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ABSTRACT. We study Non-autonomous Iterated Function Systems (NIFSs) with overlaps.
An NIFS ® = ({¢§j)}iel(j))§‘;1 on a compact subset X C R™ consists of a sequence of
finite collections of uniformly contracting maps ¢Ej ) X 5 X , where I () is a finite set. The
system @ is an Iterated Function System (IFS) if the collections {(j)Ej)}iE[(j) are independent

of j. In comparison to usual IFSs, we allow the contractions qﬁl(-j ) applied at each step j to
vary as j changes.

In Chapter 1, we give an overview of the theory of IFS. In particular, we study the
method of transversality and the connectedness locus for some parameterized IFSs. The
method of transversality is utilized for parameterized IFSs involving some complicated over-
laps. The connectedness locus arises naturally in the study of IFSs with overlaps. Finally,
we give the main results in this dissertation.

In Chapter 2, we introduce transversal families of non-autonomous conformal iterated
function systems on R™. Here, we do not assume the open set condition. We show that if
a d—parameter family of such systems satisfies the transversality condition, then for almost
every parameter value the Hausdorff dimension of the limit set is the minimum of m and
the Bowen dimension. Moreover, we give an example of a family {®:}+cv of parameterized
NIFSs such that {®;}:cu satisfies the transversality condition but ®; does not satisfy the
open set condition for any ¢ € U.

In Chapter 3, we consider some parameterized planar sets with unbounded digits. These
sets are related to some variations of NIF'Ss. However, we cannot apply the theory given in
the previous chapter to these sets. We investigate these sets by approximating the region of
transversality. We calculate the Hausdorff dimension of these sets for typical parameters in
some region with respect to the 2-dimensional Lebesgue measure. In addition, we estimate
the local dimension of the exceptional set of parameters.

In Chapter 4, we consider the connectedness locus M,, for fractal n-gons in the pa-
rameter space. The set of zeros of some families of power series is strongly related to the
connectedness locus for parameterized IF'Ss. We prove that the sets of zeros in the unit disk
are connected under some conditions. Furthermore, we apply this result to the study of the
connectedness locus M,,. We prove that for any n, M,, is connected.
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CHAPTER 1

Introduction

1.1. Background

An Iterated Function System (IFS) {¢1, ..., ¢n} on a compact subset X C R"™ consists of
a collection of uniformly contracting maps ¢; : X — X. It is well-known that there uniquely
exists a non-empty compact subset A C X such that

A=),
=1

called the limit set of the IF'S ([15]). In order to analyze the fine-scale structure of the limit
set, it is important to estimate the dimension of the set. If the conformal IFS satisfies some
separating condition, the Hausdorff dimension of the limit set is the zero of the pressure
function corresponding to the IFS (see e.g., [10], [21]). However, in general, it is difficult
to estimate the Hausdorff dimension of the limit set in the overlapping case. The method
of transversality is utilized for parameterized IFSs involving some complicated overlaps (see
e.g., [28], [32], [30], [17], [18]). In particular, the application to Bernoulli convolutions is
one of the recent developments in the theory of IFSs (see e.g., [31], [27]).

We now give an overview of the theory of IFSs as follows. We consider the following
planar sets Aa(A) for A € D*, where D*:={A € C : 0 < |\ <1}.

Ap(N) =4 a;N 1 a;€{0,1}
7=0

These sets have fractal structure. Indeed, the sets Ay(\) are the limit sets of the iterated
function systems {z — Az, z — Az + 1} on the complex plane. In order to discuss these sets,
we introduce a set F of functions and the set My of zeros in D* of functions which belong
to F as follows.

Fi=fA) =14+ a;N :a;€{-1,0,1} p,
j=1

My :={\ € D* : there exists f € F such that f(\) =0}.

Note that
1 1
AeD' @ —<A[<lpCMaCqAeDd” @ - <A< 1
{ S <hi<ibcanc{ ;<W<i} )
(see [32, p.538 (6)]).
We set f1(z) = Az and fa(z) = Az + 1. We say that the IFS {f1, fo} satisfies the open set

condition if there exists a non-empty bounded open set V' such that f1(V) N fo(V) = () and
fi(V) Cc V for all i € {1,2}. If A is not an element of Ms, the corresponding IFS satisfies

4



1.1. BACKGROUND 5

the open set condition, and hence we have that the Hausdorff dimension of Ag()) is equal
to —log2/log|A| (see [11, Theorem 9.3]). However, in general, it is difficult to estimate the
Hausdorff dimension of As(\) if A is an element of Msy. We set

Ms :={X e D* : there exists f € F such that f(\) = f'(A) = 0}(C My).

For any set A C C, we denote by dimy(A) the Hausdorff dimension of A with respect to
the Euclidean metric. We denote by Lo the 2-dimensional Lebesgue measure. Solomyak and
Xu ([31, Theorem 2.2] and [35, Proposition 2.7]) proved the following theorem by using the
method of transversality.

THEOREM 1.1.1.

. log 2

Lo(Az(N)) > 0 for Lo—ae. A€ {AeD* : 1/V2 < |\ < 1}\ M. (3)

for Lo—a.e. A€ {AeD* : 0< |\ <1/V2}; (2)

The local dimension of the exceptional set of parameters is estimated as the following.

THEOREM 1.1.2. [26, Theorem 8.2] For any 0 <r < R < 1/V/2,

. ) log 2 log 2
d AeD” A <R, d Az(A < < 2.
1mH({ € T < |A| , dim g (As( ))<—log|)\\}>_—logR
We now consider the topological property of My. The set Mj is known as “the Mandelbrot
set for pairs of linear maps’. In 1985, Barnsley and Harrington ([3]) defined My as the
connectedness locus for the pair of linear maps, that is,

My ={AeD* : Ay()) is connected}.

The set My looks like a “ring” around the set of parameters A\ for which As(\) is a Cantor
set and has “whiskers” (see Figure 1). In fact, Barnsley and Harrington ([3]) proved that
there is a neighborhood U of the set {0.5,—0.5} such that U N Ms C R. Furthermore, they
conjectured that there is a non-trivial hole in Ms.

Bousch ([5], [6]) proved that My is connected and locally connected. This is interesting
since for the case of quadratic maps, the local connectedness of the Mandelbrot set is still an
open problem. In [5] and [6], Bousch showed that My is equal to the set of zeros of power
series with coefficients 0,1, and —1. He also studied the set of zeros of power series with
coefficients 1 and —1, which is a subset of Mjs. At the same time, Odlyzko and Poonen (]25])
studied the set of zeros of power series with coeflicients 1 and 0, and they proved the set of
zeros is path-connected.

In 2002, Bandt ([1]) gave an algorithm to study geometric structure of Mo, and managed
to prove the existence of a non-trivial hole in Mj rigorously. Thus he positively answered
the conjecture of Barnsley and Harrington ([3]). He also conjectured that the interior of My
is dense away from My NR, that is, cl(int(Mz))U(Mz NR) = My. Here, for a set A C C,
we denote by cl(A) and int(A) the closure of A and the interior of A with respect to the
Fuclidean topology on C respectively. Several researchers made partial progress on Bandt’s
conjecture (see [31], [32] and [35]).

In 2008, Bandt and Hung ([2]) introduced self-similar sets parameterized by A € D* which
are called “fractal n-gons”, where n € N with n > 2. We give the rigorous definition of “fractal
n-gons” in the next sub-section (see Definition 1.3.6). They studied the connectedness locus
M,, for “fractal n-gons’, that is,

M, ={AeD" : A,(\) is connected},
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FIGURE 1. M» FIGURE 2. My

where A, (\) is the “fractal n-gon” corresponding to the parameter A (see Figure 2). Note
that “fractal 2-gons” are the limit sets of the iterated function systems {z + Az, z — Az + 1}
and My is the connectedness locus for “fractal 2-gons”. Bandt and Hung ([2]) discovered
many remarkable properties about M,,, including the following result. For each n > 3 with
n # 4, M,, is regular-closed, that is, cl(int(./\/ln)): M,,.

In 2016, Calegari, Koch and Walker ([9]) introduced new methods for constructing interior
points and positively answered Bandt’s conjecture, that is, cl(int(Ms))U(Ma NR) = Mo.
Himeki and Ishii [13] proved My is regular-closed. Thus the problems about the regular-
closedness of M, have been completely solved. Furthermore, Calegari and Walker ([8])
characterized the extreme points in “fractal n-gons” and gave an alternative proof of [13,
Proposition 2.1}, which we need to prove the regular-closedness of M.

We now consider the connectedness of M,. Since Bandt and Hung did not study the
connectedness of M, (see [2, page. 2665]), this problem still seems to remain unsolved.
However, the connectedness of M,, appears already in the thesis of Bousch ([7]). In fact,
Bousch considered some parameterized iterated function systems which consist of contracting
holomorphic functions on C¢. He showed that the connectedness locus for the parameterized
iterated function systems has no compact connected component under some mild conditions
([7, page.37 Théoreme 3]). As an application of this result, he showed that M, has no
compact connected component ([7, page.42 Théoréme]). This implies that M,, is connected
since {z € C : 1/y/n < |z| <1}C M,(C D*) (see [2, Proposition 3]).

In this dissertation, we approach the connectedness of M,, from a different aspect. In-
deed, we study the connectedness of the sets of zeros of some families of power series by
extending the methods of Bousch ([5]) and by giving a new framework (see Definition
1.3.7, Definition 1.3.8, and Main Theorem F). Furthermore, we apply this result to the
study of the connectedness of M, by using a characterization of M,, due to Bandt and
Hung [2, remark 3|(see Main Theorem E). On the other hand, Bousch ([7]) considered
some parameterized graphs G, (\) associated with the parameterized iterated function sys-
tems generating the “fractal n-gons” A,(\). Moreover, he showed that M,, = {\ € D*
Gn(A) is connected (in the sense of the graph theory)}. Hence our approach in this disserta-
tion is defferent from the approach used in [7]. In particular, we give some sufficient condition
for the connectedness of the sets of zeros of some families of power series (see Main Theorem
F). Finally we comment that this study is strongly motivated by the master thesis of Himeki
[12].
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It is natural to consider a non-autonomous version of the IFS as an application for various
problems. A Non-autonomous Iterated Function System (NIFS) ® = ({¢5j)}iel(j))‘?<:>1 on a
compact subset X C R™ consists of a sequence of finite collections of uniformly contracting
maps qﬁgj )X 5 X , where IU) is a finite set. The system ® is an Iterated Function System
(for short, IFS) if the collections {gi)z(j )}Z-E 1) are independent of j. In comparison to usual

IFSs, we allow the contractions qﬁz(j ) applied at each step j to vary as j changes. Rempe-
Gillen and Urbanski [29] introduced Non-autonomous Conformal Iterated Function Systems

(NCIFSs). An NCIFS ¢ = ({¢§j)}z’e1<1))?i1 on a compact subset X C R™ consists of a

sequence of collections of uniformly contracting conformal maps ¢§j VX 5 X satisfying
some mild conditions containing the Open Set Condition (OSC) which is defined as follows.

We say that a sequence of finite collections of maps ({gzﬁz(.j )}z‘e 16))52 on a compact subset X
with int(X) # () satisfies the OSC if for all j € N and all distinct indices a,b € I\,

¢ (int(X)) N ¢ (int(X)) = 0. (4)

Then the limit set of the NCIFS & = ({qﬁgj)}iel(j));?il is defined as the set of possible limit

points of sequences (ﬁ&)((ﬁ%)...((bgg(x))...)), w; € TV for all j € {1,2,...,i}, * € X. Rempe-
Gillen and Urbanski introduced the lower pressure function Pg : [0,00) — [—00, 0] of the
NCIFS ®. Then the Bowen dimension s of the NCIFS @ is defined by s¢ = sup{s >
0 : Pg(s) >0} =inf{s > 0 : Pg(s) < 0}. Rempe-Gillen and Urbaniski proved that
the Hausdorff dimension of the limit set is the Bowen dimension of the NCIFS ([29, 1.1
Theorem]). For related results for non-autonomous systems, see [14].

1.2. Notations and conventions

For the reader’s convenience, we summarize our main notations and conventions as fol-
lows.

N:={1,2,3,..}.

No == {0,1,2,...}.

R : the set of all real numbers.

C : the set of all complex numbers.

For any x € R™, we denote by |z| the Euclidean norm of .

Usually, we identify C with R For A € C, we denote by || the Euclidean norm of
A e R2

D:={AeC : A\ <1}

D*:={AeC : 0< |\ <1}.

For any x € R™ and for any a > 0, we set B(z,a) :={y € R™ : |z —y| < a}.

For any set A C R™, we denote by dimp(A) the Hausdorff dimension of A with
respect to the Euclidean metric.

e L., : the m-dimensional Lebesgue measure on R™.

e For any set A C R™, we denote by cl(A) and int(A) the closure of A and the interior
of A with respect to the Euclidean topology on R™ respectively.

e For each j € Ny, let G; C R. Let A € D*. We use {Z;io ajN i oaj € Gj} to denote
{Z;io ajN : for each j € Ny, a; € Gj}.
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e If X and Y are topological spaces, and if f: X — Y is any Borel measurable map,
then for any Borel measure p on X, we define fu as the push-forward measure
po ft.

e Let X be a topological space, let Xy be a Borel measurable subspace of X and let
m be a Borel measure on Xy. If we set m(B) := m(B N Xy) for any Borel subset
B C X, then m is a Borel measure on X. We also denote by m the measure m.

1.3. Main results

In this section we present the main results of this dissertation.

1.3.1. Transversal family of non-autonomous conformal iterated function sys-
tems. In this subsection we present the framework of transversal families of non-autonomous
conformal iterated function systems and we present the main results on them. For each j € N,
let 1) be a finite set. For any n,k € N with n < k, we set

k [ee)
=[[19. 57 = [ 19, 1" = HIO and I = HI
j=n j=n

7j=1

Let U ¢ R%. For any t € U, let &, = (<I>§j ))‘;‘;1 be a sequence of collections of maps on a
set X C R™, where

<I>§]) = {¢z(,Jt) 1 X = X0
Let n,k € N with n < k. For any w = wpwpt1---wi € Ik we set

¢w,t = ¢£;T:L)7t ¢Wk’
Let n € N. For any w = wpwp41 -+ € I2° and any j € N, we set

- n+j—1
W) = WnWnit * - Wpej—1 € 17770

Let V. C R™ be an open set and let ¢ : V. — ¢(V) be a diffeomorphism. We denote
by D¢(x) the derivative of ¢ evaluated at x. We say that ¢ is conformal if for any = € V
D¢(x) : R™ — R™ is a similarity linear map, that is, Dé(z) = ¢, - Az, where ¢, > 0 and
A, is an orthogonal matrix. For any conformal map ¢ : V. — ¢(V'), we denote by |D¢(x)|
its scaling factor at z, that is, if we set D¢(x) = ¢, - Ay we have |D¢(x)| = ¢, For any set
A CV, we set

||Do||a :=sup{|Do(z)| : =€ A}.

