quantification of incompatibility is expected to

satisfy.
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Proposition 4.6

Let Λ : S Ñ S be a quantum channel and let rDj be a pre-processing of Dj with

Λ for each j “ 1, . . . , n, i.e., rDjpϱq “ DjpΛpϱqqq. If rDj’s are incompatible,

then also Dj’s are incompatible and

χincompprD1, . . . , rDnq ě χincomppD1, . . . ,Dnq (4.10)

and

χcompprD1, . . . , rDnq ě χcomppD1, . . . ,Dnq . (4.11)

Proof

Suppose that D1, . . . ,Dn are S0-compatible for some subset S0. Let D1 be

a device that gives devices D1
1, . . . ,D

1
n as marginals and these marginals

satisfy (4.6) in S0. Then the pre-processing of D1 with Λ gives rD1, . . . , rDn as

marginals in S0. The claimed inequalities then follow. 2

The post-processing map of a device D depends on type of the device. For

instance, the output set of an observable is P pXq and post-processing is then

described as a stochastic matrix [143]. We formulate and prove the following

monotonicity property of χincomp and χcomp under post-processing only for

observables. The formulation is analogous for other types of devices.

Proposition 4.7

Let rAj be a post-processing of Aj (i.e. rAjpx
1q “

ř

x νjpx
1, xqAjpxq for some

stochastic matrix νj) for each j “ 1, . . . , n. If rAj’s are S0-incompatible, then

also Aj’s are S0-incompatible and

χincompprA1, . . . , rAnq ě χincomppA1, . . . ,Anq (4.12)

and

χcompprA1, . . . , rAnq ě χcomppA1, . . . ,Anq . (4.13)

Proof

Suppose that A1, . . . ,An are S0-compatible for some subset S0. This means

that there exists an observable G satisfying for all ϱ P S0, any j and xj,

TrrϱAjpxjqs “
ÿ

l‰j

ÿ

xl

TrrϱGpx1, . . . , xnqs . (4.14)

We define an observable rG

rGpx1
1, . . . , x

1
nq “

ÿ

x1,...,xn

νpx1
1|x1q ¨ ¨ ¨ νpx1

n|xnqGpx1, . . . , xnq,

and it then satisfies

TrrϱrAjpx
1
jqs “

ÿ

l‰j

ÿ

x1
l

TrrϱrGpx1
1, . . . , x

1
nqs (4.15)
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for all ϱ P S0, any j and x1
j. This shows that rA1, . . . , rAn are S0-compatible.

The claimed inequalities then follow. 2

We will now have some examples to demonstrate the values of χincomp and

χcomp in some standard cases.

Example 4.8

Let us consider the identity channel id : SpCdq Ñ SpCdq. It follows from

the definitions that two identity channels are S0-compatible if and only if S0

is a broadcastable set. It is known that a subset of states is broadcastable

only if the states commute with each other [144], and for this reason the

pair of two identity channels is S0-incompatible whenever S0 contains two

noncommuting states. Therefore, we have χincomppid, idq “ 2. On the other

hand, S0 consisting of distinguishable states makes the identity channels S0-

compatible. As S0 consisting of commutative states has at most d affinely

independent states, we conclude that χcomppid, idq “ d.

A comparison of the results of Example 4.8 to the bounds (4.7) and (4.8)

shows that the pair of identity channels has the smallest possible incompat-

ibility and compatibility dimensions. This is quite expectable as that pair is

consider to be the most incompatible pair - any device can be post-processed

from the identity channel. Perhaps surprisingly, the lower bound of χincomp
can be attained already with a pair of dichotomic observables; this is shown

in the next example.

Example 4.9

Let P and Q be two noncommuting one-dimensional projections in a d-

dimensional Hilbert space H. We define two dichotomic observables A and

B as

Ap1q “ P ,Ap0q “ 1 ´ P , Bp1q “ Q ,Bp0q “ 1 ´ Q .

Let us then consider a subset consisting of two states,

S0 “ tϱP , ϱQu :“ t 1
d´1

p1 ´ P q, 1
d´1

p1 ´ Qqu .

We find that the dichotomic observables A and B are S0-incompatible. To

see this, let us make a counter assumption that A and B are S0-compatible,

in which case there exists G such that the marginal condition (4.3) holds for

both observables and for all ϱ P S0. We have TrrϱPAp1qs “ 0 and therefore

0 “ Trrp1 ´ P qGp1, 1qs “ Trrp1 ´ P qGp1, 0qs.

It follows that Gp1, 1q “ αP and Gp1, 0q “ βP . Further, TrrPAp1qs “

1 and hence α ` β “ 1. In a similar way we obtain Gp1, 1q “ γQ and
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Gp0, 1q “ δQ with γ ` δ “ 1. It follows that α “ γ “ 0 and β “ δ “ 1.

But Gp1, 0q ` Gp0, 1q “ P ` Q contradicts Gp1, 0q ` Gp0, 1q ď 1. Thus we

conclude χincomppA,Bq “ 2.

For two incompatible sharp qubit observables (Example 4.1) the previous

example gives a concrete subset of two states such that the observables

are incompatible and proves that χincomppA
a,Abq “ 2 for such a pair. The

incompatibility dimension for unsharp qubit observables is more complicated

and will be treated in Section 4.3.

Example 4.10

Let us consider two observables A and B. Fix a state ϱ0 P S and define

S0 “ tϱ P S : TrrϱApxqs “ Trrϱ0Apxqs @xu .

Then A and B are S0-compatible. To see this, we define an observable G as

Gpx, yq “ Trrϱ0ApxqsBpyq .

It is then straightforward to verify that (4.3) holds for all ϱ P S0. As a

special instance of this construction, let Aa be a qubit observable and a ‰ 0

(see Example 4.1). We choose S0 “ tϱ P S | TrrϱAap`qs “ 1
2
u. We then have

S0 “ t1
2
p1`r ¨σq | r ¨a “ 0u and hence dimaff S0 “ 2. Based on the previous

argument, Aa is S0-compatible with any Ab. Therefore, χcomppA
a,Abq “ 3

for all incompatible qubit observables Aa and Ab.

4.1.3 Remarks on other formulations of incompatibil-

ity dimension

The notion of S0-compatibility for quantum observables has been introduced

in [132] and in that particular case (i.e. quantum observables) it is equivalent

to Definition 4.3. In the current investigation, our focus is on the largest

or smallest S0 on which devices D1, . . . ,Dn are compatible or incompatible,

and this has some differences to the earlier approaches. In [134], the term

“compatibility dimension” was introduced and for observables A1, . . . ,An on

a d-dimensional Hilbert space H “ Cd: it is given by

RpA1, . . . ,Anq “ maxtr ď d | DV : Cr Ñ Cd isometry

s.t. V ˚A1V, , . . . , V
˚AnV are compatibleu,

Evaluations of RpA1, . . . ,Anq in various cases such as n “ 2 and A1 and

A2 are rank-1 were presented in [134]. To describe it in our notions, let us

denote Cr by K, and define SH and SK as the set of all density operator on
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H and K respectively. We also introduce SVK as

SVK :“ tϱ P S | suppϱ Ă VKu “ V SKV
˚ Ă SH.

Then, we can see that the SK-compatibility of V ˚A1V, , . . . , V
˚AnV is equiv-

alent to the SVK-compatibility of A1, . . . ,An. Therefore, if we focus only on

sets of states such as SVK (i.e. states with fixed support), then there is no

essential difference between our compatibility dimension and the previous

one: RpA1, . . . ,Anq “ r iff χcomppA1, . . . ,Anq “ r2. In [134] also the concept

of “strong compatibility dimension” was defined as

RpA1, . . . ,Anq “ maxtr ď d | @V : Cr Ñ Cd isometry

s.t. V ˚A1V, , . . . , V
˚AnV are compatibleu.

It is related to our notion of incompatibility dimension. In fact, if we only

admit sets of states such as SVK, then RpA1, . . . ,Anq and χincomppA1, . . . ,Anq

are essentially the same: RpA1, . . . ,Anq “ r iff χincomppA1, . . . ,Anq “ pr`1q2.

Similar notions have been introduced and investigated also in [133, 135].

As in [134], these works focus on quantum observables and on subsets of

states that are lower dimensional subspaces of the original state space.

Therefore, the notions are not directly applicable in GPTs. In [135] in-

compatibility is classified into three types. They are explained exactly in

terms of [134] as

(i) incompressive incompatibility: pA1, . . . ,Anq are SVK-compatible for all K
and V

(ii) fully compressive incompatibility: pA1, . . . ,Anq are SVK-incompatible for

all nontrivial K and V

(iii) partly compressive incompatibility: there is a V and K such that

pA1, . . . ,Anq are SVK-compatible, and some V 1 and K1 such that pA1, . . . ,Anq

are SV 1K1-incompatible.

In [135] concrete constructions of these three types of incompatible observ-

ables were given.

4.2 Incompatibility dimension and incompat-

ibility witness

In this section we show how the notion of incompatibility dimension is related

to the notion of incompatibility witness.
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4.2.1 Relation between incompatibility dimension and

incompatibility witness for observables

An incompatibility witness is an affine functional ξ defined on n-tuples of

observables such that ξ takes non-negative values on all compatible n-tuples

and a negative value at least for some incompatible n-tuple [16, 17, 112].

Every incompatibility witness ξ is of the form

ξp‘n
j“1Ajq “ δ ´ fp‘n

j“1Ajq, (4.16)

where δ P R and f is a linear functional on ‘n
j“1LspHqmj with LspHq being

the set of all self-adjoint operators on H and mj the number of outcomes of

Aj. It can be written also in the form

ξpA1, . . . ,Anq “ δ ´

n
ÿ

j“1

mj
ÿ

xj“1

cj,xjTrrϱj,xjAjpxjqs, (4.17)

where cj,xj ’s are real numbers, and ϱj,xj ’s are states. This result has been

proven in [17] for incompatibility witnesses acting on pairs of observables

and the generalization to n-tuples is straightforward. A witness ξ detects the

incompatibility of observables A1, . . . ,An if ξpA1, . . . ,Anq ă 0. The following

proposition gives a simple relation between incompatibility dimension and

incompatibility witness.

Proposition 4.11

Assume that an incompatibility witness ξ has the form (4.17) and it de-

tects the incompatibility of observables A1, . . . ,An. Then A1, . . . ,An are S0-

incompatible for S0 “ tϱj,xj | j “ 1, . . . , n, xj “ 1, . . . ,mju.

Proof

Let A1, . . . ,An be S0-compatible. Then we have compatible observables
rA1, . . . , rAn such that TrrϱAjpxjqs “ TrrϱrAjpxjqs for all ϱ P S0. This implies

that

ξpA1, . . . ,Anq “ ξprA1, . . . , rAnq ě 0 ,

which contradicts to the assumption that ξ detects the incompatibility of

observables A1, . . . ,An. 2

It has been shown in [17] that any incompatible pair of observables is de-

tected by some incompatibility witness of the form (4.17). The proof is

straightforward to generalize to n-tuples of observables, and thus, together

with Proposition 4.11, we can obtain

χincomppA1, . . . ,Anq ď m1 ` ¨ ¨ ¨ ` mn. (4.18)

95



That is, the incompatibility dimension of A1, . . . ,An can be evaluated via

their incompatibility witness (we will derive a better upper bound later in

this section). We can further prove the following proposition.

Proposition 4.12

The statements (i) and (ii) for a set of incompatible observables tA1, . . . ,Anu

are equivalent:

(i) χincomppA1, . . . ,Anq ď N

(ii) There exist a family of linearly independent states tϱ1, . . . , ϱNu and real

numbers δ and tcl,j,xjul,j,xj pl “ 1, . . . , N, j “ 1, . . . , n, xj “ 1, . . . ,mjq

such that the incompatibility witness ξ defined by

ξpB1, . . . ,Bnq “ δ ´

N
ÿ

l“1

n
ÿ

j“1

mj
ÿ

xj“1

cl,j,xj trrϱlBjpxjqs

detects the incompatibility of tA1, . . . ,Anu.

The claim piq ñ piiq may be regarded as the converse of the previous ar-

gument to obtain (4.18). It manifests that we can find an incompatibility

witness detecting the incompatibility of tA1, . . . ,Anu reflecting their incom-

patibility dimension.

Proof

piiq ñ piq can be proven in the same way as Proposition 4.11. Thus, we fo-

cus on proving piq ñ piiq. Suppose that a family of observables tA1, . . . ,Anu

satisfies χincomppA1, . . . ,Anq “ N . Then there exists a family of linearly

independent states tϱ1, ϱ2, . . . , ϱNu in LspHq on which tA1, . . . ,Anu are in-

compatible. We can regard the family tA1, . . . ,Anu as an element of a vector

space L defined as L :“ ‘n
j“1LspHqmj , that is, A :“ ‘n

j“1Aj P L. For

each l “ 1, . . . , N , j “ 1, . . . , n, and xj “ 1, . . . ,mj, let us define a subset

KpA, ϱl, j, xjq of L as

KpA, ϱl, j, xjq :“ tB P L | xϱl|BjpxjqyHS “ xϱl|AjpxjqyHSu, (4.19)

where xϱl|AjpxjqyHS :“ trrϱlAjpxjqs is the Hilbert-Schmidt inner product on

LspHq. Note that this inner product can be naturally extended to an inner

product xx¨|¨yy on L:

xxA|Byy “

n
ÿ

j“1

mj
ÿ

xj“1

xAjpxjq|BjpxjqyHS .

Embedding ϱl into L by ϱ̂
j,xj
l “ ‘n

i“1 ‘
mi
y“1 δijδyxjϱl for each j, xj and l, we
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obtain another representation of (4.19) as

KpA, ϱl, j, xjq “ tB | xxϱ̂j,xl |Byy “ xxϱ̂
j,xj
l |Ayyu . (4.20)

Thus this set is a hyperplane in L. Note that tϱ̂j,xl ul,j,xj is a linearly inde-

pendent set in L. Consider an affine set K :“ XN
l“1 Xn

j“1 X
mj

xj“1KpA, ϱl, j, xjq.

Because tA1, . . . ,Anu is incompatible in tϱ1, ¨ ¨ ¨ , ϱNu, it satisfies

K X C “ H, (4.21)

where C :“ tC P L | tC1, . . .Cnu is compatibleu. Thus, by the separating

hyperplane theorem [49], there exists a hyperplane in L which separates

strongly the (closed) convex sets K and C. In the following, we will show

that one of those separating hyperplanes can be constructed from tϱ̂j,xl ul,j,xj .

