
 

 

Visualization of nanostructure distribution in Al alloy multilayers 

by small-angle X-ray scattering tomography 

 

 

 

 

 

 

Lin Shan 

 

 

 

 

 

2022 



 

1 

 

 

Contents 

1. INTRODUCTION ......................................................................................................................... 1 

1.1. BACKGROUND .................................................................................................................................. 1 

1.2. OBJECTIVE ALLOYS ........................................................................................................................... 3 

1.2.1. Al–Zn alloys ........................................................................................................................ 3 

1.2.2. Al–Mg alloys ....................................................................................................................... 3 

1.2.3. Al–Zn–Mg alloys ................................................................................................................ 4 

1.3. TREATISE OUTLINE ............................................................................................................................ 7 

2. METHODS ..................................................................................................................................... 9 

2.1. THEORY OF SMALL-ANGLE X-RAY SCATTERING (SAXS) ................................................................. 9 

2.2. SCATTERED INTENSITY IN SAXS .................................................................................................... 10 

2.2.1. Intraference and interference in SAXS .............................................................................. 12 

2.3. ENHANCEMENT AND CONTROL OF CONTRAST IN SAXS ANALYSIS .................................................. 23 

2.3.1. Standardization of scattered intensity in SAXS method .................................................... 23 

2.3.2. Calibration method in quantitative nanostructure analysis by scanning microbeam SAXS 

method 23 

2.4. VISUALIZATION OF INNER STRUCTURE BY SCANNING/TOMOGRAPHIC SAXS .................................. 27 

2.5. COMPUTED TOMOGRAPHY .............................................................................................................. 28 

2.5.1. Computed tomography with summation method .............................................................. 28 

2.5.2. Computed tomography with reconstruction process ......................................................... 30 

2.6. QUANTITATIVE COMPUTED TOMOGRAPHY ...................................................................................... 31 

2.6.1. Detailed process of Computed Tomography (Radon transform) ....................................... 31 

2.6.2. The Fourier Slice Theorem and multiple dimensional Fourier transformation ................. 32 

2.6.3. The idea of filter in back-projection and FBP method ...................................................... 34 

2.6.4. Convolution Back Projection method ................................................................................ 39 

2.7. SPECIMEN PREPARATION ................................................................................................................. 40 

2.7.1. Al base specimen ............................................................................................................... 40 

2.7.2. Heat Treatment .................................................................................................................. 42 

2.8. EXPERIMENTAL SET UP .................................................................................................................... 45 

2.8.1. Experimental set up for 1D microbeam SAXS scanning .................................................. 45 

2.8.2. Experimental set up for ASAXS measurement ................................................................. 47 

2.8.3. Experimental set up of SAXS application in tomographic measurement .......................... 48 



 

2 

 

 

3. NANOSTRUCTURE ANALYSIS OF MULTILAYERED COMPOSITES BY SCANNING 

MICROBEAM SAXS ............................................................................................................................... 49 

3.1. SIMULTANEOUS MEASUREMENT OF FLUORESCENT X-RAY IN MICROBEAM SCANNING SAXS ......... 49 

3.1.1. Determining the distribution of local component in Al–Zn binary composite .................. 49 

3.1.2. Determining the distribution of local component in Al–Zn–Mg ternary composite .......... 51 

3.2. 2D SAXS PROFILES IN AL–ZN BINARY COMPOSITE ........................................................................ 52 

3.3. PRECIPITATE PARAMETERS FROM SAXS IN AL–ZN BINARY COMPOSITE ......................................... 53 

3.4. RELATIONSHIP BETWEEN LOCAL STRUCTURE AND LOCAL HARDNESS IN AL–ZN BINARY COMPOSITE

 55 

3.5. 2D SAXS PROFILE IN AL–ZN–MG TERNARY COMPOSITE ............................................................... 57 

3.6. COMPONENT DISTRIBUTION AND PRECIPITATES IN AL–ZN–MG TERNARY COMPOSITE .................... 57 

3.7. PRECIPITATION PARAMETERS OBTAINED FROM SAXS IN AL–ZN–MG TERNARY COMPOSITE .......... 59 

3.8. RELATIONSHIP BETWEEN LOCAL NANOSTRUCTURE AND LOCAL HARDNESS: AL-ZN-MG TERNARY 

COMPOSITE ............................................................................................................................................... 62 

3.9. IDENTIFICATION OF LOCAL PRECIPITATES IN AL–ZN–MG TERNARY COMPOSITE ............................. 65 

3.10. ANISOTROPY OBSERVATION VIA TEM AND SAXS PROFILE ..................................................... 66 

4. ANOMALOUS SMALL ANGLE X-RAY SCATTERING METHOD (ASAXS) IN AL–MG 

ALLOY ...................................................................................................................................................... 68 

4.1. ANOMALOUS SMALL ANGLE X-RAY SCATTERING METHOD .............................................................. 68 

4.2. NANOSTRUCTURE MEASUREMENT OF AL–MG ALLOY VIA ASAXS METHOD .................................. 69 

4.2.1. Specimen and experiment details ...................................................................................... 69 

4.2.2. Results of SAXS parameters via ASAXS measurement in Al–Mg alloys ......................... 69 

5. COMPUTED TOMOGRAPHIC TECHNIQUE WITH SAXS DATA AND ITS 

APPLICATIONS ...................................................................................................................................... 71 

5.1. COMPUTED TOMOGRAPHY IN ABSOLUTE UNITS ............................................................................... 71 

5.1.1. Absolute reconstruction in discrete computed tomography............................................... 71 

5.1.2. Absolute unit in intensive/extensive parameters ............................................................... 76 

5.2. VECTOR TOMOGRAPHY ................................................................................................................... 78 

5.2.1. Feasibility of reconstruction in vector tomography ........................................................... 78 

5.2.2. Data selection in SAXS profile for vector tomography ..................................................... 79 

5.3. RESULT OF SAXS COMPUTED TOMOGRAPHY APPLIED TO MULTILAYERED BINARY COMPOSITE ...... 81 

5.3.1. Al/Al–Zn/Al multilayered composite ................................................................................ 81 



 

3 

 

 

5.3.2. Quantitative computed tomography in Al/Al–Zn/Al composite ........................................ 88 

5.4. RESULT OF SAXS COMPUTED TOMOGRAPHY APPLIED TO MULTILAYERED TERNARY COMPOSITE ... 94 

5.4.1. Al–Mg/Al–Zn/Al–Mg multilayered composite ................................................................. 94 

6. SUMMARY ................................................................................................................................ 101 

REFERENCE ....................................................................................................................................... 103 

ACKNOWLEDGEMENTS ................................................................................................................. 108 

 

 



 

1 

 

 

1. Introduction 

1.1. Background 

Composites which are comprise of similar/dissimilar materials are used in a variety of 

fields e.g., using carbon fiber reinforced (or glass fiber, for compensation) resin for 

reducing the weight of a vehicle; and controlling corrosion and weight in aerospace 

engineering. For this reason, the properties of the composite and also the consisting 

materials are studied by many researchers globally. Composites can be categorized by the 

different forms of material dispersing in the matrix material: Particle dispersed composite 

material, fiber reinforced composite material and laminated composite materials. In other 

perspectives, the dispersed material in these forms bond with the matrix with 3–1 

dimension. 

A metallic alloy itself can be regarded as a composite, since it is composed by different 

element atoms. This leads to the great potential in the features of a material e.g., 

mechanical property by designing the arrangement of the atoms. This is identical to 

controlling all four strengthening mechanisms of a metallic materials: the solid solution 

strengthening by solute atoms, precipitation strengthening by precipitates (Gerold & 

Haberkorn, 1966; Foreman, 1967), work hardening by dislocations (Ashby, 1966), and 

the grain refinement strengthening in a polycrystalline material (Hall, 1951; Petch, 1953). 

Therefore, for a similar/dissimilar composite made up of metallic alloys—especially for 

those precipitation hardening alloys—the designation of nanostructural distribution 

depends on the usage of the composite is significant for both the whole composite and 

the composing single materials. In order to conduct a full understanding of the 

nanostructural distribution in the metallic materials, various methods have been 

developed for observation directly and indirectly: e.g., transmission electron microscopy 

(TEM) (Miyazaki et al., 1996, 2012), scanning electron microscopy (SEM), and SEM 

with attachments, i.e., energy dispersive X-ray spectroscopy (EDX) (Liu, 2018) local 

hardness, and electronic resistance are used in studies (Kim & Hong, 2015). 

In this research, we used series of Al–Zn alloys, Al–Mg alloys, and Al–Zn–Mg alloys as 

composite. Where Al–Zn and Al–Zn–Mg alloy are three-layered composites, and they 

were two-dimensional laminated composite, or three-layered composite in particular. It 

is easy to control the solute atoms in the multilayered composite, since the bonding 

freedom is only one dimension, i.e., one direction, compared to two or three directions 

for other two types of composites. 

In order to conduct a quantitative investigation on the composite of Al–Zn alloys and 
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Al–Zn–Mg alloys, the small angle X-ray scattering (SAXS) method has been used in this 

study. SAXS method has been applied with microbeam pencil X-ray as a probe to 

investigate the nanostructures on a composite locally, with changing the illuminating area. 

The nanostructural distribution was acquired as a mean value by either the specimen 

thickness (1D scanning), or the size of a voxel (SAXS applied computed tomography, 

SAXS-CT) measurement in this study.  

The Al–Mg alloy was a single layered material, since it cannot be detected by the 

ordinary SAXS measurement. Instead, an anomalous small angle X-ray scattering 

(ASAXS) method was conducted to investigate the nanostructure. 
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1.2. Objective alloys 

1.2.1. Al–Zn alloys 

Al–Zn alloys (Gerold & Merz, 1967; Hennion et al., 1982; Guinier, 1996) are focused 

the attentions by many researchers for its high solubility of Zn atom in Al matrix, namely 

66.5 mol% at eutectic temperature of 655 K (see Werner & Löffler, 1983), which enables 

to have an efficient investigation about both the kinetics and mechanisms of phase 

transformation. 

The precipitations in Al–Zn starts from the Guinier–Preston zone (G. P. zone) (Guinier, 

1938; Preston, 1938) facet to the Al matrix, in the shape of sphere (Merz & Gerold, 

1966; Gerold & Merz, 1967; Ramlau & Löffler, 1981; Hennion et al., 1982; Kostorz, 

1983) and aligning along the 〈100〉 direction of the matrix (Kostorz, 1983). With G. P. 

zones coarsen with time, the shape changes into ellipsoid (Simerská & Synec̆ek, 1967; 

Ramlau & Löffler, 1981; Deguercy et al., 1982). The equatorial planes of the oblate 

spheroids are found to be formed on the {111} plane of the matrix. When the Guinier 

radius exceeds 5 nm at a temperature between 293–363 K, these ellipsoidal G. P. zones 

would grow into 𝛼𝑅
′  (Löffler et al., 1978). The discussion of 𝛼𝑅

′  phase is omitted in 

this study, as it is too large compared to the results in this treatise. 

 

1.2.2. Al–Mg alloys 

Al–Mg alloy is the main component of 5000 series in Al alloys, which is an alternative 

material for the automobile industry. It is known that the Mg atoms distribute as a 

modulated structure first, and when aged at a low temperature, precipitations occur and 

the precipitates with L12 structure are observed aligning along the 〈100〉 direction on 

matrix (Bernole et al., 1973; Deguercy et al., 1973; Sato & Takahashi, 1984). These 

precipitates are also facetted G. P. zones (Roth & Raynal, 1974, 1975). With aging 

proceeds, these G. P. zones are known to be transformed into β′ phase, and then change 

into the stable β phase (Osamura & Ogura, 1984). The stable β phase are also noted as 

Al3Mg2 which composed by 38.5–40.3 mol%Mg (Riederer, 1936; Samson, 1965). Similar 

to the Al–Zn alloy, the G. P. zone is the only objective considered in this study, due to 

either the detectability, or the detected size. Al–Mg alloy cannot be detected with ordinary 

small-angle scattering X-ray (SAXS) method, due to the reason that Al locates the next 

to Mg in the periodic table, and also in the same period. This directly leads to the 

similarity in the atomic radius and the number of electrons for an atom, which leads to 

the similarity in electron density and the weakness in the lattice strain.  
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1.2.3. Al–Zn–Mg alloys 

Al–Zn–Mg alloys are widely used for the property of high strength, and the good 

balancing of workability, weldability, and a receptible strength. Some of them are known 

as 7000 series of Al alloys (Itoh et al., 1988), which doped with additional elements like 

Cu and Si. In Al-Zn-Mg alloys, the precipitations are believed to be take place depend on 

the Zn/Mg atomic ratio. Fig. 1.2.1 shows the equilibrium phase diagram of Al–Zn–Mg at 

the Al corner by Fink and Willey (1938). According to the atom probe tomography (APT) 

by Bigot et al. (1997), the precursor of T phase (Mg3Zn3Al2) has a Zn/Mg of 0.7, and the 

precursor of η phase (MgZn2) has a Zn/Mg of approximately 1–2 (Bigot et al., 1996; 

Deschamps et al., 2001; Sha & Cerezo, 2004).  

 

1.2.3.1. Stable phases in Al–Zn–Mg alloys 

In the ternary Al–Zn–Mg system, the stable phase of η (MgZn2) (Friauf, 1927) and T 

(Mg3Zn3Al2) (Bergman et al., 1957) is known for co-existing with the solid solution α 

phase. The transformations in this alloy is extremely complicated, and the transformations 

for these stable phases are still not clear in these days.  

η phase is believed to be the final product with following process (Lorimer & Nicholson, 

1966): 

         𝑆𝑜𝑙𝑖𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝛼) →  𝐺. 𝑃. 𝑧𝑜𝑛𝑒 (𝐼, 𝐼𝐼)  

         → 𝑝𝑙𝑎𝑡𝑒 𝑠ℎ𝑎𝑝𝑒𝑑 𝜂′ 𝑝ℎ𝑎𝑠𝑒 (𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑏𝑙𝑒 𝑀𝑔𝑍𝑛2)  →  𝜂 𝑝ℎ𝑎𝑠𝑒 

 

Fig. 1.2.1 Miscibility gap at various temperatures (℃) at the Al corner of Al-Zn-Mg 

system by Fink and Willey (1938). 
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T phase, on the other hand, is the final stable phase from the transformation with this 

process (Lorimer, 1985): 

         𝑆𝑜𝑙𝑖𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝛼) → 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝐺. 𝑃. 𝑍𝑜𝑛𝑒

→ 𝑝𝑙𝑎𝑡𝑒 𝑠ℎ𝑎𝑝𝑒𝑑 𝜂′ 𝑝ℎ𝑎𝑠𝑒 (𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑏𝑙𝑒 𝑀𝑔𝑍𝑛2) → 𝜂 𝑝ℎ𝑎𝑠𝑒 

→ 𝑇 𝑝ℎ𝑎𝑠𝑒  

or the series below (Ma & Ouden 1999): 

         𝑆𝑜𝑙𝑖𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝛼) → 𝐺. 𝑃. 𝑧𝑜𝑛𝑒 → 𝑇′ 𝑝ℎ𝑎𝑠𝑒 (𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑏𝑙𝑒 𝑀𝑔3𝑍𝑛3𝐴𝑙2)

→ 𝑇 𝑝ℎ𝑎𝑠𝑒  

η (MgZn2) phase is a stable phase in a hexagonal crystal structure with lattice parameters 

of a = 5.21 Å and c = 8.60 Å (Friauf, 1927). At least 11 different crystallographic 

orientations related to the matrix was reported (Embury & Nicholson, 1965; Thackery, 

1968; Gjønnes & Simensen, 1970; Auger et al., 1974; Ito et al., 1988). There are reported 

three typical shapes and orientations in these η phases (Gjønnes & Simensen, 1970), 

which are summarized in Table 1.2.1. 

 

Table 1.2.1 Typical orientation and shape of η phases 

Type of η Orientation relationship Shape of precipitate 

𝜂1 
(0001)𝜂 ∕∕ (110)𝛼 , 

[101̅0]𝜂 ∕∕ [001]𝛼 
Plate parallel to {100}𝛼 

𝜂2 
(0001)𝜂 ∕∕ (11̅1̅)𝛼, 

[101̅0]𝜂 ∕∕ [110]𝛼 

Plates parallel to {111}𝛼 in grain, 

hemisphere in grain boundary 

𝜂3 
(0001)𝜂 ∕∕ (11̅1̅)𝛼, 

[1̅21̅0]𝜂 ∕∕ [11̅1̅]𝛼 
Rods that [0001]𝜂 parallel to 〈100〉𝛼 

 

T phase (Mg3Zn3Al2) is known as body-centered-cubic (BBC) structure with a lattice 

parameter a = 14.16 Å  (Bergman et al., 1957). Also, it is known that T phase is not a 

major objective attributing the strength of Al–Mg–Zn alloy. 

 

1.2.3.2. Metastable phase in Al–Zn–Mg alloys 

η′  phase is the metastable phase for η phase, and which is responsible for the high 

strength in 7000 series Al alloy (Park & Ardell, 1983; Lendvai, 1996). It is a hexagonal 

crystal with parameter a = 4.96 Å, c = 14.02 Å (Auld & Cousland, 1974; Li et al., 1999). 

It is generally accepted that the η′ phase is a plate shaped precipitate stays on the plane 

{111}𝛼 of matrix, and also be coherent with the matrix on this plane only. η′ phase is 
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observed in the alloys which have a Zn/Mg ratio of 0.7–2.5 (Brenner et al., 1991; Warren 

et al., 1992; Li et al., 1999; Maloney et al., 1999; Deschamps et al., 2001) 

There are 2 types of G. P. zones, i.e. G. P. zone (I) and G. P. zone (II); were found in the 

Al–Zn–Mg alloys. G. P. zone (I) is observed dominant when aged at room temperature, 

and G. P. zone (II) is believed as the precursor of η′ phase (Mukhopadhyay, 1994). TEM 

observation revealed that G. P. zone (I) is spherical (Mukhopadhyay, 1994; Stiller et al., 

1999; Berg et al., 2001), and G. P. zone (II) can either be spherical (Mukhopadhyay, 1994; 

Stiller et al., 1999) or plate shaped (Berg et al., 2001, Mukhopadhyay & Prasad, 2011).  

  



 

7 

 

 

1.3. Treatise outline 

This treatise contains 6 chapters. 

Chapter 1 contains the background and short introductions about the features of alloy 

systems investigated as objective materials, and the reason of using small angle X-ray 

scattering (SAXS) method with tomographic technology, and the anomalous small-angle 

X-ray scattering method (ASAXS) in this treatise briefly. 

Chapter 2 contains the methods, materials and the experimental set ups related to this 

treatise. In this chapter, the nature of the small angle X-ray scattering (SAXS) method 

was introduced with the application to the 1D scanning method and 2D tomographic 

technique. The nature of the computed tomography (CT) was conducted from multiple 

dimension into two-dimension, and a detailed explanation for the reconstruction method 

was explained, particularly for the discrete experimental condition. 

Chapter 3 shows the results of 1D SAXS scanning measurements on the Al based binary 

and ternary three-layered composites: the Al/Al– 14.07mass%Zn/Al multilayer; and the 

Al–2.45 mass%Mg/Al–10.16 mass%Zn/Al–2.45 mass%Mg multilayer, after conducting 

series of heat treatments. The scanning SAXS measurement was conducted in vicinity of 

solute graded interdiffusion area for each composite. The nanostructural distribution was 

analyzed spatially with unit area of 5 and 10 μm. The local hardness distribution 

investigated with micro Vickers hardness tests were interpreted successfully by the 

estimated nanostructural distribution measured individually. 

Chapter 4 shows the ASAXS used in Al–Mg alloy. Generally, Mg-rich precipitates are 

not observable using SAXS method, due to the low contrast in the electron density of Al 

and Mg atoms. However, by applying the SAXS method with an energy of the incident 

X-ray adjusted to the absorption edge of Mg, and by absorbing the X-ray only by Mg 

atom practically, the contrast in the scattered intensity originated from the Mg-rich 

structure and Mg-poor structure is able to be detected. In this chapter, the conventional 

parameters of 2D SAXS pattern, relative integrated intensity, and the Guinier radius in 

different nanostructure was shown. 

Chapter 5 explains the absolute reconstruction method for computed tomography, with 

the applications on the three-layered composites investigated with 1D SAXS scanning 

method in chapter 3. Both of the tomography composed by the attenuation coefficient and 

scattered intensity was reconstructed with absolute value. No standard specimen was used 

for the reconstructions in the absolute attenuation coefficient tomographies. 

Tomographies composed by solute elements were estimated with EDX data. Also, for the 
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first time, the absolute SAXS intensity profiles originated from the three-layered metallic 

composites were successfully reconstructed to the cubes with 20 μm×20 μm×20 μm, 

using glassy carbon as standard specimen. The tomography of the mean size of the 

precipitates were estimated subsequently for both binary and ternary composites. The 

volume fraction tomography was assessed for the binary multilayer. 

In chapter 6, important results in each chapter were summarized. 

  



 

9 

 

 

2. Methods 

2.1. Theory of Small-Angle X-ray Scattering (SAXS) 

Small-Angle X-ray Scattering (SAXS), along with Small-Angle Neutron Scattering 

(SANS) is a widely used method for metallic materials and non-metallic materials, for a 

quantitative analysis of a mean information about the electron/neutron density difference, 

the volume fraction, and the size of scatterers.  

Guinier–Preston zone (G. P. zone) was found by A. Guinier (1938) and G. D. Preston 

(1938) individually in Al-Cu alloy from the phenomenon of hardening effect caused from 

the prolonging of time, or known as aging effect, which was found in the September of 

1906 by Dr. A. Wilm (1911). In the old days, due to the nanometer sized G. P. zone was 

not convenient to be investigated: it was too small for either of the TEM and SEM; and 

was also too large for the conventional wide-angle X-ray measurement i.e. XRD. 

Therefore, SAXS method was used as a powerful tool for investigating nanostructures 

such as G. P. zone statistically at that time. 

