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Chapter 1

General Introduction

Electronic structural approaches have been changing considerably the strategy of ma-
terials science research. Calculations based on electronic theory have been recognized
as one of the main strategies to elucidate materials properties. The success of this ap-
proach is due to the fact that first-principles calculations have made it possible to predict
many of the properties of materials with accuracy comparable to or even superior to
experiments. The establishment of the density functional theory (DFT) [1, 2] has greatly
contributed to the development of first-principles calculations. In addition, due to the
significant improvement in computing power in recent years, it became possible to ac-
cess relatively complicated problems. By making it possible to predict the properties of
materials quantitatively and accurately by calculation, it has become realistic to design
materials showing desired properties using first-principles calculations. However, first-
principles calculations are facing challenging problems such as exceeding the limits of
the time scale, bridging the length scale, and performing thermodynamically accurate
calculations.

The description of atomic bonds in a solid by first-principles calculations is limited
to very few atoms and very short time scales. Specifically, it can handle only about
1,000 atoms at the maximum and is limited to calculations of several tens of picoseconds.
In order to extend this most basic description method to large systems and long-scale
computations, approximations must be introduced into quantum mechanical methods,
such as tight-binding approximations. However, these approximations considerably limit
the accuracy, which is the greatest advantage of quantum mechanical methods. Therefore,
the range in which the properties of real materials can be simulated using quantum
mechanics is substantially limited.

To avoid the limitations of first-principles calculations, purely classical pictures are
used instead. This classical picture describes the interaction between atoms using empir-
ical interatomic potential, which is referred to as atomistic simulation. But this classical
picture introduces another severe approximation. In other words, the calculation of em-
pirical interatomic potential essentially limits the ability to accurately capture indefinite
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situations such as the formation and dissolution of bonds between atoms during simula-
tion. These ambiguities of bonds limit the scope of physical phenomena that can be well
explained by atomistic simulation.

Another practical aspect is that even in atomistic simulations, the capabilities of com-
puters limit the system size and time scale that can be simulated. This is also a major
factor that makes it difficult to obtain the required accuracy in materials simulation. How-
ever, this problem has been solved to a large extent by improvements in computer power.
In recent years, the number of parallel processors and the communication speed between
computational nodes have improved more than expected. By spatially decomposing on a
parallel computer [3], the problem of system size has been almost solved. The problem of
time extension is rather difficult, but for example, Parallel replica dynamics [4] are rec-
ognized as an effective method for parallel computers to accelerate molecular-dynamics
simulations that require time-extending computations such as infrequent events.

Empirical potentials in atomistic simulations might be insufficient in the ability to ex-
press interatomic bonds, thus machine learning potentials (MLPs) have been developed
to overcome this deficiency. MLPs aim not only to significantly relax the limitation in the
system size and time scale of first-principles calculations but also to resolve the essential
restrictions on atomic bonds of empirical potentials. MLPs estimate interatomic inter-
actions using machine learning techniques for comprehensive first-principles calculation
results for a given crystal structure dataset. More specifically, MLPs define structural
features that represent adjacent atomic environments and describe a relationship between
the potential energy of the crystal structure and the structural features using a machine
learning model such as Gaussian process model [5, 6, 7, 8, 9], high-dimensional neural
network model [10, 11, 12, 13, 14, 15], or polynomial model [16, 17, 18]. Since the number
of structural features is large and the machine learning model is very flexible, atomistic
simulations using MLPs are as accurate as first-principles calculations.

By following the framework of MLPs, a large number of potentials can systematically
be generated from various hyperparameters of MLP. From these systematically generated
MLPs, the optimum interatomic potential should be chosen in terms of the excellent
balance between accuracy and computational cost, which forms Pareto optimal points.
Since all MLPs on Pareto optimal points are solutions for multi-objective optimization
of computational cost and accuracy, the optimal MLP employed in simulation should be
selected with additional criteria specified for the problem in interest. In the first part of
this thesis, this point is discussed using grain boundary energy as a concrete example.

A certain problem setting requires so high precision potentials that large-scale or
time-extending calculation is usually difficult, even though the amount of calculation is
smaller than that of first-principles calculation. For example, when the typical structures
are unknown or cannot be set, the most accurate interatomic potential currently available
should be employed. When accuracy is more important than efficiency, such as in the
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search for crystal structures, the most accurate potential should be used. Therefore, it is
necessary to develop a method to execute high-precision MLPs at high speed.

Material science simulations using MLPs are expected to solve a large system and
time-extending problem with high accuracy, hence accelerating implementations have
already been developed for most of MLPs. As an example of a particularly advanced
study, the Spectral Neighbor Analysis Potential (SNAP) was implemented and demon-
strated high efficiency using massively parallelized GPUs [19, 20]. Calculations of billions
of atoms using SNAP were reported and the performance improvement with GPUs is
overwhelming for large systems. However, it is known that SNAP can be improved by
adding quadratic terms in the bispectrum components to the structural feature [21]. As
another example, the Atomic Cluster Expansion (ACE) [18] is known as an MLP with a
complete descriptive ability of the structural feature [22], but it does not support GPUs
at the time of writing this thesis. Therefore, ACE may not be yet applicable to spatially
large problems.

PolyMLP [23, 24] is an MLP developed with polynomial invariants that are enu-
merated using a group-theoretic procedure and derived from spherical harmonics. The
smooth overlap of atomic positions kernel [25, 26], the bond-orientational order param-
eters [27], SNAP [17], etc., can be obtained as special cases or minor variations of the
descriptor of PolyMLP. Although the structural features of PolyMLP are a part of those
of ACE, the polynomial model formalism of PolyMLP is more general than ACE. The
structural features of PolyMLP are complete like ACE or the moment tensor potentials
(MTP) [28]. PolyMLP is one of the MLPs with the highest ability to reproduce PES, but
the amount of computation is enormous instead. If PolyMLP is implemented in parallel
on multiple GPUs, it will be possible to calculate problems of the comparable or larger
system size with higher accuracy and larger scale than existing MLPs. Thus, the perfor-
mant implementation of PolyMLP is expected to provide one of the most reliable ways
for calculating realistic materials properties with high accuracy. Therefore, the author
believes that the development of the implementation of PolyMLP on multiple GPUs,
which is the second theme of this thesis, should contribute to materials science.

1.1 Outline of the Thesis

This thesis summarizes the results of verifying the predictive power of MLP and the
results of examining the high-efficiency computation of MLP. The global search of grain
boundary structures using PolyMLP [23, 29, 24] and the development of a performant
implementation of PolyMLP using parallelized GPUs are discussed.

In Chapter 2, angle dependence of grain boundary structure and grain boundary en-
ergy for face-centered-cubic elemental metals Ag, Al, Au, Au, Pd, and Pt are discussed
using PolyMLP. To determine the optimum PolyMLPs for the calculation of grain bound-
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aries, grain boundary energies of test structures are verified for all Pareto-optimal MLPs.
The most stable grain boundary structures are obtained via global search by applying
various rigid body displacements to each grain boundary structure model. It is veri-
fied how much predictive power PolyMLP has for defect structures not included in the
training data.

In Chapter 3, the development of performant implementation by using GPUs based
on the spatial decomposition of the simulation box is discussed. The discussion is in
two stages: speeding up iterative processes of potential calculation and applying spatial
decomposition. For the iterative processes, a method to speed up utilizing parallel pro-
cessing in a single GPU is discussed. In the spatial decomposition, boundary conditions
for using inter-processor communication in PolyMLP computation are discussed. By
measuring the execution speed for various system sizes, the effectiveness and application
range of the performant implementation is evaluated.
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Chapter 2

Application of machine learning
potentials to predict grain boundary
properties in fcc elemental metals

Abstract

Accurate interatomic potentials are in high demand for large-scale atomistic simulations of
materials that are prohibitively expensive by density functional theory (DFT) calculation.
In this study, the author applies machine learning potentials in a recently constructed
repository to the prediction of the grain boundary energy in face-centered-cubic elemental
metals, i.e., Ag, Al, Au, Cu, Pd, and Pt. The systematic application of machine learning
potentials shows that they enable us to predict grain boundary structures and their
energies accurately. The grain boundary energies predicted by the MLPs are in agreement
with those calculated by DFT, although no grain boundary structures were included in
training datasets of the present MLPs.

2.1 Introduction

Grain boundaries are interfaces between differently oriented crystals of the same phase
[30]. The microstructures of grain boundaries can affect various properties of polycrys-
talline materials, including mechanical, thermal, and electrical properties [31, 32, 33, 34].
Thus, an attractive topic in materials science has been to establish the relationship be-
tween the properties of crystalline materials and grain boundary structures. Many the-
oretical studies have been made to cover a broad range of grain boundary structures
and their excessive energies. Early fundamental studies employed pair potentials, such
as the Lennard–Jones and Morse forms, to investigate the generic properties of grain
boundaries such as the presence of cusps in a map of the rotation angle and the grain
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boundary energy [35, 36, 37]. Empirical interatomic potentials such as the Finnis–Sinclair
(FS) potentials [38] and embedded atom method (EAM) [39] potentials have been widely
used to investigate symmetric and asymmetric grain boundaries of metallic materials.
Quantitative predictions are becoming possible [40, 41, 42, 43, 44, 45, 46, 47, 48, 49], and
strong correlations between theoretical and experimental grain boundary energies have
been shown, especially for grain boundaries in elemental Al and Ni, which exhibit low
grain boundary energies [50, 51]. However, the prediction error in the grain boundary
energy may be significant in grain boundaries showing higher grain boundary energies.
This error originates from the fact that their microscopic grain boundary structures differ
from the atomic environment used to estimate interatomic potentials.

Density functional theory (DFT) calculation [1, 2] is an alternative way to predict
grain boundary properties accurately. However, DFT calculation is practically impossi-
ble to apply to large-scale models of grain boundaries owing to its computational cost.
Therefore, interatomic potentials that enable us to predict grain boundary properties
accurately have been in high demand. Over the last decade, many groups have proposed
frameworks to develop machine learning potentials (MLPs) based on extensive datasets
generated by DFT calculation [10, 11, 5, 12, 13, 14, 15, 6, 52, 8, 9, 53, 54, 55, 56, 21, 57,
58, 59, 60, 61, 62]. The MLPs significantly improve the accuracy and transferability of
interatomic potentials. Also, MLPs themselves are becoming available, such as those in
Machine Learning Potential Repository [29] developed by Seko.

In this paper, the author demonstrates the predictive power of MLPs in the MLP
repository for grain boundary properties. The author systematically evaluates the struc-
tures and excessive energies of 〈100〉 symmetric tilt grain boundaries (STGBs), 〈110〉
STGBs, and 〈100〉 pure-twist grain boundaries in the face-centered-cubic (fcc) elemental
metals of Ag, Al, Au, Cu, Pd, and Pt. They are compared with those obtained from EAM
potentials and DFT calculations. The MLP repository contains a set of Pareto optimal
MLPs with different trade-offs between accuracy and computational efficiency; hence, the
author carefully determines appropriate MLPs to predict grain boundary properties.

2.2 Methodology

2.2.1 Modeling and structure optimization of grain boundaries

Macroscopic structures of grain boundaries are characterized by five geometrical degrees
of freedom. The author chooses three variables to specify the direction of the rotation
axis and the rotation angle, which describe the misorientation between crystal lattices,
and two variables to specify the direction of the boundary plane normal [30]. For a given
set of macroscopic variables, the microscopic structure is associated with three degrees of
freedom regarding rigid body displacements: two components parallel to the boundary
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plane and one component normal to the plane. Hence, the globally optimal microscopic
structure for a given set of macroscopic variables is achieved by optimizing the three
microscopic variables in terms of potential energy.

In this study, the author investigates only STGBs and pure-twist grain boundaries.
The periodicity of an STGB is identified from the orthogonal projection of its coincident
site lattice (CSL) to its boundary plane. Also, the periodicity of a pure-twist grain
boundary is given by the orthogonal projection of its displacement shift complete (DSC)
lattice to its boundary plane. Therefore, the author restricts the ranges of the two in-plane
microscopic variables to a domain defined by the periodicity of the grain boundaries.

The author explores the globally optimal microscopic structure for a set of macroscopic
variables using a multi-start method. The multi-start method involves local structure op-
timizations for a given set of initial structures and regards the structure with the lowest
energy among the converged final structures as the globally optimal structure. The au-
thor uses the conjugate gradient method implemented in the lammps code [3] for the
local structure optimizations. Initial microscopic structures are introduced from a 4 × 4
grid for the two in-plane components and a sequence for the component normal to the
boundary plane. In other words, one crystal is shifted relative to the other crystal by a
vector identified with an in-plane grid point and a value from the sequence for the nor-
mal component. For each initial microscopic structure, a calculation model is generated
using pymatgen [63]. This model contains two parallel boundaries perpendicular to the
c-axis of the model, separated by fcc layers corresponding to four repetitions of a cell
of the CSL. However, the local structure optimization starting from some of the initial
microscopic structures fails to converge when using both the MLPs and the EAM poten-
tials, as shown in the next section. These structures are ignored in finding the globally
optimal microscopic structure. Note that the optimization of the microscopic structure is
performed in the whole domain here, although it is more efficient to restrict the domain
to its symmetrically nonequivalent domain.

2.2.2 Machine learning potentials

The author employs MLPs in Machine Learning Potential Repository [29] to
obtain the globally optimal microscopic structures of STGBs and pure-twist grain bound-
aries. In the repository, a set of Pareto optimal MLPs with different trade-offs between
accuracy and computational efficiency is available, from which one can choose an appro-
priate MLP in accordance with the target and purpose. Potential energy models of the
MLPs are either a polynomial model of Gaussian-type pairwise structural features or a
polynomial model of polynomial invariants for the O(3) group, which are derived by a
group-theoretical approach [23]. A brief description of the potential energy models and
the structural features used for developing the MLPs is given in Appendix A.
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The Pareto optimal MLPs in the repository have been developed using a dataset
generated from structure generators. For Ag, Al, Au, and Cu, the Pareto optimal MLPs
are adopted from what developed from a structure generator set composed of the fcc,
body-centered-cubic (bcc), hexagonal-close-packed (hcp), simple cubic (sc), ω, and β

tin structures. The dataset is composed of 3,000 structures constructed by introducing
random lattice expansion, random lattice distortion, and random atomic displacements
into a supercell of the equilibrium structure for one of the structure generators. For Pd
and Pt, another set of 82 prototype structures are adopted as the structure generator
set because the dataset derived from the six structure generators is not available in the
repository. The dataset consists of 10,000 structures generated by the same procedure as
above. For all structures in the dataset, DFT calculations were performed using the plane-
wave-basis projector augmented wave method [64] within the Perdew–Burke–Ernzerhof
exchange-correlation functional [65] as implemented in the VASP code [66, 67, 68]. Note
that the datasets contain no structures generated from grain boundary models.

2.3 Results and discussion

First, the author chooses an accurate MLP requiring only a reasonable computational
time to investigate the whole set of grain boundaries. A practical approach to select-
ing an MLP from the whole set of Pareto optimal MLPs is to find an MLP with high
computational cost performance in terms of the prediction error for a test dataset. It
can be obtained from the distribution of Pareto optimal MLPs shown in Appendix B.
Another practical approach is to examine the convergence behavior of the target property
in terms of the computational cost using the whole set of Pareto optimal MLPs. The
author adopts the latter approach to select an MLP in this study. Therefore, the author
systematically calculates the grain boundary energies of five grain boundaries using the
whole set of Pareto optimal MLPs for each elemental metal. They are the Σ5 〈100〉
STGB (at 53.1 degrees), the Σ3 〈110〉 STGB (at 70.5 degrees), the Σ3 〈110〉 STGB (at
109.5 degrees), the Σ9 〈110〉 STGB (at 38.9 degrees), and the Σ5 〈100〉 pure-twist grain
boundary (at 36.9 degrees), the calculation models for which can be represented by a
small number of atoms.

Figure 2.3.1 shows the convergence behavior of the grain boundary energy in terms of
the computational time, obtained using the whole set of Pareto optimal MLPs. The grain
boundary energy is identical to the lowest energy among the grain boundary energies of
the microscopic structures. The grain boundary energy of a microscopic structure is
measured from the energy of the equilibrium fcc structure. The computational time
corresponding to the model complexity of an MLP is the elapsed time normalized by the
number of atoms for a single point calculation of the energy, the forces, and the stress
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tensors 1. As can be seen in Fig. 2.3.1, the grain boundary energy converges well in all
of the elemental metals and grain boundaries. Consequently, successive calculations for
the whole set of grain boundaries are performed using the MLP that requires the lowest
computational time among the MLPs showing convergence.