Let us extend a family of linearly independent vectors tϱ̂
j,xj
l ul,j,xj to form

a basis of L. That is, we introduce a basis tvbub“1,...,dimL of L satisfying

tvaua“1,...,Np
ř

j mjq “ tϱ̂
j,xj
l ul,j,xj . We introduce its dual basis twbub“1,2,...,dimL

satisfying xxva|wbyy “ δab. Because K can be written as

K “ tB | xxϱ̂
j,xj
l |pB ´ Aqyy “ 0, @l, j, xju,

it is represented in terms this (dual) basis as

K “ A ` K0,

where K0 is an affine set defined by

K0 : “ t

dimL
ÿ

a“Np
ř

j mjq`1

cawa | ca P Ru (4.22)

Now we can construct a hyperplane separating K and C. To do this, let

us focus on the convex sets K0 and C 1 :“ C ´ A instead of K and C,

which satisfy K0 X C 1 “ H because of (4.21). We can apply the separating

hyperplane theorem (Theorem 11.2 in [49]) for the affine set K0 and convex

set C 1. There exists a hyperplane H0 in L such that K0 and C 1 are contained

by H0 and one of its associating open half-spaces respectively. That is, there

exists h P L satisfying

H0 “ tB P L | xxB|hyy “ 0u

with K0 Ă H0, and xxC1|hyy ă 0 for all C1 P C 1. Let us examine the vector

h. It satisfies

xxwa|hyy “ 0 for all a “ Np
ř

jmjq ` 1, . . . , dimL
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because K0 Ă H0 (see (4.22)). Thus, if we write h as h “
řdimL
a“1 cava, then

we can find that ca “ 0 holds for all a “ Np
ř

jmjq `1, . . . , dimL. It follows

that

h “

Np
ř

j mjq
ÿ

a“1

cava “
ÿ

l

ÿ

j

ÿ

xj

cl,j,xj ϱ̂
j,xj
l

holds, and the hyperplane H0 can be written as

H0 “ tB P L |
ÿ

l

ÿ

j

ÿ

xj

cl,j,xjTrrϱlBjpxjqs “ 0u.

Then, the hyperplane H 1 :“ A ` H0, a translation of H0, of the form

H 1 “ tB P L |
ÿ

l

ÿ

j

ÿ

xj

cl,j,xjTrrϱlBjpxjqs “ δ1u

contains the original sets K, and satisfy

ÿ

l

ÿ

j

ÿ

xj

cl,j,xjTrrϱlCjpxjqs ă δ1

for all C P C. We can displace H 1 slightly in the direction of C to obtain a

hyperplane H defined as

H “ tB P L |
ÿ

l

ÿ

j

ÿ

xj

cl,j,xjTrrρlBjpxjqs “ δu,

which (strongly) separates H 1 (in particular K) and C because H 1 is closed

and C is compact (see Corollary 11.4.2 in [49]). The claim now follows as

A P K. 2

4.2.2 An upper bound on the incompatibility dimen-

sion of observables via incompatibility witness

We can give a better upper bound than (4.18) for the incompatibiliy dimen-

sion by slightly modifing the previous argument in [17] on incompatibility

witness.

Proposition 4.13

Let A1, . . . ,An be incompatible observables with m1, . . . ,mn outcomes, re-

spectively. Then

χincomppA1, . . . ,Anq ď

n
ÿ

j“1

mj ´ n ` 1.
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Proof

We continue following the same notations as the proof of Proposition 4.12.

Let us assume that the incompatibility of A1, . . . ,An is detected by an in-

compatibility witness ξ. The functional ξ is of the form

ξpAq “ δ ´ fpAq

with a real number δ and a functional f on L (see (4.16)). Then, Riesz

representation theorem shows that the functional f can be represented as

fpAq “

n
ÿ

j“1

mj
ÿ

xj

xFjpxjq|AjpxjqyHS

with some Fjpxjq P LspHq pj “ 1, . . . , n, xj “ 1, . . . ,mjq. If we define

F 1
jpxjq “ Fjpxjq ` ϵj1, then we find

ξpAq “ δ ` d
ÿ

j

ϵj ´

n
ÿ

j“1

mj
ÿ

xj“1

xF 1
jpxjq|AjpxjqyHS.

We choose ϵj so that

ÿ

xj

trrF 1
jpxjqs “

ÿ

xj

xF 1
jpxjq|1yHS “ 0

holds. The choice of tF 1
jpxjquj,xj has still some freedom. Each F 1

jpxjq can

be replaced with F 2
j pxjq “ F 1

jpxjq ` Tj, where Tj P LspHq satisfies trrTjs “

xTj|1yHS “ 0. In fact, it holds that

ÿ

xj

xF 2
j pxjq|AjpxjqyHS “

ÿ

xj

xF 1
jpxjq|AjpxjqyHS `

ÿ

xj

xTj|AjpxjqyHS

“
ÿ

xj

xF 1
jpxjq|AjpxjqyHS ` xTj|1yHS

“
ÿ

xj

xF 1
jpxjq|AjpxjqyHS.

We choose Tj as mjTj “ ´
řmj

xj“1 F
1
jpxjq which indeed satisfies

mjxTj|1yHS “ ´

mj
ÿ

xj“1

xF 1
jpxjq|1yHS “ 0,

i.e., TrrTjs “ 0, to obtain

ÿ

xj

F 2
j pxjq “ 0.
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We further choose large numbers αj ě 0 so that Gjpxjq :“ F 2
j pxjq `αj1 ě 0

for all j and xj. Now we obtain a representation of the witness which is

equivalent to ξ for n-tuples of observables as

ξ˚pAq “ δ ` d
ÿ

j

pϵj ` αjq ´
ÿ

j

ÿ

xj

xGjpxjq|AjpxjqyHS,

where positive operators Gjpxjq’s satisfy
ř

xj
Gjpxjq “ mjαj1. Defining

density operators ϱjpxjq by ϱjpxjq “
Gjpxjq

trrGjpxjqs
, we obtain yet another repre-

sentation

ξ˚pAq “ δ ` d
ÿ

j

pϵj ` αjq ´
ÿ

j

ÿ

xj

trrGjpxjqstrrϱjpxjqAjpxjqs

with ϱjpxjq’s satisfying constraints

ÿ

xj

trrGjpxjqsϱjpxjq “ mjαj1. (4.23)

Thus, according to Proposition 4.11, A1, . . . ,An are S0-incompatible with

S0 “ tϱjpxjquj,xj . To evaluate dimaff S0, we focus on the condition (4.23).

Introducing parameters pjpxjq :“ trrGjpxjqs{dmjαj such that
ř

xj
pjpxjq “

1, we obtain
ÿ

xj

pjpxjqϱjpxjq “
1

d
1,

or
ÿ

xj

pjpxjqϱ̃jpxjq “ 0,

where ϱ̃jpxjq :“ ϱjpxjq´ 1
d
1. It follows that tϱ̃jpxjquxj are linearly dependent,

and thus

dimspantϱ̃jpxjquxj ď m1 ´ 1.

Similar arguments for the other j’s result in

dimspantϱ̃jpxjquj,xj ď
ÿ

j

pmj ´ 1q “
ÿ

j

mj ´ n.

Considering that

dimspantϱ̃jpxjquj,xj “ dimaff tϱjpxjquj,xj

holds, we can obtain the claim of the proposition. 2

The bound in Proposition 4.13 is not tight in general since the right-hand

side of the inequality can exceed the bound obtained in (4.7). However, for

small n and mj’s, the bound can be tight. In fact, while for n “ 2 and
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m1 “ m2 “ 2 it gives χincomppA1,A2q ď 3, we will construct an example

which attains this upper bound in the next section.

4.3 (In)compatibility dimension for mutually

unbiased qubit observables

In this section we study the incompatibility dimension of pairs of unbiased

qubit observables introduced in Example 4.1. We concentrate on pairs that

are mutually unbiased, i.e., TrrAap˘qAbp˘qs “ 1{2 (this terminology orig-

inates from the fact that if the observables are sharp, then the respective

orthonormal bases are mutually unbiased. In the previously written form

the definition makes sense also for unsharp observables [145]). The condition

of mutual unbiasedness is invariant under a global unitary transformation,

hence it is enough to fix the basis x “ p1, 0, 0q, y “ p0, 1, 0q, z “ p0, 0, 1q in

R3 and choose two of these unit vectors. We will study the observables Atx

and Aty, where 0 ď t ď 1. The observables are written explicitly as

Atxp˘q “
1

2
p1 ˘ tσ1q , Atyp˘q “

1

2
p1 ˘ tσ2q.

The condition (4.2) shows that Atx and Aty are incompatible if and only if

1{
?

2 ă t ď 1. The choice of having mutually unbiased observables as well as

using a single noise parameter instead of two is to simplify the calculations.

We have seen in Example 4.10 that χcomppA
tx,Atyq “ 3 for all values t

for which the pair is incompatible. We have further seen (discussion after

Example 4.9) that χincomppA
x,Ayq “ 2, and from Prop. 4.13 follows that

χincomppA
tx,Atyq ď 3 for all 1{

?
2 ă t ď 1. The remaining question is then

about the exact value of χincomppA
tx,Atyq, which can depend on the noise

parameter t and will be in our focus in this section (see Table 4.1).

χincomppA
tx,Atyq χcomppA

tx,Atyq

t ď 1?
2

- -

1?
2

ă t ă 1
2 or 3

(Proposition 4.14)
3

(Example 4.10)
t “ 1

2
(Example 4.9)

Table 4.1: χincomp and χcomp for pAtx,Atyq with
0 ď t ď 1. For t ď 1{

?
2 the observables Atx and

Aty are compatible and χincomp and χcomp are not
defined.

Let us first make a simple observation that follows from Prop. 4.7. Con-

sidering that Asx is obtained as a post-processing of Atx if and only if s ď t,
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we conclude that

χincomppA
sx,Asyq “ 2 ñ χincomppA

tx,Atyq “ 2 for
1

?
2

ă s ď t ,

and

χincomppA
s1x,As

1yq “ 3 ñ χincomppA
t1x,At

1yq “ 3 for s1 ě t1 ą
1

?
2
.

Interestingly, there is a threshold value t0 where the value of χincomppA
tx,Atyq

changes; this is the content of the following proposition.

Proposition 4.14

There exists 1{
?

2 ă t0 ă 1 such that χincomppA
tx,Atyq “ 3 for 1{

?
2 ă t ď t0

and χincomppA
tx,Atyq “ 2 for t0 ă t ď 1.

The main line of the lengthy proof of Proposition 4.14 is the following.

Defining two subsets L and M of p 1?
2
, 1s as

L :“ tt | χincomppA
tx,Atyq “ 2u, M :“ tt | χincomppA

tx,Atyq “ 3u, (4.24)

we see that

inf L “ supMp“: t10q (4.25)

holds unless L and M are empty. By its definition, the number t10 satisfies

χincomppA
tx,Atyq “ 2 for t ą t10, χincomppA

tx,Atyq “ 3 for t ă t10.

Based on the considerations above, the proof of Proposition 4.14 proceeds

as follows. First, in Part 1 - 3 (Subsection 4.3.1 - 4.3.3), we prove that M

is nonempty while L has already been shown to be nonempty as t “ 1 P L.

It will be found that χincomppA
tx,Atyq “ 3 for t sufficiently close to 1?

2
, and

thus t10 introduced above can be defined successfully. Then, we demonstrate

in Part 4 (Subsection 4.3.4) that supM “ maxM , i.e. t10 equals to t0 in the

claim of Prop. 4.14.

Remark 4.15

In [132] a similar problem to ours was considered. While in that work

the focus was on several affine sets, and a threshold value t0 was given for

each of them by means of their semidefinite programs where observables

tAtx,Aty,Atzu become compatible, we are considereding all affine sets with

dimension 2.
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4.3.1 Proof of Proposition 4.14 : Part 1

In order to prove that M is nonempty, let us introduce some relevant notions:

D :“ tv | |v| ď 1, vz “ 0u Ă B :“ tv | |v| ď 1u,

SD :“ tϱv | v P Du Ă S “ tϱv | v P Bu,

where v “ vxx`vyy`vzz P R3, and ϱv :“ 1
2
p1`v ¨σq. Since SD is a convex

set, we can treat SD almost like a quantum system. In the following, we

will do it without giving precise definitions because they are obvious. For an

observable E on S with effects tEpxqux, we write its restriction to SD as E|D

with effects tEpxq|Dux, which is an observable on SD. It is easy to obtain

the following Lemma.

Lemma 4.16

The followings are equivalent:

(i) Atx and Aty are incompatible (thus 1?
2

ă t ď 1).

(ii) Atx and Aty are SD-incompatible.

(iii) Atx|D and Aty|D are incompatible as observables on SD.

Proof

(i) ñ (iii). Suppose that Atx|D and Aty|D are compatible in SD. There exists

an observable M on SD whose marginals coincide with Atx|D and Aty|D. One

can extend this M to the whole S so that it does not depend on z (for

example, one can simply regard its effect c01 ` c1σ1 ` c2σ2 as an effect on

S). Since both Atx|D and Aty|D also do not depend on z, the extension of M

gives a joint observable of Atx and Atx.

(iii) ñ (ii). Suppose that Atx and Aty are SD-compatible. There exists an

observable M on S whose marginals coincide with Atx and Aty in SD. The

restriction of M on SD proves that (iii) is false.

(ii) ñ (i). Suppose that Atx and Aty are compatible, then they are SD-

compatible. 2

This lemma demonstrates that the incompatibility of Atx and Aty means the

incompatibility of Atx|D and Aty|D. We can present further observations.

Lemma 4.17

Let us consider two pure states ϱr1 and ϱr2 (r1, r2 P BB, r1 ‰ r2), and a

convex subset S0 of S generated by them: S0 :“ tpϱr1`p1´pqϱr2 | 0 ď p ď 1u.

We also introduce an affine projection P by Pϱv “ ϱPv, where ϱ
v P S with

v “ vxx ` vyy ` vzz and Pv “ vxx ` vyy, and extend it affinely. The affine

hull of S0 is projected to SD as

PS0 :“ tλPϱr1 ` p1 ´ λqPϱr2 | λ P Ru X SD. (4.26)
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If Atx and Aty are S0-incompatible, then their restrictions Atx|D and Aty|D

are PS0-incompatible.

Proof

Suppose that Atx and Aty are S0-incompatible. It implies Pr1 ‰ Pr2, i.e.,

Pϱr1 ‰ Pϱr2 (see Example 4.10), and thus PS0 is a segment in SD. If Atx|D

and Aty|D are PS0-compatible, then there exists a joint observable M on SD
such that its marginals coincide with Atx|D and Aty|D on PS0 Ă SD. This

M can be extended to an observable on S so that the extension does not

depend on z. Because

TrrAtxp˘qPϱr1s “ TrrAtxp˘qϱr1s,

TrrAtxp˘qPϱr2s “ TrrAtxp˘qϱr2s

(and their y-counterparts) hold due to the independence of Atxp˘q from

σ3, the marginals of M coincide with Atx and Aty on S0. It results in the

S0-compatibility of Atx and Aty, which is a contradiction. 2

It follows from this lemma that χincomppA
tx|D,A

ty|Dq is two when χincomppA
tx,Atyq

is two, equivalently χincomppA
tx,Atyq is three when χincomppA

tx|D,A
ty|Dq is

three (remember that χincomppA
tx,Atyq ď 3). In fact, the converse also

holds.

Lemma 4.18

χincomppA
tx|D,A

ty|Dq is three when χincomppA
tx,Atyq is three.