These days, with the development in TEM and SEM technology, it is not that difficult 

to have a detailed investigation on the nanostructure, but from the trade-off relation in the 

target size and the view size of direct observation, SAXS measurement are still useful for 

the statistical analysis. It derives the mean size of all electron/neutron density oscillation, 

like the long period stacking order (LPSO) structure found in the Mg alloys by Kawamura 

et al. (2001) and Abe et al. (2002), attracted the interests of many researchers. X-ray is 

an electromagnetic wave with a certain wavelength, or energy. Therefore, when X-ray 

meet any metallic and nonmetallic material, it interacts with the charged particles of their 

atoms, i.e. electrons and protons. In SAXS measurements, the X-ray have to be an 

incident beam originated from outside of the target material, and since the atomic core 

which consist of protons is neglectable from its large mass and also the shielding effect 

from surrounding electrons, the existence of protons is neglectable for analyzing SAXS 

result. Inelastic scattering is often neglected due to its low intensity in the SAXS 

measurement. 
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2.2. Scattered intensity in SAXS 

The absolute scattered intensity is often used in the SAXS method to describe the 

scattered intensity quantitatively. It is often either used with a unit of electron unit (e.u.), 

or differential cross-section (cm-3∙sr-1). The electron unit describes how much intensity 

scattered by an electron, regardless of the influences from the apparatus of experiment; 

which is easy to use but contains ambiguity. The differential cross-section is composed 

by SI units (International System of units), which links the intensity with the scattering 

length of electron, i.e. Thomas scattering length, which is also known as the classic radius 

of an electron. 

Consider a unit cube of scatterers illuminated by an array of incident X-ray with a flux 

Φ0, and the scattered intensity was measured for Isc by a detector with an area of ∆𝛺 in 

solid angle. Then the absolute intensity described by the differential scattered intensity 

(d𝜎 d𝛺⁄ ) would be:  

(
d𝜎

d𝛺
) = (

∆𝜎

∆𝛺
) =

𝐼𝑠𝑐
𝛷0𝛥𝛺

=
|𝐸𝑟𝑎𝑑|

2𝑅2

|𝐸𝑖𝑛|2
.                                                    (2.1) 

where 𝜎 is the absolute scattered intensity measured by the detector by a unit intensity 

of incident X-ray; 𝐸𝑖𝑛 and 𝐸𝑟𝑎𝑑 is the strength of the incident and radiated electronic 

field; R is the distance of detector from scattered origin. As an electron is mainly the 

source of the scattered X-ray, eq. (2.1) would be expressed by the scattering length of an 

electron, i.e. the Thomson scattering length 𝑟0: 

(
d𝜎

d𝛺
) =

|𝐸𝑟𝑎𝑑|
2𝑅2

|𝐸𝑖𝑛|
2

= 𝑟0
2𝑃                                                      

where 

𝑃 = {

             1                      𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑡𝑟𝑜𝑛: 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑒

            cos2𝜓                 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑡𝑟𝑜𝑛: ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑒

0.5(1 + cos2𝜓)        𝑢𝑛𝑝𝑜𝑙𝑒𝑟𝑖𝑧𝑒𝑑 𝑠𝑜𝑢𝑟𝑐𝑒                                         

       (2.2) 

 

Fig. 2.2.1 A schematic illustration of SAXS measurement 
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where 𝑃 is the polarization factor for scanning, 𝜓 is the scattering angle, 𝑟0 also is the 

classic radius of an electron.  

The total cross-section 𝜎𝑡𝑜𝑡𝑎𝑙 is an alternative unit for the absolute scattered intensity 

also made up of SI units, which describes the intensity scattered at all solid angles. If 

integrating the solid angle into 4π with the consideration of the polarization factor P, the 

scattered intensity 𝜎𝑡𝑜𝑡𝑎𝑙 would be: 

𝜎𝑡𝑜𝑡𝑎𝑙 = ∫ (
d𝜎

d𝛺
)𝑑𝛺

4𝜋

0

= 4𝜋 ∙ 𝑟0
2∫ 𝑑𝜃

2𝜋

0

∫ 𝑃𝑑𝜓
𝜋

0

=
8

3
𝑟0
2                (2.3) 
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2.2.1. Intraference and interference in SAXS 

When a piece of material is illuminated by an array of incident X-ray, all scattered X-

ray originated from the illuminated electrons sum up respectively causing superposition, 

which are detected as the oscillation in intensity. This intensity oscillation is caused by 

the phase discrepancy originated from the different distance of the respective illuminated 

electron to the detector, or identically, the distribution of the illuminated electrons. 

The discussion on the interference by electrons density is analogous to which by the 

arrangement of the elementary matters composed by electrons, i.e. atoms and molecules. 

For a material which is a crystalline material like the most of the metallic materials, these 

elementary matters are repeated periodically in 3D; this enables us to reconsider the 

interference caused by electrons as the three-dimensional structure of this period, i.e. 

crystal lattices and unit cells. 

Therefore, for a multiple phase material with multiple atomic arrangements, it is easier 

to consider the scattered X-ray emitted from each precipitated phase with a uniformed 

crystal lattice as the interference inside the precipitate, or the “intraference” of the 

precipitate. When the interference between different precipitates area observed, which 

implies the averaged distance of the precipitates are in an order of nanometer, and the 

observed SAXS profile is the superposition of the interference and intraference wave of 

precipitates. 

 

2.2.1.1. Interference in X-ray and SAXS 

2.2.1.1.1. The interference in X-ray 

Interference is observed as a superposition of waves like X-ray. It happens when 

multiple sets of wave like u and v with a same period ω and amplitude A, encounter at a 

location with a different phase: 

𝑢 = 𝐴𝑒−𝑖𝜔𝑡, 𝑣 = 𝐴𝑒−𝑖𝜔𝑡+𝑑𝜑                                                                      (2.4) 

 𝑢 + 𝑣 = 𝐴∑𝑒−𝑖𝜔𝑡𝑛
2

𝑛=1

= 𝐴𝑒−𝑖𝜔𝑡(1 + 𝑒1+𝑑φ) = C′𝑒−𝑖𝜔𝑡                    (2.5) 

at the encounter point of u and v, a new wave was created with the same period of the two 

but a different amplitude. As long as X-ray is a magnetic wave with a particular 

wavelength range, the interference of X-ray is nothing else, other than eq. (2.5). 

Imagine two electrons both scatter X-ray and the wave added up as 

𝑢(𝒒) = −𝑟0(1 + 𝑒
𝑖𝒒∙𝒓).                                                                               (2.6) 
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𝒒 is the scattering vector, which is the vector difference of the two scattered X-ray. 𝒓 is 

the distance of the 2nd electron measured from the 1st electron. The phase discrepancy 𝑑𝜑 

is equivalent to their inner product 𝒒 ∙ 𝒓. 

Since the intensity is the squared volume of a wave function: 

𝐼(𝒒) = 𝑢(𝒒)𝑢∗(𝒒) = −2𝑟0
2(1 + cos(𝒒 ∙ 𝒓))   ⊆  [−4𝑟0

2 ∼  0].      (2.7) 

For an atom, electrons are the origin of X-ray scattering. Therefore, for an atom with j 

electrons, the amplitude detected at 𝒒 would be substitute eq. (2.6) into the generalized 

version of eq. (2.5): 

𝑢𝑎𝑡𝑜𝑚(𝒒) = −𝑟0∑ 𝑒𝑖𝒒∙𝒓𝒋
𝑗

= −𝑟0∫𝜌(𝒓)𝑒
𝑖𝒒∙𝒓d𝑟 = −𝑟0𝑓

0                (2.8) 

𝑓0 = {
𝑍  for 𝒒 → 0  
0  for 𝒒 → ∞

                                                                                    (2.9) 

where 𝑓0 is called the form factor of an atom, which implies the relationship of the atom 

and the amplitude of scattered X-ray without considering the phase change in refraction 

and absorption, i.e. the 𝑓(𝒒, ℎ𝜔) = 𝑓0(𝒒, ℎ𝜔) + 𝑓′(𝒒, ℎ𝜔) + 𝑖𝑓′′(𝒒, ℎ𝜔) ; Z is the 

number of electrons in the atom. The scattered intensity from an atom is various by its 

electron distribution, or consequently the element.  

For crystalline materials, it is easier to consider the scattered X-ray using its unit cell: 

𝑢𝑐𝑟𝑦𝑠𝑡𝑎𝑙 𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝒒) =∑𝑢𝑢𝑛𝑖𝑡𝑐𝑒𝑙𝑙(𝒒)

𝑛

= −𝑟0∑𝑒𝑖𝒒∙𝑹𝒏

𝑛

∑𝑓0(𝒒)𝑒𝑖𝒒∙𝒓𝒋

𝑗

.   (2.10) 

The resonant oscillation also occurs in the atoms, for the reason that the process of 

scattering X-ray by an electron is a forced oscillation. Due to this reason, the resonance 

frequency (energy) is always observed as the absorption edge in the absorption spectrum, 

whose value depends on the element of the atom. This resonant scattering is also called 

anomalous scattering.  

 

2.2.1.1.2. Interference in SAXS  

 It is easy to demonstrate that within the several degrees of scattered angle, the mean 

distance of the scatterers is in the order of nanometer. Consider the scattering shown as 

Fig. 2.2.2, the geometric relationship of the experimental parameters would be: 

𝜆 = 2𝑑 sin 𝜃                                                                                               (2.11) 

 where 𝜆 is the wave length of incident X-ray, d is the distance of scatterers, 2𝜃 is the 

scattered angle.  

Therefore, within the conventional scattered angle range 2𝜃 < 5°  in the SAX 
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measurement, and using Kα characteristic X-ray of Copper with 1.54 Å wave length as 

incident X-ray, the restriction of 𝑑 would be 𝑑 > 1.77 nm. This result indicates that the 

information of an atomic structure with a sub-nano-order would be observed at a scattered 

angle outside of the SAXS region. 

Also, for an atomic structure with a large span, i.e., micrometer sized precipitates, the 

scattered intensity would fall on a lower angle region of the SAXS region, which usually 

overlaps with the finite-sized incident X-ray beam, or stopped by the beam-stop which 

protecting the detector from overcharged by the intensive transmitted X-ray.  

  

 

Fig. 2.2.2 A schematic illustration of interference takes place in scatterers with 

periodically structured 

θ

θ

θ

θ
d

θ

λ
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2.2.1.2. Intraference in SAXS 

As mentioned in 2.2.1, the “intraference” is simply the interference occurred within a 

single scatterer like precipitate in an alloy. Now consider the intraference observed in a 

scatterer as shown in Fig. 2.2.3. Two X-rays illuminate the point O and Mk inside the 

scatterer, then the interference 𝐴𝑘 and the intensity 𝐼𝑘 would be: 

𝐴𝑘 = 𝐴𝑒𝜌(𝑴𝒌)d𝑣𝑘(1 + 𝑒
𝑖𝒒∙𝑶𝑴𝒌) = 𝐴𝑒𝜌(𝑀𝑘)d𝑣𝑘 (1 + 𝑒

−𝑖
2π
𝜆
(𝒌−𝒌𝟎)∙𝑶𝑴𝒌)              (2.12) 

𝐼𝑘 = 𝐴𝑘 ∙ 𝐴𝑘
∗ = 𝐴𝑒

2𝜌2(𝐌𝐤)d𝑣𝑘
2(1 + cos(𝒒 ∙ 𝒓))

= 𝐴𝑒
2𝜌2(𝑴𝒌)d𝑣𝑘

2 (1 + 𝑒−𝑖
2π
𝜆
(𝒌−𝒌𝟎)∙𝑶𝑴𝒌) = 𝐼𝑒(𝒒)(1 + 𝐹

2(𝒒)).   (2.13) 

Where k0 and k is the wave vector of the incident and scattered X-ray; q is the scattering 

vector. Using the relationship of the matter and the wave length of the incident X-ray 

beam shown as eq. (2.11), and the definition of a wave vector 𝒌 = 1 𝜆⁄ , the definition of 

the scattering vector would be 𝒒 = (4𝜋 𝜆⁄ ) sin 𝜃. 

𝐼𝑒 = 𝐴𝑒
2
 is the absolute intensity calculated from the absolute amplitude in the scattered 

X-ray without considering their interference. Eq. (2.13) indicates that 𝐼𝑒𝐹
2(𝒒) is the only 

term needed to be considered.  

When the incident X-ray illuminates the whole scatterer, then eq. (2.12) and (2.13) 

would be: 

𝐴(𝒒) = ∫ 𝐴𝑖
𝑖

= 𝐴𝑒∫ 𝜌(𝑴𝒊)d𝑣𝑖
𝑖

𝑒𝑖𝒒∙𝑶𝑴𝒊                                             (2.14) 

 

Fig. 2.2.3 A schematic illustration of interference happen within a scatterer 

k0

Incident rays

Scattered rays

O
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𝐼(𝒒) = 𝐴 ∙ 𝐴∗ = 𝐴𝑒
2∫ ∫ 𝜌(𝑴𝒋)𝜌(𝑴𝒊)

𝑗

cos(𝒒 ∙ 𝒓) d𝑣𝑗d𝑣𝑖
𝑖

                             

= 𝐴𝑒
2𝜌2(𝑴𝒌)d𝑣𝑘𝑒

−𝑖
2π
𝜆
(𝒌−𝒌𝟎)∙𝑶𝑴𝒌 = 𝐼𝑒(𝒒)𝐹

2(𝒒).    (2.15) 

F(q) is known as the form factor of the scatterer, which determined by the three-

dimensional shape of the scatterer.  

For a scatterer with a finite volume, both two of the concerned points has to be inside 

the scatterer when considering the interference. Therefore, after designating a random 

point in the scatterer as O, how much the probability it would be that the other point Mk 

locates also inside the scatterer to generate the second array of X-ray for interference. 

This is defined as probability with a “characteristic function 𝛾0 ” (Porod, 1951), or 

autocorrelation function identically, 

𝛾0 =
𝑉(𝒓)̅̅ ̅̅ ̅̅

𝑉
                                                                                                    (2.16) 

where 𝑉  is the volume of the scatterer; 𝑉(𝒓)  is a mean value that after the scatterer 

moved its position by a vector r, the volume overlaps with the original, or the volume 

still stay inside the unmoved scatterer: 

𝑉(𝒓)̅̅ ̅̅ ̅̅ =
1

4π
∫ 𝑉(𝒓)d𝜔
4π

0

                                                                            (2.17) 

  

 

Fig. 2.2.4 A schematic illustration interpreting the relationship of V(r), the original scatterer 

with volume V and vector r 

V(r)

O

Mk

V(0)
r

r

r

scatterer



 

17 

 

 

2.2.1.2.1. Scattered intensity profile from a scatterer 

For an isotropic scatterer, the intensity on any direction is identical to the mean value of 

all the direction: 

𝐹2(𝒒) = 𝐹2(𝒒) = ∫ ∫ 𝜌(𝑀𝑗)𝜌(𝑀𝑖)

𝑗

cos(𝒒 ∙ 𝒓) d𝑣𝑗d𝑣𝑖
𝑖

    

= 𝜌2∫ 𝑉(𝑟)
∞

0

cos(𝒒 ∙ 𝒓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 4π𝑟2d𝑟.                         (2.18)  

where 

cos(𝒒 ∙ 𝒓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∫ cos(𝑞𝑟 cos 𝜑)
sin𝜑

2
d𝜑

π

0

                                                           

= −
1

𝑞𝑟
∫ cos 𝑢 d𝑢

0

𝑞𝑟

=
sin 𝑞𝑟

𝑞𝑟
 .                                            (2.19) 

Therefore: 

𝐹2(𝒒) = ∫ ∫ 𝜌(𝑀𝑗)𝜌(𝑀𝑘)

𝑗

cos(𝒒 ∙ 𝒓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ d𝑣𝑗d𝑣𝑘
𝑘

                    

= ∫ ∫ 𝜌(𝑀𝑗)𝜌(𝑀𝑘)

𝑗

d𝑣𝑗d𝑣𝑘
𝑘

sin 𝑞|𝑴𝒌𝑴𝒋|

𝑞|𝑴𝒌𝑴𝒋|
.                             (2.20) 

If considering the centrosymmetry in this isotropic scatterer, then scattered intensity from 

point Mk can be: 

𝐹2(𝒒) = ∫ 𝜌2(𝑀𝑘)
sin 𝑞|𝑶𝑴𝒌|

𝑞|𝑶𝑴𝒌|
d𝑣𝑘

𝑘

                                                    (2.21) 

 𝐹2(𝒒) = ∫ ∫ 𝜌(𝑀𝑗)𝜌(𝑀𝑘)

𝑗

d𝑣𝑗d𝑣𝑘
𝑘

sin 𝑞|𝑴𝒌𝑴𝒋|

𝑞|𝑴𝒌𝑴𝒋|
                                            

= 𝜌
2
𝑉∫ 𝛾0(𝑟)

sin 𝑞𝑟

𝑞𝑟
∙ 4π𝑟2d𝑟

∞

0

                                              (2.22) 

where 𝜌 is the averaged density in this scatterer. 

When a scatterer is anisotropic, then possible to evaluate the scatterer by taking an 

average by changing 𝛾0. Table 2.2.1 shows several examples of the form factors. 
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Table 2.2.1 Form factors of several kinds of scatterers 

 sphere with radius R 𝐹1(𝑞) =
3[𝑠𝑖𝑛( 𝑞𝑅) − 𝑞𝑅 𝑐𝑜𝑠( 𝑞𝑅)]

(𝑞𝑅)3
  

 

sphere shell with outer 

radius R1, inner radius R2 

(V(R)=4πR3/3) 

𝐹2(𝑞) =
𝑉(𝑅1)𝐹1(𝑞, 𝑅𝑞) − 𝑉(𝑅2)𝐹1(𝑞, 𝑅2)

𝑉(𝑅1) − 𝑉(𝑅2)
 

 

ellipsoid (axis: R, R, εR) 
𝐹3
2(𝑞, 𝑅, 휀) = ∫ 𝐹1

2[𝑞, 𝑟(𝑅, 휀, 𝛼)] 𝑠𝑖𝑛 𝛼 d𝛼
𝜋 2⁄

0

 

where 𝑟(𝑅, 휀, 𝛼) = 𝑅√𝑠𝑖𝑛2 𝛼 + 휀2 𝑐𝑜𝑠2 𝛼 

 

2.2.1.2.2. The relationship of the volume of a scatterer and the SAXS profile 

It is possible to derive volume of the scatterer from eq. (2.22) by inverse Fourier 

transformation: 

𝑟𝛾0(𝑟) =
2

𝜋
∫
𝑞 𝐹2(𝒒)

4𝜋�̅�2𝑉
sin 𝑞𝑟 d𝑞

∞

0

                                                                        

𝛾0(𝑟) =
1

2𝜋2�̅�2𝑉
∫ 𝑞2𝐹2(𝒒)

sin 𝑞𝑟

𝑞𝑟
d𝑞

∞

0

                                            (2.23) 

If r = 0, then 

𝛾0(0) =
𝑉(0)̅̅ ̅̅ ̅̅

𝑉
= 1                                                                                                  

(23) = 𝛾0(0) = 1 =
1

2𝜋2�̅�2𝑉
∫ 𝑞2𝐹2(𝒒)d𝑞

∞

0

                                                   

∫ 𝑞2𝐹2(𝒒)d𝑞

∞

0

= 2𝜋2�̅�2𝑉.                                                                       (2.24) 

Eq. (2.23) shows the integrated value of 𝑞2𝐼d𝑞 is a value accordance with the volume of 

scatterer V (or volume fraction, if the volume of specimen is known) and squared mean 

value of electron density �̅�2. Integrated intensity is usually represented with a letter 𝑄. 
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2.2.1.2.3. The relationship of the radius of a scatterer and the SAXS profile 

In section 2.2.1.1.1, the form factor 𝑓0 linked the scattered wave and an atom; but in 

the case of SAXS, the elementary matter for the interference is a volume fraction, rather 

than an atom. Therefore, a new form factor may be introduced as 𝑓𝑗, which links the 

scattered wave from a volume element d𝑣𝑗  on position Mj. Then: 

𝐴𝑗 = 𝐴𝑒𝑓𝑗𝑒
−𝑖
2π
𝜆
(𝒌−𝒌𝟎)∙𝑶𝑴𝒋                                                          

 𝑓𝑗 = 𝜌d𝑣𝑗                                                                                                      (2.25) 

And recall eq. (2.20) with the application of Tylor series, 

𝐹2(𝒒) = ∫ ∫ 𝜌(𝑀𝑗)𝜌(𝑀𝑘)

𝑗

d𝑣𝑗d𝑣𝑘
𝑘

sin 𝑞|𝑴𝒌𝑴𝒋|

𝑞|𝑴𝒌𝑴𝒋|
=∑∑𝑓𝑘𝑓𝑗

sin 𝑞|𝑶𝑴𝒌|

𝑞|𝑶𝑴𝒌|
𝑘𝑗

= (∑𝑓𝑘
𝑘

)

2

(1 −
𝑞2

3

∑ 𝑓𝑘|𝑶𝑴𝒌|
𝟐

𝑘

∑ 𝑓𝑘𝑘
+⋯⋯).                                      (2.26) 

In the physics of Rigid Body, radius of gyration is defined with the moment of inertia 

𝐼𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 =∑𝑚𝑖𝑟𝑖
2

𝑖

                                                                (2.27) 

𝑅𝑔 =
I

∑ 𝑚𝑖𝑖
=
∑ 𝑚𝑖𝑟𝑖

2
𝑖

∑ 𝑚𝑖𝑖
                                                                            (2.28) 

where 𝐼𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎  is moment of inertia, 𝑚𝑖   the mass at point i, 𝑟𝑖  the distance 

from the center to the point i. 

It is obvious that the second item in (2.28) is similar to the second term in (2.26). 

