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Chapter 1

General Introduction

1.1 Hexagonal deformation twinning

Hexagonal materials with hexagonal close-packed (HCP) crystal structure, such as Mg and Ti,

are attractive due to their high specific strength compared with traditional structural materials and

are widely used as structural materials in many industries. Mg and its alloys are promising next-

generation light-weight structural materials for reducing the weight of the vehicles and increase

their efficiency and reduce the amount of greenhouse gas [1]. Ti and its alloys attract wide

application in aerospace, chemical industry and medical implants because of excellent corrosion

resistance and good biocompatibility in addition to preferable physical and mechanical properties

[2]. Understanding the individual defects and the interactions between these defects at the atomic

scale is significant for materials engineering.

Deformation twinning in HCP metals plays a crucial role as one of the plastic deformation

modes along the 〈𝑐〉 axis, because the dominant slip systems for Mg and Ti are 〈𝑎〉 basal slip

and 〈𝑎〉 prism slip, respectively [3–5], which have 1
3 〈12̄10〉 burgers vectors, and they are the

main carriers of plastic deformation in HCP metals but cannot accommodate any strain along the
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〈𝑐〉 axis. Even though HCP crystal structure is one of the three most common crystal structures

in structural materials along with FCC and BCC crystal structures, its deformation modes have

higher complexity. This comes from the fact that HCP crystal structure has hexagonal lattice and

there are two atoms in the primitive cell where FCC and BCC crystal structures are cubic and a

single atom is included in the primitive cell. Owing to this structure feature, the atomic motions

during twin growth in HCP metals do not merely follow shear strain (affine transformation), but

atomic shuffling (non-affine transformation) must be occurred [6, 7]. Therefore, it is impossible

to explain deformation twinning in HCP metals with simple dislocation twinning. From this

complexity, the twin nucleation and growth mechanisms in HCP metals are still not clear and

sincerely investigated by many researchers. Among several hexagonal twinning modes that could

be active, {101̄2} twinning mode has the smaller twinning shear values [8] and the most commonly

observed twinning mode in experiments in HCP materials [9,10]. While the crystallography of the

deformation twinning is well asserted [6, 7], the atomic-scale mechanisms of twin nucleation and

its growth are still the object of active research [11–16].

From atomic point of view, {101̄2} twin boundary is not fully coherent but often deviates from

theoretical one by exhibiting steps [17], especially at twin tips [18]. Recently, atomic-scale {101̄2}

twin growth process was directly observed in Re nanocrystals by in-situ high resolution transmission

electron microscopy (HRTEM) [19]. They found out the migration of twin boundary is proceeded

by the dual steps sweeping on the twin boundary during detwinning process as shown in Fig.1.1. The

dual steps meditated twin growth mechanism has been already proposed by Pond, Hirth, Serra and

Bacon [11,12]. They considered the twin boundary migration is meditated by the steps formed at the

interface and introduced the concept "disconnection" to describe the interfacial defects mediating

twin boundary migration. This interfacial defects called as disconnection have both dislocation and

step character. With this newly introduced concept, they proposed twin thickening process with

2



disconnection gliding on the twin boundary. However, in this disconnection model they do not

clearly denote how atoms around the twin boundary rearrangement occurs during twin boundary

migration when external stress is applied to the twin boundary. On the other hand, some other

researchers propose atomic scale twin growth models in {101̄2} coherent twin boundary (CTB)

which describe the pathway of each atom during twin boundary migration [13–16]. However, these

models are based on topological analysis and atomic shuffles are determined from the concept

that "the shuffle magnitudes should be small" remarked by Bilby et al. [6], and their validity is not

discussed based on energetic point of view. Moreover, the {101̄2} twin growth mechanism observed

by in-situ HRTEM in Re, in which the dual steps on the twin boundary play a key role, is beyond

their scope.

Figure 1.1: Sequential HRTEM snapshots for {101̄2} CTB propagation by the dual steps sweeping
on the twin boundary during detwinning process in Re [19].

On the other hand, some researchers consider deformation twinning as a special type of stress

driven transformation and the atomic rearrangement during twin boundary migration is characterized

by collective movement of atoms [15, 20]. In this point of view, phonons which represent atomic

vibrations in crystal play a central role. Therefore, we decided to conduct phonon calculations

toward {101̄2} twin boundary structures and analyze the change of phonon state during applying
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shear stress. External stress is expected to change potential energy surface and affect the phonon

states while the equilibrium positions of atoms move, and finally some specific phonon modes are

expected to show imaginary frequencies which means the sheared structure is dynamically unstable.

Our strategy provides the initial motion from dynamically unstable structure to the dynamically

stable structure under the applied shear stress, because we can get the unstable vibration directions

of atoms from the eigenvectors of the imaginary phonon modes. As far as we know, Togo has firstly

studied phonon structure change while applying shear stress using Ti {101̄2} twinning mode and

revealed a characteristic phonon mode that exhibits structural instability under certain shear and

proposed the pathway of atomic rearrangement from this soft phonon mode [20], but his calculations

do not provide phonon structures around twin boundary and their change.

From these backgrounds, we have decided to study the phonon structures of Mg and Ti {101̄2}

twin boundary and their change during applying shear stress. As for {101̄2} twin boundary

structures, we first study coherent twin boundaries because of their structural simplicity in Chapter.

2. Then, we consider the dual step introduced {101̄2} twin boundaries as more actual models in

Chapter. 3. In this thesis, we show the atomic rearrangement process around {101̄2} twin boundary

from phonon calculations and imaginary phonon mode analyses.

1.2 Overview

In Chapter 2, atomic pathways during the twin growth of {101̄2} CTB in Mg and Ti are

provided from a series of phonon calculations. We first describe the method of building {101̄2}

CTB structure from dichromatic pattern [21] in Session 2.2. Then, theoretical backgrounds for

lattice dynamics and imaginary phonon mode are reviewed in Session 2.3. Throughout Chapter 2,

we use first-principles phonon calculations toward {101̄2} CTB in Mg and Ti with Vienna 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜
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simulation (VASP) [22–25] and phonopy [26] packages. The computational details for calculations

are described in Session 2.4. In Session 2.5, we provide phonon structures under zero shear stress

and phonon structure changes under the applied shear stresses. Finally, we provide the atomic

motions during twin growth based on the eigenvectors of the characteristic phonon modes which

have imaginary frequencies under a certain shear stress.

In Chapter 3, we select the dual step introduced {101̄2} twin boundary structure as a more actual

case than CTB structure and the atomic pathways during the twin growth are provided from a series

of phonon calculations. We first describe the method of building the dual step introduced {101̄2}

twin boundary structure from dichromatic pattern [21] in Session 3.2. Because the simulation

cells are much larger than CTB structures and it is impossible to conduct first-principles phonon

calculations, we use machine learning interatomic potentials (MLIP) for phonon calculations. The

theoretical backgrounds for MLIP is reviewed in Section 3.3. Then, computational details for

calculations are described in Session 3.4. In Session 3.5, we provide the phonon structure changes

of dual step introduced twin boundary structures in Mg and Ti and the atomic pathways associated

with dual step gliding are provided from the imaginary phonon mode analyses.
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Chapter 2

Atomic Mechanism of Twin Growth in Mg

and Ti {101̄2} Coherent Twin Boundaries

2.1 Introduction

As remarked in general introduction, we consider deformation twinning is a special type of

stress driven transformation and the atomic rearrangement during twin boundary migration is

characterized by collective movement of atoms around twin boundary. From this point of view,

phonon structures around {101̄2} twin boundary and their change by external shear stress should

be important to understand twin boundary migration. As far as we know, no other research of twin

growth considers it based on lattice dynamics, though some studies conduct phonon calculations

toward {101̄2} coherent twin boundary (CTB) structures to check their dynamical stability [27,28].

Therefore, we decide to conduct a series of phonon calculations toward Mg and Ti {101̄2} CTB

structures while applying external shear stresses and analyze the phonon structure changes.

CTB is the simplest structural version of twin boundary, where the twin lattice is exactly a mirror

reflection of the matrix lattice in {101̄2} twinning mode. However, even with the use of {101̄2} CTB
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model in HCP, the twin growth mechanism is still complicated because {101̄2} crystallographic

plane is not flat but corrugated in nature and this necessitates additional atomic motions (shuffle),

apart from shear. In the last two decades, huge amount of efforts have been devoted to studying the

structures and energetics of {101̄2} CTBs in HCP Mg and Ti using a variety of simulation methods

such as molecular statics (MS) [29], molecular dynamics (MD) [30], and first-principles density

functional theory (DFT) [31–34], but many of them dedicate to discuss structural stability based on

energetics, and they do not discuss about twin growth which accompanies atomic rearrangement

around twin boundary. On the other hand, some papers consider the {101̄2} twin boundary migration

mechanisms from atomic point of view, but they are based on the observation of HRTEM [16] or

the simple topological calculations [14, 15], and they do not clarify what is the trigger of the twin

boundary migration.

In this chapter, we provide phonon structure changes by external shear stress and show some

specific imaginary phonon modes play a key role in the twin boundary migration in Mg and Ti

{101̄2} CTB. In Section 2.2, the method of building {101̄2} CTB introduced structure is discussed.

The necessary backgrounds for lattice dynamics and the computational details for first-principles

phonon calculations are reviewed in Section 2.3 and Section 2.4. In Section 2.5, the phonon

structures for the Mg and Ti {101̄2} CTBs and their sheared structures are provided and the atomic

rearrangement accompanied by twin boundary migration is clarified.

2.2 Modeling {101̄2} coherent twin boundary

Twinning modes are historically characterized by a set of four twinning elements defined by the

classical theory of deformation twinning, which are 𝜼1 and 𝜼2 invariant directions, and K1 and K2

invariant planes [6]. FIG.2.1 shows the invariant plane relations between matrix and twin, where
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its half upper part is homogeneously sheared by twinning shear strain 𝑠t into twin. 𝐾2 and 𝐾′
2, and

𝜼2 and 𝜼′2 are crystallographic equivalent planes and directions, respectively. We define the shear

plane P and three vectors 𝒎, 𝒌1 and 𝒌2 which are normal to P, K1 and K2 planes respectively. The

set of the basis vectors of HCP crystal structure is given as [𝒂h, 𝒃h, 𝒄h].

K!

K" K"#

𝜼!

