
Data Augmentation Approaches for
Automatic Speech Recognition Using

Text-to-Speech

Sei UENO

Abstract

Automatic speech recognition (ASR) systems are widely used as an aid and basis for
speech-based human-human and human-robot communications. ASR systems
need to achieve high accuracy with small latency, and they should be customized
for the application domains and topics. Thanks to the development of deep
neural networks (DNNs), end-to-end ASR models have been intensively investigated
recently. The end-to-end ASR models convert speech into words faster with a
simpler architecture than the conventional models. However, they require a large
amount of paired data of speech and transcription for training.

To alleviate this problem, this thesis addresses data augmentation for the
ASR model using a text-to-speech (TTS) system. In this framework, artificial
speech data are generated from text-only data using a TTS system to prepare
pseudo paired datasets. In the naive implementation, however, we observe that
the improvement of ASR performance is limited compared to the case using real
speech data. This is because there are serious mismatches between synthesized
data and real data. In this study, we investigate three data augmentation
approaches to solve the problem.

In Chapter 3, we adopt a waveform-based approach. In general, a TTS
system is composed of two models: a text-to-mel network to generate log Mel-
scale filterbank (lmfb) features and a vocoder network to convert the generated
lmfb features into a waveform. We observe that the lmfb feature produced
by the text-to-mel model is blurry, particularly on the time dimension. This
problem is mitigated by introducing the vocoder to generate speech of better
quality or spectrogram of better time-resolution. This makes it possible to train
waveform-input end-to-end ASR. Here we use CNN filters and apply a masking
method similar to SpecAugment. We compare the waveform-input model with

i

two kinds of lmfb-input models: (1) lmfb features are directly generated by
TTS, and (2) lmfb features are converted from the waveform generated by TTS.
Experimental evaluations show the effectiveness of the combination of waveform-
output TTS and the waveform-input end-to-end ASR model for improving the
ASR performance.

In Chapter 4, we propose a data augmentation approach via a discrete speech
representation. In general TTS, a text-to-mel network predicts continuous value
(lmfb features), which is not an easy task. It is also not guaranteed that the
generated lmfb features exist in the real world. In this work, we introduce
a discrete speech representation, which TTS model predicts instead of lmfb
features. We expect that the use of the discrete representation based on vq-
wav2vec not only makes TTS training easier but also mitigates the mismatch
with real data. The ASR model also uses the discrete representation as its input.
Experimental evaluations show that the proposed method outperforms the data
augmentation method using the conventional TTS. We found that it reduces
speaker dependency, and the generated features are distributed more closely to
the real features.

In Chapter 5, we propose a phone-informed post-processing network that
refines lmfb features without using the vocoder. The widely-used procedure,
as presented in Chapter 3, first generates an lmfb feature from text data, then
converts it into a waveform, and converts it again to an lmfb feature. These
conversions take a long time and are not necessary for data augmentation.
In this work, we propose a mel-to-mel network that directly refines the lmfb
features. The proposed network consumes not only lmfb features but also phone
information for refinement. This approach takes less time than converting to the
waveform domain. Experimental evaluations in domain adaptation show that
the proposed network achieves better improvement of ASR performance than
using the vocoder network with much faster processing time. It is also shown
that the use of phone information is critical for the improvement.

Chapter 6 concludes this thesis with a comparison of the three works, investi-
gation on mismatch of TTS, and a brief look at future work.

ii

Acknowledgment

This work has been accomplished at Speech and Audio Processing Laboratory,
Graduate School of Informatics, Kyoto University. I express my gratitude to all
people who helped me and this work.

First of all, I would like to express my special thanks and appreciation to my
supervisor Professor Tatsuya Kawahara. He gave me the opportunity to study in
the Speech and Audio Processing Lab. His comments have been essential and
insightful for advancing this work. I have been supervised by him for 5 years in
my master and Ph.D. course. When I was an undergraduate student at Doshisha
University, I met him for the first time and asked him about his laboratory. After
entering the master course, he has patiently supervised me about research from
various viewpoints. In particular, he supervised me on how to write a paper in
much detail. This work would not have been completed without his continuing
engagement and generous support.

I also express my special thanks and appreciation to Associate Professor
Kazuyoshi Yoshii for a lot of insightful comments on my research. He gave me
various advice from perspectives other than deep learning.

Furthermore, I express my special thanks and appreciation to the members of
my dissertation committee, Professor Ko Nishino and Professor Sadao Kurohashi,
for their time and valuable comments.

This study cannot be accomplished without Mr. Masato Mimura and Dr.
Shinsuke Sakai. They gave me insightful advice from their deep knowledge
of machine learning and speech recognition. They also gave much time to
meaningful discussions.

I would like to thank Dr. Atsunori Ogawa and Dr. Shoko Araki, who are

iii

members of NTT Communication Science Laboratories, for their hosting my
internship.

I wish to deeply thank Professor Hiroshi Saruwatari, Assistant Professor
Shinnosuke Takamichi, and Project Research Associate Yuki Saito, who are
members of The University of Tokyo, for their hosting my research stay and
insightful advice about text-to-speech.

I also express my thanks to the members of Speech and Audio Processing Lab.
I am grateful for comments and supports from Assistant Professor Koji Inoue,
Ms. Mayumi Abe, Dr. Hirofumi Inaguma, Mr. Kak Soky, Mr. Kohei Matsuura,
Mr. Hayato Futami, Mr. Jumon Nozaki, Mr. Han Feng, Mr. Trung V. Dang,
Dr. Yoshiaki Bando, Dr. Ryo Nishikimi, Dr. Kohei Sekiguchi, and all the other
members.

I am also grateful to Professor Emeritus Seiichi Yamamoto and Associate
Professor Tsuneo Kato, who are members of Doshisha University, and Associate
Professor Komei Sugiura, who is a member of Keio University. They introduced
me the area of signal processing when I was at Doshisha University.

This work was supported by the Japan Society for the Promotion and Science
(JSPS) with its financial support as Fellowship for Young Scientists (DC1).

I wish to thank my friends since I was at Doshisha University. I especially
thank Mr. Yu Manabe.

Lastly, I sincerely thank my family for their support and encouragement for
my long student life.

iv

Contents

Abstract i

Acknowledgment iii

Contents viii

1 Introduction 1
1.1 Background . 1
1.2 Task Formulation . 2

1.2.1 Automatic Speech Recognition (ASR) 2
1.2.2 Text-to-Speech (TTS) . 3

1.3 Problems of End-to-End ASR Models 4
1.3.1 Need for a Large Amount of Paired Data of Speech and

Transcription . 4
1.3.2 Data Sparseness and Uneven Distributions 5

1.4 Data Augmentation Using Speech-only or Text-only Data 5
1.5 Data Augmentation for ASR Using TTS 6
1.6 Approaches . 8

1.6.1 Synthesizing Waveform as Training Data for ASR 8
1.6.2 Generating ASR Features via Discrete IDs 8
1.6.3 Mel-to-Mel Network to Refine Generated Spectral Features 9

1.7 Organization of this Thesis . 9

2 Review of Automatic Speech Recognition and Text-to-Speech 11
2.1 DNN-HMM Hybrid ASR Systems 11

v

CONTENTS

2.2 End-to-End Architecture for ASR 12
2.2.1 Connectionist Temporal Classification 12
2.2.2 Attention-Based Encoder Decoder Model 14
2.2.3 Transformer . 17
2.2.4 Conformer . 18

2.3 End-to-End Architecture for TTS 19
2.3.1 Tacotron 2 . 21
2.3.2 FastSpeech 2 . 22
2.3.3 WaveNet-Based Vocoder . 24
2.3.4 GAN-Based Vocoder . 24

3 Synthesizing Waveform to Augment Training Data for ASR 27
3.1 Introduction . 27
3.2 TTS for ASR Training . 29

3.2.1 Lmfb-output TTS and Lmfb-input ASR 33
3.2.2 Waveform-output TTS and Lmfb-input ASR 33
3.2.3 Waveform-output TTS and Waveform-input ASR 34

3.3 Waveform-input ASR . 34
3.3.1 Feature Extraction . 34
3.3.2 Data Augmentation by Masking 35

3.4 Experimental Evaluations . 36
3.4.1 Datasets and Tasks . 36
3.4.2 System Configuration . 37
3.4.3 Results of Waveform-input ASR vs. Lmfb-input ASR . . . 39
3.4.4 Results of Simulated Domain Adaptation to APS 41
3.4.5 Results of Adaptation to Newspaper Domain Leveraging

