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CHAPTER 1  
General Introduction and Overview 

 

 

1.1 Background 

1.1.1 Tree species identification from the air 

Identifying individual tree species in the canopy of a forest is beneficial for a wide variety of 

activities in forest management and conservations. These activities include management and 

protection of native vegetation (Shang and Chisholm, 2014), monitoring of invasive species 

(Boschetti et al., 2007), wildlife habitat mapping (Jansson and Angelstam, 1999), sustainable 

forest management (European Environmental Agency, 2006), and biodiversity monitoring. In 

recent years, monitoring of biodiversity has been emphasized to meet goals such as Reducing 

Emissions from Deforestation and Forest Degradation in Developing Countries (REDD+), and 

forest certification (e.g. FSC), both of which programs are financial mechanisms deployed to 

prevent deforestation and degradation. Species information of each tree has been used for 

biodiversity assessment from the aspect of tree-community composition (Aoyagi et al., 2017; 

Fujiki et al. 2016; Imai et al., 2014; Kitayama et al., 2018), but surveying in the field takes much 

labor and cost. Thus, the method for mapping the distribution of tree species in the canopy in large 

areas has been desired and expected to help and reduce the cost and labors in biodiversity surveys, 

as well as other various activities in forest managements and conservations. 

The number of studies focusing on tree species classification using remote sensing data has 

constantly increased since the 1990s. In the beginning, Imageries from satellite such as Landsat 

with multispectral sensors were used, and hyperspectral sensors and airborne LiDAR has been 

used frequently in the 2010s (Fassnacht et al., 2016). Multispectral sensors can collect four to 

eight wavelengths including RGB and near-infrared (NIR), and hyperspectral sensors can 

collect one to two hundred wavelengths including RGB, NIR, and short-wavelength infrared 

(SWIR). From the progressing toward the high performance of those sensors, tree species 
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identification from airborne has been improved. Especially, a combination of hyperspectral 

sensors and LiDAR achieved the high performance of more than 80% accuracy in identifying 4-

7 tree species (Dalponte et al., 2012; Heinzel and Koch, 2012; Shen and Cao, 2017). Using 

these spectra is valid for tree species identification because various spectra reflecting tree 

crowns have a relationship with 1) water contained in the woody tissue, photosynthetic pigment, 

and characteristics of structural carbohydrates (Asner, 1998; Clark and Roberts, 2012; Gao and 

Goetz, 1990; Knipling, 1970; Ustin et all., 2009), 2) morphology of leaves (Asner, 1998; Clark 

et al., 2005; Grant, 1987) and 3) tree crown structures (Leckie et al., 2005). However, these 

approaches utilizing multi/hyperspectral data have often experienced limitations. One of these 

involves the spectral features, which can differ not only between species, but also across 

densities of leaves, health conditions, and background noises such as understory vegetation or 

bare soil (Shang and Chisholm, 2014; Treuhaft et al., 2002; Waser et al., 2014). When there is a 

shadow, the spectrum of the shadow differs from that of the no-shadow area, resulting in a lower 

accuracy (Shen and Cao, 2017). In terms of identifying species in mixed forest, the performance 

might be lower because multiple species are included in one pixel (Immitzer et al., 2012). These 

challenges can be attributed to the dependence of these approaches on the use of spectral 

information. Furthermore, the cost of one flight and  specialized hardware equipment is highly 

expensive, thus local people or forest managers cannot use the system regularly.  

 

1.1.2 UAV 

Recently, Unmanned Aerial Vehicles (UAVs) have been developed and general people can 

purchase them at a low price due to miniaturization and cost reduction of multiple sensors such 

as gyro, acceleration, and GPS. UAVs can be categorized into multi-copter UAVs and fixed-wing 

UAVs. Multi-copter UAVs can hover and fly stably for around 30 minutes, while fixed-wing 

UAVs can fly 45 minutes but needs a large area for taking-off and landing. Due to the limitation 

of the duration of the flight, UAVs can only take data of limited areas, especially multi-copter 

UAVs can obtain less than 10 hectares in one flight when taking a photo with overlapping from 
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100m altitude. Meanwhile, the characteristics of UAVs are cost-effective, and they can obtain 

images in a few centi-meter resolutions, in which tree shapes or individual leaves of some tree 

species are obvious. Furthermore, three-dimensional data can be produced by using the images 

and Structure from Motion (SfM). Using these data, the number of trees, tree height, and diameter 

at breast height (DBH) can be estimated (Goodbody et al., 2017; Iizuka et al., 2017; Mlambo et 

al., 2017; Tang and Shao, 2015). For those advantages, UAVs are expected to be a community-

based monitoring tool that reduce cost and labor in periodic surveys of forestry, biodiversity 

conservation, and REDD+ (Paneque-Gálvez et al. 2014). UAVs can be a low-cost, community-

based monitoring tool and used in a wide range of applications in forest management if they aid 

in identifying tree species. However, although tree species are essential for forest management, 

tree species identification using UAVs has not been sufficiently studied and its application is 

therefore unforeseeable (Csillik et al., 2018; dos Santos et al., 2019; Natesan et al., 2019; 

Safonova et al., 2019). 

 

1.1.3 Deep Learning 

Deep learning has become an effective tool for object detection and classification (He et al., 2016; 

Krizhevsky et al., 2012; Tan et al., 2019). It is a kind of machine learning and means learning of deep 

neural networks. The mechanism of neural networks imitates the human brain, in which neurons 

activate when they receive strong electronic signals from another neuron. Using combinations of 

the tens of billions of such connectivity of neurons, the brain process large amounts of information. 

Among deep neural networks, convolutional neural networks (CNNs) are used for object 

detection and classification. In CNN, convolution layers conduct filtering processes such as edge 

detection, and these processes are adjusted from the error of prediction of the CNN and true label. 

From this mechanism, the CNN can automatically detect various detailed features which other 

general filtering methods cannot detect from images.  

In the field of tree species identification from the air, previous research studies had used other 

machine learning method such as random forest or support vector machines (Fassnacht et al. 
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2017). With the appearance of deep learning, studies combining deep learning and remote sensing 

data such as airborne LiDAR or aerial image, have exhibited high potential for individual tree 

detection, dead forest cover mapping, and forest damage assessment (Hamdi et al., 2019; Khan 

and Gupta, 2018; Sylvain et al., 2019; Weinstein et al., 2019).  

 

1.2 The aims of this study and research questions 

From these backgrounds, it is expected that the combination of high-resolution digital images 

taken by UAVs and deep learning has the potential of identifying various tree species, and it can 

be a low-cost and community-based monitoring tool of forest management including biodiversity 

assessment. 

The objective of this thesis is to develop a system for tree species identification from UAV 

imagery with the help of deep learning and examine its feasibility in terms of robustness and its 

application to biodiversity monitoring. For achieving the objective, this study is composed of 

three main chapters (Figure 1.1) and answered the following research questions in each chapter; 

 

 

Figure 1.1 Structure of this study 

 

(1) How can tree species be identified from UAV images combining deep learning? 

The combination of high-resolution digital images taken by UAVs and deep learning has the 
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potential of identifying tree species interpreting from the features of texture information, which 

is different from previous studies that use hyperspectral sensors. In Chapter 2, I developed and 

proposed a chain of tree species identification and mapping system using CNN and UAV digital 

images and compared it to other machine learning methods. In addition, I visualized the features 

which CNN used as a basis of the performance of classification. 

 

(2) To what extent can the identification system be used practically? 

The performance of tree species identification can be affected by some factors such as shadow, 

weather conditions, individual variations of tree crowns. Moreover, how many tree species and 

what species can be identified is required for practical use. In Chapter 3, I verified the spatial and 

temporal robustness of classification performances using datasets obtained from various times 

and sites in Japan. The study site was six temperate forests, and I prepared 56 tree species, dead 

trees and gaps for training and validation for CNN. 

 

 

(3) How can it be possible to apply the identification system for biodiversity monitoring? 

Biodiversity can be assessed based on multiple aspects, such as the existence of endangered 

animals, species richness, and tree composition (Barlow et al., 2007; Lawton et al., 1998; Schulze 

et al., 2004; Struebig, 2013; Uehara-prado et al., 2009). Among them, tree-community 

composition monitoring could be a cost-effective manner because changes in canopy tree-

composition can be detected from remotely sensed data (Fujiki et al. 2016, Kitayama et al. 2018). 

In Chapter 4, we identified Macaranga and Neolamarckia which are indicators of disturbed-forest 

(Aoyagi et al. 2017), and we revealed the relationship between UAV data including tree crown 

areas of those indicator tree species, and field data including tree-community composition as a 

representative of biodiversity. The study was conducted in Borneo which is one of the most 

biologically diverse islands (Myers et al., 2000) and was subjected to deforestation and forest 

degradation,  
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CHAPTER 2  
Explainable Identification and Mapping of Trees Using UAV RGB 

Image and Deep Learning 

 

 

2.1 Introduction 

The accurate characterisation of tree species distribution in forest areas is an important task 

for forest management and forest research. In particular, management and protection of native 

vegetation (Shang and Chisholm, 2014), monitoring of invasive species (Boschetti et al., 2007), 

wildlife habitat mapping (Jansson and Angelstam, 1999), and sustainable forest management 

(European Environmental Agency, 2006) are some of the objectives of studies that require tree 

species distribution characterisation on a wide scale. To this end, many studies have been 

conducted using remote sensing data (Fassnacht et al., 2016). Thus far, remote sensing research 

with these objectives has mainly employed satellites or aircraft. In the past, much attention has 

been devoted to multispectral Landsat satellites, which, because of their low cost, facilitate the 

mapping of forest types (Salovaara et al., 2005). The advantage of Landsat satellite is that it 

enables the coverage of vast areas, i.e. on a country scale. However, its resolution is 30 m, 

which does not allow easy identification of tree species. Since 2000, many studies have used 

very high-resolution data for tree species classification from commercial satellites, e.g. from 

World-view2 and QuickBird, with resolutions of 0.5 m/2.0 m and 0.6 m/2.4 m for 

panchromatic/multispectral data, respectively (Immitzer et al., 2012; van Lier et al., 2009; Wang 

et al., 2004; Waser et al., 2014). Further, in recent years, studies using aircraft have succeeded in 

identifying several tree species. The spatial resolution of images used therein is also very high: 

approximately 0.2–3.0 m. Most of these studies used specialised hardware such as multispectral, 

hyperspectral, and LiDAR sensors, and achieved high performance in identifying tree species. 

For example, Shen and Cao (Shen and Cao, 2017) succeeded in identifying five tree species 

with more than 85% accuracy. Dalponte et al. (2012) identified seven tree species and no-forest 
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class at approximately 80% accuracy. These two studies revealed that combining hyperspectral 

sensor and LiDAR data acquired by an airplane is superior to the use of only multispectral or 

hyperspectral sensor. However, although this combination of data acquisition methods performs 

superiorly, the equipment involved therein is highly expensive. These approaches utilising 

multi/hyperspectral data have often experienced problems. These involves the spectral features 

differ across densities of leaves, and health and forest conditions, and affected by background 

noises and shadows (Immitzer et al., 2012; Shang and Chisholm, 2014; Shen and Cao, 2017; 

Treuhaft et al., 2002; Waser et al., 2014).  

In recent decades, unmanned aerial vehicles (UAVs) have been used experimentally in 

forestry applications (Goodbody et al., 2017; Iizuka et al., 2018; Mlambo et al., 2017; Paneque-

Gálvez et al., 2014; Tang and Shao, 2015). Regarding tree identification, the most important 

difference between manned aircraft and UAVs is that UAVs can fly near canopies and acquire 

extremely high-resolution images; the images from UAVs have a spatial resolution of a few 

centimetres. In some cases, even the tree features at the leaf level can be seen. If I can use these 

features in tree identification systems, it is possible to map various tree species with the use of 

simple red–green–blue (RGB) digital images; such a method would facilitate cost-effective 

monitoring with broad application potential. 

Meanwhile, deep learning has become an effective tool for object detection. Among deep 

learning techniques, convolutional neural networks (CNN) have demonstrated high 

classification performance for digital images in the computer vision field (Ise et al., 2018; 

Krizhevsky et al., 2012; Szegedy et al., 2014). Thus far, other machine learning approaches such 

as support vector machines (SVMs) or the random forest have been used in this field. Especially 

SVMs, which enable us to conduct supervised non-parametric prediction, are one of the 

conventional machine learning methods and have been used for tree species identification 

(Dalponte et al., 2012, 2013; Dian et al., 2017; Fassnacht et al., 2016; Louarn et al., 2017). One 

of the notable advantages of deep learning compared to such machine learning methods is that 

deep learning does not require manual feature extraction. Other machine learning methods 
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required researchers to manually extract features: in this field, texture features and vegetation 

indices as well as raw band values are extracted in the process of feature extraction. As for 

texture features, in addition to the mean and variation values of each band, the grey-level co-

occurrence matrix (GLCM) has been widely used to provide texture features for improving 

performance (Dian et al., 2017; Lim et al., 2019; Louarn et al., 2017; Tsai and Chou, 2006). 

After the feature extractions, past studies utilising hyperspectral data sometimes conducted 

feature selection for reducing dimension in order to avoid the curse of dimensionality and high 

computational cost (Dalponte et al., 2013; Shen and Cao, 2017). Alternatively, deep learning can 

utilise full feature information, especially that pertaining to the spatial relationship of pixels, 

which provides information regarding the textures and shapes of trees. Therefore, even when 

simple digital images are used, deep learning is expected to succeed in identifying trees with 

high detail and accuracy.  

For interpreting the performance of deep learning classification, the feature which deep 

learning focus on should be clear. However, deep learning was called as black box due to its 

multilayer nonlinear structure, comparing to other machine learning. Recently algorithms which 

visualize some features of CNN’s models have been developed. Guided gradient-weighted class 

activation mapping (Grad-CAM) is one of such algorithms, and it can highlight particular image 

regions which provide meaningful information for model prediction (Selvaraju et al., 2016). 

Using this algorithm helps us to know the features that deep learning used, which means I can 

know whether deep learning really used detailed features such as textures of leaves and tree 

shapes, and it can provide understandable visual information about model performance. 

In this work, I applied deep learning to RGB images taken by a UAV. This combination is 

expected to have a high potential for identifying tree types and tree species, even if the RGB 

image is acquired with a consumer-grade digital camera. Some recent studies have shown the 

potential for individual tree detection and classification of one or a few specific tree species 

(Csillik et al., 2018; dos Santos et al., 2019; Natesan et al., 2019; Safonova et al., 2019). The 

object detection method enables us to know the existence of the object tree species; thus, it may 
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be suitable for finding specific tree species such as invasive tree species. On the other hand, 

forest mapping, which enables us to know the crown ratio to the area of each tree class, as well 

as existence of trees, helps me to monitor the change of the forest dynamics and predict 

biomass. A forest mapping system using UAVs and digital images would be a particularly cost-

effective and useful tool for forest management applications.  

The contributions of this study are threefold: 1) I propose a forest mapping system using 

UAVs and CNN classification. 2) I reveal its classification potential for several tree classes 

including tree types (e.g. deciduous, evergreen, coniferous and braoedleaved) and species in two 

seasons. To evaluate the performance of the CNN, I compared it with that of another machine 

learning method. In this study, I employed SVM as a machine learning platform, and the pixel 

values of each band and GLCM texture values as the features for machine learning. 3) I reveal 

what kind of tree features a CNN uses and show its importance (contribution) for classification 

by comparing it to other machine learning methods. 
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2.2 Material and Methods 

2.2.1 Study site 

The study site was the Kamigamo Experimental Station of Kyoto University, located in a 

suburban area of Kyoto, Japan (Figure 2.1). This area is located in a warm and humid climate 

zone, with an elevation of 109–225 m above sea level. The mean annual precipitation and 

temperature are 1,582 mm and 14.6 ℃, respectively. The overall area is 46.8 ha. 65% of the 

area is naturally generated forest, primarily consisting of Japanese cypress (Chamaecyparis 

obtusa) and some broad-leaved trees such as oak (Quercus serrata or Quercus glauca). Within 

this area, 28% is planted forest, mainly consisting of foreign coniferous species. 7% consists of 

sample gardens, nurseries, or buildings.  