We denote by L4 the d-dimensional Lebesgue measure on R?. We introduce the transversal

family of non-autonomous conformal iterated function systems by employing the settings in
[29] and [30].

DEFINITION 1.3.1 (Transversal family of non-autonomous conformal iterated function
systems). Let m € N and let X C R™ be a non-empty compact convex set. Let d € N and
let U ¢ R% be an open set. For each j € N, let () be a finite set. Let ¢t € U. For any j € N,
let <I>§j) be a collection {¢§]t) : X — X}, of maps qbijt) on X. Let & = (<I>§j));°‘;1- We
say that {®;}ep is a Transversal family of Non-autonomous Conformal Iterated Function
Systems (TNCIFS) if {®;}+cp satisfies the following six conditions.

1. Conformality : There exists an open connected set V' O X (independent of 4, j and

t) such that for any i,j and ¢t € U, (;55? extends to a C! conformal map on V such
that %) (V) C V.
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2. Uniform contraction : There is a constant 0 < « < 1 such that for any ¢t € U, any
n €N, any w € I°° and any j € N,

Dy, o()] <+

for any z € X.
3. Bounded distortion : There exists a Borel measurable locally bounded function
K : U — [1,00) such that for any ¢t € U, any n € N, any w € I° and any j € N,

[ D, i(x1)] < K ()| Dy, 4 (22)] ()

for any x1,z9 € V.
4. Distortion continuity : For any n > 0 and to € U, there exists 6 = §(n,to) > 0 such
that for any ¢t € U with |t — tg| < J, for any n,j € N and for any w € I2°,

”D¢w|'toHX
exp(—jn) < ——=—2—— < exp(jn). (6)
D¢, el x

We define the address map as follows. Let t € U. For all n € N and all w € I;,°,
m ¢w|j,t (X)
j=1

is a singleton by the uniform contraction property. It is denoted by {ywn+}. The
map

Tnt: Igo — X

is defined by w + Yy, n¢. Then 7, is called the n-th address map corresponding to
t. Note that for any t € U and n € N the map m, ; is continuous with respect to the
product topology on I>°.

5. Continuity : Let n € N. The function I;° x U 3 (w,t) + 7, +(w) is continuous.

6. Transversality condition : For any compact subset G C U there exists a sequence of
positive constants {Cy, }22; with

. logC,
lim =

n—00 n

0

such that for all w, 7 € I°° with w,, # 7, and for all » > 0,

Li({te G : |mpi(w) —mne(r)| <7}) < Cpr™.

REMARK 1.3.2. If m > 2, the Conformality condition implies the Bounded distortion
condition. For the details, see [29, page. 1984 Remark].

REMARK 1.3.3. Let n € N and let t € U. Then for any w € I>°,
7Tn,t(W) = lim ¢w|j,t(x)7
j—00
where z € X.

REMARK 1.3.4. In the case of usual IF'Ss, the constants C,, in the transversality condition
are independent of n since the n-th address maps m, ; are independent of n.
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Let {®:}tcy be a TNCIFS. For any n € N and ¢t € U, the n-th limit set Jp+ of ®; is
defined by

Jth = 7Tn7t(I30).

For any ¢t € U, we define the lower pressure function P, : [0,00) — [—00,00] of ®; as the
following. For any s > 0 and n € N, we set

Zna(s) =Y (1Dbusllx)%,
weln

and

1
P,(s) := liminf — log Z,,+(s) € [—00, x].

n—oo n

By [29, Lemma 2.6], the lower pressure function has the following monotonicity. If s; < sa,
then either both P,(s1) and P,(s2) are equal to oo, both are equal to —oo, or P,(s1) > P,(s2).
Then for any ¢t € U, we set

s(t) :=sup{s >0 : P,(s) >0} =inf{s >0 : P,(s) <0},

where we set sup () = 0 and inf () = co. The value s(t) is called the Bowen dimension of ®;.
We set J; := Jy; for any t € U. We now present one of the main results of this dissertation.

Main Theorem A (Theorem 2.1.8). Let {®;}1ev be a TNCIFS. Suppose that the func-
tion t — s(t) is a real-valued and continuous function on U. Then

dimg (J;) = min{m, s(¢)}
for Lg-a.e. t € U.

Main Theorem A is a generalization of [30, Theorem 3.1 (i)]. We illustrate Main Theorem
A by presenting the following important example. We set

1

= : <
X {ZEC ’Z‘_1—2><5—5/8

},U—{te(C |t <2x 578, tgéR}.
Lefc t € U. For egch j € N, we define the maps (ﬁgjz : X — X and d)éjz : X - X by
(bgjz (z) =tz and (bgjz (z) =tz + 1/j respectively. For each j € N, we set

o) = (o0 o) = {2tz 124 2|

and ¢; = (<I>£j ))J‘?il. We now present the following theorem, which is the second main result
of this dissertation.

Main Theorem B (Proposition 2.2.2 and Proposition 2.2.5). The family {®:}ev of
parameterized systems is a TNCIFS but ®; does not satisfy the open set condition (4) for any
telU.

Since ®; does not satisfy the open set condition (4) for any ¢ € U, we cannot apply the
framework of Rempe-Gillen and Urbariski [29] to the study of the limit set J; of ®;. We
calculate the lower pressure function P, for ®; as the following. For any s € [0, 00),
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ool s
Py(s) =liminf —log } _ (|| Déuellx)

weln

T | ns
= hnrggfalog Z |t]
wel™

1
= lim inf — log(2"|¢|™*)
n—oo n,
=log 2 + slog |t].
Hence for each t € U, P,(s) has the zero

s(t) =

~ —logt]

log 2

and the function ¢ — s(t) is continuous on U. Let J; be the (first) limit set corresponding to
t. Then by Main Theorem A, we have

dimg (J¢) = min{2, s(t)} = s(t)
forae. tc{teC : |t| <1/v2,t ¢ R}(C U) and
dimpy(J¢) = min{2, s(t)} = 2
forae te{teC : 1/vV2<|t|<2x5%8 t¢ R} (cCU).

1.3.2. The Hausdorff dimension of some planar sets with unbounded digits.
In this subsection we consider the following sets Lo(\) for A € D*.

Lo(A) := 4 > ajN sa; € {0.p5} ¢ (7)
j=0

where for all j € Np, 1 < p; € R, pj = 00 as j — oo and {pj}?io satisfies the following
condition,

o % —1asj — oo.
Note that the sets Lo()\) depend on the sequence {p;}32 and these sets are well-defined by
the above condition (see Remark 3.1.1).

For any A € D* and j € Ny, we define the maps fé]; :C - C and f1(],2 :C - C by
féjg\(z) = Az and fl(jg\(z) = Az + p; respectively. We can see the sets Lo(\) are “the limit
sets” of the NIFSs ({ fég, fl(]/i )52o as the following. For any n € No and A € D*, we define
the address map II,, 5 for ({fég, fl(]/z})‘;‘;o We set [ := I>° = {0, 1}* for any n € No.

DEFINITION 1.3.5. For each A € D* and n € Ny, we define the address map II,, y : I — C
by

0o
Hn7/\(w) = ]llglo fw\j,)\(o) = an+jwn+j>\]
7=0

(w = wpwp41 - -+ € I??). Note that this map is well-defined.
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Then we have that
Oo .
A (I°) = <> a;N 2 aj € {0,ppss}
=0

In particular, Lo(X) = IIp A(/°°). Moreover, Inui [16] gave the methods to construct “the
limit sets” of NIFSs with some mild conditions on complete metric spaces by extending the
idea of Hutchinson [15]. The set Lo(A) is also the limit set of the NIFS ({fé?))\, fl(]))\})j‘;o in
Inui’s sense. .

Note that there does not exist a compact subset X C C such that for each j, fl(? ))\ (X)cX
since the set of digits {p; : j € Ny} is not bounded. One of the aims in this subsection is
to establish some methods to estimate the Hausdorff dimension of the limit sets of NIFSs on
non-compact metric spaces via studying examples. We now present the main results in this
subsection.

Main Theorem C (Theorem 3.3.11).

dimg (Lo(N)) = _lloogg2’)\’ for Lo—ae. A€ {AeD* : 0< |\ <1/V2};
Lo(Lo(N)) >0 for Lo—ae. A€ {AeD* : 1/vV2< |\ <1\ Ma.

Main Theorem D (Theorem 3.3.14). For any 0 < R < 1/V/2,

dimg <{)\ eD* : 0< |\ <R, dimy(Lo(N)) < _llzggTM }) < _If;R <2

In order to prove our results, we use the method of transversality. Here, for a param-
eterized family of functions, the transversality means a condition which controls the way
the functions depend on parameters. Usually, we call the set of parameters “the region of
transversality”. The method of transversality is used for self-similar sets with overlaps (e.g.,
[28], [31], [17], [18]), for self-similar measures (e.g., [31]) and for some general family of
functions (e.g., [30], [20], [36]). Note that their setting depend on the compactness of the
whole space. Hence we cannot apply their framework or methods to our setting since the set
of digits {p; : j € Nyo} is not bounded.

1.3.3. M,, is connected. In this subsection we consider the connectedness locus M,,
for “fractal n-gons’ in the parameter space. Below we fix n € N with n > 2. We give the
rigorous definition of fractal n-gons as the following.

DEFINITION 1.3.6 (Fractal n-gons). Let A € D*. We set &, = exp(2mv/—1/n). For each
i €{0,1,...,n—1}, we define ! : C — C by @?’A(z) = Az +&,". Then there uniquely exists
a non-empty compact subset A, () such that

(]

n—1

AN = U @ (A (V)
i=0
(See [11], [15]). We call A, (A) a fractal n-gon corresponding to the parameter A.
For each n € N with n > 2, we define the connectedness locus M,, for fractal n-gons as
the following.
M, ={xeD* : A,()) is connected}.

We give one of the main results in this subsection as the following.
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Main Theorem E (Theorem 4.3.7 and Theorem 4.3.8). For anyn € N withn > 2, M,,
is connected.

In [5], Bousch showed that My is equal to the set of zeros of power series with coefficients
0,1, and —1. Similarly, we can identify M,, with the set of zeros of some power series (see [2,
Remark 3]). However, in the proof of the connectedness of M,, for general n € N with n > 2,
since the set €2, of coefficients of the power series, which corresponds to M,,, is complicated
for general n € N with n > 2 (see Definition 4.3.3) in contrast to My , we cannot use the
methods to prove the connectedness of My and M3 which are given in [5] and [12]. Hence we
study the connectedness of the sets of zeros of some power series by extending the methods
of Bousch ([5]) and by using some new ideas and techniques. We need the following setting
to prove Main Theorem E, which is one of the new ideas in this dissertation.

DEFINITION 1.3.7. Let G be a subset of C. We say that G satisfies the condition (x) if G
satisfies all of the following conditions (i), (ii), and (iii).
(i) 1 e G.
(ii) For all a,b € G with a # b, there exist by, bs,...,b,, € G with by = a and b, = b
such that for all ¢ € G, there exist di,do, ...,dyn_1 € G satisfying that

(bg — bl)c +d; € G, (bg — bg)c +dy €G,..., (bm — bmfl)c +dm_1 € G.
(iii) G is compact.

DEFINITION 1.3.8. Let G be a subset of C with (x). Let D be the unit disk. We set
o0
P =11 —|—Zaizi :a; € G},
i=1

X% ={z€D : there exists f € PY such that f(z) = 0}.
Then the following theorem holds, which we need to prove Main Theorem E.

Main Theorem F (Theorem 4.2.3). Let G be a subset of C with (). Suppose that there
exists a real number R with 0 < R < 1 such that {z € C : R < |z| <1} C X&. Then X is
connected.

1.4. Organization

The dissertation is organized as follows.

In Chapter 2, we study transversal families of non-autonomous conformal iterated func-
tion systems on R™. Section 2.1 is devoted to the proof of one of the main results. As
preliminaries for the proof, we give some lemma for conformal maps on R™ and construct a
Gibbs-like measure on the symbolic space. Finally, we give the proof by using the method of
transversality. In section 2.2 we give an example of a family {®;};cy of parameterized NIFSs
such that {®;};cp satisfies the transversality condition but ®; does not satisfy the open set
condition for any ¢ € U. The contents in Chapter 2 are included in [24].

In Chapter 3, we study some planar sets with unbounded digits. In Section 3.1, we give
the upper estimation of the Hausdorff dimension of Ly(\) for any A € D*. In Section 3.2,
we give some lemmas in order to estimate the Hausdorff dimension. In addition, we give a
technical lemma for the transversality (Lemma 3.2.10). In Section 3.3, we give the key lemmas
(Lemmas 3.3.6 and 3.3.7), which imply the lower estimation of the Hausdorff dimension of
Lo(X) for typical parameters A with respect to £ and the estimation of local dimension of
the exceptional set of parameters. The contents in Chapter 3 are included in [22].
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In Chapter 4, we study the connectedness of M,,. In Sections 4.1 and 4.2, we prove Main
Theorem F by extending the methods of Bousch ([5]) and by using some new ideas. If we
set 1 :={0,1,....,n —1} and Q, = {(& — &¥)/(1 = &) : j.k € I}, then we have that
My =X% and {z € C : 1/y/n < |z| <1} C M, (see [2, Remark 3] and [2, Proposition 3]).
It is highly non-trivial that €, satisfies the condition (%) and in order to prove that, we need
Lemmas 4.3.1 and 4.3.2, which are the key lemmas to prove Main Theorem F. In Section
4.3, by using Lemmas 4.3.1 and 4.3.2, we prove that (2, satisfies the condition (x), and hence
we get Main Theorem E as a corollary of Main Theorem F. The contents in Chapter 4 are
included in [23].
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CHAPTER 2

Transversal family of non-autonomous conformal iterated
function systems

In this chapter, we study transversal families of non-autonomous conformal iterated func-
tion systems on R™ and give the proofs of Main Theorems A and B.

2.1. Preliminaries and the proof of Main Theorem A

In this section we give some lemmas for conformal maps on R™ and give the proof of
. oo
Main Theorem A. Let {®;}icy = {({qﬁz(]t) X = X}ie[(j)) , 1} be a TNCIFS.
’ I=)teU
2.1.1. Lemma for conformal maps. Let n,k € N with n < k. Below, we set
||[Dyt|| := ||Dowsl|x for any w € I¥ and any ¢t € U. We set I* := U,>1I". This sub-
section is devoted to the proof of the following lemma.

LEMMA 2.1.1. There exists L > 1 such that for anyt € U, any w € I'* and any xz,y € X,
|t (2) = Gt (y)| = L™K () 2| Dyl| - [ — yl, (8)

where K (t) comes from the bounded distortion condition (5).

In the case X C R!, we can show Lemma 2.1.1 by the Mean Value Theorem and the
bounded distortion condition. In the case X C R™ for m > 2, we need some properties of
conformal maps on R™. We prove Lemma 2.1.1 by imitating the argument in [21, pages.73-
74] as follows. We set |X| = sup, ,cx [z — y|(< 00). For any set A C R™, we denote by A
the boundary of A. Let V be an open set with V' O X in the conformality condition. We set

inf{lz —y| : zeX,ye 8V}}
2

In order to prove Lemma 2.1.1, we give the following lemma.

r:min{\X\,

LEMMA 2.1.2. Lett € U. For anyw € I* and x € X,
Pt (B(x,7)) D B(@u(w), K ()7 | Do
PRrROOF. Let t € U. Fix z € X. For any w € I*, we set
R, =sup{u >0 : B(¢ys(z),u) C ¢u(B(x,r))}.

r).