A Large Amount of Newspaper Texts 43
3.4.6 Analysis on Learned Filter 44

3.5 Summary . 45

4 Generating ASR Features via a Discrete Representation 49
4.1 Introduction . 49

vi

CONTENTS

4.2 VQ-wav2vec . 51
4.2.1 BERT for VQ Codes . 52

4.3 Data Augmentation via Discrete IDs 52
4.3.1 Conventional Data Augmentation by TTS 52
4.3.2 Data Augmentation via Discrete ID Sequences 53

4.4 Experimental Evaluations . 56
4.4.1 Datasets and Tasks . 56
4.4.2 Network Configurations . 57
4.4.3 Results . 59

4.5 Discussions . 61
4.6 Summary . 61

5 Mel-to-Mel Network to Refine Generated Speech 65
5.1 Introduction . 65
5.2 Phone-Informed Post-Processing Network for Speech Refinement 66

5.2.1 Baseline Architecture of Data Generation 66
5.2.2 Phone-Informed Mel-to-Mel Network 66

5.3 Experiment Evaluations . 69
5.3.1 Datasets and Tasks . 69
5.3.2 FastSpeech 2-Based TTS and Proposed Network 70
5.3.3 Transformer-Based ASR System 70
5.3.4 Results . 71

5.4 Discussions . 74
5.5 Summary . 75

6 Conclusions 79
6.1 Contributions . 79
6.2 Comparison of Approaches . 80

6.2.1 Architecture . 81
6.2.2 Advantages and Disadvantages 82

6.3 Investigation on Mismatch of TTS 83
6.4 Future Work . 86

vii

CONTENTS

Bibliography 89

List of Publications 101

viii

Chapter 1

Introduction

1.1 Background

Speech is one of the fundamental ways of human communication. The recent
prevalence of social media and online meeting tools makes it easier to com-
municate with each other even in distance. In particular, under the pandemic,
these tools become essential for work, education, and even daily lives. They
include text-based communication and speech-based communication functions
(e.g., Zoom and WebEx). For work and education, speech is still essential for
communicating smoothly. During meetings and lectures, people often need
transcription or captions to understand easily. Transcribing these speeches by
humans requires an abundant amount of effort and cost, and thus the automatic
transcription is required. On the other hand, speech is used for communica-
tion not only with other people but also with machines. Voice assistants for a
smartphone (e.g., Siri and Cortana) and smart speakers (e.g., Google Home and
Amazon Alexa) have been widely used. People generally use their speech to make
a simple command or query for these assistants. Moreover, social communication
robots are being developed to conduct not only simple commands but also
general conversations. These robots need to recognize natural human speech.
In summary, to recognize or transcribe human speech is necessary for many
applications in human-to-human and human-to-robot communication.

Automatic speech recognition (ASR) systems are increasingly becoming a vital
module in satisfying these social needs. We need high-performance ASR since

1

CHAPTER 1. INTRODUCTION

the ASR performance affects the downstream tasks such as natural language
understanding, translation, and dialogue. In the several downstream tasks,
recognizing domain-specific words is critical. For example, a dialogue system
needs to recognize the name of the place for smooth communication when a
speaker talks about travel. Therefore, we need to customize the ASR system
for the target domain task (e.g., change the training dataset and architecture).
Moreover, low latency of the ASR is often required for interaction and real-time
applications.

1.2 Task Formulation

Before moving on to problems to be addressed in this thesis, we formulate two
fundamental tasks for speech processing: automatic speech recognition (ASR)
and text-to-speech (TTS).

1.2.1 Automatic Speech Recognition (ASR)

Automatic speech recognition (ASR) is a task to transcribe speech into text. Thus,
it can be called speech-to-text. The ASR task is a many-to-one mapping problem.
The input has various kinds of speech (e.g., recording environments, speaker
attributes, emotion) when a speaker utters the same text, and the ASR systems
need to recognize them correctly. The ASR systems have been investigated
for many decades [1–4]. The initial studies of the ASR systems were based on
pattern matching such as dynamic programming (DP), and the effective acoustic
features were investigated. However, these methods were not sufficient to model
speech diversity such as gender, age, and so on. Then statistical models such as
Hidden Markov model (HMM) model have been introduced. Gaussian mixture
models (GMM) were used to model each state of acoustic patterns in the HMM.
The acoustic model (AM) is combined with another statistical model called the
language model (LM). The AM maps acoustic features into a phone sequence,
while the LM learns a prior probability of a word sequence. Using the deep neural
networks (DNNs) instead of GMM has drastically improved the performance of

2

1.2. TASK FORMULATION

AM. In addition to AM, introducing the DNN improves the ASR performance
in LM. These hybrid systems are widely used for many applications. However,
we must carefully design AM, LM, and a pronunciation dictionary module to
achieve high performance, and each module is optimized independently.

Recently, end-to-end architecture has been investigated thanks to the progress
of DNN and computing resources. The end-to-end model directly converts the
acoustic feature into a word or subword sequence. While the hybrid model needs
to train the AM and LM separately, end-to-end models unify these models in a
single neural network architecture, which can decode the speech rapidly. It learns
the ASR task efficiently as the whole model is optimized based on the unified
criterion. Actually, the end-to-end models have realized better performance
than the conventional hybrid systems when a large amount of training data is
available.

1.2.2 Text-to-Speech (TTS)

Text-to-speech (TTS) is a task to generate natural-sounding artificial speech from
a given text. The TTS systems also have a lot of applications (e.g., readout of
news articles and response for the robot). They have been investigated for many
decades, as in the ASR. Since the 1990s, unit selection synthesis has been widely
used [5, 6]. In inference, the unit selection synthesis searches for the speech
segments stored in database that match a given text and produces speech by
concatenating these segments together. While it can generate high intelligible
speech, it requires huge recording database and the generated speech is natural
but discontinuous.

A statistical parametric synthesis is investigated to address the drawbacks of
the unit selection synthesis [7, 8]. It first generates the acoustic parameters that
are necessary to produce speech and then synthesizes speech from the generated
acoustic parameters. The statistical parametric synthesis needs to learn common
characteristics of speech from various kinds of speech samples. It models the
acoustic parameters using HMMs. Compared with the unit selection synthesis,
the statistical parametric synthesis can generate speech with prosody and the

3

CHAPTER 1. INTRODUCTION

model can be trained with a small amount of data. However, the generated
speech has low intelligibility and we need highly technical knowledge to compose
the model.

With the recent development of DNNs, TTS can also be realized with simple
models referred to as end-to-end TTS without relying on complex feature
engineering. They achieve speech quality close to natural human speech [9]. The
end-to-end TTS systems generally have two components: text-to-mel network
and vocoder (mel-to-waveform). The text-to-mel network generates log Mel-filter
bank (lmfb) features as acoustic features from a given text. The vocoder converts
the generated lmfb feature into a waveform that people can hear or evaluate.

1.3 Problems of End-to-End ASR Models

The end-to-end model realizes high performance ASR and faster inference.
However, there are problems which are described below.

1.3.1 Need for a Large Amount of Paired Data of Speech and
Transcription

First, we need to prepare pair data of speech and transcription, as the end-to-end
ASR model is trained with acoustic features and its corresponding word or
subword labels. In other words, it is necessary to transcribe the speeches for
training data. Although the AM of the hybrid ASR model also needs the paired
data, we do not need to prepare such a large amount of data compared to the
end-to-end model. This is because the network size of AM is small, and the AM
can be trained with a large amount of target label samples since each acoustic
frame has one target label. On the other hand, the end-to-end model needs a
rich profusion of the paired data since the network size is large. Moreover, in an
end-to-end manner, certain lengths of acoustic features have one target label. As
a result, a large amount of training data is required for the end-to-end model to
achieve sufficient performance. For example, the end-to-end ASR model trained
using the JNAS dataset [10] that has 40-hour speech and transcriptions yields

4

1.4. DATA AUGMENTATION USING SPEECH-ONLY OR TEXT-ONLY DATA

much worse ASR performance than the hybrid DNN-HMM model. When using
the CSJ dataset [11] with 600-hour paired data, the ASR performance of the
end-to-end model is better than that of the DNN-HMM model. In practice, we
must prepare over 100 hours of paired data at least. It is not easy to prepare such
a large amount of data for spontaneous speech such as meetings since it costs a
lot of manual works.