Therefore, the radius of gyration could be derived from the famous Guinier plot of 

plotting of ln(𝐼) − 𝑞2 and the radius of gyration, or also called Guinier radius which 

would be: 

𝑅𝑔 =
∑ 𝑓𝑘𝑟𝑘

2
𝑘

∑ 𝑓𝑘𝑘
.                                                                                           (2.29) 

  Some of the relationship of Rg and the geometric parameters are shown in Table 2.2.2. 
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 Table 2.2.2 Several relationships of 𝑅𝑔 and scatterers 

 
Shape of 

scatterer 
Parameter of Shape Relationship  

 

Sphere Radius R 𝑅𝑔
2 = (3 5⁄ )𝑅2 

 Cylinder Radius r, Length L 𝑅𝑔
2 = (𝑟2 2⁄ ) + (𝐿2 12⁄ ) 

Ellipsoid 
Length of Semi-major axis 

a, a, va 
𝑅𝑔

2 = 𝑎2(2 + 𝑣2) 5⁄  

 Thin disc Radius R 𝑅𝑔
2 = 𝑅2 2⁄   

 Thin bar Length L 𝑅𝑔
2 = 𝐿2 12⁄   

 
Rectangular 

Cuboid 
2a, 2b, 2c 𝑅𝑔

2 = (𝑎2 + 𝑏2 + 𝑐2) 3⁄   

 

2.2.1.2.4. Consideration with fluctuation of electron density 

Electrons are known as the origin of scattering in X-ray, but as mentioned in the section 

2.2.1.2.3, for SAXS measurement, the elementary matter is not an atom, but the 

elementary volume. Therefore, it is necessary to have another look at the origin of the 

SAXS intensity, by focusing on the electrons in the elementary volume, i.e. electron 

density and its oscillation (Guinier & Fournet, 1955; Brumberger, 1965). 

Let 

𝜌(𝒙) = �̅� + ∆𝜌(𝒙)                                                                                     (2.30) 

where �̅� designates the average electron density of the material, then 

∫∆𝜌(𝒙)d𝒙 = 0.                                                                                         (2.31) 

If recall the expression of scattered intensity of (2.13) and (2.15), 

𝐼(𝒒) = 𝐼𝑒(𝒒)∫ ∫ [�̅� + ∆𝜌(𝒙𝒌)][�̅� + ∆𝜌(𝒙𝒋)]𝑒
−𝑖𝒒∙(𝒙𝒌−𝒙𝒋)

𝑉

d𝒙𝒌d𝒙𝒋
𝑉

                       (2.32) 

so eq. (2.16) is what needed to be focused on. 

Guinier and Fournet (1955) discussed eq. (2.32) by the four terms of �̅�2 , �̅�∆𝜌(𝒙𝒌) , 

�̅�∆𝜌(𝒙𝒋) and ∆𝜌(𝒙𝒌)∆𝜌(𝒙𝒋) respectively: 
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First term �̅�𝟐: 

𝐼1(𝒒) = 𝐼𝑒(𝑞)�̅�
2∫ ∫ 𝑒−𝑖𝐪∙(𝒙𝒌−𝒙𝒋)

𝑉

d𝒙𝒌d𝒙𝒋
𝑉

                                      (2.33) 

(2.33) is practically Zero for all observable angles (Guinier & Fournet, 1955). 

 

Second and third term �̅�∆𝝆(𝒙𝒌), �̅�∆𝝆(𝒙𝒋): 

𝐼2(𝒒) + 𝐼3(𝒒) = 2Re {𝐼𝑒(𝑞)�̅� ∫ ∆𝜌(𝒙𝒌)d𝒙𝒌
𝑽

∫ 𝑒−𝑖𝒒∙(𝒙𝒌−𝒙𝒋)

𝑉

d𝒙𝒋}                           (2.34) 

or 

𝐼2(𝒒) + 𝐼3(𝒒) = 2𝐼𝑒(𝑞)Re {∫ ∆𝜌(𝒙𝒌)𝑒
−𝑖𝒒∙𝒙𝒌d𝒙𝒌

𝑽

∫ �̅�𝑒𝑖𝒒∙𝒙𝒋
𝑉

d𝒙𝒋}                          (2.35) 

 (2.34) and (2.35) are negligible compared as fourth term (Guinier & Fournet, 1955) 

 

Fourth term ∆𝝆(𝒙𝒌)∆𝝆(𝒙𝒋): 

𝐼4(𝒒) = 𝐼𝑒(𝑞)∫ ∫ ∆𝜌(𝒙𝒌)∆𝜌(𝒙𝒋)𝑒
−𝑖𝒒∙(𝒙𝒌−𝒙𝒋)

𝑉

d𝒙𝒌d𝒙𝒋
𝑉

.               (2.36) 

Let set 𝒙𝒋 = 𝒙𝒌 + 𝒓, then 

𝐼4(𝒒) = 𝐼𝑒(𝑞)∫ ∫ ∆𝜌(𝒙𝒌)∆𝜌(𝒙𝒌 + 𝒓)𝑒
−𝑖𝒒∙𝒓

𝑉

d𝒙𝒌d𝒓
𝑉

.                  (2.37) 

If consider 𝒙𝒌 first: 

∫ ∆𝜌(𝒙)∆𝜌(𝒙 + 𝒓)d𝒙
𝑉

                                                                            (2.38) 

then 

∫ ∆𝜌(𝒙)∆𝜌(𝒙)d𝒙
𝑉

= ∫ ∆𝜌2(𝒙)d𝒙
𝑉

= ∆𝜌2̅̅ ̅̅ ̅𝑉.                                    (2.39) 

If define a function 𝛾(𝒓) by Debye and Bueche (1949): 

∫ ∆𝜌(𝒙)∆𝜌(𝒙 + 𝒓)d𝒙
𝑉

= ∆𝜌2̅̅ ̅̅ ̅𝑉𝛾(𝒓)                                                    (2.40) 

then 

𝐼4(𝒒) = 𝐼𝑒(𝒒)∆𝜌2̅̅ ̅̅ ̅𝑉 ∫ 𝛾(𝒓)𝑒−𝑖𝒒∙𝒓d𝒓
𝑉

                                                   (2.41) 

Therefore, consequently: 

𝐼(𝒒) = 𝐼4(𝒒) = 𝐼𝑒(𝒒)∆𝜌2̅̅ ̅̅ ̅𝑉 ∫ 𝛾(𝑟)
sin 𝑞𝑟

𝑞𝑟
4𝜋𝑟2𝑑𝑟

∞

0

.                       (2.42) 
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This implies that the measured intensity in SAXS is practically originated from the 

difference in the local electron density and the squared mean electron density, i.e., ∆𝜌2̅̅ ̅̅ ̅ 

of precipitates and the matrix in a metallic alloy. 
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2.3. Enhancement and control of contrast in SAXS analysis 

2.3.1. Standardization of scattered intensity in SAXS method 

The absolute scattered intensity emitted from a single electron 𝐼𝑒 could be expressed as 

below (Guinier & Fournet, 1955): 

𝐼𝑒 = 𝐴𝑒
2(𝒒) = r0

2𝐼0𝑝
−2𝑃                                                                       (2.43) 

where r0 is the classic radius of an electron, 𝐼0 is the absolute intensity of the incident 

X-ray beam, p is the camera length, P is the polarization factor mentioned in the section 

2.2, which is 1 when the detector is vertical to the polarization direction of the incident 

X-ray like the experiments in this treatise.  

The absolute intensity is an intensive parameter introduced as differential scattered 

intensity in the section 2.2, so the detected intensity 𝐼𝑠𝑐 ∝ 𝐼𝑒 has to be divided with the 

solid angle of one detector element ∆𝛺:  

(
d𝜎

d𝛺
) = (

∆𝜎

∆𝛺
) =

𝐼𝑠𝑐
∆𝛺

.                                                                               (2.44) 

Therefore, the absolute value of scattered intensity, i.e. differential scattered intensity (or 

the total scattered intensity mentioned in the section 2.2) of SAXS is now derivable. 

 

2.3.2. Calibration method in quantitative nanostructure analysis by scanning 

microbeam SAXS method 

2.3.2.1. Calibration with different detectors 

Practically, a calibration is often needed for the measured X-ray intensities, due to the 

difference in linearity of input-output response in different detectors. This inconsistency 

occurs when different types of detectors like SDD and ion chamber are used together, or 

even take places when using the same type of detectors but different in the sensitivity, e.g. 

using ion chambers with different sizes. 

 Ideally, when two different detectors which have a same linearity in responding, the 

output data converted from a common input data is expected to be the same. E.g., if two 

detectors measuring the incident and the transmitted X-ray as I0 and I1 respectively, and 

if there is nothing exists between these two detectors, then the transmittance T should be 

one and 𝐼0 = 𝐼1. Then, a specimen was put in between these two detectors and penetrated 

by the X-ray, then the transmittance would be: 

𝑇𝑖𝑑𝑒𝑎𝑙
𝑠 =

𝐼1
𝑠

𝐼0
𝑠 .                                                                                                (2.45) 

 Practically, the response of the two detectors are not the same, i.e. 𝑇𝑟𝑒𝑎𝑙 ≠ 1, 𝐼0 ≠ 𝐼1, 
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then the linearity of detectors have to be calibrated. When a specimen is measured, the 

output transmittance of this system would be: 

𝑇𝑟𝑒𝑎𝑙
𝑠  =  

𝐼1
𝑠 𝐼1⁄

𝐼0
𝑠 𝐼0⁄

 .                                                                                        (2.46) 

 When the output value is needed for a precise value, then the influence from the dark 

current which occurs when connected to electricity 𝐼0
𝑑𝑎𝑟𝑘 and 𝐼1

𝑑𝑎𝑟𝑘 , have to be 

eliminated from the outputted data for each detector. This influence can be measured by 

checking the output intensity without exposing X-ray, and then eq. (2.46) would be: 

𝑇𝑟𝑒𝑎𝑙
𝑠  =  

(𝐼1
𝑠 − 𝐼1

𝑑𝑎𝑟𝑘) (𝐼1 − 𝐼1
𝑑𝑎𝑟𝑘)⁄

(𝐼0
𝑠 − 𝐼0

𝑑𝑎𝑟𝑘) (𝐼0 − 𝐼0
𝑑𝑎𝑟𝑘)⁄

 .                                              (2.47) 

Therefore, the calibration for different detectors is completed. 

 

2.3.2.2. Scattering intensity separation from other intensity 

For a measurement detected ideally, the measured intensity can be expressed with a 

function below (Hendricks, 1972; Osamura & Okuda, 1983): 

A ∙ [
𝐸(𝐪)

𝐸0(𝐪)
] = 𝑡𝑇𝐽𝑐𝑜ℎ(𝐪) + 𝑡𝑇𝐽𝑓𝑙(𝐪) + 𝑇𝐽𝐵.𝐺.(𝐪)                               (2.48) 

where A is a constant links the relative and absolute intensity; 𝐸(𝐪)  is the measured 

relative intensity at a scattering vector q; 𝐸0(𝐪) is the relative intensity measured with 

standard specimen. Both 𝐸(𝐪) and 𝐸0(𝐪) have to be adjusted with the same intensity of 

incident X-ray; 𝑡 is the thickness of the specimen X-ray has passed; T is the transmittance 

of the measurement; 𝐽𝑐𝑜ℎ(𝐪) is the scattered intensity profile; 𝐽𝑓𝑙(𝐪) is the fluorescent 

X-ray emitted from the atom in the specimen; 𝐽𝐵.𝐺.(𝐪) is the parasitic scattering intensity 

from the experimental apparatus, as well as synchrotron facility.  

  T is derivable with the incident/transmitted X-ray, and t is available when the 

component of the specimen that X-ray passed through is known. Variable t can be 

estimated form the attenuation coefficient 𝜇𝑎𝑙𝑙𝑜𝑦  using the exponential law (Hubbell, 

1982): 

−d𝐼 =  𝐼𝜇𝑎𝑙𝑙𝑜𝑦d𝑥                                                                                                    

𝐼1 = 𝐼0𝑒
−𝜇𝑎𝑙𝑙𝑜𝑦𝑡                                                                                         (2.49) 

where d𝐼 is the decrement in X-ray after going through a specimen with a thickness 𝑑𝑥. 

The attenuation coefficient of the material 𝜇𝑎𝑙𝑙𝑜𝑦 is estimated with the mass absorption 

coefficient 𝜇𝑎𝑙𝑙𝑜𝑦 𝜌𝑎𝑙𝑙𝑜𝑦⁄  of the material by dividing the material’s density 𝜌𝑎𝑙𝑙𝑜𝑦. The 

mass absorption coefficient of the material is known as the summation of which of the 
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comprising element j, and the mass fraction 𝜔𝑗 as below: 

(
𝜇

𝜌
) =∑𝜔𝑗 (

𝜇

𝜌
)
𝑗

𝑛

𝑗=1

.                                                                                   (2.50) 

When both the component elements 𝜔𝑗 and the local thickness t fluctuates at the same 

time—like the in this treatise—it is impossible to determine both of the information 

simultaneously. Therefore, the investigation by SEM-EDX 1D line scanning/2D mapping 

was performed on the specimens, and the solute concentration distributions were the 

determined for each SAXS specimen using master curves. 

(𝜇 𝜌⁄ )𝑗 can be found in other researcher’s work summarized in e.g. NIST (National 

Institute of Standards and Technology) database, 𝜌  of the local material with can be 

estimated with the unit cell of the material and the atomic weight, atomic fraction for each 

element. With all data above, the thickness of specimen t was acquired locally. 

𝐽𝐵.𝐺.(𝐪)  was confirmed by measuring SAXS profile with X-ray exposed without 

specimen. 𝐽𝑓𝑙(𝐪) was considered constant for all angles, for no directivity observed in 

the fluorescent X-ray. 𝐽𝑓𝑙(𝐪)  was estimated by checking the deviation from the ideal 

profile of the porod’s rule, i.e. 𝐼(𝐪) ∝ 𝐪−4 (Guinier & Fournet, 1955; Brumberger, 1956), 

and the measured 1D SAXS profile in the porod’s area. 
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2.3.2.3. Calibration of absolute scattered intensity 

From eq. (2.15) (2.43) (2.44): 

(
d𝜎

d𝛺
) =

𝐼𝑠𝑐
∆𝛺

= 𝐼𝑒𝐹
2(𝑞) = 𝐴𝑒

2(𝑞)𝐹2(𝑞) = r0
2𝐼0𝑝

−2𝑃𝐹2(𝑞)         (2.51) 

it is apparent that the relative and absolute intensity is proportional when the scattered 

intensity is regulated with solid angle ∆𝛺, with a coefficient composed by r0, I0, p and P. 

Each of them is either a constant, or a fixed value that can be measured. Therefore, using 

standard specimens with known SAXS profiles are widely used for conducting the 

coefficient of relative and absolute intensity. 

Glassy carbon is a common specimen provided commercially for SAXS measurement 

in these years. Fig. 2.3.1 shows the relationship of several SAXS profile by glassy carbon 

made differently: (a) SRM 3600, provided by NIST (Andrew et al., 2017) (b) standard 

specimen provided by Dr. Jan Ilavsky from Advanced Photon Source (APS), Argonne 

National Laboratory (Zhang et al, 2010) (c) production by The Nilaco Corporation. SRM 

3600 was supplied by NIST for the validity in standardization usage, so this can be the 

first-hand material for standardization. Here should be noted that the 1 mm thickness of 

SRM 3600 has to be considered while the calibrating into absolute intensity, and the unit 

 

Fig. 2.3.1 Glassy carbon SAXS absolute intensity provided commercially (Zhang 

et al, 2010; Andrew et al., 2017) 
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is cm-1∙sr-1, not cm-3∙sr-1. 

 

2.4. Visualization of inner structure by scanning/tomographic SAXS 

In order to conduct a spatial investigation on the multilayered composites about local 

nanostructural distribution, the SAXS method with the application of 1D scanning, and 

2D tomographic measurement using microbeam X-ray was performed.  

The schematic illustration of 1D scanning measurement is shown in Fig. 2.4.1 left. In 

this experiment, the local nanostructural distribution was investigated by the 2D SAXS 

profile illuminated locally by microbeam X-ray. After a SAXS measurement was finished 

in particular location on specimen, the specimen was moved along x direction for specific 

distance, and another SAXS measurement was conducted on a different area of specimen. 

This process was repeated as a scanning process, and the moving spotted area traverse 

the whole specimen on the x direction, which is also the normal direction (ND) of the 

rolled multilayered composite.  

The schematic illustration of 2D tomographic measurement is shown in Fig. 2.4.1. right. 

In this experiment, in addition to the translation movement on x-direction mentioned for 

1D scanning, a rotation movement by steps were conducted on the specimen repeatedly. 

In order to illuminate all area on a specific cross-section of specimen at every few angles, 

the full rotation movement was performed on each translated step on x-direction. The 

specimen was also scanned edge to edge to cover all the area in the cross-section of 

specimen. 

 

 

 

 

Fig. 2.4.1 Schematic illustrations of (left) 1-dimensional SAXS scanning 

measurement; (right) 2-dimensional tomographic measurement. 
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2.5. Computed Tomography 

2.5.1. Computed tomography with summation method 

Tomography has been applicated in the field of clinics since 1920s according to French 

patents (see Kieffer, 1938), which has always been a method to investigate the structure 

inside the sample object nondestructively. Fig. 2.5.1 shows a schematic illustration of a 

method called linear tomography, which has been used in the early age of tomographic 

measurement. X1 is an X-ray source and which stays above the measure target i.e. the 

patient all the time, emitting X-ray which covers the patient consistently. P is the 

photograph film placed under the patient for detecting the transmitted X-ray from the 

patient. When the X-ray source stays at X1, then the two arrays of X-ray penetrating the 

patient by A1 and B1 respectively, and falls on α and β after absorbed by the patient on 

either of their path. Then, move the X-ray source to the X2 and the photograph film to the 

left parallelly at the specific speed. With this operation, the absolute position on the 

photograph film of α and β was kept collecting the transmitted intensity of A1 and B1 to 

A2 and B2 intentionally. From Fig. 2.5.1 it is apparent that the light path A1A2 and B1B2 

kept spotting two fixed point Ca and Cb on the cross-section C inside the patient, and these 

special points are unique for each absolute location on the photograph film. This 

emphasizes the absorption coefficient on Ca and Cb, also diminish the effect from other 

part of the patient by pilling up the information randomly.  

The algorithm of the linear tomography, or the reconstruction for cross-section C is 

   

Fig. 2.5.1 Linear tomography. C, Patient cross-section; A1 B1 and A2 B2, two set of X-

ray from X-ray source in X1 and X2. A1A2 and B1B2 illuminate two fixed points C1 and 

C2on cross-section C in the patient respectively. Penetrated X-rays fall on the same 

points α and β on the moving photograph constantly (Gordon & Herman, 1974) 

X1 X2

Direction of photographα βα β

A1
B1

A2

B2

C

Direction of X-ray source

patient

Ca Cb
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simply the summation of the penetrated X-ray which absorbed by the patient from each 

direction, with a specific rotation center (Ca, Cb etc.) for each position on the photograph. 

The resulted tomography is considerably blur due to the noise effect from other unwanted 

cross-sections. Also, this linear tomographic is known for the spurious contours causing 

unsharp edge and artifacts subjected to the incident angle when fall on photograph 

(Kieffer, 1939; Reichman, 1972).  

In order to sharpen the contour of the specimen, the incident X-ray was adjusted close 

to be normal to the photograph film, and the distance of the light path was kept constant 

by using a pencil X-ray source and a detector as a set, moving together to scan 1-

dimensionally from different angles of the target cross-section, shown in Fig. 2.5.2. This 

technique was introduced by Kuhl and Edwards (1963) with a name of transverse section 

scanning. This technique already contains the process of “back projection” first named 

by Crowther et al. (1970B). 

  

 

Fig. 2.5.2 Transverse section scanning introduced by Kuhl and Edwards (1963) to 

avoid the problems in the linear tomography. 1D scanning performs on a target cross-

section of the specimen from different angles and then sum up the results. This is 

relatively close to CT in commercial use today, but the algorithm is still summation 

only. Transmittance on point D is calculated as the summation of δ1 and δ2. 

specimen

X1

X2 δ2

δ1

(a) (b)



 

30 

 

 

2.5.2. Computed tomography with reconstruction process 

The Filtered Back Projection (FBP) is a method of reconstruction still widely used today 

in many fields of research. This method was developed for the solution of problem of the 

blurring around the sharp edge often observed in the attenuation coefficient tomography, 

both in the linear tomography and the transverse section scanning tomography. The 

procedure is shown in Fig. 2.5.3. The process is to insert a filter in the “frequency domain” 

as signal processing (“frequency domain” is identical to “reciprocal space”, which is more 

familiar in the field of materials science), before back projecting to each pixel in the real 

domain. There are multiple filters known to use, e.g., Ramp filter, Hanning filter, 

Hamming filter, Butterworth filter, Ramachandran-Lakshminarayanan filter. Each filter 

has its advantage and disadvantage, and please refer to textbooks about image processing 

(Gonzalez & Woods, 2002), as it is about the appearance of an image and which is out of 

the focus of this treatise.  

Another reconstruction process is called the Convolution Back Projection (CBP) method 

(see Desai & Jenkins, 1992), which is mathematically identical to FPB method, but 

instead of inserting the filter in the reciprocal space, it put in the real space. This 

multiplication has to be converted into the operation of convolution, due to the 

characteristic of Fourier transformation. This CBP method is reported to be more accurate 

(Nakano, T. et al., 2020) compared to FBP method. 

  

 

Fig. 2.5.3 A schematic illustration of Filtered Back Projection (FPB) method. FT and 

IFT stands for Fourier Transformation and Inverse Fourier Transformation. 
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2.6. Quantitative Computed tomography 

2.6.1. Detailed process of Computed Tomography (Radon transform) 

Fig. 2.6.1 shows the measuring process in a tomography experiment. When an X-ray 

array projects at an angle θ and with a distance from a fixed rotation point with t1, then 

the projected attenuation coefficient measured is Pθ(t1). This is a function of variable t, 

and every t can be expressed with x and y, which is the two axis of a fixed Cartesian 

coordinate system: 

𝑡 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃.                                                                               (2.52) 

 Every Pθ(t) is a summation result of the small pixels with values of the mean attenuation 

coefficient for an element area dxdy illuminated by X-ray perpendicular to the angle θ. 

Therefore, the distribution of projected values can be linked with the attenuation 

coefficient distribution of the specimen f(x, y) with the following formula: 

𝑃𝜃(𝑡) = ∫ 𝑓(𝑥, 𝑦)d𝑠
(𝜃,𝑡)𝑙𝑖𝑛𝑒

= ∫ ∫ 𝑓(𝑥, 𝑦)𝛿(𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑡)d𝑥d𝑦

∞

−∞

∞

−∞

.          (2.53) 

This formula is known as Radon transform of the function f(x, y). Eq. (2.53) is operational 

with any t at any fixed θ. 