𝜼"#𝜼" 𝑠$

Matrix

Twin

Figure 2.1: The relations of invariant planes and directions between matrix and twin. The sphere
represents matrix and its half upper part homogeneously is sheared into a half-ellipsoid (twin),
which is first represented by Hall [35].

For {101̄2} twinning mode, four twinning elements and corresponding twinning shear strain are

given as𝐾1 = {101̄2}, 𝐾2 = {101̄2̄}, 𝜼1 = 〈101̄1̄〉, 𝜼2 = 〈101̄1〉 and 𝑠t = |3−𝛾2 |√
3𝛾

with 𝛾 = 𝑐h/𝑎h [7,8].

To represent the {101̄2} twinning mode for calculations, it is convenient to retake the hexagonal

lattice by its extended unit cell, which we call as parent and its basis vectors are given as [𝒂m, 𝒃m, 𝒄m].

The basis vectors [𝒂m, 𝒃m, 𝒄m] are chosen so that the conditions 𝒂m ‖ 𝒎, 𝒃m ‖ 𝜼1 and 𝒄m ‖ 𝜼2 are

fulfilled and they make a right-handed system. In this condition, the transformation matrix from
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hexagonal lattice to parent lattice 𝑴 can be written as,

[𝒂m, 𝒃m, 𝒄m] = [𝒂h, 𝒃h, 𝒄h]𝑴, (2.1)

with

𝑴 =

©­­­­­­­«
0 2 2̄

1̄ 1 1̄

0 1 1

ª®®®®®®®¬
, (2.2)

where the bars on the matrix elements denote the negative numbers. Twinning operation is either

a reflection in K1 plane (Type I), or a rotation of 𝜋 along the 𝜼1 direction (Type II). As for {101̄2}

twinning mode, it is simultaneously of type I and Type II because both operations are equivalent [7].

In this study, the twin lattice is generated by applying reflection operation on K1 plane of the parent

lattice. The set of the basis vectors of the twin lattice is given as [𝒂t, 𝒃t, 𝒄t]. With these basis

vectors, the relation between matrix lattice and twin lattice of {101̄2} twinning mode becomes clear

as shown in Fig.2.2.
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𝑑
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𝜼!

𝜼"#𝜼"

−𝒄$ 𝒄%
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Figure 2.2: The relations of invariant planes and directions between matrix and twin lattice. Matrix
is sheared by 𝑠t into the twin. The white and the black points represent the hexagonal lattice points
of matrix and twin. The squared dots are half shifted along the vertical direction of paper compared
with the circled dots. The notation 𝑑 represents plane interval for {101̄2} planes and, four {101̄2}
planes are included in the unit lattices [𝒂m, 𝒃m, 𝒄m] and [𝒂t, 𝒃t, 𝒄t].

FIG.2.3 shows the matrix lattice points (white dots) and the twin lattice points (black dots) which

are generated by mirror operation at a specific {101̄2} plane in matrix, which is called dichromatic

pattern [21, 36]. By this operation, {101̄2} twin boundary is generated and the lattice points on

the twin boundary where parent and twin lattice points overlap are called grey lattice points. From

this dichromatic pattern, unit lattice used in this work is extracted so that the extracted unit lattice

contains ten layers of {101̄2} plane both in parent and twin lattice as represented with black dotted

line in Fig.2.3. Let the basis vectors of the newly defined unit lattice be given as [𝒂, 𝒃, 𝒄], then they

are represented as,

𝒂 = 𝒂p = 𝒂t, 𝒃 = 𝒃p = 𝒃t, 𝒄 =
11
4
(𝒄t − 𝒄m). (2.3)
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10 layers

!! = !"
#!

#"

#

!
Unit Lattice

Twin Boundary

Figure 2.3: Dichromatic pattern of {101̄2} CTB is shown. The white and the black points represent
the hexagonal lattice points of matrix and twin. Twin lattice points are generated by mirror operation
toward the top {101̄2} plane in matrix and this plane becomes twin boundary as shown in figure.
The unit lattice used in this work is represented by black dashed line. The squared dots are half
shifted along the vertical direction of paper compared with circled dots.

The unit cell is defined by embedding atoms against the hexagonal lattice points in the unit

lattice represented in Fig.2.3 as shown in Fig.2.4, which is called as dichromatic complex in some

papers [21, 37]. For the lattice points on the twin boundary, atom pairs are projected onto the twin

boundary. In order to fulfill the periodic condition along 𝑐 axis, the atom pairs on the top (and

equivalently on the bottom) of {101̄2} plane is also projected onto the plane. As a result, in addition

to {101̄2} twin boundary placed in the middle of the unit cell, the additional twin boundary is

generated at the top (and equivalently at the bottom) of the unit cell as represented in Fig.2.5. The

unit cell contains the total twenty-two {101̄2} planes where there are ten planes in matrix and twin,

and two twin boundaries. Therefore, there are forty-four atoms in the unit cell because atom pairs

belong for each plane in the unit cell.
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10 layers

𝒄

𝒃

Twin Boundary

Figure 2.4: Dichromatic complex is shown where the atom pair of HCP primitive cell is embedded
toward each lattice points of dichromatic pattern represented in Fig.2.3. The atom pair is represented
with red and blue spheres. The smaller spheres are half shifted along the vertical direction of paper
compared with bigger spheres.

𝒃

𝒄

𝒂

𝒄

(a) (b)

Twin Boundary

Twin Boundary

Twin Boundary

Matrix

Twin

Figure 2.5: The extracted unit cell containing {101̄2} twin boundary at the top, middle and bottom
is shown. (a) and (b) is the unit cell viewed along 𝑎 axis and 𝑏 axis, respectively. The unit cell
contains the total twenty-two {101̄2} planes where there are ten planes in matrix and twin, and two
twin boundaries.
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2.3 Theoretical backgrounds for lattice dynamics and imagi-

nary phonon mode

In this section, theoretical backgrounds for lattice dynamics [38–41] are reviewed and the

concept of imaginary phonon mode is introduced. Let the primitive cell of crystal structure be

defined with a set of basis vectors [𝒂1, 𝒂2, 𝒂3], then lattice points can be written as,

𝒍 = 𝑙1𝒂1 + 𝑙2𝒂2 + 𝑙3𝒂3 (2.4)

where 𝑙1, 𝑙2, 𝑙3 are integers. With these lattice points, the equilibrium position of the 𝜅th atom in the

𝑙th unit cell is defined as 𝒍 + 𝜿, where 𝜿 is representing the position of 𝜅th atom from the reference

lattice point. When the position of the 𝜅th atom in the 𝑙th unit cell is represented as 𝒓 ( 𝒍𝜿), the

displacement vector 𝒖( 𝒍𝜿) is defined as

𝒖( 𝒍𝜿) = 𝒓 ( 𝒍𝜿) − ( 𝒍 + 𝜿). (2.5)

In lattice dynamics theory, it is presumed that atoms vibrate around their equilibrium positions with

small amplitudes. Under this assumption, the crystal potential energy V can be described as a

Taylor series expansion with respect to atomic displacement 𝒖( 𝒍𝜿) as,

V = V0 + V1 + V2 + V3 + · · · , (2.6)

where the zeroth order term V0 is constant and is unimportant for dynamical problems and can

be set to zero, and the first order term V1 produces a force and must vanish in the equilibrium

configuration. Therefore, the second and the higher order terms are important in dynamical
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problems. In the harmonic approximation, crystal potential energy VH is defined by eliminating the

third and the higher order terms as,

VH ≡ V2 =
1
2

∑
𝒍𝜿𝛼

∑
𝒍′𝜿′𝛽

Φ𝛼𝛽 ( 𝒍𝜿, 𝒍′𝜿′)𝑢𝛼 ( 𝒍𝜿)𝑢𝛽 ( 𝒍′𝜿′), (2.7)

where Φ𝛼𝛽 ( 𝒍𝜿, 𝒍′𝜿′) is the second order force constants represented as,

Φ𝛼𝛽 ( 𝒍𝜿, 𝒍′𝜿′) =
𝜕2V

𝜕𝑢𝛼 ( 𝒍𝜿)𝜕𝑢𝛽 ( 𝒍′𝜿′)
. (2.8)

For obtaining a general expression for lattice dynamics, periodic boundary condition is intro-

duced as,

𝒖𝜿 ( 𝒍) = 𝒖𝜿 ( 𝒍 + 𝑁1𝒂1) = 𝒖𝜿 ( 𝒍 + 𝑁2𝒂2) = 𝒖𝜿 ( 𝒍 + 𝑁3𝒂3) (2.9)

where 𝑁1, 𝑁2, 𝑁3 are integers and they are large enough. This provides a mathematical scheme to

avoid unimportant effects on the dynamical problem of an infinitely large crystal system. When the

fourier transformation of 𝒖( 𝒍𝜿) is considered under the periodic boundary condition, only discrete

𝑞-points in reciprocal space have non-zero value. These 𝑞-points can be represented as,

𝒒 =
2𝜋𝑛1
𝑁1

𝒂∗1 +
2𝜋𝑛2
𝑁2

𝒂∗2 +
2𝜋𝑛3
𝑁3

𝒂∗3 (0 ≤ 𝑛𝑖 < 𝑁𝑖), (2.10)

where [𝒂∗1, 𝒂∗2, 𝒂∗3] are the basis vectors of reciprocal lattice. With these 𝑞-points, the displacement

vector 𝒖( 𝒍𝜿) at a specific time 𝑡 can be expanded into fourier series as,

𝑢𝛼 ( 𝒍𝜿, 𝑡) =
1

√
𝑁𝑚𝜅

∑
𝒒
𝑈𝛼 (𝒒, 𝜿) exp[𝑖(𝒒 · 𝒓 ( 𝒍𝜿) − 𝜔𝑡)], (2.11)
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where 𝑚𝜅 is the mass of 𝜅th atom and 𝑁 is the number of 𝑞-points, which can be written as,

𝑁 = 𝑁1𝑁2𝑁3. (2.12)

Let 𝑚 be the number of atoms in the unit cell, the collective displacements from their equilibrium

positions can be described in the 3𝑚𝑁 dimension. Each atom obeys the Newton’s motion equation

as,

𝑚𝑏 ¥𝑢𝛼 ( 𝒍𝜿, 𝑡) = −
∑
𝒍′𝜿′𝛽

Φ𝛼𝛽 ( 𝒍𝜿, 𝒍′𝜿′)𝑢𝛽 ( 𝒍′𝜿′, 𝑡). (2.13)