Table 2.1 lists the model parameters of the selected MLPs. As a consequence of the
convergence behavior, fast MLPs are selected for Ag and Cu, while computationally ex-
pensive MLPs are selected for the others. Table 2.1 also shows the prediction errors for
the datasets used in developing the MLPs. The MLPs for Pd and Pt show significant
prediction errors, which originate from the fact that the datasets contain many hypothet-
ical structures such as the graphite-type structure. Although the selected MLPs exhibit
significant prediction errors for such abnormal structures, they show much smaller predic-
tion errors for typical metallic structures, including grain boundary structures, as shown
above.

The author also examines the transferability of the MLPs to the prediction of the
grain boundary structures and energies because the datasets used in developing the MLPs
contain no grain boundary structures. Therefore, the author evaluates the grain boundary
energies of the Σ3 〈110〉 STGB (at 70.5 degrees), the Σ3 〈110〉 STGB (at 109.5 degrees),
the Σ9 〈110〉 STGB (at 38.9 degrees), the Σ5 〈100〉 STGB (at 53.1 degrees), and the
Σ5 〈100〉 pure-twist grain boundary (at 36.9 degrees) by DFT calculation, and compare
them with those predicted using the MLPs. Figure 2.3.1 shows the DFT values of the
grain boundary energy only for the grain boundary structures, DFT calculations for
which converge successfully 2. They are close to the grain boundary energies of the
selected MLPs. Therefore, the selected MLPs should have high predictive power for
grain boundary structures and their energies even though no grain boundary structures
were used to develop the MLPs.

After confirming the transferability of the MLPs, the author calculates the energies
of the grain boundary structures: 〈100〉 STGBs (Σ5, Σ13, Σ17, Σ25, Σ29, Σ41), 〈110〉
STGBs (Σ3, Σ9, Σ11, Σ17, Σ19, Σ27, Σ33, Σ41, Σ43), and 〈100〉 pure-twist grain bound-
aries (Σ5, Σ13, Σ17, Σ25, Σ29, Σ37, Σ41). Most of them are represented by large-scale
models, hence they cannot be calculated by DFT calculation because of the large com-
putational resources required. The number of atoms included in the grain boundaries
ranges from 96 to 2112. Figure 2.3.2 shows the optimized STGB structures of some
STGBs in Ag. Figure 2.3.3 shows the rotation angle dependence of the grain bound-
ary energy obtained using the MLPs and EAM potentials [70, 71, 72, 73, 74, 75]. The
values of the grain boundary energy in Al, Cu, and Pd computed using the MLPs are
consistent with those computed using the EAM potentials and those computed by DFT

1The computational time is estimated using a single core of Intel Xeon E5-2695 v4 (2.10GHz).
2The DFT values of the grain boundary energy for Σ9 STGB are missing in Ag, Au, Cu, Pd, and

Pt. The electronic structure calculation failed to converge for some of the elements, and the structure
optimization did not finish within a reasonably long time for the others.
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Figure 2.3.1: Grain boundary energies of Σ5 〈100〉 STGB in 53.1 degrees, Σ3 〈110〉 STGB
in 70.5 degrees, Σ3 〈110〉 STGB in 109.5 degrees, Σ9 〈110〉 STGB in 38.9 degrees, and
Σ5 〈100〉 pure-twist grain boundary in 36.9 degrees for elemental Ag, Al, Au, Cu, Pd, and
Pt, predicted using the Pareto optimal MLPs. The grain boundary energies computed
by DFT calculation are also shown by broken lines.

10



Ta
bl
e
2.
1:

M
od

el
pa

ra
m
et
er
s
of

th
e
M
LP

s
us
ed

to
es
ti
m
at
e
th
e
gr
ai
n
bo

un
da

ry
st
ru
ct
ur
es

an
d
en
er
gi
es
.
T
he

id
en
ti
fic
at
io
n
of

th
e
fe
at
ur
e

ty
pe

,t
he

m
od

el
ty
pe

,a
nd

th
e
po

ly
no

m
ia
lo

rd
er
s
ca
n
be

fo
un

d
in

th
e
A
pp

en
di
x
A
.

A
g

A
l

A
u

C
u

P
d

P
t

M
LP

-I
D

pa
ir
-4
4

gt
in
v-
33

6
gt
in
v-
11

1
pa

ir
-2
3

gt
in
v-
72

2
gt
in
v-
53

3
R
M
SE

(e
ne
rg
y)

[m
eV

/a
to
m
]

2.
2

0.
8

0.
7

2.
2

6.
3

12
.9

R
M
SE

(f
or
ce
)
[eV

/Å
]

0.
01

0
0.
00

8
0.
01

2
0.
01
3

0.
09

7
0.
17

2
T
im

e
[m

s/
at
om

/s
te
p]

[6
9]

0.
05

1.
85

0.
66

0.
04

0.
52

0.
63

N
um

be
r
of

co
effi

ci
en
ts

81
5

11
00

47
5

28
5

50
0

15
95

Fe
at
ur
e
ty
pe

P
ai
r

In
va
ri
an

ts
In
va
ri
an

ts
P
ai
r

In
va
ri
an

ts
In
va
ri
an

ts
C
ut
off

ra
di
us

[Å
]

7.
0

8.
0

6.
0

7.
0

6.
0

6.
0

N
um

be
r
of

ra
di
al

fu
nc
ti
on

s
15

15
10

10
5

5
M
od

el
ty
pe

2
3

3
2

4
2

P
ol
yn

om
ia
lo

rd
er

(f
un

ct
io
n
F
)

3
3

3
3

2
2

P
ol
yn

om
ia
lo

rd
er

(i
nv

ar
ia
nt
s)

−
3

3
−

3
3

Sp
he
ri
ca
lh

ar
m
on

ic
s
tr
un

ca
ti
on
{l

(2
)

m
a
x
,l

(3
)

m
a
x
}

−
[4
,4

]
[4
,4

]
−

[4
,0

]
[4
,2

]

11



(a) (b)

(c) (d)

0 0.100.05

Figure 2.3.2: Optimized structures of (a) Σ5 〈100〉 STGB (at 53.1 degrees), (b) Σ13 〈100〉
STGB (at 67.3 degrees), (c) Σ3 〈110〉 STGB (at 70.5 degrees), and (d) Σ33 〈110〉 STGB
(at 20.0 degrees) in Ag. They are represented by 160, 416, 96, and 1056 atoms, re-
spectively. They are visualized using AtomEye [76], and colors are assigned to atoms
according to their local von Mises shear strain invariant.

calculation. Therefore, both the MLPs and the EAM potentials have high predictive
power for the grain boundary structures and their energies. In Ag, Au, and Pt, the
values of the grain boundary energy computed using the MLPs are almost the same as
those computed by DFT calculation, whereas they deviate from those computed using
the EAM potentials. The MLPs should be more reliable than the EAM potentials for
obtaining not only the grain boundary structures and their energies but also the other
defect structures in Ag, Au, and Pt. Note that a fine sequence is required for the com-
ponent normal to the boundary plane to obtain converged microscopic structures when
using the EAM potentials for Ag and Au. This implies that the EAM potentials for
Ag and Au lack accuracy for predicting the potential energy surface around the globally
optimal microscopic structure.

For every grain boundary, the grain boundary energy in Cu, Pd, and Pt are higher
than that in Ag, Al, and Au, as shown in Fig. 2.3.3. This trend can be qualitatively
understood by considering a simple approximation within the elasticity theory. Using the
Read-Shockley equation [77], the shear stress component of the grain boundary energy
is obtained by integrating the contributions of dislocations distributed evenly on the
interface. Given the shear modulus G and cubic lattice constant a, the excess energies of
grain boundaries are approximately proportional to a coefficient Ga. By employing the
Voigt averages calculated from the elastic constants of single crystals [78], the coefficients
for Ag, Al, Au, Cu, Pd, and Pt are estimated as 1.3, 1.0, 1.2, 1.8, 1.8, and 2.2, respectively,
which are normalized by the coefficient for Al. They can be classified into two groups,
which is consistent with the grain boundary energy trend.

2.4 Conclusion

The author has examined the predictive power of MLPs in an MLP repository for grain
boundary properties by systematically evaluating the grain boundary energy for 〈100〉
STGBs, 〈110〉 STGBs, and 〈100〉 pure-twist grain boundaries in the fcc elemental metals
of Ag, Al, Au, Cu, Pd, and Pt. In every elemental metal, the values of the grain boundary

12



0

500

1000

1500
Σ5

Ag
MLP

Ackland-1987
Williams-2006

DFT

〈100〉 STGB

Σ9 Σ3 Σ3

Ag
MLP

Ackland-1987
Williams-2006

DFT

〈110〉 STGB

Σ5

Ag
MLP

Ackland-1987
Williams-2006

DFT

〈100〉 pure-twist grain boundary

0

500

1000

1500

Al
MLP

Mishin-1999
DFT

Al
MLP

Mishin-1999
DFT

Al
MLP

Mishin-1999
DFT

0

500

1000

1500

Au

G
ra

in
 B

o
u
n
d
a
ry

 E
n
e
rg

y
 [
m

J
/m

2
]

MLP
Ackland-1987

Zhou-2004
DFT

Au
MLP

Ackland-1987
Zhou-2004

DFT

Au
MLP

Ackland-1987
Zhou-2004

DFT

0

500

1000

1500

Cu
MLP

Mishin-2001
DFT

Cu
MLP

Mishin-2001
DFT

Cu
MLP

Mishin-2001
DFT

0

500

1000

1500

Pd
MLP

Zhou-2004
DFT

Pd
MLP

Zhou-2004
DFT

Pd
MLP

Zhou-2004
DFT

0

500

1000

1500

0 45 90

Pt
MLP

Zhou-2004
DFT

0 90 180

Pt

Rotation Angle [degree]

MLP
Zhou-2004

DFT

0 15 30 45

Pt
MLP

Zhou-2004
DFT

Figure 2.3.3: Rotation angle dependence of the grain boundary energy for 〈100〉 STGBs,
〈110〉 STGBs, and 〈100〉 pure-twist grain boundaries for elemental Ag, Al, Ag, Cu, Pd,
and Pt, predicted using the MLPs. For comparison, the grain boundary energies predicted
using EAM potentials for Ag [70, 71], Al [72], Au [70, 73], Cu [74], Pd [73], and Pt [73]
are shown by open symbols. The grain boundary energies computed by DFT calculation
are also shown by crosses.
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energy computed using the MLP are consistent with those computed by DFT calculation.
The author emphasizes that the training datasets used to develop the MLPs contain no
grain boundary structures. Therefore, the consistency indicates that the MLPs have
high predictive power for the grain boundary structures and their energies. The present
results also imply that the MLPs in the repository, including those for other systems,
should be useful in accurately predicting grain boundary properties and other complex
defect properties.

Appendix A: Potential Energy Models

This section summarizes potential energy models used for developing MLPs in Machine

Learning Potential Repository [29]. In MLPs of the repository, the short-range
part of the total energy for a structure is expressed by the sum of the atomic energy. The
atomic energy is given by a function of invariants for the O(3) group [25, 16] as

E(i) = F
(
d

(i)
1 , d

(i)
2 , · · ·

)
, (2.4.1)

where d(i)
n denotes a structural feature or an invariant derived from order parameters rep-

resenting the neighboring atomic density of atom i. In the repository, a set of structural
features derived only from radial functions (feature type = pair) and a set of polyno-
mial invariants of the O(3) group derived from radial and spherical harmonic functions
(feature type = invariants) are employed for developing MLPs.

The repository uses polynomial functions as function F representing the relationship
between the atomic energy and a given set of structural features, D = { d1, d2, · · · }. The
polynomial functions with regression coefficients {w } are given as follows.

F1 (D) =
∑
i

widi

F2 (D) =
∑
{i,j}

wijdidj (2.4.2)

F3 (D) =
∑
{i,j,k}

wijkdidjdk

...

A potential energy model is identified with a combination of the polynomial functions
and structural features.

In this paper, MLPs with the following four types of the potential energy model are
selected as listed in Table 2.1, although six types of the potential energy model have
been introduced in the repository. When a set of pairwise structural features is described
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as D(i)
pair, the model (model type = 2, feature type = pair) is a polynomial of the

pairwise structural features with their cross terms, expressed as

E(i) = F1

(
D

(i)
pair

)
+ F2

(
D

(i)
pair

)
+ F3

(
D

(i)
pair

)
+ · · · . (2.4.3)

The other three models are derived from the polynomial invariants. When a set of the
polynomial invariants is expressed by the union of sets of pth-order polynomial invariants
D

(i)
p as

D(i) = D
(i)
pair ∪D

(i)
2 ∪D

(i)
3 ∪D

(i)
4 ∪ · · · . (2.4.4)

The model (model type = 2, feature type = invariants) is given by a polynomial
of the polynomial invariants as

E(i) = F1

(
D(i)

)
+ F2

(
D(i)

)
+ F3

(
D(i)

)
+ · · · . (2.4.5)

The model (model type = 3, feature type = invariants) is the sum of a linear poly-
nomial form of the polynomial invariants and a polynomial of pairwise structural features,
described as

E(i) = F1

(
D(i)

)
+ F2

(
D

(i)
pair

)
+ F3

(
D

(i)
pair

)
+ · · · . (2.4.6)

The model (model type = 4, feature type = invariants) is the sum of a linear poly-
nomial form of the polynomial invariants and a polynomial of pairwise structural features
and second-order polynomial invariants. This is written as

E(i) = F1

(
D(i)

)
+ F2

(
D

(i)
pair ∪D

(i)
2

)
+ · · · . (2.4.7)

Appendix B: Pareto Optimality

Figure 2.4.1 shows the Pareto optimal MLPs for elemental Ag, Al, Au, Cu, Pd, and
Pt. The distribution of MLPs is obtained by a systematic grid search to find optimal
parameters controlling the accuracy and computational efficiency. The prediction error
is estimated using the root mean square (RMS) error of the energy for the test dataset.
The computational efficiency is estimated using the elapsed time to compute the energy,
the forces and the stress tensors of a structure with 284 atoms. The prediction error
converges more slowly than the grain boundary energy, which originates from the fact
that the prediction error is estimated from the test dataset composed of a wider variety
of structures.
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Chapter 3

Performant Implementation of
Linearized Machine Learning Potential

Abstract

Efficient computation of machine learning interatomic potentials (MLIPs) has been ex-
pected to enable quantitative estimation of the properties of the materials. There are
successful implementations of MLIPs that have been accelerated by spatial decomposition
and/or using parallelized processing units to access large problems [79, 80, 81, 82, 83, 20,
19, 84]. The current investigation involved a method for parallelizing polyMLP [23, 29, 24]
to calculate energy and force with many atoms efficiently. By modifying the method to
decompose the simulation box spatially, polyMLP is efficiently implemented to be capable
of high-precision large-scale molecular dynamics. Parallelized on 40 GPUs reached 1100
times the performance on CPU single core for a large system of 256k atoms. Large-scale
problems that cannot be executed by a single GPU due to insufficient memory capacity
can now be executed by using multiple GPUs. Spatial parallelization with CPUs linearly
accelerated even for a relatively small number of 500 atoms. These results suggest that
high-speed and accurate calculations can be performed for a wide range of system sizes
using either CPU or GPU according to the system size.

3.1 Introduction

Machine learning interatomic potentials (MLIPs) have received much attention in recent
years due to their prediction accuracy comparable to the density functional theory (DFT)
and high computational efficiency [11, 5, 17, 21, 85, 86, 28, 18, 79, 87, 88, 89, 90, 91, 92,
93, 83, 94, 23, 29, 24]. These MLIPs fit parameters using machine learning techniques
to reproduce potential energy surfaces (PESs) which are calculated by DFT. A series
of studies of polyMLP by Seko et al. [23, 29, 24] demonstrated excellent accuracy for
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use in materials applications such as phonon dispersion or generalized stacking fault
energy calculations. However, these MLIPs were approximate 10 to 1000 times more
computationally demanding than empirical ones [24], such as embedded atom method
(EAM) potentials; it has significantly limited their practical range of use.