 

Fig. 2.6.1 Schematic illustration of X-ray projection at an angle θ. 
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2.6.2. The Fourier Slice Theorem and multiple dimensional Fourier transformation  

As shown in Fig. 2.6.2, by changing the base vector x and y to the t and s axis rotated at 

an angle θ, Radon transformation eq. (2.53) can be easier to be understood (see Dean, 

1983): 

(
𝑥

𝑦
) = (

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

) (
𝑡

𝑠
)                                                                  (2.54) 

𝑃𝜃(𝑡) = ∫ 𝑓(𝑥, 𝑦)d𝑠
(𝜃,𝑡)𝑙𝑖𝑛𝑒

                                                                                   

= ∫ 𝑓(𝑡 cos 𝜃 − 𝑠 sin 𝜃 , 𝑡 sin 𝜃 + 𝑠 cos 𝜃)d𝑠
∞

−∞

                     (2.55) 

let 𝒙 =  (𝑥, 𝑦), and the unit vector 𝝃 and 𝝃⊥ for the t and s axis. Then 

{

𝝃(𝑐𝑜𝑠 𝜃 , 𝑠𝑖𝑛 𝜃)      

𝝃⊥(−𝑠𝑖𝑛 𝜃 , 𝑐𝑜𝑠 𝜃)

𝒙 = 𝑡𝝃 + 𝑠𝝃⊥         

.                                                                                  (2.56) 

All the pixels in the specimen which projected by a single array of X-ray can be converted 

as ∫ 𝛿(𝑡 − 𝝃 ∙ 𝒙) d𝑥d𝑦. Eq. (2.55) would be: 

 

Fig. 2.6.2 A schematic illustration showing 2D Fourier transformation with 

different coordinate systems. The fixed system is x-y system; The rotated system is 

t-s system at an angle θ. 
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𝑃𝜃(𝑡) = ∫ 𝑓(𝑥, 𝑦)d𝑠
(𝜃,𝑡)𝑙𝑖𝑛𝑒

= ∬𝑓(𝒙)𝛿(𝑡 − 𝝃 ∙ 𝒙)d𝑥d𝑦

ℝ2

                              

 =  ∫𝑓(𝒙)𝛿(𝑡 − 𝝃 ∙ 𝒙)d𝒙                                                             (2.57) 

where 𝛿(𝑥) is the Dirac delta function. 

The Fourier transformation in the n dimension can be express as 

𝐹𝑛(𝒙) = ℱ𝑛[𝑓(𝒙)] = ∫𝑓(𝒙)𝑒
−2𝜋𝒘∙𝒙𝑖d𝒙                                             (2.58) 

where the period of 𝒘 is 1, not 2π as in materials science conventionally. 

ℱ𝑛[𝑓(𝒙)] = ∫ d𝑝
∞

−∞

∫d𝒙𝑓(𝒙) 𝑒−2𝜋𝑝𝑖𝛿(𝑝 − 𝒘 ∙ 𝒙)                            (2.59) 

let 𝒘 = 𝑡𝝃, 𝑝 = 𝑡𝑠 (𝑡 ∈ ℝ, 𝛏 is the unit vector in ℝ𝑛), then if note ℛ as the operator 

of Radon transformation, 

ℱ𝑛[𝑓(𝒙)] = |𝑡|∫ d𝑠
∞

−∞

∫d𝒙𝑓(𝒙)𝑒−2π𝑡𝑠𝑖𝛿(𝑡𝑠 − 𝑡𝛏 ∙ 𝒙)                                   

                  = ∫ d𝑠
∞

−∞

𝑒−2π𝑠𝑡𝑖∫d𝐱𝑓(𝒙) 𝛿(𝑡 − 𝝃 ∙ 𝒙)                                           

                  = ∫ ℛ[𝑓(𝑡, 𝝃)]𝑒−2π𝑡𝑠𝑖d𝑠
∞

−∞

.                                                   (2.60) 

In other words,  

ℱ𝑛[𝑓(𝒙)] = ℱ1[ℛ[𝑓(𝑡, 𝝃)]].                                                                     (2.61) 

 This indicates that the Fourier Transformation in the multiple dimension can be 

considered as the 1D Fourier transformation of a Radon transformation on one radial 

direction. Eq. (2.61) leads to the famous Projection-Slice Theorem in 2 dimensions: 

ℱ2[𝑓(𝒙)] = ℱ1[ℛ𝜃[𝑓(𝒙)]]                                                                       (2.62) 

Fig. 2.6.3 shows the nature of eq. (2.62), which is applicated in reconstruction method in 

Computed Tomography. 
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2.6.3. The idea of filter in back-projection and FBP method 

2.6.3.1. “Filter” in back-projection process 

After the projected distribution was measured, the operation of a back-projection is the 

next and the final step in the tomographic process. Because the Fourier transformed result 

of Radon transformation can be regarded as the 2D transformed result of an object f(x, y), 

as shown in eq. (2.62), the object function in 2D can be converted with a 2D inverse 

Fourier transformation: 

𝑓(𝒙) = ℱ2
−1 [ℱ1[ℛ𝜃[𝑓(𝒙)]]].                                                               (2.63) 

For simplicity, if only consider the 2D inverse Fourier transformation: 

𝑓(𝑥, 𝑦) =  ∫ ∫ 𝐹(𝑢, 𝑣)𝑒𝑖2π(𝑢𝑥+𝑣𝑦)d𝑢d𝑣
∞

−∞

∞

−∞

                                      (2.64) 

 where (u, v) is a point in the reciprocal space (see Fig. 2.6.3) 

{
𝑢 = 𝑤 cos 𝜃
𝑣 = 𝑤 sin 𝜃

.                                                                                             (2.65) 

In order to get close to the Radon transformation, the coordinate system from the 

 

Fig. 2.6.3 A schematic illustration showing the relationship of Radon transformation 

(left) and 2D Fourier transformation result on one direction θ (right). “Real space” and 

“reciprocal space” is often replaced with “space domain” and “frequency domain” in 

the signal process. 

x

y

specimen

u

v

w

reciprocal spacereal space

Fourier Transformation
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Cartesian coordinate system may change into the Polar coordinate system: 

d𝑢d𝑣 = 𝑤d𝑤d𝜃                                                                                         (2.66) 

then 

𝑓(𝑥, 𝑦) =  ∫ ∫ 𝐹(𝑤, 𝜃)𝑒𝑖2π𝑤(𝑥 cos𝜃+𝑦sin𝜃)𝑤d𝑤d𝜃
∞

0

2π

0

                   (2.67) 

from the property of  

𝐹(𝑤, 𝜃 + 180°) =  𝐹(−𝑤, 𝜃)                                                                 (2.68) 

expression in eq. (2.67) can be converted into 

𝑓(𝑥, 𝑦) =  ∫ [∫ 𝐹(𝑤, 𝜃)|𝑤|𝑒𝑖2𝜋𝑤𝑡d𝑤
∞

−∞

]
π

0

d𝜃                                     (2.69) 

where 𝑡 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 = (2.52). 

If to consider the projection distribution at the same angel θ, then eq. (2.69) in the 2D 

Fourier transformation can be changed into 

𝑓(𝑥, 𝑦) =  ∫ [∫ 𝑆𝜃(𝑤)|𝑤|𝑒
𝑖2π𝑤𝑡d𝑤

∞

−∞

]
π

0

d𝜃                                                     

= ∫ 𝑄𝜃(𝑥 cos 𝜃 + 𝑦 sin 𝜃)d𝜃
𝜋

0

                                                (2.70) 

where 

𝑄𝜃(𝑡) = ∫ 𝑆𝜃(𝑤)|𝑤|𝑒
𝑖2π𝑤𝑡d𝑤

∞

−∞

.                                                         (2.71) 

And 𝑆𝜃(𝑤) is the 1D Fourier transformation of the object along a straight line at an angle 

θ, i.e., the line w in the reciprocal space in Fig. 2.6.3, corresponding to the with line with 

t in the real space. This implies that eq. (2.70) is the Fourier Slice Theorem in 2D for one 

direction, or eq. (2.62) for one direction. 

Since 𝑆𝜃(𝑤) is a function that θ is fixed, and 𝑤 is identical to 𝒘 = 𝑡𝝃 in eq. (2.59) 

and (2.60), 

𝑆𝜃(𝑤) = ℱ1[ℛ𝜃[𝑓(𝒙)]]                                                                            (2.72) 

Therefore, the back-projection process in eq. (2.70) consequently can be expressed as: 

𝑓(𝑥, 𝑦) = ∫ ∫ 𝑆𝜃(𝑤)|𝑤|𝑒
𝑖2π𝜔𝑡d𝑤

∞

−∞

𝜋

0

d𝜃                                                         

= ℱ2
−1[ℱ1[ℛ𝜃[𝑓(𝒙)]] ∙ |𝑤|]                                                    (2.73) 

Compared to eq. (2.62), there is an additional variable |𝑤| exists in the back-projected 

process in eq. (2.73). This can be regarded as a weighting factor, or the “filter”. From this 

reason, 𝑄𝜃(𝑡) was called a “filtered projection”. 
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2.6.3.2. The necessity of a filter in the practical discrete system and the Filtered 

Back-Projection method 

In the operation of computed tomography measurement, the resolution in the rotation 

angle and the pixel size of the reconstructed image is finite, particularly in this treatise. 

Therefore, when the projected distribution was converted into sinusoidal waves by a 

Fourier transformation, there are some restriction exist due to the discreteness, and which 

are needed to be considered carefully. 

 

2.6.3.2.1. The influence of Finite rotation step angles in the reciprocal space 

Fig. 2.6.4 shows a schematic illustration of an example of tomography operated 

practically. It is obvious that the size of the rotation angle and the distance of different X-

rays are both finite. This leads to the plots covering the reciprocal space is sparse in the 

high frequency domain, and also surplus in the low frequency domain at the same time. 

Therefore, the issue is how to treat this star-shaped plots into an evenly-distributed circle. 

Because every position in the reciprocal space represents a sinusoidal wave in the real 

space, every point in the reciprocal space has to be covered ideally. From this reason, a 

treatment on the measured reciprocal data is needed, and this data processing is usually 

conducted with weighting on reciprocal data, or also called the “filtering”. 

For a tomographic measurement with M+1 times of projections over an angle of 180°, 

i.e. with an angular step of 180° 𝑀⁄ , then the weighting on each projection data, or the 

filter would be 

2𝜋|𝑤|

𝑀
.                                                                                                          (2.74) 

 

Fig. 2.6.4 A schematic illustration shows the tomographic measurement practically. 

In this image, instead of rotating the X-ray source and detector, the objective specimen 

is moved. Each red square in reciprocal space corresponds to the one projected 

distribution in one rotation angle.  

v

u

Reciprocal space

rotate

Real space
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 This is simply a coefficient multiplied with |𝑤| that needed in back-projection in the 

previous section 2.6.3.1, which can be regarded as a process to increase the “thickness” 

in each red shaded plot in the reciprocal space in shown as Fig. 2.6.4 respective to the 

frequency in each point in the reciprocal space. This is a compromise solution and 

different from what is needed, as shown in Fig. 2.6.5.  

 Filters like Ramp filter mentioned in the section 2.6.2 is to manipulate the form of |𝑤|. 

Hence, the Filtered Back-Projection is to simply switch the term |𝑤| with a filter in the 

eq. (2.71):  

(71) = 𝑄𝜃(𝑡) = ∫ 𝑆𝜃(𝑤)|𝑤|𝑒
𝑖2π𝑤𝑡d𝑤

∞

−∞

                                                          

≈ ∫ 𝑆𝜃(𝑤) ∙ 𝑓𝑖𝑙𝑡𝑒𝑟(|𝑤|) ∙ 𝑒
𝑖2π𝑤𝑡d𝑤

∞

−∞

.                     (2.75) 

 

2.6.3.2.2. The influence of Finite translation step size in the reciprocal space 

 For a distribution of discrete data with a finite spatial interval of τ, the highest frequency 

for Fourier transformation worthy of discussion is known as Nyquist rate which is 1 2𝜏⁄  

(Nyquist, H. 1928), indicating that the half period of the sinusoidal wave in the Fourier 

transformation cannot be shorter than the size of the spatial interval, or the size of a pixel 

in this treatise. Therefore, in the reciprocal space, the maximum radius of the circle would 

be 1 2𝜏⁄  and the discussion is proceeded within this circle area. 

Let w is the frequency on a direction in the Fourier transformation as eq. (2.59), and let 

W the maximum of w. The it would be as shown in Fig. 2.6.6:  

𝑤𝑚𝑎𝑥 = 𝑊 =
1

2𝜏
                                                                                       (2.76) 

 

Fig. 2.6.5 The distribution needed in the reciprocal space for one rotation angle (left), 

the distribution measured in the tomography (middle), the distribution after the 

filtering (right). The thickness (height) of the section is the weight applied to the 

distribution. 

ideal reality filtered (weighted)
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the projected distribution is 

𝑃𝜃(𝑚𝜏) = ℛ𝜃[𝑓(𝒙)],   𝑚 ∈ [−
𝑁

2
,−
𝑁

2
+ 1,⋯ , 0,⋯

𝑁

2
− 1,

𝑁

2
]     (2.77) 

for a field of view (FOV) = N 𝜏 where a pixel by size 𝜏 × 𝜏 (N is a large number). m in 

here can be regarded as the coordinate of a point in the real space. Then the interval in the 

reciprocal space, or the frequency resolution in 1D discrete Fourier transformation (DFT): 

d𝑤 = 𝑤𝑚𝑖𝑛 =
1

𝐹𝑂𝑉
=
1

𝑁𝜏
=
2𝑊

𝑁
                                                           (2.78) 

Institute eq. (2.77) into (2.72): 

𝑆𝜃(𝑤) = ℱ1[𝑃𝜃(𝑚𝜏)] ≈ 𝑆 (𝑚
2𝑊

𝑁
)                                                                   

=
1

2𝑊
∑ 𝑃𝜃 (

𝑘

2𝑊
)𝑒−𝑗2π(𝑚𝑘 𝑁⁄ )

𝑁 2⁄

𝑘=−𝑁 2⁄

            (2.79) 

Instituting eq. (2.79) into (2.71), 

𝑄𝜃(𝑡) ≈ (
2𝑊

𝑁
) ∑ 𝑆𝜃 (𝑚

2𝑊

𝑁
) |𝑚

2𝑊

𝑁
| 𝑒−𝑗2π𝑚(2𝑊 𝑁⁄ )𝑡

𝑁 2⁄

𝑚=−𝑁 2⁄

                  

            𝑄𝜃(𝑛𝜏) = (
2𝑊

𝑁
) ∑ 𝑆𝜃 (𝑚

2𝑊

𝑁
) |𝑚

2𝑊

𝑁
| 𝑒−𝑗2π(𝑚𝑛 𝑁⁄ )

𝑁 2⁄

𝑚=−𝑁 2⁄

      (2.80) 

where t as shown in Fig. 2.6.1, which is the distance from projection line to rotation center, 

at a rotation angle θ.  

 

Fig. 2.6.6 The relation of parameters in the real space and the reciprocal space in 

tomography measurement. 
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Therefore, in the FPB method, if filters like Hamming filter is applicated on the 

reciprocal space, then eq. (2.71) is altered multiplied with the function of Hamming filter 

𝐻(𝑤): 

𝑄𝜃(𝑛𝜏) = (
2𝑊

𝑁
) ∑ 𝑆𝜃 (𝑚

2𝑊

𝑁
) ∙ |𝑚

2𝑊

𝑁
|𝐻 (𝑚

2𝑊

𝑁
)𝑒−𝑗2π(𝑚𝑛 𝑁⁄ )

𝑁 2⁄

𝑚=−𝑁 2⁄

           (2.81) 

Comparing eq. (2.80) with the continuous 𝑄𝜃(𝑡) in eq. (2.71), it is apparent that in the 

discrete system, the filter |𝑚
2𝑊

𝑁
| has to be operated on the projected distribution in the 

real space. The precision is higher when the discrete projection is close to the continuous 

one, i.e., 𝑚
2𝑊

𝑁
 is close to 0, or N is large, and m & τ is small. In other words, FBP is 

accurate when a small specimen is conducted with a high-resolution tomographic 

measurement, for both translational and angular movement. An obvious example showing 

the deviation between applying a filter to the continuous and the discrete system is that 

the exclusion of the “DC gain” in the continuous Fourier transformation system, which is 

mandatory in the discrete Fourier transformation system. 

 

2.6.4. Convolution Back Projection method 

Eq. (2.75) can be converted with the circular convolution denoted with (∘), form the 

property of Fourier transformation 

𝑄𝜃(𝑛𝜏) = ∫ 𝑆𝜃(𝑤) ∙ 𝑓𝑖𝑙𝑡𝑒𝑟(|𝑤|) ∙ 𝑒
𝑖2π𝑤𝑡d𝑤

∞

−∞

                                               

≈ 𝜏𝑃𝜃(𝑛𝜏) ∘ 𝜙(𝑘𝜏)                                                                    (2.82) 

where k, 𝑛 ∈ [−𝑁 2⁄ , −𝑁 2⁄ + 1,⋯ , 0,⋯𝑁 2⁄ − 1, 𝑁 2⁄ ] , and 𝜙(𝑘𝜏)  is the inversed 

discrete Fourier transformation (IDFT) of the discrete function 

𝜙(𝑘𝜏) = ℱ−1[𝑓𝑖𝑙𝑡𝑒𝑟(|𝑤|)]                                                                   (2.83) 

Consequently, eq. (2.82) and (2.83) is what to be used, when a filter is applied on the 

Radon transformed distribution, especially when the measurement is coarse and discrete. 
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2.7. Specimen preparation 

2.7.1. Al base specimen 

Two types of Al-based three-layered sandwich composite were studied in the 1D 

scanning microbeam SAXS measurement and tomographic measurement. Al/Al–Zn/Al 

multilayer is composed by the Al–Zn binary alloy, and Al–Mg/Al–Zn/Al–Mg multilayer 

is composed by Al–Zn–Mg ternary alloy. Table 2.7.1 and 2.7.2 shows the detailed 

chemical composition of each single layer in these composites. As shown in Fig. 2.7.1, a 

single layer Al–Zn located in the center of the composite, sandwiched by two layers of 

either pure Al or Al–Mg alloy. All the layers have a uniformed thickness. The production 

process is described as following: 

 

Table 2.7.1 Chemical Compositions of single layer sheets in Al/Al–Zn/Al multi-

layered composites 

(mass%)  

layers Si Fe Cu Mg Zn Ti Al 

Al 0.003  0.003  0.006  0.000  0.001 0.000 bal. 

Al–Zn 0.005 0.003 0.005 0.000 14.07 – bal. 

Table 2.7.2 Chemical Compositions of single layer sheets in Al–Mg/Al–Zn/Al–Mg 

multi-layered composites 

(mass%)  

layers Si Fe Cu Mg Zn Ti Al 

Al–Mg 0.016 0.014  0.005  2.45  0.001 0.01 bal. 

Al–Zn 0.014 0.017 0.005 0.00 10.16 0.01 bal. 

 

 

Fig. 2.7.1 (a) A schematic illustration of the binary and ternary composite showing 

the structure and the consisting alloy; (b) A SEM image of Al/Al–Zn/Al composite; (c) 

A SEM image of Al–Mg/Al–Zn/Al–Mg composite 

Pure Al

Pure Al

Al-Zn

Al-Mg

Al-Mg

Al-Zn

Binary TernarySurface

Surface

Center

(a) (b) (c)

500μm
500μm
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2.7.1.1. Binary alloy composite 

Al and Al–Zn alloy ingots were homogenized at 773 K and 723 K for 14.4 ks and air 

cooled. Then, both ingots were hot rolled into 2.5 mm at 673 K and followed by a cold 

rolling for a thickness of 2.0 mm. Finally, the cladding process was applied using hot 

rolling at 573 K, until the thickness reached 3 mm in total (approximately 1 mm for each 

layer). Before the cladding process, the attaching surfaces were polished by wire brushing 

to remove the oxides. Some of the composites were also performed a series of additional 

rolling process for reducing the thickness: a cold rolling was performed first and the 

thickness reduced into 1 mm thick, followed by a tempering for 3.6 ks and then air 

quenched. Finishing was conducted by a cold rolling until the thickness reached 0.5 mm. 

The 0.5 mm thick composite was used for 2D tomographic measurement for reducing the 

measuring duration. 

 

2.7.1.2. Single layered binary specimen 

A homogeneous Al–Mg alloy sheet with 12.9 mass% Mg were used as single layered 

specimens. 

 

2.7.1.3. Ternary alloy composite 

Before cladding, each layer was heated to 723 K for 14.4 ks for homogenization and 

then cooled with air. Hot rolling at a temperature of 673 K was conducted, reducing sheet 

thickness from 46 mm to 2.5 mm, followed by a cold rolling and the thickness reduced to 

2 mm. After polishing the surface via wire buffing to remove the oxides, the three single 

layered metal sheets were combined and hot rolled into composites at 573 K, with a 

reduction in the thickness from 6 mm to 3 mm. Interdiffusion treatment was carried out 

at 673 K for 3.6 ks, then the composites were cooled in a furnace. A cold rolling as a final 

treatment was performed to reduce the thickness into 2 mm. 
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2.7.2. Heat Treatment 

2.7.2.1. Heat treatment on Al–Zn binary composite 

To conduct a detailed survey on the inhomogeneous distributions of the comprising 

elements in the composite, additional diffusion treatment was conducted to proceed the 

interdiffusion with a salt bath followed by an iced water quenching. After this heat 

treatment, the specimen was cut along the cross-section for 1 mm thickness.  

The solid solution temperature of 773 K for binary composite was chosen within the 

range that is used by proceeding works (Osamura et al., 1985; Okuda & Osamura, 1985), 

and it was confirmed that the vacancies were did not consumed too much during 

quenching process for binary alloy (Gerold & Merz, 1967), which affect the precipitation 

in the following process. This treatment was kept for 300 s in a vertical furnace, followed 

by a free fall into a cup of iced water for a distance of approximately 100 mm as fast 

water quenching. The air between the furnace and the iced water was kept at a room 

temperature. An artificial aging treatment was also performed in an oil bath for 

precipitation. Because Zn has a relatively high vapor pressure, the thickness of the 

specimen was reduced from 1 mm to 0.2 mm by a mechanical polishing on the roll 

direction (RD) direction, to remove surface layer and eliminate the possible Zn depleted 

area in specimen. Table 2.7.3 shows the multiple series of heat treatments conducted on 

the composites. Fig. 2.7.2 (a) and (b) shows the distribution of Zn concentration along the 

interdiffusion direction by Energy-dispersive X-ray spectroscopy (EDX). 