1.3.2 Data Sparseness and Uneven Distributions

Second, we suffer from data sparseness and uneven distributions in several
aspects. In general, text data is available easier than speech data. The end-to-end
model needs to learn acoustic and linguistic patterns, but it learns just the latter
when using text-only data. It results in a high dependency on the LM function.

Moreover, the word or subwords have a large number of classes, and the dis-
tribution is biased toward common words, and other words are used infrequently.
The critical words (e.g., technical words) for the downstream task are generally
uncommon words, and it is not easy to prepare the data including these words.

Preparing the paired data of the readout speech is readily available since the
text is prepared in advance and a speaker speaks following the text. On the other
hand, it is difficult to prepare the paired data for more natural speeches such as
conversations or lectures because we must manually transcribe the speech after
recording. As a result, the domain of the paired data is biased toward readout
data.

1.4 Data Augmentation Using Speech-only or Text-
only Data

To solve these problems of the end-to-end ASR model, the use of unpaired
data has received much attention since developing the end-to-end models. To
utilize speech-only data, unsupervised learning or semi-supervised approaches
have been attractive. We can train an unsupervised model using contrastive
representation learning [12] and variational autoencoder (VAE) [13] and extract

5

CHAPTER 1. INTRODUCTION

an acoustic feature from raw waveform (only) data. Wav2vec 2.0 [14] achieves
higher performance than a conventional ASR model using about 60,000 hours
of speech data. In semi-supervised approaches, a teacher ASR model generates
labels for the speech-only data and then a student ASR model can be trained
by using them [15,16]. Noisy students [17] also improved the end-to-end ASR
performance. However, we need a large amount of speech-only data and training
these models is slow because there is no supervision labels.

On the other hand, we can easily train an external language model by using
the text-only data. Given a previous label sequence, the language model predicts
a target linguistic label at the next timestep. It can be trained using text-only data,
and we have two approaches to use it for the ASR model. First, we apply the
external language model with shallow fusion [18]. We calculate the final score
based on not only the probability of the ASR but also that of the LM. Second,
we apply the external language model for rescoring. In this approach, the ASR
model generate several candidates from a given speech. The external LM then
calculates the probabilities of these candidates and selects the best one. As the
ASR model finishes initial decoding and the LM can consider a bidirectional
context, we can apply the bidirectional LM such as BERT [19]. Although these
methods do not have to change the ASR architecture, the performance gain is
limited by the baseline ASR candidates. Moreover, for enhancing ASR models, it
is not easy to recognize unknown words because the probabilities of these words
tend to be low.

1.5 Data Augmentation for ASR Using TTS

Recently there are also studies on the use of the text-to-speech (TTS) model. One
of them is to integrate the ASR and TTS models [20, 21] referred to as speech
chain. Given the unlabeled speech features, ASR transcribes the unlabeled input
speech, while TTS reconstructs the original speech waveform based on the output
text from ASR. Given only the text input, TTS generates speech waveform, while
ASR also reconstructs the original text transcription given the synthesized speech.

6

1.5. DATA AUGMENTATION FOR ASR USING TTS

This method improves the ASR performance when the speakers are specific and
training data is small. However, it is not suitable for general ASR settings since
the model must train both ASR and TTS. Moreover, it must be noted that TTS and
ASR are not cyclic but should be rather adversarial in that TTS should generate a
variety of speech data that the baseline ASR cannot cope with.

In this thesis, we focus on the data augmentation that generates speech data
using a text-to-speech (TTS) model from the text-only data and train the ASR
model with the generated data [22–32]. In this framework, we prepare not only
the ASR system but also the TTS system. The TTS model generates speech data
from the arbitrary unpaired text, which can be used as training data of ASR.

This framework has several advantages compared with other approaches.

• Simple: firstly, we do not have to consider the difference between the
generated data format and the natural speech data format. We can assume
both data as acoustic features, and we do not need the additional function to
bridge the discrepancy between different modalities.

• Direct: secondly, the ASR models can directly learn the acoustic patterns
and vocabulary of the target domain when the data are generated from the
text of the target domain.

• Independency: finally, we can design the ASR and TTS system indepen-
dently. It is often necessary to compose the ASR model for each target
domain, and the ASR system will need to be tuned several times.

We observe that this framework yields the ASR performance improvement on
several tasks. However, the improvement is limited, particularly when compared
to using real speech. There are mismatches between the synthesized and real
features. The synthesized feature is much less diverse than the real feature. For
instance, while a TTS system generates the exact same speech given the same text,
a human speaks differently even when he or she reads the same text. Moreover,
the TTS system sometimes fails to generate speech at all, preventing the ASR
model from correctly learning the acoustic patterns.

7

CHAPTER 1. INTRODUCTION

1.6 Approaches

In this thesis, we present three data augmentation approaches for ASR using
TTS.

1.6.1 Synthesizing Waveform as Training Data for ASR

In Chapter 3, we present a waveform-based data augmentation approach which
uses waveform domain for both ASR and TTS. We found the quality of speech data
generated by TTS is not realistic; we observe the spectrum is blurry, particularly
on the time dimension. It is likely to make the improvement of ASR limited.
Actually, the time resolution of the artificial spectrum is not sufficient because the
TTS model generates the spectrum of several contiguous frames at one decoding
step for stable training and fast inference. While it is not easy to fix this problem
on the text-to-mel network side, we can generate a high-quality speech waveform
with a state-of-the-art vocoder. This waveform-based data augmentation scheme
allows for another option of designing a complete end-to-end ASR model from
waveform to a word sequence. Here, we introduce CNN-based feature extraction
as a front-end. It is compared with the lmfb-based ASR systems, where (1) lmfb
is generated from the waveform, and (2) lmfb is generated by the text-to-mel
network. This comparison of the waveform-based model and the two kinds of
the lmfb-based model is a major contribution of this Chapter. As data masking
methods such as SpecAugment [17] significantly affect the lmfb-based ASR
systems, we also design a masking method in the waveform-based end-to-end
ASR.

1.6.2 Generating ASR Features via Discrete IDs

In Chapter 4, we present a data augmentation approach via a discrete speech
representation. It has been found that the synthesized lmfb features have a
serious mismatch with the real speech features. One reason is difficulty in
predicting the continuous value of lmfb features. Moreover, it is not guaranteed
that the generated lmfb features exist in real because the end-to-end TTS model

8

1.7. ORGANIZATION OF THIS THESIS

aims to minimize the L1 loss between predicted and ground-truth lmfb features.
In this work, the TTS model predicts discrete ID sequences instead of lmfb
features, and the ASR also uses the ID sequences as training data. We expect
that using a discrete representation based on vq-wav2vec makes TTS training
easier and mitigates the mismatch with real data.

1.6.3 Mel-to-Mel Network to Refine Generated Spectral Fea-
tures

In Chapter 5, we present a post-processing network that refines lmfb features
without using the vocoder. In Chapter 3, we first generate an lmfb feature from
text data, then converts it into a waveform, and converts it again to an lmfb feature.
The vocoder is used to alleviate the difference between real and synthesized
speech, but it requires a huge amount of runtime. Moreover, the waveform is not
necessary for the data augmentation itself. We propose the mel-to-mel network
that directly refines lmfb features, which takes much less time than converting
to the waveform domain. General speech enhancement, which is also (not Mel)
spectrogram-to-spectrogram model, can be improved given phone information
of the speech which is available in TTS and data augmentation tasks. In this
work, we also add text information of the speech for phone-informed refinement.
We experimentally show that the proposed network achieves better WERs than
the vocoder network in a domain adaptation task in a much smaller amount of
data generation time.

1.7 Organization of this Thesis

The organization of this thesis is outlined in Fig. 1.1. Chapter 2 provides literature
review about ASR and TTS methods. Chapter 3 (blue arrow) presents data
augmentation for ASR using TTS and waveform-based data augmentation. We
use a vocoder to convert the generated lmfb features into a waveform and also
design a waveform-input ASR model. Chapter 4 (yellow arrow) presents a data
augmentation via a discrete representation. The TTS model predicts a discrete

9

CHAPTER 1. INTRODUCTION

(1)�Synthesizing�waveform�as�training�data�for�ASR�(Chapter�3)

waveform

(3)�Mel-to-mel network�to�refine�generated�speech�(Chapter�5)

(2)�Generating�ASR�features�via�discrete�IDs�(Chapter�4)

Text
TTS(text-to-mel)

Log�Mel-filter� bank�feature
vocoder

Mel-to-mel network

Discrete�IDs
End-to-end�ASRUsing�Discrete�ID [120, 130, ..]