Calculating interatomic potentials in a large system requires so many iterative cal-
culations that it has been established to use Graphical Processing Units (GPUs) as an
effective way for acceleration. GPUs are highly parallel computational engines especially
suitable for simple calculations with large loops and recently supercomputers equipped
with many GPUs have been actively built. Although considerable effort has been made
for many simple interatomic potentials to accelerate using GPUs, there are only a few
MLIPs accelerated using GPUs [19, 81] at the time of writing this thesis. One of the lead-
ing implementations of the MLIPs is spectral neighbor analysis potential (SNAP), which
is parallelized using Kokkos framework [19, 20]. Kokkos is a C++ library for writing per-
formance portable applications targeting high-performance computing (HPC) platforms
to manage both fine-grain data parallelism and memory access patterns [95, 96, 97]. This
implementation of SNAP with Kokkos can indeed handle large problems up to 20 billion
atoms with high accuracy. However, SNAP can be improved by extending to quadratic
terms in the bispectrum components or chemically-labeled descriptors [21, 86], as well as
neural network energy models [85]. There is therefore still a strong need for faster cal-
culation of machine learning interatomic potential with more comprehensive descriptors
and generic models.

Parallelizing the calculation of the interatomic potential, especially for force calcula-
tion, involves an appropriate spatial decomposition according to the model of the poten-
tial. The spatial decomposition requires special care for MLIPs. The classes of MLIP
registered in the main branch of LAMMPS commonly use a combination of the full neigh-
bor style and Newton’s 3rd law enabled for particles on processor borders. In this paper,
it is discussed how PolyMLP can be efficiently implemented on distributed processors
with spatial decomposition. This thesis reports benchmarks both by Central Processing
Units (CPUs) and GPUs.

In this thesis, the implementation for GPUs presented is orders of magnitude faster
than the serial implementation for CPUs in systems with more than 10,000 particles. In
addition, the implementation for CPUs with the spatial decomposition is, unexpectedly,
also orders of magnitude faster than the serial implementation for CPUs even in a system
with a relatively small number of 500 particles. This acceleration in a small number
of particles would be a characteristic phenomenon seen when the energy model involves
extraordinarily complicated computation with a large loop.

This chapter is organized as follows: Section 3.2.1 deals with the revisitation of
PolyMLP, Section 3.2.2 the algorithmic aspect of PolyMLP, Section 3.2.4 the Benchmark
conditions, Section 3.3 the Results and Discussion, Section 3.4 the Conclusion.
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3.2 Methodology

When considering parallelization of polyMLP, it is necessary to distinguish between the
parts that can make use of the same procedure as in preceding studies and the parts that
need improvements. To distinguish these parts and improve them appropriately, general
aspects of descriptors and models are revisited. Also, a concise derivation of the order
parameter, the structural feature, and the energy model are provided to clarify what parts
should be parallelized. An algorithmic aspect of polyMLP is discussed and presented to
provide a reproducible description of the implementation. The discussion involves the
adjoint method reducing redundant calculations, efficient and accurate computation of
spherical harmonics, and types of spatial decomposition. All these topics were integrated
into the performant implementation.

3.2.1 Machine Learning Potential Revisited

Here, the definition of polyMLP is reconsidered and the necessary information in parallel
computing is organized. To simplify symbols, this section uses the following notation:

• The index of the atom is written in the lower left

• The index of the irreducible representation is enclosed in parentheses in the upper
left of the symbol

• For projection matrices, the original representation and the projected representation
are distinguished by vertical bars in parentheses

• Representation matrices are treated as tensor

Density expansion around atom i by arbitrary bases of its vector

space

Atomic density centering an atom i is a sum of delta functions shifted to the atoms within
a cutoff distance from the atom i,

iρ (r)
def
=
∑
j∈iN

δ
(
r− jr

)
, (3.2.1)

where iN is a list of neighbor atoms around atom i.

Theorem 3.1 (Fourier Expansion). Let H be a separable and infinite-dimensional Hilbert
space, {φk}k=1,2,... be the complete orthonormal system of H, then arbitrary u ∈ H can be
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expanded as:

u =
∞∑
k=1

ukφk, uk = 〈φk, u〉 . (3.2.2)

The atomic density can be decomposed approximately into a linear combination of
bases through the Fourier Expansion.

Theorem 3.2 (Atomic density decomposition). An atomic density can be decomposed
via Theorem 3.1:

iρ (r) =
∑
q

〈
iφq, iρ

〉
· iφq (r) (3.2.3)

=
∑
q

(∫
r∈Ω

iρ (r) iφq (r)dr

)
· iφq (r) , (3.2.4)

where the atomic density is a summation of delta function and φq is q-th basis function
of the vector space.

The expansion formula includes the integral over the whole volume Ω, but the domain
of the atomic density is limited around a cutoff length rcut, thus the atomic density can
be calculated by the summation over i-th neighbor list, iN , in lieu of the integration over
Ω.

Lemma 3.1. An inner product of an atomic density with a function can be calculated as
a summation over its neighbor list:

〈
iφq, iρ

〉
=
∑
j∈iN

iφq (jr). (3.2.5)

Proof. Substituting (3.2.1) into the expression (3.2.5), getting

〈
iφq, iρ

〉
=

∫
r∈Ω

iρ (r) iφq (r)dr (3.2.6)

=

∫
r∈Ω

∑
j∈iN

δ (r− jr)φq (r− ir)dr (3.2.7)

=
∑
j∈iN

φq
(
jr− ir

)
(3.2.8)

=
∑
j∈iN

iφq (jr), (3.2.9)

where

iφq (r)
def
= φq (r− ir) (3.2.10)
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is a basis function centering atom i.

Thus it is possible to expand the atomic density by means of the Fourier expansion,
whose coefficients are summation of local bases over each neighbor list:

iρ (r) =
∑
q

(∑
j∈iN

iφq (jr)

)
iφq (r) . (3.2.11)

The summation of basis function over i-th neighbor list is referred to as an order parameter
of atom i, iaq:

iaq
def
=
〈
iφq, iρ

〉
=
∑
j∈iN

iφq (jr) (3.2.12)

=
∑
j∈iN

φq (jr− ir) =
∑
j∈iN

φq
(
ijr
)
, (3.2.13)

where ijr is a vector from atom i to atom j. Finally the atomic density can be expanded
using the order parameters and bases as

iρ (r) =
∑
q

iaq iφq (r) . (3.2.14)

Also note that, in practice, q should be truncated by balance between computational cost
and accuracy.

Density expansion around atom i by basis of irreducible represen-

tation

If the Hamiltonian has a symmetric group G, eigenfunctions corresponding to a energy
span an irreducible representation of the symmetric group. In other words, when there is

a set of irreducible representation accompanied by eigenfunctions,
(

(α)D,
{

(α)ψq

}dα
q=1

)
,

these eigenfunctions correspond to the same eigenvalue of the Hamiltonian, and these
eigenfunctions will be transformed by[

iR
(α)
iψq

]
(r) =

∑
q′

(α)
iψq′ (r)

(α)Dq′

q (iR) , (3.2.15)

where iR is a rotation around atom i. The atomic density can be expanded in the same
way as above.

Corollary 3.1. The atomic density can be decomposed via Theorem 3.1 even when using
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the bases of the irreducible representations.

iρ (r) =
∑
α

∑
q∈{dα}

〈
(α)
iψq, iρ

〉
· (α)

iψq (r) (3.2.16)

=
∑
α

∑
q∈{dα}

(∫
r∈Ω

iρ (r)
(α)
iψq (r)dr

)
· (α)

iψq (r) , (3.2.17)

where (α)
iψq is a q-th basis function of a irreducible representation (α)D, centering atom i.

The conversion from integral to sum is almost trivial when the Lemma 3.1 is used.

Corollary 3.2. An inner product of an atomic density with an eigenfunction of an irre-
ducible representation can be calculated as a summation over its neighbor list:〈

(α)
iψq, iρ

〉
=
∑
j∈iN

(α)
iψq (jr). (3.2.18)

The atomic density can be expanded by both representation α and its dimension q as

iρ (r) =
∑
α

∑
q

(∑
j∈iN

(α)
iψq (jr)

)
(α)
iψq (r) . (3.2.19)

The summation of eigenfunctions over i-th neighbor list also referred to as an order
parameter of atom i, (α)

iaq, that is

(α)
iaq

def
=
∑
j∈iN

(α)
iψq (jr) (3.2.20)

=
∑
j∈iN

(α)ψq (jr− ir) =
∑
j∈iN

(α)ψq (ijr). (3.2.21)

Now the atomic density can be expanded using the order parameters and bases for each
irreducible representation as

iρ (r) =
∑
α

∑
q

(α)
iaq

(α)
iψq (r) . (3.2.22)

In practice, α and q should be truncated by balance between computational cost and
accuracy.

Harmonic basis for spherically symmetric potential

If particles move under a spherically symmetric potential Vsph (r), the potential will be
invariant to any rotational operation R around the origin,

[RVsph] (r) = Vsph

(
R−1r

)
= Vsph (r) , (3.2.23)
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therefore the Hamiltonian of these particles

H =
p2

2m
+ Vsph (r) (3.2.24)

will be invariant to any rotational operation around the origin,

RHR−1 = H. (3.2.25)

Their eigenfunctions should be written in polar coordinates using radial functions Pnl
and spherical harmonic functions (l)Ym as

(l)ψnm (r) = Pnl (r)
(l)Y m (θ, φ) . (3.2.26)

The rotational operation will convert these eigenfunctions into a linear combination of
spherical harmonic functions belonging to the same irreducible representation l as[

R (l)ψnm

]
(r) =

[
RPnl

(l)Y m

]
(r, θ, φ) (3.2.27)

= Pnl (r)
[
R (l)Y m

]
(θ, φ) (3.2.28)

=
∑
m′

Pnl (r)
(l)Y m′ (θ, φ) (l)Dm′

m (R) . (3.2.29)

If the polar component of the eigenfunction is defined as irrelevant to the index of l,
the l on P is omitted:

(l)ψnm (r) = Pn (r) (l)Y m (θ, φ) .

Local decomposition of many-body Hamiltonian

It is assumed that a many-body Hamiltonian, H, can be composed of local hamiltonians
centering each atom i.

Proposition 3.1 (Local decomposition of many-body Hamiltonian). If the many-body
Hamiltonian, H, can be decomposed into local hamiltonians, the local hamiltonian is a
summation of the local kinetic part and local potential part centering atom i

H =
∑
i

ih (3.2.30)

ih =
∑
j∈iN

jp
2

2 jm
+ iV

(
jr
)
. (3.2.31)
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If the local potentials are invariant to any rotational operation around each atom i:

[iR iV ] (r) = iV
(
iR
−1r
)

= iV (r) , (3.2.32)

the eigenfunctions for local hamiltonians also should be written in local polar coordinates
as

(l)
iψnm (r) = iP nl (r)

(l)
iY m (θ, φ) . (3.2.33)

By Substituting (3.2.33) into (3.2.11) and (3.2.12), the density on each site is decomposed
as

iρ (r) =
∑
l

(l)
ia
nm (l)

iψnm (r) , (3.2.34)

(l)
ianm =

∑
j∈iN

(l)
iψnm

(
jr
)

(3.2.35)

=
∑
j∈iN

iP nl

(
jr
) (l)

iY m

(
jθ, jφ

)
. (3.2.36)

Note that the radial functions, iP nl (r), are real. The order parameter of atom i, (l)
ianm,

is a superposition of decomposition coefficients of an atomic density over its neighbor
list, iN .

Structural Feature

Definition

A structural feature is a summation of products of the order parameters adjusted using
coefficients so that it is invariant to any rotational operations in G.

Definition 3.1 (Structural Feature).

(l1···lp),σ
idn =

∑
m1···mp

(l1)
ianm1 · · ·

(lp)
ianmp

(l1···lp),σcm1···mp (3.2.37)

Note that this is a combination of the order parameters that are the Fourier coefficients
of the atomic density, but not the Fourier coefficients of the atomic density that are
expanded on a product basis.

There are two known methods for calculating the coefficient, (l1···lp),σcm1···mp . One is to
combine two order parameters sequentially [79], and the other is to find it as an eigenvalue
problem with a projection operator to the identity irreducible representation [23]. Here,
the latter method by the projection operator is explained.

Definition 3.2 (Projection operator). The projection operator, (β)P l(m), is an operator
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that gets the lth component of a particular irreducible representation, (β)D, from a vector:

(β)P l(m)
def
=
dβ
g

∑
R∈G

(β)Dl
m (R)R. (3.2.38)

The projection operator to a particular irreducible representation, (β)P , is an operator
that gets the all components of the representation from a vector:

(β)P
def
=
∑
l

(β)P l(l) (3.2.39)

=
dβ
g

∑
R∈G

(β)χ (R)R. (3.2.40)

In the following manner, the projection operator, (β)P , extracts only the components
of a specific irreducible representation, (β)D.

Theorem 3.3 (Projection onto an Irreducible Representation). A component of a specific
irreducible representation (β)D extracted by a projection operator (β)P is

(β)Pf =
∑
m

(β)cm
(β)φm, (3.2.41)

where function f is expanded by irreducible representations with their bases as f =∑
α

(α)cm (α)φm.

Proof. Operate the projection on the arbitrary vector f to get the lth component of the
representation (β)D as

(β)P l(m)f =
dβ
g

∑
R∈G

(β)Dl
m (R)R

∑
α

∑
n

(α)cn
(α)φn (3.2.42)

=
dβ
g

∑
α

∑
n

(α)cn
(α)φn′

∑
R∈G

(β)Dl
m (R) (α)Dn′

n (R) (3.2.43)

=
∑
α

∑
n

(α)cn
(α)φn′δ

βαδln
′
δmn (3.2.44)

= (β)cm
(β)φl. (3.2.45)

As a result of taking the sum of l with l = m, (3.2.41) is obtained.

The reduction coefficient of arbitrary reducible representation thus can be calculated
by utilizing Theorem 3.3 of the projection operator.

To get the rotation-invariant bases, it is necessary to reduce a given reducible repre-
sentation (X) to the identity representation (Γ1); the symbol (Γ1) is the Bethe’s notation.
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The projection operator onto the identity representation is

(Γ1)P =
1

g

∑
R∈G

R, (3.2.46)

since their characters are 1. Assuming the invariant relation on a basis function

(Γ1)P (Γ1)Ψ = (Γ1)Ψ, (3.2.47)

where the basis is expanded by the bases of the given representation X

(Γ1)Ψ =
∑
m

um
(X)φm. (3.2.48)

The expansion coefficients, {um}dXm=1, are obtained by solving the eigenvalue problem for
the matrix expression of the identity representation in the reducible representation X.

Theorem 3.4 (Reduction Coefficient). The reduction coefficients from a given reducible
representation X to identity representation Γ1 are calculated through the eigenvalue prob-
lem for the matrix expression of the projection operator

(Γ1|X)Pu = u, (3.2.49)

where
(Γ1|X)P =

1

g

∑
R∈G

(X)D (R) (3.2.50)

is a matrix expression of the projection operator to the identity representation Γ1 from
the reducible representation X.

Proof. Expand the basis (Γ1)Ψ by the bases of the given reducible representation X as

(Γ1)Ψ =
∑
m

um
(X)φm. (3.2.51)

Assume the basis is invariant under the projection onto the identity representation, it
gives the followings

(Γ1)P (Γ1)Ψ = (Γ1)P

(∑
m

um
(X)φm

)
(3.2.52)

=
∑
m

um

(
(Γ1)P (X)φm

)
(3.2.53)

=
∑
m

um

(
1

g

∑
R∈G

R (X)φm

)
(3.2.54)

26



=
∑
m

um

(
1

g

∑
R∈G

(X)φm′
(X)Dm′

m (R)

)
(3.2.55)

=
∑
m

um
(X)φm′

(
1

g

∑
R∈G

(X)Dm′

m (R)

)
. (3.2.56)

Rewrite (3.2.51) and (3.2.56) in a matrix form as

(X)Φ>U = (X)Φ> (Γ1|X)PU. (3.2.57)

Sweep out the vector of basis functions, Φ>, from each term. As a result the eigenvalue
problem for (Γ1|X)P is derived.