 

 

 

Fig. 2.7.2 Zn composition distribution in the binary composite with (a) a thickness 

of 3 mm (b) a thickness of 0.5 mm via EDX measurement 
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Table 2.7.3 Specimens and the heat treatment 

 

2.7.2.2. Heat treatment on Al–Mg binary alloy 

The specimens used in the ASAXS measurement are the Al–12.9 mass%Mg alloy. These 

alloys were put into a salt bath for a solid solution treatment for homogenization followed 

by an iced quenching, and then aged artificially in an oil bath. The detailed information 

of the heat treatment process is shown in the Table 2.7.4 

 

Table 2.7.4 Specimens and the heat treatment 

 

 

 

 

 

2.7.2.3. Heat treatment on Al–Zn–Mg ternary composite 

In order to control the width of the interdiffusion layers developed from the interfaces, 

interdiffusion processes were conducted by annealing the composites at a temperature of 

793 K for 14.4 ks or 3.6 ks in a salt bath, then quenched into the iced water. Fig. 2.7.3 (a) 

and (b) shows the EDX result for Zn and Mg. Due to the low Mg concentration, 

fluorescent X-ray distribution was used to determine the solute distributions in the 2 mm 

thick composite, which used in the 1D SAXS scanning measurement shown as Fig. 2.7.3 

(a). The EDX measurements were performed after annealing the ternary composite for 

14.4 ks. The result shows that the solute concentrations, which represented by the 

fluorescent X-rays intensities, can be described by error functions. The interdiffusion 

layer thickness, determined based on the slope at the inflection point, have a value of 

approximately 2.5 × 102 μm and 4.8 × 102 μm for the 14.4 ks and 57.6 ks annealing 

respectively. From this result, the interdiffusion layer with a thickness of 8.9 × 10 μm 

was calculated to be formed during the cladding process before interdiffusion treatment. 

Specimens were aged at 393 K in a silicon oil bath for 300 s, 10.8 ks, and 345.6 ks, 

followed by iced water quenching.  

Specimen Diffusion Treatment Solution Treatment and Aging 

Al/Al–Zn/Al 773 K × 14.4 ks ➔ W.Q. 573 K × 300 s ➔ 313 K × 14.4ks ➔ W.Q. 

Al/Al–Zn/Al 773 K × 14.4 ks ➔ W.Q. 598 K × 300 s ➔ 313 K × 14.4ks ➔ W.Q. 

Al/Al–Zn/Al 773 K × 14.4 ks ➔ W.Q. 623 K × 300 s ➔ 313 K × 14.4ks ➔ W.Q. 

Specimen Solution Treatment Artificial Aging Treatment 

Al–Mg 732 K × 3.6 ks ➔ W.Q. 313 k × 605 ks ➔ W.Q. 

Al–Mg 773 K × 3.6 ks ➔ W.Q. 313 k × 1210 ks ➔ W.Q. 
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For the tomography specimen with a thickness of 500 μm, the as-received ternary 

composite and Al–6.8 mol%Zn alloy were used as standard specimens to identify the 

absolute composition distribution. Same with 2 mm ternary composite, EDX 

measurement was conducted after the interdiffusion treatment in this specimen. The 

interdiffusion treatment was performed a shorter duration of 3.6 ks at 793 K in the salt 

bath. Fig. 2.7.3 (b) shows the EDX result of the concentration distribution. The maximum 

amount of Zn is lower than the 10.16 mass% for Zn, which implies that two interdiffusion 

layers have encountered and fused into a single layer with a thickness 500 μm 

approximately. The master curves for both elements were determined by filtered with a 

minimum 10 point-FFT filter as red lines. 

Table 2.7.5 shows the multiple series of heat treatments conducted on the composites. 

 

Table 2.7.5 Specimens and the heat treatment 

  

Specimen Interdiffusion Treatment Solution Treatment and Aging 

Al–Mg/Al–Zn/Al–Mg 793 K × 14.4 ks ➔ W.Q. 393 K × 300 s ➔ W.Q. 

Al–Mg/Al–Zn/Al–Mg 793 K × 14.4 ks ➔ W.Q. 393 K × 10.8 ks ➔ W.Q. 

Al–Mg/Al–Zn/Al–Mg 793 K × 14.4 ks ➔ W.Q. 393 K × 345.6 ks ➔ W.Q. 

Al–Mg/Al–Zn/Al–Mg  793 K × 3.6 ks ➔ W.Q. 393 K × 1.2 ks ➔ W.Q. 

 

Fig. 2.7.3 EDX result of Zn and Mg in the composite (a) 2 mm thick specimen, 

after 14.4 ks interdiffusion treatment; (b) 500 μm thick specimen, after 3.6 ks 

interdiffusion treatment. Red lines are master curves for respective dots. 
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2.8. Experimental set up 

2.8.1. Experimental set up for 1D microbeam SAXS scanning  

 

  

  

Fig. 2.8.1 A schematic illustration of the SAXS measurement apparatus 

 

Fig. 2.8.2 A photo of experiment apparatus in the experimental Hutch of BL40XU 

in SPring-8 

 

Fig. 2.8.3 A SEM image of the Al/Al–Zn/Al multilayered specimen and an 

illustration of scanning process by microbeam X-ray 
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The quantitative analyses using scanning microbeam SAXS method was conducted on 

the multilayered composites. SAXS measurements were conducted at BL40XU (Inoue et 

al., 2001) in Super Photon ring-8 GeV (SPring-8) in Hyogo prefecture, Japan. A high flux 

pencil beam X-ray with 5 µm in diameter and 15 keV in energy was used as incident 

beam. Beam was shaped with double pin hole system, with 5 or 10 µm in diameter for 

the first defining pin hole. The Scanning process was conducted by changing the 

irradiation position of the X-ray on a specimen by 5 µm or 10 µm after every measurement 

in the interdiffusion direction. The scattered X-ray intensity within a small angle was 

detected using a Pilatus 100K device from Dectris Ltd., which has a detection area of 8.38 

mm × 33.5 mm, with a pixel size of 172 μm × 172 μm. The incident and transmitted X-

ray was measured by the ion chamber and photo diode, respectively. In addition, Zn-K 

radiation was detected at the transmitted X-ray side using a silicon drift detector (SDD) 

simultaneously, shown in Fig. 2.8.1–2.8.3. 
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2.8.2. Experimental set up for ASAXS measurement 

The ASAXS measurements were conducted in BL27SU at SPring-8. The energy of the 

incident X-ray was adjusted to 1302 eV, compared to the absorption edge of Kα in Mg 

which is 1305 eV. Fig. 2.8.4 shows a schematic illustration of experimental apparatus 

used in the ASAXS measurement. The inciden/transmitted X-ray was detected by a 

photoncurrent monitor, and a Si photodiode. The 2D SAXS intensity was measured by a 

CCD camera made for soft X-ray scattering intensity capturing: Back-thinned CCD Full-

 

Fig. 2.8.4 A schematic illustration of experimental apparatus used in ASAXS 

measurement. 

 

Fig. 2.8.5 A photo of experiment apparatus in the experimental Hutch of BL27SU 

in SPring-8 
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Frame transfer CCD CCD42-40; couplinged with straight fibers in 1:1; and couplinged 

additionaly with tapered fiber in 2:1, which coated by sintillator material P43 

(Gd2O2S:Tb) for 10 μm thickness. The apparatus was made by HAMAMATSU 

PHOTONICS K.K.  

 

2.8.3. Experimental set up of SAXS application in tomographic measurement 

Fig. 2.8.6 and 2.8.7 shows the schematic illustration and a photograph of the 

experimental set up in the tomographic measurement applied with SAXS method. The 

measurement was conducted with the operation of translation and rotation. The 

translation was performed the same manner with 1D scanning measurement in the section 

2.8.1. The rotation operation was conducted on each scanning spot with a step of 3° in 

the rotation angle range of 0–180°. The tomographic measurements were conducted at 

both BL40XU (Inoue et al., 2001) and BL03XU at Spring-8 (Masunaga et al., 2011).  

 

Fig. 2.8.6 A schematic illustration of SAXS-CT measurement (a) side view; (b) plan view. 

 

Fig. 2.8.7 A photograph of the SAXS-CT experimental set up at BL03XU in Spring-8 
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3. Nanostructure analysis of multilayered composites by Scanning microbeam 

SAXS 

3.1. Simultaneous measurement of Fluorescent X-ray in microbeam scanning 

SAXS 

3.1.1. Determining the distribution of local component in Al–Zn binary composite 

EDX was applied before the SAXS measurement with an Electron Probe Micro 

Analyzer (EPMA) to evaluate the Zn concentration distribution of the specimens. In the 

Al–Zn binary composite, the interdiffusion layer was confirmed approximately 400 μm 

wide, as shown in the section 2.8.2.1 and Fig. 3.1.1 (a). With Zn fluorescent intensity was 

collected in microbeam scanning SAXS measurement (Fig. 3.1.1 (a) thin line), the Zn 

composition was determined by comparing the intensity distribution result from EDX 

(Fig. 3.1.1 (a) thick line). 

During the aging at 313 K, G. P. zones forms initially under a common metastable 

miscibility gap as shown in Fig. 3.1.1 (b), whose volume fraction 𝑉𝑓(c) and the average 

size R(c) strongly depend on the composition c. 
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Fig. 3.1.1 (a) Thin line: the measured Zn fluorescent intensity by the microbeam SAXS scanning measurement. Thick line: EDX result 

of Zn fluorescent intensity; (b) Al–Zn binary phase diagram with metastable miscibility gap (black dots). Dashed line indicates the 

unstable phase separation at 313 K (see Löffler, 1995) 

(a) (b) 
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3.1.2. Determining the distribution of local component in Al–Zn–Mg ternary 

composite 

Al and Mg is low in fluorescent X-ray energy, which is 1.43894 keV & 1.21154 keV 

respectively (Hubbell, 1982; Hubbell & Seltzer, 1996). This indicates that neither of the 

intensities is measurable in air. Zn, however, the absorption edge in vicinity of the K shell 

having an energy of 9.65860 keV. This feature of Zn making which the only solute for the 

ternary composite Al–Mg/Al–Zn/Al–Mg to be identified in air. and can be used as a tracer 

for identifying the local composition in the SAXS scanning measurement.  

In the binary alloy Al–Zn with the distribution of Zn atoms, the local composition 

distribution of both Al and Zn is uniquely determined. But for a ternary alloy, the 

composite distribution is unknown without an additional information e.g. the relationship 

of the distribution of Mg and Zn (or Al and Zn) atoms. 

After the mentioned in the section 2.8.2.2, a pair of master curves for the composition 

distribution of Zn and Mg were determined by using curves defined by error functions fit 

on the acquired fluorescent intensity distribution by EDX measurement. The composition 

distribution of resulted master curves for Zn and Mn was mapped on a calculated 

equilibrium Al–Mg–Zn ternary phase diagram via the CALculation of PHAse Diagrams 

(CALPHAD) method (Kaufman, & Bernstein, 1970) displayed as Fig. 3.1.2.  

 

Fig. 3.1.2 Component distribution (blue dots) of Al–Mg/Al–Zn/Al–Mg ternary 

composite diffused 14.4 ks at 793 K, plotted at Al corner of Al–Zn–Mg ternary phase 

diagram at 393 K, calculated by the CALPHAD method via Thermo-Calc. 
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3.2. 2D SAXS profiles in Al–Zn binary composite 

Fig. 3.2.1 shows a series of 2D SAXS profiles scattered from an interdiffusion layer of 

the 598 K solution treated Al/Al–Zn/Al composite. With position proceeds, Zn density 

increases in these images. It is known that the spherical G. P. zones initially precipitates 

in the Al–Zn alloys around this composition (Gerold, 1961; Hennion, et al., 1982). This 

can be confirmed in the resulted 2D pattern before and after 610–625 μm on specimen, 

which are analogous to the scattered patterns induced by the spherical G. P. zones 

(Hennion et al., 1982). In the position of 605–630 μm, apart from the intense 2-folded 

symmetric pattern in the center, the directions of the 4-folded symmetric patterns from 

spherical G. P. zones alter with the position of specimen, indicating that the interfering 

directions of G. P. zones area changed by moving the spotting position on the specimen. 

This implies that the direction of the matrix alters in these positions. In other words, in 

the scanning position of 605–630 μm, two different grains are measured. 

In the same area of 605–630 μm position, an intense ellipsoidal 2-folded symmetric 

pattern in the center can be observed. This ellipsoidal pattern observed only in the 

interface position of the Al/Al–Zn interdiffusion area, and the elongation direction is the 

 

Fig. 3.2.1 SAXS patterns at different positions of Al/Al–Zn/Al binary composite 

after solid treatment at 598 K 

595 μm 600 μm 605 μm

610 μm 615 μm 625 μm

630 μm 635 μm 750 μm

Low intensity High intensity
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same as the interdiffusion direction. With all above, it is natural to consider the scatterer 

of the ellipsoidal scattered patterns as Al oxides which are sandwiched by the Al alloys 

which can be oxidized easily in air. 

 

3.3. Precipitate parameters from SAXS in Al–Zn binary composite 

Fig. 3.3.1 shows the result of the SAXS scanning measurement. These plots are 

calculated based on the radial averaged profile of 2D SAXS profiles. The integrated 

intensity 𝑄  in relative unit, Guinier radius 𝑅𝑔 , and if the interference between 

precipitates was observed, the mean precipitation distance L was calculated from the 

SAXS profiles (Guinier & Fournet, 1955). The integrated intensity 𝑄 was calibrated with 

specimen thickness in each spotted local area calculated with the transmittance and the 

concentration of Zn. From the specimen location that the integrated intensity 𝑄 start to 

be obvious, G. P. zones was detected at 5.17 mass% in Zn. This value is slightly higher 

compared to 4.71 mass% reported by Popović et al (1992). The distribution of 

nanostructures is different from the classical nucleation theory, in which the critical radius 

decreases with an increment in concentration. However, this result is consistent with the 

report by Osamura et al. (1985), which demonstrated the deviation from nucleation theory 

with considering the difference in the speed of grain growth. 

Letcher and Schmidt (1966) showed that the radius distribution of non-interacting 

assemblies made by spherical particles can be evaluated using functions below: 

 

Fig. 3.3.1 Result of microbeam scanning SAXS measurement in an interdiffusion 

area of an Al/Al–Zn binary composite. Solid solution treatment is conducted at 623 K 

for 300 s. 
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𝜌(𝑟) =
1

𝜋3𝛿2𝑟2
∫ 𝑑𝑞[𝑞4𝐹2(𝑞) − 𝐶]𝛼(𝑞𝑟)

∞

0

                        

where 

𝛼(𝑞𝑟) = [cos 𝑞𝑟 (1 −
8

𝑞2𝑟2
) −

4 sin(𝑞𝑟)

𝑞𝑟
(1 −

2

𝑞2𝑟2
)],   

𝐶 = lim
𝑞→∞

𝑞4𝐹2(𝑞) .                                                                                      (3.1) 

F(q) is the scattered wave function; 𝛿  is the difference in the electron density of the 

sphere and the matrix; r is the radius of the sphere; q is the length of the scattering vector. 

Fig. 3.3.2 shows the size distribution of each point on the specimen solution treated at 

573 K. With the increment in Zn concentration, the change in the size distribution in Fig. 

3.3.2 can be summarized into two parts: 

1. Peak positions on the distribution curves shift into the large radius direction with 

lowering the summit. 

2. Distributions keep the same shape, but the amplitude increase. 

This property was also found in the 623 K solution treated specimen. 

 

  

 

Fig. 3.3.2 Radius distributions in the multilayered specimen after solution treatment 

at 573 K. 
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3.4. Relationship between local structure and local hardness in Al–Zn binary 

composite 

The local hardness distribution was measured with Vickers tests on the Al–Zn binary 

composite, as shown in Fig. 3.4.1 for an interdiffusion area Al/Al–Zn. The relative 

integrated intensity 𝑄  in Fig. 3.3.1 indicates that there is no precipitate found in the 

position x < 600 μm on specimen, but the local hardness distribution 𝐻𝑉 in Fig. 3.4.1 

shows a slight increase with the increment in Zn concentration. This can be attributed to 

the solid solution strengthening.  

For the position x > 600 μm on the specimen, the relative integrated intensity 𝑄 in Fig. 

3.3.1 increases appreciably, which indicates the increment in the volume fraction of 

precipitates. Therefore, the hardness detected for position x > 600 μm can be regarded as 

the summation of the solid strengthening and precipitation strengthening effect. Also as 

mentioned in the 3.1.1, phase separation shares a common miscibility gap indicating the 

hardness which induced by solid solution is constant when G. P. zones are precipitated, 

with a value of 𝐻𝑉 right before precipitation occurs. This value is noted as ∆𝐻𝑠𝑠 in the 

figure, corresponding to the solid solution strengthening by the Zn atoms at the solubility 

limit. 

It is well-known that the precipitation strengthening mechanism (Gerold, 1979) shifts 

from a cut-through mechanism to an Orowan mechanism depending on the stress required 

for deformation. This can be determined respectively by using 

 

Fig. 3.4.1 The micro Vickers hardness result and the result of different strengthening 

mechanisms fit based on the local nanostructure shown in Fig.3.3.1. It is obvious that 

only cut through mechanism can be fit to the local hardness distribution after 600 μm 

position where precipitation occurred. 
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𝜏 ≈ 3𝜇|휀|
2
3√
𝑅𝑉𝑓

𝑏
∝ √𝑅𝑉𝑓                                                                           (3.2) 

𝜏 =
0.8

𝑏𝑅
√
3𝑉𝑓

2𝜋
∝
1

𝑅
√𝑉𝑓                                                                                (3.3) 

where 𝜏  is the critical resolved shear stress (CRSS), 휀  the lattice constant difference 

between the precipitate and the matrix, 𝜇 the shear modulus, R and 𝑉𝑓 the average radius 

and the volume fraction of precipitate respectively. According to eq. (2.24) in the section 

2.2.1.2.2:  

𝑉𝑓 =
𝑄

2𝜋2∆𝜌2
                                                                                                (3.4) 

indicating 𝑄 ∝ 𝑉𝑓 . 𝑄  is the integrated intensity, ∆𝜌  the electron density difference 

between the G. P. zones and matrix. Considering that the SAXS measurement has been 

conducted on the specimen in every 5 μm, this can be rewritten as a function of the 

position on the specimen 𝑄(𝑥) ∝ 𝑉𝑓(𝑥)  within the concerning area with a uniformed 

electron density difference. 

Guinier radius 𝑅𝑔 is also evaluated as a function of position on specimen 𝑅𝑔(x). In 

every SAXS measurement, the detected 𝑅𝑔(x) is an averaged value of all illuminated 

precipitates. 𝑉𝑓 and R in eq. (3.2) and (3.3) can be replaced with 𝑄(x) and 𝑅𝑔(x) within 

the precipitation area. Fig. 3.4.1 shows the local hardness estimated with nanostructure 

result in Fig. 3.3.1 and eq. (3.2) and (3.3) for either of the strengthening mechanism. The 

estimated strength distribution which follows the Orowan mechanism showed a 

significant deviation from the measured Vickers hardness distribution, whereas the one 

follows the cut-through mechanism showed an agreement with the experimental local 

hardness distribution. This indicates that the Al/Al–Zn interdiffusion area of the 

multilayered composite is strengthened with the cut-through mechanism, and it is still 

underaged.  

In a conventional investigation, 𝑉𝑓 is constant and 𝜏 alters with the changing in R. In 

this experiment, however, the solute composition is changed when moving the measuring 

position. For this Al–Zn composite, the whole concerning area on specimen—which is 

identical to the precipitation area—shares a common phase transformation. This made it 

plausible for to use the same value of μ, b, ε for eq. (3.2) and (3.3) for all nanostructure, 

regardless of the fluctuation in the volume fraction and the mean radius.  
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3.5. 2D SAXS profile in Al–Zn–Mg ternary composite 

2D SAXS patterns in the Al–Mg/Al–Zn/Al–Zn composites were almost isotropic, as 

shown in Fig. 3.5.1 (a). Therefore, the nanostructural distribution was estimated mainly 

after taking an average on azimuthal direction. Porod’s law (Guinier & Fournet, 1955; 

Brumberger, 1956) was confirmed in the radial averaged SAXS profile shown as Fig. 

3.5.1. (b), indicating the precipitates have sharp edges (Guinier & Fournet, 1955; Glatter 

& Kratky, 1982). No efficient intensity was observed in either of the edge areas of 

specimen, where Mg is the main solute in the Al alloy. 

 

3.6. Component distribution and precipitates in Al–Zn–Mg ternary composite 

Fig. 3.6.1 shows the stable Al–Zn–Mg ternary phase diagram at 393 K, calculated by the 

CALPHAD method, with the concentration distribution of multilayered Al–Mg/Al–

Zn/Al–Mg composite, both have shown in the section 3.1.2 as Fig. 3.1.2. As mentioned 

in the section 1.2.3, this phase diagram, or the composite, or in detail, the interdiffusion 

layers of the composite can be divided into several regions based on the atomic ratio of 

Zn/Mg which divides the phase separation. According to Fig. 3.6.1, the μ phase 

precipitates as a stable precipitate when Zn/Mg > 1; the T phase does not exist when 

Zn/Mg > 1.5; and when Zn/Mg > 6, the stable precipitate of β phase appears. The 

miscibility line between two phase transformation of η + β + α  and β + α  is not 

observable quantitatively in this phase diagram. 

As mentioned in the section 3.1.2, throughout the ternary composite, local composition 

distribution plotted with blue dots, transverse different stable phase triangles and tie-lines. 

This indicates that unlike the case of the binary alloy composite, that the whole 

precipitated area shares a common tie-line, different phase separations may occur in this 

 

Fig. 3.5.1 (a) An example of 2D SAXS pattern; (b) the radial averaged SAXS profile 

plotted with scattering vector. 

Low intensity High intensity

(a) (b)
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ternary composite, respect to the local position and its local Zn/Mg ratio. This leads to the 

difference in all the types of the precipitated nanostructure; the electron density difference 

of the precipitates and the matrix; the volume fraction of each precipitates; the mean size 

of each precipitates due to the solute composition in the local area, or the position on the 

specimen.  