Then
83((25%,5({5), Rw) N 8(]5(‘,’,5(3(1', T)) 7é @ (9)

Since B(¢w (), Ry) C ¢ui(B(x,7)) C ¢u(V), by applying the Mean Value Inequality to
the map qﬁ;i restricted to the convex set B(¢w (), R,) and using the bounded distortion
condition (5), we have

G (B(Gw(2), Rw)) © Bl [|D(&5 )l vy Ro) © Bla, K(8)|| Dl ™ Ra).

15
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This implies
B(¢wt(2), Ru) C ut(B(w, K (t)][Déul| ™ Ro))- (10)
By (9) and (10), K (t)|| D¢y +|| ' R, > r. By the definition of R, we have
Guwt(B(x,1)) D B(¢us(@), K () |DuelIr).

We now give a proof of Lemma 2.1.1.

(proof of Lemma 2.1.1). Let t € U. Fix w € I'*. Take z,y € X.

(Case 1: |z —y| < K(t)~'r) By applying the Mean Value Inequality to the map ¢
restricted to the convex set B(x, K(t)~!r) and using the bounded distortion condition (5),
we have

G (y) € B(duwa(@), K(t)7 [ Dpus|Ir)- (11)
By Lemma 2.1.2, we have
B(¢u(x), K(t)7||Dullr) € dus(Blz,1)) C due(V).
By (11) and applying the Mean Value Inequality to the map ng;’lt restricted to the convex set
B(¢u(x), K(t) "' Deullr), we have
|z —y| = ’(d’w,t)il((ﬁw,t(m’)) - (qﬁw,t)il((bw,t(y))’
<D (b)) |Gt () — Gt (¥)]-

By using the bounded distortion condition (5), we have

2 —y| < K®)||Dguil| ™" - [6wi(x) = dut(y)]- (12)
Hence we obtain (8).
(Case 2: |z —y| > K(t)7'r) Since ¢ui(y) ¢ duwi(B(x, K(t)~!r)), there exists z €
OB(x, K(t)~1r) such that ¢, () belongs to the straight line path from @, () to ¢ (y).
Hence

|Pw,t(2) = Pt (Y)] 2 [Pwt(T) = Put(2)]. (13)
Since |z — 2| = K(t)~!r, by (12) we have
(G (@) = b1 (2)] = K@) Dbuill - |2 = 2| = K(&) [ Dguoy[K(E) " 'r. (14)
By (13) and (14) we have
Sz —ylr o

|Gt (@) = Pup(y)| = K ()| Do || K (1) K@) ?||Dul| - 2 = yl.

e —yl = [X]
If we set L = |X|/r(> 1), then we obtain (8). Thus we have proved our lemma. O

2.1.2. Transversality argument. For w € I*, let |w| be the length of w. We prove the
following two lemmas by imitating the proofs of Lemmas 3.2 and 3.3 in [30].

LEMMA 2.1.3. Let e,a > 0 and tg € U. We set n = %ﬁv and take 6 = d(n,to)
coming from the distortion continuity (6) ascribed to n and ty, where 7 is the constant coming
from the uniform contraction condition. Then for all w € I* and t € U with |ty — t| < 0,

1Dt |75 < [ Dol
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PRrROOF. By the distortion continuity (6), we have
€ € €
[1D@utol|*75 < exp(wln(a + 7)) - | D"

€ e
< exp(|w|n(a + Z))’YM“ [ Dot

(by the uniform contraction condition)

= exp(fwl(n(a+ 7) + 7 log)) - 1Dbus

a

a

LEMMA 2.1.4. For any compact subset G C U and any o with 0 < a < m, there ezists a
sequence of positive constants {Cy,}5°; such that

. log C’n
lim =
n—oo n

and for any w, T € I° with wy, # Ty,

1 ~
/G [T, (W) — T e (T)]* dL4(t) < Ch.

Proor. Let n € N. By the transversality condition we have that

Lo s 420 = [ & (trea T =R 2 1) i

— [0 6 ¢ i)~ muat) < 7 ) s

| x| o0 1
:/ L4(G) dm—i—/ Ch dx
0 |

X‘—a fEm/a

0

1 oo
— IXTL4(G) + Co | ]

1—-m/a IX| -

1 .

=|X|7L4(G) + Cp,———| X|" =: C,.

| | d( )+ nm/a—1| | n
Since%logCn%Oasn%oo,wehave%logCN’n—M)asn%oo. O

For any w € I*, we define the cylinder set [w] as {7 € I*® : 71 = w1, ..., Tjyy| = W)y,|}- We
denote by d,, the Dirac measure at w € I°°. We give a Gibbs-like measure by employing the
proof of Claim in the proof of 3.2 Theorem in [29] and the argument in [14, page. 232].

LEMMA 2.1.5 (The existence of a Gibbs-like measure). Let t € U and let s > 0. Then
there exists a Borel probability measure jiz s on I°° such that for any w € I*,
25 || Dt ||*

Zna(s)
where K (t) is the constant comes from the bounded distortion (5) and Zy, 1(s) = > cn || Ddw,tl|®-

pir,s([w]) < K(#) (15)

PROOF. Let n € N. For any w € I", take an element 7, € [w]. For any ¢t € U, s > 0 and
n € N, we define the Borel probability measure fi; s, on I° as

1
= > D
Ht,s,n Zn,t(s) | ’ d)w7t|

weln

55
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Then

Doy 4||°
Mt,s,n([w]) - szst(’;)

for any w € I"™. .
Ifwe ", vel{and 7 =wv e I™, then by the bounded distortion (5), |[Deyl| -
HD¢U¢H S K(t)QHD(bT,tH. Hence

1
Zntji(s) = K(t)gszn,t(s) > 1DGul (16)
ve]ﬁif

Thus we have that for any w € I™,
fits.n+5 ([W]) = 1,45 ( U [wo])

n+j
vel, 1

ZUEIZH HDqswv,tHs
Zntji(s)

n—+j D s
< D¢ tHSZUEInI{ [[Dpo |
> w,

Znjit(s)

25 |[1D P t|*
th(S)

< K(t)

(by (16)).
Let s be a weak*—limit of a subsequence of {Mt,s,j}ﬁ1 in the space of Borel probability
measures on I (see e.g. [37, Theorem 6.5]). The above inequality implies

1D ] |*

pallel) < KO 7P

a

For any n € N, we define the map " : I — Ip9; by o™ (wiwa ) = Wpp1Wnio - -
This is a continuous map with respect to the product topology. We give the following simple
lemma.

LEMMA 2.1.6. Lett € U. Then for anyn € N and w € I,
T, (W) = Pup, (T (0" (W))).

ProOF. Let t € U. For any n € N and w € I*°, we have

m14(w) = [ G, 1(X)
j=1

= ﬂ ¢w|j,t(X)

j=n+1
= Gl | [) on ), (X)
j=1

= Guft(Tp1,6(0" (W)))-
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For any w = wjwg -+« ,7 =119 -+ € I*® withw # 7 and w1 = 71, we denote by wAT(€ I*)
the largest common initial segment of w and 7. In order to prove Main Theorem A, we need
the following which is the key lemma for the proof.

LEMMA 2.1.7. Under the assumptions of Main Theorem A, for any to € U and any e > 0,
there exists 6 = (to,€) > 0 such that

dimpg (J¢) > min{m, s(to)} — %
for Lg- a.e. t € B(tg,?).
Proor. For any ¢y € U and € > 0, we set

- —elog~y
(4(s(to) = 5) +€)’

where v is the constant coming from the uniform contraction condition. Take § = d(n,to)
coming from the distortion continuity (6) ascribed to n and t;. We set s := min{m, s(to)}.
By Lemma 2.1.3, for any w € I* and t € B(t,9),

[[Dot

Let n € N. For any p € I", we set

78 2 || D [P107E 2 (| Db |07 (17)

F:={(w,7)€eI®xI>® : w #1n},
Ay i={(w,7) € I® X I* : wAT=p},
H:={(w,7) € I*xI>® : w=r1}.

Then we have [* x I*® = HU FU|],> | ,em 4p (disjoint union). Let p € I". By Lemma
2.1.6 and Lemma 2.1.1, there exists L > 1 such that for any (w,7) € A, and t € U,

‘Wl,t(u}) — 7T17t(7')’ == |¢p7t(7rn+1’t(0"w)) — pr,t(ﬂ'n—l—Lt(UnT))‘
> LUK () 72| Dpill - [Tnt1,6(0"w) = g ,e(0™ 7)) (18)

Let p = pyy,5(t9)—e/4 be the Borel probability measure coming from Lemma 2.1.5 ascribed to
to € U and s(tg) —€/4 > 0. Since liminf,,_,~ %log Znto(8(to) — §) > 0, there exists b > 0 and
ng € N such that for all n > ny,

Znto <s(t0) - i) > exp(bn). (19)

By (15) and (19) we have for any w € I*°, u({w}) = 0. Hence we obtain that
(ux w(H) = [ pfw 1™+ @) € HY du(r)
= [ _uttrh) dutr) <o, (20)

I

We set o = p x p and

1
R(t ;:// dpso.
() oo 110 (w) — ma(r) 2
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Then

/B(to,é) ) dalt) Z Z // </B(to,5) |71, (w) — 71rl,t(7-)|se/2 dt) dpz(w, 7)

n>1pel™

+//F </B(to,6) |1 (w) — 711,t(7)‘3_6/2 dt) dpz(w, )

(by Fubini’s Theorem and (20))

Lsfe/ZK(t)Q(sfe/Q)‘|D¢p’t‘ |*S+6/2
<Z Z // (/B 72 dt | dus(w, )

(to,9) \Wn+1,t(U”W) - 7Tn+1,t(U"T)

n>1peln
+// (/ L dt) djiz(w, 7)
P \UB(to,6) |m1,(w) — m14(7)]57¢/2
(by (18))
S ( sup | KO > > G ) // 1Dt~/ dpin (w, 7)
teB(to,0) n>1 pel™

—f—//FéldMQ(w,T)

(by (17) and Lemma 2.1.4)

(s(to)—e/4)
<12 sup K292 G / / dpiz (e, 7)
( t€B(to,0) ,; " p;n Znto(s(to) — €/4)
+ 6'1
(by Lemma 2.1.5)
= d C
= Const. ; Tnnls _6/4 EIn // pa(w, 7) + Cq

(we set Const.=L86/2< sup K<t>2<“/2>> K (tg) 107/
teB(to,d)

Cn+1 ~
< .
< Const 7; e (5(to) — /4) +

(since p2(4,) < p((p))?).

Since < log Cri1 — 0 as n — 00, it follows from (19) that

én—i—l
Zn, 1o (s(t0) — €/4)

/ R(t) L4(t) < Const. Z + (1 < 0.
B(to,0)

n>1

Hence we have that for Lg-a.e. t € B(tg,9),

1
RO= [ [ dma) < m) < o
RmxRm |T — Y



2.1. PRELIMINARIES AND THE PROOF OF MAIN THEOREM A 21

where 71 4+(p) is the push forward measure of p by 7y ;. Since m14+() (J¢) = 1, by [11, Theorem
4.13 (a)] we have

dimpg (J¢) > min{m, s(to)} — %
for L4- a.e. t € B(to,0). O

2.1.3. Proof of Main Theorem A. The following is one of the main results in this
dissertation.

THEOREM 2.1.8. Let {®:}icy be a TNCIFS. Suppose that the function t — s(t) is a
real-valued and continuous function on U. Then

dimy (J;) = min{m, s(¢)}
for Lg-a.e. t € U.
ProOF. By [29, 2.8 Lemmal, for any ¢t € U we have
dimp (J¢) < §(t) := min{m, s(t) }.
Hence it suffices to prove that
dimp (J;) = 5(t)

for L4- a.e. t € U. Suppose that this is not true. Then there exist ¢ > 0 and a Lebesgue
density point ty € U of the set

{t e U : dimpg(Jr) < §(t) — €}.
Then there exists dg > 0 such that for each 0 < § < d,
Ly({t € B(to,0) :dimpg(Jy) < 5(t) —€}) > 0. (21)

By the continuity of the function §(t), if ¢ is small enough then 3(t) < 3(to) + €/2 for all
t € B(tp,d). Thus for all § sufficiently small we obtain from (21) that

La({t € B(to,8) : dimp(J;) < 5(t) — €/2}) > 0.

This contradicts Lemma 2.1.7 and completes the proof of our theorem. O

We consider the continuity of the map ¢ — s(¢). By developing the method in the proof
of Lemma 3.4 in [30], we give the following.

PROPOSITION 2.1.9. Let {®4}1cy be a TNCIFS. Suppose that for any t € U there exists
s(t) > 0 such that P,(s(t)) = 0. Then the function t — s(t) is continuous on U.
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PRrROOF. For any t € U, for any s; > 0 with |P,(s1)| < oo and for any sp € R with
s1+s2 > 0 and |P,(s1 + s2)| < oo, we have
o1 o1
P.(s1+ s2) — Pi(s1) = hrr_1>mf —log Zp +(s1+ s2) — hm 1nf - log Znt(51)
n

= hmmf log Zn.t(s1 + s2) + lim sup — log Zn (1)

n—o0 n—o0 n

1
< Timsup <1og S 1Dl — log Znt<sl>)

n—oo wEI"
< lim sup = —log Z,,+(s1)
n—oo wEI”
= hmsup - < —log Znt(31)>
weln
= sologvy < 0.