Example 3.1 (Product of two representations). If the identity representation, Γ1, is
obtained from a reduction of a product representation, l1 × l2 = Γ1 + · · · , the basis of
identity representation can be written as

(Γ1)Ψ =
∑
m1m2

(l1)ψm1

(l2)ψm2

(l1×l2|Γ1)Cm1m2
1 (3.2.58)

def
=
∑
m1m2

(l1)ψm1

(l2)ψm2

(l1×l2)cm1m2 , (3.2.59)

where (l1l2|Γ1)Cm1m2
1 is a Clebsh-Gordan (CG) coefficient for reducing the product rep-

resentation into the identity representation. Because the identity representation is one-
dimensional one, there is only one basis. Thus it is reasonable to omit the symbol for
destination element of the CG coefficient, (l1l2|Γ1)Cm1m2

1 → (l1l2)cm1m2 . The CG coefficient
for the identity representation in (3.2.59) can be calculated through the eigenvalue prob-
lem of (3.2.49). Because of the unitarity of the CG coefficient, the identity CG coefficient
is also a unitary tensor

(l1×l2)cm1m2 = (l1×l2)cm1m2 . (3.2.60)

This definition can be generalized straightforward:

Corollary 3.3 (Reduction to identity representation). The reduction of any product
representation into the identity representation is

(Γ1),σΨ =
∑

m1···mp

(l1)ψm1 · · · (lp)ψmp
(l1...lp),σcm1...mp , (3.2.61)

(l1...lp),σcm1...mp = (l1...lp),σcm1...mp , (3.2.62)

where the direct product symbol, ×, is omitted for simplicity. The CG coefficients, (l1...lp),σcm1...mp,
are the answers of the eigenvalue problem (3.2.49). There can be more than one eigen-
vectors whose eigenvalues are unity when p ≥ 4, and an index σ is added to distinguish
these coefficients.
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The structural feature is a coefficients of an identity representation that is obtained
from the reduction of order parameters of the product representation,

(l1···lp),σ
idn =

∑
m1···mp

(l1)
ianm1 · · ·

(lp)
ianmp

(l1···lp),σcm1···mp . (3.2.63)

It is expected to be invariant to any rotational operation, but it is not trivial and will be
proved in the next section.

Invariance of structural feature under ordinal rotational operations

Lemma 3.2 (Transformation of the order parameter). The rotational operation on the
order parameter of atom i follows the transformation law of a set of irreducible represen-
tations with which the atomic density function centered on atom i is expanded as,

R
(l)
ianm =

∑
m′

(l)
ianm′

(l)Dm′
m (R). (3.2.64)

Proof. By treating anm as a function in linear space, the following is immediately found;

R
(l)
ianm =

R∑
j∈iN

iP n
(l)
iY m

(
jr
)

(3.2.65)

=

∑
j∈iN

(R iP n)
(
R

(l)
iY m

) (
jr
)

(3.2.66)

=
∑
m′

∑
j∈iN

iP n
(l)
iY m′

(
jr
)

(l)Dm′
m (R) (3.2.67)

=
∑
m′

(l)
ianm′

(l)Dm′
m (R). (3.2.68)

Theorem 3.5. The structural feature is invariant under any ordinal rotational opera-
tions,

R
(l1···lp),σ

idn =
(l1···lp),σ

idn. (3.2.69)

Proof. Apply a rotational operation R on the structural feature,

R
(l1···lp),σ

idn = R
∑

m1···mp

(l1)
ianm1 · · ·

(lp)
ianmp

(l1···lp),σcm1···mp (3.2.70)

= R
∑

m1···mp

(l1)
ianm1 · · ·

(lp)
ianmp

(l1···lp|Γ1),σC
m1···mp
1 . (3.2.71)
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Because the product of the order parameters follow the same transformation rule as the
basis of the product representation, each order parameter can be transformed by the
rotational operation from Lemma 3.2 as

R
∑

m1···mp

(l1)
ianm1 · · ·

(lp)
ianmp

(l1···lp|Γ1),σC
m1···mp
1

=
∑

m1···mp

(
R

(l1)
ianm1

)
· · ·
(
R

(lp)
ianmp

)
(l1···lp|Γ1),σC

m1···mp
1 (3.2.72)

=
∑

m1···mp

∑
m1′

(l1)
ianm1

(l1)D
m1′
m1 (R)

 · · ·
∑

mp′

(lp)
ianmp

(lp)D
mp′
mp (R)

 (l1···lp|Γ1),σC
m1···mp
1

(3.2.73)

=
∑

m1···mp

∑
m1′ ···mp′

(l1)
ianm1′

· · · (lp)
ianmp′

(l1)D
m1′
m1 (R) · · · (lp)D

mp′
mp (R) · (l1···lp|Γ1),σC

m1···mp
1

(3.2.74)

=
∑

m1···mp

∑
m1′ ···mp′

(l1)
ianm1′

· · · (lp)
ianmp′

(l1···lp)D
m1′ ···mp′
m1···mp (R) · (l1···lp|Γ1),σC

m1···mp
1 .

(3.2.75)

By the definition of the CG coefficient, the representation tensor transforms the coordi-
nate of the CG coefficient from 1 · · · p to 1′ · · · p′ as∑

m1···mp

∑
m1′ ···mp′

(l1)
ianm1′

· · · (lp)
ianmp′

(l1···lp)D
m1′ ···mp′
m1···mp (R) · (l1···lp|Γ1),σC

m1···mp
1

=
∑

m1′ ···mp′

(l1)
ianm1′

· · · (lp)
ianmp′

(l1···lp|Γ1),σC
m1′ ···mp′
1 (3.2.76)

=
(l1···lp),σ

idn. (3.2.77)

Therefore the structural factor is invariant for any rotational operations.

Projection Matrix for SO (3)

When using a representation matrixD (R) of the rotation group, which is a unitary matrix
corresponding to a rotation action R, the transformation of the basis of the representation
can be defined as

R (J)φM =
∑
M ′

(J)φM ′
(J)DM ′

M (R) . (3.2.78)

The matrix (J)D (R) is the Wigner D-Matrix with integer J for SO (3). Theorem 3.3
gives a projection matrix to the identity representation,

(Γ1|X)P =
1

g

∑
R∈G

(X)D (R) (3.2.79)
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=
1

8π2

∫ 2π

0

dα

∫ π

0

dβ sin β

∫ 2π

0

dγ (X)D (α, β, γ) , (3.2.80)

where the summation over the group G is substituted by the integration over the unit
sphere since SO (3) is a continuous group, and (X)D (R) is a representation matrix for a
product representation

X = l1 × l2 × · · · × lp. (3.2.81)

The product representation is by definition[
(X)D (α, β, γ)

]m1m2···mp

m1′m2′ ···mp′
= (l1)Dm1

m1′
(α, β, γ) (l2)Dm2

m2′
(α, β, γ) · · · (lp)Dmp

mp′
(α, β, γ) ,

(3.2.82)
giving a projection matrix element

(Γ1|l1×···×lp)Pm1···mp(m1′ ···mp′)
=

1

g

∑
R∈G

(l1×···×lp)Dm1···mp
m1′ ···mp′ (R) (3.2.83)

=
1

8π2

∫ 2π

0

dα

∫ π

0

dβ sin β

∫ 2π

0

dγ (l1×···×lp)Dm1···mp
m1′ ···mp′ (α, β, γ)

(3.2.84)

=
1

8π2

∫ 2π

0

dα

∫ π

0

dβ sin β

∫ 2π

0

dγ

× (l1)Dm1
m1′

(α, β, γ) · · · (lp)Dmp
mp′

(α, β, γ) . (3.2.85)

By means of this explicit expression of the projection matrix and Theorem 3.4, the
generalized Clebsh-Gordan coefficient can be calculated, which is needed for the structural
feature in Definition 3.1. For more details, see Seko et al. [23]. Note that the projection
matrix for SO (3) is not invariant for a spatial inversion, azimuth quantum numbers
should be restricted to make the structural feature invariant to any ordinal rotation,
which is described later in 3.2.2.

Energy

Rotational invariance of Functional

The total energy functional, E , is a map from the total atomic density function, ρ ∈ X], to
the potential energy of the whole system, where X] refers to a whole set of functions that
is expressed as

∑
i δ (r− ri) with a periodicity in all dimensions. Note that the density

function is a real linear function, but this energy functional E is not always linear.

Let the true atomic energy functional iE . Since operators in the Banach space, T
and S, can make a sum of them defined on a domain of D (T ) ∩ D (S), the total energy
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functional can be expanded by the atomic energies as

E [ρ] =

(
N∑
i=1

iE

)
[ρ] =

N∑
i=1

iE [ρ] , (3.2.86)

D (E) =
⋂
N

X] = X]. (3.2.87)

Assume that the true atomic energy functional can be estimated by a linear functional iF
on X],

iE [ρ] ≈ iF [ρ] , ρ ∈ X], iF ∈ X ∗] = B (X],R) , (3.2.88)

thus the total energy also can be estimated as

E [ρ] ≈
N∑
i=1

iF [ρ] . (3.2.89)

Figure 3.2.1 shows the relation between the energy functional and its rotation. When
the density function is rotated by an operation R,

R : X] 3 ρ 7→ Rρ ∈ X],

the energy functional then can be defined through a relation

[R∗E ] [ρ] = E [Rρ] ,∀ρ ∈ X], (3.2.90)

where R∗ : X ∗] → X ∗] is an adjoint of the rotation operator R : X] → X]. The vector
space, X], and its adjoint space, X ∗] , is connected with the Riesz correspondence, JX] .
The energy functional is required to be invariant under any rotation operation in O (3) ,

[R∗E ] [ρ] = E [ρ] , (3.2.91)

thereby
E [Rρ] = E [ρ] . (3.2.92)

The assumed linearity of the total energy gives the rotational invariance of each atomic
energy functional,

iE [Rρ] = iE [ρ] . (3.2.93)

Therefore the invariance of the energy functional under rotation operations can be re-
garded as the invariance of the atomic energy functional under the operation on the
density function.
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Figure 3.2.1: The relation between the energy functional E and its rotation R∗ : E 7→ R∗E .
JX] is the Riesz correspondence X] → X ∗] between vector space and its adjoint space.

Rotational invariance of the approximated atomic potential energy

The atomic energy should be invariant under any rotation operation, so should the ap-
proximated linear functional iF . The rotational invariance of the approximated energy
should be imposed by expanding the energy using the structural features, which are
rotationally invariant, that is

iF [ρ] ≈ Polynomial of structural features
def
= F

({
(l1···lp),σ

idn

})
. (3.2.94)

Note that the atom index i is shifted from the approximate energy functional to the
structural feature. The types of the polynomial models and the concrete examples are
described in detail in [23, 29, 24].

Force

The forces acting on atoms are derived from the derivatives of the total potential energy U
with respect to the Cartesian coordinates attached on each atom. Let the Lagrangian
L
(
q1, . . . , qN , v1, . . . vN , t

)
= T −U ∈ TC×R, where qαs are labels for the configurations

in the manifold C, vαs are labels for the tangent vectors to C, i.e. TC, and U ∈ C∞ (M).
The generalized force can be written as

Fα = ṗα =
∂L

∂qα
= − ∂U

∂qα
, (3.2.95)

where α = {1 . . . 3N} for the N body system. If these indices are grouped by each body,
the force on a body i in dimension α can be written as

iFα = − ∂U

∂ iq
α
, (3.2.96)

where body number i = {1 . . . N} and dimension α = {1, 2, 3} . Since the atomic potential
energy of atom i, iE, is defined as a polynomial of a set of polynomial invariants, iD =
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iDpair + iD2 + · · ·, the atomic potential energy is written explicitly as

iE (iD) = [f1 + f2 + · · · ] (iD) (3.2.97)

=

[∑
m

fm

]
(iD) (3.2.98)

def
= F (iD) , (3.2.99)

where F is an aggregated polynomial of fm.

From (3.2.96) the force acting on body k from bodies in the neighbor is

kFα = − ∂

∂ kq
α

∑
i∈kN

iE (iD)

 , (3.2.100)

thus partial derivatives of the atomic potential energy is needed. The atomic potential
energy can be expressed as a composite function. First function is a polynomial, F : Rm 3

iD 7→ E ∈ R, which is a map from a set of polynomial invariants, iD =
{

(l1×···lp),σ
idn

}
,

to an energy of real value. Second function, D, is a map from a set of order parameters,{
(l)
ianm

}lp
l=l1

, to a structural feature, (l1×···lp),σ
idn. Third function, A, is a map from a set

of coordinates of neighbor atoms, iN , to a set of order parameters,
{

(l)
ian,−l, . . . ,

(l)
ian,l

}
.

F :
{
{idn} ,

{
(l×l)

idn

}
, . . . ,

{
(l1×···lp),σ

idn

}}
7→ E (3.2.101)

D :

{{
(l1)
ianm1

}l1
m1=−l1

, . . . ,
{

(lp)
ianmp

}lp
mp=−lp

}
7→ (l1×···lp),σ

idn (3.2.102)

A :
({

jq
}N
j=1

; i, l, . . .
)
7→
{

(l)
ian,−l, . . . ,

(l)
ian,l

}
(3.2.103)

where parameters not related to the discussion on the derivative are omitted. Now the
energy can be written as a composite function form as

iE = F ◦ (D ◦ A)
({

jq
}N
j=1

; i, l, . . .
)
. (3.2.104)

By applying of Chain Rule, the derivative of the atomic potential energy of atom i is
written in Leibnitz notation as

∂ iE

∂ kq
α

=
∂F
∂D

∂D
∂A

∂A
∂ kq

α
. (3.2.105)

For example, for the linear model

F : f1

({
(l),σ

id
n
}l1×···lp

l=l

)
=
∑
nlσ

(l),σwn
(l),σ

idn, (3.2.106)
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let
A :=

{{
(l1)
ianm1

}l1
m1=−l1

, . . . ,
{

(lp)
ianmp

}lp
mp=−lp

}
, (3.2.107)

thereby

∂ iE

∂ kq
α

=
∑
nlσ

(l),σwn

〈
∂

(l),σ
idn

∂A
,
∂A

∂ kq
α

〉
(3.2.108)

=
∑
nlσ

∑
L∈{1···|l|}

(l),σwn

(
(l1)
ianm1 · · ·

ˇ(L)
ianmL · · ·

(lp)
ianmp

) ∂ (L)
ianmL

∂ kq
α

(l1×···lp),σcm1···mp .

(3.2.109)

By Summing up these derivatives of atomic energy for the atoms in the neighbor of the
atom k, the total force acting on the atom k is derived as

kFα = − ∂

∂ kq
α

(
N∑
i=1

iE (iD)

)
. (3.2.110)

= −
∑
i∈kN

∂ iE

∂ kq
α

(3.2.111)

= −
∑
i=kN

∑
nlσ

∑
L∈{1···|l|}

(l),σwn

(
(l1)
ianm1 · · ·

ˇ(L)
ianmL · · ·

(lp)
ianmp

)

×∂
(L)
ianmL

∂ kq
α

(l1×···lp),σcm1···mp

)
. (3.2.112)

The derivatives of the order parameter is given by the well-known derivatives of spherical
harmonics.

Pair-wise Force

A generalized force on a direction α of generalized coordinate is

Fα = ṗα =
∂L

∂qα
= − ∂U

∂qα
. (3.2.113)

When coordinates are grouped by each atom, (3.2.113) is also grouped by each atom as

iFα = − ∂U

∂ iq
α
. (3.2.114)

If the potential energy U of a set of N -particles can be approximated by a linear function
of a set of ordered particle pairs,

U ({1, 2, 3, . . . , N}) ≈ Ua ({(1, 2) , · · · , (N,N − 1)}) approximation
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= Ua (s · 1N ∪ 2N ∪ · · · ∪ NN ) grouping

= s (Ua (1N ) + Ua (2N ) + · · ·+ Ua (NN )) linearity,

where Ua is an approximation of a many-body potential by means of a set of unordered
particle pairs for all atoms, iN is a neighbor list centering an atom i, and s is a coefficient
of over-count for the neighbor style. The set of pairs around atom i is equivalent to a set
of vectors from atom i,

iN ∼ iN =
{
jq − iq

}
j∈iN

def
=
{
ijq
}
j∈iN

, (3.2.115)

where ijq means a vector from atom i to j.