In this work, I focused on the northern part (an area of 11 ha) of the Kamigamo 

Experimental Station, containing a naturally regenerated forest of Japanese cypress, and a 

managed forest of Metasequoia (Metasequoia glyptostroboides), strobe pine (Pinus strobus), 

slash pine (Pinus elliottii), and taeda pine (Pinus taeda). 
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Figure 2.1 Location map of Kamigamo Experimental Station and study area. 
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2.2.2 Remote sensing data 

UAV flights  were conducted around noon in two seasons: on October 2, 2016, which is the 

end of the leaf season, and November 20, 2016, the peak of the fall leaf offset season. I used 

UAV DJI Phantom 4 (DJI, Shenzhen China). The UAV had an onboard camera with a 1/2.3 

CMOS sensor that can capture RGB spectral information. The UAV was operated automatically 

using the DroneDeploy v2.66 application (www.dronedeploy.com, Infatics Inc., San Francisco, 

United States). On October 2, I set flight parameters as follows: both the overlap and sidelap 

were set to 75%, and the flight height was set to 80 m from the take-off ground level. However, 

I failed to align some parts of the images; thus, I changed the overlap and height parameters to 

80% and 100 m on November 20. I used 10 ground-control points (GCPs) for reducing the error 

of the GPS with the images. From the images taken by the UAV, I produced an orthomosaic 

photo and a digital surface model (DSM) using the Agisoft PhotoScan Professional v1.3.4 

software (www.agisoft.com, Agisoft LLC, St. Petersburg, Russia). An orthomosaic photo is an 

image that is composed of multiple overhead images corrected for perspective and scale. The 

parameter settings used in generating the orthomosaic photo are shown in Table 2.1. These 

parameters are for November 20. The parameters for October 2 differ only in that the resolution 

were approximately one centimetre. resolution of the orthomosaic photo and DSM was 

approximately 5 cm and 9 cm, respectively.
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Table 2.1 Parameter settings for the workflow used in generating orthomosaic photo by 

photoscan software. 

 

Workflow Parameter Settings 

Align Photos Build Accuracy Highest 

 Preselection Reference 

 Key Point Limit 80,000 

 Tie Point Limit 8,000 

 Adaptive Camera Model Fitting Yes 

Build Dense Cloud Quality High 

 Depth Filtering Aggressive 

Build Digital Elevation Model  Projection JGD2011 

 Source  

Data 
Dense Cloud 

 Interpolation Enabled 

 Resolution 0.093 m 

Build Orthomosaic Surface DEM 

 Enable Hole Filling Yes 

 Resolution 0.047 m 

 

2.2.3 UAV data processing 

2.2.3.1 Segmentation and preparation of supervised data 

The technological workflow of the individual tree image segmentation and extraction 

method I used is summarised in Figure 2.2. First, I segmented each tree crown using UAV 

image (orthomosaic photo), a DSM, and a slope model. Second, I visually constructed the 

ground truth map. Third, I extracted each tree image with a ground truth label which is a class 

name identified visually from UAV photo. Further details are discussed in Sections from 

“Object-based tree crown segmentation” to “Tree image extraction with ground truth label”. 
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Figure 2.2 Workflow for supervised images extraction. 

 

2.2.3.2 Object-based tree crown segmentation 

At the segmentation stage, I segmented at the tree level. First, I constructed a slope model 

by calculating the slope from the DSM using the ArcGIS Desktop v10.4 software 

(www.esri.com, Environmental Systems Research Institute, Inc., Redlands, United States). The 

slope model showed the maximum rate of elevation change between each cell and its 

neighbours, such that the borders of trees were emphasised. From the orthomosaic photo, the 

DSM, and the slope model, tree crown segmentation was performed in the eCognition 

Developer v9.0.0 software (www.trimble.com, Trimble, Inc., Sunnyvale, United States) using 

the ‘Multiresolution Segmentation’ algorithm (Baatz and Schäpe, 2000). The parameter values 

were adjusted by trial and error. The tree crown map made by this segmentation process is 

shown in Figure 2.3 with enlarged images for visual confirmation of the result, and the best 

parameters are presented in Table 2.2.
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Figure 2.3 Whole area and representative enlarged tree crown map. The blue line show 

border-line of segmented polygons. The white rectangle shows the location of enlarged area, 
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and light blue polygons in the upper figure are used for evaluating the accuracy of tree 

segmentation. The yellow rectangle shows the location of field survey. This map was 

constructed via multiresolution segmentation using colour, DSM, and Slope model.  

 

Table 2.2 Parameters for multiresolution segmentation in eCognition software. 

 

Setting Selected option 

Weight of R, G, B, DSM, Slope  1, 1, 1, 2, 3 

Scale 200 

Compactness 0.5 

Shape 0.2 

 

Herein, I evaluated the accuracy of the segmentation. The segmented crowns were placed 

into the following five categories according to their spatial relationships with the visually 

confirmed reference crown. The five categories, set based on a previous study (Jing et al., 

2012), and illustrated in Figure 2.4, are as follows. 

(a) Matched: If the overlap of the segmented polygon and the reference crown was more 

than 80%, the segmented polygon was categorized as “Matched” 

(b) Nearly matched: If the overlap of the segmented polygon and the reference crown was 

60-80%, the segmented polygon was categorized as “Nearly matched”. 

(c) Split: If the overlap of the segmented polygon and the reference crown was 20-60%, the 

segmented polygon was categorized as “Split” 

(d) Merged: If multiple reference crowns covered by the segmented polygon, and even one 

overlap between each reference crown and the segmented polygons was more than 20%, 

the segmented polygon was categorized as “Merged”. If the segmented polygon had only 

one class reference crowns, the polygon was categorized as “one class merged”. If the 

segmented polygon had multiple class reference crowns, the polygon was categorized as 

“multiple class merged”. 

(e) Fragmented: If one or multiple reference crowns covered by the segmented polygon, and 

the all respective overlaps between each reference crown and the segmented polygons 

were less than 20%, the segmented polygon was considered as a “fragmented polygon”.
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I calculated the segmentation accuracy of trees at four areas: Areas 1–4. Area 1 was a 

deciduous coniferous forest and Area 2 was a strobe pine forest, for which I calculated the entire 

area. Area 3 was a slash pine and taeda pine forest, for which I calculated part of the areas. Area 

4 was a naturally regenerated forest, for which I calculated 1 ha in area. As a result, some 

segmented images had multiple tree crowns, but this method almost succeeded in separating each 

tree class (Table 2.3).  

 
Figure 2.4 Diagram of the five categories in which segmented tree crowns were placed. 

 

Table 2.3 Accuracy statistics of the tree crown maps. (Area 1: deciduous coniferous tree; 

Area 2: strobe pine forest; Area 3: slash pine and taeda pine forest; Area 4: naturally 

regenerated forest) 

 

Forest 

area 
Matched 

Nearly 

matched 
Split 

Merged 
Fragmented 

one class 

multiple 

class 

Area 1 7 7 13 31 2 17 

Area 2 1 0 5 41 2 17 

Area 3 19 6 7 27 2 7 

Area 4 38 11 23 48 24 16 

 

2.2.3.3 Ground truth label attachment to tree crown map 

After segmentation, I classified segmented images into the following seven classes: 

deciduous broad-leaved tree, deciduous coniferous tree, evergreen broad-leaved tree, 

Chamaecyparis obtusa, Pinus elliottii or Pinus taeda, Pinus strobus, and non-forest. The ‘non-
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forest’ class included understory vegetation and bare land, as well as artificial structures. For 

deciding these classes, I conducted field research. I set three rectangular plots sized 30 m × 30 

m (Figure 2.3) and checked the tree species, regarding the classes I decided could be identified 

from the November 20 UAV images. The Pinus elliottii or Pinus taeda class consisted of two 

Pinus species, because these two species are difficult to identify from UAV images. At the 

ground truth map-making phase, I visually attached the class label to each tree crown, using 

nearest neighbour classification in the eCognition software to improve operational efficiency, 

which was then used for forest mapping (Machala and Zejdová, 2014) (Figure 2.5). More 

specifically, I chose some image objects as training samples and applied that algorithm to the 

overall tree crowns. In subsequent steps, by adding wrongly classified objects to correct classes 

of the training samples, I improved the accuracy of the ground truth map. 

 

 

Figure 2.5 Segmentation and ground truth map. The tree classes found in the image on the 

left are represented by the colours explained in the legend in the figure on the right. 

 

2.2.3.3 Tree image extraction with ground truth label 

From the orthomosaic photos of the two season and the ground truth map, I extracted each 

tree image with a class label using the ‘Extract by Mask’ function in ArcGIS. There were some 

inappropriate images, such as fragments of trees, those difficult to be interpreted or classified 

visually, and those including multiple classes; thus, I manually deleted inappropriate images and 
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placed wrongly classified images into the correct class by group consensus. Representative 

images of the tree classes are shown in Figures 2.6 and 2.7. The number of extracted images and 

that of arranged images are shown in Table 2.4. After arrangement, the number of each class 

ranged from 37 to 416. The images had a wide range of sizes, but the length of one side of the 

largest image was approximately 400 pixels 

After extraction, I resized the images from October 2 to the size of images from November 

20 in order to align the two season conditions. Thus, all images were adjusted to the size of 

images taken from a height of approximately 100 m. 
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Figure 2.6. Representative extracted images from each class in the November 20 images. 

These images were segmented well at each tree crown level. However, the image of Pinus 

strobus includes several tree images. The image of the non-forest class shows the roof of a 

house.  

 

 

 

Figure 2.7 Representative extracted images from each class in the October 2 images. These 

images were extracted from the same tree crown map polygon as the November 20 images. 
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Table 2.4 Number of images in each class (Class 1: deciduous broad-leaved tree; Class 2: 

deciduous coniferous tree; Class 3: evergreen broad-leaved tree; Class 4: Chamaecyparis 

obtusa; Class 5: Pinus elliottii or Pinus taeda; Class 6: Pinus strobus; Class 7: non-forest). 

These are the values for one dataset. 

 

 

Class Extracted  Arranged  Training   

 

Augmented  

training  

Validation Test 

1 418 315 174 1392 70 71 

2 87 60 33 264 11 16 

3 218 73 28 224 24 21 

4 758 333 184 1472 65 84 

5 276 166 94 752 38 34 

6 129 37 18 144 6 13 

7 1439 416 207 1656 110 99 

 

2.2.4 Machine learning 

To construct a model for object identification, I used the publicly available package PyTorch 

v0.4.1 (Paszke et al., 2017) as a deep learning framework and four standard neural network 

models—specifically, AlexNet (Krizhevsky et al., 2012), VGG16 (Simonyan and Zisserman, 

2014), Resnet18, and Resnet152 (He et al., 2016) —for fine-tuning. Fine-tuning is an effective 

method to improve the learning performance, especially when the amount of data is insufficient 

for training (Girshick et al., 2014). I used each neural network model, which had been learned 

with the ImageNet dataset (Deng et al., 2009), and trained all neural network layers using my 

data. At the CNN training phase, I augmented the training images eight times by flipping and 

rotating them. Further augmentation did not improve accuracy. For the input to the CNN, I 

applied ‘random resized crop’ at a scale of 224 × 224 pixel size for training, which crops the 

given image to a random size and aspect ratio. For validation and training, I resized the images 

into 256 × 256 pixel sizes and used ‘centre crop’ at a scale of 224 × 224 pixel size. These 

cropping algorithms extracted only one resized image (patch) from each cropped image. The 

ranges of the other learning settings are outlined in Table 2.5. 
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To evaluate the performance of the CNN, I used SVM as a machine learning platform. I 

used the average and standard deviation of each band and GLCM texture values as features. 

GLCM is a spatial co-occurrence matrix that computes the relationships of pixel values, and 

uses these relationships to compute the texture statistics (Haralick et al., 1973). For calculating 

GLCM, images with a large number of data bits result in huge computational complexity. In this 

case, the images that were converted to grey scale were 8-bit data. It is known that reduction of 

bit size causes only minor decrease in classification accuracy; hence, I rescaled from 8-bit to 5-

bit (Narayanan et al., 2000; Xu et al., 2003). After calculation of GLCM, I extracted five GLCM 

texture features (angular second moment (ASM), contrast, dissimilarity, entropy, and 

homogeneity). Their algorithms are defined in Equations (1)–(5): 

ASM = ∑(𝑃𝑖,𝑗)2

𝑁

𝑖,𝑗

(1) 

Contrast = ∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)2

𝑁

𝑖,𝑗

(2) 

Dissimilarity = ∑ 𝑃𝑖,𝑗|𝑖 − 𝑗|

𝑁

𝑖,𝑗

(3) 

Entropy = ∑ 𝑃𝑖,𝑗 log(𝑃𝑖,𝑗)

𝑁

𝑖,𝑗

(4) 

Homogeneity = ∑ 𝑃𝑖,𝑗/(1 +

𝑁

𝑖,𝑗

(𝑖 − 𝑗)2) (5) 

where 𝑃𝑖,𝑗 is the GLCM at the pixel which is located in row number i and column number j. I 

obtained these GLCM texture features centering on each pixel, excluding pixels close to the 

image margin, and then calculated their mean and standard deviation for each image. Another 

important parameter that affects classification performance is the kernel size (Franklin et al., 

1996; Marceau et al., 1990). To determine the most suitable kernel size for GLCM operation, I 

calculated GLCM texture features with various kernel sizes of 3, 11, 19, 27, 35, 43, 51, and 59. 
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For SVM validation, I used radial basis function (rbf) kernel and conducted a parameter grid 

search in the range of gamma from 10−1 to 10−5 and cost from 1 to 105. As a result of the grid 

search, I obtained the best validation accuracy and the best parameters at each GLCM kernel 

size (Figure 2.8). The validation accuracy slightly increased along with the increase in kernel 

size, and the accuracy stopped increasing at the 51 × 51 kernel size. Considering this result, I 

adopted the 51 × 51 kernel size and the best parameters as follows: gamma and cost were 10−2  

and 103 in the fall peak season, and 10−3  and 104 in the green leaf season, respectively. I then 

used these parameters for SVM learning and the comparative evaluation.

 

Table 2.5 Settings of the PyTorch image classification model. 

 

Setting Selected option 

Training epochs 50–100 

Batch size 16–64 

Solver type SGD 

Base learning rate 0.1–0.001 

Momentum 0.90 

 

 

Figure 2.8 Relationship between GLCM kernel size and SVM validation accuracy in each 

season.
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For machine learning, I divided the data into training, validation, and testing sets. The 

validation dataset was used for hyperparameters tuning such as learning rate, batch size for deep 

learning, and kernel size, cost, and gamma values for SVM. In the testing phase, I used the data 

which had not been used for training and parameter tuning. Validation accuracy is not suitable 

for comparing performance as a final result because validation accuracy can be higher than 

testing accuracy; I tuned the hyperparameters to get higher accuracy using the validation data. 

Using testing data, I can exclude the bias of parameter tuning. I also used a kind of cross-

validation because I had a limited amount of data and decreased the contingency of accuracy. In 

this case, I randomly divided all the images evenly into four datasets and used two of them for 

training, one for validation, and one for testing. Subsequently, I interchanged successively the 

datasets used for training, validation, and testing. This process was repeated four times. For the 

accuracy evaluation and confusion matrix, I used total accuracy and all the images.  

For this calculation, I used a built to order (BTO) desktop computer with a Xeon E5-2640 

CPU, 32 GB RAM, and a Geforce GTX 1080 graphics card; the OS was Ubuntu 16.04. 

 

2.2.5 Evaluation 

For evaluation, I used the overall accuracy, Cohen’s Kappa coefficient (Cohen, 1960), and 

the macro average F1 score. F1 score is the harmonic mean of Recall and Precision. In this 

study, the number of images acquired for each class varied significantly. The overall accuracy, 

which is typically utilised for evaluating the machine learning performance, is subject to the 

difference in the amount of data available to each class. Therefore, I used the Kappa and F1 

score, which is suitable for evaluating imbalanced dataset accuracy, as well as overall accuracy 

to obtain an objective evaluation. Additionally, for evaluating the per-class accuracy, I used the 

F1 score of each class. 
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2.3 Results 

2.3.1 Fall peak season 

First, I made four standard neural network models and trained them on the data of the 

November 20 images. Although Resnet152 exhibited the highest performance, there was little 

difference among the accuracies of the neural network models (Table 2.6). I therefore adopted 

Resnet152 as a representative CNN model and denoted it as CNN Model 1.  