Hence we have that for any ¢ € U, for any s; > 0 with |P,(s1)| < oo and for any s2 € R with
s1 4 s2 > 0 and |P,(s1 + s2)| < o0,

|[Py(s1 4 52) = By(s1)] = |s2] - [log /. (22)

Fix € > 0 and ty € U. Take § > 0 produced by the distorsion continuity (6) with n = € and
to. For any t € U with |t — to| < 0, then we have that

Py(s(to)) = By(s(t ))_Pto( s(to))
—hmlnf—loant( (t ))—i—hmsup—loanto( (to))

n—o00 n—oo n

1
< limsup <10g D 1Dl —log Y HD%,toHS(tO))

weln weln

1 <1 Ser 1060l )

= limsup — [ log
n—o0 Zweln HD(Z)UJ toHS(tO)
D s(to)
< lim sup — | log —H Duntl
n—oo 1 HD%n to|*(F0)

HD(ﬁun,toHs(to ""e[n HD(bwt ”

(we set where u,, € I")

1
< limsup — log exp(nes(to))
n

n—oo

(by the distorsion continuity (6))
= es(tp),
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and
P,(s(to)) = Py(s(to)) — Bto (s(to))

1 -1
= liminf — log Z,, +(s(to)) + lim sup — log Z,, +, (s(to))
n n

n—ro0 n— o0

o] s s
ZwﬁﬁnQ%EZuwW\W—ngHw%@wm>

weln weln

w (| Db o] [5(F0)
= lilrninfl (log Ewel |[D ,t|| )

nee S wern [[Dduw g 50)
D s(to)
> liminf = (1Og Mvntu)

n—oo M HD(bvmtoHs(to)

D, 1 |[500)  wer™ || Depy, g [[5(00)

(we set where v, € I")

> linrr_1>i£f % log exp(—nes(tp))
(by the distorsion continuity(6))
= —es(tp).
Thus we have
[Py(s(to))| < es(to) < oo (23)
Fix t € U with [tg — t| < 4. By (22) and (23) we have
[Py(s(t) + s(to) — s(t)) — Py(s(t))]

|s(t0) — s()] <

| log 7|
[Py (s(t) + 5(to) —s(t)| _ es(to)
N |log 7] ~ |logn|’
Hence the function ¢ — s(t) is continuous at ¢y € U. Since ¢ is arbitrary, we have proved
our proposition. O

REMARK 2.1.10. Let {®;};cy be a TNCIFS satisfying
e there exists N > 1 such that #I1U) < N for any j € N;
o forany t € U, j €N, and i € I¥), the map ¢\%) has the following form

69 (@) = ult)z + aiy,

where U is an open subset of R4, u : U — (0,1) is a continuous function on U and
aij € R™.
Then we have that '
liminf, % Z?:l log #10)
—log |u(t)]|
is the zero of the lower pressure function P, for any ¢t € U. Hence the family {®;},cy satisfies
the assumption of Proposition 2.1.9.
We do not know any example of the family {®;};c for which the map ¢ — s(t) is not
continuous.

s(t) =
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2.2. Example

In this section, we give an example of a family {®; };cp of parameterized NCIFSs such that
{®;}1cv satisfies the transversality condition but ®; does not satisfy the open set condition
for any t € U. Weset D := {z € C : |z] < 1}. For any holomorphic function f on D,
we denote by f/(z) the complex derivative of f evaluated at z € D. For the transversality
condition, we now give a slight variation of [32, Lemma 5.2].

LEMMA 2.2.1. Let ‘H be a compact subset of the space of holomorphic functions on D
endowed with the compact open topology. We set

My == {NeD : there exists f € H such that f(\) = f'(\) = 0}.

Let G be a compact subset of D\MH Then there exists K = K(H,G) > 0 such that for any
f€H and any r > 0,

Lo(INeG:fN)| < 7)) < Kr?. (24)

PRrROOF. We can prove the statement of our lemma by replacing Br and My in the proof
of [32, Lemma 5.2] by H and My respectively. O

We now give a family {®;},cp of parametrized systems such that {®;}ic is a TNCIFS
but ®; does not satisfy the open set condition (4) for any ¢t € U. In order to do that, we set

U:={teC : |t| <2x57% t¢R}.
Note that 2 x 57°/8 ~ 0.73143 > 1/\@ Let t € U. For each j € N, we define

R

ProrosITION 2.2.2. For any t € U, the system {@gj)}?‘;l does not satisfy the open set
condition.

PROOF. Suppose that the system {®; G )} © , satisfies the open set condltlon (4). Then

there exists a compact subset X C C with int(X') # () such that ¢17t (int(X)) ﬂqﬁ (mt( ) =
(). Hence there exist x € X and r > 0 such that

9 (B(w,r)) N ¢} (B(x,7)) = B(ta,|tlr) N B(tz + 1/4, [t)r) =
In particular, we have for all j € N,
1
J

This is a contradiction. O

We set )
X = C : < — %,
{26 ’Z’—1—2x5—5/8}

Then we have that for any ¢t € U, for any j € N and for any i € I1U) := {1,2}, qbfjt)(X) C X.
We set bgj) =0 and béj) = 1/j for each j. Let n,j € N. We give the following lemma.

LEMMA 2.2.3. Lett € U. For any w = wy - Wpyj—1 € I and any z € X we have

+ 1
Gut(2) = B3 00 60T (2 tzz+zb;¢3 R



2.2. EXAMPLE 25

where b

&Zijll) € {0 }. In particular, for any w = wy, -+ - wpyj_1--- € I2°,

’n—H 1
[e.9]
n+i—1)i—1
7Tn t Z bwn-m 1 t .
Proor. This can be shown by induction on j. O

We can show that the family of systems {®;}.cry is a TNCIFS as follows.
1. Conformality : Let t € U. For any j € N and any i € IU), gbfjt)(z) =tz + bl(j) is a

similarity map on C. '
2. Uniform Contraction : We set v = 1/1/2. Then for any w € I/ and z € X,

[Déus(2)| = [t <+’

by Lemma 2.2.3. A
3. Bounded distortion : By (2.2.3), for any w = wy - -wnyj1 € i1 and z € C,
|D¢,,.+(2)| = [t]. We define the Borel measurable locally bounded function K : U —

[1,00) by K(t) = 1. Then for any w € I/~

Do i(21)] < K(8)| Dot (22)]

for all z1, z9 € C.
4. Distortion continuity : Fix tg € U. Since the map t — log|t| is continuous at ¢ty € U,
for any n > 0 there exists 6 = §(n,t9) > 0 such that for any t € U with |ty — t| < 9,

| log [to| —log|t|| < 7.

Hence we have

| log tol? /[P | < jin.

Thus we have that for any w € IpH 1,

1Dty |
1D ¢ |

5. Continuity : By Lemma 2.2.3, we have for any t € U and any w € I;°,

exp(—je) < = exp(log \to\j/]ﬂj) < exp(Je).

o0

Toa(w) = Y BT

i=1

Hence the map t — 7, ¢(w) is continuous on U.
6. Transversality condition : We introduce a set G of holomorphic functions on I and
the set Oy of double zeros in D for functions belonging to G.

G .= :|:1+Zaj' a; € [-1,1] 5,

Oy := {t €D : there exists f € G such that f(t) = f'(t) = 0}.

Note that G is a compact subset of the space of holomorphic functions on D endowed
with the compact open topology. Let n € N. Then we have for any ¢ € U and any



26 2. TRANSVERSAL FAMILY OF NON-AUTONOMOUS CONFORMAL ITERATED FUNCTION SYSTEMS

w, T € I>° with w, # 7,

E:n+zl)zl §:(n+1121
7Tn7t(w _ﬂ-nt Wn4i—1 t an+z 1 t

S

_ n—l—z 1) (n+i—1) i—1

- + Z ( Wnti—1 Tn+i—1 > t
=2

(iHZ (8D = bl ) 6 )

Then the function ¢ — +1+> "2, n (bg::i 11 ) _plnti- 1))151 ! is a holomorphic function

Tn+i—1
which belongs to G. Let G C ]D>\(’)2 be a compact subset. By Lemma 2.2.1, there
exists K = K(G,G) > 0 such that for any w, 7 € I;° with w, # 7, and any r > 0,

Lo({t € G : |mps(w) — Wnt(T)\ <r})

=Lo({teG : |1+ Z (i) _ plntimygi=l) < )

Wn4i—1 Tn4i—1

< K(nr)2.
If we set C), := Kn? for any n € N, we have
Lo({t € G+ [mnsw) = mae(r)] < 7)< Cur?
and . . 5
—logCp, = —log K+ —logn — 0
n n n

as n — oo.
Finally, we use the following theorem.

THEOREM 2.2.4. [35, Proposition 2.7] A power series of the form 1—1—2;’11 ajzd,

with a; € [—1,1], cannot have a non-real double zero of modulus less than 2 x 57578,

By using above theorem, we have that U = {t € C : || <2x 578 t¢ R} C
D\O. Hence the family {®;},cp satisfies the transversality condition.
By the above arguments, we get the following.

PROPOSITION 2.2.5. The family of parametrized systems {®;}icvr is a TNCIFS.

We calculate the lower pressure function P, for @, t € U as the following. For
any s € [0, 00),

el s
Py(s) =liminf —log » _ || D]

weln
—hmmf—logg |t|™®
n—oo N
weln

— 13 : 1 n ns
= hnn_1>10réf - log(2"™|t]™*)
=log2 + slog [t|.
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Hence for each ¢t € U, P,(s) has the zero

log 2
0= Ziogp]

and the function ¢ — s(t) is continuous on U. Let J; be the (1st) limit set corre-
sponding to ¢t. Then by Theorem 2.1.8, we have

dimg (J;) = min{2, s(t)} = s(t)
fora.e. t € {t € C : |t| <1/v/2,t ¢ R} and
dimp(J¢) = min{2, s(t)} = 2
forae te{teC : 1/V2<|t| <2x 558 t¢ R}



CHAPTER 3

The Hausdorff dimension of some planar sets with unbounded
digits

In this chapter, we consider parameterized planar sets Lo(A) for A € D* (see (7)). We in-
vestigate these sets by approximating the region of transversality. We calculate the Hausdorff
dimension of these sets for typical parameters in some region with respect to the 2-dimensional
Lebesgue measure. In addition, we estimate the local dimension of the exceptional set of pa-
rameters.

3.1. Preliminaries

In this section, we give the upper estimation of the Hausdorff dimension of L(A) for any
A € D*.

3.1.1. On the symbolic space. We deal with the digits {p; 72 satisfying the following
conditions.

e For each j € Ng, p; > 1;
® pj — 00 as j — 00;
o Pitl 41 a5 j — o0.
by
The above conditions imply the following.
REMARK 3.1.1. (1) For each n € N, p;?ﬂ — 1lasj— oo.
J .
(2) Let a > 1 and b > 0. For each n € N, (p;j4n)?/a? — 0 as j — oo.
We set I := {0, 1}. For each w = wow; --- € I*° and k € N, we set w|g := wowy * - wg_1 €
I*. For each w = wowy - --wi—1 € I*, we denote by [w] the set {r € I® : 79 = wy, 7 =

W1y eeey Th—1 = Wg—1}. For each w = wowy -+ ,7 = 1971+ -+ € [*° with w # 7 we set |w A 7| :=
inf{j € No : w; # 7;}. Moreover, we set |w A w| = oco.

PROPOSITION 3.1.2. Let m,n € Ng. Then there exists minimum j, ,m € No such that for
all j1 > j2 2> Jnms (Pjr4n)" /20 < (Djyan)™ /272,

PROOF. Since for each n € No, (pjt140)"/(Pj+n)™ — 1 as j — oo, there exists &y, € No
such that for each j > ky, y,

= (i)™
Hence for any j1 = jo2 +1 > ja > kpm,
(Pjo+14n)™ (Pjz+2n)™ (Pjo-+i4n)™
2> 2> 2> |
(Djatn)™ (Pjat14n)™ (Pjot-(1=1)4n)™

28
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Thus we have that

272 N (pj2+n)m
O
By Proposition 3.1.2, we can define the metric p;, ,,, on I°° as the following.
DEFINITION 3.1.3. Let m,n € Nyg. We define the metric py, ,, on I°° by
b ) 2= 4 o UOATIS dnm)
n,m ) T ( WAT|+n " .
Peanre)™ (| A 7] > o)
for each w,7 € I™®. Here, Ky 1, = (Djy, yuin)™/27mm.
REMARK 3.1.4. (1) The metric space (I°°, ppm) is a compact metric space for each

n € Ny and m € Ny.
(2) pno(w,7) = 1/21“771 for each w, T € I*°.

Let X be a metric space endowed with a metric p. Let A C X. We define |A], =
sup{p(z,y) : z,y € A}. For each t > 0 and 6 > 0, we set

H!, 5(A) = inf {Z Uil : Ac | Ui |Ui| <6 for Ui C X} .
i=1 i=1

We define the t—dimensional Hausdorff outer measure of A with respect to p as

t R t
Hy(A) = %1_1)1(1)7{/)75(A) € [0, o0].
For any set A C X, we define the Hausdorff dimension of A with respect to p as
dim,(A) :=sup{t > 0: HZ(A) =oo} =inf{t >0: HZ(A) = 0}.
We compute the Hausdorff dimension of I° with respect to py, ,, as the following.
PROPOSITION 3.1.5. For each n € Ng and m € Ny, dim,, ,, (I*) = 1.

PROOF. Let u be a probability measure on I such that
1
pllwows - wja]) = o5
for each wow -+ wj_1 € I (u is the (1/2,1/2)—Bernoulli measure on I°°). Fix m € Nj.
Then we have that for any w € IV with j > j, m,

M({T er~: pn,m(waT) < (pj—l—n)m/zj}) = ,UJ([WOWI o ‘wj—l])
1
2
<7 € 1% pum(@,7) < (D)™ /2 ML (= (jn)™/2)
By the mass distribution principle (see [11, P.67]), we have that 1 < dim,, ,, (I*°).

We now prove that for each m € Ny, dim,, , (I>°) < 1. For any € > 0 and j > ji, m, since
the family of sets {[w]} is a covering for I*°, we have that

weli
I+e 00 1+e
Hor ooy () < D
well
Am- m(1l+e)

2j(1+e)
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Hence we have that H}Jj;(foo) = 0 and hence dim,, ,, (I*°) < 14 €. Since € > 0 is arbitrary,
we have that dim,, ,, (I*°) < 1.
Hence we have proved our proposition. O

3.1.2. Address maps. We now define the address maps as follows.
DEFINITION 3.1.6. For each A € D* and n € Ny, we define the address map II,, y : I — C
by
e .
Ty A (@) =Y Pt jwni N
§=0

(w = wpwp41 - -+ € I?°). Note that this map is well-defined.
Then we have that

Hn,)\(Ioo) = Za]’)\j . aj S {0,pn+j}
7=0

In particular, Lo(A\) = IIp »(I*°) (for the definition of Ly(\) see (7)). Below we set L, (\) :=
I1,, A(I°°). We give the following proposition.

PROPOSITION 3.1.7. For each n € Ny, if we set ¢, \(2) := Az, opA(2) := Az + Dy, then
Ln(/\) - ¢n,A(Ln+1()‘)) U (Pn,/\(Ln-‘rl()‘))'

PROOF.

Snr(Lni1(N) Una(Lngi(N) = S A [ D parjrawpN | +0:w; € {0,1}
=0

o
U< A an+j+1wj/\7 +pp wj € {0,1}
=0

= an+jwj/\j twj €{0,1} p = L, (N).
=0

COROLLARY 3.1.8.
dimg (Lo(N)) = dimg(Ly(X));
La(Lo(A) = [AP"La(Ln(N)-
PRrROOF. By Proposition 3.1.7, we have that for each n € Ny,
iy (Ln(N)) = max {dimmr (¢ (L1 (N)), dimg (9 (En 1 (V))}
= max {dimg(Lp+1(N)),dimg(Lp+1(A)} = dimg(Lp+1(N))
and
Lo(Ln(N)) > Lo(Pnx(Lny1(N)))
= APLa(Lns1(N)).
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3.1.3. Sets of some power series. In this subsection, we introduce sets of some power
series and the sets of double zeros. For each j € N and n € Ny, we set

Goj = {_pm+j,o,p;”+j}u{—1,1}.