The force acting on atom i can be calculated as a summation of derivatives of the
partial potential energies1

iFα ≈ −
∂

∂ iq
α
s (Ua (1N) + Ua (2N) + · · ·+ Ua (NN)) (3.2.116)

= −s
(

∂

∂ iq
α
Ua (1N) +

∂

∂ iq
α
Ua (2N) + · · ·+ ∂

∂ iq
α
Ua (NN)

)
(3.2.117)

= −s
(〈

∂Ua

∂ 1N
,
∂ 1N

∂ iq
α

〉
+

〈
∂Ua

∂ 2N
,
∂ 2N

∂ iq
α

〉
+ · · ·+

〈
∂Ua

∂ NN
,
∂ NN

∂ iq
α

〉)
, (3.2.118)

where 〈
∂Ua

∂ jN
,
∂ jN

∂ iq
α

〉
=
∑
k∈jN

∑
β=1,2,3

∂Ua

∂ jkq
β

∣∣∣∣∣
jN

∂ jkq
β

∂ iq
α

∣∣∣∣∣
iq
α

(3.2.119)

=
∑
k∈jN

∑
β=1,2,3

∂Ua

∂ jkq
β

∣∣∣∣∣
jN

∂
(
kq − jq

)β
∂ iq

α

∣∣∣∣∣
kq
α

(3.2.120)

=
∑
k∈jN

∑
β=1,2,3

∂Ua

∂ jkq
β

∣∣∣∣∣
jN

(
δkiδ

β
α − δjiδβα

)
(3.2.121)

=
∑
k∈jN

∂Ua

∂ jkq
α

∣∣∣∣∣
jN

(δki − δji) . (3.2.122)

1Here we used the chain rule of vector function:

d

dx
f (g (x) , h (x)) = lim

t→0

f (g (x + t) , h (x + t))− f (g (x) , h (x))

t

= lim
t→0

f (g (x + t) , h (x + t))− f (g (x) , h (x + t))

t

+ lim
t→0

f (g (x) , h (x + t))− f (g (x) , h (x))

t

=
df

dg

∣∣∣∣
g(x),h(x)

dg

dx

∣∣∣∣
x

+
df

dh

∣∣∣∣
g(x),h(x)

dh

dx

∣∣∣∣
x
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Consequently

iFα = −s
N∑
j=1

∑
k∈jN

∂Ua

∂ jkq
α

∣∣∣∣∣
jN

(δki − δji) (3.2.123)

= −s
N∑
j=1

 ∂Ua

∂ jiq
α

∣∣∣∣
jN

δi∈jN −
∑
k∈jN

∂Ua

∂ jkq
α

∣∣∣∣∣
jN

δji

 (3.2.124)

= −s

 ∑
j∈{j | i∈jN}

∂Ua

∂ jiq
α

∣∣∣∣
jN

−
∑
j∈iN

∂Ua

∂ ijq
α

∣∣∣∣
iN

 . (3.2.125)

The first and second term in (3.2.125) refer to the reaction acting on atom i from atoms
in the neighbor and the action from the neighbor of the atom i, respectively. In the last
line the index of neighbor vector list is changed from jN to iN using the Kronecker delta
with the summation on j.

For the full neighbor style, a set of atoms whose neighbor list contains an atom i

is identical to the neighbor list of the atom i, i.e.
{
j
∣∣ i ∈ jN

}
= iN . It is because the

atom j will be in the neighbor list of the atom i when an atom i is in the neighbor list
of an atom j, simultaneously. The coefficient of overcount s is 1/2 for the full neighbor
style, so

iFα = −1

2

∑
j∈iN

(
∂Ua

∂ jiq
α

∣∣∣∣
jN

− ∂Ua

∂ ijq
α

∣∣∣∣
iN

)
. (3.2.126)

For the half neighbor style, there is no common atom in the neighbor list of an atom i

and a set of atoms whose neighbor list contains the atom i, i.e. iN ∩
{
j
∣∣ i ∈ jN

}
= ∅.

In other words, the union of the neighbor list and the set of atoms corresponds to the
complete components of a force acting on the atom i. The coefficient of overcount s is 1

for the half neighbor style, thus

iFα = −
∑

j∈{j | i∈jN}

∂Ua

∂ jiq
α

∣∣∣∣
jN

+
∑
j∈iN

∂Ua

∂ ijq
α

∣∣∣∣
iN

. (3.2.127)

At last the derivative of the atomic energy by the relative position vectors gives a
pairwise force ijFα acting on atom i from atom j as

ijFα =

(
− ∂Ua

∂ jiq
α

∣∣∣∣
jN

+
∂Ua

∂ ijq
α

∣∣∣∣
iN

)
δj∈iN , (3.2.128)
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for the full neighbor style and

ijFα = − ∂Ua

∂ jiq
α

∣∣∣∣
jN

δj∈{j | i∈jN} +
∂Ua

∂ ijq
α

∣∣∣∣
iN

δj∈iN , (3.2.129)

for the half neighbor style. A summation of the pairwise forces over atoms other than
the atom i gives a force acting on the atom i

iFα = s
∑
j

ijFα. (3.2.130)

Note that Kronecker delta in (3.2.128) and (3.2.129) is sometimes omitted when the
neighbor list of the relative vectors is stored somewhere and used as the index for the
sum.

Linearity of parameters

Order parameter

The order parameter of an atom i is the Fourier expansion of the atomic density around
the atom. Since the Fourier expansion is linear, so is the order parameter.

Theorem 3.6. The order parameter of an atom i is linear for its neighbor list,

(l)
ianm [iN ] =

(l)
ianm [iN \X] +

(l)
ianm [X] . (3.2.131)

Proof. Dividing the neighbor list into two parts, getting

(l)
ianm [iN ] =

(l)
ianm [iN \X +X] (3.2.132)

=
∑

j∈(iN\X)+X

iPn
(
jr
) (l)

iYm
(
jθ, jφ

)
(3.2.133)

=

 ∑
j∈iN\X

+
∑
j∈X


iPn
(
jr
) (l)

iYm
(
jθ, jφ

)
(3.2.134)

=
(l)
ianm [iN \X] +

(l)
ianm [X] . (3.2.135)

Structural feature

The structural feature around an atom i is by Definition 3.1

(l1...lp),σ
idn =

∑
m1···mp

(l1)
ianm1 · · ·

(lp)
ianmp

(l1...lp),σcm1...mp . (3.2.136)
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Lemma 3.3. For the simplest case, p = 1, the structural feature is linear,

(l1)
idn [iN ] =

(l1)
idn [iN\X] +

(l1)
idn [X] . (3.2.137)

Proof. (3.2.131) gives

(l1)
idn [iN ] =

∑
m1

(l1)
ianm1 [iN ] (3.2.138)

=
∑
m1

(l1)
ianm1 [iN\X +X] (3.2.139)

=
∑
m1

(l1)
ianm1 [iN\X] +

∑
m1

(l1)
ianm1 [X] (3.2.140)

=
(l1)
idn [iN\X] +

(l1)
idn [X] . (3.2.141)

Lemma 3.4. For p = 2, the structural feature is not linear.

Proof. By definition,

(l1l2)
idn =

∑
m1m2

(l1)
ianm1

(l2)
ianm2

(l1l2)cm1m2 (3.2.142)

and explicitly expanding it gives

(l1l2)
idn [iN ] =

∑
m1m2

(l1)
ianm1 [iN ]

(l2)
ianm2 [iN ] (l1l2)cm1m2 (3.2.143)

=
∑
m1m2

(l1)
ianm1 [iN \X +X]

(l2)
ianm2 [iN \X +X] (l1l2)cm1m2 (3.2.144)

=
∑
m1m2

(
(l1)
ianm1 [iN \X]

(l2)
ianm2 [iN \X] +

(l1)
ianm1 [iN \X]

(l2)
ianm2 [X]

+
(l1)
ianm1 [X]

(l2)
ianm2 [iN \X] +

(l1)
ianm1 [X]

(l2)
ianm2 [X]

)
(l1l2)cm1m2

(3.2.145)

=
(l1l2)

idn [iN \X] +
(l1l2)

idn [X]

+
∑
m1m2

(
(l1)
ianm1 [iN \X]

(l2)
ianm2 [X]

+
(l1)
ianm1 [X]

(l2)
ianm2 [iN \X]

)
(l1l2)cm1m2 (3.2.146)

6= (l1l2)
idn [iN \X] +

(l1l2)
idn [X] . (3.2.147)

The inequality in the last line shows the nonlinearity of the structural feature.

Lemma 3.5. Structural features of the higher order can be obtained by combining a
structural feature of the lower order and a set of order parameters sequentially, i.e. there
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exists a map f such that

f :
{

(l1···lp−1)
idn,

{
(lp)
ianm

}}
7→ (l1···lp)

id. (3.2.148)

Proof. Let the structural feature of pth order explicitly indexed with the destination of
the reduction

(l1···lp|Γ1)
idn =

∑
m1···mp

(l1)
ianm1 · · ·

(lp)
ianmp

(l1···lp|Γ1),σC
m1···mp
1 . (3.2.149)

For p = 2 by definition

(l1l2|Γ1)
idn =

∑
m1m2

(l1)
ianm1

(l2)
ianm2

(l1l2|Γ1)Cm1m2
1 , (3.2.150)

then the structural feature of 3rd order can be calculated as

(l1l2l3|Γ1)
idn =

∑
m3

(l1l2|Γ1)
idn

(l3)
ianm3

(Γ1l3|Γ1)C1m3
1 (3.2.151)

=
∑
m3

(∑
m1m2

(l1)
ianm1

(l2)
ianm2

(l1l2|Γ1)Cm1m2
1

)
(l3)
ianm3

(Γ1l3|Γ1)C1m3
1 (3.2.152)

=
∑

m1m2m3

(l1)
ianm1

(l2)
ianm2

(l3)
ianm3

(
(l1l2|Γ1)Cm1m2

1 · (Γ1l3|Γ1)C1m3
1

)
(3.2.153)

=
∑

m1m2m3

(l1)
ianm1

(l2)
ianm2

(l3)
ianm3

(l1l2l3|Γ1)Cm1m2m3
1 . (3.2.154)

Assume that the synthesis rule holds up to the p−1th order. Then the structural feature
of the pth order can be calculated as

(l1···lp|Γ1)
idn =

∑
mp

(l1···lp−1|Γ1)
idn

(lp)
ianmp

(Γ1lp|Γ1),σC
1mp
1 (3.2.155)

=
∑
mp

 ∑
m1···mp−1

(l1)
ianm1 · · ·

(lp−1)
ianmp−1

(l1···lp−1|Γ1),σC
m1···mp−1

1


× (lp)

ianmp
(Γ1lp|Γ1),σC

1mp
1 (3.2.156)

=
∑

m1···mp

(l1)
ianm1 · · ·

(lp)
ianmp

(
(l1···lp−1|Γ1),σC

m1···mp−1

1 · (Γ1lp|Γ1),σC
1mp
1

)
(3.2.157)

=
∑

m1···mp

(l1)
ianm1 · · ·

(lp)
ianmp

(l1···lp|Γ1),σC
m1···mp
1 , (3.2.158)

therefore the proposition is inductively proved.

Theorem 3.7. Structural features of the second or higher order are not linear.

Proof. The nonlinearity of the structural feature for p ≥ 2 is inductively derived from Lemma
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3.4 and Lemma 3.5.

Note that the linearity of the polynomial models, the atomic energy, and the gener-
alized force follow the linearity of the structural features.

As a result, it is found that only order parameters and structural features of 1st
order can be calculated in parallel concerning a set of atoms. However, when atoms
are spatially grouped based on the cutoff length of interatomic potential, any structural
features restore the linearity for the groups of sets, so do energies, forces, and stresses. It
leads to the basic concept of spatial decomposition discussed in 3.2.3.

3.2.2 Algorithmic Aspect of Machine Learning Potential

In this section, the algorithmic aspect of PolyMLP is explained to show how it is paral-
lelized. Loops for inner variables in pseudocode can be accelerated by parallel calculation
on each node. On the other hand, loops for atom indices can be accelerated by spatial
decomposition over nodes. These two types of acceleration are combined to calculate
large systems efficiently.

Definitions of Variables

In this section, the typical notation is used for atom indices and element type.

Atomic energy

The total energy can be expressed as the sum of the atomic energies of each atom,

E [ρ] =

[
N∑
i=1

E(i)

]
[ρ] . (3.2.159)

Expand atomic density using basis functions with order parameter

The neighboring atomic density of elements around atom-i is

ρ(i,s) (r) . (3.2.160)

This density function can be expanded by the basis functions

ρ(i,s) (r) =
nmax∑
n=0

lmax∑
l=0

l∑
m=−l

a
(i,s)
nlmfn (r)Y m

l (r̂) , (3.2.161)

where a(i,s)
nlm is a generalized order parameter for the atom-i with the features, nlm and s,

fn is a Gaussian-type radial function combined with a cosine-based cutoff function fc,
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and Y m
l is a spherical harmonic function. The order parameter is a inner product between

the basis function and the neighboring atomic density. The basis function is

φnlm (r) = fn (r)Y m
l (r̂) . (3.2.162)

The radial function is

fn (r)
def
= exp

(
−βn (r − rn)2) fc (r) , (3.2.163)

fc (r)
def
=


1
2

(
1 + cos

(
π r
rc

))
(r < rc)

0 (r ≥ rc)
, (3.2.164)

= χB(0,rc) (r)
1

2

(
1 + cos

(
π
r

rc

))
(3.2.165)

where χB(0,rc) is a characteristic function of an open-ball subset B(0,rc) of the space. To
simplify the expression, we define the generalized order parameter as follows:

a
(i)
nlm,{s,s′}

def
=

a
(i,s′′)
nlm if {si, s′′} = {s, s′}

0 otherwise
. (3.2.166)

This means, for example, if the element of atom-i is A and the element of the other atom
is B, then

a
(i,B)
nlm = a

(i)
nlm,{A,B} = a

(i)
nlm,{B,A}. (3.2.167)

In practice, the order parameter is calculated as a sum in a neighbor list of given cutoff
radius rc

a
(i,s)
nlm

def
=

∑
j∈N (i,s)

fn
(
r(ij)

)
Y m
l (r̂(ij)), (3.2.168)

N (i,s) def
=
{
j
∣∣ r(ij) < rc, s

(j) = s, j 6= i
}
, (3.2.169)

r(ij) def
= r(j) − r(i). (3.2.170)

We denote the set of a multiset pair elements, which allows for multiple instances for
each of its elements, as

S def
= {[A,A] , [A,B] , [B,B] , · · · } . (3.2.171)

Structural Feature

Consider an indexing set for a structural feature that is invariant to the O(3) action with
qth-order polynomial of

{
a

(i)
nlm,t

}
,
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Lp
def
=

{
([l1, · · · , lp] , σ)

∣∣∣∣∣ lk ∈ {0, · · · , lpmax} ,C(l1···lp),σ 6= 0,

p∑
ν=1

lν = even

}
. (3.2.172)

The lks are indices of the irreducible representations for each order parameter. The
Clebsch-Gordan coefficient should not be zero. The final condition is imposed so that
the structural feature is invariant with respect to spatial inversion. A family of these sets
indexed by an indexing set P = {1, 2, · · · , pmax} is

{Lp}p∈P . (3.2.173)

Each element of the union of these family

L =
⋃
p

Lp (3.2.174)

has a one-to-one correspondence with the angular momentum term of the entire polyno-
mial.

An indexing set for types of the atoms is defined as follows,

Tp
def
= {[t1, · · · , tp] | tk ∈ S, t1 ∩ · · · ∩ tp 6= ∅} . (3.2.175)

The intersection of the type pairs of all orders cannot be an empty set to prevent the
structural feature from becoming zero.