The second order force constant Φ obeys two important symmetry relations. From the lattice

translational symmetry, we have,

Φ( 𝒍𝜿, 𝒍′𝜿′) = Φ(0𝜿, (𝒍′ − 𝒍)𝜿′), (2.14)

and from the result that there is no force on any atom when all the atoms are equally displaced, we

have,

Φ( 𝒍𝜿, 𝒍𝜿) = −
∑

𝒍′𝜿′≠𝒍𝜿

Φ( 𝒍𝜿, 𝒍′𝜿′). (2.15)

Using these symmetry relations, Eq.(2.13) can be expressed as,

𝑚𝑏 ¥𝑢𝛼 ( 𝒍𝜿, 𝑡) = −
∑
𝒍′𝜿′𝛽

Φ𝛼𝛽 (0𝜿, 𝒍′𝜿′)𝑢𝛽 ( 𝒍′𝜿′, 𝑡). (2.16)

By substituting Eq.(2.11) into Eq.(2.16), we get,

∑
𝜿′𝛽

𝐷𝛼𝛽 (𝜿𝜿′|𝒒)𝑢𝛽 (𝒒, 𝜿′) = 𝜔2𝑢𝛼 (𝒒, 𝜿), (2.17)
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where 𝐷𝛼𝛽 (𝜿𝜿′|𝒒) is called as dynamical matrix and it is written as,

𝐷𝛼𝛽 (𝜿𝜿′|𝒒) =
1√
𝑚𝜅𝑚

′
𝜅

∑
𝒍′𝛽

Φ𝛼𝛽 (0𝜿, 𝒍′𝜿′) exp [−𝑖𝒒 · (𝒓 (0𝜿) − 𝒓 ( 𝒍′𝜿′))] . (2.18)

Eq.(2.17) is the eigenvalue problem for 3𝑚×3𝑚 dynamical matrix 𝑫 (𝒒). By solving this eigenvalue

problem, we get 3𝑚 eigenvalues 𝜔2(𝒒, 𝜈), which are squared phonon frequencies, and eigenvectors

𝝀(𝒒, 𝜈) as,

𝑫 (𝒒)𝝀(𝒒, 𝜈) = 𝜔2(𝒒, 𝜈)𝝀(𝒒, 𝜈) (𝜈 = 1, 2, · · · , 3𝑚), (2.19)

where eigenvectors are normalized as,

|𝝀(𝒒, 𝜈) | = 1. (2.20)

The crystal structure is dynamically stable if its potential energy always increases against any

combinations of small atomic displacements. In the harmonic approximation, this is equivalent

to the condition that all squared phonon frequencies 𝜔2(𝒒, 𝜈) are positive. On the other hand,

some negative squared frequencies, which lead imaginary frequencies, appear from the eigenvalue

problem under some conditions. The phonon modes which have these imaginary phonon frequencies

are called imaginary phonon modes. Imaginary phonon modes indicate dynamical instability, which

means the collective atomic displacements are expected to reduce the potential energy from the given

equilibrium atomic positions, where the eigenvectors 𝝀(𝒒, 𝜈) provide the direction of this atomic

displacements [26]. Imaginary phonon modes are well recognized to provide useful information to

study displacive phase transition [20, 42].
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2.4 Computational Details

Table 2.1: Crystal optimization parameters for HCP crystal structures

Cutoff Energy [eV] Smearing Width [eV] Sampling Mesh

Mg 525 0.5 17 × 17 × 10

Ti 400 0.3 15 × 15 × 8

For first-principles calculations, we employed the plane-wave basis projector augmented wave

method (PAW) [43] within the framework of density functional theory (DFT) as implemented in

Vienna ab initio simulation package (VASP) [22–25] and the generalized gradient approximation

(GGA) of the Perdew-Burke-Ernzerhof (PBE) form [44] was used as the exchange correlation

potential. The 2p and 3s electrons for Mg and the 3p, 3d and 4s elections for Ti were treated

as valence and the remaining elections were kept frozen. The optimization parameters for HCP

crystal structures are shown in Table 2.1. The plane-wave cutoff energy and smearing width of

the Methfessel-Paxton scheme [45] shown in Table 2.1 were also used in first-principles phonon

calculations. In general, the use of denser 𝑘-point sampling mesh provides better calculation

accuracy at a constant smearing width and necessitates higher computational demands. On the

other hand, a larger smearing width value sacrifices the detail of electronic structure, but makes it

faster to converge the electronic self-consistent field iteration process. In order to make the balance

between the computational cost and its accuracy, structure optimization parameters were carefully

evaluated. After optimization, {101̄2} CTB structures were constructed, which contain forty-four

atoms in the unit cell as described in Section 2.2. Crystal structure optimization calculations were

also conducted for {101̄2} CTB structures. During the optimization calculations for {101̄2} CTB
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structures, atomic positions were optimized under the fixed lattice condition in order to make the

analyses easier. The 𝑘-points mesh is selected as 14×8×1 and is shifted by a half grid distance along

𝑎∗ and 𝑏∗ axis directions from the Γ centered mesh. The structure optimizations were performed

until forces acting on atoms converge to less than 3 × 10−5eV / Å.

For first-principles phonon calculations, we employed finite displacement method [46] im-

plemented in phonopy software package [26]. For extracting Hellmann-Feynman forces from

first-principles calculations, 4 × 4 × 3 and 3 × 1 × 1 supercells were used for HCP crystal structures

and {101̄2} CTB structures, respectively, and added 0.01 Å of atomic displacements. To obtain

atomic forces, total energies were minimized until the energy convergences became less than 10−7

eV. The number of sampling mesh is selected to have equivalent density in reciprocal space with

that of structure optimization. For Mg, 4 × 4 × 3 and 5 × 6 × 1 𝑘-points were used for HCP and

{101̄2} CTB structures for phonon calculations. For Ti, 4 × 4 × 3 and 4 × 6 × 1 𝑘-points were used

for HCP and {101̄2} CTB structures for phonon calculations.

To perform systematic calculations, we employed AiiDA environment, which provides high-

throughput computer simulations [47].

2.5 Results and Discussions

2.5.1 Phonon structures of Mg and Ti {101̄2} CTB under zero shear stress

Lattice parameters of Mg and Ti HCP structures after structure optimization 𝑎h and 𝑐h are

shown in Table 2.2. The twinning shear of the {101̄2} twinning mode is given as 𝑠t = |3−𝛾2 |√
3𝛾

with 𝛾 = 𝑐h/𝑎h [8]. These values are also represented in Table.2.2. Using relaxed HCP metals,

{101̄2} CTB structures were built and structure optimization with first-principles calculations were
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conducted under the fixed lattice condition. Lattice parameters of {101̄2} CTB structures shown in

Table.2.2 can be calculated from the relation Eq.(2.3). Mg has the closer 𝛾 value to that of ideal ratio

1.633 than Ti, which results in the smaller twinning shear strain 𝑠t. This indicates twin boundary

migration in Mg {101̄2} twin is expected to occur with smaller shear strain than Ti {101̄2} twin.

Table 2.2: Lattice parameters of HCP and twin boundary structures. The twinning shear strains of
the {101̄2} twinning mode 𝑠t are also shown.

𝑎h [Å] 𝑐h [Å] 𝑎 [Å] 𝑏 [Å] 𝑐 [Å] 𝛾 𝑠t

Mg 3.19 5.19 3.19 7.58 41.60 1.63 0.126

Ti 2.94 4.65 2.94 6.89 37.74 1.58 0.181

Phonon band structures and phonon density of states (DOS) for HCP and {101̄2} CTB structures

in Mg and Ti are shown in Fig.2.6 and Fig.2.7. The space-group types of HCP and {101̄2}

CTB structures are 𝑃63𝑚𝑚𝑐 (No. 194) and 𝑃𝑚𝑚𝑛 (No. 59) respectively. For detecting space-

group types, spglib software [48] were used. High symmetry paths in reciprocal space were

gotten from seekpath software [49]. The high symmetry points shown in the band structures are

Γ(0, 0, 0), A(0, 0, 1/2), K(1/3, 1/3, 0), H(1/3, 1/3, 1/2), M(1/2, 0, 0) and L(1/2, 0, 1/2) for HCP

structures, and Γ(0, 0, 0), X(1/2, 0, 0), S(1/2, 0, 1/2), Y(0, 0, 1/2), Z(0, 1/2, 0), U(1/2, 1/2, 0),

R(1/2, 1/2, 1/2) and T(0, 1/2, 1/2) for CTB structures. Because the unit cell of the twin boundary

structures have a large 𝒄 basis vector, Y-Γ and U-R paths are small in reciprocal space as represented

in the phonon bands in Fig.2.6 and Fig.2.7. For all phonon band structures, the imaginary phonon

mode is not shown and, therefore, these structures are dynamically stable. The shapes of DOS for

HCP and CTB structures in Mg are similar in that both DOS have first peaks at 4 THz and second
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peaks at 7 THz. This indicates the vibrations of the atoms far from twin boundary is similar with

that of the atoms in bulk and is not affected by the atomic vibrations around twin boundary. On the

contrary, DOS peaks of bulk HCP and CTB in Ti are not as similar as that of Mg. This indicates

the vibrations of the atoms far from twin boundary is affected by the atomic vibrations around twin

boundary.
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HCP

CTB

Figure 2.6: Phonon band structures and phonon DOSes of bulk HCP and CTB structures are shown
in Mg. High symmetry paths in reciprocal space were gotten from seekpath software [49]. The
high symmetry points shown in the band structures are Γ(0, 0, 0), A(0, 0, 1/2), K(1/3, 1/3, 0),
H(1/3, 1/3, 1/2), M(1/2, 0, 0) and L(1/2, 0, 1/2) for HCP structures, and Γ(0, 0, 0), X(1/2, 0, 0),
S(1/2, 0, 1/2), Y(0, 0, 1/2), Z(0, 1/2, 0), U(1/2, 1/2, 0), R(1/2, 1/2, 1/2) and T(0, 1/2, 1/2) for
twin boundary structures.
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HCP