  

 

Fig. 3.6.1 Component distribution (blue dot) of Al–Mg/Al–Zn/Al–Mg ternary 

composite diffused 14.4 ks at 793 K, plotted at Al corner of Al-Zn-Mg ternary phase 

diagram at 393 K, which calculated by CALPHD method via Thermo-Calc. 
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3.7. Precipitation parameters obtained from SAXS in Al–Zn–Mg ternary 

composite 

Two composites were measured for microbeam SAXS scanning measurement after 

underwent the aging process for 300 s and 10.8 ks. Fig. 3.7.1 shows the SAXS result of 

the interdiffusion area in the composites, which is the relative integrated intensity 𝑄 ; 

Guinier radius 𝑅𝑔; and the mean distance of precipitates L for either of the composites 

using the same method for the binary alloy. 𝑄, 𝑅𝑔, and L all roughly increased with the 

Zn concentration in the composite aged for 300 s. However, for the composite underwent 

an aged for 10.8 ks, 𝑄  decreased with the increment in the Zn concentration from 

approximately 700 μm position on specimen. Other two parameters showed the same 

tendency with the structure with a shorter ageing time. 

The relative scattered intensity I(q) and 𝑄  are affected by both of the ∆𝜌  and the 

anisotropy of the precipitates (section 2.2.1.2.1 and 2.2.1.2.4). Anisotropy can be 

evaluated qualitatively from 2D SAXS patterns to check if the scatterers are exceedingly 

anisotropic. As shown in Fig. 3.5.1. (a), the detected 2D SAXS patterns were isotropic in 

both of the composites. This implies that the precipitates are in the spherical shape. 

Therefore, anisotropy was ignored in this discussion. 
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Fig. 3.7.1 The nanostructure in the interdiffusion layer of two ternary composites aged at 393 K for 300 s (left) and 

10.8 ks (right) by microbeam SAXS scanning measurement. Q (green dots) is the relative integrated intensity, Rg 

(red dots) is Guinier radius, L (blue dots) is the mean distance between precipitates, the orange line is the Zn 

composition in mass fraction, the grey line is the Mg composition in mass fraction. 
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The difference in electron density between the precipitates and matrix ∆𝜌 affects I(q) 

and 𝑄 with a squared form (section 2.2.1.2.4). Therefore, in the position where multiple 

types of precipitates coexist,  ∆𝜌 was estimated as the average value for all precipitates 

in the Fig. 3.7.1. Al3Mg2 was not observed from SAXS measurement, due to the reason 

that in the periodic table, Al and Mg locates in the same period and even next to each 

other, ∆𝜌 is negligible for detection. This can be confirmed from that no appreciable 

SAXS intensity was observed in the edge region of specimen that corresponding to the 

Al–Mg alloy mentioned in the section 3.5. The measured precipitates are therefore only 

T, η, and β for the stable phase and the corresponding metastable precursors. Therefore, 

the concerned area corresponding to the position after 570 μm in Fig. 3.7.1. 

Fig. 3.7.2 shows the volume fraction 𝑉𝑓 and ∆𝜌 calculated from SAXS parameters in 

Fig. 3.7.1 and eq. (3.4) in section 3.4. 𝑉𝑓 slightly showed an increment between 650 μm 

and 700 μm, and decreased after 700 μm on the specimen. Adachi et al. (1999) showed a 

similar tendency while traversing the same stable phase area of α + T + η/α + η and 

α +  T aged at 393K for 108 ks, but they did not provide an adequate result. The ∆𝜌 

plots also showed a decrement into 89% at a maximum, between the nanostructure of 

specimen which aged for 300 s and 10.8 ks at the position of 782 μm. This value is close 

to the difference of which between G. P. zone/α  and η’ α⁄   reported by Adachi et al. 

(1999) as 84 %. In addition, the result of ∆𝜌 and the Zn concentration distribution in the 

300 s aged specimen approximately showed a linear relationship. This can be explained 

 

Fig. 3.7.2 The volume fraction (monochromatic dots) and the electron density 

difference (colored dots) on the ternary composite aged at 393 K for 300 s (solid 

dots) and 10.8 ks (hollow dots). 
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based on the G. P. zone miscibility gap calculated by Adachi et al. (1999). ∆𝜌 was not 

calculated before in the position of 700 μm on the specimen, due to the insufficient data 

in 𝑄. 

 

3.8. Relationship between local nanostructure and local hardness: Al-Zn-Mg 

ternary composite 

Fig. 3.8.1 shows the Vickers hardness distribution 𝐻𝑉  detected on the composites 

locally underwent the aging of 300 s and 10.8 ks. The 𝐻𝑉 distribution with a different 

aging time both showed a same tendency. From a position approximately 620 μm on the 

specimen, 𝐻𝑉 increase with Zn/Mg ratio from 56 HV; between the position 700 μm and 

800 μm, both showed the peak hardness with 111 HV (300 s) and 104 HV (10.8 ks) and 

started to decrease with increasing Zn/Mg. The local hardness increased with the 

annealing time between 520 μm and 720 μm, and decreased after 720 μm on the specimen. 

The hardness at 720 μm is both 95 HV for the composites. 

Fig. 3.8.2 shows the relationship between the detected local hardness distributions and 

the estimated hardness with nanostructural distributions shown as Fig. 3.7.1, using 

different strengthening mechanisms like section 3.4 for the binary composite. The plots 

of 𝑉𝑓
0.5𝑅𝑔

0.5 and 1/𝐿  corresponding to the cut-through mechanism and the Orowan 

mechanism in (3.2) and (3.3) respectively. Estimated hardness distributions were 

multiplied by a common constant for each strengthen mechanism in 300 s and 10.8 ks 

aged specimens like in section 3.4. The plot of 𝑉𝑓
0.5 𝑅𝑔

0.5⁄  was similar to that of 1/𝐿, 

indicating the validity of 𝑉𝑓. L was converted into (3.3) by volume fraction 𝑉𝑓 and 𝑅𝑔 

 

Fig. 3.8.1 Local hardness distribution in the 300 s and 10.8 ks aged ternary 

composite, in the interdiffusion area. The Mg distribution curve is omitted. 
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treated as the mean radius of isotropic scatterers. A common coherent strain for the cut-

through mechanism and a common shear modulus for the Orowan mechanism are 

assumed for all of the plots. Before 570 μm on the specimen, the local hardness did not 

change from 56 HV. In this area, the value in Q is practically 0, indicating the composition 

of Zn is extremely low, and Al–Mg alloy with a low Mg concentration is known that can 

only be strengthened by either the solid solution or the work hardening (Adachi et al., 

1999). Moreover, this composite is free from work hardening. This information indicates 

that the strength increment from the solid solution in this material is low. Therefore, the 

effect of the fluctuation of solid solution was ignored, and the hardness of 54 HV was 

determined as the solid solution strengthening effect in this composite. 

For the 300 s aged specimen, the estimated plots following cut-through mechanism can 

only be adjusted in the area within 650–790 μm; the estimated plots following the Orowan 

mechanism can be adjusted in the area beyond 766 μm. Therefore, the detected local 

hardness 𝐻𝑉  within the area 766–790 μm can be explained by using either of the 

mechanisms. 

For the 10.8 ks aged specimen, both of the mechanisms area able to be fitted roughly to 

the entire detected local hardness 𝐻𝑉  distribution, and in the area 708–834 μm, the 

estimated plots by the mechanisms is trivial in difference. 

It can be concluded that for the 300 s aged composite, nanostructure before 766μm is 

underaged and which after 790 μm is overaged. For the 10.8 ks aged composite, the 

structure after 720 μm is overaged. 
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Fig. 3.8.2 Estimated results by different strengthening mechanisms on the specimens after aged at 393 K for 300 s and 10.8 ks. 

The distribution curve of Mg is omitted for conciseness. 
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3.9. Identification of local precipitates in Al–Zn–Mg ternary composite 

As mentioned in the section 3.6, only T, η, β stable phase and the related metastable 

precipitates (Berg et al., 2001) can be detected using X-ray. Since the metastable phases 

are predominant in strengthening (Lendvai, 1996), only the T, η, β stable phase and the 

related metastable precipitates are needed to be considered.  

In the specimen area where Zn/Mg < 1 in molar ratio, where the structure separates into 

stable phases α + T in the area x < 650 μm, the local hardness in Fig. 3.8.1 increased 

with the annealing time. Due to the insufficient information derived from SAXS 

measurement which shown in Fig. 3.7.1, it is unable to identify the nanostructure from 

the stable T phase or its precursors. (Suzuki et al., 1973; Fukui et al., 1975; Yang et al., 

2014) 

In the area of 1–1.5 in Zn/Mg molar ratio, where the structure separates into stable 

phases α + T + η in 650–670 μm, Li et al. (2017) have shown that the phase segregation 

is faster in an alloy which has a higher Zn/Mg ratio. Moreover, based on the work of 

Kovács et al. (1980) and Maloney et al. (1999) the precipitates are considered to be G. P. 

zone or the early stage of η’, as nanostructures for 300 s and 10.8 ks aged specimen in 

this area were isotropic and underaged. The increment in the local hardness with aging 

proceeds observed in 650–670 μm in Fig. 3.8.1 could be caused by either the coarsening 

of the G. P. zones, or the transformation from G. P. zones into η’ phase. This is from the 

reason that η’ strengthens Al–Mg–Zn alloys the most (Kovács et al., 1980; Park & Ardell, 

1983; Osamura et al., 1984; Lendvai, 1996). 

In the area of 1.5–6 in Zn/Mg molar ratio, where the nanostructure separates into stable 

phases α + η  in 670–700 μm, considered to be coexisting G. P. zones and η’  phase, 

according to that the η’  phase strengthens the material the most, and the discussions 

about underaging and overaging in the section 3.8. 

The last area of Zn/Mg > 6 is where nanostructure separates into stable phases α + β in 

x > 700 μm, which is also the area that Mg is diluted. Therefore, the nanostructure is 

analogous to the Al–Zn binary alloy in this area. For Al–Zn alloy, the phase separation of 

β phase at 393 K is known as: 

Solid Solution → G. P. zone (sphere) → G. P. zone (ellipsoidal) → 𝛼𝑅
′  → β (see Löffler, 

1995) 

Since the spherical and the ellipsoidal G. P. zone are extremely sensitive to the quenching 

speed (Gerold & Merz, 1967), and also no anisotropic pattern was observed in the 2D 

SAXS images, the precipitates would be the sub-micrometer sized 𝛼𝑅
′  , which is not 
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observable by SAXS measurement. This is considered to be the reason of the decrement 

in 𝑉𝑓 and 𝑄 with a proceeded aging time, as shown in Fig. 3.7.1 and Fig. 3.7.2. 

 

3.10. Anisotropy observation via TEM and SAXS profile 

It is known that both η’ and η have a variety of shapes. Therefore, the radial averaged 

1D profiles converted from 2D scattered intensities may not accurately reflect the 

dimensions of the anisotropic precipitates. This leads to the discrepancies between the 

true values and the measured values of 𝑅𝑔 and 𝑉𝑓 without knowing the 3D shape of the 

scatterers. Fig 3.10.1 (c) shows an example of 2D scattered SAXS pattern which shows 

anisotropy during a microbeam SAXS scanning measurement in the Photon Factory (PF) 

in Ibaraki, Japan. This pattern was observed on the specimen aged at 393 K and for a 

longer period of 345.6 ks, at the position on the specimen where having a concentration 

of 7.0 mass%Zn and 0.75 mass%Mg. The nanostructure separates into stable phases η +

α in this concentration, according to the ternary phase diagram showed on Fig. 3.6.1.  

 The anisotropy observed in the 2D SAXS pattern during scanning SAXS measurement 

can roughly be divided into 2 types, i.e. the streaks which are weak and thin, which 

denoted with green arrows; and a strong polygonal pattern. In order to examine the origin 

of these anisotropies, a TEM observation was conducted with a specimen underwent the 

 

Fig. 3.10.1 (a) An ABF-STEM image and the diffracted pattern from the same area 

observed from the 〈100〉 direction on an interdiffusion layer of Al–Mg/Al–Zn/Al–Mg 

composite after aged at 393 K for 345.6 ks; (b) 2D SAXS profile from the same 

specimen location of (a); (c) An image of 2D SAXS profile in the scanning SAXS 

measurement on the specimen position exhibits a composition of 7.0 mass%Zn-0.75 

mass%Mg after aged at 393 K for 345.6 ks. Black lines in (b) are the detector modules. 
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C

B
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same heat treatment of 393 K for 345.6 ks. A 2D SAXS measurement was also performed 

after the TEM observation on this specimen. Both measurements conducted on TEM 

specimen had the same projection direction with the one shown as Fig. 3.10.1 (c). Fig 

3.10.1 (a) shows the Angular Bright-Field Scanning Transmission Electron Microscopy 

(ABF-STEM) image and its diffracted pattern observed in 〈100〉  projection. In this 

image, three types of precipitates can be observed by their shapes: η’ phase denoted as 

A, G. P. zone as B, and η phase as C, according to the report by S. Jacumasso et al. (2016). 

Fig. 3.10.1 (b) shows the 2D SAXS pattern scattered from the TEM specimen by an X-

ray projected from the same 〈100〉 orientation as the TEM image. This SAXS pattern 

exhibits the same features observed in the Fig. 3.10.1. (c), namely, a strong polygonal 

shape with multiple weak streaks denoted with green arrows. This can be interpreted by 

the combination of the three shaped precipitates observed in TEM image in Fig. 3.10.1. 

(a): a large isotropic pattern scattered from the small spherical B; the pattern of oblate 

shapes scattered from the oblate-shaped A; the small amount of long rod-shaped C 

scattered into thin discs, and were cut into thin streaks by the Ewald sphere. Therefore, 

the 2D scattered pattern was confirmed which is scattered by η’/η and G. P. zones.  
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4. Anomalous small angle X-ray scattering method (ASAXS) in Al–Mg alloy 

4.1. Anomalous small angle X-ray scattering method 

Anomalous small angle X-ray scattering (ASAXS) is an application of SAXS by 

adjusting the incident X-ray energy to a certain value which is in the vicinity of the 

absorption edge of the object element. In Al-Mg alloy, as mentioned in the section 1.2.2, 

it is difficult for the ordinary SAXS method to conduct a valid investigation due to the 

weak contrast of electron density in the matrix and the Mg-rich precipitates. The 

absorption edge of K shell in Al and Mg atom is 1.560 KeV and 1.305 KeV respectively 

(Hubbell 1982; Hubbell & Seltzer, 1996), which made it possible to select an energy at 

either of the edges to increase the perceived electron density ∆𝜌. This made the scattered 

intensity strong enough by distinguishing the Mg-rich and the Mg-poor matrix after the 

segregation. This method was successfully applied on Al–6.7 mol% Zn alloy for the first 

time by our group in 2016 (Okuda et al., 2016) in which used the K absorption edge of 

Al. 
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4.2. Nanostructure measurement of Al–Mg alloy via ASAXS method 

4.2.1. Specimen and experiment details 

The specimens are polished into a thickness of approximately 20 μm due to the low 

penetration ability for tender X-ray which has an energy in the vicinity of the K absorption 

edge in Mg. A standard specimen of powder silver behenate was used for scattering vector 

calibration, and an alloy of Al–13.4 mass%Mg was used for the calibration in incident X-

ray energy. 

 

4.2.2. Results of SAXS parameters via ASAXS measurement in Al–Mg alloys 

Fig. 4.2.1 shows the 2D ASAXS intensity profile by the Al–12.9 mass%Mg alloy aged 

for 605 ks and 1210 ks at a temperature of 313 K. From the isotropic shape in Fig. 4.2.1 

(a), it is evident that the scatterers detected are spherical, which showed an agreement 

with the TEM observation (Sato et al., 1982). There is no local maximum found in the 

profile, indicating that the precipitates arranged either random, or too close or too apart 

from each other that the local maximum is out of the view range/shaded by beam stop in 

this measurement. On contrary, Fig. 4.2.1 (b) showed an anisotropic pattern with 

symmetric local maximum. Both of the shapes and the locations of the local maximum is 

identical to 〈100〉 view of Al–Mg alloys in the study by Dauger (1979) about the single 

crystalline alloy of Al–13 mol%Mg aged at the room temperature. Therefore, the 

nanostructures measured in the 1210 ks aged Al–12.9 mass%Mg alloy can be concluded 

 

Fig. 4.2.1 2D ASAXS intensity profile of (a) Al–12.9 mass% Mg aged for 605 ks and 

(b) Al–12.9 mass% Mg aged for 1210 ks by incident X-ray with 1302 eV in energy. 
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as spherical G. P. zones, which aligned on the 〈100〉 direction more or less. 

The relative integrated intensity was calculated from ASAXS profile after converted the 

2D profile into 1D by radial averaging. The result of Al–12.9 mass% Mg alloy aged for 

605 ks and 1210 ks are almost the same for 0.52 and 0.54 in the relative unit. The 

difference of this result is very trivial, compared to which in the aging time. Which 

indicates that for the Al–12.9 mass%Mg alloy, an artificial aging at 313 K for 605 ks is 

sufficient for completing the precipitation process, and has proceeded into the process of 

coarsening. 

Guinier radius has also evaluated in both aging periods as 2.8 nm and 3.1 nm for 605 ks 

and 1210 ks respectively. It is obvious that the increased result of the precipitates size 

came from the coarsening effect with a prolonged aging time. 
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5. Computed Tomographic technique with SAXS data and its applications 

5.1. Computed tomography in absolute units 

5.1.1. Absolute reconstruction in discrete computed tomography 

If combining the discussions in the section 2.6.3.2 which is about the influence from the 

discreteness in the rotation and translation steps, it is possible to conduct an absolute 

reconstruction in a discrete system even with a coarse interval, by recovering the 

reciprocal discrete distribution close to a continuous one. 

Fig. 5.1.1 shows the projection process from an angle in the tomographic measurement, 

and the resulted distribution in the in the reciprocal space. The incident X-ray is calibrated 

into a pencil beam thinner than the translation interval τ. The blue arrows represent the 

X-ray projected to the specimen, and transmitted into a detector noted as the thick black 

line. After a single projection from a fixed position, the corresponding distribution in the 

reciprocal space after the Radon transformation which have shown as a rectangular with 

red diagonal lines. The red shaded rectangles without diagonal lines are the Radon 

transformed profile from different projection angles. The x and y axis in the real space 

corresponding to the axis u and v in the reciprocal space, or frequency. The size of the red 

diagonal lined square has a length for 1 𝐹𝑂𝑉⁄  (FOV as field of view) on the u axis, and 

1/𝜏 on the v axis. The reciprocal space in here is defined as 𝑤 =  1/𝑥, which is different 

from 𝑤𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 2π/𝑥 in the material science. It should be noted that the full rectangle 

in the reciprocal space represents the summed-up value of all voxels X-ray transmitted in 

a measurement. 

The reason of the rectangular shaped distribution in the reciprocal space is explained as 

 

Fig. 5.1.1 Discrete tomography measurement in a particular rotation angle and its 

resulted distribution in the reciprocal space (shaded with diagonal lines). 

1/FOV

v

u

Reciprocal space

1/τ

FOV

ro
ta

te

Real space

y

x τ



 

72 

 

 

follows: 

Fig. 5.1.2 shows the reconstruction process from the perspective of a random voxel. 

After the reconstruction, the minimum voxel size would be the translational interval of 

the scanning X-ray, no matter what direction is projected from. Therefore, for a minimum 

sized voxel, as shown in Fig. 5.1.2 (b), for a single projection from a particular angle, the 

orange colored pixel with a size τ×τ would be input a value measured by a part of X-ray 

in length τ. After the rotation movement, the value for reconstruction would be the mean 

value of the green circle area with a diameter of τ in the voxel. This green circle is can be 

approximated to τ×τ for an easier calculation, and a better appearance for the image after 

the reconstruction. Due to the linearity of the parameter, the parameter’s value measured 

by each projection is the projected value, i.e. the summed-up value of all penetrated 

 

Fig. 5.1.2. The tomography measurement on perspective of a single voxel 

 

Fig. 5.1.3. The reconstruction process on perspective of a single voxel 
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voxels. Therefore, the corresponding area in the real space for one measurement would 

be like, Fig. 5.1.2. (a), which is 𝜋(𝜏 2⁄ )
2
× 𝑁 ≈ 𝜏 ∙ 𝑁𝜏 where N is the number of voxels 

on a scanning direction, i.e. 𝐹𝑂𝑉 = 𝑁𝜏. For this reason, for a single projection in the 

tomography, the measured objective parameter would be a value represents a rectangle 

area of 𝜏 × 𝐹𝑂𝑉 in the real space. This area is identical to a rectangle with a dimension 

of 1 𝜏⁄ × 1 FOV⁄   in the reciprocal space, as shown in Fig. 5.1.3. In addition, since each 

pixel only illuminated by the pencil beam X-ray once in a scanning process per rotation 

angle, the rectangular distribution can be applied to all pixels in the FOV. Also, for each 

pixel, the calculation above was proceeded with using the value of N pixels at a whole; 

therefore, after the summation from different angle, the resulting pixel value would be 

divided by N. 

In order to fulfill the circle in the reciprocal space for a system discrete in both of the 

angular and translational direction, or it is inevitable to transform the shape of the 

rectangular distribution into a pie-shaped distribution. This process is identical to 

interpolate/truncate the uncovered/overlapped area in reciprocal space in the high/low 

frequency area after the measurements as shown as Fig. 5.1.1 (right) caused by discrete 

angle steps, i.e., to change the amplitude of the amplitude result of Radon transformed 

distribution in arithmetic direction, as shown in Fig. 5.1.4 (a) and (b). Because that the 

pie-shaped distribution can be approximated into a triangle, the relationship of the 

triangular and rectangular shaped distributions can be connected with a Ramp filter 

𝐻(𝑤) = |𝑤| where w is the frequency in reciprocal space, or the coordinate of u axis in 

the red shaded area in Fig. 5.1.4 (a). Therefore, for a tomography experiment with N 

 

Fig. 5.1.4 Projected distribution and the expected distribution after a set of 

translation at one rotation angle in the reciprocal space.  
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pixels (N is large number) scanned in the real space with interval 𝜏, the relation of the 

two shape can be expressed as: 

𝑄𝜃,𝑝𝑖𝑒(𝑛𝜏) = 𝑄𝜃,𝑟𝑒𝑐𝑡(𝑛𝜏)𝐻(𝑛𝜏) =  𝐾𝑄𝜃,𝑟𝑒𝑐𝑡(𝑛𝜏)|𝑛d𝑤|    

where 

   𝑛 ∈ [−
𝑁

2
,−
𝑁

2
+ 1,⋯ , 0,⋯

𝑁

2
− 1,

𝑁

2
]          𝐾 = const.                    (2.1) 

𝑄𝜃(𝑛𝜏) was the “filtered projection” mentioned in eq. (2.71) in the section 2.6.3.1., n is 

the coordinate of pixels in the real space. 