The indexing set for types, Tp, can be combined with the Lp as a direct product of
these indexing sets,

Kp
def
= Lp × Tp (3.2.176)

= {([l1, · · · , lp] , [t1, · · · , tp] , σ) | ([l1, · · · , lp] , σ) ∈ Lp, [t1, · · · , tp] ∈ Tp} . (3.2.177)

A family of these sets indexed by the indexing set P is

{Kp}p∈P . (3.2.178)

The union of these families,
K =

⋃
p

Kp, (3.2.179)

is an indexing set of all possible polynomials with angular-element terms.
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The structural features are composed of the product of the order parameters

d
(i)
nk =

l1∑
m1=−l1

· · ·
lp∑

mp=−lp

C l
m1,··· ,mpa

(i)
nl1m1,t1

· · · a(i)
nlpmp,tp

, (3.2.180)

where the index is an element of the indexing set for the pth-order angular-element
structural feature Kp,

k = ([l1, · · · , lp] , [t1, · · · , tp] , σ) ∈ Kp. (3.2.181)

Note that the condition mentioned above for the Lp,
∑p

ν=1 lν = even, can be obtained
from the invariance of the structural feature, Id(i)

nk = d
(i)
nk. From the conversion rule

of the order parameter, we have Ia(i)
nlm,t = (−)l a

(i)
nlm,t and requiring (−)

∑p
ν=1 lν = 1 gives∑p

ν=1 lν = even. Since the Wigner functions used for obtaining the CG coefficients are the
irreducible representations for the SO(3) group, the projection consisted of the Wigner
function doesn’t reflect the spatial inversion. Thus we must add this constraint for the
structural feature to be invariant for any group action of the O(3) group.

As shown above, a structural feature for an atom-i can be uniquely specified by an
index set of radial hyperparameter n and a polynomial index k. Therefore, the tuple (n,k)

are referred to as a feature index.

Polynomial Feature

The atomic energy functional is approximated by several polynomials for the structural
features. Consider an indexing set, P , that specifies the combination of polynomials.
A polynomial consisting of qmax linear independent terms can be specified as a union
of qmax families of indexing sets, {Pq}q∈Q, where the polynomial indexing set is Q =

{1, 2, · · · , qmax},
P =

⋃
q∈Q

Pq. (3.2.182)

Each Pq refers to an indexing set for a qth-order polynomial feature from structural
features

d
(i)
[(n1,k1),··· ,(nq ,kq)]

def
=

q∏
ν=1

d
(i)
nνkν

, (3.2.183)

where

[(n1,k1) , · · · , (nq,kq)] ∈ Pq, (3.2.184)
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Pq
def
=

{
[(n1,k1) , · · · , (nq,kq)]

∣∣∣∣∣∀ν ∈ Q,kν ∈ K;
⋂
ν∈Q

e (kν) 6= ∅

}
,

(3.2.185)

e (kp)
def
= t1 ∩ · · · ∩ tp. (3.2.186)

A family of sets of structural features indexed by the indexing set Pq is

∆q
def
=
{
d

(i)
[(n1,k1),··· ,(nq ,kq)]

}
[(n1,k1),··· ,(nq ,kq)]∈Pq

, (3.2.187)

and its union
∆

def
=
⋃
q∈Q

∆q (3.2.188)

can be used as a complete set for describing an energy polynomial. The union P and
each Pq refer to the whole polynomial and each polynomial term, respectively.

Potential Energy Calculation

The atomic energy of atom-i is assumed to be approximated by a certain function of
structural features

E(i) [ρ] = F (∆) (3.2.189)

def
=

qmax∑
q=1

∑
f∈Pq

wfd
(i)
f . (3.2.190)

This equation is shown in the pseudo code 1.

Algorithm 1 Compute energy E
Require: {d(i)

n,k}i∈{1,2,··· ,N}; n∈{0,1,···nmax}; k∈K . Get structural features
1: for i ∈ {1, 2, · · · , N} do . For all atoms
2: Ei ← 0 . Initialize atomic potential
3: for f = [(n1,k1), . . . , (np,kp)] ∈ P do . For all feature indices
4: Ei ← Ei + wfd

(i)
f . Update atomic potential (3.2.183),(3.2.190)

5: end for
6: end for
7: E ← 0 (∀i) . Initialize total potential energy
8: for i ∈ {1, 2, · · · , N} do . For all atoms
9: E ← E + Ei . Accumulate atomic energies (3.2.159)
10: end for
11: return E
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Force and Stress Tensor Calculation

A force acting on an atom-i is a partial derivative of the total potential energy with
respect to the position of the atom-i,

F(i) def
= − ∂E

∂r(i)
(3.2.191)

= − ∂

∂r(i)

∑
j∈Ni

E(j) (3.2.192)

= −
∑
j∈Ni

∂E(j)

∂r(i)
. (3.2.193)

This generalized force on the atom-i is obtained as the sum of the pairwise forces acting
from atoms included in the neighbor list of the atom-i,

F(i) =
∑
j∈Ni

F(ij), (3.2.194)

where the pairwise force is

F(ij) def
=
∂E(i)

∂r(ij)
− ∂E(j)

∂r(ji)
. (3.2.195)

The pairwise force holds the Newton’s third law,

F(ij) = −F(ji). (3.2.196)

Partial Derivative of Atomic Energy

The above pairwise force (3.2.195) contains partial differentiation of atomic energy, which
is explicitly expressed as follows using the partial differentiation of the structural feature.

∂E(i)

∂r(ij)
=

∂

∂r(ij)

qmax∑
q=1

∑
f∈Pq

wfd
(i)
f (3.2.197)

=

qmax∑
q=1

∑
f∈Pq

wf
∂d

(i)
f

∂r(ij)
(3.2.198)

=

qmax∑
q=1

∑
[(n1,k1)···(nq ,kq)]∈Pq

w[(n1,k1)···(nq ,kq)]
∂

∂r(ij)

(
q∏

ν=1

d
(i)
nνkν

)
(3.2.199)

=

qmax∑
q=1

∑
[(n1,k1)···(nq ,kq)]∈Pq

w[(n1,k1)···(nq ,kq)]

q∑
ν=1

∂d
(i)
nνkν

∂r(ij)

∏
ν′ 6=ν

d
(i)
nν′kν′

. (3.2.200)
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Adjoint Method

In the force estimation, identical differentiation of both basis functions and polynomials
repeatedly appears when PolyMLP is implemented straightforwardly. The force esti-
mation can be accelerated by reducing these redundant differentiations. The number
of differentiations can be reduced at the expense of memory preserving the calculated
results. This method is referred to as the adjoint method [19, 79].

Polynomial Adjoint

The terms irrelevant to j are grouped in advance into a coefficient D such that satisfies
the following,

∂E(i)

∂r(ij)
=:

nmax∑
n=0

∑
k∈K

∂d
(i)
nk

∂r(ij)
D

(i)
nk, (3.2.201)

where

D
(i)
nk

def
=

qmax∑
q=1

∑
[(n1,k1)···(nq ,kq)]∈Pq

w[(n1,k1)···(nq ,kq)]

q∑
ν=1

δnnνδkkν
∏
ν′ 6=ν

d
(i)
nν′kν′

. (3.2.202)

This D is indexed by an atom number i, a radial index n, and angular-element index k,{
D

(i)
nk

}
i∈{1,2,··· ,N},n∈{0,1,··· ,nmax},k∈K

. (3.2.203)

In Equation (3.2.201), the part not related to the j derivative can be reused, so that
the amount of calculation is reduced. This polynomial adjoint is implemented as pseudo
code 2.
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Algorithm 2 Compute Polynomial Adjoint {D(i)
n,k}i∈{1,2,··· ,N}; n≤nmax; k∈K

Require: {d(i)
n,k}i∈[N ];n∈[nmax];k∈K . Get structural features

1: for i ∈ {1, 2, · · · , N} do . for all atoms
2: for n ∈ {0, 1, · · · , nmax} ,k ∈ K do . for all possible polynomials
3: D

(i)
n,k ← 0 . Initialize polynomial adjoint

4: end for
5: end for
6: for i ∈ {1, 2, · · · , N} do . for all atoms
7: for [(n1,k1), . . . , (nq,kq)] ∈ P do . for all combinations of polynomials
8: for ν ∈ {1, 2, · · · , q} do . for all orders of polynomials
9: D

(i)
nν ,kν

← D
(i)
nν ,kν

+ w[(n1,k1),...,(nq ,kq)]

∏
ν′ 6=ν d

(i)
nν′kν′

. P-adjoint:(3.2.202)
10: end for
11: end for
12: end for
13: return {D(i)

n,k}i∈{1,2,··· ,N}; n≤nmax; k∈K

Basis Function Adjoint

To calculate the derivative of the structural feature, we need to recreate an adjoint with
respect to the product of basis functions. That is, derivative of Equation (3.2.201) gives

∂E(i)

∂r(ij)
=

nmax∑
n=0

∑
k∈K

∂d
(i)
nk

∂r(ij)
D

(i)
nk (3.2.204)

=
∑
n

∑
p

∑
l1···lp

∑
t1···tp

∑
σ

D
(i)
n,[l1,··· ,lp],[t1,··· ,tp],σ

∑
m1···mp

C(l1···lp),σ
m1···mp

×
p∑

µ=1

δtµ,{s(i),s(j)}
∂φnlµmµ
∂r

(
r(ij)

) ∏
µ′ 6=µ

a
(i)
nlµ′mµ′ ,tµ′

(3.2.205)

=:
nmax∑
n=0

lmax∑
l=0

l∑
m=−l

∂φnlm
∂r

(
r(ij)

)
Φnlm,{s(i),s(j)}, (3.2.206)

where the last line is an implicit definition of the basis function adjoint Φnlm,t. Similarly
to Eq (3.2.201), we can reuse the part not related to the position of atom-j and the
amount of calculation is reduced. The basis function adjoint can be written explicitly as

Φnlm,{s(i),s(j)}
def
=

|l|∑
p=1

∑
(l,t,σ)∈Kp

D
(i)
nlt,σ

∑
m1···mp

C(l),σ
m1···mp

×
p∑

µ=1

δtµ,{s(i),s(j)}δllµδmmµ
∏
µ′ 6=µ

a
(i)
nlµ′mµ′ ,tµ′

. (3.2.207)
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This basis function adjoint can be obtained from pseudo code (3).

Algorithm 3 Compute Basis Function adjoint {Φ(i)
nlm,t}i∈{1,··· ,N};n∈{0,··· ,nmax};l≤lmax;|m|≤l;t∈S

Require: {D(i)
n,k}i∈{1,2,··· ,N}; n≤nmax; k∈K

1: for i ∈ {1, 2, · · · , N} do
2: for t ∈ S do . for all pairs of elements
3: for n ∈ {0, 1, · · · , nmax} do
4: for l ≤ lmax, |m| ≤ l do
5: Φ

(i)
nlm,t ← 0 . Initialize basis function adjoint

6: end for
7: end for
8: end for
9: end for
10: for i ∈ {1, 2, · · · , N} do
11: for (l, t, σ) ∈ K do . for all possible polynomials with angular-element terms
12: if si /∈ e(t) then . Skip if not related type (3.2.186)
13: continue
14: end if
15: p← |l|
16: for n ∈ {0, 1, · · · , nmax} do
17: for m ∈ {m1,m2, · · · ,mp} do
18: for µ ∈ {1, 2, · · · , p} do
19: Φ

(i)
nlµmµ,tµ

← Φ
(i)
nlµmµ,tµ

+D
(i)
n,(l,t,σ)C

l,σ
m

∏
µ′ 6=µ a

(i)
nlµ′mµ′ ,tµ′

. (3.2.207)
20: end for
21: end for
22: end for
23: end for
24: end for
25: return {Φ(i)

nlm,t}i∈{1,··· ,N}; n∈{0,··· ,nmax}; l≤lmax; |m|≤l; t∈S

We also define the derivative of E(j) here. The r(ij) is replaced by r(ji), which corre-
sponds to the spatial inversion, and the spatial inversion of the spherical harmonics Y is
given by the azimuthal quantum number

Y m
l (−r̂) = (−)l Y m

l (r̂) . (3.2.208)

Substituting (3.2.208) into equation (3.2.206) yields:

∂E(j)

∂r(ji)
= −

nmax∑
n=0

lmax∑
l=0

l∑
m=−l

∂φnlm
∂r

(
r(ji)

)
Φnlm,{s(j),s(i)} (3.2.209)

=
nmax∑
n=0

lmax∑
l=0

(−)l+1
l∑

m=−l

∂φnlm
∂r

(
r(ij)

)
Φnlm,{s(i),s(j)} (3.2.210)
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Force calculation

Equations (3.2.195), (3.2.206) and (3.2.210) give an expression of the pairwise force with
two basis adjoints

F(ij) =
∂E(i)

∂r(ij)
− ∂E(j)

∂r(ji)
(3.2.211)

=
nmax∑
n=0

lmax∑
l=0

(
l∑

m=−l

∂φnlm
∂r

(
r(ij)

)
Φnlm,{s(i),s(j)}

− (−)l+1
l∑

m=−l

∂φnlm
∂r

(
r(ij)

)
Φnlm,{s(i),s(j)}

)
(3.2.212)

=
nmax∑
n=0

lmax∑
l=0

(
∂φnl0
∂r

(
r(ij)

)
Φnl0,{s(i),s(j)}

+2Re

[
l∑

m=1

∂φnlm
∂r

(
r(ij)

)
Φnlm,{s(i),s(j)}

])
. (3.2.213)

The formula transformation in the last line halves the amount of calculation by separating
the m sum into 0 and others. This derivation will be shown below.

From the nature of the spherical harmonic function, the following relationship is self-
evident

∂φnl−m
∂r

= (−)m
∂φnlm
∂r

. (3.2.214)

This relation gives the m-inversion of the basis function adjoint

Φnl−m,{s(i),s(j)} =

|l|∑
p=1

∑
k∈Kp

D
(i)
nk

∑
mp

C(l),σ
mp

p∑
µ=1

δtµ,{s(i),s(j)}δllµδ−mmµ
∏
µ′ 6=µ

a
(i)
nlµ′mµ′ ,tµ′

(3.2.215)

=

|l|∑
p=1

∑
k∈Kp

D
(i)
nk

∑
mp

C
(l),σ
−mp

p∑
µ=1

δtµ,{s(i),s(j)}δllµδm−mµ
∏
µ′ 6=µ

a
(i)
nlµ′−mµ′ ,tµ′

(3.2.216)

=

|l|∑
p=1

∑
k∈Kp

D
(i)
nk

∑
mp

C
(l),σ
mp

p∑
µ=1

δtµ,{s(i),s(j)}δllµδm−mµ

× (−)
∑
µ′ 6=µmµ′

∏
µ′ 6=µ

a
(i)
nlµ′mµ′ ,tµ′

(3.2.217)

=

|l|∑
p=1

∑
k∈Kp

D
(i)
nk

∑
mp

C
(l),σ
mp

p∑
µ=1

δtµ,{s(i),s(j)}δllµδm−mµ

× (−)mµ
∏
µ′ 6=µ

a
(i)
nlµ′mµ′ ,tµ′

(3.2.218)
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= Φnlm,{s(i),s(j)} (−)m . (3.2.219)

In the transformation from (3.2.216) to (3.2.217), we use a relation

C
(l),σ
−mp

= C
(l),σ
mp . (3.2.220)

This relationship between CG coefficients is due to the fact that irreducible representa-
tions of any finite group can be equivalently transformed into unitary representations.
Therefore, the solution of the eigenvalue problem of the projection operator can be trans-
formed into a unitary representation, and if it is selected as the coefficient C(l),σ

mp , the
above relation is satisfied. From (3.2.214) and (3.2.219), we have for m > 0

∂φnl−m
∂r

(
r(ij)

)
Φnl−m,{s(i),s(j)} = (−)2m ∂φnlm

∂r
(r(ij)) Φnlm,{s(i),s(j)}, (3.2.221)

and finally obtain

∂φnlm
∂r

(
r(ij)

)
Φnlm,{s(i),s(j)} +

∂φnl−m
∂r

(
r(ij)

)
Φnl−m,{s(i),s(j)}

= 2Re

[
l∑

m=1

∂φnlm
∂r

(
r(ij)

)
Φnlm,{s(i),s(j)}

]
. (3.2.222)

Virial Contribution to Stress Tensor

The virial contribution to the stress tensor is given as

σ
def
=

N∑
i=1

r(i) ⊗ F(i) (3.2.223)

=
N∑
i=1

r(i) ⊗
∑
j∈Ni

F(ij) (3.2.224)

=
N∑
i=1

∑
j∈Ni

r(i) ⊗ F(ij) (3.2.225)

=
1

2

N∑
i=1

∑
j∈Ni

(
r(i) ⊗ F(ij) + r(j) ⊗ F(ji)

)
(3.2.226)

=
1

2

N∑
i=1

∑
j∈Ni

(
r(i) ⊗ F(ij) − r(j) ⊗ F(ij)

)
(3.2.227)

= −1

2

N∑
i=1

∑
j∈Ni

((
r(j) − r(i)

)
⊗ F(ij)

)
(3.2.228)
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= −1

2

N∑
i=1

∑
j∈Ni

r(ij) ⊗ F(ij). (3.2.229)

Therefore the stress tensor also can be obtained by the pair positional vector and the
pairwise force.