The classification results of CNN Model 1 are shown in Figure 2.9; the overall accuracy was 

0.976, Kappa 0.970, and F1 score 0.962. Model 1 succeeded in identifying almost all classes 

with more than 90% accuracy; one class identified with less than 90% accuracy was still 

identified at a relatively high accuracy greater than 85.0%. The confusion matrix shows the 

detailed results of model prediction. The vertical axis is the ground truth that I identified 

visually; the horizontal axis is the class that the model predicted. The number in each cell 

represents the number of classified images; each cell is coloured by the ratio of number of 

images per ground truth class. For example, a ratio of 0.0 (light blue) indicates that no image 

was classified to that cell, whereas a ratio of 1.0 (dark blue) indicates that all images of the 

ground truth were classified to that cell. From this confusion matrix, it can be seen that almost 

all classes were classified correctly.  

I also tested the SVM method with the same images. The accuracy of the SVM was found to 

be lower than that of the CNN; however, it also exhibited a high performance (Figure 2.10). For 

the SVM, the overall accuracy, Kappa, and F1 score were 0.918, 0.896, and 0.857, respectively. 

These values are lower than the corresponding results of the CNN by approximately 6–10%; 

however, they are still relatively high. Most per-class accuracies are lower than those of the 

CNN results, especially Class 2, deciduous coniferous tree, which was difficult to identify. As 

can be seen in the comparison of the confusion matrix of the CNN results to that of the SVM 

results, misclassifications of the deciduous broad-leaved tree and deciduous coniferous tree, in 

particular, increased in the latter.  
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Table 2.6. Classification results of neural networks in fall peak season and green leaf season. 

 

CNN model 
Fall peak season Green leaf season 

Overall Kappa F1 score Overall Kappa F1 score 

AlexNet 0.960 0.949 0.930 0.902 0.875 0.836 

VGG 16 0.973 0.965 0.958 0.925 0.903 0.878 

Resnet 18 0.972 0.964 0.954 0.919 0.897 0.876 

Resnet 152 0.976 0.970 0.962 0.933 0.914 0.901 

 

 

 

Figure 2.9. Confusion matrix of CNN in the fall season (Model 1). The vertical axis is the 

ground truth and the horizontal axis the model prediction. The number in each cell indicates 

the number of classified images; each cell is coloured according to the percentage of the 

number of images in each class. (Class 1: deciduous broad-leaved tree; 2: deciduous 

coniferous tree; 3: evergreen broad-leaved tree; 4: Chamaecyparis obtusa; 5: Pinus elliottii 

or Pinus taeda; 6: Pinus strobus; 7: non-forest.)  
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Figure 2.10. Confusion matrix of SVM in the fall season. (Class 1: deciduous broad-leaved 

tree; 2: deciduous coniferous tree; 3: evergreen broad-leaved tree; 4: Chamaecyparis obtusa; 

5: Pinus elliottii or Pinus taeda; 6: Pinus strobus; 7: non-forest) 

 

2.3.2 Green leaf season 

Next, I constructed four standard neural network models and trained them on the data from 

the end of the green leaf season. As in the fall peak season, Resnet152 exhibited the highest 

performance, but the differences in the performance of the models were greater than for that 

season (Table 2.6). I therefore adopted Resnet152 as a representative CNN model and denoted it 

as CNN Model 2. I expected that in this season it would be more difficult to identify deciduous 

classes because the colours of each class are similar. However, Model 2showed slight decrease 

in performance . The performance of Model 2 is shown in Figure 11. The overall accuracy, 

Kappa, and F1 score were 0.933, 0.914, and 0.901, respectively. Per-class accuracies are also 

high, at approximately 90% in most classes. Compared to misclassifications in the fall season, 

the misclassification of deciduous broad-leaved trees and evergreen broad-leaved trees in the 

green leaf season increased. 
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I also tested the SVM’s performance with Model 2, wherein the SVM had difficulty 

identifying these classes (Figure 2.12). The overall accuracy decreased to 0.700–0.803, with 

per-class accuracy of approximately 70–95% for some classes, 48% for the Pinus strobus class, 

and 22% for the evergreen broad-leaved tree class. According to the confusion matrix, the 

evergreen broad-leaved tree class is mostly misclassified as a deciduous broad-leaved tree, 

whereas the Pinus strobus is mostly misclassified as the other Pinus class and the deciduous 

broad-leaved tree class. 

Finally, I visualised the classification results of CNN Model 1 in GIS (Figure 2.13). Most of 

the object images in this figure were used for training; taking this into account, I can see that the 

CNN succeeded in correctly identifying the trees.  

Consequently, I applied Guided Grad-CAM for generating an attention map to visualise the 

features that the CNN used for classification. Guided Grad-CAM can visualise locations and 

detailed features which are related to the judged class (Selvaraju et al., 2016). I applied the 

algorithms for the classes except for the non-forest class, to layer 4, the last layer of Model 2. 

Figure 2.14 shows the original image, the attention map visualised by Guided Grad-CAM, and 

the grayscale original image overlaid on the highlighted attention map of each class. For 

deciduous broad-leaved tree, it is difficult to explain clearly what region CNN used. For 

deciduous coniferous tree, the features are extracted on the whole area, and their locations look 

to be matched to contrast of edge of the small foliage. For the evergreen broad-leaved tree, 

though the colour of features is pale, I can see the highlighted features along the edge of the 

bush of the branch compared to deciduous broad-leaved tree. For Chamaecyparis obtusa, I can 

see the features along the edge of the hierarchical branch clearly. For Pinus elliottii or Pinus 

taeda pictures, the features match the edge of the branch. For Pinus strobus, the outlines of the 

trees are highlighted. 
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Figure 2.11. Confusion matrix of the CNN in the leaf season (Model 2). (Class 1: deciduous 

broad-leaved tree; 2: deciduous coniferous tree; 3: evergreen broad-leaved tree; 4: 

Chamaecyparis obtusa; 5: Pinus elliottii or Pinus taeda; 6: Pinus strobus; 7: non-forest.) 

 

 

Figure 2.12. Confusion matrix of SVM in the green leaf season. (Class 1: deciduous broad-

leaved tree; 2: deciduous coniferous tree; 3: evergreen broad-leaved tree; 4: Chamaecyparis 

obtusa; 5: Pinus elliottii or Pinus taeda; 6: Pinus strobus; 7: non-forest) 
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Figure 2.13. Orthomosaic photos and classification maps obtained with the CNN classifier. 

The topmost images each gives an overall view of one area, and the lower images in each 

column show the respective enlarged area. The tree classes found in the images are 

identified in the legend at the bottom of the figure.  
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Figure 2.14. Attention maps of Guided Grad-CAM. (Left to right) class name, original 

image, result of Guided Grad-CAM, result of Guided Grad-CAM overlaid with the grayscale 

original image.
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2.4 Discussion  

This study was conducted to investigate the ability of my machine vision system, which 

combines UAV RGB image and deep learning, to classify individual trees into several tree types 

and identify specific tree species. Regarding the classification of tree types, Model 1 (pertaining 

to the fall season) classified four tree types and one non-forest class with Kappa 0.971 and F1 

score 0.955, whereas Model 2 classified them with Kappa 0.911 and F1 score 0.882. At the 

species level, Models 1 and 2 were able to classify Chamaecyparis obtusa, Pinus strobus from 

Pinus elliottii and Pinus taeda with more than 90 % accuracy. Thus, my system was able to 

classify tree types and has the potential to classify several tree species in some seasons. This 

performance is notable because I used easily available digital RGB images only. Contrastingly, 

most previous studies used expensive hardware, such as multispectral imagers, to improve 

performance. Regarding the spatial scale, my method, using a UAV, may be more limited than 

previous methods using airborne sensors. However, the low-cost and easy-to-use feature of 

UAVs can enable periodic monitoring. Meanwhile, other researches using UAVs identified only 

a few tree species or applied rectangle object detection (Csillik et al., 2018; dos Santos et al., 

2019; Natesan et al., 2019; Safonova et al., 2019). Regarding these points, my system 

successfully identified several tree classes, and enabled forest mapping. Thus, my machine 

vision system can be used as a cost-effective and handy tool for application in forest mapping 

and management. 

Comparing the CNN performance to that of the SVM, in the fall peak season, both the SVM 

and the CNN demonstrated a high performance. However, in the green leaf season, the CNN 

exhibited a much higher performance than that of the SVM. I used average and standard 

deviation values of RGB bands and GLCM texture features for SVM learning; thus, this 

difference in features may have contributed to the performance difference between the SVM and 

the CNN. This result also indicates that the CNN used more features other than the average and 

standard deviation values of RGB bands and GLCM texture features.  
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Applying Guided Grad-CAM, I succeeded in visualising features that CNN used. The 

results of Guided Grad-CAM suggest that the CNN model used the difference in edge shape of 

foliage and bush of branch, hierarchical branching pattern and outlines of tree shapes for 

classification. From these considerations, it is supported that CNN identified trees based on the 

features of biological structures that represent physiological and ecological characteristics of the 

target tree classes. This result also indicates that the CNN with UAV image can successfully 

identify trees according to the differences in structural features, even if trees have similar 

colours. Considering this fact, high spatial and temporal robustness of this system is expected 

because if the leaf colour changes owing to factors such as weather or season, it can still be 

classified correctly using the structural features. 

In my method, there are two reasons for the extremely successful result. First, I conducted 

object-based classification. Previous studies have shown that object-based classification can 

obtain higher accuracy than pixel-based classification (Immitzer et al., 2012; Tarabalka et al., 

2010). One advantage of applying object segmentation is that each image can have more 

common features. For example, judging from the image of Chamaecyparis obtusa in Figure 

2.14, CNN used the features around the treetop. Using object segmentation, most images can 

include this feature. However, if I use pixel-based segmentation, each image would be cut by a 

rectangular image such as 64×64 pixel. Therefore, the possibility that the image contains those 

common features will be low and the accuracy of classification may be lower. My method could 

not segment every tree crown perfectly; thus, improving the segmentation method would lead to 

higher classification accuracy and also enable us to count the number of trees. It is difficult to 

segment tree crowns using a specific parameter because the tree size and clarity of the treetop 

are highly diversified, especially in a mixed forest. In future work, applying a deep learning 

method such as Instance Segmentation (Dai et al., 2016) can have high potential for tree crown 

segmentation.  

Second, I selected training and testing images from the same area and the same time. Tree 

shapes have some variation in different environments, and leaf colours and illuminations are 



 

40 

 

different across periods, weather types, and seasons. Utilisation of tree shapes (or DSM) and the 

seasonality of leaf colours would improve classification accuracy; however, generally, these 

properties may have a negative influence on simple machine learning. Considering 

practicability, a versatile model which involves trained images from various sites and times is 

desired in further study. 

Although I achieved high accuracy classification by using the CNN, I still had some 

misclassification. Notably, Model 2 struggled to identify deciduous broad-leaved trees and 

evergreen broad-leaved trees. This misclassification may be attributed to the class inclusion of 

several tree species, i.e. the branch pattern and colour may not be common across the same tree 

type. Therefore, separating the classes into more fine-grained branching types or tree species 

levels may improve the classification accuracy. Thus, the way in which I separated each class 

may be one of the key parameters affecting classification performance. 

Ultimately, I constructed a chain of machine vision systems that can segment and identify 

trees automatically. Although the classes are limited, this method can be utilised as a base 

system for tree mapping systems using UAV images. 

 

2.5 Conclusion 

In this study, I proposed a chain of low-cost machine vision system for identifying trees 

using UAV RGB image and deep learning. My system achieved an accuracy of more than 90% 

for classifying tree types and specific tree species. Additionally, the results suggest that the CNN 

classified trees according to the features of their biological structures such as foliage shapes, and 

branching pattern; thus, this system may have the potential for identifying several tree species 

even when the colours of the trees are similar. In a follow-up study, tree crown segmentation 

using deep learning needs to be conducted, and I are planning to identify more detailed species 

and also evaluate the spatial and temporal robustness of the developed system. 
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CHAPTER 3  

Practicality and Robustness of Tree Species Identification Using 

UAV RGB Image and Deep Learning in Temperate Forest in Japan 

 

3.1 Introduction 

 Recently, tree species identification from aircraft has drawn attention because of its success 

in high-performance classification (Fassnacht et al., 2018). From the aircraft, especially the use 

of hyperspectral sensors exhibited superior performance (Dalponte et al., 2012; Fassnacht et al., 

2018; Shen and Cao, 2017). Although a general digital camera can capture the spectra of three 

bands of red, green, and blue within visible areas, multispectral cameras can capture 4 to 8 bands, 

including near infrared (NIR) spectra, and hyperspectral cameras can catch from 100 to 200 bands, 

including NIR and short-wave infrared (SWIR). The reason for using these spectra is valid for 

identification because various spectra reflecting tree crowns have a relationship with ① water 

contained in the woody tissue, photosynthetic pigment, and characteristics of structural 

carbohydrates (Asner, 1998; Clark and Roberts, 2012; Gao and Hoetz, 1990; Knipling, 1970; 

Ustin et all., 2009), ② morphology of leaves (Asner, 1998; Clark et al., 2005; Grant, 1987) and 

③ tree crown structures (Leckie et al., 2005). To apply machine learning, hundreds or thousands 

of spectra sensed using hyperspectral sensors were compressed dimensionally by PCA, and by 

applying machine learning such as random forest or SVM, several tree species can be identified 

with high accuracy of approximately 80%–90% (Dalponte et al., 2012; Shen and Cao, 2017). 

Another approach is LiDAR. LiDAR is sometimes used for tree species identification. Even by 

itself, certain characteristic tree species, for example, Cryptomeria japonica and Chamaecyparis 

obtusa are detected using features such as reflectance strength and crown shapes (Nakatake et al., 

2018). The combination of hyperspectral sensors and LiDAR showed the highest accuracy for the 

identification of several species (Dalponte et al., 2012; Shen and Cao, 2017). The advantage of 

using airplanes is that they can scan large areas, such as prefecture scales. The disadvantages are 

1) they are costly, and 2) the system is easily affected by several factors. With respect to the first 
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disadvantage, it takes dozens of millions of yen per scan; therefore, only huge projects or 

administrations can apply the method on rare occasions. With respect to the second disadvantage, 

because the system relies on spectral information, it can be affected by shadows owing to the 

weather (Asner and Warner, 2003; Dalponte et al., 2012; Shen and Cao, 2017). Furthermore, 

background signals attributed to the conditions of vegetation, soil and litter, density of leaves, and 

health of trees can affect performance (Clark and Roberts, 2012; Roberts et al., 1997; Treuhaft et 

al., 2002; Waser et al. 2014). 

For practical use, the temporal and spatial robustness should be considered. However, these 

studies were conducted using the data that were obtained simultaneously, and most of them were 

obtained from one site (Ballanti et al., 2016; Boschetti et al., 2005; Cao et al., 2016; Clark et al., 

2012; Dalponte et al., 2009; Dalponte et al., 2012; Dalponte et al., 2013; Féret and Asner, 2013; 

Machala and Zejdová, 2014; Shen and Cao, 2017; Zhang et al., 2016;). The accuracy obtained by 

separating the data into training and test may be highly biased because the light condition and the 

state of vegetation, such as tree sizes or understory vegetation, is almost the same between datasets. 

Therefore, the performance of these models will be lower when they are applied on another day 

or place.  