Proof

Let χincomppA
tx,Atyq “ 3. It follows that for any line S Ă S, Atx and Aty are

S-compatible. In particular, Atx and Aty are S 1-compatible for any line S 1 in

SD, and thus there is an observable M such that its marginals coincide with

Atx and Aty on S 1. It is easy to see that the marginals of M|D coincide with

Atx|D and Aty|D on S 1, which results in the S 1-compatibility of Atx|D and

Aty|D. Because S 1 is arbitrary, we can conclude χincomppA
tx|D,A

ty|Dq “ 3.2

The lemmas above manifest that if Atx and Aty are incompatible, then Atx|D

and Aty|D are also incompatible and

χincomppA
tx,Atyq “ χincomppA

tx|D,A
ty|Dq.

Therefore, in the following, we denote Atx|D and Aty|D simply by AtxD and

AtyD respectively, and focus on the quantity χincomppA
tx
D ,A

ty
D q instead of the

original χincomppA
tx,Atyq.

Before proceeding to the next step, let us confirm our strategy in the

following parts. In Part 2 (Subsection 4.3.2), we will consider a line (seg-

ment) S1 in SD, and consider for 0 ă t ă 1 all pairs of observables prAt1,
rAt2q
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on SD that coincide with pAtxD ,A
ty
D q on S1. Then, in Part 3 (Subsection

4.3.3), we will investigate the (in)compatibility of those rAt1 and rAt2 in order

to obtain χincomppA
tx
D ,A

ty
D q. It will be shown that when t is sufficiently small,

there exists a compatible pair prAt1,
rAt2q for any S1, that is, AtxD and AtyD are

S1-compatible for any line S1. It results in χincomppA
tx
D ,A

ty
D q “ 3, and thus

M ‰ H.

4.3.2 Proof of Proposition 4.14 : Part 2

Let us consider two pure states ϱr1 and ϱr2 with r1, r2 P BD (r1 ‰ r2), and a

convex set S1 :“ tpϱr1 ` p1 ´ pqϱr2 | 0 ď p ď 1u. We set parameters φ1 and

φ2 as

r1 “ cosφ1x ` sinφ1y, (4.27)

r2 “ cosφ2x ` sinφ2y, (4.28)

where ´π ď φ1 ă φ2 ă π. By exchanging ˘ properly, without loss of

generality we can assume the line connecting r1 and r2 passes through above

the origin (instead of below). In this case, from geometric consideration, we

have
0 ă φ2 ´ φ1 ď π,

0 ď
φ1 ` φ2

2
ď
π

2
.

(4.29)

Note that when φ2 ´φ1 “ π, ϱr1 and ϱr2 are perfectly distinguishable, which

results in the S1-compatibility of AtxD and AtyD (see Example 4.4). On the

other hand, when φ1`φ2

2
“ 0 or π

2
, TrrϱAtxD p`qs or TrrϱAtyD p`qs is constant

for ϱ P S1 respectively, so AtxD and AtyD are S1-compatible (see Example 4.10).

Thus, instead of (4.29), we hereafter assume

0 ă
φ2 ´ φ1

2
ă
π

2
,

0 ă
φ1 ` φ2

2
ă
π

2
.

(4.30)

Next, we consider a binary observable rAt1 on SD that coincides with AtxD on

S1 Ă SD. There are many possible rAt1, and each rAt1 is determined completely

by its effect rAt1p`q corresponding to the outcome ‘+’ because it is binary.

The effect rAt1p`q is associated with a vector v1 P D defined as

v1 :“ argmaxvPDtrrϱvrAt1p`qs. (4.31)

Let us introduce a parameter ξ1 P r´π, πq by

v1 “ cos ξ1x ` sin ξ1y, (4.32)
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and express rAt1p`q as

rAt1p`q “
1

2
pp1 ` wpξ1qq1 ` m1pξ1q ¨ σq , (4.33)

where we set

m1pξ1q “ C1pξ1qv1 with 0 ď C1pξ1q ď 1. (4.34)

Because

Trrϱr1AtxD p`qs “ Trrϱr1 rAt1p`qs,

Trrϱr2AtyD p`qs “ Trrϱr2 rAt1p`qs,

namely
1

2
`
t

2
cosφ1 “

1 ` w1pξ1q

2
`
C1pξ1q

2
cospφ1 ´ ξ1q,

1

2
`
t

2
cosφ2 “

1 ` w1pξ1q

2
`
C1pξ1q

2
cospφ2 ´ ξ1q,

(4.35)

hold, we can obtain

C1pξ1q “
tpcosφ1 ´ cosφ2q

cospφ1 ´ ξ1q ´ cospφ2 ´ ξ1q
“

t sinφ0

sinpφ0 ´ ξ1q
, (4.36)

w1pξ1q “ ´t

ˆ

sinpφ1 ´ φ2q

2 sinp
φ1´φ2

2
q

˙

¨

ˆ

sin ξ1
sinpφ0 ´ ξ1q

˙

“
´t cosψ0 sin ξ1

sinpφ0 ´ ξ1q
, (4.37)

where we set φ0 :“ φ1`φ2

2
and ψ0 :“ φ2´φ1

2
(0 ă φ0 ă π

2
, 0 ă ψ0 ă π

2
).

Note that if sinpφ0 ´ ξ1q “ 0 or cospφ1 ´ ξ1q ´ cospφ2 ´ ξ1q “ 0 holds,

then cosφ1 ´ cosφ2 “ 0 holds (see (4.36)). It means φ0 “ 0, which is

a contradiction, and thus sinpφ0 ´ ξ1q ‰ 0 (that is, C1pξ1q and w1pξ1q in

(4.36), (4.37) are well-defined). Moreover, because C1pξ1q ě 0, we can see

from (4.36) that sinpφ0 ´ ξ1q ą 0 holds, which results in

0 ď ξ1 ă φ0, (4.38)

or

´π ` φ0 ă ξ1 ď 0. (4.39)

In addition, ξ1 is restricted also by the condition that rAt1p˘q are positive.

Since the eigenvalues of rAt1p˘q are 1
2
pp1 ` w1pξ1qq ˘ C1pξ1qq, the restriction

comes from both
1 ` w1pξ1q ` C1pξ1q ď 2,

1 ` w1pξ1q ´ C1pξ1q ě 0,
(4.40)
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equivalently

1 ´ w1pξ1q ě C1pξ1q, (4.41)

1 ` w1pξ1q ě C1pξ1q. (4.42)

When (4.39) (i.e. sin ξ1 ď 0) holds, w1pξ1q ě 0 holds, and thus (4.41) is

sufficient. It is written explicitly as

sin pφ0 ´ ξ1q ` t sin ξ1 cosψ0 ě t sinφ0,

or

1

t
cos ξ1 `

1

t sinφ0

pt cosψ0 ´ cosφ0q sin ξ1 ě 1. (4.43)

In order to investigate (4.43), we adopt a geometric method here while it

can be solved in an analytic way. Let us define

h1pt, φ0, ψ0q “
1

t sinφ0

pt cosψ0 ´ cosφ0q . (4.44)

Then, we can rewrite (4.43) as

pcos ξ1, sin ξ1q ¨

„ˆ

1

t
, h1

˙

´ pcos ξ1, sin ξ1q

ȷ

ě 0. (4.45)

In fact, it can be verified easily that
`

1
t
, h1

˘

is the intersection of the line

l1 :“ tλr1 ` p1 ´ λqr2 | λ P Ru and the line x “ 1
t

in R2. Considering this

fact, we can find that ξ1 satisfies (4.45) if and only if

ξmin1 pt, φ0, ψ0q ď ξ1 ď 0, (4.46)

where ξmin1 pt, φ0, ψ0q is determined by the condition

„ˆ

1

t
, h1

˙

´ pcos ξmin1 , sin ξmin1 q

ȷ

K pcos ξmin1 , sin ξmin1 q (4.47)

(see FIG. 4.1). Analytically, it corresponds to the case when the equality of

(4.43) holds:

1

t
cos ξmin1 `

1

t sinφ0

pt cosψ0 ´ cosφ0q sin ξmin1 “ 1, (4.48)

or

1 ´ w1pξmin1 q “ C1pξ
min
1 q.
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Figure 4.1: Geometric description of determining
ξmin1 .

It can be represented explicitly as

`

t2 cos2 ψ0 ´ 2t cosφ0 cosψ0 ` 1
˘

sin2 ξmin1

´ 2t sinφ0 pt cosψ0 ´ cosφ0q sin ξmin1 ` pt2 ´ 1q sin2 φ0 “ 0,
(4.49)

and sin ξmin1 is obtained as its negative solution. Note that since the coef-

ficient pt2 cos2 ψ0 ´ 2t cosφ0 cosψ0 ` 1q is strictly positive, the solutions do

not show any singular behavior. In summary, we have obtained

ξmin1 pt, φ0, ψ0q ď ξ1 ď 0 (4.50)

with ξmin1 pt, φ0, ψ0q uniquely determined for t, φ0, and ψ0 by

#

´ π ` φ0 ă ξmin1 pt, φ0, ψ0q ď 0,

1 ´ w1pξ
min
1 pt, φ0, ψ0qq “ C1pξmin1 pt, φ0, ψ0qq.

(4.51)

On the other hand, when (4.38) (i.e. sin ξ1 ě 0) holds, (4.42) is sufficient.

It results in a tight condition for ξ1:

0 ď ξ1 ď ξmax1 pt, φ0, ψ0q, (4.52)

where ξmax1 pt, φ0, ψ0q is a constant uniquely determined for φ0 and ψ0 by

#

0 ď ξmax1 pt, φ0, ψ0q ă φ0

1 ` w1pξ
max
1 pt, φ0, ψ0qq “ C1pξmax1 pt, φ0, ψ0qq.

(4.53)
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We remark that this can be obtained by a similar geometric method to the

previous case: consider the intersection of the line l1 and the line x “ ´1
t

in

turn (see FIG. 4.2). Overall, we have demonstrated that ξ1 for rAt1 satisfies

Figure 4.2: Geometric description of determining
ξmax1 .

ξmin1 pt, φ0, ψ0q ď ξ1 ď ξmax1 pt, φ0, ψ0q, (4.54)

where ξmin1 pt, φ0, ψ0q and ξmax1 pt, φ0, ψ0q are obtained thorough (4.51) and

(4.53) respectively. Note that ξmin1 pt, φ0, ψ0q and ξmax1 pt, φ0, ψ0q depend con-

tinuously on t (and φ1, φ2 through φ0 and ψ0).

Similarly, we consider a binary observable rAt2 on SD which coincides with

AtyD in S1, and focus on its effect rAt2p`q. We define parameters v2 P D and

ξ2 P r´π, πq as

v2 “ sin ξ2x ` cos ξ2y “ argmaxvPDtrrrAt2p`qϱvs. (4.55)

rAt2p`q is represented as

rAt2p`q “
1

2
pp1 ` w2pξ2qq1 ` m2pξ2qq (4.56)

with

m2pξ2q “ C2pξ2qv2 p0 ď C2pξ2q ď 1q.

(4.35) becomes

1

2
`
t

2
cos

´π

2
´ φ1

¯

“
1 ` x2pξ2q

2
`
C2pξ2q

2
cos

´π

2
´ φ1 ´ ξ1

¯

,

1

2
`
t

2
cos

´π

2
´ φ2

¯

“
1 ` x2pξ2q

2
`
C2pξ2q

2
cos

´π

2
´ φ2 ´ ξ1

¯

,

(4.57)
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so defining φ1 :“ π
2

´φ1 and φ2 :“ π
2

´φ2, we can obtain similarly to (4.36)

and (4.37)

C2pξ2q “
t sinφ0

sinpφ0 ´ ξ1q
, (4.58)

w2pξ2q “
´t cosψ0 sin ξ2

sinpφ0 ´ ξ2q
, (4.59)

where φ0 :“ φ1`φ2

2
“ π

2
´φ0. It follows that properties of rAt2 can be obtained

just by replacing ξ1 and φ0 exhibited in the argument for rAt1 by ξ2 and φ0

respectively. Remark that 0 ă φ0 ă π
2

holds similarly to φ0, and that the

change ψ0 Ñ ψ0 :“ φ2´φ1

2
“ ´ψ0 does not affect the equations above, so we

dismiss it. From (4.58) and (4.59), we have

ξmin2 pt, φ0, ψ0q ď ξ2 ď ξmax2 pt, φ0, ψ0q, (4.60)

where

ξmin2 pt, φ0, ψ0q “ ξmin1 pt, φ0, ψ0q “ ξmin1

´

t,
π

2
´ φ0, ψ0

¯

, (4.61)

and

ξmax2 pt, φ0, ψ0q “ ξmax1 pt, φ0, ψ0q “ ξmax1

´

t,
π

2
´ φ0, ψ0

¯

, (4.62)

which satisfy

$

&

%

´
π

2
` φ0 ă ξmin2 pt, φ0, ψ0q ď 0

1 ´ w2pξmin2 pt, φ0, ψ0qq “ C2pξ
min
2 pt, φ0, ψ0qq

(4.63)

and
$

&

%

0 ď ξmax2 pt, φ0, ψ0q ă
π

2
´ φ0

1 ` w2pξ
max
2 pt, φ0, ψ0qq “ C2pξ

max
2 pt, φ0, ψ0qq

(4.64)

respectively.

4.3.3 Proof of Proposition 4.14 : Part 3

In this part, we shall consider the (in)compatibility of the observables rAt1
and rAt2 defined in (a) for t close to 1?

2
(t „ 1?

2
). It is related directly with

the S1-(in)compatibility of AtxD and AtyD as we have shown in the beginning of

this section. Let us examine the behavior of ξmin1 pt, φ0, ψ0q for t „ 1?
2
. We

denote ξmin1 pt “ 1?
2
, φ0, ψ0q and h1pt “ 1?

2
, φ0, ψ0q simply by pξmin1 pφ0, ψ0q
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and ph1pφ0, ψ0q respectively. The following lemma is useful.

Lemma 4.19

With φ0 fixed, pξmin1 is a strictly decreasing function of ψ0.

Proof

The claim can be observed to hold by a geometric consideration in terms of

FIG. 4.1. In fact, increasing ψ0 with φ0 fixed corresponds to moving the line

l1 down with its inclination fixed. The movement makes h1 (or ph1) and hence

ξmin1 (or pξmin1 ) smaller, which proves the claim. Here we show an analytic

proof of this fact. We can see from (4.44) and (4.48) that

?
2 cos pξmin1 ` ph1 sin pξmin1 “ 1, (4.65)

i.e.
ph1 “

1

sin pξmin1

´

1 ´
?

2 cos pξmin1

¯

holds (note that sin pξmin1 ‰ 0 because sin pξmin1 “ 0 contradicts (4.65)). Then,

the claim follows from the observation that

dph1

dpξmin1

“
1

psin pξmin1 q2

´?
2 ´ cos pξmin1

¯

ą 0,

and ph1 “ 1
sinφ0

`

cosψ0 ´
?