Algorithm 4 Compute forces {F(i)}i∈{1,2··· ,N} and stresses σ

Require: {d(i)
n,k}i∈{1,··· ,N};n∈{0,··· ,nmax};k∈K

1: F(i) ← 0 (∀i)
2: σ ← 0
3: compute {Φ(i)

n,k}i∈{1,··· ,N};n∈{0,··· ,nmax};k∈K . Store to reuse adjoints
4: for i ∈ {1, · · · , N} do . Loop for real atoms
5: for j ∈ Ni do . Loop for neighbor
6: ∂E(ij) ← 0, ∂E(ji) ← 0 . Initialize pairwise derivatives
7: compute

{
∂φnlm
∂r

(r(ij))
}
n,l,m≥0

. Store to reuse derivatives
8: for n ∈ {0, · · · , nmax} do
9: for l ≤ lmax do
10: ∂E(ij) ← ∂E(ij) + ∂φnl0

∂r

(
r(ij)

)
Φ

(i)

nl0,{s(i),s(j)} . (3.2.206)(3.2.222)

+2
∑

m>0 Re

[
∂φnlm
∂r

(
r(ij)

)
Φ

(i)

nlm,{s(i),s(j)}

]
11: ∂E(ji) ← ∂E(ji) + (−)l+1

(
∂φnl0
∂r

(
r(ij)

)
Φ

(j)

nl0,{s(i),s(j)} . (3.2.210)(3.2.222)

+2
∑

m>0 Re

[
∂φnlm
∂r

(
r(ij)

)
Φ

(j)

nlm,{s(i),s(j)}

])
12: end for
13: end for
14: F(ij) ← ∂E(ij) − ∂E(ji) . Get pairwise force (3.2.211)
15: F(i) ← F(i) + F(ij) . Add j contribution
16: F(j) ← F(j) − F(ij) . Newton’s 3rd law
17: σ ← σ − r(ij) ⊗ F(ij) . Update stress tensor
18: end for
19: end for
20: return {F(i)}i∈{1,··· ,N} and σ

Performant Calculation of Spherical Harmonics

Spherical harmonics are key calculations in various fields, including quantum chemistry.
Significant effort has been made since the 1960s and various algorithms have been de-
veloped for efficient calculation. The standard approach is to make use of a recurrence
relation, which is noticeably effective for improving computational efficiency. However,
for some recursive relations round-off error grows rapidly and the results can be incorrect.
In this section, an efficient and accurate algorithm by Limpanuparb [98] is reviewed and
extended to a recurrence relation of derivatives for force calculations.
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The solutions of the associated Legendre differential equation

(
1− x2

) d2y

dx2
− 2x

dy

dx
+

{
l (l + 1)− m2

1− x2

}
y = 0 (3.2.230)

are linear combination of a Legendre function of the first kind Pm
l (x) and a Legendre

function of second kind Qm
l (x) by Ferrer’s form for |x| < 1 and m ≥ 0Pm

l (x) = (1− x2)
m/2 dmPl(x)

dxm

Qm
l (x) = (1− x2)

m/2 dmQl(x)
dxm

.
(3.2.231)

Since the Laplace’s differential equation in spherical coordinates is equivalent to the
Legendre differential equation, the Legendre function of the first kind Pm

l of degree l and
order m ≥ 0 is closely related to the spherical harmonics

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ) eimφ. (3.2.232)

They are sometimes separated into their real and imaginary parts,Y
ms
l (θ, φ) =

√
2l+1
4π

(l−m)!
(l+m)!

Pm
l (cos θ) sin (mφ)

Y mc
l (θ, φ) =

√
2l+1
4π

(l−m)!
(l+m)!

Pm
l (cos θ) cos (mφ) .

(3.2.233)

Note that only Pm
l is employed due to the continuity at θ = 0. It follows that the essential

part for calculation of the spherical harmonics is the calculation of the Legendre function
of the first kind.

Using the Lanczos principle of the orthogonal function, the Legendre polynomials
obey the following ternary recurrence relations for l ≥ 2 and 0 ≤ m ≤ l − 2

Pm
l (µ) =

2l − 1

l −m
µPm

l−1 (µ)− l − 1 +m

l −m
Pm
l−2 (µ) , (3.2.234)

where cos θ is denoted as µ.

Taking the normalized associated Legendre polynomial for 0 ≤ θ ≤ π as

P̄m
l (cos θ) =

√
2l + 1

2π

(l −m)!

(l +m)!
Pm
l (cos θ) , (3.2.235)

(3.2.232) gives

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ) eimφ (3.2.236)
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=

√
2l + 1

4π

(l −m)!

(l +m)!

√
2l + 1

2π

(l −m)!

(l +m)!

−1

P̄m
l (cos θ) eimφ (3.2.237)

=
1√
2
P̄m
l (cos θ) eimφ. (3.2.238)

Transforming the normalized associated Legendre polynomial (3.2.235) using the
ternary recurrence formula (3.2.234) gives

P̄m
l (µ) =

√
2l + 1

2

(l −m)!

(l +m)!
Pm
l (µ) (3.2.239)

=

√
2l + 1

2

(l −m)!

(l +m)!

2l − 1

l −m
µ

√
2 (l − 1) + 1

2π

((l − 1)−m)!

((l − 1) +m)!

−1

P̄m
l−1 (µ)

−(l − 1) +m

l −m

√
2 (l − 2)− 1

2π

((l − 2)−m)!

((l − 2) +m)!

−1

P̄m
l−2 (µ)

 (3.2.240)

=
2l − 1

l −m
µ

√
2l + 1

2l − 1

(l −m)! ((l − 1) +m)!

(l +m)! ((l − 1)−m)!
P̄m
l−1 (µ)

− (l − 1) +m

l −m

√
2l + 1

2 (l − 2) + 1

(l −m)! ((l − 2) +m)!

(l +m)! ((l − 2)−m)!
P̄m
l−2 (µ) (3.2.241)

= µ

√(
2l − 1

l −m

)2
2l + 1

2l − 1

(l −m)

(l +m)
P̄m
l−1 (µ)

−

√(
(l − 1) +m

l −m

)2
2l + 1

2 (l − 2) + 1

(l −m) ((l − 1)−m)

(l +m) ((l − 1) +m)
P̄m
l−2 (µ) (3.2.242)

= µ

√(
2l − 1

l −m

)2
2l + 1

2l − 1

(l −m)

(l +m)
P̄m
l−1 (µ)

−

√
(l − 1)2 −m2

l2 −m2

2l + 1

2 (l − 2) + 1
P̄m
l−2 (µ) (3.2.243)

= µ

√
4l2 − 1

l2 −m2
P̄m
l−1 (µ)−

√
4l2 − 1

l2 −m2

√
(l − 1)2 −m2

4l2 − 1

2l + 1

2 (l − 2)− 1
P̄m
l−2 (µ)

(3.2.244)

=

√
4l2 − 1

l2 −m2

µP̄m
l−1 (µ)−

√
(l − 1)2 −m2

2l − 1

1

(2 (l − 2)− 1)
P̄m
l−2 (µ)

 (3.2.245)

=

√
4l2 − 1

l2 −m2

(
µP̄m

l−1 (µ)−

√
(l − 1)2 −m2

4 (l − 1)2 − 1
P̄m
l−2 (µ)

)
(3.2.246)

= aml
(
µP̄m

l−1 (µ) + bml P̄
m
l−2 (µ)

)
. (3.2.247)
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Divisible by  for 

binary recurrence formula

ternary recurrence formula

Figure 3.2.2: Recursion relation for computing the associated Legendre polynomials.
The ternary and binary recurrence formulas are used in the azimuth quantum number
direction and the magnetic quantum number direction, respectively. Since the binary
recurrence formula for the first term of each magnetic quantum number multiplies sin θ,
the Legendre polynomials of m ≥ 1 avoid divergence for small θ.

Thus we have the ternary recurrence formula (3.2.234) for the normalized Legendre poly-
nomial as

P̄m
l (µ) = aml

(
µP̄m

l−1 (µ) + bml P̄
m
l−2 (µ)

)
, (3.2.248)

where aml and bml are defined as a
m
l =

√
4l2−1
l2−m2 ,

bml = −
√

(l−1)2−m2

4(l−1)2−1
.

(3.2.249)

Combining (3.2.235) with two binary recurrence relations

P̄m
m (cos θ) = −

√
1 +

1

2m
sin θP̄m−1

m−1 (cos θ) (3.2.250)

P̄m
m+1 (cos θ) =

√
2m+ 3 cos θP̄m

m (cos θ) (3.2.251)

and

P̄ 0
0 =

√
1

2π
(3.2.252)

we obtain the spherical harmonic functions required for the order parameter sequentially.
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The derivatives of the spherical harmonic functions are given in [22, 99] as

∇Y m
l (θ, φ) =

imP̄m
l (µ) eimφ√
2r sin θ

− sinφ

cosφ

0

+

(
d
dθ
P̄m
l (µ)

)
eimφ

√
2r

cosφ cos θ

sinφ cos θ

− sin θ

 . (3.2.253)

To evaluate this gradient numerically stable, the singularity of (sin θ)−1 at the pole must
be removed. If m = 0, the singularity is readily removed since the spherical harmonics
does not depend on the azimuth φ. Otherwise, (3.2.250) indicates all P̄m

l can be divisible
by sin θ for m 6= 0, using P̄m

l / sin θ instead stabilize the evaluation. The analytic form of
(3.2.253) can be transformed into a numerically stable form as

∇Y m
l (θ, φ) =



( d
dθ
P̄ 0
l (µ))√
2r


cosφ cos θ

sinφ cos θ

− sin θ

 , (if m = 0)

imR̄ml (θ)eimφ√
2r


− sinφ

cosφ

0

+
( d
dθ
P̄ml (µ))eimφ√

2r


cosφ cos θ

sinφ cos θ

− sin θ

 , (otherwise)

(3.2.254)
where

R̄m
l (θ)

def
=
P̄m
l (cos θ)

sin θ
. (3.2.255)

R̄m
l follows the same recurrence formula to P̄m

l for m ≥ 1

R̄m
l (θ) = aml

(
cos θR̄m

l−1 (θ) + bml R̄
m
l−2 (θ)

)
(3.2.256)

R̄m
m (θ) = −

√
1 +

1

2m
sin θR̄m−1

m−1 (θ) (3.2.257)

R̄m
m+1 (θ) =

√
2m+ 3 cos θR̄m

m (θ) (3.2.258)

starting from

R̄1
1 = −

√
3

4π
. (3.2.259)
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Using the derivative of the associated Legendre polynomial gives

∇Y m
l (θ, φ) =



1√
2r

(√
l (l + 1)P̄ 1

l (cos θ)
)

cosφ cos θ

sinφ cos θ

− sin θ

 , (if m = 0)

eimφ√
2r

imR̄m
l (θ)


− sinφ

cosφ

0

 +
(
m cos θR̄m

l (θ)

+
√

(l −m) (l +m+ 1)P̄m+1
l (cos θ)

)
cosφ cos θ

sinφ cos θ

− sin θ


 . (otherwise)

(3.2.260)

3.2.3 Spatial Decomposition and MPI Parallelization

The molecular dynamics itself is inherently parallel, in other words, positions and ve-
locities for all particles can be updated simultaneously. When simulating a system with
many particles, it is effective to decompose the simulation box and allocate processors
or a compute node to each decomposed part. There are three classes of algorithms for
parallelizing the molecular dynamics calculation [3], that is splitting and replicating par-
ticles (atom decomposition), partitioning forces (force decomposition), and geometrically
splitting of simulation box (spatial decomposition).

lammps takes the last one, spatial decomposition, where each processor has infor-
mation of both its atoms and some of those belonging to adjacent processors. These
particles refer to real atoms and ghost atoms, respectively. Figure 3.2.3 shows an ex-
ample configuration of real and ghost atoms near a processor border. When a system
is decomposed spatially, each partial system acts as if it has complete information for
calculating the energy and forces using real and ghost atoms. Accumulating calculation
results for each partial system should reproduce the whole system through inter-processor
MPI communication.

By following the basic MD timesteps with the spatial decomposition shown in Fig. 3.2.4,
the information of the total system is distributed, calculated, and reproduced. Real atoms
and ghost atoms communicate their properties to each other via MPI forward and reverse
communication over processors. The MPI forward communication copies the properties
of the ghost atoms from the corresponding real atoms of the adjacent processors before
computing forces. After computing forces, the MPI reverse communication transfers the
information accumulated on these ghost atoms into the corresponding real atoms of the
adjacent processors.
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box 1 box 2

ghost atoms

cutoff + skin
real atoms

Figure 3.2.3: Spatial decomposition of simulation box. Each box has a shell with a
thickness of cutoff + skin. Ghost atoms are atoms that are included not in each box but
in the shell around each box.

lammps provides four types of spatial decomposition, which consist of combinations
of two neighbor styles, which is half or full, and two communication methods, which is
Newton’s third law enabled or disabled. With the half neighbor style, each pair of atoms
is stored only once and a pairwise interaction acting on the other atom is assumed to be
equal in magnitude and opposite in direction. On the other hand, using the full neighbor
style, each pair is counted twice and pairwise interactions act on each atom individually.
The half neighbor list reduces the number of force evaluations and requires more commu-
nication between processors, on the contrary, the full neighbor list doubles the number
of force evaluations and reduces the communication. The flag for Newton’s third law
manages inter-processor communication of atoms near the border of each decomposed
box.

For almost interatomic potentials, the half neighbor style with Newton’s third law
enabled and the full neighbor style with Newton’s third law disabled is chosen for CPU
and GPU, respectively. However, PolyMLP is so complicated that it needs special care to
calculate the forces, whereas the energies can be simply calculated like other potentials, as
shown in Fig. 3.2.5. For PolyMLP, a combination of the full-neighbor style and Newton’s
third law enabled is one of the best to calculate forces, which eventually coincides with
the existing lammps implementations of other MLIPs e. g. HDNNP, SNAP, PACE, or
RANN.

When calculating the forces acting on the real atoms near the processor border, the
atomic energy of the ghost atoms needs to be differentiated. However, this differentiation
requires inner variables of the ghost atoms thus their hundreds of inner variables must be
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processor 1

ghost 1 ghost 2

processor 2

(c) Forward Communication

initial integrate

compute forces 
(pair, bonds, etc.)

final integrate

output 
(if requested)

yes

no

(a) Basic MD Timestep

initial integrate

compute forces 
(pair, bonds, etc.)

final integrate

output 
(if requested)

yes

no

(b) Basic MD Timestep 
      with MPI communications

MPI forward comm

MPI reverse comm 
(if newton on)

processor 1

ghost 1 ghost 2

processor 2

(d) Reverse Communication

copy force

properties properties

Figure 3.2.4: Simplified outline diagrams of MD timestep in lammps. (a) The basic
MD operations on a single simulation box. (b) The basic MD operations with spatial
parallelization. The red-shaded box gives MPI forward- and reverse-communications,
which transfer information between processors assigned to each decomposed box. (c)
The MPI forward communication before computing forces. Properties of ghost atoms
are updated from the corresponding real atoms in the adjacent processors. (d) The MPI
reverse communication after computing forces. This communication transfers properties
accumulated on the ghost atoms and forces acting on the ghost atoms to the corresponding
real atoms.
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Figure 3.2.5: Energy reproduction through spatial decomposition. The total energy of the
system is reproduced by simply adding each energy of the real atoms of partial system,
even when the energy is estimated via MLIPs that use the atomic environment of ghost
atoms in the shell. Only forward communication is used for this process.

copied from other processors. Even for a small system of hundreds of atoms, the number
of ghost atoms can be thousands, thus the variables to be copied would become hundreds
of thousands for each processor. Since communication between processors is usually less
than one-tenth of the memory bandwidth, copying the internal variables of the ghost
atoms causes a significant slowdown. Therefore, the full neighbor style should be used to
avoid inter-processor communication of internal variables of the ghost atoms.