CTB

Figure 2.7: Phonon band structures and phonon DOSes of bulk HCP and CTB structures are shown
in Ti. High symmetry paths in reciprocal space were gotten from seekpath software [49]. The
high symmetry points shown in the band structures are Γ(0, 0, 0), A(0, 0, 1/2), K(1/3, 1/3, 0),
H(1/3, 1/3, 1/2), M(1/2, 0, 0) and L(1/2, 0, 1/2) for HCP structures, and Γ(0, 0, 0), X(1/2, 0, 0),
S(1/2, 0, 1/2), Y(0, 0, 1/2), Z(0, 1/2, 0), U(1/2, 1/2, 0), R(1/2, 1/2, 1/2) and T(0, 1/2, 1/2) for
twin boundary structures.
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If we don’t care about the computational cost, atomic positions and their vibrations can be

expected to converge to that of atoms in bulk by extending the unit cell along 𝑐 axis. However, the

computational demands become drastically expensive when we use the larger unit cell and this is

almost impossible. Therefore, we need to check how atoms far from twin boundary converge to that

of bulk state in the unit cell used in this work. From here, we discuss how mush atomic positions

and their vibrations far from twin boundary are affected by the twin boundary and are deviated from

bulk state. For simplicity, we define 1st, 2nd, 3th, 4th and 5th layer in order of closer {101̄2} plane

to the twin boundary. In Fig.2.8, the variations of {101̄2} plane intervals in Mg and Ti {101̄2}

CTB structures before and after structure optimizations are shown. The red and the blue lines show

the plane interval between {101̄2} planes before and after crystal structure optimization. As shown

with red dots in Fig.2.8, the plane intervals before crystal optimization are equivalent and they are

changed by minimum potential energy searching as shown with blue dots. Both the plane intervals

at the twin boundaries expanded by crystal optimization and the expansion value were 0.03 Å for

Mg and 0.01 Å for Ti. For Mg, the plane intervals converge to that of bulk state as the distance

from twin boundary becomes larger and the difference between the interval of bulk state and that of

between 4th and 5th layers is negligible and, thus, is expected to converge to the bulk state. On the

other hand, the plane intervals of Ti did not as much converge as in Mg. Therefore, it is preferable to

take the larger unit cell for more accurate calculation for Ti when the computational cost is ignored.
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Figure 2.8: The variations of the {101̄2} plane intervals in Mg and Ti {101̄2} CTB structures are
shown. The red and the blue lines show the plane interval between {101̄2} planes before and after
crystal structure optimization.
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We also checked the convergence of atomic vibration state by decomposing total DOS into its

contributions from atoms. Total DOS 𝑔(𝜔) is given as,

𝑔(𝜔) = 1
𝑁

∑
𝒒,𝜈

𝛿(𝜔 − 𝜔(𝒒, 𝜈)) |𝝀(𝒒, 𝜈) |2, (2.21)

where |𝝀(𝒒, 𝜈) |2 = 1 and this can be decomposed into its contributions from each atom 𝑔𝜅 (𝜔) as,

𝑔𝜅 (𝜔) = 1
𝑁

∑
𝒒,𝜈

𝛿(𝜔 − 𝜔(𝒒, 𝜈)) |𝝀𝜅 (𝒒, 𝜈) |2, (2.22)

where 𝜅 is a label of an atom in the unit cell. As denoted in Section 2.2, each {101̄2} layer has two

atoms in the unit cell. Therefore, we can get the contributions from {101̄2} layers to total DOS by

summing up the contributions from atoms on the same layer. We call this contributions from layers

to total DOS as "projected DOS" throughout this section. Fig.2.9 shows the total DOS contributions

from twin boundary, 2nd and 4th {101̄2} layer. The local atomic positions are expected to converge

to that of the atoms in bulk HCP in order of twin boundary, 2nd and 4th layer in order of the distance

from twin boundary. Because there are two atoms on a single layer in the unit cell, the area in

projected DOS is 6, which is the same as that of total DOS of bulk HCP depicted with black dotted

lines in Fig.2.9. In Mg, projected DOS of twin boundary is deviated from bulk HCP total DOS.

The first peak of projected DOS for twin boundary is shown at 3.5 THz where that of bulk is shown

at 4 THz, and the values of density of states under the first peak for twin boundary layer become

systematically bigger than that of bulk, which means the atomic vibrations at twin boundary are

softer than that of bulk. On the other hand, the shape of projected DOS of 4th layer, which is far

from twin boundary and denoted with the green line in Fig.2.9, agrees well with total DOS of bulk

HCP, which means the vibrations of atoms on the 4th layer are converged to that of atoms in bulk.
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In Ti, the first peak of projected DOS for twin boundary has also lower frequency compared with

the total DOS of bulk state, where it is shown at 2.6 THz where that of bulk is shown at 3.1 THz.

Therefore, the atomic vibrations at twin boundary also becomes soft in Ti. As for 4th layer in Ti

denoted with green line, the shape of projected DOS did not agree with the total DOS of bulk state

compared with in Mg. However, at lower frequencies under 2 THz the projected DOS of 4th layer

and the total DOS of bulk state agree well, which means the atomic vibrations which have lower

frequencies agree well with the bulk state.
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Figure 2.9: Total DOS contributions from atoms at twin boundary, 2nd and 4th {101̄2} layer are
shown in Mg and Ti {101̄2} CTB structures. The black dotted lines represent the total DOSes of
HCP structures, which indicate the bulk state.
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2.5.2 Phonon structure changes of Mg and Ti CTB with external shear stress

On the purpose of revealing how the phonon structure change by adding external shear stress,

shear strains were applied toward CTB structures. Let shear strain be 𝑠, sheared lattice [𝒂s, 𝒃s, 𝒄s]

is written as, 

𝒂s = 𝒂

𝒃s = 𝒃

𝒄s = 𝒄 + 𝑠 |𝒄 ||𝒃 | 𝒃.

(2.23)

In this study, the structure optimizations with fixed lattice and first-principles phonon calculations

were repeated while adding shear strain little by little until the imaginary phonon modes show.

Shear strains 𝑠 = {0, 0.001, 0.002, · · · 0.01} were added toward Mg CTB structure, and shear strains

𝑠 = {0, 0.001, 0.002, · · · 0.014} were added toward Ti CTB structure, respectively. Fig.2.10(a) and

Fig.2.11(a) show the changes of phonon band structures by external shear stress in Mg and Ti CTB

structures. Though the phonon band structures with and without shear stress do not show much

variation at higher phonon frequencies both in Mg and Ti, the frequencies of phonon modes clearly

change by adding shear stress at the lower phonon frequency, especially around Γ point. As a result,

the imaginary phonon modes emerged at 𝑠 = 0.01 in Mg and at 𝑠 = 0.014 in Ti. Fig.2.10(b) and

Fig.2.11(b) are enlarged views at Γ−X, Y− Γ and Γ− Z below 3 THz of phonon frequency. These

high symmetry paths are along 𝒂∗, 𝒄∗ and 𝒃∗ in reciprocal space. Both the imaginary phonon modes

are shown at Γ point and come from the optical modes which have minimum phonon frequency at

𝑠 = 0, which is shown with yellow dots in Fig.2.10(b) and Fig.2.11(b), and they show quite similar

change.
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𝑠 = 0

𝑠 = 0.01

(a)
Mg

𝑠 = 0

𝑠 = 0.01

(𝜉, 0,0) (0, 𝜉, 0)(0,0, 𝜉)

(b)

Figure 2.10: (a) Phonon band structures variation from 𝑠 = 0 to 𝑠 = 0.01 where the imaginary
phonon mode emerge for Mg. (b) Enlarged view at Γ−X, Y− Γ and Γ−Z below 3 THz of phonon
frequency. These high symmetry paths are along 𝒂∗, 𝒄∗ and 𝒃∗ in reciprocal space.
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𝑠 = 0

𝑠 = 0.014

(a)
Ti

𝑠 = 0

𝑠 = 0.014

(𝜉, 0,0) (0, 𝜉, 0)(0,0, 𝜉)

(b)

Figure 2.11: (a) Phonon band structures variation from 𝑠 = 0 to 𝑠 = 0.014 where the imaginary
phonon mode emerge for Ti. (b) Enlarged view at Γ − X, Y − Γ and Γ − Z below 3 THz of phonon
frequency. These high symmetry paths are along 𝒂∗, 𝒄∗ and 𝒃∗ in reciprocal space.
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In Fig.2.12, the atomic vibrations of the imaginary phonon modes for Mg and Ti indicated

with green dots in Fig.2.10(b) and Fig.2.11(b) are shown. For visualization, the amplitudes are

normalized in order that these red atoms marked with pink circle have 2 Å of the amplitudes.

These two phonon modes are quite similar in that atoms around twin boundaries show rotation-like

vibrations, which are indicated with yellow round arrows, where the atoms far from twin boundaries

vibrate with their vibrational directions along 𝑏 axis and the atoms in matrix have larger amplitudes

than that in twin.

TiMg

𝒃

𝒄

Twin Boundary

Twin Boundary

Twin Boundary

Matrix

Twin

Figure 2.12: The atomic vibrations of the imaginary phonon modes for Mg and Ti indicated with
green dots in Fig.2.10(b) and Fig.2.11(b) are shown. The red atoms marked with pink circle have the
largest amplitudes. For visualization, the amplitudes are normalized in order that these red atoms
marked with pink circle have 2 Å of the amplitudes. The atomic group rotation-like vibrations are
indicated with yellow round arrows.

As described in Section 2.3, the imaginary phonon modes represent the structure is dynamically
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unstable and more stable state is expected to exist along the atomic vibrational directions of the

imaginary phonon modes. In order to investigate the more stable state, atomic displacements

were added to the sheared structure in which the imaginary phonon modes were emerged, and

the structure optimization calculations were conducted toward them both in Mg and Ti under the

fixed lattice conditions. In Fig.2.13, the snapshots of Mg {101̄2} CTB structures in each step from

the initial structure to the twin boundary migrated structure. For visualization, we used common

neighbor analysis (CNA) [50] implemented in OVITO software package [51]. CNA analyzes the

local structure environment of each atom and categorize atoms into FCC, BCC and HCP type. The

theoretical backgrounds for CNA are shown in Appendix A. In Fig.2.13, the red atoms are recognized

as HCP type from the local atomic environment and the white atoms are recognized as none of

FCC, BCC or HCP type. (a) is the Mg {101̄2} CTB with zero shear and (b) is the sheared structure

from (a) where the imaginary phonon mode was emerged at Γ point in reciprocal lattice. The atoms

of the sheared structure (b) are displaced along the eigenvector of the imaginary phonon mode as

shown in (c), where the amplitudes are normalized in order that the maximum displacement have

0.05 Å of the displace distance. (d) is the optimized structure from (c) under fixed lattice condition.