2 cosφ0

˘

is a decreasing function of ψ0. 2

From this lemma, it follows that

pξmin1 pφ0, ψ0q ă lim
ψ0Ñ`0

pξmin1 pφ0, ψ0q “: Ξmin
1 pφ0q, (4.66)

and

pξmin2 pφ0, ψ0q ă Ξmin
2 pφ0q (4.67)

hold for all φ0 P p0, π
2
q and ψ0 P p0, π

2
q, where

pξmin2 pφ0, ψ0q :“ ξmin2

ˆ

t “
1

?
2
, φ0, ψ0

˙

´

“ pξmin1

´π

2
´ φ0, ψ0

¯¯

,

Ξmin
2 pφ0q :“ lim

ψ0Ñ`0

pξmin2 pφ0, ψ0q

´

“ Ξmin
1

´π

2
´ φ0

¯¯

.

(4.68)

We can prove the following lemma.

Lemma 4.20

Ξmin
1 pφ0q ` Ξmin

2 pφ0q ď ´
π

2

holds for all 0 ă φ0 ă π
2
.
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Proof

Let us define

H1pφ0q :“ lim
ψ0Ñ`0

ph1pφ0, ψ0q “ lim
ψ0Ñ`0

h1

ˆ

t “
1

?
2
, φ0, ψ0

˙

“
1

sinφ0

´

1 ´
?

2 cosφ0

¯

.

It holds similarly to (4.65) that

?
2 cos Ξmin

1 ` H1 sin Ξmin
1 “ 1. (4.69)

Hence, together with sin2 Ξmin
1 ` cos2 Ξmin

1 “ 1, we can obtain

cos Ξmin
1 “

1
?

2
¨

2 ` H1

a

2H2
1 ` 2

H2
1 ` 2

, (4.70)

or its more explicit form

cos Ξmin
1 “

1
?

2
¨

4 ´ 3
?

2 cosφ0

3 ´ 2
?

2 cosφ0

. (4.71)

It results in

Ξmin
1 pφ0q “ ´ arccos

ˆ

1
?

2
¨

4 ´ 3
?

2 cosφ0

3 ´ 2
?

2 cosφ0

˙

, (4.72)

where we follow the convention that arccos : r´1, 1s Ñ r0, πs, and thus Ξmin
1 P

p´π ` φ0, 0s is obtained through ´ arccos : r´1, 1s Ñ r´π, 0s. Because

d

dφ0

ˆ

1
?

2
¨

4 ´ 3
?

2 cosφ0

3 ´ 2
?

2 cosφ0

˙

“
sinφ0

p3 ´ 2
?

2 cosφ0q2
,

and
d

1 ´

ˆ

1
?

2
¨

4 ´ 3
?

2 cosφ0

3 ´ 2
?

2 cosφ0

˙2

“

d

ˆ

sinφ0

3 ´ 2
?

2 cosφ0

˙2

“
sinφ0

3 ´ 2
?

2 cosφ0

,

we can observe that

dΞmin
1

dφ0

“

ˆ

sinφ0

3 ´ 2
?

2 cosφ0

˙´1

¨
sinφ0

p3 ´ 2
?

2 cosφ0q2
“

1

3 ´ 2
?

2 cosφ0

,

and

d2Ξmin
1

dφ2
0

“
´2

?
2 sinφ0

p3 ´ 2
?

2 cosφ0q
2

ă 0, (4.73)
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which means Ξmin
1 is concave. Therefore, for any φ0 P p0, π

2
q, the concavity

results in

1

2
Ξmin
1 pφ0q `

1

2
Ξmin
2 pφ0q “

1

2
Ξmin
1 pφ0q `

1

2
Ξmin
1

´π

2
´ φ0

¯

ď Ξmin
1

ˆ

1

2
φ0 `

1

2

´π

2
´ φ0

¯

˙

“ Ξmin
1

´π

4

¯

.

Since we can see form (4.72) that Ξmin
1

`

π
4

˘

“ ´π
4
,

Ξmin
1 pφ0q ` Ξmin

2 pφ0q ď ´
π

2

holds for any φ0 P p0, π
2
q. 2

According to Lemma 4.19 and Lemma 4.20,

pξmin1 pφ0, ψ0q ` pξmin2 pφ0, ψ0q ă Ξmin
1 pφ0q ` Ξmin

2 pφ0q ď ´
π

2
,

that is,

ξmin1

ˆ

t “
1

?
2
, φ0, ψ0

˙

` ξmin2

ˆ

t “
1

?
2
, φ0, ψ0

˙

ă ´
π

2

holds for any φ0 and ψ0 (i.e. for any φ1 and φ2). However, we cannot

conclude that

ξmin1 pt, φ0, ψ0q ` ξmin2 pt, φ0, ψ0q ď ´
π

2
(4.74)

holds for t „ 1?
2
: it may fail when

sup
φ0,ψ0

„

ξmin1

ˆ

t “
1

?
2
, φ0, ψ0

˙

` ξmin2

ˆ

t “
1

?
2
, φ0, ψ0

˙ȷ

“ ´
π

2
.

On the other hand, because we can observe similarly to Lemma 4.19 that

ξmin1 is a strictly decreasing function of ψ0, it is anticipated that (4.74) holds

for t „ 1?
2

and for ψ0 sufficiently close to π
2
. In fact, for ψ0 P rπ

4
, π
2
q, we can

prove the following proposition.

Proposition 4.21

There exists a constant C ă ´π
2
such that

pξmin1 pφ0, ψ0q ` pξmin2 pφ0, ψ0q ă C,
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i.e.

ξmin1

ˆ

t “
1

?
2
, φ0, ψ0

˙

` ξmin2

ˆ

t “
1

?
2
, φ0, ψ0

˙

ă C,

holds for all ψ0 P rπ
4
, π
2
q and φ0 P p0, π

2
q.

Proof

Because

pξmin1 pφ0, ψ0q ` pξmin2 pφ0, ψ0q “ pξmin1 pφ0, ψ0q ` pξmin1

´π

2
´ φ0, ψ0

¯

,

we can assume without loss of generality that 0 ă φ0 ď π
4
. Due to Lemma

4.19, it holds for any ψ0 P rπ
4
, π
2
q that

pξmin1 pφ0, ψ0q ď pξmin1

´

φ0, ψ0 “
π

4

¯

,

pξmin1

´π

2
´ φ0, ψ0

¯

ď pξmin1

´π

2
´ φ0, ψ0 “

π

4

¯

.
(4.75)

Let us denote pξmin1

`

φ0, ψ0 “ π
4

˘

simply by rΞmin
1 pφ0q. In order to investigate

rΞmin
1 pφ0q and rΞmin

1

`

π
2

´ φ0

˘

, we have to recall (4.65). Similarly to (4.69)

and (4.70) in the proof of Lemma 4.20, it results in

cos rΞmin
1 “

1
?

2
¨

2 ` rH1

b

2 rH2
1 ` 2

rH2
1 ` 2

, (4.76)

where

rH1 pφ0q “ ph1

´

φ0, ψ0 “
π

4

¯

“
1

sinφ0

ˆ

1
?

2
´

?
2 cosφ0

˙

. (4.77)

Note that in this case we cannot apply a similar method to the one in Lemma

4.20 because rΞmin
1 does not have a clear form like (4.72). Alternatively,

we focus on the following monotone relations between rΞmin
1 , rH1, and φ0

(referring to the proof of Lemma 4.19 may be helpful):

drΞmin
1

d rH1

ą 0,
d rH1

dφ0

ą 0

˜

thus
drΞmin

1

dφ0

ą 0

¸

. (4.78)

From these relations, it can be seen that our restriction 0 ă φ0 ď π
4

is

equivalent to the condition rH1 ď 1 ´
?

2 since rH1 p0q “ ´8 and rH1

`

π
4

˘

“

1 ´
?

2. The claim of the proposition can be shown easily when rH1 ď ´1

(or 0 ă φ0 ď φ˚ :“ arccos 2`
?
10

6
, where rH1pφ

˚q “ ´1). In fact,
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Figure 4.3: Geometric description of rΞmin1 . It can

be observed that rΞmin1 “ ´π
2 when rH1 “ ´1.

rΞmin
1 pφ0q ď rΞmin

1 pφ˚q “ ´
π

2

and

rΞmin
1

´π

2
´ φ0

¯

ă rΞmin
1

´π

2

¯

“ ´ arccos
2
?

2 `
?

3

5

hold (see FIG. 4.3 and (4.76)), and thus we can conclude

rΞmin
1 pφ0q ` rΞmin

1

´π

2
´ φ0

¯

ă C1,

where

C1 “ ´
π

2
´ arccos

2
?

2 `
?

3

5

´

ă ´
π

2

¯

.

When ´1 ă rH1 ď 1 ´
?

2 (or φ˚ ă φ0 ď π
4
), we need a bit complicated

evaluations. It holds similarly to the previous calculations that

rΞmin
1 pφ0q ď rΞmin

1

´π

4

¯

,

rΞmin
1

´π

2
´ φ0

¯

ă rΞmin
1

´π

2
´ φ˚

¯

.

Since
rΞmin
1 “ ´

π

4
ðñ rH1 “ 0 ðñ φ0 “

π

3
,

rΞmin
1 pπ

4
q ă ´π

4
“ rΞmin

1 pπ
3
q holds due to the monotone relations (4.78). On

the other hand, we have

cosφ˚ ´ cos
π

6
“

2 `
?

10

6
´

?
3

2
“ ´0.0056... ă 0,
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that is,

φ˚ ą
π

6
.

It follows that π
2

´ φ˚ ă π
3
, and thus rΞmin

1

`

π
2

´ φ0

˘

ă ´π
4
. Therefore, we

can conclude also in this case

rΞmin
1 pφ0q ` rΞmin

1

´π

2
´ φ0

¯

ă C2,

where

C2 “ rΞmin
1

´π

4

¯

` rΞmin
1

´π

2
´ φ˚

¯ ´

ă ´
π

2

¯

.

Overall, we have obtained

rΞmin
1 pφ0, ψ0q ` rΞmin

2 pφ0, ψ0q ă maxtC1, C2u

´

ă ´
π

2

¯

for all φ0 P p0, π
2
q and ψ0 P rπ

4
, π
2
q. 2

By virtue of this proposition, for t sufficiently close to 1?
2
,

ξmin1 pt, φ0, ψ0q ` ξmin2 pt, φ0, ψ0q ď ´
π

2

follows from the continuity of ξmin1 and ξmin2 with respect to t when π
4

ď

ψ0 ă π
2
. It means that there always exist ξ‹

1 ě ξmin1 and ξ‹
2 ě ξmin2 for

such t and for any φ1 and φ2 satisfying ξ‹
1 ` ξ‹

2 “ ´π
2
. For these ξ‹

1 and ξ‹
2 ,

v1 “ ´v2 holds, and thus rAt1 and rAt2 are compatible, i.e. AtxD and AtyD are

S1-compatible.

On the other hand, when 0 ă ψ0 ă π
4
, it may not hold for t „ 1?

2
that

ξmin1 pt, φ0, ψ0q ` ξmin2 pt, φ0, ψ0q ď ´π
2
, and thus we cannot apply the same

argument. Nevertheless, we can demonstrate that there exist ξ1 and ξ2 such

that rAt1 and rAt2 are compatible even when 0 ă ψ0 ă π
4
. To see this, let us

assume 0 ă ψ0 ă π
4

and apply the necessary and sufficient condition for

(in)compatibility. According to the result proven in [146, 147, 148], rAt1 and
rAt2 with (4.33) and (4.56) respectively are compatible if and only if

`

1 ´ F 2
1 ´ F 2

2

˘

ˆ

1 ´
w2

1

F 2
1

´
w2

2

F 2
2

˙

ď pm1 ¨ m2 ´ w1w2q
2 (4.79)

holds, where

F1 :“
1

2

ˆ

b

p1 ` w1q
2 ´ C2

1 `

b

p1 ´ w1q
2 ´ C2

1

˙

, (4.80)

F2 :“
1

2

ˆ

b

p1 ` w2q
2 ´ C2

2 `

b

p1 ´ w2q
2 ´ C2

2

˙

. (4.81)
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For ξmin1 and ξmin2 , since it holds that

1 ´ w1pξmin1 q “ C1pξ
min
1 q, (4.82)

1 ´ w2pξmin2 q “ C2pξ
min
2 q, (4.83)

they become

F1 “

b

w1pξmin1 q, F2 “

b

w2pξmin2 q. (4.84)

Therefore, (4.79) can be rewritten as

rp1´sinpξmin1 `ξmin2 qqw1pξmin1 qw2pξmin2 q

´ p1`sinpξmin1 ` ξmin2 qqp1´w1pξ
min
1 q´w2pξ

min
2 qqs

¨
“

p1 ´ w1pξ
min
1 qqp1 ´ w2pξmin2 qqp1 ´ sinpξmin1 ` ξmin2 qq

‰

ě 0.

(4.85)

If 1 ´ sinpξmin1 ` ξmin2 q “ 0, then (4.85) holds, that is, rAt1 and rAt2 for ξmin1

and ξmin2 respectively are compatible. Therefore, we hereafter assume 1 ´

sinpξmin1 ` ξmin2 q ą 0, and rewrite (4.85) as (note that 0 ă w1pξmin1 q ă 1,

0 ă w2pξ
min
2 q ă 1)

p1 ` sinpξmin1 ` ξmin2 qqp1 ´ w1pξ
min
1 q ´ w2pξ

min
2 qq

ď p1 ´ sinpξmin1 ` ξmin2 qqw1pξmin1 qw2pξmin2 q.
(4.86)

In other words, rAt1 and rAt2 with respect to ξmin1 and ξmin2 are incompatible if

and only if

p1 ` sinpξmin1 ` ξmin2 qqp1 ´ w1pξ
min
1 q ´ w2pξ

min
2 qq

ą p1 ´ sinpξmin1 ` ξmin2 qqw1pξ
min
1 qw2pξ

min
2 q

(4.87)

holds. In order to investigate whether (4.87) holds, it is helpful to introduce

a function Z defined as

Zpt, φ0, ψ0q :“
“

1`sinpξmin1 pt, φ0, ψ0q`ξmin2 pt, φ0, ψ0qq
‰

“

1`w1pξ
min
1 pt, φ0, ψ0qq`w2pξmin2 pt, φ0, ψ0qq

‰

´
“

1 ´ sinpξmin1 pt, φ0, ψ0q ` ξmin2 pt, φ0, ψ0qq
‰

w1pξ
min
1 pt, φ0, ψ0qqw2pξ

min
2 pt, φ0, ψ0qq.

(4.88)

Because

p1 ` sinpξmin1 ` ξmin2 qqp1 ´ w1pξ
min
1 q ´ w2pξ

min
2 qq

ă p1 ` sinpξmin1 ` ξmin2 qqp1 ` w1pξ
min
1 q ` w2pξ

min
2 qq,
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Zpt, φ0, ψ0q ą 0 (4.89)

holds if rAt1 and rAt2 with respect to ξmin1 and ξmin2 are incompatible. Let us

focus on the case when t “ 1?
2

(i.e. ξmin1 “ pξmin1 ). If a pair pφ0, ψ0q satisfies

pξmin1 pφ0, ψ0q ď ´π
2

or pξmin2 pφ0, ψ0q ď ´π
2
, then

pξmin1 pφ0, ψ0q ` pξmin2 pφ0, ψ0q ă C

with

C “ ´
π

2
` lim

φ0Ñπ
2

´0
ψ0Ñ`0

pξmin1 pφ0, ψ0q “ ´
π

2
´ arccos

ˆ

2
?