End-to-end�ASR

Waveform-inputEnd-to-end�ASR

Refined�Log�Mel-filter� bank�feature

End-to-end�ASR
(0) Naive�method

Figure 1.1: Organization of this thesis. In Chapter 3 (blue arrow), we generate
the lmfb feature and then convert the lmfb feature into a waveform. We also
design a waveform-input ASR model. In Chapter 4 (yellow arrow), we generate
a discrete representation instead of a continuous value of lmfb features. We
also design the end-to-end ASR model, which consumes the discrete ID-based
acoustic feature. In Chapter 5 (green arrow), we compose a mel-to-mel network
to refine the generated lmfb features without relying on a vocoder.

representation instead of lmfb features, and the ASR model also uses the discrete
representation-based feature. Chapter 5 (green arrow) presents a mel-to-mel
network to refine generated speech. We comprise a mel-to-mel network to refine
the lmfb features generated by the text-to-mel network.

10

Chapter 2

Review of Automatic Speech
Recognition and Text-to-Speech

This chapter reviews the literature related to ASR and TTS systems. Section 2.1
describes DNN-HMM hybrid ASR systems and Section 2.2 describes end-to-end
ASR systems. Let X = (x1, ..., xT) denote an acoustic feature of lengths T , and let
y = (y1, ..., yL) denote a target label sequence of lengths L, where yl 2 {1, ..., K}
and K is the number of target labels.

2.1 DNN-HMM Hybrid ASR Systems

DNN-HMM hybrid ASR systems have been used for many practical applications.
They have two separate modules to recognize speech. One is an acoustic
model (AM). The other is a language model (LM). In the conventional ASR
systems, a word sequence YASR is decoded for a given acoustic feature sequence
X with the maximum a posterior decision and the Bayes’ theorem as follows:

argmax p(YASR|X) = argmax p(YASR)p(X|YASR) (2.1)

Moreover, a word is divided into phones Yphone and we can rewrite equation
(2.1) as follows:

p(YASR)p(X|YASR) ⇡ max
Yphone

p(YASR)p(X|Yphone) (2.2)

where p(X|Yphone) and p(YASR) are the probability of acoustic model and language
model respectively. The acoustic model learns the distribution of acoustic

11

CHAPTER 2. REVIEW OF AUTOMATIC SPEECH RECOGNITION AND
TEXT-TO-SPEECH

features by DNN and the latent state transition by HMM. The language model
estimates the probability of a word occurrence given a context. It conventionally
uses an N-gram model, and the integration of N-gram and RNN achieves the
improvement [33]. In this manner, this hybrid ASR system is split into two
disjoint modules and trained separately with different criteria. In addition,
pronunciation dictionary that defines mapping from a word to a phone sequence
is needed, and it often requires phonological knowledge.

2.2 End-to-End Architecture for ASR

The hybrid ASR systems train the AM and LM separately. Integrating the
functions of AM and LM has been investigated thanks to the recent devel-
opment of DNN, referred to as end-to-end speech recognition. We directly
compute p(YASR|X) in the end-to-end model. In practice, we split YASR into
subwords to reduce the vocabulary size of the end-to-end model and recog-
nize the unknown words. To make subwords, we use sentencepiece [34] or
byte-pair-encoding (BPE) [35]. End-to-end speech recognition has four types
of architecture: connectionist temporal classification (CTC) [4, 36], transducer
model, attention-based encoder decoder model, and Transformer-based model.

2.2.1 Connectionist Temporal Classification

Connectionist temporal classification (CTC) is a kind of objective function for
labeling a sequence problem. Generally, the time length of X is much longer than
that of YASR. The CTC-based model introduces a special label called "blank" (�) in
addition to subword labels. In this model, these outputs define the probabilities of
all possible ways of aligning all possible label sequences with the input sequence.
The total probability of one label can be calculated by summing the probabilities
of its different alignment.

12

2.2. END-TO-END ARCHITECTURE FOR ASR

Training

The CTC loss is defined based on the minimum log-likelihood criterion.

LCTC(X,YASR) = � logP (YASR|X) (2.3)

The key to compute P (YASR|X) is allow the model to output blank (�) labels.
P (YASR|X) is marginalized using the probabilities of all possible alignment in
⌦(YASR) as:

p(YASR|X) =
X

⇡2⌦(YASR)

p(⇡|x) =
X

⇡2⌦(YASR)

TY

t=1

p(⇡t|xt) (2.4)

where⇡ = (⇡1, ..., ⇡T) is an output sequences over the target label ⇡t 2 {1, ..., K}[
{�} and the posterior probabilities p (⇡t|xt) are modeled with a recurrent neural
network Nw : Rm⇥T 7! Rn⇥T such as LSTM which maps an input acoustic
sequence X into a m-dimensional continuous value. The CTC loss and its
gradient with respect to the network parameters are efficiently computed with
the forward-backward algorithm. Usually CTC-based model learns a monotonic
alignment. It is advantageous for speech recognition because the output label
sequence is monotonic in speech recognition. However, they do not explicitly
learn the internal relationship at different times since they assume that the
probability of each label is independent of others as in equation (2.4).

Inference and Forced Alignment

In inference, we remove all repeating labels and blank labels from the paths in
⌦�1(⇡) = y. For example, we can recognize ⌦�1(�aa��a�bb) = aab.

The time indices of non-blank tokens in ⇡ are used as the reference token
boundaries. When repeated non-blank labels exist, the leftmost index corre-
sponding to the same non-blank token is used as a reference token boundary.
For instance, given a CTC path ⇡ = (�aa��a�bb) corresponding to a reference
transcription “a a b”, we convert it to (�, a,�,�, a,�, b,�) and then extract the
time indices of the non-blank tokens alignment = (2, 5, 7). In this thesis, we used
the alignment to train FastSpeech 2 model (Section 2.3.2).

13

CHAPTER 2. REVIEW OF AUTOMATIC SPEECH RECOGNITION AND
TEXT-TO-SPEECH

2.2.2 Attention-Based Encoder Decoder Model

The other way to fill the lengths difference is to use sequence-to-sequence
(seq2seq) modeling. The attention-based encoder-decoder model is a kind of
seq2seq model. An encoder network maps an acoustic feature sequence to a
distributed representation of the same lengths T . The decoder network predicts
a target sequence whose length is L using the encoded intermediate information.
The decoder network uses only a relevant portion of the encoded sequential
representation to predict a symbol at each step using the attention mechanism.
The encoder is implemented with a multi-layer bidirectional LSTM, and the
decoder usually consists of a 1-layer of unidirectional LSTM followed by a softmax
layer.

The attention-based model is formulated as follows. The encoder trans-
forms an acoustic feature sequence X to an intermediate representation hASR =

(h1, ...,hT). In the decoder network, the hidden state activation of the RNN-based
decoder at the l-th time step is computed as:

sl = Recurrency (sl�1,gl, yl) (2.5)

where gl and yl�1 denote the “glimpse" at the l-th target label and the predicted
symbol at the previous step. The glimpse gl is a weighted sum of the encoder
output sequence as:

gl =
X

t

↵l,tht (2.6)

where ↵l,t is an attention weight of ht. In this work, we use a content-based
attention mechanism formulated as follows:

el,t = w
T tanh(Wsl�1 +Vht +Ufl,t + b) (2.7)

fl = F ⇤↵l�1 (2.8)

↵l,t = exp(el,t)/
TX

t0=1

exp(el,t0) (2.9)

where ⇤ denotes a 1-dimensional convolution. Using gl and sl�1, the decoder
predicts the next symbol yl as:

yl ⇠ Generate (sl�1,gl) (2.10)

14

2.2. END-TO-END ARCHITECTURE FOR ASR

	"!−1

Softmax
	#!−1

Weighted�Sum

	$!−1

	%!−1

	&!−1

'$%&: Encoded�representation
)!

Convolution
tanh 	"!

Softmax
	#!

Weighted�Sum

	$!

	%!
	&!	&'

Figure 2.1: The flow of the decoder network. The vector s0 has all zero elements
by initialization.

where the Generate function is implemented as:

R tanh (Psl�1 +Qgl) (2.11)

Figure 2.1 shows the flow of the decoder network.
The objective function for training the attention models is cross entropy. The

loss is reduced to the negative log-likelihood between the predicted symbol
sequences and the target oracle symbol sequences.