For each j € N and n € Ny, the set G, ; is compact subset in R since pp,1;/pm tends to 1 as
m — oo. If we set by, j := max G, ; < oo, there exists m,, ; > n such that b, ; = pmn7j+j/pmn,]..

LEMMA 3.1.9.

1
lim —logb, ; = 0.

Jj—o0 7
PRrROOF.
log bp,; = log Pt

Mn,j

. log pmn,j—i-l pmn,j—i—Q pmn,j—i—f} pmmj—&—j
Pmy,; Pmgy j+1 Pm, j+2 Pm, j4+(-1)

P(my, j+k)+1
pmn’j%»k

For any € > 0, there exists j; € N such that for any j > ji,

log}ﬂ <€

pj
since pj+1/p; — 1 as j — co. In addition, there exists jo € N with jo > j; such that for any
j > j27
] 1
(]1 + ) logpmn,1+1
J Pm, 1

<€

Since pri1/Pm < Pmp1+1/Pm,, for any m > n, we have that for any j > jo,

Ji

1 1
0< ~loghn; = = Zlo mn]+k)+1 n Z log mng+k)+1
J )\ Pm,, j+k k1 Pm,, j+k
1 o
< ( 1"" )10g Pm,, 1+1 T (] ‘.71)6 < %.
J Pmp 1 J

By Lemma 3.1.9, the function
A Cu(A) =D bnj|AY

is well-defined on D. We define the following sets.
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DEFINITION 3.1.10. For each n € Ny, we set
Fo=S fA) =21+ aniN 1 an; € Gny ¢,
j=1
N, :={\ €D* :there exists f € F, such that f(\) = f'(\) = 0},

Fi=SfA)==+14) a;N :a; € {-1,0,1} p,
j=1

My :={\ €D* :there exists f € F such that f(\) = f'(\) = 0}.

REMARK 3.1.11. For any n € Ny, the sets F,, and F are compact subsets of the space of
holomorphic functions on D endowed with the compact open topology.

LEMMA 3.1.12.

ﬂ N’n = ./\;lz-
n>0
PROOF. Since for all n € Ny,
FnDF
we have that . .
n>0

Fix 20 € (,;>0 N,.. Then for each n € Ny, there exists f, € F, such that f,(z0) = f’(z0) = 0.
Here, a

Fa) =14 an;N,
j=1

where
R pmn,]’""jan)j .
Qn,j = An,j
Dmy,

(an; € {-1,0,1},my ; > n for each j € N). For each n € Ny, we set

gn(/\) =1+ Zan,j)\j e F.
j=1

Then there exist a sub-sequence {gy, } of {g,} and g € F such that
gn,, — g on every compact subsets of D as k — oo

since F is compact.
Then we have that

oo oo
i (20) = gy (20)] = [(1L 4+ D iy jzo?) = (14 g jz20”)]
=1

j=1
©© .
<Y g, — ang 20/
j=1
Since fy, (20) = 0 and the last term tends to 0 as k — oo, we have that
9(z0) = 0.
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In addition,

o0 o0
| fre(20) = g1, (20)] = [(Q danyiz” ™) = O diany, 20 )]
i=1 j=1

[e.e]
< Zj’ank,j - ank,j”zﬂvil'

j=1
Since f}, (20) = 0 and the last term tends to 0 as k — oo, we have that
g (z0) = 0.
Hence we have that zp € /\;lg. O

3.1.4. The upper estimation of the Hausdorff dimension.

PROPOSITION 3.1.13. Let n € Ny. For any (w,7) € I x I*® with w # T and for any
A € D*, there exists fnur € Fn such that

(@) = T (1) = A pinri i fo.r (V)
PRrROOF. For any (w,7) € I*® x I with w # T,

o0 o
My A(@) =T A (7) =Y PN =Y paiymV
=0 =0
0 .
= D Parjlwy — )N
J=|wAT|

00
WAT j
= A‘ | E p|w/\T|+n+j(w|w/\T|+j - 7-|u)/\‘r|+j))‘j
J=0

= A‘UJAT‘ Zp|w/\T|+n+jaj)\j (CLO € {_17 1}7aj € {_1707 1} fOI‘j € N)

J=0
y - Plane
WAT WAT|+n+j i
= A‘ ‘p|w/\7|+n 7G’jAJ
=0 Plonr)+n

Since (pwar|+n/Pluari+n)ao € {—1,1} and for each j € N, (Punr|+n+j/Pluari+n)ts € Gny,
we have that f,, ,-(\) = Z;io(p\wm\+n+j/p\wm\+n)aj)\J € F,. Then we have proved our
proposition. O

LEMMA 3.1.14. Let m € Ny and n € Ny. For any w, 7 € I with |w A T| > jpm and for
any A € D* with |\ < 1/ V2, we have

—log |A|

[Ty A (@) = Ty A(T)| < Co(N)pnm(w, ) T2
where Cp(X) 1= 322, bn Al < 00, by j = max G, ;.

Proor. By Proposition 3.1.13, there exists f,, ., » € F, such that

T\ (W) = Iy n (7)] = A i ar n] s (V)]
1 — log |\

:(W) log 2 plw/\7|+n‘fn,w,7()‘)|'
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Since |\ < 1/ V2,

—log [A|
Plont|+n < (p\w/\’r\—l—n) g2 .
Hence we have that
1 — log || 1 —log || — log ||
(W) log2 p|w/\7’|+n|fn7wﬂ'()‘)| < (2‘w/\7‘) log 2 (p|w/\7'|+n) fog 2 ’fn,w,T(A”

—log |A|

< Crn(N)prym(w, T) Toe2 .

THEOREM 3.1.15. Let n € Ng. Then for any A € D*,

log 2
di L,(\) <———.
ProoOF. Fix A € D*. Since 1/ ¥/2 — 1 as m — oo, there exists mg such that |\ < 1/ /2.
By Lemma 3.1.14, for any w, T € I* with |w A 7| > jpm,,

—log |A|

[Ty A (@) = T A (T)] < Cr(A)prmo (w, 7) o5

Hence we have that

. log2 . log 2
d L,\)) <——d I°)= ——=———
lmH( TL( ))— —log’)\’ lmpn,mo( ) _10g|)\‘
by Proposition 3.1.5 (see the proof of [11, Proposition 3.3]). O

3.2. Some lemmas
3.2.1. Frostman’s Lemma and an inverse Frostman’s Lemma.

DEFINITION 3.2.1 (Frostman measure). Let m be a Borel measure on R?. Let ¢ > 0. Let
E be a Borel subset of R?. We say that m is a Frostman measure on E with exponent ¢ if
0 < m(E) < oo and there exists a constant C' = C; > 0 such that for each z € R? and for
each r > 0, m(B(z,7)) < Cr'.

Let H! be the t—dimensional Hausdorff outer measure on R¢ with respect to |- |. We give
the following lemma, which is known as Frostman’s Lemma.

LEMMA 3.2.2. [11, Corollary 4.12] Let E be a Borel subset of R® with H'(E) > 0. Then
there exists a Frostman measure on E with exponent t.

COROLLARY 3.2.3. Let 0 < t < 2. For each x € R? and for each r > 0, there exists a
Frostman measure m on B(x,r) with exponent t.

PROOF. If 0 < t < 2, then by Lemma 3.2.2, there exists a Frostman measure m on B(z,r)
with exponent ¢ since H'(B(xz,7)) = oo. If t = 2, we set m = Ls. a

DEFINITION 3.2.4 (s—energy of measures). Let m be a Borel measure on RY. For any
s > 0, we define the s—energy of m as

=/ [ S pdm(@dm(y)

We give the following lemma, which is known as an inverse Frostman’s Lemma.

LEMMA 3.2.5. [11, Theorem 4.13] Let m be a finite Borel measure on R%. Let A be a
Borel subset of R® with m(A) > 0. If I,(m) < oo, then dimg(A) > s.
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3.2.2. Differentiation of measures. Let d € N. Let © and m be Borel measures on
R< such that (G) < oo and A(G) < oo for any compact subset G. We say that the measure
 is absolutely continuous with respect to the measure m if m(A) = 0 implies p(A) = 0 for
all Borel subsets A.

DEFINITION 3.2.6. The lower derivative of y with respect to m at a point € R? is
defined by

m,x) = limin M
D(p,m, ) : 1r—>0fm(B(x77a)).

Note that the function x — D(u, m,x) is Borel measurable. For the details of differen-
tiation of measures, see [19, p. 36]. The lower derivatives of measures are related to the
absolute continuity of measures by the following.

LEMMA 3.2.7. [19, 2.12 Theorem] Let 1 and m be Borel measures on R™ such that u(G) <
oo and m(G) < oo for any compact subset G. Then u is absolutely continuous with respect
to m if and only if D(p,m,x) < oo for p a.e. x € R™.

3.2.3. A technical lemma for the transversality. We give a technical lemma for
the transversality condition. In order to prove it, we give some definition and remark.

DEFINITION 3.2.8. Let G be a compact subset of R?. We say that a family of balls
{B(z;,r:)}%_, in RY is packing for G if for each i € {1,...,k}, x; € G and for each i,j €
{1,...,k} with ¢ # j, B(z;,r;) N B(zj,r;j) = 0.

REMARK 3.2.9. Let G be a compact subset of RY, let r > 0 and let {B(z;,7)}%_, be a
family of balls in R%. If {B(z;,r)}¥_, is packing for G, then there exists N € N which only
depends on G and r such that £k < N.

PRrROOF. There exists a finite covering { B(y;,r/ 2)}?7:1 for G since G is compact. Here, N
only depends on G and r. Since x; € G for each i, there exists j; such that z; € B(y;,,r/2).
Since {B(w;,7)}¥_, is a disjoint family, if i # 1 € {1,...,k}, then j; # j;. Thus k < N. 0

We now give a slight variation of [32, Lemma 5.2].

LEMMA 3.2.10. Let H be a compact subset of the space of holomorphic functions on D.
We set

My :={\ €D* : there exists f € H such that f(\) = f'(\) = 0}.

Let G be a compact subset of ID)*\MH Lett > 0 and let £ be a Frostman measure on G with
exponent t. Then there exists K > 0 such that for any f € H and for any r > 0,

LA € G FON] <)) < K. (25)

PROOF. Since H is compact and the set My is the set of possible double zeros, we have
that there exists 6 = dg > 0 such that for any f € H,

lf)|<d=[f(N)]>d for \e@G. (26)
We assume that r < §, otherwise (25) holds with K = £{(G)/d". Let
Ap={AeG:|f(N)| <r}.
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Let Co(G) be the convex hull of G. We set M = Mg := sup{|¢g”(N\)| € [0,00) : A € Co(G), g €
H}. Since Co(G) is compact and H is compact, M < oco. Fix 29 € A,. By Taylor’s formula,
for z € G,

1) = o)l =17 o)z = 20) + [ (2= 01",
20
where the integration is performed along the straight line path from z to z. Then |f'(z0)| > ¢
by (26). Hence

[f(2) = f(z0)| = | (20)l|2 = 20| = M|z — 20| > 6]z — 20| — M|z — zo*.

Now if we set

. Ar o
Azo’T::{ZGD 26<’Z—ZO|<W},

then for any z € A, ,,

31z — 20l — Ml = 20 = [z — 20l(6 — M|z — zol) > 0 = 2

and |f(2)] > [f(z) — f(z0)| — |f(20)| > r. It follows that the annulus A, does not intersect
A,
Assume that 47/§ < §/4M, otherwise (25) holds with K = L!(G)(16M/6%)!. Then the
disc B(zp, /4 M) centered at zg with the radius 6 /4M covers A,N{z : |z—z0| < §/2M }. Then
fix z1 € Ay\{z : |z—20] < §/2M}. Since the annulus A, , does not intersect A, B(z1,0/4M)
covers (A \{z : |z—z0| < 0/2M})N{z : |z—2z1] < §/2M} and B(zp,d/4AM)NB(z1,/4M) = (.
If we repeat the procedure, we get a finite covering {B(z;,d/4M)}E  for A, since A, is
compact. Then {B(z;,d/4M) f:o is packing for G. By Remark 3.2.9, there exists N € N
which only depends on ‘H and G such that £ < N. Since the annulus A, , does not intersect
A, for each i € {0,...,k}, {B(z;,4r/8)}r_, is also a covering for A,. Hence we have

k
LAy < LM J1B (=i, 4r/0)})

i=0
k
=Y L'({B(z,4r/0)})
=0
4 4
< NC(5) = NC(3)'7,
J o
where C' denotes a constant which appears in the definition of L. If we set K := NC(4/4)¢,
we get the desired inequality. O

3.3. Proofs of main results

3.3.1. The lower estimation of the Hausdorff dimension for typical parame-
ters. For each n € Ny, we endow I* with the metric p,o (for the definition of p, g, see
Definition 3.1.3). Since the metric p, o does not depend on n, we set pg := pp0. We consider
the address maps II,, 5 : (I°°, pg) = C for A € D*. Fix § > 0. Then for any \,n € B(0,6) ND*
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and any w = wowy - -+ € I,

o0
|H”v)‘(w) - Hnﬂ?(w” < an+jwj|)\3 ed
7=0

(e e]
<D DA =l (A ARl Al 2 o+ [l
=0

[e.e]
< oAl 1.
§=0
Hence we have the following.

REMARK 3.3.1. Let A € D*. If \; = X as j — oo, then Il ), (-) uniformly converges
to I, A(+) on I°°. In particular, the sequence of sets {L,();)}72; converges to Ly,(A) in the
Hausdorff metric.

By Proposition 3.1.13, if we set Cp(A) 1= 3272 by,j
‘HTL,/\(W) - Hn7)\(7—)| < ‘)‘“W/\T‘p\w/\ﬂJrnCn()\)

for any w, 7 € I°°. If po(w;,w) = 1/21€"l — 0 as j — oo, then \)\||wj/\“"p|wj/\w|+n — 0. Hence
for each A € D*, the map w — II,, y(w) is continuous on I*°. We set « : D* — [0, c0) by

A < oo, where by, ; := max G, ;,

—1
a(n) = —o8 Al

For any compact subset G C D*, we set ag := sup{a(\) : A € G}. We set U, := D*\\N,, (for
the definition of N, see Definition 3.1.10).

log 2

LEMMA 3.3.2. Let G be a compact subset of U,, and let L' be a Frostman measure on G
with exponent t for some t > 0. Then there exists K, g > 0 such that for any r > 0 and any
(w,T) € I® x I* with w # T,

Et({)\ €G: I (w) —a(r)] <r}) < Kn,Gpo(w,T)*taGrt.