Recently, UAVs have been used as a framework for tree identification. Certain studies load 

hyperspectral sensors for identifying trees (Navelalainen et al., 2017; Sothe et al., 2019). On the 

other hand, certain researchers have succeeded in identifying tree species from general digital 

cameras with the help of deep learning (Natesan et al., 2019; Onishi and Ise, 2021; Safonova et 

al., 2019). Owing to the high resolution of images and deep learning, specific tree species 

detection, classification, and mapping of several tree species or tree types have been reported. The 

advantages of this system are its low cost and the potential for robustness. First, Onishi and Ise 

(2021) successfully identified several tree classes using phantom 4 (DJI), which is a famous 

commercial UAV, and costs less than 3000 US dollars. Owing to their low cost, data can be 

obtained frequently. Second, the system may have the potential for robustness. This means that 

the model that was trained at one place has the potential to be used on another day or place. This 
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is because this system does not rely on the spectral reflectance information. With the help of high-

resolution images and deep learning, trees are identified using the texture images that are 

generated by leaf shapes and branching patterns (Onishi and Ise, 2021). Therefore, if the location 

or timing of the data is different from that of the training dataset, the model is expected to perform 

well. The disadvantage is that UAVs can only cover limited areas compared to the airplane. 

General multi-copter UAVs such as phantoms can fly for less than 40 min, and only approximately 

10 ha can be scanned in one flight.  

For the practical use of tree species identification from UAVs, I should explore their potential 

and robustness. Potential refers to the limit of the amount or kinds of tree species that can be 

identified. Although the UAV and deep learning can identify trees based on texture information, 

the texture may not be different for every tree species. In addition, the spatial and temporal 

robustness of the model should be assessed for general usage.  

In this study, I used general UAVs and deep learning, collected large amounts of tree species 

data from temperate forests in Japan, and tested the robustness of this identification system  to the 

difference in shooting date, individual tree and site.  
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3.2 Materials and Methods 

3.2.1 Study sites 

This study was conducted at six sites in a temperate forest in Japan. I used three sites for 

training and validation, and three sites for testing; the sites are outlined below. (Figure 3.1, Table 

3.1). 

・Higashiyama site: located in (34° 59' 58" N, 135° 47' 17″ E), is a secondary forest of warm-

temperate forest, dominated by deciduous broad-leaved trees such as Quercus serrata, 

and laurel evergreen broad-leaved trees such as Castanopsis cuspidate.  

・Wakayama site: located in Wakayama Forest Research Station of Kyoto University (34° 03' 

47″ N, 135° 31' 00″ E), is a natural forest of mid-temperate forest dominated by 

evergreen coniferous trees such as Abies firma and Tsuga sieboldii.  

・Ashiu site: located at Yusen Valley in Ashiu Forest Research Station of Kyoto University 

(35° 18' 34″ N, 135° 43' 1″ E) is a natural forest of cold temperate forest dominated by 

deciduous broad-leaved trees such as Fagus crenata. 

・Kamigamo site: located at Kamigamo Experimental Station of Kyoto University (35° 04' 

00″ N, 135° 46' 01″ E) is a natural regeneration forest of warm-temperate forests 

dominated by evergreen coniferous trees such as Chamaecyparis obtusa and broad-

leaved trees such as Quercus serrata. 

・Kasugayama site: located in the Kasugayama Primeval Forest (34° 41' 14″ N, 135° 51' 24″ 

E) is a primeval forest of mid-temperate forest dominated by evergreen coniferous trees 

such as Abies firma and laurel evergreen broad-leaved trees such as Castanopsis 

cuspidate. 

・Daisen site: located in (35°21' 32″ N, 133°33' 17″ E) is a naturally generated forest of cold-

temperate forest dominated by deciduous broad-leaved trees such as Fagus crenata. 
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Figure 3.1 Location of each site. Green and orange points represent the training and validation 

sites, and test sites, respectively. 

 

Table 3.1 Site information summary 

Site name Higashiyama Wakayama Ashiu 

Data class Training & Validation Training & Validation Training & Validation 

Field research 

area  
2ha 1ha 4ha 

Flight date 
July 4, 5, Sept. 14, & 

15, 2019 

July 15, 17, & Oct. 8, 

2019  

July  24, 25, 26 & 

Sep.18, 19, 20, 2019 

dominant species 
Castanopsis cuspidate 
Quercus serrata 

Abies firma, 
Tsuga sieboldii 

Fagus crenata 

    

Site name Kamigamo Kasugayama Daisen 

Data class Test Test Test 

Field research 

area  
1.5ha 1ha 1ha 

Flight date Oct. 10, 2019 Sept. 24, 2019 Oct. 1, 2019 

dominant species 

Chamaecyparis 

obtusa 
Quercus serrata 

Castanopsis cuspidate 

Abies firma 
Fagus crenata 
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3.2.2 UAV flight 

I flew a UAV in the summer of 2019. At the training site, I flew the UAV several times to 

obtain the training data that looked different owing to the influence of light and weather conditions. 

At the test site, the UAV was flown once. At both sites, flight timing was set to 1 h before and 

after noon to avoid shadows, and I mainly used data obtained on a cloudy day. During the flight, 

I used Phantom 4 pro (DJI, Shenzhen, China) with a 20 million pixel camera, and UgCS v3.2 

software (SPH engineering, Baložu pilsēta, Latvia) for automatic flight. The flight parameters 

were set as follows: the flight altitude was 100 m from the 10 m resolution DEM, which was 

provided by the Geospatial Information Authority of Japan. The front overlap was 90%, and the 

side overlap was 80%. The image format was set as RAW, exposure was set to 0.0, and other 

camera parameters were set automatically. 

 

3.2.3 Field survey 

I conducted a field survey in 2019, excluding the Kasugayama site in 2020. In the field survey, 

I identified tree species using leaves and attached the name as a label to all tree crown images in 

orthomosaic photos at the objective area obtained by the UAV. I identified 56 species and other 

two classes from the three training sites (Table 3.2). 

 

3.2.4 UAV data processing 

The UAV data processing method is illustrated in Figure 3.2. First, from UAV imagery, I 

created an orthomosaic photo and digital surface model (DSM) using Metashape software 

(Agisoft LLC, St. Petersburg, Russia). From the DSM, I created a slope model, calculated the 

slope using ArcGIS Desktop v10.6 software (Environmental Systems Research Institute, Inc., 

Redlands, United States), and orthomosaic photo, DSM, and slope, and applied multiresolution 

segmentation (Baatz and Schäpe, 2000) in eCognition Developer v9.0.0 software (Trimble, Inc., 

Sunnyvale, United States), and obtained tree crown polygons. Then, I attached species labels to 

each tree crown polygon using the field survey results. After that, I applied ExtractByMask tool 
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in ArcGIS  to extract each tree crown image. For the training and validation dataset, I made 

orthomosaic photos from each flight, reduced the GPS error of each image by georeferencing, 

and used every orthomosaic photos for image extraction. From the UAV data processing above, I 

obtained the supervised data (Figure 3.3). For the training and validation dataset, the number of 

images was the same as the number of polygons multiplied by the number of flights. 
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Table 3.2 Tree species list of training data which identified in UAV imagery from field survey 

class Species name   class Species name 

1 Chamaecyparis obtusa  30 Quercus serrata 

2 Cryptomeria japonica  31 Pterocarya rhoifolia 

3 Abies firma  32 Cinnamomum camphora 

4 Pinus densiflora  33 Magnolia obovata 

5 Tsuga sieboldii  34 Magnolia salicifolia 

6 Ilex chinensis  35 Morella rubra 

7 Ilex latifolia  36 Fraxinus lanuginosa f. serrata 

8 Ilex macropoda  37 Ternstroemia gymnanthera 

9 Ilex micrococca  38 Hovenia dulcis 

10 Ilex pedunculosa  39 Hovenia tomentella 

11 Chengiopanax sciadophylloides  40 Aria alnifolia 

12 Evodiopanax innovans  41 Aria japonica 

13 Kalopanax septemlobus  42 Malus tschonoskii 

14 Betura grossa  43 Prunus grayana 

15 Carpinus cordata  44 Prunus jamasakura 

16 Carpinus japonica  45 Meliosma Myriantha 

17 Carpinus laxiflora  46 Populus tremula var. sieboldii 

18 Carpinus tschonoskii  47 Acer carpinifolium 

19 Ostrya japonica  48 Acer mono Maxim 

20 Cercidiphyllum japonicum  49 Acer nipponicum 

21 Lyonia ovalifolia var.elliptica  50 Acer palmatum 

22 Castanea crenata  51 Acer palmatum var. amoenum 

23 Castanopsis cuspidata  52 Acer sieboldianum 

24 Fagus crenata  53 Aesculus turbinata 

25 Fagus japonica  54 Symplocos prunifolia 

26 Quercus acuta  55 Stewartia monadelpha 

27 Quercus crispula  56 Zelkova serrata 

28 Quercus glauca  57 dead_tree 

29 Quercus salicina   58 Gap 
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Figure 3.2 The method of UAV imagery processing. Upper process diagram shows the 

preparation method training and validation dataset from training site data, and lower process 

diagram shows that of test data from test site. 
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Figure 3.3 Tree crown images of each species taken by UAV from 100m altitude 
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3.2.5 Analysis 

I checked the accuracy of the two types of validation and one test. The separation method of 

the validation dataset is shown in Fig. 3.4. In validation 1, I divided the dataset randomly into 

training and validation datasets at rates of 70% and 30%, respectively. Validation 1 can evaluate 

the performance of the model for the dataset obtained from the same time or same trees. In 

validation 2, the images were divided by polygons at the same rate as validation 1. This means 

tree A images are included only in training, and tree B images in validation dataset. Therefore, 

validation 2 showed the performance of the model at the same time but with different trees. In 

Table 3.3, I show the number of images for each dataset.  

 

Figure 3.4 Method for validation dataset separation. The images were extracted from previous 

process shown in upper process diagram in Figure 3.2. In validation 1, training and validation 

datasets were divided randomly. In validation 2, training and validation datasets were divided by 

polygons. 
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Table 3.3 Number of images of each dataset 

class 
training and  

validation 

validation 1   validation2 
test 

training validation   training validation 

1 961 675 286  654 307 139 

2 1619 1143 476  1213 406 17 

3 1115 772 343  810 305 122 

4 373 264 109  264 109 3 

5 205 155 50  125 80 11 

6 16 14 2  8 8 0 

7 12 10 2  8 4 0 

8 18 8 10  12 6 0 

9 24 15 9  16 8 0 

10 202 133 69  150 52 0 

11 46 36 10  32 14 5 

12 28 21 7  22 6 0 

13 54 37 17  36 18 0 

14 349 230 119  229 120 23 

15 20 13 7  15 5 0 

16 16 28 -12  11 5 0 

17 168 123 45  112 59 31 

18 236 169 67  157 79 0 

19 70 55 15  35 35 0 

20 138 103 35  120 18 0 

21 12 9 3  8 4 0 

22 10 7 3  5 5 0 

23 1624 1142 482  1112 512 333 

24 1297 895 402  988 309 157 

25 182 137 45  106 76 0 

26 200 140 60  160 40 0 

27 165 121 44  103 62 0 

28 87 61 26  62 25 25 

29 330 252 78  246 84 15 

30 650 455 195  444 206 97 

31 248 166 82  178 70 21 

32 8 7 1  4 4 1 
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33 30 18 12  12 18 3 

34 12 9 3  6 6 0 

35 260 182 78  192 68 0 

36 30 19 11  24 6 0 

37 28 25 3  24 4 0 

38 18 14 4  12 6 0 

39 36 23 13  24 12 0 

40 6 5 1  6 0 3 

41 6 6 0  6 0 0 

42 6 5 1  6 0 0 

43 24 15 9  16 8 4 

44 42 29 13  34 8 9 

45 12 9 3  6 6 0 

46 20 15 5  20 0 0 

47 18 11 7  12 6 0 

48 177 118 59  131 46 25 

49 6 3 3  6 0 0 

50 10 4 6  5 5 2 

51 17 11 6  11 6 1 

52 18 8 10  6 12 0 

53 102 65 37  90 12 3 

54 144 100 44  88 56 6 

55 65 44 21  45 20 0 

56 60 47 13  48 12 0 

57 73 49 24  64 9 18 

58 759 520 239   495 264 401 

 

3.2.6 Deep learning 

I used PyTorch (Paszke et al. 2017) as the deep learning framework, and EfficientNet B7 

(Tan et al. 2019) as the network model. I applied fine-tuning: the output layer was changed to 58 

classes, and all parameters were trained. Other parameters were set to {batch: 8, learning rate: 

0.005, optimizer: SGD, momentum: 0.9, epochs 200}. In the training phase, I augmented the 
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training image number, which was less than 100 to approximately 100, by random rotation and 

horizontal flip. 

Furthermore, I developed a method for improving classification performance using the 

vegetation data of the target area. I called this method inventory tuning. Ideally, the model that 

trained only the tree species that existed in the target area showed optimal classification 

accuracy. However, making the local model for every target area is not realistic because the 

vegetation is constantly changing, and hundreds of models must be created. Conversely, for 

inventory tuning, I used one model that was trained by many classes (in this case, 58 classes). In 

the prediction phase, I limited the output to classes that were only listed in field-obtained 

inventory data. Using this system, I can create a local model from big model.  

 

 

Figure 3.5 Image of inventory tuning. 

 

3.2.7 Performance evaluation 

For performance evaluation, I used Cohen’s Kappa score (Cohen, 1960) to evaluate the 

overall performance, and precision and recall for each class classification accuracy. To visualize 

the details of the classification result, I used a confusion matrix where the vertical axis indicates 

the ground truth label and the horizontal axis shows the prediction label. The number of each 

cell represents the number of images. However, this method is not sufficient to confirm the 

misclassification between each class because each cell has to be small when the number of 



 

63 

 

classes is large. To visualize the misclassification between classes, which means similarities 

across classes, I developed a visualization method using a dendrogram. 

 

 

Table 3.4 Sample matrix of classification result 

    Prediction 

  class A B C 

g
ro

u
n

d
 t

ru
th

 

A a b c 

B d e f 

C g h i 

 

 

Here, I considered this matrix (Table 3.4). When I calculate the classification accuracy of 

class A, the F1 score is one of the major accuracy indices. The F1 score is the harmonic mean of 

the precision and recall. Precision, recall, and F1 score can be calculated using the formula 

below.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐴 =  
𝑎

𝑎 + 𝑑 + 𝑔
(1) 

𝑅𝑒𝑐𝑎𝑙𝑙𝐴 =  
𝑎

𝑎 + 𝑏 + 𝑐
(2) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
(3) 

When I focus on the classification accuracy between classes A and C, I can calculate the 

performance using equations (4) and (5) below. 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒𝐴 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴 𝑎𝑛𝑑 𝐶 =  
2𝑎

2𝑎 + 𝑐 + 𝑔
(4) 

𝐹1 𝑠𝑐𝑜𝑟𝑒𝐶  𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴 𝑎𝑛𝑑 𝐶 =  
2𝑖

2𝑖 + 𝑐 + 𝑔
(5) 
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From these two F1 scores, the identification accuracy between A and C can be calculated by 

averaging the scores. 

 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴 𝑎𝑛𝑑 𝐶 = (
2𝑎

2𝑎 + 𝑐 + 𝑔
+  

2𝑖

2𝑖 + 𝑐 + 𝑔
) ×

1

2

                                             =
4𝑎𝑖 + (𝑎 + 1)(𝑐 + 𝑔)

(2𝑎 + 𝑐 + 𝑔)(2𝑖 + 𝑐 + 𝑔)
(6)

 

 

A low F1 score means low identification performance; therefore, the score means identification 

of these classes is difficult because of the similarity of the classes. Therefore, similarities in 

appearance can be calculated using equation (7) and the F1 scores. 