Latt = � logPatt(YASR|X) (2.12)

For efficient training, we apply the three training methods [17, 37, 38].

Joint CTC/Attention training

When training the attention-based model, we use the cross entropy between
the ground-truth labels and the predicted labels (Latt). In the ASR task, the
attention between the acoustic features and the target label has monotonicity

15

CHAPTER 2. REVIEW OF AUTOMATIC SPEECH RECOGNITION AND
TEXT-TO-SPEECH

(left-to-right), but a structure of attention itself does not have the constraint,
which sometimes causes the label repetition. To ensure the monotonicity, we
introduce the multi-task learning with CTC loss (�ctc) [37] as follows:

LASR = (1� �ctc)Latt + �ctcLCTC (2.13)

where �ctc is a hyperparameter (0 �ctc 1) for the CTC loss weight.

Label Smoothing

Label smoothing [38] is a regularization method for preventing a model from
over-fitting. When calculating the cross-entropy, we do not simply use a grand-
truth label of 1.0 but discount it and assign a small probabilities to all other
symbols with a uniform distribution. In this paper, we set the probability of the
ground-truth label to 0.9 and other labels to uniform 0.1/K.

SpecAugment

SpecAugment [17] is a data augmentation method by masking both frequency
and time domains randomly. Before input to the ASR model, the mask is applied
to lmfb features. We randomly choose the value of f , and then f0 consecutive
mel frequency channels [f0, f0 + f) are masked, where f is first chosen from a
uniform distribution from 0 to the frequency mask parameter F , and f0 is chosen
from [0, ⌫ � f), where ⌫ is the number of mel frequency channels. Time masking
is applied so that t consecutive time steps [t0, t0 + t) are masked, where t is first
chosen from a uniform distribution from 0 to the time mask parameter T , and
then t0 is chosen from [0, ⌧ � t). The lmfb values in the range of masked areas
are replaced with 0. We do not use time-warping and use two masks in the time
domain and one mask in the frequency domain.

Beam Search and Shallow Fusion

In inference, greedy search simply takes the label with the highest probability at
each position and computes fast. Once we had identified the best label for that
position, we did not consider what came before it. In the attention-based model,

16

2.2. END-TO-END ARCHITECTURE FOR ASR

we conduct the beam search to consider the probabilities of the combination of
the preceding labels along with the label in the current position. Beam search
picks the N best sequences and predicts the probability of the label in the current
position for all N candidates. We then pick the N best sequences based on the
combined probability and repeat this procedure until the end. We prepare special
symbols for denoting the start-of-sentence (hsosi) and end-of-sentence (heosi).
The decoder completes the process when an heosi symbol is recognized. In the
prediction of each position, we memorize sl, ↵l, and YASR of each candidate.
When calculating the scores of beam search, shallow fusion [18] is widely applied.
In shallow fusion, the external LM yLM(YASR) is incorporated via log-linear
interpolation at inference time only. In addition to shallow fusion, we also
introduce length reward (penalty) terms. As a result, we calculate a score for
beam search as follows:

ˆYASR = argmax
YASR

(log pASR(YASR|X) + � log pLM(YASR) + � |YASR|) (2.14)

where � is a weight for language model and � is a length reward (� > 0) or
penalty (� < 0).

2.2.3 Transformer

Transformer [39] is a DNN model that adopts an self-attention mechanism without
a recurrent neural network (RNN). The transformer block has two modules of
multi-head attention and feed-forward network (FFN), and we stack several
transformer blocks to compose the transformer-based model. We add "positional
encodings" to the input embeddings at the bottom of the encoder and decoder
stacks to make use of the order of the sequence. In this study, we use sine and
cosine functions of different frequencies: PE(pos, 2i) = sin(pos/100002i/dmodel)

and PE(pos, 2i + 1) = cos(pos/100002i/dmodel) where pos is the position, i is the
dimension, and dmodel is dimension of the transformer block.

The multi-head attention of the transformer is based on scaled dot-product
attention. The scaled dot-product attention learns three weight matrices to
calculate the attention; the dq,k-dimensional query weights WQ 2 Rdmodel⇥dq,k , the

17

CHAPTER 2. REVIEW OF AUTOMATIC SPEECH RECOGNITION AND
TEXT-TO-SPEECH

dq,k-dimensional key weights WK 2 Rdmodel⇥dq,k , and the dv-dimensional value
weights WV 2 Rdmodel⇥dv . We produce the query vector Q = WQXQ, the key
vector K = WKXK,V , and the value vector V = WVXK,V using the input XK,V of
the key and value, and XQ of the query. We then calculate the attention results
as follows:

Attention(Q,K, V) = softmax(QKT

p
dk

)V (2.15)

where 1p
dk

is a scaled factor. In particular, Eq. (2.15) is referred as self-attention
when XK,V = XQ. The transformer model uses multi-head attention, which
calculates several attentions on one stack. Multi-head attention allows the
model to jointly attend to information from different representation subspaces at
different positions. We write h-head attention as follows:

MultiHead(Q,K, V) = Concat(head1, ..., headh)WO (2.16)

headi = Attention(QWQ

i
, KWK

i
, V W V

i
) (2.17)

where the projections are parameter matricesWQ

i
2 Rdmodel⇥dq,k ,WK

i
2 Rdmodel⇥dq,k ,

W V

i
2 Rdmodel⇥dv , WO 2 Rhdv⇥dmodel . In the multi-head attention, we set dq,k =

dv = dmodel/h. Figure 2.2 shows flows of the scaled dot-product attention and
multi-head attention.

In addition to attention sub-layers, each layer contains a fully connected FFN,
which is applied to each position separately and identically. This FFN module
has several variants. FFN has two linear transformations with a ReLU activation
in the original work. Another variant has two CNN layers with a ReLU activation.

We can use the transformer as an encoder and a decoder, but we use it as an
encoder only. In this thesis, we use the Transformer architecture for not only the
ASR model but also the TTS model (Section 2.3.2).

2.2.4 Conformer

Conformer [40], which is a variant model of transformer encoder, achieves high
performance on the ASR tasks. Fig. 2.3 shows the comparison of transformer block

18

2.3. END-TO-END ARCHITECTURE FOR TTS

LinearLinear

Scaled�dot-product�attention
Scaled�dot-product�attention

MatMul
!

Scale� !"!

"

Softmax
MatMul

#

Linear
#

Scaled�dot-product�attention

Concat

LinearLinearLinear
"

LinearLinearLinear
!

ℎ

Scaled dot-product attention Multi-head�attention

Figure 2.2: The flows of the scaled dot-product attention and multi-head attention.
dk means dimension of K.

and conformer block. The differences are the positions of FFN, a convolution
module, and relative positional encoding. We use two FFN blocks. Each FFN
block has two linear transformations with a Swish activation. The convolution
module is composed of a pointwise convolution, gated linear unit (GLU), 1-D
convolutional depthwise convolutional layer, batchnorm with Swish activation,
and a pointwise convolution. While the original transformer block uses absolute
positional encoding, the conformer block uses relative positional encoding. The
relative positional encoding is employed in the multi-head attention module.
The relative positional encoding allows the self-attention module to generalize
better on different input lengths, and the encoder is more robust to the variations
of the utterance length.