PROOF. By Proposition 3.1.13, for any (w,7) € I* x I*® with w # 7, there exists
frwr € Fn such that 1L, \(w) — II, A(7) = >\|W/\T|p‘w/\7‘+nfn,w,r()\)- Hence for any r > 0,

INE G [Typ(@) = Tha ()] < 7} = I E G [frr V)] < pofew, 7)o —L1 s},

Plonr|+n
Since JF, is a compact subset of the space of holomorphic functions on D, by Lemma 3.2.10
we have that for any compact subset G C D*\N,,, there exists K, ¢ > 0 such that for any
r >0,

1

L0 € G Mua(e) = Tua(r)] £ 7) = £(N € G- foar O] < polenr) N ——r))
WAT|+n
1
< Kn w,T —ta(N) ,r,t
B ’GPO( ) (p|w/\'r\+n)t

S Kn,G’pO(w7 T)_tacrt'
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Let p be the (1/2,1/2)—Bernoulli measure on I*°. Let v, \ = II, xp, where II, ypt
denotes the push-forward measure of p under II, y. This is a Borel probability measure on
II,, \(I*°) = Ly, (X), since the map w — II,, )(w) is continuous on I*°.

LEMMA 3.3.3. Let 0 < s < 1. Then

/oo /Oo po(w, 7)™ dp(w)dp(r) < oo

PRroOOF. For any i € I, we set

Then

/oo /oo pole, 7)™ dufe /oo /oo 2N dpu(w)dp(r)
) /°° Zo/{w - fwAr|=5} 2171 dpa(eo)d(7)
j= : =J
ST ——
pu
- % /[oo 22“_1” dp()

1 1
=3 /po 26 )
1 1

21 —26-1°

LEMMA 3.3.4. Let A € D*. Let s1 > s9 > 0. If

/2 /2 |u —v|™%2 dv, \(u)dvp A (v) = 00
R2 JR

/]R? 2 |u —v| ™% dyy \(u)dvp A (v) = 00

then

PROOF. Since for any Borel subset B C R? with BN Ly, (A\) = 0, v, \(B) = 0, we have

/ lu — v~ dup x(uw)dvp A (v / / u— |7 dyy, x(w)dvy 2 ().
R2 JR2 n Ln(>\
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If we set D := sup,, yer,(n) |u —v| < oo, then we have

/ / \U—Ursl anA dl/n)\ / / U|) 51 dun,)\(u)dvn)\(v)
n(A) J Ln(X) Ln(A) J Ln(

/( / v|) 2 dvp x(u)dvp \(v)
Lp(A n(
= Q.

Od

LEMMA 3.3.5. Let 8 > 0. Then the function

A= |u7v|_5 dvp x(u)dvp A (v)
R2 JR2

is Borel measurable on D*.

PRrROOF. For any A € D*,

(A / fu— o] dvp (w)dvpr (v // M7 () — o ()] dp(w)dia(r).
R2 JR2 o oo

Fix a sequence {A;}32; — A as j — oco. Then
M, (@) = T, ()77 = Mo a (@) = T (1) 777 € (0, 00]

as j — oo for each w, 7 € I*® by Remark 3.3.1. By Fatou’s Lemma,

[ M) = o) diso)dutr)

:/OO/I hmmf|l—[n)\( )‘Hn,xj(T)\_’B dpu(w)dp(r)

oo  J—00

<timing [ [ [l @) = Mo, (72 du(e)dutr).

J—00

Hence the function A — ®(A) is lower semi-continuous, and hence Borel measurable. O

We give key lemmas as the following.

LEMMA 3.3.6. Let 0 <t < 2. For any \o € U, N{A € D* : 1/a(X) <t} and any € > 0,
there exists 6 > 0 such that for any Frostman measure L' on B(\o,d) with exponent t,

/2 2|u —(1/e(X0)—¢) dvp x(uw)dvp A (v) < 00
R2 JR

for Lt—a.e. X\ in B(\o,9).

PRrOOF. Fix \g € U, N{A € D* : 1/a(A\) <t} and any € > 0. There exists § > 0 such
that 1/a(Xo) — € < 1/aq(B(rg,5)) Since a is continuous. Below, we set s = 1/a()\g) — € and
G :=cl(B(Xo,0)). Then

/oo /oo po(w, 7)7* dp(w)dp(T) < o0
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by Lemma 3.3.3 since sag < 1. If we prove

S = / / lu —v|™* dyn,,\(u)dun,)\(v)dﬁt()\) < 00,
G Jr? JR?

we get the desired result. By changing variables and Fubini’s Theorem,

S= [ [ [ M) = s} 4L (o))

By using Lemma 3.3.2 and £(G) < oo, we have that for any r > 0 and any w, 7 € I,
LY{N € G : Hyp(w) — Hyn ()] < 7)) < Const. min{1, po(w, 7) "¢t}

Here, we set Const. := max{1, L'(G)} K, ¢, where K, ¢ comes from Lemma 3.3.2. Then by
using that s < ¢, we obtain

/ ML (w) — T (1) dLY(N) = / T LN € G Haa(w) — T (n)] ™ > 2}) da
G 0

o
SConst./ min{l,po(w,T)_tan—t/S} da
0

po(va)isaG
= Const.(/ 1dz
0

+ Po(w,T)_taG/ a= !¢ da)
po(w, )G

—sag

= Const.'pp(w, )
Here, we set Const.” : (Const + 5= 1) . Hence we have S < cc. O
LEMMA 3.3.7. For any Ao € U, N{A € D* : 1/a(\) > 2}, there exists 6 > 0 such that
Lo(Lp(N) >0
for Lo—a.e. X in B()\g,0).
PrROOF. Fix any A\g € U,N{A € D* : 1/a(X) > 2} and any € > 0 with (1 —¢)/a(Xg) > 2

Then by Lemma 3.3.3,
[ [ ool n)179 du)du(r) < oo

There exists § > 0 such that (1 — €)/acB(r,s)) > 2 since a is continuous. It suffices to

prove that v,  is absolutely continuous with respect to Lo for Lo—a.e. X in B(Ag, ). We set
G = cl(B(Xo,0)). Let

— i int LB 1))
Q(Vm)\’u) T hgi%lf Lo(B(u,r))

be the lower derivative of v, x with respect to L at the point u. If we show that

S = / Q(Vn,)\au) an,)\dﬁ?(/\) < 00,
G JR2

then for £Lo— a.e. A € G we have D(v,, 5, u) < oo for v, x—a.e. u and hence v, 5 is absolutely
continuous with respect to Lo by Lemma 3.2.7. By Fatou’s Lemma,

S < Const. hmlnfr / / Un \(B(u,r)) dvp x(u)dLa(N).
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Then

/ VTL,A(B( (IVn)\ / / XB(UT d]/n)\( )anA( )
R2
/oo /oo X{761 :Z|IIn,>\(w) Hn,)\(J)‘S"} /’L( )d,U/(("-),

where x4 is the characteristic function with respect to the set A. By Fubini’s Theorem,
integrating with respect to A,

S < Const. liminf 2 / Lofd € G+ A (@) — TLua(F)] < 1} du(w)(r).
[e @) IOO

r—0

By using Lemma 3.3.2, we have that

S < Const.’/ / po(w, 7) 2% dp(w)dp(T),

which is finite by the inequality 2ag < 1 — € and Lemma 3.3.3. O
THEOREM 3.3.8. Let n € Ng. Then we have the following.
(i)
. log 2 * 7
dimg (L, (N)) > “Tog [ for Lo—ae. e {AeD* : 0< |\ <1/V2HN,.
(i)
Lo(Ln(N) >0 for Lo—ae. A€ {AeD* : 1/vV2 < |\ < 1}\N,. (27)

ProoF. We first prove (i). We set V,, ;= {A € D* : 0 < |\ < 1/V2}\W,. Fix k € N
with k£ > 2. We prove
/ u — v|~WN=VR) Gy (w)dvy 2 (v) < 00 (28)
R2 JR2

for Lo—a.e. Ain V.
Suppose that (28) does not hold. Then there exists a Lebesgue density point Ag € V,, of
the set

{AeV, : / / u — v| =N =R) qy o (w)duy \(v) = o0}
R2 JR2
Then there exists dp > 0 such that for each § € (0, dp),

Lo <{)\ € B()\o,0) : /2 . u — v| =N =R) q  (w)duy \(v) = oo}> > 0.
R2 JR

By the continuity of the function A — 1/a()\), if § is small enough, then 1/a()) — 1/k <
1/a(Ng) — 1/2k for each X € B()\g, ). Hence for all sufficiently small § , by Lemma 3.3.4, we
have that

Lo ({)\ € B(\,0) : / u— |~/ @Qo)=1/2K) gy (w)duy \(v) = oo}> > 0.
R2 JR

This however contradicts Lemma 3.3.6 since L2 is a Frostman measure on B(\g,d) with
exponent 2. Thus we have proved (28). By Lemma 3.2.5, we have that
1

log 2
dimg (Ln(X)) > -
iy (Ln(N) 2 0~ 7

By letting k — oo, we prove (i).

for Lo—a.e. A e {heD" : 0< |\ <1/V2I\WN,.
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Statement (ii) follows from Lemma 3.3.7 in a similar way.

O
COROLLARY 3.3.9.
log 2 ~
dimpr (Lo(A)) > %glkl for Ly—ae. A€ {A€D* : 0< [\ <1/V2N\My;
L2(Lo(N) > 0 for Lo—ae. A e {AeD* : 1/V2 < |\ <1}\Ma.
PROOF. By Theorem 3.3.8 and Corollary 3.1.8, we have that
log 2 ~
dimg (Lo(N)) > %QM for Lo—a.e. Ne {AeD* : 0< |\ <1/V2N\Ny;
Lo(Lo(N)) > 0 for Lo—a.e. A€ {IAeD* : 1/vV2 < |\ < 1}\N,..
By Lemma 3.1.12, letting n — oo, we get our corollary. O

We use the following theorem in order to prove one of our main results of this dissertation.

THEOREM 3.3.10. [35, Proposition 2.7] A power series of the form 1+ Z;; a;jz?, with
a; € [—1,1], cannot have a non-real double zero of modulus less than 2 x 575/8 ~0.73143(>

1/v2).

Finally, we get the following theorem by using Theorem 3.1.15, Corollary 3.3.9 and The-
orem 3.3.10.

THEOREM 3.3.11.

log 2
—log [A|
Lo(Lo(N)) >0 for Lo—ae. A€ {AeD* : 1/V2 < |\ < 1)\ Ma.

dimg (Lo(N)) = for Lo—a.e. A€ {AeD* : 0< |\ <1/V2};

3.3.2. The estimation of local dimension of the exceptional set of parame-
ters. In this subsection we give the estimation of local dimension of the exceptional set of
parameters. Recall that U, = D*\N,, and a()\) = —log|A|/log2 for A € D*. Note that
Unen, Un = D*\ My by Lemma 3.1.12.

LEMMA 3.3.12. Let G be a compact subset of U,,. Then we have

log 2 log 2

dimg ({)\ € G : dimg(L,(N)) < og}) < sup _08e
e — log|A|
PrROOF. We may assume that
1
GCixeD" @ A< —¢.

{ <
We set sg 1= supyeq log2/—log|\|. By the countable stability of the Hausdorff dimension,
it suffices to prove that for each k € N,

log 2 1
i : di L —_ = = < sg-
dimp ({)\ € G : dimy(L,(\)) < “log | k}) < sg

Since G is compact, it is enough to prove that for each A € G, there exists § > 0 such that

. . log 2 1
B : L —_— = = < sq.
dimpg ({/\ € B(\,9) : dimg(L,(N\)) < "oz k:}) <sag
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Suppose that this is false, that is, there exists A\g € G such that for any § > 0,
log 2 1
i B ;o di L, —_ — = .
dimpy ({)\ € B(Xo,9) : dimg(L,(N)) < "oz [ k}) > sq

Then by the continuity of the function A — log2/—log |A|, there exists o > 0 such that for
any 0 < < 6y,

log 2 1
di A€ B(Xg,0) @ di LA —_ = — .
impy ({ € B(Xo,9) img(Ly,(N)) < “log [y 2k}> > sa

Take §; > 0 with §; < Jp so that Lemma 3.3.6 holds with ¢ = s¢ and € = 1/2k. By Lemma
3.2.5, we have

{)\e B(ho,61) ¢ dimp(Ln())) < — 82 ! }

—log[Xo| 2k
C {)\ € B(Xo,01) : / lu — v|~(1/a(h0)=1/2k) dvp x(u)dvp A (v) = oo} = E.
R2 JR2

By Lemma 3.3.5, the set E is a Borel subset of D*. Since H*¢(E) > 0, by Lemma 3.2.2, there
exists a Frostman measure £5¢ on E with exponent sg. However this contradicts Lemma
3.3.6 since L£%¢ is also a Frostman measure on B()\g,d1) with exponent s¢. O

THEOREM 3.3.13. Let G be a compact subset of D*\My. Then we have
. . log 2 log 2

dimpg <{/\ e G : dimg(Lo(N)) < }) <sup ———.

o) < Togai ) = 328 Tlos

PROOF. Since |J U, = ]D)*\/\;lz, there exists ng € Ny such that G C U,,. By Lemma
3.3.12, we have

: . log 2 }) log 2
dim Ae G o dimg(L,(\) < ———— <sup ——.
HG AE DS Tog S ) =388 Do

n€eNyp

By Corollary 3.1.8, we have that

. . log 2 log 2
d AeG - d Lo(A _— < —_—
e <{ - maz{Lo(V) < —log!AID = et —log A

THEOREM 3.3.14. For any 0 < R < 1/v/2,

< 2.

. ] log 2 log 2
d AeD* : 0<|M <R, d Lo(A <
mpg <{ S <‘ ’< , lmH( O( ))<—log|)\\}> ~ —logR

PROOF. Let 0 <7 < R < 1/y/2. If R < 1/2, by (1) and since My C My,
(AeD* @ r<|]A|<R}\Ma={\eD* : r< |\ <R}.
For each k € N, we set Gy := {Ae€D* : r+1/k < |\ < R-1/k}. Then Gy is a com-
pact subset of D*\ My and (J,cy Gk = {X € D* : 7 < |\ < R}. By Theorem 3.3.13 and the
countable stability of the Hausdorff dimension, we have that

' ' log 2 log 2
d AeD* A <R, d Lo(A 1\ < :
mpg ({ S 7"<‘ ‘< ) 1mH( 0( >)< —log])\]}) ~ —logR

If 1/2 < R < 1/v/2, then by Theorem 3.3.10,
IAeD* i r<|] A <R}\WMo={AeD"\R : r<|A\|<R}U{XER : r< |\ <R} \Ms.
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For each k£ € N, we set
Gr:={ eD" : r+1/k<|\ <R—-1/k,Im(\) > 1/k}
u{reD® : r+1/k<|\ <R-1/k,Im(\) < —1/k},
where Im()\) denotes the imaginary part of A. Then G}, is a compact subset of D*\ My and

Uren Gk = {A € D"\R : r < |\ < R}. By Theorem 3.3.13 and the countable stability of
the Hausdorff dimension, we have that

. . log 2 log 2
d A e D"\R : A <R, d Lo(A —_— < —
1mH({ € D*\ r < |\ < R, dimg(Lo( ))<—10g\)\]}>_—10gR
Since dimpy(R) =1 < log2/—log R, we have that
. . log 2 log 2
d AeD* Al <R, d Lo(A —_— < =
1mH<{ € r < |\ < R, dimg(Lo( ))<—log]A|}>_—logR
By the countable stability of the Hausdorff dimension, we have that

. . log 2 log 2
d AeD* . A d Lo(A < —.
1mH<{ S 0 < |\ < R, dimg(Lo( ))<_10g|)\|}>__1ogR



CHAPTER 4

M,, is connected

In this chapter, we consider the connectedness locus M, for fractal n-gons in the param-
eter space.