Therefore, the filter can be divided into a coefficient K and the Ramp filter 𝐻(𝑤) = |𝑤|. 

 

5.1.1.1. Application of Ramp filter in the discrete system 

The inversed Fourier transformation of Ramp filter is 𝐻(𝑤) = |𝑤| is 

ℱ1
−1[𝐻(𝑤)] = ℎ(𝑡) =

1

2𝜏

sin(2𝜋𝑡 2𝜏⁄ )

2𝜋𝑡 2𝜏⁄
−

1

4𝜏2
(
sin(𝜋𝑡 2𝜏⁄ )

𝜋𝑡 2𝜏⁄
)

2

.      (5.2) 

The discrete version of 𝐻(𝑚
2𝑊

𝑁
) is 

ℱ1
−1[𝐻(𝑚𝑤)] = ℎ(𝑡) = ℎ(𝑛𝜏) =

{
 
 

 
          

1

4𝜏2
      𝑛 = 0       

           0         𝑛 = 𝑒𝑣𝑒𝑛

−
1

𝑛2𝜋2𝜏2
   𝑛 = 𝑜𝑑𝑑

.     (5.3) 

The graph of the continuous and the discrete h(t) have both shown in Fig. 5.1.4. 

 

Fig. 5.1.4 Ramp filter H(w) and its inverse Fourier transformation h(t) in a 

continuous (blue plot) and discrete (red plot) form. 
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Therefore, the final result is  

𝑄𝜃(𝑛𝜏) ≈ 𝜏𝑃𝜃(𝑛𝜏) ∘ ℎ(𝑘𝜏) = 𝜏∑ 𝑃𝜃(𝑛𝜏 − 𝑘𝜏)ℎ(𝑘𝜏)

𝑁−1

𝑘=0

 

where ℎ(𝑘𝜏) = {

         1 4𝜏2⁄       𝑘 = 0       

          0              𝑘 = 𝑒𝑣𝑒𝑛
−1

𝑛2𝜋2𝜏2⁄   𝑘 = 𝑜𝑑𝑑

,    𝑛 ∈ [0, 1, 2⋯𝑁 − 1]                    (5.4) 

 

5.1.1.2. Deformation of measured profile in reciprocal space 

For a tomography rotated M+1 times for an angular range of 180°, and N pixels with a 

size of τ for the length FOV, the measured reciprocal distribution, or the red shaded 

rectangle would have an area of: 

1

𝜏
×
1

𝜏𝑁
=

1

𝜏2𝑁
.                                                                                            (5.5) 

The expected pie-shaped distribution would have an area of 

𝜋

𝑀
× (

1

2𝜏
)
2

× 2 =
𝜋

2𝑀𝜏2
.                                                                            (5.6) 

Because a filter also has its distribution in the reciprocal space, so the length/area of a 

filter also has to be considered. The outline of the process has shown as Fig. 5.1.5. It is 

easy to divide the original rectangular 𝑃𝜃 into four parts by the sign of minus and plus in 

 

Fig. 5.1.5 The distribution change by filtering via Convolution Back Projection 
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both u and v axis, due to the symmetry of the Ramp filter H(w). The area of the ramp 

filter with both plus sign is shown as yellow shaded area in Fig. 5.1.5. In this area, both 

the amplitude and the frequency w are positive, which means 

𝑤 ∈ [0,
1

2𝐹𝑂𝑉
,⋯

1

2𝜏
] , 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ∈ [0,

1

2𝐹𝑂𝑉
,⋯

1

2𝜏
]                       (5.7) 

the yellow area in the filter would be 

1

2
𝑤𝑚𝑎𝑥

2 =
1

8𝜏2
.                                                                                            (5.8) 

Since either of the FBP and CBP method is a multiplication process in the reciprocal space, 

the filtered area in right side would be 

1

𝜏2𝑁
×

1

8𝜏2
× 4 =

1

2𝜏4𝑁
.                                                                           (5.9) 

Therefore, the coefficient linking the filtered area and the pie-shaped area in the reciprocal 

space would be 

(5.6)

(5.9)
=

𝜋

2𝜏2𝑀

1

2𝜏4𝑁
⁄ =

𝜋𝑁

𝑀
𝜏2.                                                              (5.10) 

If consider that for every pixel on the X-ray path is all summed up to the scattered area, 

and in the reconstruction process, each pixel is calculated individually, then the influence 

for each pixel from a single rotation angle would be averaged by N pixels in FOV: 

𝐾 =
𝜋𝑁

𝑀
𝜏2 ÷ 𝑁 =

𝜋

𝑀
𝜏2.                                                                          (5.11) 

Consequently, eq. (5.10) is the final expression of the coefficient linking the measured 

distribution in the reciprocal space by a rough measurement, to the distribution in the 

reciprocal space for an absolute reconstruction. 

 

5.1.2. Absolute unit in intensive/extensive parameters 

The term “absolute unit” and “absolute intensity” has been used throughout this treatise, 

and also in the SAXS profiles by other researchers (Osamura et al., 1979; Hennion et al., 

1982). The absolute unit or the differential scattering cross-section of the intensity 

indicates the intensity detected in a unit solid angle measured (sr-1) which scattered from 

a unit volume (cm-3), by a unit flux of incident X-ray (1/cm-2∙s-1) in a unit period of time 

(s-1). Therefore, the absolute intensity of differential cross-section (
d𝜎

d𝛺
) is consequently 

an intensive parameter with a unit of: 
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𝑠𝑟−1 ∙ 𝑐𝑚−3 ∙
1

𝑐𝑚−2 ∙ 𝑠−1
∙ 𝑠−1 = 𝑐𝑚−1 ∙ 𝑠𝑟−1.                                   (5.12) 

When this absolute intensity was used as a unit for a SAXS profile, the absolute 

integrated intensity using differential cross-section would be 

𝑄𝑑𝑖𝑓𝑓 = ∫𝐼(𝑞)𝑞
2d𝑞 =  ∫(

d𝜎𝑞

d𝛺
) ∙ 𝑞2 ∙ d𝑞 → 𝑐𝑚−1 ∙ 𝑠𝑟−1 ∙ (𝑐𝑚−1)3      

→ 𝑐𝑚−4 ∙ 𝑠𝑟−1.           (5.13) 

where (
d𝜎𝑞

d𝛺
) is the differential cross-section on a scattering vector q. If using the total 

cross-section for SAXS profile, instead of differential cross-section, then the total cross-

section of the integrated intensity would be: 

𝑄𝑡𝑜𝑡𝑎𝑙 = ∫𝜎(𝑞)𝑞2d𝑞 = ∫
2

3
∙ 4𝜋 ∙ (

d𝜎𝑞

d𝛺
) ∙ 𝑞2 ∙ d𝑞                                        

=
8

3
𝜋𝑄𝑑𝑖𝑓𝑓     → 𝑐𝑚−4.                                    (5.14) 

Both 𝑄𝑑𝑖𝑓𝑓  and 𝑄𝑡𝑜𝑡𝑎𝑙  are intensive parameters, from the reason that eq. (5.14) link 

directly to the sum of the total cross-section in a unit volume of cm3. 
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5.2. Vector tomography  

The term “vector tomography” is used when the parameter for reconstruction is a set of 

vectors, like in the 1D SAXS profile (𝑰𝑟 , 𝒒𝑟). Every modulus of the scattering vector has 

its respective intensity to correspond. For the same reason, the conventional tomography 

which uses a scalar as a reconstruction parameter is then would be called a “scalar 

tomography”; a tomography using a tensor—e.g. SAXS tomography measured in 3D 

 (𝑰𝑟,𝜃,𝜒, 𝒒𝑟 , 𝒒𝜃 , 𝒒𝜒)—would be called a “tensor tomography”. 

 

5.2.1. Feasibility of reconstruction in vector tomography 

In the scalar tomography of attenuation coefficient like in Fig. 5.2.1 (a), the transmitted 

X-ray intensity (or transmittance) can be expressed with the attenuation coefficient and 

thickness in each volume element, i.e. in each voxel, with a dimension x in length: 

𝐼𝑗 = 𝐼0 × 𝑒
－(𝜇1,𝑗x+𝜇2,𝑗x+⋯𝜇𝑁,𝑗x)                                                              (5.15) 

∑𝜇𝑖,𝑗x

𝑗

= − ln(
𝐼0
𝐼𝑗
) = − ln(𝑇𝑗)                                                          (5.16) 

eq. (5.16) indicates that the parameter for reconstruction is a summation related to the 

respective voxel corresponding to, i.e., the attenuation coefficient is a linear parameter. 

This is the reason that attenuation coefficient can be reconstructed. 

The same linearity is expected to be observed in vector tomography, since which is also 

needed to be reconstructed. As shown in the Fig. 5.2.1 (b), to consider the scattered X-

ray in the kth voxel, with a pencil X-ray is transmitted from I0 to I1, then: 

 

𝐼𝑠𝑐𝑎𝑡𝑡𝑒𝑟,𝑘 = 𝐼0 × (𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑢𝑛𝑡𝑖𝑙𝑙 𝑣𝑜𝑥𝑒𝑙 𝑘)                                                           

 

Fig. 5.2.1 A schematic illustration showing the similarity and difference in (a) the 

scalar tomography and (b) the vector tomography. 
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× (𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑐𝑟𝑜𝑠𝑠– 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑘𝑡ℎ 𝑣𝑜𝑥𝑒𝑙)                                    

× (𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑎𝑓𝑡𝑒𝑟 𝑘𝑡ℎ 𝑣𝑜𝑥𝑒𝑙)                                                        

= 𝐼0 × (𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑐𝑟𝑜𝑠𝑠– 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑘
𝑡ℎ 𝑣𝑜𝑥𝑒𝑙) × 𝑒−∑𝜇𝑗𝑥                 

                 = 𝐼0 × (𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑐𝑟𝑜𝑠𝑠– 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑘
𝑡ℎ 𝑣𝑜𝑥𝑒𝑙) × 𝑇𝑘.            (5.17) 

Therefore in general, 

𝐼𝑠𝑐𝑎𝑡𝑡𝑒𝑟 = 𝐼0 ×∑(𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛)𝑖,𝑗
𝑗

× 𝑇𝑗 .                                (5.18) 

eq. (5.16) demonstrates that the scattered intensity can also be changed into an expression 

of summation of vectoral parameter, demonstrates the linearity in the scattering cross-

section. The feasibility of the reconstruction for SAXS tomography on a 2D plane cross-

section of an object specimen is confirmed. 

 

5.2.2. Data selection in SAXS profile for vector tomography 

Fig. 5.2.2 displays the operation in a SAXS tomography using vector tomography 

technique, which combined SAXS with CT (for this reason, also called SAXS-CT). As 

mentioned in section 2.7, due to the reconstruction process, every voxel is needed to be 

back-projected from all the projection direction. Therefore, only the part of measured 2D 

SAXS profiles which located on the line of the rotation axis is available to be used for 

reconstruction, and which is practically 1D SAXS profile. This reason comes from the 

reasons following: 

In a scalar tomography, only a single scalar value exists in one voxel, which is a constant. 

However, in the SAXS tomography using vector tomography technique, after a full 

 

Fig. 5.2.2 A schematic illustration of vector tomographic measurement and the 

vector profile measured for one voxel. 
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rotation of 180° or 360°, all the scattering vector and the intensity corresponding to is 

altered by the projection direction, except for the ones on the rotation axis, as shown in 

Fig.5.2.2. If the objective specimen is anisotropic like the multilayered composite in this 

treatise, then the area selection in the measured 2D SAXS profile is needed a special care. 

Therefore, the SAXS tomography in this treatise is vector tomography on the normal 

direction of the measured cross-section. 
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5.3. Result of SAXS Computed Tomography applied to multilayered binary 

composite 

5.3.1. Al/Al–Zn/Al multilayered composite 

5.3.1.1. Quantitative computed tomography in interdiffusion layer Al/Al–Zn 

5.3.1.1.1. Specimen and Experiment detail 

The binary composite specimen used in the SAXS tomography was a square pillar cut 

from a three-layered Al/Al–Zn/Al composite sheet, as shown in Fig. 5.3.1. The pillar was 

perpendicular to the interdiffusion direction, having a cross-section 400 μm × 800 μm 

approximately. The three-layered sandwich composite is the same specimen for 1D 

scanning measurement in the section 3.2–3.4. 

The heat treatment was conducted on the sheet meal before cutting into square pillar. 

The original three-layered sheet was conducted a same series of heat treatment as 1D 

scanning SAXS measurement in the section 3.3. 

The computed tomography measurement with SAXS method was conducted with Zn 

fluorescent X-ray detection simultaneously, as shown in Fig. 5.3.2 with a photo of the 

rectangle pillar specimen. The investigation was conducted in Spring-8, BL40XU. High-

 

Fig. 5.3.1 Illustration of 3-layered composite and the cut area for square pillar 

Pure Al

Pure Al

Al - Zn

surface

surface

center

 

Fig. 5.3.2 A schematic illustration of tomography measurement and a photo of 

square pillar specimen. 
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flux X-ray beam with an energy of 15 keV was used, and the diameter was calibrated by 

a pin hole with 20 μm in diameter. The translation and rotation angle step were set for 20 

μm and 3°. 

 

5.3.1.1.2. Quantitative attenuation coefficient tomography and Zn composition 

tomography 

Fig. 5.3.3 (a) shows the result of the absolute attenuation coefficient tomography. This 

quantitative map has a range of value between 23 cm-1 to 57 cm-1, and was converted into 

a map of Zn distribution in Al–Zn alloy shown in Fig. 5.3.3 (b), by using the relationship 

of 

𝜇𝑎𝑙𝑙𝑜𝑦

𝜌𝑎𝑙𝑙𝑜𝑦
=∑ 𝜔𝛼 ∙

𝛼

𝜇𝛼
𝜌𝛼
                                                                               (5.19) 

where 𝜇𝛼  is the absorption coefficient of the constituent element α; 𝜔𝛼  is the mass 

fraction of element α; and 𝜌𝛼 is the density of element α. For a Al–Zn binary alloy, the 

relationship of 𝜇𝑎𝑙𝑙𝑜𝑦 and 𝜔𝑍𝑛 is 

𝜔𝑍𝑛 =
1

2
(1701 + 5.054𝜇𝑎𝑙𝑙𝑜𝑦) − √∆                                                               

where       ∆= (1701 + 5.054𝜇𝑎𝑙𝑙𝑜𝑦)
2
− 4 × (8.696𝜇𝑎𝑙𝑙𝑜𝑦 − 184.9)           (5.20). 

 The Zn composition in Fig. 5.3.3 (b) indicates that the specimen cut from the three-

layered sheet metal has covered 98.1% in the Zn composition of the interdiffusion area, 

which contains a maximum of Zn of 14.07 mass% have in shown in the Table 2.7.1. 

 

Fig. 5.3.3 (a) Absolute attenuation coefficient tomography; (b) Zn mass% 

tomography converted from (a) in the Al/Al–Zn interdiffusion layer. 
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5.3.1.2. 2D Zn distribution in Al/Al–Zn square pillar by EDX measurement 

Fig. 5.3.4 (a) and (b) exhibits the SEM image and the corresponding EDX map of Zn 

concentration on a cross-section on the same pillar of SAXS-CT, with a distance of 1 mm 

apart from the tomographic image, i.e., Fig. 5.3.3. The average solute distribution curve 

was obtained by taking the mean values of Zn composition over the y direction on the 

Fig. 5.3.4 (b), which is also normal to the interdiffusion direction, between y = 320 μm 

and 470 μm. The mean Zn composition distribution are shown as black dots in Fig. 5.3.5.  

The grey dots in Fig. 5.3.5 showing the average distribution of Zn composition from 

tomographic result Fig. 3.1.4 (b). Which underwent a same averaging method as the EDX 

result . The distributions of the black and grey dots from two individual measurements 

 

Fig. 5.3.4 (a) SEM images of the cross-section of the square pillar; (b) 2D EDX result 

of Zn concentration on (a).  

(a) (b)

200μm

 

Fig. 5.3.5 Zn concentration profile from the tomography result (grey dot) and the 

EDX result (black dot) 
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showed an excellent agreement, except for which in the edge positions of the pillar. The 

present result indicates that the Zn composition in the sample ranges from 1.5% to 13.8% 

in mass. 

 

5.3.1.3. Absolute integrated intensity and volume fraction tomography 

The absolute integrated intensity tomography represented as the differential cross-

section was reconstructed from the projected integrated intensity, which shown as Fig. 

5.3.6 (a). This image was regulated by the glassy carbon from the Nilaco Corp., by 

calibrating the detected SAXS intensity profile of the glassy carbon into the profile of the 

differential cross-section in unit of cm-1∙sr-1. For the reason that the parameter in the 

tomography reconstruction was treated as an extensive parameter, the dimension of voxel 

in the X-ray direction i.e., 0.002 cm (20μm) was calibrated for each voxel after the 

reconstruction.  

By comparing with 5.3.1.1.2.1 (b), this image indicates that the precipitation of G. P. 

zones took place when the composition of Zn exceeds approximately 6.2% in mass, and 

this result showed a discrepancy of 1.0% with the 1D scanning result, which is 5.2% Zn 

in mass. 

The volume fraction of the precipitates Vf was converted with eq. (2.24) in the item 

2.2.1.2.2 and eq. (5.13) in the section 5.1.2. In this calculation, the unit was converted 

from e.u. into cm-4∙sr-1 by considering the electron density difference ∆ρ of the precipitate, 

i.e. G. P. zone, and the matrix.  

∆ρ is calculated by the volume of the unit cell and the density of the elements in the 

 

Fig. 5.3.6 (a) The absolute integrated intensity tomography and (b) the volume 

fraction of precipitates converted in the Al/Al–Zn interdiffusion layer. 
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either phase. Zn composition of G. P. zone and the matrix was conducted via the free 

energy curve at the artificial aging temperature 313 K and the common tangent line in 

Al–Zn system studied by Sato et al. (1979): 

𝐹𝑠

𝑅
= 𝑋(1 − 𝑋)(1080 − 1590𝑋 + 0.3753𝑇 + 1.910𝑋𝑇)                            

+𝑇[𝑋 ln 𝑋 + (1 − 𝑋) ln(1 − 𝑋)]                                                 (5.21) 

where 𝐹𝑠 is the free energy of the alloy, R is the gas constant, X is the atomic composition 

of an element, T is the absolute temperature. The Zn composition in the matrix and the G. 

P. zone was calculated as 1.9 mol% and 72 mol%. 

The lattice constant by different Zn composition in binary Al alloy was evaluated by 

using the linear relation of the two constants in the room temperature by Popović et al. 

(1992). From the fact that the Zn composition ranged 0–15 mass% (0–6.8 at%) and the 

resulting lattice constant is 0.40494 nm and 0.40426 nm for 0 at% and 8 at% (Popović et 

al., 1989, 1992). The difference in the lattice constant is lower than 1% and therefore 

which of the G. P. zone and the matrix was fixed as 0.404 nm. The lattice constant of 

either of the phases was considered identical, form the fact that G. P. zone is facet to the 

matrix.  

The electron density in both of the phases resulted in ∆ρ = 7.21 × 1023 electrons/cm3. 

Like mentioned in the 1D scanning measurement, that the phase separation is unique in 

this binary composite, regardless of Zn composition unless completely dissolved. 

The volume fraction of G. P. zone in the interdiffusion layer was shown as Fig. 5.3.6 (b). 

The volume fraction of G. P. zones was in the range of 0 to 2.8%. This is lower than that 

estimated from the preceding works (Komiya et al., 2006; Gerold, 1961; Osamura & 

Murakami, 1979; Gerold & Merz,1967). For example, a volume fraction of 2.6% in the 

4.7 mol%Zn alloy can be calculated from the work of 3-dimensional atom probe (3DAP) 

by Komiya et al. (2006). However, the evaluated volume fraction in the tomography is 

1.8% at 11.1 mass%Zn (i.e., 4.9 mol%). This is due to the low accuracy in the 

transmittance data when X-ray illuminates nothing but air, which can be confirmed by 

reducing the density approximately 1.5 mass%Zn for all voxels in the specimen. This 

value is the Zn composition result that locates in the range 200–500 μm in Fig. 5.3.5. This 

plateau area is naturally considered as pure Al, for either the results of the EDX and the 

tomographic measurement. Therefore, the density of 12.2 mass%Zn in the tomographic 

image would be converted as 4.7 mol%Zn (10.7 mass%) and the volume fraction in this 

density resulted as 2.2%, which is consistent to the preceding works which is 2.6%. This 
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deviation of 1.5 mass%Zn can also be verified by recalling the result of attenuation 

tomography which showed a difference with 1.0% mass%Zn. 

 

5.3.1.4. Assessment of local hardness and UTS tomography 

As mentioned in section 3.4, in a SAXS measurement, Guinier radius is identical to the 

radius of gyration, and can be regarded as an averaged parameter in the volume X-ray 

past through. However, considering that the radius of gyration is not linear to the 

constituent like integrated intensity; which implies that it is not valid to used Guinier 

radius from the projected SAXS as a parameter for tomographic reconstruction as 

mentioned in section 5.2.1. Therefore, the Guinier radius in each voxel has to be estimated 

individually, which implies the tomographic reconstruction of the whole SAXS profile 

from each projection direction. For this rectangular pillar as a laminated composite, in the 

direction perpendicular to the interdiffusion direction, i.e. in the y axis of Fig. 5.3.3, the 

attenuation coefficient and Zn composition is relatively constant; which implies that in 

this direction, the rectangular pillar can be considered homogeneous locally. Taking 

advantage of this special property, the Guinier radius in each voxel was evaluated by 

using the SAXS profiles illuminated from the y direction in the x coordinate of each voxel. 