2.3 End-to-End Architecture for TTS

In the TTS task, we conventionally use the HMM-based model to align between
a target speech X and a length-L input text sequence YTTS. These models have

19

CHAPTER 2. REVIEW OF AUTOMATIC SPEECH RECOGNITION AND
TEXT-TO-SPEECH

FFN Multi-head�Attention Convolution�Module FFN
1/2 × Layernorm

1/2 ×
Conformer�block

Multi-head�Attention FFN
Transformer block

Layernorm

Figure 2.3: Transformer block (top) and conformer block (bottom).

complicated modules, and we need to design them carefully similarly to the ASR
models. Thanks to the development of DNNs, we realize the TTS system with a
much simpler architecture, which is called an end-to-end TTS model. In contrast
to the ASR model, the end-to-end based TTS models predict the target speech X

for a given input text sequence YTTS as:

X = argmax pTTS(X|YTTS) (2.18)

YTTS is a phone sequence converted from a word sequence. The goal of the TTS is
to synthesize a waveform that the human can hear and evaluate. In the realm of
the TTS, X is the waveform. We compose two pipelines in general: (1) mel-to-mel
network for lmfb features generation and (2) vocoder (mel-to-waveform network)
for waveform generation from the generated lmfb features. We rewrite (2.18) as
follows:

X = argmax Pvocoder(X|Xlmfb)Ptext-to-mel(Xlmfb|YTTS) (2.19)

whereXlmfb is a length-T lmfb feature. In practice, we train two models separately.
The text-to-mel networks, similar to speech recognition, require solving problems
with different lengths of input labels and output speech. We use Tacotron 2 [9]
and FastSpeech 2 [41] as the mel-to-mel network. The vocoder network also needs
to solve the problem with different length of input lmfb features and output
waveform. However, it is readily conditioned since lmfb features is computed

20

2.3. END-TO-END ARCHITECTURE FOR TTS

Phone Phoneembedding 3 layersconvolution BiLSTM
Attention

2 layersuniLSTM2�layerspre-net

5�layers convolutionpost-net

Linear�projection
Linear�projection

log�mel-scale�filterbank (lmfb)�features
Generate&�buffer

Stop�token

Figure 2.4: Tacotron 2 architecture.

from a constant speech waveform interval. We utilize the WaveNet-based model
and GAN-based models as the vocoder networks.

2.3.1 Tacotron 2

Tacotron 2 [9] is a kind of the text-to-mel network and a seq2seq modeling with
an attention mechanism, which is composed of an encoder decoder network.
Figure. 2.4 shows the Tacotron 2 architecture. The encoder network transforms
an input text sequence YTTS to an intermediate representation following an
embedding layer, CNN layers, and BiLSTM layers. The decoder comprises the
2-layer unidirectional LSTM. To learn a relevant portion of the encoded feature,
we add attention mechanisms similar to the ASR model. We use a linear layer
to predict the lmfb features from the outputs of the unidirectional LSTM layer.
Finally, the predicted lmfb feature is passed through a 5-layer convolutional
post-net which predicts a residual to add to the prediction to improve the overall

21

CHAPTER 2. REVIEW OF AUTOMATIC SPEECH RECOGNITION AND
TEXT-TO-SPEECH

reconstruction. We minimize the summed mean squared error (MSE) or mean
absolute error (MAE) between ground-truth and predicted lmfb features before
and after the post-net.

While the ASR systems readily stop the prediction when heosi is predicted,
the lmfb features do not have heosi and the TTS system needs to predict the end
of the prediction. Therefore, we prepare a layer to predict a stop token instead of
an heosi label. In training the stop token, we use binary cross entropy between
ground-truth and predicted stop token flag (0 means “not finished” and 1 means
‘finished‘). In inference, the generation is stopped when the probability of a stop
token is over 0.9.

The original Tacotron 2 model is designed for a single speaker TTS model.
When it comes to data augmentation for ASR, the generated speech should have
various speech. In this study, we compose a multi-speaker TTS model which
generates various speech given the same text. We add a speaker ID to the input
feature to generate multi-speaker speech.

2.3.2 FastSpeech 2

Recently, the non-autoregressive networks have been investigated such as Fast-
Speech [41, 42] and Parallel Tacotron [43, 44]. These networks generate Mel
spectrogram faster than the autoregressive network because they do not need to
wait for the generation at the previous timestep. The non-autoregressive model is
appropriate for the data augmentation since we need to generate a larger amount
of speech than the standard TTS task. In this work, we use FastSpeech 2-based
model [41]. The FastSpeech 2 model is composed of a Transformer-based en-
coder decoder network. The main characteristic of the FastSpeech 2 model is
adding a network called variance adaptor to predict the duration of lmfb features
corresponding to each input phone. In addition to the network to predict the
duration, the variance adaptor optionally consists of some predictors to other
kinds of acoustic information. Figure 2.5 shows the architecture of variance
adaptor. In this work, we implement three predictors: duration predictor, pitch
predictor, and energy predictor. Each predictor has a 1-D CNN block + ReLU

22

2.3. END-TO-END ARCHITECTURE FOR TTS

Duration�predictor
Extend

F0�predictor

Energypredictor
F0

Energy

Ref.�duration

Ref.�F0

Ref.�energy

Duration

Figure 2.5: Variance adaptor of FastSpeech 2.

activation, a layer normalization block, a 1-D CNN block + ReLU activation, a
layer normalization block, and a linear layer. For training of duration prediction,
we prepare the alignment before training the FastSpeech 2-based model.

More formally, the encoder transforms an input text sequence YTTS into an
intermediate representation H = (h1, ...,hL). The duration predictor predicts
a duration of each input text D = (d1, ..., dL), where d1 + ... + dL = T . We then
extend the intermediate features according to D as follows:

Ĥ = (h1, h1, h1, ..., hL, hL) (2.20)

The pitch and energy predictor predicts pitch and energy, respectively and their
predicted acoustic information are embedded. The embedded features are added
to the Ĥ via residual blocks. Finally, the decoder predicts Xlmfb using Ĥ in
parallel. In this thesis, we use a 5-layer convolutional post-net [9] which predicts
a residual to add to the prediction to improve the overall reconstruction. In

23

CHAPTER 2. REVIEW OF AUTOMATIC SPEECH RECOGNITION AND
TEXT-TO-SPEECH

training, we minimize five mean absolute error (MAE) losses for lmfb features of
the FastSpeech 2 output, those of the post-net output, duration, pitch, and energy.
We need to prepare the alignment, pitch, and energy in advance. In this thesis,
we use a CTC-based model to get the alignment and WORLD [45] to obtain the
pitch.

2.3.3 WaveNet-Based Vocoder

We need to comprise an additional network referred to as a vocoder to generate a
waveform. Similar to the mel-to-mel network, the vocoder networks are catego-
rized into an autoregressive and a non-autoregressive model. The WaveNet [46]
vocoder is a kind of autoregressive model. In the vocoder task, the timesteps of
a waveform are much larger than that of an lmfb feature (e.g., 16kHz sampling
waveform has 16,000 timesteps per second, and a 12.5ms-shifted lmfb feature
has 80 timesteps per second). It constructs the multi-layer CNNs, where the
convolutional layers have various dilation factors that allow the receptive field
to grow exponentially with depth and cover thousands of timesteps. It also
uses the generated lmfb features provided by a text-to-mel network to condition
acoustic information. Although the WaveNet generates a high quality waveform
compared to the parametric TTS model, the generation takes a long time be-
cause it must wait for the waveform samples on the previous timesteps, and the
waveform has a much long form. For a faster generation, WaveRNN [47] based
on simple single-layer RNN has been proposed. However, the autoregressive
models are not suitable for real-time applications.

2.3.4 GAN-Based Vocoder

Recently, many attempts have been made with non-autoregressive models.
Parallel WaveNet [48] distills a trained autoregressive teacher decoder into a
flow-based model. WaveGlow [49] is a flow-based generative model based on
Glow [50]. WaveGlow is a very high capacity generative flow consisting of
multi-coupling and multi-invertible 1x1 convolutions, with each coupling layer
consisting of a stack of multi-layers of dilated convolutions. It achieves good

24

2.3. END-TO-END ARCHITECTURE FOR TTS

quality, but takes much time for training since it needs to train a large number of
parameters.

Generative adversarial networks (GANs)-based vocoders generate a high-
quality waveform in faster decoding with fewer parameters. GANs [51] have
made progress in computer vision such as image generation [52] and image-
to-image translation [53]. GAN has two network architectures: generator and
discriminator. A generator network maps a latent space into target values of
interest, which is a waveform in the vocoder task and produces the outputs that
the discriminator cannot distinguish. A discriminator distinguishes the true data
from the data generated by the generator. We introduce the GAN objective to
train both the generator and discriminator as follows:

LGAN(G,D) = Ex[logD(x)] + Exlmfb [log(1�D(G(xlmfb)))] (2.21)

where the generator G tries to minimize the objective against an adversarial dis-
criminator D that tries to maximize it. MelGAN [54] is a GAN-based vocoder and
a non-autoregressive model. The generator of MelGAN is a fully convolutional
feed-forward network with an lmfb feature as input and raw waveform as output.
Because the lmfb feature is calculated per a certain interval waveform and at a
lower time resolution, it uses a stack of transposed convolutional layers to upsam-
ple the input sequence. Unlike traditional GANs, the MelGAN generator does not
use a global noise as input. The discriminator adopts a multi-scale architecture
with three discriminators. There are several variants of the GAN-based model.
Parallel WaveGAN [55] uses a WaveNet-based generator and multi-resolution
STFT auxiliary loss for stable training of the generator. In the multi-resolution
STFT loss, we use spectral convergence (Lsc) and log STFT magnitude loss (Lmag)
as follows:

Lsc(x, x̂) =
|STFT(x)|� |STFT(x̂)|

|STFT(x̂)| (2.22)

Lmag(x, x̂) =
1

N
log |STFT(x)|� log |STFT(x̂)| (2.23)

25

CHAPTER 2. REVIEW OF AUTOMATIC SPEECH RECOGNITION AND
TEXT-TO-SPEECH

where |STFT()| and N denote the STFT magnitudes and number of elements in
the magnitude, respectively. The multi-resolution STFT loss is the sum of the
STFT losses with different analysis parameters (i.e., FFT size, window size, and
frame shift).