2

3

˙

ă ´
π

2

holds due to similar monotone relations to (4.78) between φ0, ψ0, and pξmin1

(remember that pξmin2 pφ0, ψ0q “ pξmin1

`

π
2

´ φ0, ψ0

˘

). Therefore, in this case,

we can apply the same argument as Proposition 4.21, which results in the

compatibility of rAt1 and rAt2 for t „ 1?
2
. On the other hand, let us examine

the case when pφ0, ψ0q satisfies ψ0 P p0, π
4
q, and pξmin1 pφ0, ψ0q ą ´π

2
and

pξmin2 pφ0, ψ0q ą ´π
2
. Because ψ0 P p0, π

4
q, we obtain for general t (see (4.37))

w1pξmin1 q ą ´
t

?
2

sin ξmin1

sinpφ0 ´ ξmin1 q
ě

t
?

2
p´ sin ξmin1 q. (4.90)

For t “ 1?
2
, since

´
π

2
ă pξmin1 pφ0, ψ0q ă lim

φ0Ñπ
2

´0
ψ0Ñ`0

pξmin1 pφ0, ψ0q ,

it gives a bound

w1pξmin1 q ą
1

2
sin pξ0, (4.91)

where we define

pξ0 “ ´ lim
φ0Ñπ

2
´0

ψ0Ñ`0

pξmin1 pφ0, ψ0q “ arccos

ˆ

2
?

2

3

˙

.

Let ε be a positive constant satisfying ε ă 1
16

psin pξ0q
2. Due to the continuity

of sine, there exists a positive constant δ such that sin x P p´1,´1 ` εq

whenever x P
`

´π
2

´ δ,´π
2

˘

. If pφ0, ψ0q satisfies pξmin1 pφ0, ψ0q`pξmin2 pφ0, ψ0q ď

´π
2

´ δ, then it again leads to the same argument as Proposition 4.21, and

we can see that rAt1 and rAt2 for this pφ0, ψ0q are compatible. Conversely, if
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pφ0, ψ0q satisfies ´π
2

´ δ ă pξmin1 pφ0, ψ0q ` pξmin2 pφ0, ψ0q ă ´π
2

(remember

Lemma 4.20), then

´1 ă sinppξmin1 pφ0, ψ0q ` pξmin2 pφ0, ψ0qq ă ´1 ` ε

follows from the definition of δ. Therefore, by virtue of (4.88), we have

Z

ˆ

t “
1

?
2
, φ0, ψ0

˙

“

”

1 ` sinppξmin1 pφ0, ψ0q ` pξmin2 pφ0, ψ0qq

ı

”

1 ` w1ppξmin1 pφ0, ψ0qq ` w2ppξmin2 pφ0, ψ0qq

ı

´

”

1 ´ sinppξmin1 pφ0, ψ0q ` pξmin2 pφ0, ψ0qq

ı

w1ppξmin1 pφ0, ψ0qqw2ppξmin2 pφ0, ψ0qq

ă ε
”

1 ` w1ppξmin1 pφ0, ψ0qq ` w2ppξmin2 pφ0, ψ0qq

ı

´ p2 ´ εqw1ppξmin1 pφ0, ψ0qqw2ppξmin2 pφ0, ψ0qq

“ ε
”

1 ` w1ppξmin1 pφ0, ψ0qq

ı ”

1 ` w2ppξmin1 pφ0, ψ0qq

ı

´ 2w1ppξmin1 pφ0, ψ0qqw2ppξmin2 pφ0, ψ0qq

ă 4ε ´ 2w1ppξmin1 pφ0, ψ0qqw2ppξmin2 pφ0, ψ0qq.

Because

4ε ´ 2w1ppξmin1 pφ0, ψ0qqw2ppξmin2 pφ0, ψ0qq ă
1

4
psin pξ0q

2 ´
1

2
psin pξ0q

2

“ ´
1

4
psin pξ0q

2,

it holds that

Z

ˆ

t “
1

?
2
, φ0, ψ0

˙

ă ´
1

4
psin pξ0q

2 ă 0.

Therefore, for t „ 1?
2
, Z pt, φ0, ψ0q ď 0 holds, that is, rAt1 and rAt2 with respect

to ξmin1 and ξmin2 are compatible. Overall, we have demonstrated that when

t „ 1?
2
, there exist compatible observables rAt1 and rAt2 for any line S1 Ă SD

such that they agree with AtxD and AtyD on S1 respectively. That is, when

t „ 1?
2
, AtxD and AtyD are S1-compatible for any line S1 Ă SD. Therefore, we

can conclude that χincomppA
tx
D ,A

ty
D q “ 3 for t „ 1?

2
, and thus the set M in

(4.24) is nonempty.

4.3.4 Proof of Proposition 4.14 : Part 4

In this part, we shall show that

t10 :“ inf L “ supM P M,
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where L and M are defined in (4.24). In order to prove this, we will see that

if t P L, then t ´ δ P L for sufficiently small δ ą 0, that is, t10 R L.

Let us focus again on a system described by a two-dimensional disk

state space SD. It is useful to identify this system with the system of a

quantum bit with real coefficients by replacing tσ1, σ2u with tσ3, σ1u. Then,

defining ED as the set of all effects on SD, we can see that any E P ED can

be expressed as a real-coefficient positive matrix smaller than 1. We also

define ODp2q Ă ED ˆ ED as the set of all binary observables on SD, which

is isomorphic naturally to ED since a binary observable A is completely

specified by its effect Ap`q P ED. With introducing a topology (e.g. norm

topology) on ED, it also can be observed that ODp2q is homeomorphic to ED.

Note that because the system is described by finite-dimensional matrices,

any (natural) topology (norm topology, weak topology, etc.) coincides with

each other. For a pair of states tϱr1 , ϱr2u in SD, and a binary observable

A P ODp2q, we define a set of observables CpA : ϱr1 , ϱr2q as the set of all

binary observables rA P ODp2q such that

Trrϱr1 rAp˘qs “ Trrϱr1Ap˘qs,

Trrϱr2 rAp˘qs “ Trrϱr2Ap˘qs.

It can be confirmed easily that CpA : ϱr1 , ϱr2q is closed in ODp2q » ED. Let

us denote by ODp4q the set of all observables with four outcomes, which is a

compact (i.e. bounded and closed) subset of E4
D. For each M “ tMpx, yqu P

ODp4q, we can introduce a pair of binary observables by

π1pMq “

#

ÿ

y

Mpx, yq

+

x

, π2pMq “

#

ÿ

x

Mpx, yq

+

y

.

Since πj : ODp4q Ñ ODp2q is continuous, the set of all compatible binary

observables denoted by

JMp2, 2q :“ tpπ1pMq, π2pMqq | M P ODp4qu

is compact in ODp2q ˆ ODp2q » ED ˆ ED as well. As we have seen in the

previous part, χincomppA
tx,Atyq “ 2 (i.e. χincomppA

tx
D ,A

ty
D q “ 2) if and only if

there exists a pair of vectors r1, r2 P BD such that

`

CpAtxD : ϱr1 , ϱr2q ˆ CpAtyD : ϱr1 , ϱr2q
˘

X JMp2 : 2q “ H.

Let us examine concrete representations of the sets. Each effect E P ED
is written as E “ 1

2
pe01 ` e ¨ σq “ 1

2
pe01 ` e1σ1 ` e2σ2q with pe0, eq “

pe0, e1, e2q P R3 satisfying 0 ď e0 ˘ |e| ď 2.
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If we consider another effect F “ 1
2
pf01 ` f ¨ σq, the operator norm of

E ´ F is calculated as

}E ´ F } “
1

2
p|e0 ´ f0| ` |e ´ f |q . (4.92)

We may employ this norm to define a topology on ED and ODp2q » ED. On

the other hand, each state in SD is parameterized as ϱr1 “ 1
2
p1`x1σ1`y1σ2q,

where r1 “ px1, y1q satisfies |r1| ď 1. For an effect E and a state ϱr1 , we have

trrϱr1Es “ 1
2
pe0`r1 ¨eq. In particular, when considering Atxp˘q “ 1

2
p1˘tσ1q,

a binary observable C determined by the effect Cp`q “ 1
2
pc01 ` c ¨ σq “

1
2
pc01 ` c1σ1 ` c2σ2q satisfies C P CpAtx : ϱr1 , ϱr2q if and only if

Trrϱr1Atxp`qs “ Trrϱr1Cp`qs,

Trrϱr2Atxp`qs “ Trrϱr2Cp`qs,

i.e.

1 ` tx1 “ c0 ` r1 ¨ c “ c0 ` x1c1 ` y1c2,

1 ` tx2 “ c0 ` r2 ¨ c “ c0 ` x2c1 ` y2c2.

hold, where we set r2 “ px2, y2q. The set of their solutions for pc0, cq is

represented as

pc0, cq “ p1, t, 0q ` λ1

ˆ

´
x1y2 ´ y1x2
x1 ´ x2

, ´
y1 ´ y2
x1 ´ x2

, 1

˙

with λ1 P R. Let us define a vector n P R2 such that

p1,nq ¨ p1, r1q “ p1,nq ¨ p1, r2q “ 0

(i.e. n ¨ r1 “ n ¨ r2 “ ´1). It is easy to see that

ˆ

´
x1y2 ´ y1x2
x1 ´ x2

, ´
y1 ´ y2
x1 ´ x2

, 1

˙

9p1,nq,

and thus the set of solutions can be rewritten as

pc0, cq “ p1, t, 0q ` λp1,nq (4.93)

with λ P R. Note that because we are interested in the case when AtxD and

AtyD are S1-incompatible, we do not consider the case when r1 and r2 are

parallel or when x1 “ x2 corresponding to ψ0 “ π
2

or φ0 “ 0 in Part 1

respectively. Therefore, the vector n “ pnx, nyq can be defined successfully,

and it is easy to verify that |n| “
a

n2
x ` n2

y ą 1. Moreover, because φ0 is
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Figure 4.4: Geometric description of n: we can ob-
serve that it lies in the third quadrant.

supposed to be 0 ă φ0 ă π
2

as shown in Part 1, we can assume without loss

of generality that its components nx and ny are negative (see FIG. 4.4). In

order for C to be an element of CpAtx : ϱr1 , ϱr2q, (4.93) should also satisfy

0 ď 1 ` λ ˘ |pt, 0q ` λn| ď 2,

i.e.

1 ` λ ´ |pt, 0q ` λn| ě 0, 1 ` λ ` |pt, 0q ` λn| ď 2.

It can be reduced to

λt1 ď λ ď λt2 (4.94)

with

λt1 “
1 ´ nxt ´

a

p1 ´ nxtq2 ` p|n|2 ´ 1qp1 ´ t2q

|n|2 ´ 1
,

λt2 “ min

#

1,
´1 ´ nxt `

a

p1 ` nxtq2 ` p|n|2 ´ 1qp1 ´ t2q

|n|2 ´ 1

+

,

(4.95)

where we used |n| ą 1 and nx ă 0 (see FIG. 4.5). Overall, CpAtxD : ϱr1 , ϱr2q

is isomorphic to the set parameterized as

tp1, t, 0q ` λp1,nq | λt1 ď λ ď λt2u, (4.96)

where λt1 and λt2 are shown in (4.95). Remark that the same argument can

be applied for CpAty : ϱr1 , ϱr2q.

We shall now prove t10 “ inf L R L. Suppose that t P L, i.e. χincomppA
tx
D ,A

ty
D q “
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Figure 4.5: Solutions for λ.

2. It follows that there exist r1 and r2 in BD such that

`

CpAtxD : ϱr1 , ϱr2q ˆ CpAtyD : ϱr1 , ϱr2q
˘

X JMp2 : 2q “ H.

Denoting CpAtxD : ϱr1 , ϱr2q and CpAtyD : ϱr1 , ϱr2q simply by X t and Y t respec-

tively, we can rewrite it as

X t ˆ Y t X JMp2 : 2q “ H.

We need the following lemma.

Lemma 4.22

Let δ ą 0. There exists ∆ ą 0 such that for all τ P r0,∆s and for all

C P X t´τ , there exists A P X t satisfying

dpC,Aq :“ }Cp`q ´ Ap`q} ă δ

where d is a metric on ODp2q defined through the operator norm } ¨ } on

ED » ODp2q.

Proof

By its definition, X t is a convex set of ODp2q, and thus for all E P ODp2q we

can define successfully the distance between E and X t:

dpE, X tq “ min
FPXt

dpE,Fq.

In particular, for E1 P X t´∆1

Ă ODp2q with ∆1 ą 0 and E1p`q “ 1
2
pe1

01`e1 ¨σq,

it becomes

dpE1, X tq “ min
FPXt

dpE1,Fq “ min
FPXt

1

2
p|e1

0 ´ f0| ` |e ´ f |q , (4.97)

where Fp`q “ 1
2
pf01`f ¨σq (see (4.92)). Since, in terms of (4.96), E1 P X t´∆1
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and F P X t imply

pe1
0, e

1q “ p1, t ´ ∆1, 0q ` λ1p1,nq

with λt´∆1

1 ď λ1 ď λt´∆1

2 and

pf0, fq “ p1, t, 0q ` λp1,nq

with λt1 ď λ ď λt2 respectively, (4.97) can be rewritten as

2dpE1, X tq “ min
λPrλt1,λ

t
2s

p|λ1 ´ λ| ` |p´∆1, 0q ` pλ1 ´ λqn|q .

It follows that

2dpE1, X tq ď ∆1 ` min
λPrλt1,λ

t
2s

|λ1 ´ λ|p1 ` |n|q. (4.98)

Let us evaluate its right hand side. It is easy to see that

min
λPrλt1,λ

t
2s

|λ1 ´ λ| “

$

’

&

’

%

λt1 ´ λ1 pλ1 ă λt1q

0 pλt1 ď λ1 ď λt2q

λ1 ´ λt2 pλ1 ą λt2q

.

Suppose that λ1 ă λt1 holds, for example. In this case, because λt´∆1

1 ď λ1,

we can obtain

λt1 ´ λ1 ď λt1 ´ λt´∆1

1 .

In a similar way, it can be demonstrated that

sup
λ1Prλt´∆1

1 ,λt´∆1

2 s

min
λPrλt1,λ

t
2s

|λ1 ´ λ| “ max
!

λt1 ´ λt´∆1

1 , 0, λt´∆1

2 ´ λt2

)

.