4.1. Preliminaries

In this section we extend the method of Bousch [5]. Let G be a subset of C with (*) in
Definition 1.3.7. Let N € N with N > 2. Let D be the unit disk. We set

[e.9]
PS¢ = {1 —i—Zaizi 0 a; € G},
i=1
X% ={zeD : there exists f € P such that f(z) =0},
N-1
Q% ={1+ ZaizZ :a; € G},
i=1

Y ={z€C : there exists f € Q% such that f(z) = 0},

ve= )y
N>2

Let O(D) be the set of holomorphic functions on D.
LEMMA 4.1.1. Let G be a subset of C with (x). Then X% = cl(Y®) N D.

PROOF. (C)Take z € X Then there exists {a;}3°, C G such that 1+ 5% a;2* = 0. Fix
€ > 0 with B(z,€) C D. Then there exist N € N and 2’ € B(z, ¢) such that 1+ 3.~ 1 a;2’ = 0
by theorem of Rouché. Hence z € cl(Y¥) N D.

(D)Since P% is a compact subset of O(ID) endowed with the compact open topolgy, the set
X© is relatively closed in ID. Hence it suffices to prove that X¢ > Y& ND. Take zp € YEND.
Then there exist N > 2 and a; € G for any i € {1,2,..., N — 1} such that

N-1

f(Z[)) =14 Z CLZ'ZOi =0.

=1

We set f(2) := f(2) x 3252, 2N € PY. Then f(z) = 0. Thus 25 € X.
Thus we have proved our lemma. O

Below we fix a set G C C with (x). We set N>o:={n e N : n>2}.

45
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DEFINITION 4.1.2. Let N € N>o. We set L := sup{|al, |ab|, |[(a—b)c| : a,b,c € G}(< o).
Then we define the sets of functions W and Wy as the following.

W:={1+ Zaizi . Jai| < L},
i=1

N-1
Wy ={1+ Z a;iz' ¢ lai| < L}
i=1

REMARK 4.1.3. Q% C Wy C W and PY C W.

Let N € N>o. We identify (1,a1,as2,...) with the power series 1 + Y%, a;2". We iden-
tify (1,a1,...,an—1) or (1,a1,...,an—1,0,0,...) with the polynomial 1 + Zf\gl a;2'. Let f =

(1,a1,a2,...) and g = (1,b1,b2,...). We set Val(f,g) :=inf{i e N | a; —b; # 0}. If f = g, we
set Val(f,g) = co. Let N € N>5. We define the map C : W — Wy by

CN((I,al, ag, )): (1, Ay eney aN_l).
We now give a slight variation of [5, Lemme 2].

LEMMA 4.1.4. Let R > 0 and € > 0 with R+ € < 1. Then there exists N € N>o such
that for all (f,s) € F = {(f,s) € W xcl(B(0,R)) : f(s) = 0} and for all g € W with
Val(f,g) > Npr,, there exists s € B(s,€) such that g(s') = 0.

PROOF. Since W is a compact subset of O(D) endowed with compact open topology, F'
is a compact subset of O(D) x D.
Fix (f,s) € F. Let é5¢ be a positive real number which satisfies that
® 0, <€/2, and
e f has the unique root s in cl(B(s, 7))
Let nys = min{|f(2)| : z € 0B(s,d5s)} > 0. Let g € W. Let N € N>o. If Val(f,g9) > N,
then for all z € D with |2| < R+,

1f(2) = g(2)] <Y 2L(R+¢)'.

i=N

Recall that L := sup{|al, |ab|,|(a — b)c| | a,b,c € G}(< 00). Let Nfs be a natural number
which satisfies

[e.9]

S 2L(R+6) <y /2
i:Nf’S

Let
Vis:={(9,8') € F : s € B(s,d,) and maxZeCl(B(07R+€)) |f(2) —g(2)| <nps/2}

Then the set V;, is open in F. Since F' is compact, there exist (fi,,si,), .., (fi,,5i,) € F
such that F C U?zl Vi i,

We set for each j € {1,...,k}, fj = fi;, 85 1= si;,0; = (Sfij,sij7nj = nfl.wsij,Nj = Nfij,sij,
and Vj := Vfij73ij' We set Np e := max{Ny,..., Ni}.

We now prove that Ng . satisfies the statement of our lemma.
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Fix (f,s) € F and g € W with Val(f,g) > Npg.. Since F' C U§:1 Vj, there exists j €

{1,...,k} such that (f,s) € V;. Hence s € B(s;, ;) and maxzecl(B(O,RjLe)) |fi(z)—f(2)] <mn;/2.
For each z € 0B(s;,6;),

[fi(2) —9(2)| < [fi(2) = f(2)] + |F(2) = g(2)].
Since s; € cl(B(0, R)) and §; < €/2, we have z € cI(B(0, R+ €)), and hence

1£i(2) = f(2)] <mj/2.
Moreover, since Val(f,g) > Nre > Nj,

1f(2) = g(2)| <nj/2.

Thus we have that
|f(2) — 9(2)| < nj(=min.cop(s; s, fi(2)])

for each z € 0B(sj,0;). By theorem of Rouché, there exists s’ € B(s;, ;) such that g(s") = 0.
Since s € B(s;,d;), we have that

8" — 5| < [s" — 55| + |55 — s
<5j+5j
< €.

Hence we have proved our lemma.

DEFINITION 4.1.5. Let N € N>o. Let A, B € Q% with A # B.
Let R := {po,qo,P1,q1, ---s Pm—1, ¢m—1, Pm} be a sequence of functions on . We say that
R is a sequence of functions which joins A to B with respect to IV if R satisfies the following:

(1) for each i, p; € Q]GV;

(2) for each i, q; € W;

(3) for each i, there exists a holomorphic function f on D such that ¢;(z) = f(2) - pi(z)
for all z € D;

(4) for each i, Cn(qi) = pi+1;

(5) po=A,pm = B.

We prove the following lemma by extending the methods in the proof of [5, Lemme 3]
and adding new ideas.

LEMMA 4.1.6. Let N € N>o. Let A,B € Q% with A # B. Then there erists a sequence
offunctions Po,4q0,P1,915 -y Pm—1,9m—1, Pm which jO’l;’IlS A to B.

PRrROOF. This is done by induction with respect to Val(A, B) € {1,..., N — 1}. We first
prove that the statement holds in the case Val(A, B) = N — 1. We set

A:=(1,ay,...,an—_2,a),
B:=(1,a1,...,an—2,b),
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where a # b. Since G satisfies the condition (x), there exist elements (a =)by, ba, ..., by, (= b) €
G which satisfy Definition 1.3.7 (ii). We set
@ ={1+b—-a)""114
:(1, a1,y ...,AN—2, a)+
0,0,......,0,(b —a), (b —a)a, ..., (b — a)an—2, (b — a)a)
————

N-1
=(1,a1,...,any—2,b,(b —a)ay, ..., (b — a)an—_2, (b — a)a) € W,

P} :==Cn(q0)
:(1,(11, ...,CLN,Q,b) =Be€ Qg

Hence we find a sequence {A, ¢}, B} of functions which joins A to B.
Fix j € {1,..., N — 2}. Suppose that the statement holds in the case Val(4, B) > j. We
prove that the statement holds in the case Val(A, B) = j. We set

A= (Lal, ey A1, Gy K *)’
B :=(1,a1, --'vaj—l,b,*---*),

where a # b. Since G satisfies the condition (x), there exist (a =)by, be, ..., by (= b) € G which
satisfies Definition 1.3.7 (ii). Let k,l be natural numbers such that N —1 = jk + [ and
0 <1< j— 1. By the condition (ii) in Definition 1.3.7 for a; € G there exists c% € G such
that

(by — b1)ay +ct € G.
Similarly, for a; € G there exists ¢} € G such that
(bg — bl)ai + Cz'l € G,

where i € {1,2,...,j} and we set a; = a. As in the same manner, for ¢ € G there exists
c?”l € G such that
(bg — bl)Clm + C;n—H S G,
where ¢ € {1,2,...,5} and m € {1,2,...,k — 1}. We set
Ay = (1,04, ...,aj_l,a,ci, ...,c}-,c%,...,c?, anch ) e Q](\;;.

Since Val(A, A1) > j, by induction hypothesis, there exists a sequence R; of functions which
joins A to A;. We set

q1 ::{1 + (bg — bl)zj}Al
=(1,a1,...,aj-1,q, c%,...,c},cf,...,c?,...,C]f,...,cf)—i—
(0, 0, ...... s 07 (b2 — bl), (bg — bl)al, ceny (bg — bl)a, (bg — bl)C%, ceny (bg — bl)cjl-, )

=(1,a1,...,aj-1,b2, (by — br)ar + i, ..., (by — b1)e; "+ ¢f, (ba — b)), ooy (b2 — b1)c])
ew.
Here, recall that by = a. We set
p2:=Cn(q1)
= (1,a1, ..y aj_1,ba, (ba — b1)ay + cf, .oy (b2 — b1)ef 1+ ¢f) € Q.
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By the condition (ii) in Definition 1.3.7 for a; € G there exists d} € G such that
(bg — bl)al + d% € @q.

We set a; = a; and a;- = a; for any i € {2,3,...,5 — 1}. Similarly, for any ¢ € {2,3,...,j} and
al € G there exists d} € G such that

(by — by)a} +d} € G.
As in the same manner, for d[* € G there exists dlmH € G such that
(b — by)d™ +d" € G,
where ¢ € {1,2,...,5} and m € {1,2,....k — 1}. We set

Ay = (1,a1, ..., aj-1,b2,d}, ... d}, d3, ... d3, ..., d}, ....df) € Q.

Since Val(pa, A2) > j, by induction hypothesis, there exists a sequence Ry of functions which
joins po to As. We set

g2 = {1+ (b3 — bp)z"} Ay € W,
p3 == Cn(q2) € QF.

If we continue this process, we find sequences R1, Ro, ..., R,_1 of functions, functions ¢1, gs, ..., gr-_1 €
W and a function p, € Q% such that R; joins A to A, R; joins p; to A; for each ¢ €
{2,...,7 — 1} and such that p; = Cn(gi—1) for each ¢ € {2,...,r}. Here,

Ry = {A,¢},pl,qt,..., A1},
Ry := {pa,q3, p1, i, -, As},
T
Re_y == {pr—1,qy "0 ai o Ara )

r—1

Then we find a sequence {A7 Qé,P%aQ%a "’aAlaql)p2an7p%vq%7 "'7A27 "'7pT‘—17QS715p1 )

q{_l, ey Ar_1,qr—1,pr} of functions which joins A to p,, where p, has the following form.

pr=(1,a1,...,a5-1,b, % x%).

Since Var(p,, B) > j, by induction hypothesis, there exists a sequence of functions R, =
{pr, a1}, 5, ..., B} which joins p, to B. Hence we find a sequence {4, ¢},pi,qi, ..., A1,
q1, P2, anp%7 Q%v ceey A27 ceos Pr—1, qa_l7p7£_17 q71n_17 ceey A'r‘—17 4r—1,Pr, qz)ﬂqua q{a ceey B} of functions
which joins A to B. Thus we have proved our lemma.

O

4.2. Proof of Main Theorem F

DEFINITION 4.2.1 (e-connected). Let A C C. Let € > 0. Let =,y € A and {ey, ..., ex} C A.
We say that {eq,...,ex} is an e-chain for (z,y) if x = ep,y = e and for each i € {0,....k —
1}, lei — eiv1| < e

We say that A is e-connected if for all z,y € A, there exists an e-chain for (z,y).

REMARK 4.2.2. If A C C is compact, A is connected if and only if for an arbitrary small
€ > 0, A is e-connected.
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PROOF. Suppose that A is not connected. Then there exist non-empty compact subsets
A; and Aj of A such that AjUAs = A and AjNAy = 0. If we set €9 = infy, e, a0e4, |a1—a2]/2,
then A is not ep-connected.

Suppose that A is connected. Since A is compact, for an arbitrary small € > 0 there
exist ay,as,...,ar € A such that A C UY_ cl(B(as,¢)). Since A is connected, for any i,j €
{1,..,k} with i # j there exist i1,...,%, € {1,2,...,k} such that a; = a;;,a; = a;,,, and
cl(B(ay,€)) Ncl(B(ay,,,€)) # 0 for any I € {1,...,m — 1}. Hence A is e-connected. O

The following theorem is Main Theorem F.

THEOREM 4.2.3. Let G be a subset of C with (x). Suppose that there exists a real number
R with0 < R <1 such that {z€ C : R<|z|] <1} C XY Then XY is connected.

ProoOF. We set Mz :={2€C : R < |z| < 1}. Since Mp C X, it suffices to prove that
X% UoD is connected. By Lemma 4.1.1, X% U 0D is compact. Hence it suffices to prove that
X% U D is e-connected for an arbitrary small € > 0.

Fix € > 0 with R+ € < 1. Take s € X©. We prove that there exist s € Mp and
an e-chain for (s,s’). We may assume that s € cl(B(0, R)). Since s € X%, there exists
f € PY such that f(z) = 0. Let Ng. be a natural number defined by Lemma 4.1.4. We set
A:=Cny (f) € Q%RE. Since Val(f, A) > Ng, there exists s € B(s, €) such that A(sg) = 0.
If so € Mg, our theorem holds. If sg ¢ Mp, that is, sg € cl(B(0, R)), we set

1 — 2NRe

B(z)i=1+4z+2"+ -+ 2Vt = € QR -

By Lemma 4.1.6, there exists a sequence of functions pg, qo, 1,1, s Pm—1s @m—1, Pm Which
joins A to B. Since qo(so) = 0 and Val(qo,p1) > Npg,, there exists s; € B(sg,€) such that
pi(s1) = 0 by Lemma 4.1.4. If s; € Mg, our theorem holds. If s; € cl(B(0,R)), since
q1(s1) = 0 and Val(q1,p2) > Npg., there exists so € B(sy,€) such that pa(s2) = 0 by Lemma
4.1.4. TIf we continue this process, there exists i € {1,...,m — 1} such that s; € Mp and
pi(si) = 0.

For, if this is not true, there exists s,, € D such that py,(s,) = B(sy,) = 0. But this
contradicts that B does not have any roots in D.

Since A, p; € Q%RE for each j € {1,...,i}, we have that sg,s; € X% by Lemma 4.1.1. We
set s := s;. Then {s, S0, 51, .., 8;(= §')} is an e-chain for (s, s’).