 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴 𝑎𝑛𝑑 𝐶 = 𝐹1 𝑠𝑐𝑜𝑟𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴 𝑎𝑛𝑑 𝐶
                                                    

                                               =  
4𝑎𝑖 + (𝑎 + 1)(𝑐 + 𝑔)

(2𝑎 + 𝑐 + 𝑔)(2𝑖 + 𝑐 + 𝑔)
(7)

 

 

Using equation (7), I calculated the similarities among all classes. and made similarities matrix 

which shows similarities value of each species Then, I applied Ward’s clustering method (Ward, 

1963) to the similarities matrix and visualized the similarities relationships between classes 

using the dendrogram in R v3.6.3 software. 
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3.3 Results 

3.3.1 Validation 1: Performance for dataset of same time or same trees 

At first, I evaluated a model using a dataset which obtained from same time or same trees as 

the training dataset. Though this evaluation is rarely reproduced in practical applications, I 

revealed the potential for identifying each tree species. As a result, the model showed a high 

validation accuracy: Kappa score was 0.979. The classification results are shown in Figure 3.6, 

and the details are presented in Table 3.5. Almost all tree species showed 90% accuracy in both 

precision and recall. This result means that when the data on light condition and trees are similar 

to those of the training data, almost all tree species can be identified. Meanwhile, classes 37, 41, 

and 50 showed a low classification accuracy. Class 41 had no recall and precision because there 

were no ground images. No ground images were obtained because of the program that separated 

each training data into a validation dataset randomly at 30%, and a small number of overall images 

of the class.  
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Figure 3.6 Confusion matrix of random separation dataset: same time or same trees. The 

vertical axis is the ground truth and the horizontal axis the model prediction. The number in 

each cell indicates the number of classified images; each cell is colored according to the 

percentage of the number of images in each class. The model showed 0.98 Kappa scores. 
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Table 3.5 Details on classification accuracy of the model that was trained from the same time 

and same trees. The slash means no denominator data. 

 

class precision recall   class precision recall 

1 0.98 0.97  30 0.98 0.96 

2 1.00 1.00  31 0.99 1.00 

3 0.99 1.00  32 1.00 1.00 

4 1.00 1.00  33 1.00 1.00 

5 1.00 1.00  34 0.75 1.00 

6 1.00 1.00  35 0.95 0.95 

7 0.67 1.00  36 1.00 1.00 

8 1.00 0.80  37 0.20 0.33 

9 1.00 0.56  38 1.00 1.00 

10 0.99 0.96  39 0.87 1.00 

11 1.00 0.70  40 1.00 1.00 

12 1.00 0.71  41 / / 

13 1.00 1.00  42 1.00 1.00 

14 0.97 0.96  43 1.00 0.78 

15 1.00 1.00  44 1.00 1.00 

16 1.00 1.00  45 1.00 1.00 

17 0.94 1.00  46 1.00 1.00 

18 0.99 0.99  47 1.00 1.00 

19 1.00 1.00  48 0.97 0.98 

20 0.97 1.00  49 1.00 1.00 

21 1.00 1.00  50 1.00 0.17 

22 1.00 1.00  51 1.00 1.00 

23 0.97 0.98  52 1.00 0.90 

24 1.00 0.99  53 1.00 1.00 

25 1.00 1.00  54 0.88 0.95 

26 0.97 1.00  55 1.00 1.00 

27 0.98 1.00  56 1.00 1.00 

28 1.00 0.92  57 0.96 1.00 

29 1.00 1.00   58 0.98 0.99 
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3.3.2 Validation 2: Performance for dataset of same time and different trees 

Second, I evaluated a model using a dataset which obtained from same time and different 

trees as the training dataset. From this evaluation, I revealed the spatial robustness of the model. 

As a result the model showed a relatively high accuracy, with a kappa of 0.715. This performance 

was approximately 25% lower than that of random separation. I show the details of the 

classification performance of each class (Figure 3.7, Table 3.6). The precision and recall of 21 

classes exceeded 50%. In particular, coniferous trees (classes 1–5) showed stable performance, 

with more than 75% precision and recall. 

 

Figure 3.7 Confusion matrix of random separation dataset: same site and same time. The 

vertical axis is the ground truth and the horizontal axis the model prediction. The number in 

each cell indicates the number of classified images; each cell is coloredcoloured according to 

the percentage of the number of images in each class. The model yielded ashowed 0.72 Kappa 

score of 0.72scores. 
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Table 3.6 Details on classification accuracy of the model which trained from same time and 

different site. The slash means no denominator data. 

class precision recall   class precision recall 

1 0.76 0.79  30 0.67 0.85 

2 0.84 0.92  31 0.91 0.70 

3 0.91 1.00  32 / 0.00 

4 0.93 0.98  33 0.33 0.06 

5 0.79 0.75  34 / 0.00 

6 0.75 0.38  35 0.73 0.40 

7 / 0.00  36 0.00 0.00 

8 / 0.00  37 0.00 0.00 

9 0.00 0.00  38 0.00 0.00 

10 0.75 0.40  39 0.50 0.92 

11 0.00 0.00  40 / / 

12 0.00 0.00  41 / / 

13 0.57 0.67  42 / / 

14 0.37 0.33  43 0.00 0.00 

15 0.17 0.20  44 0.29 0.25 

16 0.00 0.00  45 1.00 0.17 

17 0.13 0.05  46 0.00 0.00 

18 0.49 0.27  47 1.00 1.00 

19 0.82 0.51  48 0.91 0.85 

20 0.53 0.94  49 / / 

21 / 0.00  50 / 0.00 

22 / 0.00  51 1.00 0.33 

23 0.82 0.92  52 0.00 0.00 

24 0.56 0.76  53 0.20 0.75 

25 0.60 0.24  54 0.74 0.55 

26 0.95 0.88  55 0.66 0.95 

27 0.54 0.21  56 0.58 0.92 

28 0.63 0.20   57 0.50 1.00 

29 0.46 0.45  58 0.90 0.93 
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3.3.3 Test: Performance for dataset of different time and different site 

The model trained from different times and sites showed a even lower performance of a 

kappa score of 0.472. I show the details of the classification performance of each class 

(Figure 3.8, Table 3.7). Only three classes (1, 3, 58) showed good performance, with both 

precision and recall exceeding 50%. Classes 2, 4, 23, 24, 30, and 58 have the potential to be 

identified (precision or recall exceed 50%).  

 

Figure 3.8 Classification result of the test. The vertical axis is the ground truth and the 

horizontal axis the model prediction. The number in each cell indicates the number of 

classified images; each cell is colored according to the percentage of the number of images in 

each class. The Kappa score is 0.47. 
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Table 3.7 Details on classification accuracy of the model which was trained from different 

times and different sites. The slash means no denominator data. 

class precision recall   class precision recall 

1 0.90 0.88  30 0.55 0.19 

2 0.20 0.59  31 0.07 0.14 

3 0.90 0.89  32 0.00 0.00 

4 0.12 1.00  33 0.00 0.00 

5 0.43 0.27  34 0.00 0.00 

6 0.00 0.00  35 0.00 0.00 

7 / /  36 0.00 0.00 

8 0.00 0.00  37 0.00 0.00 

9 / /  38 / / 

10 0.00 0.00  39 0.00 0.00 

11 0.00 0.00  40 0.00 0.00 

12 / /  41 / / 

13 0.00 0.00  42 / / 

14 0.11 0.09  43 0.00 0.00 

15 0.00 0.00  44 0.25 0.22 

16 0.00 0.00  45 / / 

17 0.43 0.10  46 0.00 0.00 

18 0.00 0.00  47 0.00 0.00 

19 0.00 0.00  48 0.02 0.04 

20 0.00 0.00  49 0.00 0.00 

21 0.00 0.00  50 0.00 0.00 

22 0.00 0.00  51 0.00 0.00 

23 0.77 0.26  52 / / 

24 0.50 0.43  53 0.00 0.00 

25 0.00 0.00  54 0.00 0.00 

26 0.00 0.00  55 0.00 0.00 

27 0.00 0.00  56 0.00 0.00 

28 0.00 0.00  57 0.36 0.44 

29 0.00 0.00   58 0.83 0.89 
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3.3.4 Test using inventory tuning 

When I applied inventory tuning, the test result was improved from a Kappa score of 0.472 

to 0.616. The classification details are presented in Figure 3.9 and Table 3.8. The precision and 

recall in 9 classes (1, 2, 3, 4, 23, 24, 30, 57, 58) were 50%. In particular, four of the five coniferous 

tree species (1–4) showed high classification performance. 

 

Figure 3.9 Classification result of the test using inventory tuning. The vertical axis is the 

ground truth and the horizontal axis the model prediction. The number in each cell indicates 

the number of classified images; each cell is colored according to the percentage of the number 

of images in each class. The Kappa score is 0.62. 

 

I visualised the classification results of CNN with inventory tuning applied to Kasugayama 

site in GIS (Figure 3.10). We can know the Kasugayama which is a primeval forest is dominated 

by Castanopsis cuspidate, Abies firma and Cryptomeria japonica. Tree species map like this will 

help biodiversity assessment, monitoring of succession, and ecology researches.  
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Table 3.8 Details on classification accuracy of inventory tuning. The slash means no 

denominator data 

class precision recall   class precision recall 

1 0.97 0.97  30 0.86 0.52 

2 0.20 0.94  31 0.11 0.33 

3 0.79 0.92  32 0.00 0.00 

4 0.75 1.00  33 0.00 0.00 

5 0.50 0.36  34 / / 

6 / /  35 / / 

7 / /  36 / / 

8 / /  37 / / 

9 / /  38 / / 

10 / /  39 / / 

11 0.00 0.00  40 0.00 0.00 

12 / /  41 / / 

13 / /  42 / / 

14 0.17 0.17  43 0.00 0.00 

15 / /  44 0.40 0.22 

16 / /  45 / / 

17 0.70 0.23  46 / / 

18 / /  47 / / 

19 / /  48 0.13 0.04 

20 / /  49 / / 

21 / /  50 0.00 0.00 

22 / /  51 0.00 0.00 

23 0.81 0.51  52 / / 

24 0.82 0.62  53 0.00 0.00 

25 / /  54 0.00 0.00 

26 / /  55 / / 

27 / /  56 / / 

28 0.00 0.00  57 0.36 0.50 

29 0.00 0.00   58 0.73 0.95 
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Figure 3.10 Orthomosaic photo and classification maps obtained with the inventory tuning 

CNN in Kasugayama site. The area is 12 ha.  
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3.4 Discussion 

3.4.1 Classification performance and robustness 

This study illustrates high potential and some stable robustness of the tree species 

identification systems using UAVs and deep learning. If the condition of the trees and shooting 

was optimal, almost all tree species could be identified (Kappa 0.979). This means that this 

method has the potential to identify a large number of tree species. However, this identification 

performance is rarely reproduced in practical applications. A similar classification accuracy is 

observed when this system is used for regular monitoring of the site. 

When I used the dataset obtained at the same time but from different trees, the performance 

decreased from 0.979 to 0.715 Kappa score, and 36% (21 class) tree species could potentially be 

identified (more than 50% in both precision and recall). This classification accuracy is assumed 

when I take images from one flight and separate them into training and test datasets. The decrease 

was caused by the difference in features of the training images and test images. A previous study 

showed that CNN can use features made from the edge shape of foliage and bush of branches, 

hierarchical branching patterns, and outlines of tree shapes (Onishi and Ise, 2021). In this study, 

CNN may also use such features, but the limited number of training samples and large number of 

classes might cause a decrease in performance.  

As for the test that shows the performance of general practical use, the accuracy was further 

decreased to Kappa 0.472. Conversely, some tree species, especially coniferous trees and 

representative species of stands, showed potential for identification. This result indicates that my 

system has temporal and spatial robustness to a certain extent. In general, previous studies have 

evaluated the identification performance using one dataset obtained at one flight of the UAV or 

airplane. Under these conditions, the shooting conditions, such as weather or season, and 

vegetation were the same. Under these conditions, the method using the multi-or hyperspectral 

sensors showed good identification performance, but if the condition was different, the method 

may not show good performance because spectral reflectance can change under different shooting 

conditions or vegetation. From this point of view, my method showed some robustness in these 
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different conditions. This robustness indicates that if the method were to be made a classification 

model, other researchers or general users would be able to identify tree species automatically. If 

the classification accuracy is increased by the increased number of training data, the model is 

feasible. 

The relationship between precision or recall accuracy and the number of training images is 

shown in Figure 3.11. With respect to validation 1, the plot showed clear proportionality. In 

particular, classes that have less than 50 training samples sometimes show an accuracy ranging 

from 0.2 to 0.9, and classes with more than 50 training samples always show high precision and 

recall of more than 0.9. With respect to validation 2, I can confirm proportionality, but the plot 

was more scattered. The class that had fewer than 300 training images showed varied scores, but 

the class with more than 300 training images always showed the potential for being identified, 

where both precision and recall were more than 0.5. In addition, recall scores were higher than 

the precision in those classes. As for the test, most of the classes with less than 300 training 

samples showed zero precision and recall accuracy. The class with more than 300 training samples 

always showed more than 0.1 precision or recall. This means that at least 300 training samples 

should be gathered for practical use. 
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Figure 3.11 Relationship between precision or recall accuracy and number of training images. 

From top to bottom, the accuracy of validation 1, validation 2 and the test. 

 

3.4.2 Inventory tuning 

In this study, I developed a new identification system called “inventory tuning.” Using this 

method, I successfully created a local model from one large global model and improved the 

identification accuracy (0.472 to 0.616 Kappa score). The advantage of this method is that I can 

create a local model without retraining the initial model. With respect to the feasibility of the 

classification system, selecting the tree species and retraining the model is expected to be feasible, 

but it requires considerable computational load and time. From this perspective, inventory tuning 

does not require retraining and almost no computational load and time compared to the normal 

classification. Although in this study, I used the field-obtained inventory data for inventory tuning, 

I may use the vegetation inventory data predicted from the longitude, latitude, and altitude in the 

future. Therefore, automatic inventory tuning can be used. 
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3.4.3 Similarities in appearance of trees species 

I visualized the similarities in appearance of each tree species from the classification results 

of the test in Figure 3.12. Although some species appear to be lined up chaotically, certain 

branches showed interesting tendencies. First, most of the branches on the trees in closest 

proximity to the center had large leaves (Kalopanax septemlobus, Acer mono Maxim, Magnolia 

obovata, Pterocarya rhoifolia, and Aesculus turbinata). Kalopanax septemlobus and Acer mono 

Maxim belong to different families, but both have large and palmate leaves. Therefore, the 

textures that can be seen from the UAV appear to be similar. The leaves of Magnolia obovata, 

Pterocarya rhoifolia, Aesculus turbinata, the leaves of Magnolia obovata and Aesculus turbinata 

are similar to those of verticillate big leaves. However, Pterocarya rhoifolia has a pinnately 

compound leaf; therefore, Pterocarya rhoifolia is thought to be different, but in the images, the 

pinnately compound leaf looks similar to Aesculus turbinata at 100 m altitude. Both Aesculus 

turbinata and Pterocarya rhoifolia prefer a wet environment along the stream and grow at the 

same site. Therefore, on a macro level, the trees of the same functional types and that thrive in the 

same environment may be hypothesized as having similar light acquisition performance and 

textures. In contrast, the phylogenetically close species were also located close to the dendrogram. 

For example, Carpinus cordata and Carpinus laxiflora, located in close proximity to Acer 

carpinifolium and Acer palmatum are also located close to the dendrogram. Furthermore, 

Chamaecyparis obtusa, Cryptomeria japonica, and Pinus densiflora, which are coniferous trees 

positioned close to each other. Meanwhile, some coniferous trees located close to broad-leaved 

trees in the dendrogram. This suggests that coniferous tree does not have unique textures from 

100 m above even if the leaf shape differs from broad-leaved tree. In this time, I used some 

fragmented tree images for training and test giving priority to automatic segmentation. Using only 

whole tree images will improve the coniferous tree species identification performance and clearly 

locate them far from broad-leaved tree in the dendrogram judging from the existence of tree top 

and the difference of branching patterns. Further, some evergreen and deciduous tree located 
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disorderly, some evergreen broad-leaved trees located close such as Ilex chinensis and Quercus 

glauca, Custanopsis cuspidate and Quercus acuta. This means that though there may be some 

common features among some evergreen trees, those are not enough for identification in summer. 

To distinguish deciduous trees from evergreen trees, autumn leaf coloring season is best, but 

detailed deciduous tree species classification may be difficult due to the unstable number of leaves 

and colors. In summary, ①tree species that belong to close phylogenetically sometimes have 

similar textures, ②tree species that have similar leaf shapes sometimes look similar, ③tree 

species that prefer the same environment may sometimes show similar textures, and ④tree types 

such as coniferous and broad-leaved or evergreen and deciduous do not always promise common 

features among the tree type.  
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Figure 3.12 Similarities in appearance of trees species. This dendrogram was made from the 

distance calculated from F1 score of each class in test classification result. 
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3.5 Conclusion 

This study demonstrated the stable robustness of the tree species identification system using 

UAV RGB imagery and deep learning for some tree species. In particular, coniferous tree species 

showed stable performance with respect to identification. To improve the performance, inventory 

tuning, which allows for the creation of a local model using inventory data, was proven to be an 

effective method. Furthermore, at least 300 images are needed to train the model for feasibility. 