The GAN-based architecture and the multi-resolution STFT loss are effective
for generating a high-quality waveform, and several extensions based on them
have been proposed such as VocGAN [56] and HiFi-GAN [57].

26

Chapter 3

Synthesizing Waveform to Augment
Training Data for ASR

3.1 Introduction

The major problems of end-to-end ASR systems are the need for a large amount
of training data, data sparseness, and uneven distributions. It is not easy to
adapt to a new domains because we need to prepare the paired speech and
transcription data of the target domain.

Many attempts [18,20, 21,58–62] using text-only data have been made. One
of the approaches investigates the integration of a language model which is
trained using text-only data. Kannan et al. proposed shallow fusion to integrate
an external language model and the ASR model in inference [18]. Sriram et al.
developed a method to train the attention-based ASR model together with a
language model [58]. These approaches enhance the language model function
of the end-to-end model using the external language model. Other approaches
compose the end-to-end model that allows text-only data input to enhance the
language model [59, 60]. Masumura et al. [59] prepared a shared decoder to
train phoneme-to-grapheme (text-only data) and ASR tasks (paired data) and
pre-trained the decoder on a phoneme-to-grapheme task. Tang et al. [60] jointly
trained speech-to-subword and phone-to-subword tasks.

Other approaches utilize back-translation style learning. Karita et al. [61,62]
used autoencoders to leverage speech-only data and text-only data. These

27

CHAPTER 3. SYNTHESIZING WAVEFORM TO AUGMENT TRAINING DATA FOR
ASR

autoencoders learn features from speech-only and text-only datasets by switching
the encoders and decoders used in the ASR and TTS models. These methods can
be effective for enhancing the ASR models in the same domain.

Other works combine the ASR and TTS models [20, 21] referred to as speech
chain. Given the unlabeled speech features, the ASR model transcribes the
unlabeled input speech, while the TTS model reconstructs the original speech
waveform based on the output text from ASR. Given only the text input, TTS gener-
ates speech waveform, while ASR also reconstructs the original text transcription
giving the synthesized speech.

In our previous work [22, 23], we proposed utilizing speech synthesis to
generate acoustic features for training end-to-end ASR models from new-domain
texts. Recently, seq2seq neural speech synthesis models have also been devel-
oped [9, 63–65]. In contrast to conventional TTS, a seq2seq model realizes TTS
with very simple architecture, and its training is much easier. Moreover, it has
been shown to achieve naturalness comparable to human speech [9, 65]. TTS
efficiently makes it possible to generate paired data covering the new target
domain. However, speech synthesizers are usually trained with a single speaker
and do not have speaker diversity. This may be a serious problem for ASR, which
needs to cover a variety of speakers. Therefore, we extended the Tacotron 2-based
speech synthesis framework to generate multi-speaker speech using speaker
embedding in seq2seq speech synthesis [23]. Training a speech synthesizer with
a large number of speakers is expected to generate useful speech data for ASR
model training and eventually solve the data sparseness problem.

However, the performance gain by the data augmentation with TTS is still
limited compared with real speech data since the quality of speech data generated
by TTS is not realistic. We observe that the time resolution of the generated
lmfb features is insufficient, and the generated lmfb features result in blurry,
particularly on the time dimension. Actually, the time resolution of the artificial
spectrum is not sufficient because the TTS model estimates the spectrum of
several contiguous frames at one decoding step for stable training and fast
inference. In this work, we design the waveform domain data augmentation used

28

3.2. TTS FOR ASR TRAINING

for both ASR and TTS. In the TTS, we use a vocoder to improve the generated
spectrum. We aim to interpolate speech at time dimension to convert a generated
lmfb feature into a waveform. We can again convert the waveform into the lmfb
features and then use them as the lmfb-input ASR input. In this work, we also
design waveform-input ASR to fully utilize the generated waveform. To realize
the waveform-input ASR, we introduce a CNN-based feature extraction network
and train it together with a recognition network. We also apply a data masking
method in the waveform-based end-to-end ASR because a data masking method
for the lmfb-based ASR systems such as SpecAugment [17] significantly affects
the ASR performance.

3.2 TTS for ASR Training

We investigate leveraging seq2seq speech synthesis to augment the training
data for speech recognition (Fig. 3.1). This data augmentation method basically
has three steps. First, we train a TTS model using paired data of speech and
transcription (this paired data does not need to be a target domain). We then
generate the speech from the target domain texts. We collect text from a target
domain where we want to perform speech recognition and generate speech using
the text. This scheme not only enhances the language model capability but also
learns acoustic patterns of the text, including domain-specific words. Finally, we
train an ASR model using the generated data mixed with the real data.

Although the generated speech improves the ASR performance, the im-
provement of ASR depends on the performance of TTS. For example, speech
data generated by a single speaker TTS has less diversity, but the ASR model
needs to recognize various speech. In our seminal work [23], we introduced
multi-speaker TTS to acquire speaker diversity by adding speaker embedding to
the Tacotron 2 architecture. Similar efforts have been made by Rosenberg [24],
Nick [66], and Huang [67] based on speaker-ID embedding for data augmentation.
Rosenberg et al. [24] introduced multi-speaker TTS for data augmentation using
hierarchical VAE and the WaveNet-based vocoder. Nick et al. [66] used GST-based

29

CHAPTER 3. SYNTHESIZING WAVEFORM TO AUGMENT TRAINING DATA FOR
ASR

57

Transcript SpeechSeq2seq�speech�recognition(Attention-based�model)

Texts(Target�domain)
Seq2seq�speech�synthesis(Tacotron 2�based�model)� Generated�speech(multi-speaker)

ASR�training�data�augmentation
Need�pair�data

(1)
(2)

LM�fusion (2)(3)

Figure 3.1: Overall architecture of data augmentation for ASR. (1) seq2seq speech
synthesis model generates speech. (2) seq2seq speech recognition model is
trained using generated speech and text. (3) when seq2seq speech recognition
model decodes, text-only data is also used with LM fusion.

speaker embedding and the Griffin-Lim vocoder to synthesize speech waveforms.
Huang et al. [67] used a multi-speaker TTS for speaker adaptation of ASR and
the WaveNet-based vocoder.

Although the multi-speaker TTS enhances ASR model training, the quality
of the lmfb features generated by the Tacotron 2 based model is not sufficient
compared with the real lmfb features. Fig. 3.2 shows the comparison of real and
generated speeches (lmfb features) for the same texts. It is observed that the
TTS model generates lmfb features reasonably in the low-frequency regions, but
the generated lmfb features in the high-frequency regions are vague or almost
blurry compared with the real speech. Moreover, we can see the generated
speech sometimes includes unnatural silence in the right example (around 250-th
frames). Generally, the magnitudes of low-frequency bins are larger than those of
the high-frequency bins and the silence parts. When the Tacotron 2 based model
focuses on minimizing the L1 loss between predicted and ground-truth lmfb
features, the prediction performance in the high-energy parts is sufficient, but the
information of low-energy parts and silence tends to be diminished. Moreover,
by using the reduction rate to make the training of the TTS model stable and its
inference faster, the predicted lmfb features may be over-smoothed.