During the structure optimization, the twin boundary migration was occurred as indicated with

yellow arrow. The structure changes were also occurred in Ti {101̄2} CTB structures. Therefore,

from lattice dynamics point of view, the {101̄2} CTB migrations in Mg and Ti are triggered by the

phonon modes which dropped into the imaginary phonon modes at Γ point, which are indicated

in Fig.2.10(b) and Fig.2.11(b), and the directions of the initial displacements of atoms for the twin

boundary migrations are shown in Fig.2.12.
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(a)

Matrix

Twin

Migration

(b) (c) (d)

Figure 2.13: Mg {101̄2} CTBs for each step are shown. The atomic colors are determined from
CNA, where the red atoms are recognized as HCP type from the local atomic environment where
and the white atoms where are recognized as neither of FCC, BCC nor HCP type. (a) is the Mg
{101̄2} CTB structure with zero shear and (b) is the sheared structure from (a) where the imaginary
phonon mode were emerged. (c) is the atomic displacement added structure from (b) based on
the eigenvector of the imaginary phonon mode, where the maximum displacement is 0.05 Å of
the distance. (d) is the optimized structure from (c). During the structure optimization, the twin
boundary migration was occurred as indicated with yellow arrow.

In Fig.2.14, the changes of the total energy and the shear stress 𝜎𝑦𝑧 in Mg and Ti CTB structures

are shown, where the dots marked with (a), (b) and (d) correspond to the (a), (b) and (d) structures

represented in Fig.2.13. The red stars represent the total energies and the shear stresses of the

optimized structures from the dynamically unstable structure. As shown in figures, the total

energies and shear stresses increase until the imaginary phonon modes show and by optimization

from dynamically unstable structures the total energies decrease and the loaded shear stresses are

relieved as indicated with the yellow arrows. Therefore, the sheared CTB structures are stabilized

by twin boundary migration. From these results, we can conclude that the twin boundary migrations

in Mg and Ti CTB structures are occurred by the following two steps. First, the total energy is

increased by external shear stress until the structure are dynamically unstable. Then, the atomic
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group rotation-like rearrangement around twin boundary occurs triggered by the imaginary phonon

mode and this results in the twin boundary migration.

Mg

(a)

(b)

(d) (a)

(b)

(d)

Ti

Figure 2.14: The changes of the total energy and the shear stress 𝜎𝑦𝑧 are shown, where the dots
marked with (a), (b) and (d) correspond to the (a), (b) and (d) structures represented in Fig.2.13.
The red stars represent the total energies and the shear stresses of the optimized structures from the
sheared and dynamically unstable structure. During optimization, the total energies are decreased
and the loaded shear stresses are relieved as indicated with the yellow arrows.
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2.6 Conclusion

In this chapter, we investigated the phonon structures of Mg and Ti {101̄2} CTB with and

without shear strain. Under zero shear strain condition, both twin boundaries have no imaginary

phonon mode, which means both CTB structures are dynamically stable under zero shear stress.

Because our purpose in this study is to extract the phonon structure around twin boundary, it is

preferable that the interactions between twin boundaries are negligible. To check how much the

twin boundaries interact, we used the technique of total DOS decomposition, and revealed that the

vibration state at 4th layer is converged well to the bulk in Mg, but the convergence was not so better

in Ti. This indicates the structure size along 𝑐 axis is enough in Mg. As for Ti, if computational

cost for first-principles calculations can be ignored, it is better to use larger simulation cell for

calculations.

By adding shear strain to Mg and Ti CTB structures, the imaginary phonon modes were emerged

at shear strain 𝑠 = 0.01 in Mg and shear strain 𝑠 = 0.014 in Ti at Γ point. Because the imaginary

phonon modes indicate the sheared CTB structures are dynamically unstable and their eigenvectors

have a clue to obtain the new dynamically stable structures, the atomic displacements based on the

eigenvectors of the imaginary phonon modes were applied to the sheared CTB structures and the

structure optimizations were conducted toward the displacements added structures. As a result, the

twin boundary migrations were occurred both in Mg and Ti accompanied with atomic rotation-like

rearrangement around twin boundaries. During optimizations, the total energies were decreased

and the loaded shear stresses were relieved. Therefore, the sheared CTB structures are stabilized by

twin boundary migrations. From these results, we can conclude that the twin boundary migrations

in Mg and Ti CTB structures are occurred by the following two steps. First, the total energy is

increased by external shear stress until the structure are dynamically unstable. Then, the atomic
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group rotation-like rearrangement around twin boundary occurs triggered by the imaginary phonon

mode and this results in the twin boundary migration.

From these results, we can conclude the phonon structure analysis is useful for the study of

the twin growth in CTB structures because the atomic path during the twin boundary migration is

characterized by the imaginary phonon modes and give us the answer for the basic question, "how

atoms move during twin growth", from atomic and dynamic point of view.
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Chapter 3

Atomic Mechanism of Twin Growth of Dual

Step Introduced {101̄2} Twin Boundaries in

Mg and Ti

3.1 Introduction

In Chapter 2, we revealed the atomic scale twin growth mechanism in Mg and Ti {101̄2}

CTB structures by investigating the phonon structure changes around twin boundaries. However, as

mentioned in Chapter 1, {101̄2} twin boundary is actually not fully coherent but often deviates from

theoretical one by exhibiting steps [17]. Therefore, we need to consider more actual situations in

the next step. Recently, He et al. has succeeded to conduct an in-situ atomic scale observation of Re

{101̄2} twin growth, where they found out the migration of twin boundary is proceeded by the dual

steps sweeping on the twin boundary during detwinning process [19]. The dual steps meditated twin

growth mechanism has been already proposed by Pond, Hirth, Serra and Bacon. They considered the

twin boundary migration is meditated by the steps formed at the interface and introduced the concept
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"disconnection", which is interfacial defect exhibiting both dislocation and step character [11, 12].

In FIG.3.1, the disconnection introduced Mg {101̄2} twin boundary model is shown [37, 52].

Ostapovets et al. report in their paper that twin boundary migrates by the disconnection gliding along

the twin boundary during molecular dynamics (MD) simulation [52]. The concept of disconnection

is useful to describe the topology of the step introduced twin boundaries and it has become widely

used in study of twin nucleation and growth [53–58].

a

b

Figure 3.1: (a) Dichromatic pattern for Mg {101̄2} twin boundary. White and black dots represent
parent and twin lattice respectively. The {101̄2} twin boundary is indicated by red dashed line and
the disconnection produces step in the boundary. The burgers vector for disconnection is defined
by burgers circuit indicated by black line. (b) Dichromatic complex is shown which embed atoms
to each lattice point toward each lattice point in (a) [37].
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Disconnection model proposes that the newly introduced disconnection sweeps along the twin

boundary by external shear stress and this results in twin thickening. However, it does not say

anything about what is the driving force for disconnection gliding and the atomic trajectories during

twin growth based on energetic point of view, though the trajectories of some specific atoms around

twin boundary during MD simulation are investigated in some papers [37, 59, 60].

In this chapter, we will reveal how the rearrangement of the atoms around {101̄2} twin bound-

ary, especially around the dual step which is called disconnection, occurs in Mg and Ti using a

series of phonon calculations. In the following, we use the term "disconnection" for simplicity. We

first describe the methods of building disconnection introduced {101̄2} structures in Section 3.2.

Because plane wave basis set is used for phonon calculations, the simulation cell must be periodic

in all directions. A single disconnection introduced twin boundary cannot fulfill this restriction.

Therefore, to fulfill this condition, we introduce disconnection dipole instead of a single disconnec-

tion to the {101̄2} CTB structures following MacKain et al’s work [55]. The disconnection dipole

introduced {101̄2} twin boundary structures built in Section 3.2 have more than one thousand of

atoms in the unit cell, which are difficult to conduct first-principles phonon calculations because of

their computational cost. Therefore, we employed machine learning interatomic potentials (MLIP)

developed by Seko et al [61, 62] for all phonon calculations in this chapter. The adopted MLIP use

polynomial-based potential energy models and group-theoretical invariants for extracting structure

features. The potential energy models were fitted to huge amount of DFT calculations in their work.

The theoretical backgrounds of the adopted MLIP are reviewed in Section 3.3. In Section 3.4, com-

putational details for calculations are described. We also check the accuracy of phonon calculations

with MLIP by comparing the results with first-principles phonon calculations in this section. In

Section 3.5, the changes of phonon structures of disconnection dipole introduced {101̄2} structures

by shear strains in Mg and Ti are shown. Finally, from the imaginary phonon mode analyses, we
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provide the atomic rearrangement associated with disconnection sweeping on the twin boundaries.

3.2 Modeling disconnection introduced {101̄2} twin boundary

In this section, the method of building disconnection introduced {101̄2} twin boundary is de-

scribed. Because the demand for doing phonon calculations toward simulation cells, the simulation

cells must be satisfy periodic boundary conditions in all directions, which are not fulfilled when

a single disconnection is introduced. Therefore, we introduced disconnection dipole of length 𝑙

instead of a single disconnection based on MacKain et al’s work [55].

In Fig.3.2(a), the dichromatic pattern [21, 36] is depicted where white and black dots represent

hexagonal lattice points of matrix and twin lattices respectively and they are interpenetrated each

other. The {101̄2} twin boundary with disconnection dipole is determined as represented with red

dashed line in Fig.3.2(a). The disconnection produces two-layer step in the boundary. Then, the

burgers circuits are reproduced on the dichromatic pattern as indicated with blue dotted line. It

starts from S point, runs over the black points above the twin boundary and the white points below

the twin boundary, and stops at the F point. The burgers vectors for disconnection dipoles 𝒃D and

−𝒃D are defined from the mismatch between S points and F points. The absolute value 𝑏D of ±𝒃D

is,

𝑏D = | ± 𝒃D | = 2𝑑𝑠t, (3.1)

where 𝑑 is the plane interval of {101̄2} planes and 𝑠t is twin shear strain value as shown in Fig.3.2(b).