In addition, misclassification occurred between ①tree species that belong to close 

phylogenetically, ②tree species that have similar leaf shapes, and ③tree species that prefer the 

same environment. These findings will promote the practicalization of identification systems 

using UAV RGB imagery and deep learning. 
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CHAPTER 4  

Biodiversity Assessment in Bornean Tropical Rain Forests Using 

UAVs to Identify Indicator Tree Species Combined with Deep 

Learning  

 

 

4.1 Introduction 

Tropical forests account for almost 50% of the global forest area (FAO, 2020) and are rich in 

biodiversity (Gardner et al., 2009). Currently, these tropical forests are undergoing deforestation 

and forest degradation owing to human activities such as land conversion and commercial logging 

(FAO, 2020; Hansen et al., 2009; Margono et al., 2012), thereby accounting for approximately 

20% of anthropogenic carbon emissions (van der Wer et al., 2009) and posing a threat to global 

biodiversity (Giam, 2017). In particular, Borneo, one of the most biologically diverse island 

(Myers et al., 2000), was subjected to deforestation and forest degradation, wherein 34% of old-

growth forests were cleared between 1973 and 2015 owing to commercial logging and industrial 

plantations of oil palm, pulpwood, and other species (Abood et al., 2015; Gaveau et al., 2016).  

Two financial mechanisms have been deployed to conserve these forests. The first approach 

includes Reducing Emissions from Deforestation and Forest Degradation in Developing 

Countries (REDD+). This framework was adopted as an agendum by the United Nations 

Framework Convention on Climate Change (UNFCCC) in 2007 (UNFCCC, 2008); in total, 50 

developing countries submitted a REDD+ forest reference level or forest reference emission level 

for technical assessment to the UNFCCC in 2020. In this mechanism, the tropical countries can 

receive financial rewards by reducing greenhouse gas (GHG) emissions from deforestation and 

forest degradation. The second approach is forest certification, which represents certification by 

the Forest Steward Council (FSC). The timber produced from the forests, which fulfills the 

sustainability requirements and is certified by such third-party organizations, can gain improved 

market access. Thus, forest managers gain incentives in both the aforementioned approaches 

when they conserve forests, prevent excessive logging, and care for sustainability. 
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In these programs, monitoring and assessment of biodiversity is crucial. While the main 

objective of REDD+ is to reduce emissions, only focusing on the amount of carbon will have 

negative environmental impacts; for example, low-carbon forests with high biodiversity will be 

displaced by high-carbon forests with poor biodiversity. To avoid this situation, biodiversity 

assessment was introduced as a safeguard in 2010. In particular, various REDD+ projects 

adopted the Climate, Community, and Biodiversity (CCB) standard, in which biodiversity is not 

harmed, and positive environmental impacts are generated (Narasimhan et al., 2014). However, 

Panfil (2015) reported that the 80 REDD+ projects, which adopted the CCB standard, lacked 

quantitative targets for the biodiversity objectives and details on sampling design and 

methodology. Regular biodiversity monitoring, reporting, and verification systems are needed 

in REDD+, as well as in forest certification, which assesses the environmental aspects, including 

biodiversity, as one of the criteria (principles) of sustainability (FSC, 2021).  

Biodiversity can be assessed based on multiple aspects, such as existence of endangered 

animals, species richness, and tree composition (Barlow et al., 2007; Lawton et al., 1998; 

Schulze et al., 2004; Struebig, 2013; Uehara-prado et al., 2009). Among these, tree-community 

composition monitoring could be a cost-effective manner because changes in canopy tree-

composition can be detected from remotely sensed data (Fujiki et al. 2016, Kitayama et al. 2018). 

For example, Fujiki (2016) used Landsat satellite data for estimating overall tree-community 

composition based on all genera obtained by field survey. Even though resolution of the satellite 

is 30 m which is not enough for figuring each tree species out, multi-spectral reflectance values 

of each pixel and the texture information (relationship to its neighboring pixels) reflected the 

tree-community composition (adjusted R2 value ranged from 0.59 to 0.69). Further, the tree-

community composition revealed a significant correlation with an index of forest degradation 

(remaining aboveground biomass, AGB) and has exhibited its appropriateness as a forest 

biodiversity indicator compared with other indicators such as tree species richness in logged-

over Bornean forests (Imai et al., 2014).  

This tree-community composition was calculated with a nonmetric multidimensional scaling 
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(nMDS) using the Chao index (Chao 2004) of all tree species (or genera) present in count plots. 

The greatest variation in tree-community composition occurs along the axis-1 of the nMDS 

coordinate and axis-1 values of the plots correlate with the magnitude of forest degradation 

derived from logging (or inversely intactness), provided that all plots have the same original 

vegetation. In this system, axis-1 values of nMDS are used as an index of forest intactness (i.e. 

forest biodiversity)  (Imai et al., 2014, Fujiki et al. 2016, Kitayama et al. 2018).   

This index can be extrapolated to a wider landscape at the forest management unit (FMU) 

scale as a digital map (the method “BOLEH, biodiversity observation for land and ecosystem 

health; Kitayama et al., 2018). This method combines count-plot sampling on the ground and an 

extrapolation using a satellite imagery. A total of 50 circle plots with a 20-m radius and the 

identification of all genera present are needed in the guideline. Landsat reflectance values (and 

texture matrixes) corresponding to the tree-community composition index (nMDS axis-1 values) 

of the 50 plots are extrapolated to the entire area of an FMU (Fujiki et al., 2016; Kitayama et al., 

2018). This method is robust in elucidating forest degradation (or intactness) in terms of tree-

community composition, which is not possible from the biomass aspect (Kitayama et al., 2018). 

However, this method is costly because a survey of a large number of count-plots is involved. 

Moreover, the same procedure must be repeated when updating the map. 

Two guilds of tree genera are actually known to be involved for the variation of tree-species 

composition in these Bornean forests; one is a pioneer guild which increases in abundance with 

degradation, and the other is a climax guild which decreases with degradation. Therefore, mixing 

ratio of these two guilds can actually explain the magnitude of forest degradation (or intactness).  

Furthermore, the same genera are involved for a wider region spanning entire Borneo, i.e. the 

genera Neolamarckia and Macaranga for the pioneer guild and the dipterocarp genera (genera 

in Dipterocarpaceae) for the climax guild (Aoyagi et al., 2017).  The aerial survey of the 

abundance of the selected indicators only may be able to provide the same information as 

BOLEH. 

Recently, unmanned aerial vehicles (UAVs) have gained attention for helping with forest 
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surveys (Paneque-Galves et al., 2014). Specifically, tree height estimation, tree enumeration, and 

tree size evaluation are major factors that can be assessed using UAVs (Goodbody et al., 2017; 

Iizuka et al., 2018; Mlambo et al., 2017; Tang et al., 2015). Furthermore, aerial image 

identification of tree species is an important factor that may help in forest management and 

contribute to biodiversity monitoring. 

To date, aerial image identification of tree species has been attempted using airborne and 

satellite imagery. Recently, airborne hyperspectral images have revealed high potential for 

identifying several tree species (Dalponte, 2012; Féret and Asner, 2013; Shen and Cao, 2017). 

Although airborne identification using airplanes is advantageous as it covers large areas, it is 

costly. In recent years, UAV imagery has revealed immense potential in identifying tree species. 

In particular, application of deep learning to UAV RGB imagery has succeeded in identifying 

several trees in an economic manner (Csillik et al., 2018; dos Santos, 2019; Natesan, 2019; Onishi 

and Ise, 2021; Safonova, 2019). Onishi and Ise (2021) reported that applying deep learning to 

RGB images captured by an UAV could identify tree types and tree species with high accuracy in 

Japan. In addition, the features that Convolutional Neural Network (CNN) used revealed that 

unique texture patterns created by structural differences such as tree shapes or branching patterns 

were extracted. Furthermore, an identification model using deep learning is highly robust because 

it relies on structural features, not spectral differences that can change and are subject to weather, 

shade, and solar altitude (Onishi and Ise, 2021).  

For estimating tree-community composition from UAV, indicator tree species information 

detected from UAV imagery, especially tree crown areas of each tree species were expected to be 

significant clue for estimating the tree-community composition. However, overall tree species 

cannot be identified, and understory vegetation cannot be monitored from UAV. For more accurate 

estimation of the tree-community composition, other forest information might be helpful. First 

one is forest structure. Among many forest structure parameters, maximum and range of tree 

height can be indexes for tree community composition. Maximum tree height increases along 

with succession (Peña-Claros, 2003), and it can be useful index for species richness (Marks et al., 
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2016). Marks et al. (2017) shown that maximum and range of tree height has correlation with 

alpha and beta diversity. Second is the condition of surrounding forest. Forest community can be 

affected by surrounding condition. For example, forming distinct edge by constructing roads can 

increase tree mortality (Prasad, 2009) via microclimatic change (Kapos,1989; Williams-Linera, 

1990), mechanical damage (Chen et al., 1992), and high infestation rates by pathogens (Dickie & 

Reich 2005). Further, it facilitates exotic plant invasion (Gelbards and Belnap, 2003; Honnay et 

al., 2008; Lugo and Gucinski, 2000), and lead to invasive plants colonization (Fensham et al. 

1994, Laurance, 1991).  

To achieve the tree-community composition estimation from UAV, I set my study objectives 

as: 1) evaluating the potential of combining UAV and deep learning for identifying indicator tree 

species (genera) in Bornean tropical rain forests, and 2) clarifying relationship between overall 

tree-community composition based on count-plots on the ground, and the identified tree species 

crown area and forest structure information of UAV imagery. Considering the latter objective, I 

analyzed the appropriate size of projected area on the ground when analyzing crown aeras of the 

target genera and forest structure in order for reflecting the surrounding forest conditions. In 

addition to the tree-community composition, the aboveground biomass, which is simultaneously 

obtained from field survey was also evaluated using UAV imagery because biomass may covary 

with tree-community composition. 
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4.2 Materials and Methods 

4.2.1 Study sites 

This study was conducted mainly in two Bornean FMUs where legal commercial logging was 

being conducted. The mode of logging is selective in these FMUs. The studied FMUs were 

Deramakot (5°14’–28’N, 117°20’–38’E, 551 km²), and Tangkulap (5°18’–31’ N, 117°11’–22’E, 

276 km²) in Sabah, Malaysia. Supplementary inventory data were collected at Segaliud Lokan 

(5°20’–27’ N, 117°23’–39’ E, 576 km²) (Figure 4.1). 

In the Deramakot FMU, whole logging was suspended in 1989, and reduced-impact logging 

was introduced in 1995. In 1997, the FMU was certified by the FSC for the first time as a tropical 

timber forest. This certification was extended to 2019. In the Tangkulap FMU, conventional 

logging was conducted until 2003. Logging was suspended in 2003 and the entire FMU was 

certified by the FSC in 2011. In the Segaliud Lokan FMU, conventional logging was conducted 

until 2002. Since 2002, reduced-impact logging has been conducted and is currently certified by 

the Malaysian Timber Certification Council (MTCC). 

I conducted a basic research such as flying UAVs, field surveys, tree identification, and analysis 

of biodiversity at Deramakot and Tangkulap. Biodiversity scores (i.e. community composition 

index as explained in the introduction) were derived based on the count-plots on the ground of 

Deramakot and Tangkulap, supplemented by field inventory data of Segaliud Lokan as will be 

explained later. 1).  
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Figure 4.1 Location of study sites: (1) Tangkulap, (2) Deramakot, and (3) Segaliud Lokan 

FMU  

 

4.2.2 Field survey 

I conducted a field survey in the Deramakot and Tangkulap FMUs in 2019. Two types of plots 

were used. First, I researched three rectangular plots (R1-3) with dimensions of 100 * 200 m. 

These plots were established and used in a previous study (Imai et al., 2012); in the present study, 

I used them to obtain accurate supervised data and confirm that a researcher can visually identify 

the objective tree species from UAV imagery. R1 is a primary forest, R2 is a conventional logging 

forest, and R3 is a reduced-impact logged forest. At the plot and in the surrounding area, I checked 

the tree crown image obtained by the UAV and corresponding trees and tagged the tree species 

name to UAV imagery as a ground truth label. I used R3 as the test site for tree species 

identification. 

The other plot was a circular plot with a 20 m radius. I researched 28 plots in total, 8 plots in 

Tangkulap and 20 plots in Deramakot. Any two plots have a distance of at least 100 m in-between 

and used in previous studies to assess the biodiversity (Aoyagi et al., 2017; Fujiki et al., 2016; 

Kitayama et al., 2018). In the present study, I used these small plots to analyze overall tree-

community composition based on count-plots on the ground, and UAV imagery data. In the field 
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survey, I measured the girth at breast height (GBH) of all trees with ≥15 cm GBH. Woody vines 

were excluded from the study. The global positioning system location (GPS) of the center of a 

plot was recorded by averaging 2 h using portable global positioning system (GPS) in 2014. Trees 

with buttress were measured above (approximately 50 cm) the protrusions. While all trees were 

identified up to the species level, I analyzed the data only at the genus level. 

 

4.2.3 Objective tree species 

In this study, I focused on tree species of the genera Macaranga and Neolamarckia, which are 

indicator tree species of degraded forests with respect to tree community composition (Aoyagi et 

al., 2017). In my study area, the genus Neolamarckia comprised only Neolamarckia cadamba. In 

contrast, the genus Macaranga has several species. Thus, I classified the species into three classes 

based on their leaf size: Macaranga gigantea, Macaranga pearsonii, and Macaranga conifera. 

The M. pearsonii class includes other similar species, such as Macaranga hypoleuca, Macaranga 

beccariana, and Macaranga triloba, which present almost similar size and shape of leaves (Figure 

4.2). 

 

 

Figure 4.2 Objective Macaranga species leaf image. 
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4.2.4 UAV flight 

In this study, I used two types of UAVs, Phantom 4 Pro and Mavic 2 Pro (DJI, China), as I 

obtained data simultaneously and checked the robustness of identification performance between 

the UAVs. In both Phantom 4 Pro and Mavic 2 Pro, the camera records approximately 20 million 

pixel images; however, the viewing angle slightly differs (84° and 77°, respectively). 

 I conducted automatic flight in 2019, using UgCS v3.2 software (SPH engineering, Baložu 

pilsēta, Latvia), which enabled us to set the relative flight altitude from the ground surface, 

overlaps, and others. Herein, the flight parameters were set as flight altitude: 100~120 m 

(GSD:2.5~3.3 cm) from the Shuttle Radar Topography Mission (SRTM), front overlap: 90%, and 

side overlap: 80%. I conducted the flight from 11:00 to 13:00 to avoid shade influence. The flight 

covered enough the whole area of rectangular plots, and I marked approximately 250 × 250 m 

area around the circular plots.  

 

4.2.5 UAV data processing 

For applying deep learning to UAV imagery and analyzing with field-obtained data, I processed 

UAV imagery. I present the technical workflow of the data processing in Figure 4.3. As a flow, I 

made orthophoto and 3-dimensional data from UAV imagery, and made polygons and canopy 

height model (CHM). I extracted tree crown image from orthomosaic photo and tree crown map 

which is higher than 5 m of CHM, and applied deep learning. As for analysis with field-obtained 

data, I made tree species map from tree crown map, orthomosaic photo and deep learning, gap 

map from polygons, and calculated forest structure information from CHM. I explain the details 

of the procedure below. 
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Figure 4.3 Technical workflow of data processing 

 

4.2.5.1 UAV data preprocess 

First, from the UAV data, I created an orthomosaic image, digital surface model (DSM), and 

digital terrain model (DTM) by using the structure from motion technique in photoscan software 

(Agisoft, Russia). The parameters required for detecting ground points are set at each study site 

by trial and error to create a DTM. For the R3 plot, I created flights using both Phantom 4 Pro 

and Mavic 2 Pro, and I adjusted the GPS location error via georeferencing. 