Hence we have proved our theorem. O

1—2z

4.3. Application (proof of Main Theorem E)
We use the following lemmas, which are key lemmas to prove Main Theorem E.

LEMMA 4.3.1. Let n be an odd number. Let q,r be integers such that 2 < q¢ < (n—1)/2
and 0 <r <(n—1)/2. We set
,_{q+r—1 (1<qg+r—-1<(n—1)/2)
n—(@+r—1) (n+1)/2<qg+r—1<n-2)
and
k=r—q-+1.
Then

(sin% — sin (q_nQ)F)sin %—(sin%)(sin%)—(sin I%T)(sin%): 0.
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Proor. (Case 1: j=qg+r—landk=7r—-qg+1)

(5097 (sin ) (sin ) (sin 7= — 2 on UHDT o U= D)
_;(COSW—COSM)
Z—;(cos(qzr)w S(q+rn—2)7r)
_;(COS(T—qn+2)7r . (_nq)ﬂ)
:—;(COS(QJ;T)W S(q—l—rn—Q)w)
_ %(COS (q—rn— r (g _nr)ﬂ)
:_;(Cos(qtlr)w w“ (q—nr)w)
n %(COS (q+rn— 9r (q—rn— 2)71')
(sin T _gin DT IT

(Case 2: j=n—(¢g+r—1)andk=r—q+1)

(sin 27 (sin ™) - (sin ) (sin T)= (sin 2 OE T (g, 7
+(sin = qn+ DLy (sin )
—(sin (q+rn— UW)(st)
#(sin T EDT) ().
By Case 1,
(sin LTI (i ) (sin T IEDT) (i T i 7 i € DT 7,

a

LEMMA 4.3.2. Let n be an even number. Let q,r be integers such that 2 < ¢ < n/2 and
0<r<n/2. We set

__{q—}—r—l (1<g+r—-1<n/2-1)
n—(@+r—1) (n/2<q¢+r—-1<n-1)
and

k=r—q-+1.
Then

(sin% — sin (q _nQ)ﬂ-)sin %—(sin%)(sin%)—(sin I%T)(sin%): 0.
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PROOF. We can prove Lemma 4.3.2 as in the proof of Lemma 4.3.1. O
We define the set of coefficients €2, which corresponds to M,, as the following.
DEFINITION 4.3.3. We set I := {0,1,...,n — 1}. Also we set
Q= {(& —&")/(1~&) + jkel}.
Here, recall that &, = exp(2mv/—1/n).
REMARK 4.3.4. For each a € €,,, we have that —a € €Q,.
The following two lemmas can be found in [2].
LEMMA 4.3.5. [2, Remark 3]
M, = X"
LEMMA 4.3.6. [2, Proposition 3]

1
{zeC : ﬁ<|z’<1}CMn-
The proof of Main Theorem E is divided into the following two theorems (Theorems 4.3.7
and 4.3.8).

THEOREM 4.3.7. If n is odd, M, is connected.

Proor. By Theorem 4.2.3, Lemmas 4.3.5 and 4.3.6, it suffices to prove that ), satisfies
the condition (x).
If n = 2p + 1, where p is a natural number, §2,, has the following form (see [2, p.2662]).

l/QS- T
Qn:{gnm" : z:0,...,2n—1,r:0,1,...,p}. (29)

™
S1n o

Since €2, contains 1 and (2, is finite, it suffices to prove that €2, satisfies the condition (ii) in
Definition 1.3.7.

In order to prove that, suppose that for each a € 2, with a # 0, there exist by, b, ..., by, €
Q, with by = 0 and b,,, = a such that for all ¢ € €, there exist di,do, ..., dyn_1 € £, such
that

(be —b1)c+di € Qp, (b3 — ba)ec+d2 € Dy, oy (b — bn—1)c + di—1 € Q.

Then for each a,b € Q, with a,b# 0 and a # b, there exist b1, ba, ..., by, b7, b5..., b}, € 2, with
b1 = 0,b,, = a,b] = 0and bj, = bsuch that for all ¢ € Q,, there exist dy,da, ..., dp—1,d}, d5, ..., dj_; €
), such that

(b2 — bl)c +di € Qp, (bg — bg)c +dy € Qp, ...y (bm — bmfl)c +dp—1 € Q,
and
(B — B)e+ d) € D, (W — By)e+ dy € Dy ooy (B — B )e+ diy € D

We set b1 = by, b2 = b1, eoe b = b1, b1 = by, binga = by, oo, by g1 = bl Since for each
e € Q,, —e € Q,, we have that
<l~72 - Bl)c - dm—l € Qna (63 - 52)0 - dm—2 € Qn; E3) (i)m - I;m—l)c - dl € Qna

(Bm—&-l - l;m)c + d/l € Qn, (l;m+2 - Bm+1)c+ dl2 € an ey (Bm—i-k—l - Bm+k—2)c + d;{;—l € Qn-
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ey by € Q,, with

Hence it suffices to prove that for each a € 2, with a # 0, there exist by, bs,
b1 = 0 and b,,, = a such that for all ¢ € ,,, there exist dy, ds, ..., dm_1 € €, such that
(bg — bl)C +di € Qp, (bg — bg)C +dy € Qp, ..., (bm — bmfl)c + dp—1 € Q.

In order to prove that, fix a € Q,, with a # 0.
(Case 1: a = &,"?sin 4% /sin T where ¢ € {0, ..., p} is even and [ € {0,...,2n — 1})
We set
&,l/? sin 22 €,1/2 sin (=27 &% sin ©
b1 =0,b2 = Tﬁ’ "7bq/2 = sin ™ = abq/2+1 = T
n n n
sy 2n — 1},

Fix ¢ € Q,. We set ¢ = &,'/?sin ™% /sin 7, where r € {0,1,...,p} and [; € {0

For each i € {1, ..., q/2},
. 9% . (2i—2)w .
(bie1 — bi)e = &, 00/ sin 8 sin === ) sin %
sin sin 7 sin 7
By Lemma 4.3.1, if we set
PR (1<2i+r—1<(n-1)/2)
Cln—-Qi+r—1) (n+1)/2<2i4+r—1<n-2)
and
ki=r—2i+1,
we have that
(I+0)/2 g Bim (I+1)/2
(bz‘+1 — bi)c — fn " :ln n_o_ E - :ln = 0.
Slnﬁ Slnﬁ
inT € Q, by (29) and Remark

—&, )2 gin j%/sin T e, and &, /2 gin ]”T”/sm z

Here,
4.3.4. Hence we have that
(+11)/2 gy 5 (1+0)/2 gy kim
(bi+l_bi)c+(—§n — _bn —— " € Q.
sin sin 7
oy 2n —1})

(Case 2 : a= &2 sin 4% /sin T, where q € {0, ..., p} is odd and [ € {0,
We set
1/2 1/2 i (g=2)7
B e _5 sin 3% _{n sin ~—
b= 0,by = &% by = SnE e D(g1) /2 = Sn T
Fix ¢ € Q,. We set ¢ = &,'"/?sin It /sin T, where r € {0,1,...,p} and I € {0,...,2n — 1}.

(by —b1)c = 5n(l+ll)/28m7n‘
sin%

£,/% sin =

7b(q+1)/2+1 = <in T .
n

Here, —&,T1)/2gin T /sin T € Q, by (29) and Remark 4.3.4, and hence
(bs — bi)e+ (—&, 028y e
sin &

(¢+1)/2},
(2i—-1)m sin

For each i € {2, ...,
b\ — ¢ (H)/2 n
(big1 = bie = &n ( sin © sin
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By Lemma 4.3.1, if we set

,}_{2@'—14—7“—1 (1<2i—1+4r—1<(n—1)/2)
e @Qi-14+r—1) (n+1)/2<2i—14+r—1<n—2)
and

ki=r—(2i—1)+1,

we have that
(I+11)/2 g5y JiT (I4+11)/2
(bit1 —bi)e — n i & . :m =0.

sin sin —
n n

Here, —&,+1)/2gin %/Sin% e O, and &,T1)/2gin ki%/sin% € Q, by (29) and Remark
4.3.4. Hence we have that

(+11)/2 gy & (I+01)/2 gipy kim
(bit1 — bi)c + (—fn o T ) = o o T - € Q.
n n
Hence we have proved our theorem. O

THEOREM 4.3.8. If n is even, M,, is connected.

PRrROOF. By Theorem 4.2.3, Lemmas 4.3.5 and 4.3.6, it suffices to prove that €2, satisfies
the condition (x).
If n = 4p, where p is a natural number, ,, has the following form (See [2, p.2662]).

§nl+1/2 sin I
Qn: 2 00000n : l:0,~--,n_17T20727"'72p

sin T

L (30)
§n'sin °F
Usr—F% i=0,n—1Lr=13,..2p—1,.
sin T
If n = 4p + 2, where p is a natural number, €2, has the following form (See [2, p.2662]).
£, H1/2 ip 1
Q=4 . |=0,..,n—1,r=02..,2p
sin 7 (31)

l i T
U{fnsmﬂn : lzo,...,n—l,r:1,3,...,2p+1}.
Sin —

n

Since 2, contains 1 and £, is finite, it suffices to prove that €, satisfies the condition (ii) in
Definition 1.3.7.

As in the proof of Theorem 4.3.7, it suffices to prove that for each a € Q, with a # 0,
there exist by, bo, ..., by, € Q,, with by = 0 and b,, = a such that for all ¢ € Q,, there exist
di,do,...,dpy_1 € 0, such that

(bg —b1)c+di € Qp, (b —ba)c+da € Q.. (b, — bm_l)c + dm_1 € Q.

In order to prove that, fix a € €, with a # 0.
(Case 1: a = &,"/?sin 1% /sin T where ¢ € {0,2,...,2p} and [ € {0,...,n — 1})
We set
£, 12

gnz+1/2 (g=2)m £ 14+1/2

b 0b sin 2% = b sin - b sin &
1= 2 = T . T g 2 = N 241 — —.
’ sin T el sin T $a/2+ sin T

n n n

Fix c € Q,,.
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(Case 1-1 : ¢ = &,1+2sin % /sin T, where r € {0,2,...,2p} and Iy € {0,...,n — 1})

For each i € {1,...,q/2},

- %m . (2i—2) s rm
Sin n Sin T Sin n
n

bip1 — bi)e = & = - — —n .
(birr i) &n sm% sm% sin T

By Lemma 4.3.2, if we set
C f2igr—1 (1<2i+r—1<n/2-1)
T - @itr—1) (m/2<2+r—-1<n—1)

and
ki =1 —2i+ 1,
then we have that
é— I+11+1 Sln 5 I+11+1 k;m
bix1 —b; n_=0.
(bisa i)e— sin T sin T
n n

Since 2i and r are even, j; and |k;| are odd. Hence —&,'t1*!sin LT /sinT € Q, and
gt gin ki =T [sin T € Q, by (30), (31), and Remark 4.3.4. Hence we have that

5nl+l1+1 sin % g 4+ +1 gin BT k

bit1 — b; - - -
(bisa Jet( sm% )= Sln%

e Q,.

o I i T Jin T
(Case 1-2 : ¢ = &," sin I /sin 7, where

. {1,3,....,2p—1} (if n =4p)
{1,3,..,2p+ 1} (ifn=4p+2)

and [ € {0,...,n —1})
For each i € {1, ...,q/2},

sin T

2 Q=27 o
sm sm T Sin n
n

bir1 — bj)e = I+11+1/2 n . )
(bis i) &n s1n% sm% s

By Lemma 4.3.2, if we set
o J2i+r-1 (1<2i4r—1<n/2-1)
- @itr—1) (m/2<2+r—1<n—1)

and
ki=r—2i+1,
then we have that
(bonn — ) §nl+l1+.1/2wsin gim f l+ll+_1/27rsm o
sin Z sin

n
Since 2i is even and r is odd, j; and |k;| are even. Hence —¢, HLA1/2 gy ds % /sin T € Q, and
£+ 2 gin ”T/sm T €Q, by (30), (31), and Remark 4.3.4. Hence we have that

g, HH1/2 iy dim 5 L +1/2 g kim

i+1 — 0; Q.
(b +1 b )C+( smﬁ Sln* <
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g = & b 4T s T
(Case 2 : a = &,"sin L% /sin T, where

g {1,3,...,2p— 1} (if n = 4p)
{1,3,...2p+1} (ifn=4p+2)

and [ € {0,...,n — 1})

We set
N7
b= 0,by = £, bs _fn sm?’7r 5 12:§nlsm(qn) bt :fnlsm%
’ nsb sin T »Hat1)/ sin © »Ha+1)/2+1 sin ®
n n n
Fix c € Q,.

(Case 21 : ¢ = &,/ 2sin % /sin T, where r € {0,2,...,2p} and [y € {0,...,n — 1})

sin T
(b2 _ bl)C — gnl+ll+1/2 i Z )
Slnﬁ

Since r is even, by (30), (31), and Remark 4.3.4, we have —¢&,!Th+1/2gin % /sin T € €),. Hence

(by — br)e + (—&,+1220 0y _ g e Q.

S100 Bl

For each i € {2,...,(¢ + 1)/2},

. (2i—-D)rm - (2i=3)w s T
Il +1/2 S Sin ~———— \ sin —
(big1 = bi)e =&Y/ ( T T amnt

sin — sin —
n n

By Lemma 4.3.2, if we set
o f2i-14r-1 (1<2—14+r—1<n/2—1)
‘”:{n—(%—ur—n (n/2<2% —1+r—1<n—1)
and
ki=r—(2i—1)+1,

then we have that

I+l14+1/2 I+1141/2
g, it/ §+1+/

sin J"

n SlIl
(bi+1 — bZ)C — o . = 0
S111 — SN —
n n

Since 2i — 1 is odd and 7 is even, j; and |k;| are even. Hence —{nl+ll+1/2 sin J%’r/sin% e 0,
and &, 0+ 2gin k%”/sin% € Q, by (30), (31), and Remark 4.3.4. Hence we have that

(s — be+ (- e ST
i —0b;)c - - c .
il ! sm% sm% "

(Case 2-2 : ¢ = &£, sin n "% /sin T, where
e {1,3,....,2p—1} (if n =4p)
{1,3,....2p+1} (ifn=4p+2)
and [ € {0,...,n —1})
sin °°

(by — b)e = &,/ Th—n

sinZ n
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Since 7 is odd, by (30), (31), and Remark 4.3.4, we have —&,! ™! sin % /sin T € €2, Hence

rT

@2—my+w—&”h§5%):0€gw

sin =
n
For each i € {2,...,(¢+ 1)/2},
(bis — bp)e = £,10 sin L;DW _ sin 7(2223” sin I%
o ‘ " sin sin 7 sin

By Lemma 4.3.2, if we set
C J2i-14r-1
TV @i—14r-1)

(1<2—1+r—1<n/2-1)
n/2<2i—1+r—-1<n-1)

and
ki=r—(2i—1)4+1,

an_ll sin JZTW fnl—Hl sin szﬂ'
(big1 — bi)c — — - — = 0.
sin Z sin Z
Since 2i — 1 and 7 are odd, j; and |k;| are odd. Hence —&, M sin LT /sinT € Q, and

&, sin kl%/sin% € Q, by (30), (31), and Remark 4.3.4. Hence we have that

then we have that

I+ oo JiT I+l 3 BT
&, T sin &, T sin
bt —be+ (— ny — e Q,.
(bit1 = bi) ( sin * ) sin 7~ "

n

Hence we have proved our theorem.
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