The simulation box of the length 𝐿 along 𝑦 axis and the height 𝐻 along 𝑧 axis is represented with

black dashed line which is periodic in all directions. Let the number of replication of CTB unit

cell, which is represented with black dotted line in Fig.3.2(a), along 𝑦 axis be 𝑛𝑦 and the number of

{101̄2} plane in the simulation box be 𝑛𝑧, the length 𝐿 and the height 𝐻 of the simulation box are
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represented as,

𝐿 = 𝑛𝑦𝑏, (3.2)

𝐻 = 𝑛𝑧𝑑, (3.3)

where 𝑏 is the length of the unit cell of CTB structure used in Chapter 2.
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Figure 3.2: (a) The dichromatic pattern for {101̄2} twinning mode is shown. The white and the
black dots represent hexagonal lattice points of matrix and twin lattices respectively and they are
interpenetrated each other. The {101̄2} twin boundary with disconnection dipole is denoted with
the red dashed line. The burgers circuits for disconnections are shown with the blue dotted lines
and they determine burgers vectors 𝒃D and −𝒃D. (b) The topological relation between the burgers
vector 𝒃D and shear strain for {101̄2} twinning mode 𝑠t. The absolute value for burgers vector 𝒃D

is easily determined as |𝒃D | = 2𝑑𝑠t.
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The simulation unit cell is defined by embedding atom pairs on each lattice point and get rid

of atoms generated from the matrix lattice points above the boundary and atoms generated from

the twin lattice points below the boundary. For the lattice points on the twin boundary, embedded

atom pairs are projected onto the twin boundary. The resultant simulation unit cell is shown in

Fig.3.3. Note that in addition to disconnection dipole introduced {101̄2} twin boundary, coherent

twin boundary is created at the top and the bottom, and the periodic boundary conditions are fulfilled

in all directions.

Figure 3.3: The resultant unit cell by embedding HCP atom pairs toward each lattice point in
dichromatic lattice in Fig.3.2(a). The black dotted line at the middle represents disconnection
dipole introduced {101̄2} twin boundary. Matrix and twin are below and above the twin boundary,
respectively. The atom pair of HCP structure is represented with red and blue spheres.

As shown in Fig.3.3, twin domain becomes larger than matrix domain by disconnection dipole.

Therefore, we added the initial shear strain 𝑠0 to the simulation unit cell to relieve the corresponding

macroscopic strain, where the initial shear strain 𝑠0 is given as [55],

𝑠0 =
𝑏D𝑙

𝐻𝐿
. (3.4)
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In this study, we defined 𝑙 = 𝐿/2, 𝐻 = 𝑛𝑧𝑑 and 𝐿 = 𝑛𝑦𝑏. Using the relation Eq.(3.1), we finally get

𝑠0 =
𝑠t

𝑛𝑧
. (3.5)

In this study, we selected three different size simulation cells to check the convergence, where the

parameters of these three simulation cells are 𝑛𝑧 = 22 and 𝑛𝑦 = {29, 39, 49}.

3.3 Machine learning interatomic potential based on high-order

rotational invariants

In this section, we review machine learning interatomic potential (MLIP) from group theoretical

high-order linearly independent rotational invariants from structural representations [61].

The MLIP is based on the idea that the total energy of a system 𝐸 can be decomposed into

the contributions of each atom in the system 𝐸 (𝑖) , which we call as atomic energy throughout this

section, as,

𝐸 =
∑
𝑖

𝐸 (𝑖) . (3.6)

If we consider the atomic energy 𝐸 (𝑖) is determined by the interactions between the atoms sur-

rounding the specific atom 𝑖, the atomic energy 𝐸 (𝑖) becomes functional of the atomic density 𝜌(𝑖)

as,

𝐸 (𝑖) = F [𝜌(𝑖)] . (3.7)

If cutoff radius 𝑟𝑐 is given where the atoms within the cutoff radius interact with atom 𝑖, the atomic

44



density can be written as the summation of delta functions,

𝜌(𝑖) =
∑
𝑗

𝛿(𝒓 − 𝒓 ( 𝑗)) ( |𝒓 (𝑖) − 𝒓 ( 𝑗) | < 𝑟𝑐), (3.8)

where 𝒓 (𝑖) and 𝒓 ( 𝑗) are the atomic positions of atom 𝑖 and atom 𝑗 . By expanding the atomic density

𝜌(𝑖) into spherical harmonics, we get,

𝜌(𝑖) (𝑟, 𝜃, 𝜙) =
∑
𝑛𝑙𝑚

𝑎 (𝑖)𝑛𝑙𝑚 𝑓𝑛 (𝑟)𝑌𝑙𝑚 (𝜃, 𝜙), (3.9)

where 𝑎 (𝑖)𝑛𝑙𝑚 is order parameter, and { 𝑓𝑛} and {𝑌𝑙𝑚} are the set of radial functions and spherical

harmonics, respectively. There is an arbitrary choice as a set of radial functions and in the group

theoretical model the Gaussian-type radial functions are adopted as,

𝑓𝑛 (𝑟) = exp[−𝛽𝑛 (𝑟 − 𝑟𝑛)2] 𝑓𝑐 (𝑟), (3.10)

where 𝛽𝑛 and 𝑟𝑛 are parameters. The cutoff function 𝑓𝑐 is given as,

𝑓𝑐 (𝑟) =


1
2 [cos(𝜋 𝑟

𝑟𝑐
) + 1] (𝑟 ≤ 𝑟𝑐)

0 (𝑟 > 𝑟𝑐).
(3.11)

Let the atomic energy 𝐸 (𝑖) be represented as a function of a set of the structure descriptors

{𝑑 (𝑖)𝑛 }, which is called as the structure features, derived from order parameters {𝑎 (𝑖)𝑛𝑙𝑚},

𝐸 (𝑖) = 𝐹 (𝑑 (𝑖)1 , 𝑑
(𝑖)
2 , · · · ). (3.12)

We have to care about the fact that although an arbitrary rotation and inversion operation generally
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changes the atomic density 𝜌(𝑖) , it does not change the atomic energy 𝐸 (𝑖) . This means the

atomic energy is invariant under all the elements of SO(3) group. To fulfill this requirement,

linearly independent polynomial invariants of SO(3) group generated from order parameters 𝑎 (𝑖)𝑛𝑙𝑚

are adopted as structure features for the atomic energy. A 𝑝th order polynomial invariant is expressed

as,

𝑑 (𝑖)
𝑛𝑙1𝑙2𝑙𝑝 ,(𝑠) =

∑
𝑚1,𝑚2,··· ,𝑚𝑝

𝑐
𝑙1𝑙2···𝑙𝑝 ,(𝑠)
𝑚1𝑚2···𝑚𝑝

𝑎 (𝑖)𝑛𝑙1𝑚1
𝑎 (𝑖)𝑛𝑙2𝑚2

· · · 𝑎 (𝑖)𝑛𝑙𝑝𝑚𝑝
, (3.13)

where a coefficient set {𝑐𝑙1𝑙2···𝑙𝑝 ,(𝑠)𝑚1𝑚2···𝑚𝑝
} is determined by using a group-theoretical projection operator

method [63].

3.4 Computational details

For the structure optimization and phonon calculation of {101̄2} twin boundary with discon-

nection dipole, first-principles calculations are computationally too expensive due to their large

simulation cells. On the other hand, empirical potentials are lack of accuracy for computing lattice

dynamics because the differential of potential energy is needed for computing second order force

constants. From these backgrounds, we selected to use MLIP from group theoretical high-order lin-

early independent rotational invariants from structure representations [61]. Theoretical backgrounds

are shown in Section 3.3. Throughout this chapter, atomic scale simulations are performed within a

molecular statics framework in LAMMPS software employing energy-minimization routines [64].

The MLIPs for a variety of elements including Mg and Ti are open to the public in Machine

Learning Potential Repository [62]. The MLIPs in the repository are generated by fitting energies

and forces from the DFT calculations for over thousands of structures to various kinds of model

function by Lasso regression. The repository uses two sets of structure generators. One is composed
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of FCC, BCC, HCP, SC,𝜔, and 𝛽-tin structures, which we call "COMMON" datasets in this section.

The other is composed of prototype structures reported in the Inorganic Crystal Structure Database

(ICSD) [65]. From these structure generators, new structures are constructed by operating random

lattice expansion, lattice distortion, and random atomic displacements into a supercell of the structure

generators. The accuracy and computational efficiency of the MLIPs depend on the input parameters

such as the type of potential energy model and the cutoff radius. The trade-offs between the accuracy

and computational efficiency are clearly represented by Pareto optimal [66]. The MLIP repository

provides Pareto optimal points for every system and dataset. In Fig.3.4, Pareto optimal points

for Mg and Ti extracted from the MLIP repository are shown, where RMSE represents the errors

of the crystal structure energies calculated from selected MLIP toward that of DFT calculations.

For Mg, the MLIPs from COMMON dataset have better accuracy than that from ICSD dataset in

small elapsed time, but in the MLIPs which need higher computational cost they have almost the

same accuracy. On the other hand, the MLIPs from COMMON dataset systematically have higher

accuracy than that of ICSD dataset in Ti.
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Figure 3.4: The Pareto optimal points for Mg and Ti extracted from MLIP repository are shown.
Each point represents MLIP given from specific parameters. Elapsed time means a single step
calculation time with selected MLIP per atom with a single CPU core and RMSE represents the
errors of the crystal structure energies calculated from selected MLIP toward that of DFT. The red
and blue dots represent the MLIPs generated from ICSD and COMMON datasets.

Because our purpose is to unravel the atomic dynamics around twin boundary, we need to check

the accuracy of phonon calculations with MLIP in addition to the accuracy of crystal structure

energy, and select appropriate MLIP. Therefore, we conducted systematic phonon calculations for

HCP crystal structures and {101̄2} twin boundaries using the Pareto optimal MLIPs and compared

them with that of DFT phonon calculations. Fig.3.5 shows the RMSE of phonon frequencies from

phonon calculations with MLIPs toward that from DFT calculations. The selected parameters for

phonon calculations are the same as that denoted in the previous chapter. For Mg, the MLIPs

generated from ICSD dataset showed better accuracy at higher computational cost potentials and

the RMSE were less than 0.05 THz. The RMSE for Ti are not as small as that of Mg and the MLIPs

generated from COMMON dataset showed better accuracy, which is the same trends as the RMSE

for crystal structure energies shown in Fig.3.4.
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gtinv-351gtinv-883

gtinv-351gtinv-883

Figure 3.5: The RMSE of phonon frequencies from phonon calculations with MLIPs toward that
from DFT calculations. The green dashed circle represents the MLIPs for Mg and Ti selected in
this study. The label COMMON is the MLIPs which are the potentials fitted to DFT calculations
toward FCC, BCC, HCP, SC,𝜔 and 𝛽-tin structures. The label ICSD is the MLIPs are the potentials
fitted to DFT calculations toward prototype structures reported in ICSD database.