By virtue of (4.95), the right hand side converges to 0 as ∆1 Ñ 0, and thus

we can see from (4.98) that

sup
E1PXt´∆1

dpE1, X tq ÝÑ
∆1Ñ0

0

It results in that there exists ∆ ą 0 such that for all τ P r0,∆s,

sup
E1PXt´τ

dpE1, X tq ă δ

holds, that is, dpC, X tq ă δ holds for any C P X t´τ . Moreover, because X t is

convex, there exists A P X t satisfying dpC, X tq “ dpC,Aq, which proves the

claim of the lemma. 2
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Note that a similar statement also holds for Y t: there exists r∆ ą 0 such

that for all rτ P r0, r∆s and for all D P Y t´rτ , there exists B P Y t satisfying

dpD,Bq ă δ. Let V :“ ODp2q ˆ ODp2qp» ED ˆ EDq and let dV be a product

metric on V defined as

dV ppA,Bq, pC,Dqq “ maxtdpA,Cq, dpB,Dqu.

According to Lemma 4.22 and its Y t-counterpart, if we take ∆0 “ mint∆, r∆upą

0q, then there exists pA,Bq P X t ˆ Y t for all pC,Dq P X t´∆0 ˆ Y t´∆0 such

that dV ppA,Bq, pC,Dqq ă δ. On the other hand, as we have seen, it holds

that

X t ˆ Y t X JMp2 : 2q “ H.

Since X tˆY t and JMp2 : 2q are closed in V , and V is a metric space, we can

apply Urysohn’s Lemma [62]. It follows that there exists a continuous (in fact

uniformly continuous since V is compact) function f : V Ñ r0, 1s satisfying

fpUq “ 0 for any U P X t ˆ Y t and fpW q “ 1 for any W P JMp2 : 2q. The

uniform continuity of f implies that for some ε P p0, 1q, there is δ ą 0 such

that

dV ppE1,F1q, pE,Fqq ă δ ñ |f ppE1,F1qq ´ f ppE,Fqq| ă ε (4.99)

holds for any pE,Fq P V . For this δ, we can apply the argument above: we

can take ∆0 ą 0 such that for any pC,Dq P X t´∆0 ˆ Y t´∆0 , there exists

pA,Bq P X t ˆ Y t satisfying dV ppA,Bq, pC,Dqq ă δ. Because fppA,Bqq “ 0,

we have fppC,Dqq ă ε ă 1 (see (4.99)), and thus pC,Dq R JMp2 : 2q . It

indicates that X t´∆0 ˆ Y t´∆0 X JMp2 : 2q “ H, that is, there is ∆0 ą 0 for

any t P L satisfying t´ ∆0 P L. Therefore, t10 “ inf L R L can be concluded.
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Chapter 5

Thermodynamical entropy of

mixing in regular polygon

theories

The concept of entropy plays an important role in thermodynamics [149,

150]. It is possible to calculate the thermodynamical entropy of a mixture

of classically different kinds of particles (such as a mixture of nitrogens and

oxygens), and similar ideas were applied by von Neumann to the case when

the system was composed of particles with different quantum internal states

[5]. Similarly to the previous parts, it is expected that generalizing the no-

tion of entropy to GPTs will help us to understand how entropy can affect

our world. In fact, there have been researches which aim to introduce and

investigate the concept of entropy in GPTs from informational perspectives

[61, 151, 152, 153]. In those researches, some kinds of entropy were de-

fined in all theories of GPTs and their information-theoretical properties

were investigated. Meanwhile, there have been also researches referring to

the thermodynamical entropy in terms of the microcanonical or canonical

formulation in GPTs [154, 155], and researches referring to the thermody-

namical entropy of mixing in GPTs [114, 156]. However, in those works,

the entropy was only defined in or applied to some restricted theories of

GPTs with special assumptions such as the existence of a spectral decompo-

sition for any state into perfectly distinguishable pure states. In particular,

it can be found that regular polygon theories do not always satisfy those

assumptions, and thus entropy in regular polygon has never been investi-

gated although they can be regarded as intermediate theories of a classical

trit system and a qubit-like system, where entropy is defined successfully.

It seems natural to ask how entropy of mixing behaves in regular polygon

theories.

In this part, we consider thermodynamical entropy of mixing in regular
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polygon theories. It is proven that the operationally natural thermody-

namical entropy of a mixture of ideal particles with different internal states

described by a regular polygon theory exists if and only if the state space

of theory is triangle-shaped or disc-shaped, i.e., the theory is either classical

or quantum-like. More precisely, we demonstrate that the thermodynamical

entropy of mixing satisfying conditions imposed in [114], where the concrete

operational construction of the entropy was given as von Neumann did un-

der the assumption of the existence of semipermeable membranes, does not

exist in all the regular polygon theories except for classical and quantum-like

ones.

This part is organized as follows. In Section 5.1, we present a general-

ization of thermodynamically natural entropy of mixing in GPTs. We will

see that the notion of perfect distinguishability plays an important role to

define entropy also in GPTs. Then, we demonstrate our main theorem and

its proof in Section 5.2.

5.1 Entropy of mixing in GPTs

In this section, we introduce the thermodynamically consistent definition of

entropy of mixing in GPTs based on the notion of perfect distinguishability.

5.1.1 Perfect distinguishablity for regular polygon the-

ories

We recall that a family of states tωiui is called perfectly distinguishable if

there exists an observable teiui such that eipωjq “ δij. Let us characterize

perfectly distinguishable states in regular polygon theories. We first consider

the regular polygon theory with n sides, where n is an even number greater

than two. Calculating the Euclidean inner product (denoted by p¨, ¨q here)

of pure effects and pure states in Subsection 2.5.3, we obtain

peni , ω
n
i q “

`

eni , ω
n
i´1

˘

“ 1, peni , ω
n
i`n

2
´1q “ peni , ω

n
i`n

2
q “ 0.

These equations indicate that any state in Ω
ri´1, is
n is perfectly distinguishable

from any state in Ω
ri`n

2
´1, i`n

2
s

n , where we define

Ωrk´1, ks
n “ tω P Ωn | ω “ pωnk´1 ` p1 ´ pqωnk , 0 ď p ď 1u,

since the measurement teni , u´ eni u distinguishes perfectly those two states.

For odd n pě 3q, we obtain

peni , ω
n
i q “ 1, peni , ω

n
i`n´1

2
q “ peni , ω

n
i`n`1

2
q “ 0.
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Hence, ωni and an arbitrary state in Ω
ri`n´1

2
, i`n`1

2
s

n are perfectly distinguish-

able. Finally, when n “ 8,

pe8
θ , ω

8
θ q “ 1, pe8

θ , ω
8
θ`πq “ 0.

hold, so there is only one perfectly distinguishable state for each pure state

(see Figure 5.1).

(a) n is an even number. (b) n is an odd number. (c) n “ 8.

Figure 5.1: Pairs of perfectly distinguishable states
in the n-gon state space.

5.1.2 Entropy of mixing in GPTs

In this part, we consider the thermodynamical entropy of mixing in a system

composed of ideal gases with different internal degrees of freedom described

by a GPT. In thermodynamics, it is well known that a mixture of several

classically distinct ideal gases, such like a mixture of ideal hydrogens and

nitrogens, causes an increase of entropy. The amount of increase by the

mixture can be calculated under the assumption of the existence of semiper-

meable membranes which distinguish perfectly those particles. We assume

in a similar way that if the internal states ω1, ω2, ¨ ¨ ¨ , ωl described by a GPT

are perfectly distinguishable, then there exist semipermeable membranes

which can identify completely a state among them without disturbing every

ωj pj “ 1, 2, ¨ ¨ ¨ , lq.

We consider ideal gases in thermal equilibrium with its temperature T ,

volume V , and N particles, and do not focus on the mechanical part of the

particles in the following. All of these N particles are in the same inter-

nal state ω “
řl
i“1 piωi, where tω1, ω2, ¨ ¨ ¨ , ωlu is a perfectly distinguishable

set of states, and @i, pi ě 0, and
řl
i“1 pi “ 1, meaning that this system

is composed of the mixture of l different kinds of particles whose internal

states are ω1, ω2, ¨ ¨ ¨ , ωl with a probability weight tp1, p2, ¨ ¨ ¨ , plu. We note

again that in this chapter, classical species of particles are also regarded as
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the internal states of them. In classical thermodynamics, thermodynamical

entropy is calculated by constructing concrete thermodynamical operations

such as isothermal or adiabatic quasistatic operations. We follow this doc-

trine of thermodynamics also in GPTs that thermodynamical entropy, espe-

cially thermodynamical entropy of mixing, should be operationally-derived

quantity. In fact, as shown in [114], our assumption of the existence of

semipermeable membranes makes it possible to realize concrete thermody-

namical operations to calculate the thermodynamical entropy of mixing of

the system mentioned above in the same way as von Neumann did when the

internal degrees of freedom were quantum [5]. Strictly speaking, it has been

demonstrated operationally in [114] that the thermodynamical entropy of

mixing in the system is

Spωq “

l
ÿ

i“1

piSpωiq ´

l
ÿ

i“1

pi log pi , (5.1)

where Spσq means the per-particle thermodynamical entropy of mixing in

the system which consists of particles in the same state σ, and we set the

Boltzmann constant kB “ 1 (also 0 log 0 “ 0). In the process of deriving

(5.2), the additivity and extensivity of the thermodynamical entropy, and the

continuity of S with respect to states are assumed. The latter one is needed

in order to apply (5.2) to arbitrary states with an arbitrary probability

weight, while its operational derivation has been given only when each piN

is the number of particles in the state ωi and thus each pi is rational. We

impose additional assumption that the entropy of any pure state equals to

zero, that is, Spσq “ 0 whenever σ is a pure state.

5.2 Main result

Our main result is in the following form.

Theorem 5.1

Consider a system in thermal equilibrium composed of ideal gases whose

internal states are described an element of the state space Ωn of the regular

polygon theory with n sides (n ě 3). The (per-particle) thermodynamical

entropy of mixing S : Ωn Ñ R satisfying

Spωq “

l
ÿ

i“1

piSpωiq ´

l
ÿ

i“1

pi log pi, (5.2)

where tωiui is a family of perfectly distinguishable states, exists if and only

if n “ 3 or 8, that is, the state space is classical or quantum-like.
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Proof

For n “ 3, because it is a classical system, any ω P Ω3 is decomposed

uniquely into perfectly distinguishable pure states as ω “ pω3
0`qω3

1`p1´p´

qqω3
2, where ω3

i pi “ 0, 1, 2q are the three pure states in Ω3 and tp, q, 1´p´qu

is a probability weight. In this settings, we define S as

Spωq “ ´p log p ´ q log q ´ p1 ´ p ´ qq logp1 ´ p ´ qq.

This S gives the well-defined entropy satisfying (5.2). Similarly, when n “

8, any state has only one decomposition into perfectly distinguishable (pure)

states except for the central state of Ω8 (the maximally mixed state). For

states that are not maximally mixed, we define S as

Spωq “ Hppq,

where we decompose a non-maximally-mixed ω P Ω8 as ω “ pω8
θ ` p1 ´

pqω8
θ`π p0 ď p ď 1q and Hppq “ ´p log p ´ p1 ´ pq logp1 ´ pq is the 1-bit

Shannon entropy. We can apply this S to the maximally mixed state, for the

probability weight does not depend on the way of decompositions and they

are always t1
2
, 1
2
u. Therefore, we can define successfully the thermodynamical

entropy S which meets (5.2) for n “ 3,8. In the following, we prove the

only if part.

Figure 5.2: Illustration of the state ωP.

The case when n “ 4 was proven in [114], so we only consider n ě 5. At

first, we assume n is an even number, and consider the state ωP represented

in Figure 5.2, that is,

ωP “
y

x ` y
ωni `

x

x ` y
ωni`n

2
“

t

s ` t
ωni`1 `

s

s ` t
ωni`n

2
`2,

where x, y, s, t are all nonnegative, and x ď y and s ď t as shown in Figure
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5.2. Note that tωni , ω
n
i`n

2
u and tωni`1, ω

n
i`n

2
`2u are two perfectly distinguish-

able pairs of pure states. From the observations in the previous section, we

obtain two forms of the thermodynamical entropy of mixing:

SpωPq “ H

ˆ

x

x ` y

˙

“ H

ˆ

s

s ` t

˙

, (5.3)

which means

x

x ` y
“

s

s ` t

because x ď y and s ď t. On the other hand, applying sine theorem to

Figure 5.2 we can see that

x

sinpπ
2

´ 2π
n

q
“

s

sinpπ
2

´ π
n

q
,

y

sinpπ
2

´ π
n

q
“

t

sinpπ
2

´ 2π
n

q
,

namely

s

s ` t
“

x

x `

´

cos 2π
n

cos π
n

¯2

y

holds. It follows from these two equations that

ˆ

cos 2π
n

cos π
n

˙2

“ 1,

and because for even n, this equation holds if and only if n “ 8 (cospπ
n

q “ 1),

the entropy in (5.3) has been proven to be ill-defined.

Next, we consider the case when n is an odd number greater than three.

We define the state ωA as ωA “ 1
2
pωn

i`n´1
2

`ωn
i`n`1

2

q, and consider two states

ωQ and ωR shown in Figure 5.3, where j “ n`1
4

or n´1
4

corresponding to

the case when n ” 3 or n ” 1 (mod 4) respectively. Note that tωni , ωAu

and tωni`1, ω
n
i`n`1

2

u in Figure 5.3a, and tωni`j, ω
n
i`pn´jqu in Figure 5.3b are

perfectly distinguishable pairs of states. Then,

SpωQq “
p

p ` q
SpωAq ` H

ˆ

p

p ` q

˙

“ H

ˆ

u

u ` v

˙

,

and

SpωRq “
w

w ` z
SpωAq ` H

ˆ

w

w ` z

˙

“ H

ˆ

1

2

˙

hold. We assume that the entropies of the two states ωQ, ωR are well-defined
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(a) Illustration of the state ωQ. (b) Illustration of the state ωR.

Figure 5.3: Illustration of the states ωQ and ωR.

(so is ωA). Then,

SpωAq “
p ` q

p

"

H

ˆ

u

u ` v

˙

´ H

ˆ

p

p ` q

˙*

(5.4)

“
w ` z

w

"

H

ˆ

1

2

˙

´ H

ˆ

w

w ` z

˙*

(5.5)

holds. Let us give the explicit expressions of (5.5). From Figure 5.4, we

obtain

Figure 5.4: The decomposition for ωQ.

u

v
“
rn sinpn´2

n
πq

rn sin π
n

“
sin 2π

n

sin π
n

“ 2 cos
π

n
,

132



and by sine theorem,

p

sinpπ
2

´ π
2n

q
“

u

sinpπ
2

´ π
n

q
, q “ v cos

3π

2n

hold. Therefore,

q

p
“
v

u
¨

cos π
n

¨ cos 3π
2n

cos π
2n

“
cos 3π

2n

2 cos π
2n

“
1

2

´

4 cos2
π

2n
´ 3

¯

“
1

2

´

2 cos
π

n
´ 1

¯

.

On the other hand, from Figure 5.3b, we obtain

z

w
“

2rn cos2 π
2n

´ 2rn cos2pn´2j
2n

πq

2rn cos2pn´2j
2n

πq

“
cos2 π

2n
´ sin2 jπ

n

sin2 jπ
n

for j “
n ˘ 1

4
.