When using the full neighbor style, the Newton flag is typically disabled for simple
interatomic potentials. Since these simple potentials calculate both pairwise forces acting
on an atom only by relative positions stored in a single neighbor list, such potentials
do not require inter-processor communication other than the position of ghost atoms.
However, MLIPs use the derivatives of the atomic potential energy of ghost atoms to
calculate forces, which cannot be calculated only by a single neighbor list but require
atomic environments of all ghost atoms instead. If the newton flag is disabled, these
environments of all ghost atoms should be copied between processors thus it consumes
memory resources, moreover, the order parameter needs to be calculated redundantly.
If these order parameters are communicated, it slows down the calculation, as already
mentioned in the need for the full neighbor style. In addition, from a technical viewpoint,
it is prohibitively difficult to communicate order parameters using personally developed
code without following the lammps framework. Therefore, it is the practical choice to
enable the Newton flag to communicate the pairwise forces that are calculated on each
processor.

The pairwise force calculation of the atoms near the border should be modified to
calculate MLIPs efficiently as shown in Fig. 3.2.6. In typical cases, the pairwise force
originating from the ghost atom’s potential is calculated in the processor where the real
atom exists, whereas, for MLIPs, this pairwise force is calculated in the adjacent processor
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Figure 3.2.6: Modification of the pairwise force to calculate MLIPs. (a) A typical setting
for calculating pairwise forces between atoms beyond processor border. It assumes that
the atomic energy of the atom j on processor 2 should be differentiable on processor 1,
however, this assumption cannot be applied to MLIPs. (b) The proposed setting for
calculating pairwise forces of MLIPs. The reaction of the pairwise force is calculated on
the processor where the atom exists.

where the ghost atom exists. The MPI reverse communication accumulates these forces
to reproduce the whole system.

Although this pattern is practical enough, another implementation can be realized
in theory, whose Newton flag is disabled. The implementation should reduce the MPI
reverse communication when complete information about the neighbor list of the ghost
atoms is copied via the MPI forward communication. In this case, the inner variables of
each ghost atom are calculated on the processor where the real atom exists. However, it
instead increases the MPI forward communication and causes redundant calculation of
order parameters. As a result, this implementation ought to be slower than that practical
implementation.

The spatial decomposition and communication method employed in the present re-
search can be less efficient than a method by communicating the order parameters when
the complexity of order parameters is dominant, for example, computing low-order in-
teratomic potential models. As a practical matter, however, a highly accurate type of
PolyMLP is usually selected for calculation whose amount of calculation is large, thus it is
hard to realize a situation where the implementation by communicating order parameters
would be more efficient.

Consequently, by considering the decomposition from both computational efficiency
and technical difficulties, PolyMLP should use the full neighbor style with Newton’s
third law enabled. The computation of forces and stresses under spatial decomposition
is implemented as pseudo code 5.
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Algorithm 5 Compute forces {F(i)}i∈{1,2··· ,N} and stresses σ

Require: {d(i)
n,k}i∈{1,··· ,N};n∈{0,··· ,nmax};k∈K

1: F(i) ← 0 (∀i)
2: σ ← 0
3: for ξ ∈ {1, · · · ,# of nodes} do . Loop for nodes
4: for i ∈ L(ξ) do . Loop for real atoms in proc-ξ
5: compute {Φ(i)

n,k}i∈{1,··· ,N};n∈{0,··· ,nmax};k∈K . Store and reuse adjoints
6: for j ∈ N (i) do . Loop for i’s neighbor
7: ∂E(ij) ← 0, ∂E(ji) ← 0 . Initialize pairwise derivatives
8: compute

{
∂φnlm
∂r

(r(ij))
}
n,l,m≥0

. Store and reuse derivatives
9: for n ∈ {0, · · · , nmax} do
10: for l ≤ lmax do
11: ∂E(ij) ← ∂E(ij) + ∂φnl0

∂r

(
r(ij)

)
Φ

(i)

nl0,{s(i),s(j)}

+2
∑

m>0 Re

[
∂φnlm
∂r

(
r(ij)

)
Φ

(i)

nlm,{s(i),s(j)}

]
12: if j ∈ L(ξ) then . if atom-j is in proc-ξ

13: ∂E(ji) ← ∂E(ji) + (−)l+1

(
∂φnl0
∂r

(
r(ij)

)
Φ

(j)

nl0,{s(i),s(j)}

+2
∑

m>0 Re

[
∂φnlm
∂r

(
r(ij)

)
Φ

(j)

nlm,{s(i),s(j)}

])
14: end if
15: end for
16: end for
17: F(ij) ← ∂E(ij) − ∂E(ji) . NOTE: ∂E(ji) is zero when j /∈ L(ξ)

18: F(i) ← F(i) + F(ij) . Add j’s contribution
19: F(j) ← F(j) − F(ij) . Newton’s 3rd law
20: σ ← σ − r(ij) ⊗ F(ij) . Update stress tensor
21: end for
22: end for
23: end for
24: return {F(i)}i∈{1,··· ,N} and σ

3.2.4 Performance Benchmark

The execution speed of programs that implement the above-mentioned high-speed tech-
nology was benchmarked using AI Bridging Cloud Infrastructure (ABCI), which is con-
structed and operated by National Institute of Advanced Industrial Science and Tech-
nology (AIST). ABCI is one of the largest-scale Open AI Computing Infrastructure with
commonly accepted hardware and software for High-Performance Computing (HPC).
ABCI consists of 120 Compute Nodes (A) that form in total 960 NVIDIA A100 GPU
accelerators, 1,088 Compute Nodes (V) that form in total 4,352 NVIDIA GPU V100
accelerators. Compute Node (A) has eight NVIDIA A100 GPU accelerators, two In-
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Figure 3.2.7: One of the sample structures, repeating base structure 2 by 2 by 2. It
consists of 4 titanium and 28 aluminum atoms. Sample structures were generated by
repeating the base structure of four atoms in three directions. Note that this is not the
most stable state.

Node 1 Node P

・・・

・・・Simulation
Box

1 2 3 4P4

socket
0

20cores

socket
1

20cores

Node 1 Node P

・・・

・・・
Simulation
Box

1 2 2P3

socket
0

20cores

socket
1

20cores

4

(a) Parallelized on CPUs (b) Parallelized on GPUs

G
0

G
1

G
2

G
3

G
0

G
1

G
2

G
3

Figure 3.2.8: (a) The correspondence between decomposed simulation boxes and CPUs.
The simulation box was decomposed into twice the number of nodes and each box was
assigned to a CPU socket. (b) The correspondence between decomposed simulations and
GPUs. The simulation box was decomposed into forth the number of nodes and each box
was assigned to a GPU accelerator.

tel Xeon Platinum 8360Y, two NVMe SSDs, and four InfiniBand HDR (200Gbps each).
Compute Node (V) has four NVIDIA V100 GPU accelerators, two Intel Xeon Gold 6148,
one NVMe SSD, 384GiB memory, two InfiniBand EDR ports (100Gbps each). Here, the
execution speed was measured by using up to 10 parallel nodes (V), that is, 40 GPUs or
20 CPUs.

The scaling simulations were performed for a binary alloy TiAl3, using a constant
number of particles, volume, and energy (NVE ensemble). Sample structures are prepared
by adding one or more translational copies of the base structure shown in Fig. 3.2.7 with
4, 32, 108, 256, 500, 864, 1,372, 2,048, 2,916, 4,000, 5,324, 6,912, 8,788, 10,976, 13,500,
16,384, 19,652, 23,328, 27,436, 32,000, 70,304, 131,072, 256,000, 530,604, and 1,048,576
atoms. An interatomic potential gtinv-197 was taken from the MLIP repository [29],
which is one of the most accurate and computationally demanding MLPs in the repository.
An MD timestep size of 1 fs was chosen, which is the default for the metal unit. The
number of steps is 100, which is typically sufficient to measure averaged MD performance.
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Figure 3.3.1: The performance as a function of system size from 4 to 1,048,576 atoms.
The vertical axis is system size by timesteps per second. A perfect scaling should be
horizontal. (a) For GPUs with the spatial decomposition of up to 16 simulation boxes.
(b) For CPUs using a single core and 20 cores on a CPU socket.

The simulation box was spatially decomposed and distributed to the processors over
nodes as shown in Fig. 3.2.8. For CPUs, the simulation box was decomposed into twice
the number of the nodes, and each decomposed box was assigned to a CPU socket with
20 cores. For GPUs, the simulation box was decomposed into forth the number of the
nodes, and each decomposed box was assigned to a GPU accelerator. For example, with
32k atoms and 10 nodes, each CPU socket and GPU accelerator has 1.6k real atoms and
0.8k real atoms, respectively.

3.3 Results and Discussion

Two executables were benchmarked to determine the impact of parallelization on both
CPUs and GPUs. These executables were generated by a implementation with two sets
of compile options for the Kokkos library. The computational efficiency was assessed
by a testing group of binary material selected and expanded from those in a preceding
research [24].

Figure 3.3.1 shows the performance as a function of system size for GPUs and CPUs.
The results for GPUs were calculated under spatial decomposition up to sixteen simula-
tion boxes, assigning one GPU for each box. For GPUs, the efficiency in atom timestep
per second improved as the system size increased. When the system was sufficiently large,
the efficiency became approximately constant. The system size in which this rough flat-
ness occurred was proportional to the number of parallelized GPUs. GPUs were not able
to calculate more than 32,000, 131,072, 256,000, and 530,604 atoms at 1GPU, 4GPUs,
8GPUs, and 16GPUs, respectively, due to memory errors.

The results for CPUs were calculated on a processor socket with a single core or 20
core, without spatial decomposition. These CPU cores were parallelized using OpenMP
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Figure 3.3.2: The scaling measured as MD performance versus node count. Sample sizes
were ranged from 500 to 256,000 atoms. (a) GPUs from 1 to 40 MPI processes. For
256,000 atoms, it was not possible to calculate with one or four GPUs due to insufficient
memory capacity. (b) CPUs from 2 to 20 MPI processes.

threads in a CPU socket. Both calculation efficiencies were almost horizontal for the
system size, which means CPUs scale perfectly in the observed system size. The bench-
mark was discontinued in the system size due to the execution time, when a trend was
observed in calculations of up to 1,372 and 32,000 atoms for a single core and 20 cores,
respectively.

Compared to the result of a single CPU core, one GPU was faster through all system
sizes. However, compared to the result of CPU 20 cores on a socket, the result of GPU
was less or equally efficient, especially less than 100 atoms. Therefore, it is not necessary
to use GPUs for problems of 100 atoms or less.

In GPUs, the calculation efficiency improved as the number of atoms increases. This
tendency agrees with the known property of GPU, where the number of repetitions of
simple calculations increases, the calculation greatly accelerates. The memory errors in
the large systems may have been caused by segmentation faults when inner variables
of PolyMLP exhausted the GPU memory of 16GiB. The slight slowdown just before
segmentation faults may be due to the increase in page fault. This type of memory
limitation has been noted in a study on GPU acceleration of the ReaxFF reactive force-
field [100]. This result has revealed that the spatial parallelization of PolyMLP can
expand the upper limit on the number of atoms.

Figure 3.3.2 shows the performance benchmark of parallel scaling on 1 to 10 nodes.
GPUs and CPUs can allocate 4 and 2 MPIs per node, respectively, thus the simulation box
was decomposed into 4 to 40 and 2 to 20 small boxes for GPUs and CPUs, respectively.
For GPUs, the higher the number of atoms, the greater the inclination to the number
of MPI processes. On the other hand, for CPUs, the inclination to the number of MPI
processes was roughly constant regardless of the number of atoms.

Unexpectedly, the efficiency of CPU calculations was improved by the spatial decom-
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position using MPI even for a relatively small number of atoms about five hundred. For
typical cases with simple interactions, for example, EAM or LJ, the efficiency for a small
system would get worse when the system is spatially decomposed. Therefore, the ac-
celeration of PolyMLP should be caused by the extraordinary complexity of PolyMLP.
This would be very useful, for example, when performing a structural search with high-
precision calculations for medium-sized structures of about 1000 atoms.

While GPUs contributed greatly to accelerating large-scale calculations, they were
known to be less effective for small-scale calculations. Therefore, the efficient calculation
of the small to medium scale was one of the problems. Initially, this study was planned
for large-scale calculations, but surprisingly, it was found that CPUs are useful for small
to medium-sized calculations. By switching between CPU and GPU, this implementation
enables high-precision MD to be performed at high speed, from small to large systems.

3.4 Conclusion

The performant implementation of the linearized machine learning potential has been
developed using either CPUs or GPUs by modifying the spatial decomposition framework.
A significant improvement has been made for GPUs when a sufficient number of atoms
exists in the system. For small systems, GPUs did not increase computational efficiency
so much. On the other hand, CPUs linearly increased in the efficiency to the number
of spatial decompositions even for a relatively small system of 500 atoms. This study
showed the possibility of performing molecular dynamics calculations at high speed with
high accuracy for systems of arbitrary size by selecting either CPUs or GPUs according
to the size of the system. It is expected that this research will make it possible to study
problems in materials science that involve a medium- to large-scale and high-precision
computations, which was prohibitively expensive in computational cost before.
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Chapter 4

General Conclusion

In this thesis, the predictive power of the polynomial machine learning potentials (PolyMLPs)
has been investigated and the performant implementation of PolyMLP has been discussed.
PolyMLP is a machine learning interatomic potential based on results of first-principles
calculations and developed in the group to which the author belongs. This thesis demon-
strates the high accuracy and transferability of PolyMLP by evaluating the global search
of grain boundary structures and discussed how to accelerate PolyMLP to access realistic
problems of materials science using graphics processing units (GPUs).

In Chapter 2, the author examined the predictive power of PolyMLP for grain bound-
ary properties by systematically evaluating angle dependence of grain boundary energy
and grain boundary structure for 〈100〉 STGBs, 〈110〉 STGBs, and 〈100〉 pure-twist grain
boundaries in the face-centered-cubic elemental metals of Ag, Al, Au, Cu, Pd, and Pt.
The optimum PolyMLPs for the calculation of grain boundaries were determined through
the verification of grain boundary energies of test structures for all Pareto-optimal MLPs.
It was confirmed that PolyMLPs with a certain accuracy or higher reproduced the grain
boundary energies of first-principles calculations. The most stable grain boundary struc-
tures were obtained by globally searching in the microscopic degrees of freedom for each
grain boundary structure model defined by the macroscopic degrees of freedom. In all
elemental metals, grain boundary energies computed using PolyMLPs were almost the
same as those computed by first-principles calculations. Therefore, the consistency indi-
cates that PolyMLPs have high predictive power even for defect structures not contained
in the training data set used to develop PolyMLPs.

In Chapter 3, the author discussed the development of the performant implementation
of PolyMLP by using GPUs based on the spatial decomposition of the simulation box.
First, the iterative processes in the potential computation are accelerated using parallel
computation in a single processor unit. Second, the author modified the boundary con-
dition and reactions between atoms near processor borders to calculate the interatomic
force over parallelized processor units using spatial decomposition. Calculations with
multiple GPUs in parallel were realized based on spatial decomposition, and the exe-
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cution efficiency of PolyMLP was more than 1000 times faster than that on one CPU
core. The author succeeded in calculating PolyMLP by parallelizing multiple GPUs for
a large-scale problem in which a single GPU would run out of memory and calculation
would be impossible. By using the Kokkos library, the author created a program that can
be executed on a variety of architectures, from personal computers to supercomputers on
CPUs or GPUs. The author’s implementation based on spatial decomposition can com-
pute problems in a broad range of system size at a realistic speed using highly accurate
PolyMLPs.

In this thesis, not only the high accuracy of PolyMLPs was demonstrated, but also
the acceleration of PolyMLPs was realized. The author’s performant implementation will
enable large-scale, high-precision calculations that were not practically possible before.
For example, it can be applied to defect structure search using global optimization, and
high-precision calculation of thermodynamic quantities using molecular dynamics and
thermodynamic integration. The author expects that it will greatly accelerate materials
science research.
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