From the results of phonon calculations, we selected gtinv-883 potential generated from ISCD

dataset for Mg and gtinv-351 potential generated from COMMON dataset for Ti, respectively, where

these potential names are used in the MLIP repository. The elapsed times of the two potentials are

about 10−3 s/atom/step, and, therefore they need almost the same running time. Both potentials use
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6 Å of cutoff radius, and the 4th and 3rd order polynomials are included for Mg and Ti, respectively.

An atomic energy model is,

𝐸 (𝑖) = 𝐹1(𝐷 (𝑖)) + 𝐹2(𝐷 (𝑖)
1 ) + 𝐹3(𝐷 (𝑖)

1 ) + · · · , (3.14)

for Mg gtinv-883 potential and,

𝐸 (𝑖) = 𝐹1(𝐷 (𝑖)) + 𝐹2(𝐷 (𝑖)
1 ∪ 𝐷 (𝑖)

2 ) + · · · , (3.15)

for Ti gtinv-351 potential where,

𝐷 (𝑖) = 𝐷 (𝑖)
1 ∪ 𝐷 (𝑖)

2 ∪ 𝐷 (𝑖)
3 ∪ · · · , (3.16)

𝐷 (𝑖)
𝑝 = {𝑑 (𝑖)𝑛𝑙1𝑙2···𝑙𝑝 }. (3.17)

The lattice parameters for HCP and CTB which includes ten {101̄2} layers with MLIP are shown

in Table.3.1. These results agree well with those of DFT calculations shown in Chapter 2. Fig.3.6

shows phonon band structures and total DOSes for HCP and CTB structures in Mg and Ti. For Mg,

phonon band structures and DOSes with MLIP potential are well reproduced with DFT calculations

for both HCP and CTB structures. On the other hand, the agreement of band structures and DOSes

for Ti is not so good as Mg, but still show the same shape features.
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Table 3.1: Lattice parameters for HCP and CTB structures with MLIP and DFT calculations. For
MLIP calculations, gtinv-883 for Mg and gtinv-351 for Ti are used. The twinning shears of the
{101̄2} twinning mode 𝑠t are also shown.

𝑎h [Å] 𝑐h [Å] 𝑎 [Å] 𝑏 [Å] 𝑐 [Å] 𝛾 𝑠t

Mg
MLIP 3.19 5.19 3.19 7.58 41.59 1.62 0.130

DFT 3.19 5.19 3.19 7.58 41.60 1.63 0.126

Ti
MLIP 2.92 4.62 2.92 6.86 37.55 1.58 0.183

DFT 2.94 4.65 2.94 6.89 37.74 1.58 0.181
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Mg

Ti

Figure 3.6: Phonon band structures and DOSes of HCP and CTB structures in Mg and Ti. Results
from phonon calculations with MLIP and DFT are shown in red and black, respectively.

3.5 Results and discussions

As described in Section 3.2, three types of simulation cells were prepared where 𝑛𝑧 = 22 and

𝑛𝑦 = {29, 39, 49} for Mg and Ti disconnection dipole introduced structures. For simplicity, we call
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these structures as Type-1, Type-2 and Type-3 in order of the simulation cell size along y axis. The

lattice parameters for disconnection structures in Mg and Ti for each structure type are shown in

Table.3.2, The number of atoms in the simulation cells and the initial shear strains are also shown

in the table.

Table 3.2: Lattice parameters for disconnection structures in Mg and Ti are shown. The number
of atoms in the simulation cells and the initial shear strains are also shown in the table. For MLIP
calculations, gtinv-883 for Mg and gtinv-351 for Ti were used.

name number of atoms 𝑛𝑦 𝑛𝑧 𝐿 [Å] 𝐻 [Å] 𝑠0

Mg

Type-1 1276 29 22 219.71 41.59 5.93 × 10−3

Type-2 1716 39 22 295.48 41.59 5.93 × 10−3

Type-3 2156 49 22 371.24 41.59 5.93 × 10−3

Ti

Type-1 1276 29 22 198.83 37.55 8.33 × 10−3

Type-2 1716 39 22 267.39 37.55 8.33 × 10−3

Type-3 2156 49 22 335.95 37.55 8.33 × 10−3

In Fig.3.7, Mg Type-1 structure after structure optimization with MLIP under the fixed lattice

condition is shown as an example. The atomic colors are determined from common neighbor

analysis (CNA) [50]. The red atoms indicate that the local atomic environment is categorized into

HCP and the white atoms are neither FCC, BCC nor HCP. The disconnection introduced {101̄2}

twin boundary is indicated with the white atoms as shown in Fig.3.7. The theoretical background

for CNA is described in Appendex A. During structure optimizations, the dual step did not move in

all disconnection introduced structures in Mg and Ti.
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Figure 3.7: Mg Type-1 structure is shown. The atomic colors are determined from CNA. The red
atoms represent the local atomic environment are categorized into HCP and the white atoms are
neither FCC, BCC nor HCP. The dual step introduced {101̄2} twin boundary is indicated with the
white atoms as shown in the figure.

From the initial structure Type-1, Type-2 and Type-3 sheared by the initial shear strain 𝑠0, the

additional shear strains 𝑠 = {±1.0×10−4,±2.0×10−4, · · · ,±5.0×10−3} were applied and structure

optimizations were conducted. In Fig.3.8, the relations between shear strains and total energies

and the relations between shear strains and shear stress 𝜎𝑦𝑧 are shown. The results of {101̄2}

CTB structures in Mg and Ti using the molecular static calculations with MLIP are shown with

black dots in Fig.3.8 as references. To compare the energies of the disconnection dipole introduced

structures with the CTB structures, the total energies are divided by 𝑛𝑦, where 𝑛𝑦 = 1 in CTB

structures and the values of 𝑛𝑦 are shown in Table.3.2 for Type-1, Type-2 and Type-3 structures in

Mg and Ti. The total energy and shear stress changes in Mg and Ti CTB structures indicated with

black dots are similar in that there are steps at 𝑠 = ±0, 012 for Mg {101̄2} CTB structure and at

𝑠 = ±0.014 for Ti {101̄2} CTB structure. This steps represent the twin boundary migrations of CTB

structures, where the twin grows two {101̄2} layers at positive shear strain and the matrix grows two
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{101̄2} layers at negative shear strain. By the twin boundary migrations the total energies and shear

stresses were decreased. This is similar with the twin boundary migrations based on first-principles

phonon calculations shown in Chapter 2. However, the twin boundary migrations as a result of the

molecular static calculations are not reliable because if we remember that atoms actually vibrate at

finite temperature, the twin boundaries are expected to be migrate with smaller shear stress owing

to the imaginary phonon mode as shown in Chapter 2. The total energies and shear stresses by

adding shear strains of Type-1, Type-2 and Type-3, which are shown with red, blue and green lines

in Fig.3.8, did not change so much at smaller shear strains from the initial shear strains 𝑠0 both in Mg

and Ti. At specific points they changes discontinuously and drop into the curve of CTB structures

represented with black dots. This indicates the disconnection dipoles are disappeared and CTB

structures are formed. From the results of total energy changes, the twin boundary migrations by

the aid of disconnections occur with smaller energies compared with that of CTB both in Mg and

Ti {101̄2} twin boundaries.
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Figure 3.8: The relations between shear strains and total energies and the relations between shear
strains and shear stresses 𝜎𝑦𝑧 are shown. The results of {101̄2} CTB structures in Mg and Ti are
shown with black dots in Fig.3.8 as references. In order to compare the energies of the disconnection
dipole introduced structures and the CTB structures, the total energies are divided by 𝑛𝑦, where
𝑛𝑦 = 1 in CTB structures and the values of 𝑛𝑦 are shown in Table.3.2 for Type-1, Type-2 and Type-3
structures in Mg and Ti.
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Fig.3.9 shows the enlarged figures of the total energies of disconnection dipole introduced

{101̄2} twin boundaries in Mg and Ti. Note that the total energies shown in Fig.3.9 are not

divided by 𝑛𝑦. From the figures, the formation energies of disconnections are independent from

the simulation cell size and the values are about 26 meV for Mg and about 46 meV for Ti. The

formation energy of Ti disconnection dipole is about two times larger than that of Mg.

Mg
𝑠!𝑠!
Ti

Figure 3.9: The total energies of Type-1, Type-2 and Type-3 structures in Mg and Ti. Note that the
total energies shown in the figures are not divided by 𝑛𝑦.

Fig.3.10 is the enlarged figures of the shear stress 𝜎𝑦𝑧 shown in Fig.3.8. With the smaller

shear strain values from the initial shear strain 𝑠0, the values of 𝜎𝑦𝑧 are corrugated both in Mg

and Ti. These corrugation become clear with larger simulation cells. Fig.3.11 shows the Mg

Type-2 structures pointed with (a), (b) and (c) in Fig.3.8. (b) is the initial structure and (a) and

(c) are the structures applied negative and positive shear strains. As shown in the figures, matrix
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becomes large with negative shear strain and twin becomes large with positive shear strain both by

disconnection dipole gliding on the twin boundary. Therefore, in the areas where the total energies

change little as shown in Fig.3.8 around the initial shear strain 𝑠0, disconnection dipole glides on

the twin boundaries, and we need to get phonon structure changes in these areas for the discussion

of atomic mechanism during twin boundary migrations.

Mg
𝑠!𝑠!
Ti

(a)

(b)

(c)
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Shear Strain Shear Strain

Figure 3.10: Enlarged views of the shear stress 𝜎𝑦𝑧 shown in Fig.3.8. The structures pointed with
(a), (b) and (c) in Mg Type-2 are shown in Fig.3.11.
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(a)

(b)

(c)

Matrix

Twin

Figure 3.11: Mg Type-2 structures with different shear strain pointed with (a), (b) and (c) in Fig.3.8.
Matrix becomes large with negative shear strain and twin becomes large with positive shear strain
both by disconnection dipole gliding on the twin boundary as indicated with yellow arrows.
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On the purpose of getting phonon structure changes during disconnection gliding on the twin

boundaries, phonon calculations with MLIP were conducted toward the structures with the shear

strains 𝑠 = {0,±1.0× 10−4,±2.0× 10−4, · · · ,±2.0× 10−3} from the initial shear strain 𝑠0. Because

of the large atomic numbers in the simulation cells, it is computationally too demanding to calculate

phonons at multiple 𝑞-points for visualizing phonon dispersion curves and DOSes, we got phonons

only at Γ point. Fig.3.12 and Fig.3.13 shows the phonon frequency changes at lowest ten phonon

modes by applying shear stress of Type-1, Type-2 and Type-3 structures in Mg and Ti, respectively.