This process of evaluating the mean radius is identical to which of 1D scanning SAXS 

measurement in section 3.  

 

Fig. 5.3.7 Tomography of Vickers Hardness in the Al/Al–Zn interdiffusion layer 

assessed by volume fraction tomography and Guinier Radius using the relationship of 

hardness and nanostructure from a specimen with the same heat treatment measured 

by microbeam 1D SAXS scanning. 

-400 -200 0 200 400

-400

-200

0

200

400

p
o

si
ti

o
n

, 
y 

/ 
μ

m

position, x / μm

0.00

18.7

37.4

56.1

74.8

93.5

HV



 

87 

 

 

The resulting Guinier radius along y direction image ranged from 2.16 nm to 3.56 nm. 

With the volume fraction evaluated in Fig. 5.3.6 (b), the local hardness in each voxel of 

the tomographic measurement was estimated from these nanostructure parameters, using 

the underaged relationship confirmed in the section 3.4. For the solid solution region, the 

hardness was evaluated as the function of Zn concentration using the relationship of Zn 

concentration and the hardness in the section 3.4. These were summarized as Fig. 5.3.7.  

 

5.3.1.5. Evaluation of assessed UTS tomography from nanostructure 

The hardness can be shown in UTS using an empirical relationship (Sato & Endo, 1986; 

Zhang, et al., 2011) of 

σ(𝑈𝑇𝑆) ≈ 1/3 × 𝐻𝑉                                                                                   (5.4) 

where 𝐻𝑉 is the Vickers hardness. 

Also, if an alloy is strengthened by nanostructure only, the Critical resolved shear stress 

(CRSS) can be estimated from (Gerold and Haberkorn, 1966) 

∆𝜏0 ≈ 3𝜇|휀|
1.5 (

𝑅𝑉𝑓

𝑏
)
0.5

                                                                             (5.5) 

where 𝜇  is the shear modulus; R the radius of precipitation; b the length of Burger’s 

vector; 휀  the linear misfit parameter of particle and matrix. 휀  can be evaluated with 

(Mott, & Nabarro, 1940; JIM, 1976) 

휀 ≈
1

𝑎
(
𝑑𝑎

𝑑𝑐
)                                                                                                    (5.6) 

where a is the lattice constant, c the solute density. The average value of 휀 was 0.0216. 

With the value of this 휀 and the shear modulus of pure Al which is 27 GPa, the coefficient 

of ∆𝜏0 and √𝑅𝑉𝑓 is calculated as 4.05×10-10. Since UTS converted from Fig. 5.3.7 also 

uses a coefficient to connect 𝜏 and √𝑅𝑉𝑓 with the cut through mechanism by eq. (3.2) 

in section 3.4, the relationship of theoretical yield strength and UTS was calculated as: 

𝜏𝑈𝑇𝑆
𝜏𝑦𝑖𝑒𝑙𝑑

= 1.56                                                                                                 (5.7) 
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5.3.2. Quantitative computed tomography in Al/Al–Zn/Al composite 

5.3.2.1. Sample preparation 

Another rectangular pillar was cut from a three-layered sheet metallic composite with 

the thickness rolled down into 0.5 mm in the last cool rolling process, instead of 2 mm. 

The interdiffusion layer thickness was controlled to approximately 200 μm with 

interdiffusion treatment, and the movement steps of local nanostructure investigation by 

a SAXS tomography method was controlled as 20 μm and 3° as shown in Fig. 5.3.8. 

The Al/Al–Zn/Al composite with a thickness of 500 μm underwent a similar heat 

treatment before cut into the rectangular pillar with 1D SAXS scanning measurement and 

2D SAXS-CT measurement in section 3.2–3.4 and 5.3.1. After the interdiffusion 

treatment process at 773 K for 14.4 ks with iced water quenching, it was it was kept for 

300 s in a vertical furnace at 573K for solid solution treatment, followed by a rapid iced 

water quenching. The artificial aging was also conducted on this sheet metal by an oil 

bath for 3.6 ks at 313 K.  

The pillar was cut from the sheet metal into a squared pillar shown in the Fig. 5.3.8 after 

the series of heat treatment. Either of the pillar was cut in the roll direction (RD) plane of 

rolled sheet metal, therefore the squared cross-section was composed by the traverse 

direction (TD) and normal direction (ND). The square dimension was restricted to about 

500 μm, which is the length of the original layered thickness and cut distance.  

 

 

Fig. 5.3.8 A schematic illustration showing the SAXS tomography 

investigation. The specimen in the figure is a photograph of an Al–Zn binary 

composite sample. Burrs can be found in one of the square pillar faces. 
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5.3.2.2. Solute distribution investigation via EDX 

Fig. 5.3.9 shows the Zn distribution was investigated with SEM-EDX measurement via 

2D mapping. After 14.4 ks of interdiffusion treatment, the Zn concentration has a range 

of approximately 0–9.6 mass% lower than the maximum composition of the single layer 

14.7 mass%, indicating the two of the interdiffusion layers has encountered and fused into 

one layer. 

 

5.3.2.3. Absolute attenuation coefficient and Zn composition tomography 

Fig. 5.3.10 (a) is the reconstructed 2D image of the absolute attenuation coefficient, 

showing the 2D planar distribution of a 20 μm thick cross-section in the square pillar. 

 

Fig. 5.3.9 (a) EDX result of 2D mapping of Zn concentration; (b) The Zn 

concentration regulated from 2D map. 
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Fig. 5.3.10 (a) Absolute attenuation coefficient tomography ;(b) Zn composition 

tomography converted from the attenuation coefficient tomography. 
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Each value represents the mean value of a cubic area with 20 μm × 20 μm × 20 μm in the 

squared pillar. The specimen showed a cross-section with a dimension of approximately 

600 μm × 620 μm, and the burrs formed while cutting the pillar from the sheet metal are 

observed in all the four corners. Two of the four burrs are bent and contacted to the bulk 

pillar, which can be confirmed both from the tomography and the photo of specimen in 

Fig. 5.3.8. The mass fraction tomography of Zn is displayed in Fig. 5.3.10 (b). This image 

shows the maximum concentration of this specimen is 9.85 mass%. The result showed a 

good match with the EDX result which is 9.6 mass% at maximum. 

Same with the 3 mm thick specimen discussed in the section 5.3.1.2, the interdiffusion 

direction of atoms is also on the x-axis in this map, which can be confirmed from the 

decrement of Zn concentration. However, the distribution of Zn on the y direction showed 

a different result from 3 mm thick pillar. For 3mm thick pillar in the section 5.3.1.2, the 

y direction is unformed in Zn concentration due to the equivalence in both of the diffusion 

distance starts from the interface of cladded layers, and the diffusion time in the 

interdiffusion process. For this 500 μm pillar shown as Fig. 5.3.10 (b), the Zn 

concentration on the y direction is not uniformed, and a dump can be observed in the area 

of y = 80 μm to 320 μm. In this dumping area, the thickness of the single layered Al–Zn 

alloy sheet is considered to be thinner than other area initially. Which indicates a necking 

in the thickness was made after the rolling process while manufacturing composite. For 

this reason, during the interdiffusion treatment process of 14.4 ks at 773 K, the maximum 

Zn concentration decreases faster in this thinner area, and the shape of necking in Zn 

distribution remains. This phenomenon that thickness fluctuation occurs on the middle 

layer after the rolling process is well known in the rolling or extrusion process while 

manufacturing multi-layered composite like the ones in our study (Arnold & Whitton, 

1959; Shimura & Tanaka, 1975; Wilson et al., 1975; Onodera & Hokamoto, 1987).  
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5.3.2.4. Absolute SAXS intensity tomography 

The absolute calibration with the SAXS profile of glassy carbon was performed after 

the reconstruction of relative SAXS profile in each voxel. Fig. 5.3.11 shows the SAXS 

profiles on the y = –20 μm line of Fig. 5.3.10 (a). The Porod’s rule (Guinier & Fournet, 

1955; Brumberger, 1956) was observed obeying in the reconstructed SAXS curve. The 

local maximum was found roughly on the position of 0.3 nm-1 scattering vector, which 

can be explained by the interference between different precipitates. 

 

5.3.2.5. Absolute integrated intensity tomography 

The distribution of the absolute integrated intensity 𝑄  was calculated using two 

different methods. The first method the absolute SAXS profile in each voxel was 

reconstructed first; then, the absolute integrated intensities were calculated using the 

reconstructed profiles. The second method has been used in the section 5.3.1.2, which is 

to calculate the integrated intensity using the projected absolute SAXS profile first, and 

followed by a reconstruction of the projected absolute 𝑄 value for all voxels for a single 

time. Both methods yield the same results. The absolute integrated intensity calculated 

using the SAXS curve in each voxel indicated a –1% to +20% difference (in particular, a 

range of –1% to +10% difference was observed where the scattered intensity is high 

 

Fig. 5.3.11 Reconstructed SAXS tomography result of Al/Al–Zn/Al composite: 

Absolute SAXS profile in y = –20 μm line. 
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enough, i.e., x at a range of –80 μm to 80 μm and y of –200 μm to 70 μm) with the 

reconstruction from the projected SAXS profiles for the voxels with valid values. In the 

first method, the SAXS profile reconstructed for each voxel is composed of 

approximately 270 scattering vectors and the respective scattered intensity, which were 

equivalent to 270 reconstructions for a single 𝑄 in one voxel. 

In contrast, the calculation of absolute 𝑄 using the projected SAXS profile involved 

only one reconstruction process for all voxels. This implies that the error of the CBP 

method used in this study is negligible, particularly when the parameter to be 

reconstructed has a high value. Fig. 5.3.12 (a) shows the results of the method in which 

absolute 𝑄 is calculated using the respective voxels. 

Fig. 5.3.12 (b) shows the Guinier radius calculated based on the reconstructed absolute 

SAXS profile for each voxel. The mean radius of the precipitates ranged between 1.35 

and 2.23 nm. The same with specimen in the section of 5.3.1, precipitates with this radius 

area known to be G. P. zone in this alloy (Hennion et al., 1982).  

In order to evaluate nanostructure with local hardness, the volume fraction Vf was 

calculated by using the same method discussed in the section 5.3.1.3. 

 

5.3.2.6. Local hardness tomography in Al–Zn binary composite 

Fig. 5.3.13 shows the local hardness obtained using the underaged result of the 

nanostructure and its relationship with nanostructure investigated in the 1D scanning in 

section 3.4. 

The local hardness has a maximum value of 94 HV, which can be also converted to 

𝜎(𝑈𝑇𝑆) using the empirical relationship with the hardness 𝐻𝑉 shown as eq. (5.44) in the 

 

Fig. 5.3.12 (a) Absolute integrated intensity and (b) Guinier Radius tomography 
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item 5.3.1.5. The local hardness was lower than the previous result Fig. 5.3.7 of 

interdiffusion area. The reason is that the Zn composition is lower in this square pillar, as 

this pillar having a thinner layer but underwent a same interdiffusion treatment.  

In summary, a full cross-section in a three-layered bulk metallic composite was assessed 

nondestructively in terms of the local hardness, based on the spatial resolution of a cube 

with 20 μm × 20 μm × 20 μm for one voxel. 

 

 

 

  

 

Fig. 5.3.13 The Vickers hardness tomography calculated from Vf, Rg and their 

relationship from 1D scanning SAXS result 
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5.4. Result of SAXS Computed Tomography applied to multilayered ternary 

composite 

5.4.1. Al–Mg/Al–Zn/Al–Mg multilayered composite 

The same with the binary composite in the previous section, a rectangular pillar was cut 

from the three-layered sheet metallic composite Al–Mg/Al–Zn/Al–Mg, with the thickness 

rolled down into 0.5 mm in the last cool rolling process. The interdiffusion layer thickness 

was controlled to approximately 500 μm with interdiffusion treatment, and the unit 

intervals of local nanostructure investigation by SAXS tomography method was adjusted 

as 20 μm and 3° 
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5.4.1.1. Solute distribution investigated with SEM-EDX 

The solute distribution was investigated with SEM-EDX in 2D with calibrations by 

standard specimens. After dipping in the salt bath for 3.6 ks at 773 K, the Zn concentration 

was 0–7.8 mass%, the Mg concentration was 0.26–2.3 mass%, shown in Fig. 5.4.1. and 

Fig. 5.4.2. 

 

 

 

Fig. 5.4.1 (a) An EDX result of the 2D mapping of Zn concentration; (b) The Zn 

concentration piled up and taken average from (a) along x direction in the ternary 

composite interdiffused for 3.6 ks. 
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Fig. 5.4.2 (a) An EDX result of the 2D mapping of Mg concentration; (b) The Mg 

concentration piled up and taken average from (a) along x direction in the ternary 

composite interdiffused for 3.6 ks 
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5.4.1.2. Absolute tomography of Attenuation coefficient and solute concentration 

Fig. 5.4.3 (a) shows the attenuation coefficient tomography reconstructed in the Al–

Mg/Al–Zn/Al–Mg ternary alloy square pillar. As mentioned in 1D SAXS scanning 

experiment in section 3.1.2, the composition of all consisting atoms Al, Zn, and Mg is 

unable to be determined uniquely from only the attenuation coefficient. The relationship 

of all three elements’ concentration was carried out with a couple of master curves based 

on calibrated Fig. 5.4.1 (b) and Fig. 5.4.2 (b). The master curves were smoothed using a 

Fast Fourier Transformation (FFT) filter on the plots of Zn and Mg mass fractions to 

reduce the statistic errors. The raw plots and the smoothed master curves are shown in 

Fig. 5.4.3 (b). The EDX result indicates that the Zn atoms have reached the edge of 

specimen, and the Mg atoms diffuse from either of the side layers concentrated in the 

center, resulting an increase in the concentration to 0.5 mass%.  

 

Fig. 5.4.3 Tomographic result of (a) attenuation coefficient in the Al–Zn–Mg 

ternary composite (b) EDX result (plots) with master curves (red lines). 
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Fig. 5.4.4 Tomographic result of (a) Zn composition and (b) Mg composition 

converted from Zn composition tomography and master curve from EDX. 
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Fig. 5.4.4 (a) and (b) showing the molecular fraction result of Zn and Mg converted from 

the absolute attenuation coefficient shown in Fig. 5.4.4 (b); the results range from 0% to 

3.2% and 0.9% to 2.9% for Zn and Mg, respectively. None of the absolute attenuation 

coefficients and consequent solute compositions were reliable for the voxels located on 

the edge of the square cross-section. This is because that the area in these voxels that was 

filled with the specimen was ambiguous, whereas the voxels were completely filled with 

the specimen in the bulk area. 

Fig. 5.4.5 (a) shows the composition distribution on the Al corner of Al–Zn–Mg ternary 

phase diagram at 393 K using the CALPHAD method. The EDX results are plotted in 

blue and the tomographic result are shown as green dots. The red lines indicated the areas 

of different stable precipitations. Fig. 5.4.5 (a) indicates that the composition in this squire 

pillar traverse the area where the phase T + Al3Mg2
 + matrix, T + η + matrix, and η + 

matrix occurred, and they were separated by Zn/Mg mol% ratios of 0.010, 1.0 and 1.6. 

This result reveals that the amount, shape and type of nanostructure varied based on the 

location on the specimen. Fig. 5.4.5 (b) shows the distribution of Zn/Mg molar ratio by 

tomography. The phase transformations of the specimen are indicated by black lines. The 

existence of Al3Mg2 was disregarded for the same reason in section 3.7, that is it is unable 

to be measured in SAXS method; furthermore, it contributes less to the strengthening 

effect compared with T, η and their precursors in the 7000 series Al alloy. 

 

 

Fig. 5.4.5 Tomographic result of (a) compositions in Al corner of Al–Zn–Mg 

ternary phase diagram (b) Zn/Mg mol% and boarder of different phase separations. 
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5.4.1.3. Absolute tomography of SAXS intensity profile 

The extensive parameter of the relative scattered intensity for each voxel was 

reconstructed using the CBP method, based on the projected SAXS profile. The intensive 

parameter of the absolute SAXS profiles, defined by the differential cross-section, was 

then calculated for each voxel, based on the calibration performed for the previous Al–

Zn binary composite. Fig. 5.4.6 shows the typical profiles in voxels lying on the 

horizontal line 𝑦 = 0. All the profiles for the specimen are found follow the porod’s rule 

(Guinier & Fournet, 1955; Brumberger, 1956), and one or even two local maximum peaks 

originating from the interference of the precipitates were found in every profile. In 

addition, the types and shapes of profiles may differ for Zn/Mg ratios, indicating that 

multiple peaks may be caused by the different types of scatterers or by nanostructures in 

either shape or distribution within a single voxel. 

 

 

Fig. 5.4.6 Reconstructed SAXS tomography result of Al–Mg/Al–Zn/Al–Mg 

composite: a list of absolute SAXS profiles of voxels lie on 𝑦 = 0 line. 
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5.4.1.4. Absolute tomography of SAXS parameters in Al–Zn–Mg ternary composite 

Fig. 5.4.7 (a) shows the absolute integrated intensity per cubic centimeter per steradian 

detected in each voxel. Similar to the SAXS profile, the absolute integrated intensity is 

high in the Zn-rich area, reaching a maximum value of 1.77 × 1022 cm-4∙sr-1. Fig. 5.4.7 (b) 

shows the Guinier radius Rg tomography calculated from the SAXS profile for each voxel. 

As shown, the precipitates varied from 0.85–1.3 nm in average. Similar to the previous 

binary Al–Zn composite, the tomography of the absolute integrated intensity 𝑄  was 

verified by comparing 2 different reconstruction methods, where a deviation of ±0.1% 

was indicated between a reconstruction that was performed once and a reconstruction that 

was performed approximately 530 times. 

As multiple phase transformations occurred, the Al–Zn–Mg ternary composite differed 

from the previous Al–Zn binary composite. Therefore, it was not possible to identify the 

precipitates based on only the absolute scattered intensity. Moreover, unlike in the 1D 

scanning measurement on ternary composites in section 3.9, Fig. 5.4.6 shows that not 

only one, but multiple local maxima may occur in a single SAXS profile. This indicates 

that it is more than one type of precipitate may exist in one voxel, and it is not adequate 

to use only one pair of Guinier radius and integrated intensity to assess all the 

nanostructures exist in one voxel. Every SAXS profile must be categorized by the type of 

the precipitate. The coexistence of different precipitation type and the scattered intensity 

profile was confirmed in the section 3.10 by TEM and the SAXS measurement, where 

the 2D SAXS profiles may be originated from the piled-up result of differently shaped 

precipitates. In the case of the SAXS profile reconstructed using a vector tomography, 

which only involves the one-dimensional scattered profile on the rotation axis in the 

 

Fig. 5.4.7 The tomography result of (a) absolute integrated intensity (c) Guinier 

radius calculated from SAXS profile in each voxel in the ternary composite. 
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tomography investigation, the discussion on anisotropy is unavailable. The local hardness 

of Al–Mg/Al–Zn/Al–Mg can be assessed after the reconstructed SAXS profiles in each 

voxel are categorized by precipitate types. 

  



 

101 

 

 

6. Summary 

The nanostructural distributions in the binary and ternary Al-based multilayer composite 

was visualized quantitatively by absolute tomographic reconstruction with small-angle 

X-ray scattering (SAXS) method. 

The nanostructural distributions of two types of three-layered composite Al/Al–Zn/Al 

and Al–Mg/Al–Zn/Al–Mg were investigated on the interdiffusion direction, by using 

scanning SAXS method with a spatial interval of 5 and 10 μm. The incident X-ray was 

radiated from synchrotron, which is a pencil beam with diameters of 5 and 10 μm. The 

relative SAXS profiles in each local position on composite was detected along the 

interdiffusion direction, and the nanostructural distribution of each composites was 

described by two local parameters in every detected local area: the relative integrated 

intensity and the mean Guinier radius of the nanostructures. The local hardness 

distribution in both composites collected by micro Vickers tests were interpreted by the 

relative nanostructural distributions. 

In order to conduct a quantitative investigation of nanostructural distribution inside the 

multilayered composites in 2D, an absolute reconstruction method without using any 

standard specimen was developed for the two-dimensional computed tomography 

technique. Scalar tomographies with an absolute value of attenuation coefficient were 

reconstructed in both Al/Al–Zn/Al and Al–Mg/Al–Zn/Al–Mg composites by using 

synchrotron radiated pencil beam SAXS-CT method. The solute distribution 

tomographies in the binary composite was converted directly, and the solute distribution 

tomographies for ternary composite was estimated with the combination of EDX 

measurement. Vector tomographies, i.e. the tomogrpahies of absolute scattered intensity 

were reconstructed on the cross-sections of the composites, in the direction normal to the 

cross-section. The absolute intensities were calibrated by using glassy carbon as a 

standard specimen for intensity, and the validation of the tomographies were confirmed 

by the subsequent integrated intensity calculated from different methods individually. The 

Guinier radius tomography, alongside with the absolute integrated intensity was also 

visualized in 2D. For the binary alloy composite, the absolute volume fraction 

tomography was converted from the absolute integrated intensity tomography and the 

electron density difference by the uniformed precipitation. Therefore, the local hardness 

tomography distributed on the same 2D cross-section of the binary composite was finally 

estimated with a voxel of 20 μm × 20 μm × 20 μm, using the relationship of nanostructure 

and local hardness investigated in 1D scanning measurement. For the ternary composite 
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identical to Al–Zn–Mg alloy, with the confirmation in the validity of the reconstructed 

SAXS profile tomography, multiple peaks were found in the single SAXS profile, 

indicating that multiple precipitates may co-exist locally in the composite. The separation 

of the precipitates within each voxel is therefore needed for a further investigation. 

For nanostructure that is not observable by an ordinary SAXS method like Al–Mg alloy, 

anomalous small-angle X-ray scattering (ASAXS) method was applied in this treatise, by 

performing SAXS measurement with an energy of the incident X-ray adjusted to the 

vicinity of Mg K absorption energy. Conventional SAXS parameters were analyzed as 

relative integrated intensity and Guinier radius. 

The present results suggest that SAXS analysis especially applicated in CT technique, 

via pencil microbeam is a useful tool to examine the nanostructural distribution and 

predict the properties of the multilayer composite sheets. 
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