For GIS processing, I used ArcGIS software (ESRI, USA). I calculated the slope from the DSM 
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to create the slope model. Moreover, I created a canopy height model (CHM) by subtracting DTM 

from DSM. I separated each tree crown using an orthomosaic photo, DSM, and slope model using 

a multiresolution segmentation algorithm (Baatz and Schäpe, 2000) in eCognition software 

(Trimble, USA). This method enables us to demarcate each tree species crown as a segment 

(Onishi and Ise, 2021). The parameters for multiresolution segmentation were set to {Weight of 

R, G, B, DSM, Slope:1, 1, 1, 2, 3, Scale: 200, Compactness: 0.5, Shape: 0.2}. 

After segmentation, I divided these polygons into tree crown and gap polygons using the height 

information of CHM; gap areas are defined as the stature <5 m on CHM and tree areas as the 

stature ≧5 m on CHM.  

Thereafter, I attached tree species labels to the tree polygons. For the rectangular plots, I 

attached each species label using field survey results; however, for the circle plots, I judged only 

the indicator species by visually inspecting photos. Next, I extracted each tree crown image using 

a tree crown map with ground truth labels and orthomosaic photos (Figure 4.4). Furthermore, for 

the tree areas, I calculated three-dimensional volume, maximum, range, standard deviation, and 

mean of CHM as representative variables of forest structure at five scales (20, 40, 60, 80, and 100 

m radius) from the center of plots respectively. 

 

 

 

Figure 4.4 Representative images of indicator tree species from the left: Macaranga gigantea, 

Macaranga pearsonii, Macaranga conifera, and Neolamarckia cadamba. 
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4.2.5.2 Deep learning 

For the training and validation datasets, I used photo of two rectangular plots (R1-R2), which 

interpreted from the field, and some photo of circle plots, which interpreted from UAV photo. 

Regarding to the latter dataset, I only used photo except for those present within a 100 m radius 

from the center of the plot, because for regression analysis within the radius, I should use the tree 

crown data that are identified initially via deep learning. Moreover, I previously augmented 

approximately 2000 indicator tree classes because if there is a bias in the dataset, the model would 

be adjusted to classify the images into a class with a large amount of data. For the classification 

test, I used the remaining 2 ha rectangular plots (R3) (Table 4.1). 

I applied deep-learning identification using a convolutional neural network, wherein, I used 

PyTorch (Paszke et al., 2017) as the framework and pretrained EfficientNet B7 (Tan et al., 2020) 

as the neural network model. During the training phase, I conducted fine-tuning, that is, I changed 

the output of the fully connected layer to a value of 5, and then trained all parameters of each 

CNN layer. The parameter settings are summarized in Table 4.2. The input size was 224 × 224 

pixels. 

Furthermore, to improve the classification performance, I applied a threshold to each 

probability identification value. Thus, for each image of deep learning identification, I can obtain 

the probability value of individual class. The system that is commonly used adopts the top-class 

label with the highest probability; however, the other tree species that are absent in the training 

and identified as indicator tree species may exhibit low probabilities of the predicted class because 

this image does not reveal any features similar to the five classes. Therefore, I used the threshold 

value for probability, which indicates that the image with lower probability than the threshold is 

classified as another tree species class. The threshold value is set at each class and adjusted to 

obtain higher overall classification accuracy. This value is similar for Phantom 4 Pro and Mavic 

2 Pro; however, it differs among classes. To evaluate the accuracy, I used the intersection over 

union (IoU) score for objective tree species segmentation using the ground truth polygons and 

predicted segmented polygons that are merged from the polygons; more than 50% of these belong 
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to the ground truth polygon, and precision, recall, and Kappa coefficient (Cohen, 1960) for deep 

learning classification. 

For clarifying the relationship between overall tree-community composition obtained by field 

survey and the identified tree species from UAV, I used the deep learning model with threshold 

and made tree species map at twenty-eight areas. Then I calculated the tree crown areas of M. 

gigantea, M. pearsonii, M. conifera, N. cadamba, other tree species and gap at five scales (20, 40, 

60, 80, and 100 m radius) from the center of plots respectively. 

 

Table 4.1 Data summary 

Class ID Species Training Validation Test 

0 Other tree species 1874 475 453 

1 Macaranga conifera 90 13 29 

2 Macaranga gigantea 40 12 16 

3 Macaranga pearsonii 116 29 38 

4 Neolamarckia cadamba 199 64 7 

 

Table 4.2 Parameter settings of deep learning 

Parameter Value 

Network EfficientNet B7 

Epoch 100 

Batch size 16 

Learning rate 0.005 

Momentum 0.9 

Optimizer SGD 

 

4.2.6 Data analysis 

For evaluating tree-community composition from field survey, I calculated Chao’s distances 

(Chao et al., 2005) between any two plots using the number of trees of each genus recorded at 

field survey in twenty-eight circular plots, and applied nMDS analysis to plot data with the meta-

MDS package in the vegan package of R software (Oksanen et al., 2013). I used nMDS axis-1 

score as index of tree-community composition for subsequent analysis. 

The AGB of each plot was calculated as a sum of the AGBs of all trees present based on the 

allometric equation obtained by Chave et al. (2014): 
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AGB (kg) = ρ × exp (−1.499 + 2.148 ln(D) − 0.207(ln(D))2) − 0.0281(ln(D))3) 

where ρ represents wood-specific gravity (g 𝑐𝑚−3), and D represents DBH (diameter at 

breast height (cm)). Wood-specific gravity data were obtained from the Global Wood 

Density Database (Chave et al., 2009).  

From the process above, I prepared AGB and nMDS axis-1 scores from field survey, 

and tree species map and CHM from UAV and deep learning in twenty-eight areas. Then I 

set field-obtained nMDS axis-1 score and log(AGB) as dependent variables, and UAV 

obtained indicator tree species information (tree crown area of M. gigantea, M. pearsonii, 

M. conifera, N. cadamba, other tree species and gap) and forest structure (three-

dimensional volume, maximum, standard deviation, range and mean of tree part of CHM) 

as independent variables, and applied multiple regression analysis for discovering the 

relationship between the variables. From those independent variables, valuable parameter 

was chosen using forward–backward stepwise selection based on Akaike Information 

Criterion (AIC) (Akaike, 1974); thereafter, only variables with significant values (p < 

0.05) were selected. I applied this analysis to the independent variables derived at five 

scales (20, 40, 60, 80, and 100 m radius) from the center of plots respectively for reflecting 

surrounding forest conditions such as existence of indicator tree species or gap areas. 
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4.3 Results 

4.3.1 Tree species identification 

4.3.1.1 Tree crown segmentation 

After calculating the IoU value of indicator tree species (Figure 4.5), I observed that M. 

gigantea exhibits a lower value (~0.6) than other species (~0.8); however, for M. pearsonii, the 

average value is high but it exhibits a higher range (<0.3 to >0.9) than that of the other species. 

M. conifera and N. cadamba exhibited high average values with a small range. 

 

Figure 4.5 IoU value of each class. 

 

4.3.1.2 Identification of indicator tree species 

The CNN model succeeded in identifying these indicator tree species with high accuracy for 

Phantom 4 Pro data (Kappa 0.802) and a slightly lower accuracy for Mavic 2 Pro data (Kappa 

0.591). I have summarized the details of the identification result as a confusion matrix in Table 

4.3. Most classes were identified at higher than 90% precision in Phantom 4 Pro, except for M. 

conifera (63%). Moreover, most classes were classified at higher >85% recall, including M. 

pearsonii that exhibited relatively high accuracy (73%). However, the accuracy of each class in 
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Mavic 2 Pro was lower than that of Phantom 4 Pro. In particular, some other tree species were 

misclassified as M. conifera (56% precision), and most species of the M. pearsonii class were 

misclassified as another tree species (33%  recall). In contrast, M. gigantea and N. cadamba were 

consistently identified in both the precision and recall (more than 75%). 

 

Table 4.3 Result of indicator tree species identification using Phantom 4 Pro and Mavic 2 Pro. 

 

 

 

I set the classification threshold: 0.5, 0.7, 0.4, and 0.8 for M. conifera, M. gigantea, M. pearosnii, 

and N. cadamba, respectively. These values were set to achieve better scores in each class for 

both UAVs. Although I expected this threshold to improve the performance, only a slight increase 

was observed in the Kappa score ranging from 0.002 to 0.005 (Table 4.4). 

 

 

 

phantom 4 pro

Macaranga

gigantea

Macaranga

 pearsonii

Macaranga

 conifera

Neolamarckia

 cadamba

other tree

species

Macaranga gigantea 19 1 0 0 0 95.0%

Macaranga pearsonii 0 69 0 0 1 98.6%

Macaranga conifera 0 1 34 0 19 63.0%

Neolamarckia cadamba 0 0 0 10 0 100.0%

other tree species 1 23 6 0 433 93.5%

Recall 95.0% 73.4% 85.0% 100.0% 95.6% Kappa: 0.802

CNN predicted class

field reference class

Precision

mavic 2 pro

Macaranga

gigantea

Macaranga

 pearsonii

Macaranga

 conifera

Neolamarckia

 cadamba

other tree

species

Macaranga gigantea 15 2 2 0 1 75.0%

Macaranga pearsonii 1 31 0 0 0 96.9%

Macaranga conifera 0 5 32 0 20 56.1%

Neolamarckia cadamba 0 0 0 10 2 83.3%

other tree species 4 56 7 0 430 86.5%

Recall 75.0% 33.0% 78.0% 100.0% 94.9% Kappa: 0.591

CNN predicted class

field reference class

Precision
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Table 4.4 Result of indicator tree species identification using Phantom 4 Pro and Mavic 2 Pro 

with threshold (0.5, 0.7, 0.4, and 0.8 for each tree species). 

 

 

 

Furthermore, I visualized the identification result, which was classified by the CNN model with 

a threshold for the whole area and an enlarged area of one circle plot (Figure 4.6). 

Using this segmentation system and CNN model, I succeeded in identifying and mapping the 

indicator tree species. 

phantom 4 pro with threshold

Macaranga

gigantea

Macaranga

 pearsonii

Macaranga

 conifera

Neolamarckia

 cadamba

other tree

species

Macaranga gigantea 16 0 0 0 0 100.0%

Macaranga pearsonii 0 69 0 0 0 100.0%

Macaranga conifera 0 1 34 0 19 63.0%

Neolamarckia cadamba 0 0 0 10 0 100.0%

other tree species 1 24 6 0 434 93.3%

Recall 94.1% 73.4% 85.0% 100.0% 95.8% Kappa: 0.804

CNN predicted class

field reference class

Precision

mavic 2 pro with threshold

Macaranga

gigantea

Macaranga

 pearsonii

Macaranga

 conifera

Neolamarckia

 cadamba

other tree

species

Macaranga gigantea 15 1 0 0 0 93.8%

Macaranga pearsonii 1 31 0 0 0 96.9%

Macaranga conifera 0 5 32 0 20 56.1%

Neolamarckia cadamba 0 0 0 10 0 100.0%

other tree species 4 57 9 0 433 86.1%

Recall 75.0% 33.0% 78.0% 100.0% 95.6% Kappa: 0.596

CNN predicted class

field reference class

Precision
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Figure 4.6 Visualization of the result of deep learning classification. The UAV image is 

depicted on the left and the segmented and classified image is on the right. 

 

4.3.2 Biodiversity assessment 

4.3.2.1 Evaluating the relationship between field-obtained nMDS axis-1 score (tree community 

composition based on all genera) and AGB 

First, I evaluated the relationship between the nMDS axis-1 score and AGB, which were 

obtained from a field survey. In a previous study, they were positively correlated with each other 

(Aoyagi et al., 2017; Imai et al., 2014). My data revealed an obvious outlier plot, D4 (Figure 4.7). 

For further analysis, I excluded plot D4 for analysis with the nMDS axis-1 score. Except for plot 

D4, a significant correlation was observed between p < 0.001 and R2 = 0.55 (Figure 4.7).  

In Figure 4.7, the plots in Deramakot reveal high log(AGB) and nMDS axis-1 scores. In 

contrast, the plot D3 exhibits a high log(AGB) and low nMDS axis-1 score 



 

105 

 

 

 

Figure 4.7 Result of field-obtained nMDS axis-1 score (overall tree community composition 

based on all genera) and aboveground biomass of each plot. D and T represents Deramakot 

and Tangkulap. As a result, the plot number D4 was detected as an outlier. Bottom image 

depicts the relationship without outlier D4 plot. 
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4.3.2.2 Relationship between field obtained index (AGB and overall tree-community 

composition based on all genera) and UAV obtained data (tree crown areas of indicator 

tree species and forest structure information)  

I applied multiple regression analysis with stepwise selection for UAV obtained indicator tree 

species information (tree crown area of M. gigantea, M. pearsonii, M. conifera, N. cadamba, other 

tree species and gap) and forest structure (three-dimensional volume, maximum, standard 

deviation, range and mean of tree part of CHM) as independent variables , and field-obtained 

nMDS axis-1 and AGB score as dependent variables from 20 to 100 m radius (Figure 4.8). 

The AIC score was lowest at the 40-m radius, considering the correlation with nMDS axis-1 

score. In contrast, for the AGB, the AIC score was lowest at a radius of 20 m, which was the same 

size as the field plot, and this score increased with increasing radius. I summarized the details of 

the results and the parameters obtained by stepwise selection (Table 4.5). 

 

 

Figure 4.8 Result of relationship between radius of UAV data analysis and field-obtained 

nMDS axis-1 score (overall tree-community comsition) and log(AGB). For analysis, I applied 

multiple regression analysis with stepwise selection.  
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Table 4.5 Detailed result of multiple regression analysis 

nMDS axis-1 score 
       

Radius AIC Adj. R2 p Parameter 1 p1 Parameter 2 p2 Parameter 3 p3 

20 −79.0 0.342 *** 
Other tree 

sp.(+) 
***     

40 −84.1 0.474 *** 
Other tree 

sp.(+) 
** M. gigantea(-) *   

60 −83.2 0.456 *** M. gigantea(-) ** Gap(-) *   

80 −79.8 0.382 ** M. gigantea(-) ** Gap(-) *   

100 −73.4 0.191 * 
Other tree 

sp.(+) 
*         

          

log(AGB)        

Radius AIC Adj. R2 p Parameter 1 p1 Parameter 2 p2 Parameter 3 p3 

20 −39.7 0.705 *** Gap(-) ***     

40 −33.8 0.636 *** Gap(-) ***     

60 −27.9 0.551 *** Gap(-) ***     

80 −25.2 0.537 *** Gap(-) ** M. gigantea(-) ** 
Other tree 

sp.(+) 
* 

100 −21.2 0.467 *** Gap(-) ** M. gigantea(-) * 
Other tree 

sp.(+) 
* 

    Significant Code *** 0.001, ** 0.01, * 0.05 

+ or – means positive or negative of parameter estimate 

 

As a result of stepwise selection, for the nMDS axis-1 score, other tree species or gap was 

chosen at all radii, and M. gigantea was selected at 20, 40, and 60 m radius. The adjusted R² value 

was the highest (0.474) at 40 m radius. 

For the AGB, a gap was chosen at all radii. Additionally, M. gigantea and other tree species 

were also selected at 80 and 100 m radius. The adjusted R² value was the highest (0.705) at a 20 
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m radius. 

I derived the best model for estimating nMDS axis-1 score (overall tree-community 

composition based on all genera) and AGB at the radius where AIC was lowest, as follows: 

 

     nMDS axis − 1 score =  −0.20066 +  0.48409 ∗  other tree species  

                                                − 21.45804 ∗ 𝑀𝑎𝑐𝑎𝑟𝑎𝑛𝑔𝑎 𝑔𝑖𝑔𝑎𝑛𝑡𝑒𝑎 (40 m radius) (1) 

  

     Log(AGB) =  5.2743 –  2.2382 ∗  gap (20 m radius) (2) 
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4.4 Discussion 

4.4.1 Tree species identification 

4.4.1.1 Tree crown segmentation 

  In tree crown segmentation, the IoU of M. gigantea is 0.6, and other indicator species is high 

(0.7~0.8). In general, the IoU scores 0.7~0.8 are considered high, even in deep learning 

segmentation (Wang et al., 2018). This result indicates that my method successfully segmented 

the objective trees with high accuracy; however, in reality, the polygon was separated into pieces, 

and the IoU value was calculated for the polygon that is merged with several polygons. In other 

studies, some researchers have applied deep learning methods such as instance segmentation of 

Mask RCNN (He et al., 2017), which can improve tree crown segmentation. 