Vertical orange lines indicate the initial shear strains 𝑠0. In these figures, the three straight lines at

0 THz indicate acoustic modes because they have 0 THz of phonon frequencies at Γ point. Because

we want to get the local atomic arrangement by a single disconnection gliding, the interactions

between twin boundaries are preferred to be zero. By comparing different size simulation cells in

Mg and Ti, the shape of the phonon frequency changes are similar and therefore, the interactions

between twin boundaries can be expected negligible. As for optical modes, each phonon mode

change the phonon frequency smoothly except the phonon mode which have the lowest phonon

frequency indicated with red lines in each figure. In Mg, the changes of these phonon modes by

shear strains are wavelike and periodic in Type-1, Type-2 and Type-3 structures. This indicates

the local atomic arrangement of equilibrium positions around disconnection change periodically

and the lowest optical phonon modes have largely affected this local atomic change. Moreover,

because these phonon modes show imaginary phonon modes periodically, the simulation cells

become dynamically unstable periodically. Therefore, based on lattice dynamics point of view,

the initial structure becomes dynamically unstable periodically with shear strain, and the atomic

rearrangement occurs owing to the emerged imaginary phonon modes. From this reason, it is clear

that these lowest optical phonon modes play a central role in disconnection gliding along the twin

boundaries. In Ti, the changes of the lowest optical phonon modes are not as clearly periodic as
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that in Mg. However, the phonon frequencies of these phonon modes suddenly drop into imaginary

mode at some shear strains. Therefore, these phonon modes also can be excepted to be the main

factor of disconnection gliding.
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Type-1 Type-2

Type-3

Mg

Figure 3.12: The phonon frequency changes at lowest ten phonon modes by applying shear stress
of Type-1, Type-2 and Type-3 structures in Mg. The atomic displacements of the lowest optical
phonon mode pointed with black arrow are shown in Fig.3.14.
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Type-1 Type-2

Type-3

Ti

Figure 3.13: The phonon frequency changes at lowest ten phonon modes by applying shear stress of
Type-1, Type-2 and Type-3 structures in Ti. The atomic displacements of the lowest optical phonon
mode pointed with black arrow are shown in Fig.3.15.
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In Fig.3.14 and Fig.3.15, the minimum optical phonon modes of Type-1 in Mg and Ti under the

initial shear strain, which are indicated with black arrows in Fig.3.12 and Fig.3.13, are shown. The

orange atoms in the figures indicate the atoms on the {101̄2} twin boundaries. For visualization, the

amplitudes are normalized in order that the largest amplitudes have 2 Å of the amplitudes. As shown

in these figures, these two phonon modes show similar atomic vibrations. In both disconnection

introduced structures, the atomic group rotation-like vibrations are shown at the disconnections

indicated with blue round arrows. On the other hand, the atomic vibrations of the atoms on the twin

boundary and far from the disconnections did not show rotation-like vibrations. This indicates if

disconnection exists, the twin boundary migrations do not occur at CTB but occur around the dual

step by disconnection gliding on the twin boundaries and this motions are owing to the imaginary

phonon modes shown in Fig.3.12 and Fig.3.13.
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3.6 Conclusion

In this chapter, we investigated the phonon structure changes of disconnection dipole introduced

{101̄2} structures in Mg and Ti. {101̄2} twin boundary is actually not fully coherent but often

deviates from theoretical one. Therefore, we considered more actual case and selected the dual step

introduced twin boundary structures. This type of twin boundary has recently observed in Re {101̄2}

twin boundary with in-situ HRTEM. The dual steps meditated twin growth mechanism has been

already proposed in 1996 with the concept "disconnection", which is interfacial defect exhibiting

both dislocation and step character. However, this model does not provide the driving force for

disconnection gliding and the atomic trajectories during twin growth based on energetic point of

view. From these backgrounds, we decided to investigate the atomic rearrangement associated with

the disconnection gliding.

Disconnection introduced twin boundary structures were built from dichromatic patterns and

corresponding macroscopic shear strains were added. Because of the large simulation cells which

contain more than a thousand of atoms, it was computationally impossible to conduct phonon cal-

culations with first-principles. Therefore, we used machine learning interatomic potential (MLIP)

for all structure optimization and phonon calculations. The phonon calculations for HCP and CTB

structures with selected MLIPs were well reproduced with first-principles phonon calculations.

After checking the accuracy of MLIP toward phonon calculations, we conducted a series of phonon

calculations toward shear strain applied disconnection structures in Mg and Ti. As a result, we

found the characteristic optical phonon modes which have the smallest phonon frequencies at Γ

point. Their phonon frequencies are changed periodically between positive and negative phonon

frequencies by external shear stress. Therefore, the disconnection introduced structures periodi-

cally become dynamically unstable, which indicate these phonon modes trigger the disconnection
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gliding. To conform this, the characteristic phonon modes were visualized. These phonon modes

were very similar in that the atomic vibration directions were the same between Mg and Ti. The

atomic vibration directions around disconnections were rotation-like where the atomic vibrations of

the atoms on the twin boundaries and far from disconnections did not show rotation-like vibrations.

Therefore, we can conclude that if disconnection exists, the twin boundary migrations occur by

disconnection gliding on the twin boundaries and the corresponding atomic rearrangement is char-

acterized by the smallest optical phonon modes which become periodically the imaginary phonon

modes.
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Chapter 4

General Conclusion

In this thesis, we revealed the phonon structures of Mg and Ti {101̄2} twin boundaries and their

changes with external shear stresses and provided atomic rearrangement mechanism of twin growth

by a series of phonon calculations.

In Chapter 2, we investigated the phonon structure changes in Mg and Ti {101̄2} CTB structures

associated with applying external shear stresses by first-principles phonon calculations. Both Mg

and Ti {101̄2} CTB structures did not show the imaginary phonon mode under zero shear stress

conditions. By adding shear strain to the CTB structures, the imaginary phonon modes were

emerged at Γ point. Because the imaginary phonon modes indicate the sheared CTB structures are

dynamically unstable, we investigated the atomic rearrangement mechanism using the eigenvectors

of these imaginary phonon modes. As a result, the twin boundary migrations were occurred both

in Mg and Ti associated with atomic rotation-like rearrangement around twin boundaries. From

this result, we concluded when external shear stress is added to the {101̄2} CTBs, the atomic group

rotation-like rearrangement around twin boundary occurs triggered by the imaginary phonon mode

and this results in twin boundary migration.

In Chapter 3, we investigated the phonon structure changes of disconnection dipole introduced
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{101̄2} twin boundary structures in Mg and Ti as a more actual case by phonon calculations with

MLIP. We conducted a series of phonon calculations toward shear strain applied disconnection

structures in Mg and Ti. As a result, we found the characteristic optical phonon modes which

have the smallest phonon frequencies at Γ point both in Mg and Ti. Because these phonon modes

dropped into the imaginary by external shear stresses, we considered them as the triggers for

disconnection gliding and the atomic vibration directions were visualized using their eigenvectors.

As a result, the atomic vibration directions around disconnection were rotation-like where the

atomic vibrations of the atoms on the twin boundaries and far from disconnections did not show

rotation-like vibrations. Therefore, we concluded that if disconnection exists, the twin boundary

migrations occur by disconnection gliding on the twin boundaries and the corresponding atomic

rearrangement is characterized the smallest optical phonon modes which become periodically the

imaginary phonon modes.

In conclusion, we revealed the atomic scale rearrangement mechanism during twin growth in Mg

and Ti. In twin growth of CTB structures and disconnection introduced {101̄2} twin boundaries,

atomic rotation-like rearrangement was the main factor for twin boundary migrations. As shown

in this thesis, phonon analysis based on lattice dynamics is effective to study the local atomic

rearrangement process such as twin growth. We expect that the atomic mechanism of twin growth

in the other deformation twinning modes and the twin nucleation from grain boundary can be

unraveled with the same approach as used in this thesis.
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Appendix A

Common Neighbor Analysis

In this appendix, we review the methodology of common neighbor analysis (CNA) which first

proposed by [50], implemented to computer 3D graphics by [67], and well summarized by [68].

CNA is one of the popular local structure analysis methods and allows to identify atoms in particular

environment, such as FCC, BCC and HCP from atomic pair distances in the vast and complexed

atomic scale simulation systems.

In CNA, cutoff distance is the only given parameters. When a specific atomic pair 𝑖 and 𝑗 is

focused, the atoms within the cutoff distance from both 𝑖 and 𝑗 atoms are considered to be "common

neighbors" marked with 𝑘 in Fig.A.1. Each atomic pair is classified by a set of four indices from

the relations among these atoms. The first index is 1 or 2 which indicates that a specific atomic

pair 𝑖 and 𝑗 are the neighbors or not. The second index represent the number of common neighbors

which are shared by atoms 𝑖 and 𝑗 . The third index indicates the number of bonds among the

common neighbors. The forth index differentiates diagrams with the same first three indices and

with different bonding patterns among common neighbors. For example, the diagrams (a) and (b)

in Fig.A.1 have the same first three indices, but the bonding patterns of common neighbor atoms

labeled with 𝑘 are different, where two bonds bridging common neighbor atoms are separated in
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(a) but these bonds are connected via one of the common neighbor atoms in (b). The local atomic

environment of the atom 𝑖 is determined by relative presence of the labels for a set of atomic pairs

where one of them is atom 𝑖. If the relative presence is matched with that of a structure type shown

in Table.A.1, the local environment of atom 𝑖 is separated into the matched structure type.

Throughout this thesis, 3.85 Å and 3.47 Å of cutoff radii were used for Mg and Ti, respectively.
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Figure A.1: Illustrations of diagrams constructed from the classification of local structures defined
in the CNA method visualized by Tsuzuki et al. [68]. Four-digit numbers represent the atomic
environment of the pair of brown atom 𝑖 and yellow atom 𝑗 in each diagram. They share the atoms
𝑘 as neighbor atoms, which are called as common neighbors.

Table A.1: Relative presence of different CNA diagrams in FCC, BCC and HCP crystal structures
shown by Tsuzuki et al. in his paper [68].

CNA diagram FCC BCC HCP

1421 1 0 1/2

1422 0 0 1/2

1441 0 3/7 0

1661 0 4/7 0
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