(5.6)

Since

sin2 jπ

n
“

1

2

ˆ

1 ´ cos
2jπ

n

˙

“
1

2

ˆ

1 ´ cos
pn ˘ 1qπ

2n

˙

“
1

2

´

1 ˘ sin
π

2n

¯

,

(5.7)

the equation above can be written as

z

w
“

2p1 ` sin π
2n

qp1 ´ sin π
2n

q ´ p1 ˘ sin π
2n

q

1 ˘ sin π
2n

“ 1 ¯ 2 sin
π

2n
,

where the double sign corresponds to the ones in (5.6) and (5.7), and the

upper and lower sign correspond to the case of n ” 3 and n ” 1 (mod 4)

respectively. Substituting these results to (5.4) and (5.5), we obtain

SpωAq “

ˆ

2 cos π
n

` 1

2

˙ "

H

ˆ

1

2 cos π
n

` 1

˙

´ H

ˆ

2

2 cos π
n

` 1

˙*

“

´

2 ¯ 2 sin
π

2n

¯

"

H

ˆ

1

2

˙

´ H

ˆ

1

2 ¯ 2 sin π
2n

˙*

.
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(a) n ” 3. (b) n ” 1.

Figure 5.5: The difference between (5.8) and (5.9).

By letting α “ sin π
2n

, it can be rewritten as

SpωAq “ 2α2 log 2 `
1 ´ 4α2

2
logp1 ´ 4α2q ´ p1 ´ 2α2q logp1 ´ 2α2q (5.8)

“ p1 ¯ 2αq logp1 ¯ 2αq ´ p2 ¯ 2αq logp1 ¯ αq, (5.9)

where the upper and lower signs correspond to the case of n ” 3 and n ” 1

(mod 4) respectively. The differences between (5.8) and (5.9) in the case of

n ” 3 and n ” 1 are displayed in Figures 5.5a and 5.5b respectively, and

we can see that the two forms of SpωAq shown in (5.8) and (5.9) do not

agree with each other. In conclusion, it has been proven that if n ‰ 3, 8,

then there exists some state whose thermodynamical entropy of mixing is

ill-defined. 2

We can see the ill-defined values of entropy become well-defined if n “ 3, 8

in our proof. For example, when n is an odd number, α “ sin π
2n

equals to
1
2

or 0 if n equals to three or infinite, respectively, and two values (5.8) and

(5.9) coincide with each other in these cases (see Figure 5.5).

Remark 5.2

Similar results were obtained in [114], where it was assumed that any state

could be represented as a convex combination of perfectly distinguishable

pure states. However, a state of a regular polygon theory is not always

represented by a convex combination of perfectly distinguishable pure states.

For instance, we can see from Figure 5.1 that the state ωA in Figure 5.3a or

Figure 5.3b can not be decomposed into perfectly distinguishable pure states.

Thus, regular polygon theories generally do not satisfy the assumption in

the previous study [114], and our result is the one about the exsistence of

well-defined thermodynamical entropy in such a broader class of theories

where “spectral decompositions” of states are not generally possible.
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Chapter 6

Summary

In this thesis, we have studied the notion of uncertainty in quantum the-

ory via convexity. We focused on three expressions of uncertainty: uncer-

tainty relations, incompatibility, and thermodynamical entropy. Our estab-

lishments were based on the idea that to see quantum uncertainty from a

broader point of view makes it possible to understand its essence. In fact,

in each chapter, we considered uncertainty relations and thermodynamical

entropy in a broader class of theories than quantum theory, and investigated

quantum incompatibility, which is a broader notion than uncertainty.

In Chapter 2, we introduced the mathematical framework of GPTs. We

saw that GPTs are constructed by requiring only primitive convexity origi-

nating from probability mixtures, and thus in this sense, they are the most

general description of nature (in particular, broader than quantum theory).

There were proven that GPTs can be expressed mathematically in terms of

ordered Banach spaces, and that it indeed reproduce the usual formulation

of quantum theory.

In Chapter 3, several generalizations of uncertainty relations such as en-

tropic uncertainty relations were considered in a class of GPTs which can

be considered as generalized theories of quantum theory. It was revealed

that similar quantitative relations between preparation and measurement

uncertainty to quantum case hold also in GPTs although only theories with

transitivity and self-duality with respect to a certain inner product were

considered. We also gave concrete calculations of our results for regular

polygon theories. What is also specific to theorems is that they were ob-

tained without considering entanglement or even composite systems while

the quantum results of the previous studies were based on the “ricochet”

property of maximally entangled states. It may be indicated that some

of the characteristics of quantum theory can be obtained without entan-

glement. Future research should reveal the relations between the maximal

entanglement and self-duality, which will be a key to generalizing our theo-

rems to infinite-dimensional cases (remember that the maximally entangled
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states cannot be defined in infinite-dimensional quantum theories such as

H “ L2pRq). To find information-theoretic applications of our results is also

left for future work.

In Chapter 4, we focused on incompatibility in quantum theory, and

introduced the notions of compatibility and incompatibility dimensions for

collections of quantum devices. They describe the minimum number of

states which are needed to detect incompatibility and the maximum num-

ber of states on which incompatibility vanishes, respectively. We have not

only presented general properties of those quantities but also examined con-

crete behaviors of them for a pair of unbiased qubit observables. We have

proven that even for this simple pair of incompatible observables there exist

two types of incompatibility with different incompatibility dimensions which

cannot be observed if we focus only on robustness of incompatibility under

noise. We expect that it is possible to apply this difference to some quantum

protocols such as quantum cryptography. Future work will be needed to in-

vestigate whether similar results can be obtained for observables in higher

dimensional Hilbert space or other quantum devices. As the definitions ap-

ply to devices in GPTs, an interesting task is further to see how quantum

incompatibility dimension differs from incompatibility dimension in general.

In Chapter 5, we returned to GPTs and considered theremodynamical

entropy in regular polygon theories. We showed that only classical and

quantum-like theories (i.e. the triangle and disc theories respectively) al-

low the operationally natural entropy to be consistent. Further research is

required to reveal if we can obtain the same results in higher dimensional

cases. Moreover, the proof of our main theorem indicates that the entropy

discussed above is defined successfully in other theories where the probabil-

ity coefficients obtained when a state is decomposed into perfectly distin-

guishable states are unique even though the state space is neither classical

nor quantum. This means that we need to impose additional conditions on

the entropy to remove those“unreasonable” theories, which is also a future

problem.
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Appendix

A Proof of Proposition 2.50

In this part, we give a proof of Proposition 2.50. We need the following

proposition, which holds without the assumption of the transitivity of Ω.

Proposition A.1

For a state space Ω, define a linear map PM : V Ñ V by

PMx “

ż

GLpΩq

Tx dµpT q.

Then, PM is an orthogonal projection with respect to the inner product

x¨, ¨yGLpΩq, i.e.

PM “ P 2
M and xPMx, yyGLpΩq “ xx, PMyyGLpΩq for all x, y P V.

Proof

We denote the inner product x¨, ¨yGLpΩq simply by x¨, ¨y in this proof.

Let VM :“ tx P V | Tx “ x for all T P GLpΩqu be the set of all fixed

points with respect to GLpΩq. Then, it is easy to see that PMxM “ xM
for any xM P VM and VM “ ImPM (in particular VM is a subspace of V ).

Therefore,

P 2
Mx “ PMpPMxq “ PMx

holds for any x P V , and thus P 2
M “ PM . On the other hand, we can observe

xPMx, yy “

ż

GLpΩq

dµpT q pTPMx, TyqE

“

ż

GLpΩq

dµpT q pPMx, TyqE

“

ż

GLpΩq

dµpT q

ˆ
ż

GLpΩq

dµpSqSx, Ty

˙

E

. (A.1)

Let us fix an orthonormal basis twiu
N`1
i“1 of V compatible with the standard
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Euclidean inner product of V , i.e.

pwi, wjqE “ δij.

We can consider representing the vector
ş

GLpΩq
dµpSqSx P V by means of

the orthonormal basis twiui as

ż

GLpΩq

dµpSqSx “
ÿ

i

ˆ

wi,

ż

GLpΩq

dµpSqSx

˙

E

wi.

In fact, the “ith-element”
´

wi,
ş

GLpΩq
dµpSqSx

¯

E
is given by (see [157] for

more details)

ˆ

wi,

ż

GLpΩq

dµpSqSx

˙

E

“

ż

GLpΩq

dµpSq pwi, SxqE.

It results in
ˆ

ż

GLpΩq

dµpSqSx, Ty

˙

E

“
ÿ

i

„
ż

GLpΩq

dµpSqpwi, SxqE

ȷ

pwi, T yqE

“

ż

GLpΩq

dµpSq

«

ÿ

i

pSx, wiqEpwi, T yqE

ff

“

ż

GLpΩq

dµpSqpSx, TyqE.

Therefore, we obtain

ż

GLpΩq

dµpT q

ˆ
ż

GLpΩq

dµpSqSx, Ty

˙

E

“

ż

GLpΩq

dµpT q

„
ż

GLpΩq

dµpSq pSx, TyqE

ȷ

“

ż

GLpΩq

dµpSq

„
ż

GLpΩq

dµpT q pSx, TyqE

ȷ

“

ż

GLpΩq

dµpSq

ˆ

Sx,

ż

GLpΩq

dµpT qTy

˙

E

,

where we use Fubini’s theorem for the finite Haar measure µ on GLpΩq. We

can conclude together with (A.1) that

xPMx, yy “ xx, PMyy

holds. 2

Proposition A.1 enables us to give an orthogonal decomposition of a
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vector x P V such that

x “ p1 ´ PMqx ` PMx, (A.2)

where p1 ´ PMqx P V K
M and PMx P VM . When the transitivity of Ω is

assumed, (A.2) is reduced to Proposition 2.50.

Proposition 2.50

For a transitive state space Ω, there exists a basis tvlu
N`1
l“1 of V orthonormal

with respect to the inner product x¨, ¨yGLpΩq such that vN`1 “ ωM and

x P aff pΩq ðñ x “

N
ÿ

l“1

alvl ` vN`1 “

N
ÿ

l“1

alvl ` ωM pa1, ¨ ¨ ¨ , aN P Rq.

Proof

Since we set dimaff pΩq “ N , there exists a set of N linear independent vec-

tors tvlu
N
l“1 Ă raff pΩq´ωM s which forms a basis of the N -dimensional vector

subspace raff pΩq ´ωM s Ă V , and we can assume by taking an orthonormal-

ization that they are orthonormal with respect to the inner product x¨, ¨y.

Hence, x P aff pΩq if and only if it is represented as

x “

N
ÿ

l“1

alvl ` ωM pa1, ¨ ¨ ¨ , aN P Rq. (A.3)

Moreover, because of the definition of aff pΩq, for every vl P raff pΩq ´ ωM s

there exist k P N, real numbers tbiu
k
i“1 satisfying

řk
i“1 bi “ 1, and states

tωiu
k
i“1 such that vl “

řk
i“1 biωi ´ ωM . By means of Proposition 2.49, we

obtain for all l “ 1, 2, ¨ ¨ ¨ , N

PMvl “

k
ÿ

i“1

biPMωi ´ PMωM

“

k
ÿ

i“1

biωM ´ ωM “ 0. (A.4)

Therefore, because of Proposition A.1

xωM , vly “ xPMωM , vly

“ xωM , PMvly

“ 0

holds for all l “ 1, 2, ¨ ¨ ¨ , N , and we can conclude together with the unit

norm of ωM that tv1, ¨ ¨ ¨ , vN , ωMu in (A.3) forms an orthonormal basis of

the pN`1q-dimensional vector space V with respect to x¨, ¨y and Proposition
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2.50 is proven (we can also find that (A.3) corresponds to (A.2)). 2

B Proof of Proposition 2.52

In this part, we prove Proposition 2.52. As we have so far, we let Ω be a

state space, V` be the positive cone generated by Ω, and GLpΩq be the set

of all state automorphisms on Ω in the following.

Lemma B.1

V ˚int
`x¨,¨yGLpΩq

is a GLpΩq-invariant set. That is, TV ˚int
`x¨,¨yGLpΩq

“ V ˚int
`x¨,¨yGLpΩq

for

all T P GLpΩq.

Proof

Let w P V ˚int
`x¨,¨yGLpΩq

. It holds that xw, vyGLpΩq ě 0 for all v P V`. Because

any T P GLpΩq is an orthogonal transformation with respect to x¨, ¨yGLpΩq,

we obtain

xTw, vyGLpΩq “ xw, T´1vyGLpΩq ě 0

for all v P V`. Therefore, TV ˚int
`x¨,¨yGLpΩq

Ă V ˚int
`x¨,¨yGLpΩq

holds, and a similar

argument for T´1 P GLpΩq proves the lemma. 2

Lemma B.2

Let p¨, ¨q be an arbitrary inner product on V . V` is self-dual if and only

if there exists a linear map J : V Ñ V such that J is strictly positive with

respect to p¨, ¨q, i.e. px, Jyq “ pJx, yq for all x, y P V and px, Jxq ą 0 for all

x P V , and JpV`q “ V ˚int
`p¨,¨q.

Proof

If part: We introduce an inner product p¨, ¨qJ “ p¨, J ¨q. V ˚int
`p¨,¨qJ

is written as

V ˚int
`p¨,¨qJ

“ tv | pv, wqJ ě 0, @w P V`u

“ tv | pv, Jwq ě 0, @w P V`u

“ tv | pJv, wq ě 0, @w P V`u.

Thus, v P V ˚int
`p¨,¨qJ

is equivalent to Jv P V ˚int
`p¨,¨q. It concludes V ˚int

`p¨,¨qJ
“

J´1pV ˚int
`p¨,¨qq “ V`.

Only if part: Let V` be self-dual with respect to an inner product x¨, ¨y.

There exists some K : V Ñ V strictly positive with respect to p¨, ¨q such

that x¨, ¨y “ p¨, K¨q. We obtain

V` “ V ˚int
`x¨,¨y “ tv| xv, wy ě 0, @w P V`u

“ tv| pv,Kwq ě 0, @w P V`u

“ tv| pKv,wq ě 0, @w P V`u
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Thus, v P V` “ V ˚int
`x¨,¨y is equivalent to Kv P V ˚int

`p¨,¨q, i.e. KV` “ V ˚int
`p¨,¨q. Define

J “ K. 2

In Lemma B.2, we gave a necessary and sufficient condition for V` with

an inner product p¨, ¨q to be self-dual. The condition was the existence of a

strictly positive map J satisfying JpV`q “ V ˚int
`p¨,¨q. This map J may not be

unique. For instance, let us consider a classical system in R2 whose extreme

points are two points p1, 1q and p1,´1q. The positive cone is a “forward

lightcone” V` “ tpx0, x1q| x0 ě 0, x20 ´ x21 ě 0u. It is easy to see that

V` “ V ˚int
`p¨,¨qE

with the standard Euclidean inner product p¨, ¨qE. However,

if we choose an orthogonal basis tv0, v1u of R2 given by v0 “ p1, 1q and

v1 “ p1,´1q, then every linear map of the form

˜

v0

v1

¸

ÞÑ

˜

λ0v0

λ1v1

¸

for λ0, λ1 ą 0 (which contains “Lorentz transformations” in 1`1 dimension)

is strictly positive and makes V` invariant. Nevertheless, when |Ωext| ă 8,

we can demonstrate that such strictly positive maps are “equivalent” to each

other .