 

4.4.1.2 Indicator tree species classification 

I succeeded to identify indicator tree species with Kappa accuracy values of 0.6~0.8. This 

performance is remarkable considering extremely rich tree species in my Bornean rain forests. 

Also, because this score was obtained at different sites and days from training data, my deep 

learning model was robust.  

In contrast, certain differences exist between Phantom 4 Pro and Mavic 2 Pro. I used the sample 

of M. pearsonii of Phantom 4 Pro and Mavic 2 Pro (Figure 4.9). Here, I observed that the image 

of Phantom 4 Pro is clearer than that of Mavic 2 Pro. This may be due to difference in UAV, 

shooting conditions, and the influence of georeference. Considering the difference in UAV, Mavic 

2 Pro is lighter than Phantom 4 Pro (907 g and 1388 g each); therefore, the image of Mavic 2 Pro 

is easily blurred. Another reason for this is the shooting conditions. Illumination and wind 

conditions can affect the image quality. Considering influence of georeference, I applied 

georeference for only the Mavic 2 Pro image to match the Phantom 4 Pro image; thus, the image 

might be blurred during the process.  
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Figure 4.9 Representative image of Macaranga pearsonii. Left: Phantom 4 Pro; Right: Mavic 

2 Pro. 

 

In addition to those indicator tree species, I tried to identify Dipterocarpaceae, which is an 

indicator of the climax guild and the inclusion of this indicator would enhance the accuracy and 

robustness of the representativeness of overall tree-community composition (Aoyagi et al. 2017). 

However, I could not identify the family due to the small number of images. To identify tree 

species, I need at least fifty image data at the species level preferably (Onishi and Ise, 2021) or 

apply other deep learning methods such as few-shot learning (Li et al., 2019; Wang et al., 2020). 

 

4.4.2 Biodiversity assessment 

4.4.2.1 Relationship between field-obtained nMDS axis-1 score (tree-community composition 

based on all genera) and AGB 

As a result of the field data evaluation, an outlier plot D4 was detected. Its tree community 

composition was unique compared to other plots due to the disproportionately high abundance of 

the genus Dendrocnide in D4. Therefore, the value of the Chao distance is markedly different 

from other plots, and D4 was emitted as an outlier in nMDS axis-1 value. 
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4.4.2.2 Relationship between field-obtained index (AGB and overall tree-community 

composition based on all genera) and UAV obtained data (tree crown areas of indicator 

tree species and forest structure information)  

  First, for AGB, the 20 m radius exhibited a best model, and the gap area was selected as a 

significant parameter in this model; in this case, 20 m radius is reasonable because it is the same 

size as that of the field survey area. Moreover, as the gap area was selected, maximum tree height 

and volume, which refer to three-dimensional total volume of tree class was also considered 

(Kachamba et al., 2016); however, the tree height estimation from UAVs cannot be accurate in 

closed forests, because the DEM was created by connecting the ground point detected in UAV 

imagery and the ground could not be observed in such closed forests (Obeng-Manu, 2019). 

Therefore, the gap was selected rather than the volume.  

  Furthermore, when explaining the biodiversity scores based on overall tree-community 

composition (i.e. nMDS axis-1 scores), the best model was derived at the 40-m radius, and the 

crown areas of other tree species (tree areas except for tree species indicative forest degradation 

and lower biodiversity) and Macaranga gigantea were selected as significant parameters. 

Macaranga gigantea has biggest leaves in Macaranga genus, and emerges at earlier successional 

stages than the other Macaranga species (Davies 1998). Moreover, Macaranga gigantea is 

especially shade intolerant among Macaranga genus with most trees being exposed to light 

(Davies 1998). This life history traits suggests that Macaranga gigantea can be a more significant 

indicator species of forest degradation, and emerges at canopy. Thus UAV could detect the most 

Macaranga gigantea trees. For this reason, crown area of Macaranga gigantea was thought to be 

chosen as a significant independent variable of tree-community composition. 

The result that highest relationships at 40-m radius and higher relationships at 60-m radius was 

revealed than at 20 m radius suggests that surrounding forest condition may affect to the tree 

community composition. The existence of gap around the plot may suggest high mortality rate 

and invasion of exotic plant (Gelbards and Belnap, 2003; Honnay et al., 2008; Lugo and Gucinski, 

2000; Prasad, 2009), and the existence of indicator tree species may suggest the small trees of 
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those species which exists under crown and cannot be detected from UAV. In addition, other 

indicator tree species were not selected as significant variable. If identification performance of 

CNN model was improved, the result of parameter selection of regression analysis could be 

changed. 

 

As a trial, I mapped the AGB and biodiversity (nMDS axis-1 score) based on the 

aforementioned formula (1) (2) (Figure 4.10). For making the heat map, I set points with a spacing 

of approximately 10 m and calculated the AGB and nMDS axis-1 scores in the area with 20 and 

40 m buffer, respectively, at each point. To estimate nMDS axis-1 score, values lower than 

−0.20066 were modified to −0.20066. For mapping, I used interpolation by spline; for nMDS 

axis-1 score, I applied an averaging filter because a huge difference was observed among the areas 

that include M. gigantea in the D3 plot, which contains high biomass but biodiversity degraded 

forests with respect to tree community composition (Figure 4.7). As illustrated in Figure 4.10, the 

D3 plot is covered by trees; however, there are many Macaranga trees, and large gap areas and 

logging roads are close to the forest. Thus, UAV data succeeded to evaluate the forest as degraded 

forest with respect to tree community composition as same as field survey. Though there are some 

improvement point and I need to improve the performance, the day may come when UAV and 

deep learning will be used for visualizing and estimating biodiversity for the practical use in the 

future.  
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Figure 4.10 Estimation of log(AGB), and biodiversity (nMDS axis-1 score) in D3 plot. The 

white circle indicates 40 m buffer from the center of field plot. 
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4.5 Conclusion 

In this study, I investigated the use of UAV remote sensing imagery and deep learning 

technology to identify and map the distribution of tree species indicative of forest degradation in 

logged-over tropical rain forests. My method and algorithm could successfully identify the target 

indicator tree species with a high accuracy. Furthermore, the tree crown areas of so identified 

indicator species could explain the tree-community composition based on all genera. Thus, the 

identification of key indicator species and mapping their crowns using UAV with my algorithm 

can be used as a cost-effective, biodiversity monitoring tool than the labor intensive survey that 

enumerates all tree genera on the ground. 

There are still outstanding issues to be resolved for better assessment of forest canopy 

intactness at a larger scale. First, another important indicator group Dipterocarpaceae, which 

belongs to the climax guild, must be identified with UAVs. Second, the mapping by UAVs must 

be scaled up to wider areas such as FMU or lager. UAVs can cover at a scale of tens of hectare; 

however, forests need to be monitored at a larger scale when forest-management impacts and 

environmental safeguards are to be evaluated. Middle-resolution satellite imageries such as 

Landsat or Sentinel may be used for scaling up but appropriate algorithms must be developed. 
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CHAPTER 5  

General Discussion 

 

 

5.1 Summary of each chapter 

To develop a system for tree identification from UAV imagery and examine its practicality, I 

proposed a new automatic tree species identification system using deep learning (Chapter 2). In 

Chapter 3, I examine the potential and robustness of the system. In Chapter 4, I used the system 

to identify indicator tree species and evaluate the potential for biodiversity monitoring in Borneo. 

The following is a summary of each chapter. 

 

In Chapter 2, I constructed a machine vision system for tree identification and mapping using 

a red –green–blue (RGB) image obtained using an unmanned aerial vehicle (UAV) and a 

convolutional neural network (CNN). In this system, I first calculated the slope from the three-

dimensional model obtained by the UAV, and segmented the UAV RGB photograph of the forest 

into several tree crown objects automatically using color and three-dimensional information and 

the slope model, and finally applied object-based CNN classification for each crown image. This 

system managed to classify seven tree classes, including several tree species with more than 90% 

accuracy. Guided gradient-weighted class activation mapping (Guided Grad-CAM) showed that 

the CNN classified trees according to their shapes and leaf contrasts, thereby enhancing the 

potential of the system for classifying individual trees with similar colors in a cost-effective 

manner, a useful feature for forest management. 

In Chapter 3, I set objectives to evaluate the practicality and robustness of the tree 

identification system using UAVs and deep learning. I sampled training and test data from three 

sites respectively in temperate forests in Japan. The objective tree species ranged from 56 species, 

dead trees, and gaps. When I evaluated the model performance on the dataset obtained from the 

same time and same trees as the training dataset, it yielded a Kappa score of 0.97. When I 
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evaluated the performance on the dataset obtained from the same time but with different trees, the 

kappa score was 0.72. When I evaluated the dataset obtained from different times and sites from 

the training dataset, which is the same condition as the practical one, the Kappa scores decreased 

to 0.47. To improve the performance in practical use, I developed “inventory tuning,” which 

enables us to create a local model by limiting output classes from inventory data. Using inventory 

tuning, I increased the accuracy level to 0.62. Based on the classification result details, the classes 

that showed the potential for being identified were mainly coniferous trees. Further, by analyzing 

the relationship between the number of training images and the accuracy, I found that I need to 

prepare at least 300 samples for practical use. In addition, some misclassifications occurred 

between ①tree species that belong to close phylogenetically, ②tree species that have similar leaf 

shapes, ③ tree species that prefer the same environment, and ④ tree types such as coniferous and 

broad-leaved or evergreen and deciduous do not always promise common features among the tree 

type. In this study, I illustrated stable robustness for certain tree species in practical use, the 

amount of data required for stable performance, and the similarities between the appearances of 

tree species that cause misclassification. These findings will promote the practicalization of 

identification systems using UAV RGB images and deep learning. 

In Chapter 4, I aimed to evaluate biodiversity cost-effectively from air using unmanned aerial 

vehicles (UAVs) and deep learning. First, I applied digital images obtained using UAVs and deep 

learning to identify tree species (genera Macaranga and Neolamarckia) that indicate degradation 

with respect to tree community composition in Bornean tropical rain forests. Then, using this 

identification system, I created an indicator species crown map and analyzed the relationship 

between UAV-derived information (tree crown areas of indicator species identified from UAV and 

forest structure information such as maximum tree height) and overall tree-community 

composition based on all genera obtained by field survey at 28 20-m radius plots, using a 

regression analysis and a stepwise selection. I successfully classified the indicator tree species 

and another tree species class at a Kappa score ranging from 0.6 to 0.8. Moreover, the regression 

analysis revealed that the total tree crown area, except for the indicator tree species and one 
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indicator tree species crown area, had a significant relationship with tree community composition. 

My study indicated that the system using UAVs digital imagery and deep learning can identify 

specific indicator tree species from a wide variety of species in the tropical rain forest, and using 

the identified tree species crown areas, I can reliably evaluate biodiversity aerially. This system 

is a cost-effective tool for monitoring biodiversity. 

  

5.2 Comprehensive discussion about tree species identification from the air 

This dissertation demonstrated that the proposed new tree identification system using UAV 

and deep learning. This system exhibited superior performance compared to other machine 

learning methods, and showed some spatial and temporal robustness, indicating the feasibility of 

the reliable identification of certain tree species. Regarding  its application for biodiversity 

monitoring in Borneo, specific indicator tree species were successfully identified for various tree 

species, and the information of its existence is helpful for monitoring biodiversity from the air.  

UAVs has an advantage in cost and easy-to-use comparing to airplane, while UAVs can only 

cover limited areas. In terms of low-costand easy-to-use, UAVs can be used for community-based 

regular monitoring in the case of forestry in developed countries, and REDD+ project (Paneque-

Gálvez et al. 2014). In the point of the covering areas, fixed-wing UAVs or gasoline-powered 

UAVs can fly longer than multi-copter UAVs, but it cannot be an absolute substitute for airplane.  

I developed a chain of automatic tree crown segmentation and tree species classification 

system using some software and deep learning for the first time in the world in April 2018 (Onishi 

and Ise, 2018). In the past few years, some studies have applied deep learning to detect some trees 

or classify some tree species. However, they applied general object detection method of deep 

learning, which detect objective trees by bounding boxes, instead of tree crown segmentation (dos 

Santos et al., 2019; Safonova et al., 2019). This method takes cost for annotation of regions and 

cannot map the tree crown areas. In that aspect, my method has advantages, unfortunately, my 

method did not succeed to segment various tree crown perfectly. In remote sensing field, the most 

common tree crown segmentation method is the combination of local maximum filter and region-
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growing algorithms or watershed segmentation algorithms (Chen et al., 2006; Jakubowski et al., 

2013; Ke et al., 2011; Koch et al., 2006; Solberg et al., 2006; Wulder et al., 2000). This method 

can be  applied to   height information of LiDAR or digital image from UAV,   especially in 

coniferous forest. (Picos et al., 2020; Mohan et al., 2017). In broad-leaved forest or mixed forest,  

tree crown segmentation is still difficult task because the size of trees has various range value and 

the tree top is unclear, hence,  the  development of segmentation method, which do not need to 

set parameters such as pixel sizes, has been desired (Dalponte et al., 2019; Maschler et al., 2018). 

On this issue, masking region method using deep learning such as instance segmentation (He et 

al., 2017) will be expected to be a clue for tree crown segmentation in broad-leaved or mixed 

forest. 

I used one of the most basic deep learning classification methods for identification in my study, 

however, one of the disadvantages of this method is it needs much training data. In order to  

overcome this disadvantage, one-shot learning (Koch et al. 2015) and few-shot learning (Wang et 

al. 2020) has been developed in the computer vision field. Representative one-shot learning uses 

siamese network, which is a kind of metric learnings, and the class was distinguished by 

comparing the test data to all training samples (Koch et al. 2015). It is opposed to basic method 

which trains CNN to identify the data without comparing to samples. These latest classification 

methods will help us to identify tree species with small amount of training samples in practical 

uses. 

 

5.3 Future perspective 

In future, tree species identification systems using UAVs and deep learning can be a standard 

tool for forest management. This will change the manner of logging planning, monitoring 

biodiversity, and estimating biomass, CO2 absorption, and emissions. The survey professional 

experts are doing with much labor and cost now may be addressed by local people cost-effectively. 

To realize such a future, we need to do as follows. 

1) Develop an accurate tree crown segmentation method for more accurate identification and 
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counting of trees, and estimation of DBH and biomass. Recently, segmentation 

technology using deep learning has been developed in the computer vision field, and 

instance segmentation is expected to pave way for the solution. A large amount of image 

data and annotation data obtained through intensive labor will enable the automatic and 

accurate segmentation of tree crowns. 

2) Develop a software that enables us to segment tree crowns, identify tree species 

automatically, and estimate the number of trees, DBH, and biomass. Currently, only a few 

professionals can identify tree species using deep learning. For wide use, we have to 

develop a software that can be used by non-professionals and without a high-power 

computer. The number of trees, DBH, and biomass can be estimated from the values of 

tree crown size, tree height, and tree species. By developing a system that can estimate 

such information easily, various local forest managers can use the system for forest 

management. 

3) Gather each tree species image for the reliable identification of tree species. In Chapter 3, 

I had to prepare at least 300 samples. To obtain samples, I need to develop a system that 

can obtain data collected by various people. The aforementioned method is an effective 

way of doing so and gathering the image data collected from the user. 

 

If forest information data estimated from UAVs by forest managers are accumulated, I can 

study forests in various places at super high resolution and each tree species level around the 

world. Furthermore, by combining satellite data: correction of satellite data or expansion of UAV 

data, I can monitor the forest conditions and transitions of biomass and biodiversity more 

accurately on a global scale. This will promote appropriate and sustainable use and protection of 

forests. 
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