Lemma B.3

Let |Ωext| ă 8. If a linear map J : V Ñ V is strictly positive with respect to

an inner product p¨, ¨q, i.e. px, Jyq “ pJx, yq for all x, y P V and px, Jxq ą 0

for all x P V , and satisfies JpV`q “ V`, then for each ωext P Ωext there exists

µpωextq ą 0 such that Jpωextq “ µpωextqωext.

Proof

Any ωext P Ωext is represented as ωext “ cpωextqw with cpωextq :“ }ωext} “

pωext, ωextq1{2 and w satisfying }w} “ 1. Suppose that there exists a family

tωext
k uZk“1 “ tcpωext

k qwkuZk“1 Ă Ωext

such that there is no µpωext
k q ą 0 for every k “ 1, 2, ¨ ¨ ¨ , Z satisfying

Jpωext
k q “ µpωext

k qωext
k , and define W :“ twkuZk“1. Since J maps each ex-

treme ray of V` to an extreme ray of V`, Jpwkq with wk P W is proportional

to some ωext P Ωext (remember that an extreme ray of V` is the set of positive

scalar multiples of an extreme point of Ω). We can see that Jpwkq is pro-

portional to some wp P W with p ‰ k considering that JpJpwkqq “ µJpwkq

holds if and only if Jpwkq “ µwk holds.

We shall show in the following that there is a wq P W such that Jpwqq R

W despite of the argument above. To prove the claim, let us diagonalize J . It

is written as J “
řM
n“1 τnRn, where τ1 ą τ2 ą ¨ ¨ ¨ ą τM ą 0 and tRnuMn“1 are

orthogonal projections. We choose w1 so that 0 ‰ pw1, R1w1q ě pwk, R1wkq
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for all wk P W . Although such w1 may not be unique, the following argument

does not depend on the choice. If it happens that pwk, R1wkq “ 0 for all

wk P W , we choose w1 so that 0 ‰ pw1, R2w1q ě pwk, R2wkq for all wk P W .

If still pwk, R2wkq “ 0 for all wk P W , we repeat the argument for R3, R4, ¨ ¨ ¨ .

For simplicity, we assume hereafter that pw1, R1w1q ‰ 0 holds. The general

cases can be treated similarly. Let r1 :“ R1w1{}R1w1} ‰ 0, then J is written

as

J “ τ1 |r1yxr1| ` τ1pR1 ´ |r1yxr1|q `
ÿ

ně2

τnEn “ τ1R̂0 ` τ1R̂1 `
ÿ

ně2

τnR̂n,

where we define R̂0 :“ |r1yxr1|, R̂1 :“ R1 ´ |r1yxr1| and R̂n :“ Rn for n ě 2

satisfying R̂aR̂b “ δabR̂a for a, b “ 0, 1, ¨ ¨ ¨ ,M . Now we consider a vector

Jpw1q

}Jpw1q}
“

τ1R̂0w1 ` τ1R̂1w1 `
ř

ně2 τnR̂nw1
´

τ 21 pw1, R̂0w1q ` τ 21 pw1, R̂1w1q `
ř

ně2 τ
2
npw1, R̂nw1q

¯1{2
,

which must coincide with some wp P W . Its “R̂0 -element” can be calculated

as
ˆ

Jpw1q

}Jpw1q}
, R̂0

Jpw1q

}Jpw1q}

˙

“
τ 21 pw1, R̂0w1q

τ 21 pw1, R̂0w1q ` τ 21 pw1, R̂1w1q `
ř

ně2 τ
2
npw1, R̂nw1q

“
pw1, R̂0w1q

pw1, R̂0w1q ` pw1, R̂1w1q `
řM
n“2

τ2n
τ21

pw1, R̂nw1q
. (B.1)

On the other hand, we can obtain that

pw1, R̂0w1q ` pw1, R̂1w1q `

M
ÿ

n“2

τ 2n
τ 21

pw1, R̂nw1q

ă pw1, R̂0w1q ` pw1, R̂1w1q `

M
ÿ

n“2

pw1, R̂nw1q “ 1

because there exists a n ě 2 such that pw1, R̂nw1q ‰ 0 (otherwise w1 “

pR̂0 ` R̂1qw1 “ R1w1 and thus Jpw1q “ τ1w1 hold, which contradicts w1 P

W ). Therefore, (B.1) results in

ˆ

Jpw1q

}Jpw1q}
, R̂0

Jpw1q

}Jpw1q}

˙

ą pw1, R̂0w1q.

This observation concludes a contradiction to Jpw1q{}Jpw1q} “ wp P W
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because w1 satisfies pw1, R̂0w1q ě pwk, R̂0wkq for all wk P W . Overall, we find

that every ωext P Ωext has some µpωextq ą 0 such that Jpωextq “ µpωextqωext.

2

Lemma B.4

Let |Ωext| ă 8, and suppose that linear maps J and K strictly positive

with respect to an inner product p¨, ¨q satisfy JpV`q “ KpV`q “ V ˚int
`p¨,¨q (in

particular, V` is self-dual). Then, there exists a µpωextq ą 0 for each ωext P

Ωext such that Kpωextq “ µpωextqJpωextq holds.

Proof

As was seen in Lemma B.2, the inner products p¨, ¨qJ :“ p¨, J ¨q and p¨, ¨qK :“

p¨, K¨q satisfy V ˚int
`p¨,¨qJ

“ V` and V ˚int
`p¨,¨qK

“ V` respectively. Because p¨, ¨qK
is represented as p¨, ¨qK “ p¨, L¨qJ with some linear map L strictly positive

with respect to p¨, ¨qJ , we have for arbitrary v, w P V

pv, wqK “ pv,Kwq “ pv, LwqJ “ pv, JLwq,

and thus L “ J´1 ˝ K holds. On the other hand, L satisfies

V ˚int
`p¨,¨qK

“ tv | pv, wqK ě 0, @w P V`u

“ tv | pv, LwqJ ě 0, @w P V`u

“ tv | pLv,wqJ ě 0, @w P V`u “ L´1pV ˚int
`p¨,¨qJ

q.

That is, LpV`q “ V` holds. Therefore, we can apply Lemma B.3 to L, and

conclude that

Lpωextq “ µpωextqωext “ J´1pKpωextqq,

i.e. Kpωextq “ µpωextqJpωextq holds. 2

Proposition 2.52

Let Ω be transitive with |Ωext| ă 8 and V` be self-dual with respect to some

inner product. There exists a linear bijection Ξ: V Ñ V such that Ω1 :“ ΞΩ

is transitive and the generating positive cone V 1
` is self-dual with respect to

x¨, ¨yGLpΩ1q, i.e. V
1

` “ V
1˚int

`x¨,¨yGLpΩ1q
.

Proof

Because of the transitivity of Ω, we can adopt the orthogonal coordinate

system of V introduced in Proposition 2.50. Since V` is self-dual, there

exists a linear map J : V Ñ V strictly positive with respect to x¨, ¨yGLpΩq

such that JpV`q “ V ˚int
`x¨,¨yGLpΩq

(Lemma B.2). We can assume without loss of

generality that J satisfies xωM , JωMyGLpΩq “ 1. Let us introduce

Ω˚ :“ V ˚int
`x¨,¨yGLpΩq

X rz “ 1s “ tv P V ˚int
`x¨,¨yGLpΩq

| xv, ωMyGLpΩq “ 1u,
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where we identify the “ωM -coordinate” with “z-coordinate” in V and define

rz “ 1s :“ tx P V | xx, ωMyGLpΩq “ 1up“ aff pΩqq (see Proposition 2.50).

Note that since both V ˚int
`x¨,¨yGLpΩq

and rz “ 1s are GLpΩq-invariant, Ω˚ is

also GLpΩq-invariant. It is easy to demonstrate that Ω˚ is convex (and

compact), and we denote by Ω˚ext the set of all extreme points of Ω˚. We

can also see that Ω˚ext generates the extreme rays of V ˚int
`x¨,¨yGLpΩq

. Because J

satisfying JpV`q “ V ˚int
`x¨,¨yGLpΩq

is bijective and maps extreme rays of V` to

extreme rays of V ˚int
`x¨,¨yGLpΩq

, it holds that |Ω˚ext| “ |Ωext|. Thus, there exists

a bijection f : Ωext Ñ Ω˚ext and βpωextq ą 0 for each ωext P Ωext satisfying

Jpωextq “ βpωextqfpωextq.

For each T P GLpΩq, we introduce JT :“ T´1˝J ˝T . It is easy to see that

JT satisfies JT pV`q “ V ˚int
`x¨,¨yGLpΩq

by virtue of Lemma B.1. Furthermore, JT is

shown to be strictly positive with respect to x¨, ¨yGLpΩq because T P GLpΩq is

an orthogonal transformation with respect to x¨, ¨yGLpΩq. Therefore, applying

Lemma B.4 to J and JT , there exists µT : Ωext Ñ Rą0 such that JT pωextq “

µT pωextqJpωextq for ωext P Ωext, that is,

JT pωextq “ µT pωextqJpωextq

“ µT pωextqβpωextqfpωextq

“: βT pωextqfpωextq,

where we define βT pωextq :“ µT pωextqβpωextq. We calculate this βT pωextq. It

holds that

JT pωextq “ T´1 ˝ JpTωextq

“ T´1pβpTωextqfpTωextqq

“ βpTωextqT´1fpTωextq

“ βT pωextqfpωextq.

This relation shows that T´1fpTωextq is proportional to fpωextq. Considering

that the z-coordinates of fpTωextq and fpωextq are 1 and that T´1 preserves

z-coordinates, we find that T´1fpTωextq “ fpωextq (equivalently, fpTωextq “

Tfpωextq) holds. Consequently, we obtain

JT pωextq “ βpTωextqfpωextq.

Now we introduce

Jav :“
1

|GLpΩq|

ÿ

TPGLpΩq

JT .

We note that |GLpΩq| ă 8 when |Ωext| ă 8 because |GLpΩq| ď |Ωext| !. Jav
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acts on ωext P Ωext as

Javpω
extq “

1

|GLpΩq|

ÿ

TPGLpΩq

βpTωextq ¨ fpωextq “: Cfpωextq,

where C :“ 1
|GLpΩq|

ř

TPGLpΩq βpTωextq is a positive constant which does not

depend on the choice of ωext P Ωext because of the transitivity of Ω. Thus, the

map satisfies JavpV`q “ V ˚int
`x¨,¨yGLpΩq

since JavpΩ
extq “ CΩ˚ext, and is strictly

positive with respect to x¨, ¨yGLpΩq since it is a summation of the strictly

positive operators tJT uTPGLpΩq. Moreover, it satisfies

Jav ˝ T “ T ˝ Jav.

for any T P GLpΩq. We thus find that Jav ˝ PM “ PM ˝ Jav holds for the

orthogonal projection PM introduced in Proposition A.1. In fact,

JavpPMxq “
1

|GLpΩq|
Jav

¨

˝

ÿ

TPGLpΩq

Tx

˛

‚

“
1

|GLpΩq|

ÿ

TPGLpΩq

T pJavxq

“ PMpJavxq

holds for all x P V . Therefore, Jav is decomposed into two parts as

Jav “ PM ˝ Jav ˝ PM ` PK
M ˝ Jav ˝ PK

M , (B.2)

where PK
M “ 1´PM . We note that V K

M “ ImPK
M “ raff pΩq´ωM s “ RN and

dim VM “ dim ImPM “ 1 hold by virtue of Proposition 2.50. Therefore,

the first part of (B.2) is proportional to 1VM “ 1z “ PM , and because we

set xωM , JωMyGLpΩq “ 1 and thus

xωM , PM ˝ Jav ˝ PMωMyGLpΩq “ xωM , JavωMyGLpΩq

“ xωM , PMJωMyGLpΩq

“ xωM , JωMyGLpΩq

“ 1

“ xωM , PMωMyGLpΩq

holds, it is proven that

PM ˝ Jav ˝ PM “ PM .

Let us examine the second part. Suppose that there exists a nonzero x P V K
M
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such that Tx “ x for all T P GLpΩq. Then, PMx “ x ‰ 0 holds, and

it contradicts to (A.4). Thus, we can find that GLpΩq acts irreducibly

on V K
M , that is, only t0u and V K

M “ RN itself are invariant subspaces. It

concludes that PK
MJavP

K
M , which commutes with every element in GLpΩq, is

proportional to 1V K
M

“ 1RN “ PK
M due to Schur’s lemma. Consequently, we

obtain for some ξ ą 0

Jav “ PM ` ξPK
M ,

and thus

JavpV`q “ pPM ` ξPK
MqpV`q “ V ˚int

`x¨,¨yGLpΩq
. (B.3)

Let us introduce a linear bijection

Ξ :“
a

Jav “ PM `
a

ξPK
M ,

strictly positive with respect to x¨, ¨yGLpΩq, and define Ω1 :“ ΞΩ. It is easy to

check that the positive cone V 1
` generated by Ω1 is given by V 1

` “ ΞV`, and

GLpΩ1q “ ΞGLpΩqΞ´1 “ GLpΩq (moreover, the unique maximally mixed

state of Ω1 is still ωM). In addition, we can find that

V
1˚int

`x¨,¨yGLpΩ1q
“ tv | xv, w1yGLpΩq ě 0, @w1 P V 1

`u

“ tv | xv,ΞwyGLpΩq ě 0, @w P V`u

“ Ξ´1V ˚int
`x¨,¨yGLpΩq

.

holds. Since (B.3) can be rewritten as

ΞV` “ Ξ´1V ˚int
`x¨,¨yGLpΩq

,

we can conclude

V
1

` “ V
1˚int

`x¨,¨yGLpΩ1q
.

2

Remark

In the case of |Ωext| “ 8, there exists a counterexample of Lemma B.3. Let

us consider a state space

Ω “ t tp1,xq “ tp1, x1, x2, x3q P R4 | |x|2 “ x21 ` x22 ` x23 ď 1u

(the Bloch ball). Ω defines a corresponding positive cone V` as

V` “ tx P R4 | x20 ´ |x|2 ě 0, x0 ě 0u,
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which can be identified with a forward light cone of a Minkowski spacetime.

We examine a pure Lorentz transformation Λ defined for λ P R as

Λ “

»

—

—

—

–

coshλ sinhλ 0 0

sinhλ coshλ 0 0

0 0 1 0

0 0 0 1

fi

ffi

ffi

ffi

fl

.

It is easy to prove that this Λ is strictly positive. Since the pure Lorentz

transformation preserves the Minkowski metric, it satisfies ΛpV`q “ V`.

However, Λ transforms an extreme point x “ tp1, 0, 1, 0q to

Λpxq “ tpcoshλ, sinhλ, 1, 0q,

which is not proportional to x. Investigating whether Proposition 2.52 still

holds when |Ωext| “ 8 is a future problem.
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