Considering that we must generate a huge amount of speech data, it is not

30

3.2. TTS FOR ASR TRAINING

Figure 3.2: Examples of real (top) and generated speech (bottom) from two texts.

easy to fix this problem in the Tacotron 2 side. To generate high-quality speech
data, we turn to the WaveNet vocoder. Fig. 5.1 shows lmfb features generated by
TTS models. In the top (a), the TTS model generates lmfb feature with a 50 ms
window and 12.5 ms shift, which TTS models typically use. In the middle (b), we
compute the lmfb feature from the waveform generated by applying WaveNet
to (a). In the bottom (c), the TTS model generates the lmfb feature with parameters
that ASR models typically use. We observe that the lmfb feature, in particular
the harmonic structure in low-energy parts, becomes clear after applying the
WaveNet vocoder, and thus expected to be effective for ASR model training. Thus,
we investigate the waveform-based data augmentation with TTS. Specifically, we
compare the following three configurations.

31

CHAPTER 3. SYNTHESIZING WAVEFORM TO AUGMENT TRAINING DATA FOR
ASR

(c)�Lmfb�feature�generated�by�Tacotron�2�(25�ms�window,�10ms�shift,�40-channels)

(a)�Lmfb�feature�generated�by�Tacotron�2�(50�ms�window,�12.5�ms�shift�,�80-channels)

(b)�Lmfb�feature�from�waveform�that�is�generated�by�applying�WaveNet�to�(a)

Figure 3.3: Log Mel-scale filterbank (lmfb) features generated by TTS models.

32

3.2. TTS FOR ASR TRAINING

Texts Seq2seq�speech�synthesis(Tacotron 2�based�model)� Vocoder(WaveNet)�

Waveform�

Transcript Acousticfeature
Seq2seq�speech�recognition(Attention-based�model)

B.�Waveform-output�TTS&�lmfb-input�ASR

Lmfb�features
C.�Waveform-output�TTS&�waveform-input�ASR

A.�Lmfb-output�TTS&�lmfb-input�ASR

Figure 3.4: Three configurations of data augmentation with TTS.

3.2.1 Lmfb-output TTS and Lmfb-input ASR

In this method, lmfb features are directly generated by TTS (Fig. 3.4 A). This
method is computationally efficient since we do not generate waveforms. How-
ever, we change the setting of TTS to match the typical ASR systems. While
typical TTS systems predict lmfb features based on 80 channels using a 50 ms
window with a shift of 12.5 ms, we adopt a 25 ms window with a shift of 10 ms
to compute 40-channel lmfb, which is typically used in the ASR model. We train
the Tacotron 2 model with this ASR-matched setting. We also train the Tacotron 2
model with TTS-matched setting and the ASR model with TTS-matched setting
in an experiment.

3.2.2 Waveform-output TTS and Lmfb-input ASR

As general ASR systems input lmfb features, we convert waveforms generated by
TTS to lmfb (Fig. 3.4 B). As shown in Fig. 5.1, this lmfb has better quality than

33

CHAPTER 3. SYNTHESIZING WAVEFORM TO AUGMENT TRAINING DATA FOR
ASR

the lmfb generated by TTS. We compute 40-channel lmfb features using a 25 ms
window with a shift of 10 ms for the ASR input. It is the widely-used setting in
ASR.

3.2.3 Waveform-output TTS and Waveform-input ASR

In this study, we design a seq2seq ASR system whose input is a raw wave-
form (Fig. 3.4 C). This ASR system is an end-to-end ASR from a waveform to
a word sequence. We describe the detail of the feature extraction part and a
masking method in Section 5. The Tacotron 2-based model predicts 80-channel
lmfb features using a 50 ms window with a shift of 12.5 ms, and then the WaveNet
model generates waveforms from these lmfb features.

3.3 Waveform-input ASR

There are many previous works on learning acoustic models from raw wave-
forms [68–73]. Jaitly et al. [68] modeled a waveform using a restricted Boltzmann
machine. Palaz et al. [69, 71] used CNN for extracting acoustic features from
speech signals. Tüske et al. [70] analyzed which acoustic features, including wave-
forms, were effective for training acoustic models. Sainath et al. [72] proposed
feature extraction that consisted of two convolution layers for reducing temporal
variations and reducing frequency variations. Ravanelli et al. [73,74] used SincNet,
which is a learnable filter based on the band-pass filter. Recently, many works
proposed feature extraction in an end-to-end manner. Tjandra et al. [20] proposed
a CNN-based feature extraction architecture for an attention-based model and
pretrained the model by minimizing the mean squared distance between lmfb fea-
tures and the output of the model. Zeghidour et al. [75] presented an end-to-end
speech recognition system based on convolution layers without RNNs.

3.3.1 Feature Extraction

We adopt a CNN-based model proposed by Zeghidour et al. [75]. First, we
apply a 2x1 filter initialized by a pre-emphasis filter ([-0.97, 1]). We then apply a

34

3.3. WAVEFORM-INPUT ASR

CNN with several channels (40 in this work) and a 1-time sample stride. After
taking absolute values, the Hanning window is applied to unify time frames.
After processing with log(1 + abs()), instance normalization [76] is applied to
normalize across each channel. Finally, we use frame stacking [77] in which we
stack and skip some frames to make a new super-frame. Fig. 3.5 shows this
feature extraction part and the masking method in Section 3.3.2.

After frame stacking, we apply the attention-based encoder-decoder model
described in Section 2.2.2 to predict the symbol sequence. Based on the cross-
entropy between the predicted sequence and the ground-truth sequence, we
can update not only the parameters of the attention-based model but also those
of the feature extraction part. We expect that the model can extract more
effective features for speech recognition than lmfb features. In this model, we
do not conduct any pretraining or particular initialization except for the pre-
emphasis filter. The CNN filters are initialized with random values drawn by He
initialization [78].

3.3.2 Data Augmentation by Masking

In the attention-based model using lmfb features, we can apply data augmentation
methods such as SpecAugment [17]. In the waveform-input model, we apply
data augmentation after instance normalization in a similar manner. However,
in a preliminary experiment, we observe that the masking was not effective
when updating all parameters including feature extraction during the training.
Therefore, we first train the entire waveform-input ASR model without masking.
We then fix the parameters of the feature extraction part and fine-tune the
attention-based model part by using masking. The masks are randomly chosen
since the order of filters is meaningless, unlike lmfb features.

35

CHAPTER 3. SYNTHESIZING WAVEFORM TO AUGMENT TRAINING DATA FOR
ASR

Real�or�synthesizedRaw�waveform
Pre-emphasis�filter

CNN�filters

Attention-based�model

Instance�normalization

Log(1�+�abs())

Hanning window**2

abs()

Frame�stacking
Random�masking

Figure 3.5: Feature extraction part of waveform-input ASR.

3.4 Experimental Evaluations

3.4.1 Datasets and Tasks

All experiments are conducted with Japanese TTS and ASR systems. We use the
JSUT corpus [79] to train a single speaker Tacotron 2 model. JSUT has a recording
of 7607 utterances of prompt texts read aloud by a female speaker with a total
duration of ten hours. We converted the sampling rate to 16 kHz for all datasets.
We used 33 phone classes as input. They include special tokens for pause, word
boundary, and end of the sentence. For extracting word segmentation and

36

3.4. EXPERIMENTAL EVALUATIONS

phone sequence of texts, we used MeCab1, a CRF-based Japanese morphological
analyzer.

We primarily used the the Corpus of Spontaneous Japanese (CSJ) [11] to train
the ASR model and multi-speaker Tacotron 2 model. CSJ has two distinct sub-
corpora, Academic Presentation Speeches (APS) and Simulated Public Speeches
(SPS). APS consists of academic presentation speeches in nine different academic
societies (engineering, humanities, and social and behavioral sciences). It has
986 speakers (male: 809, female: 177) with 162259 utterances and 247.9 hours.
SPS consists of simulated presentation speeches about everyday topics. It has
1704 speakers (male: 799, female: 905) with 238108 utterances and 281 hours.
We added all distinct words that occur more than twice in the training data and
special tokens (hsosi, heosi, and hUNKi) to the vocabulary. The vocabulary sizes
were 24286 for SPS and 34305 for combination of APS and SPS. CSJ provides the
official testsets of APS and SPS. The APS testset has 1.83 hours of speech and
26028 words, and the SPS testset has 1.31 hours of speech and 17134 words. APS
contains many technical terms like “F0" and “linear predictive coding."

We used the same dataset for training both Tacotron 2 model and WaveNet
vocoder2. When generating multi-speaker speeches, we randomly selected a
single speaker for each text.

3.4.2 System Configuration
End-to-End Speech Recognition Model

We used 40-channel lmfb features as acoustic features of the ASR models with
a shift of 10ms and a width of 25ms. Non-overlapping frame stacking [77] was
applied to these features, in which we stacked and skipped three frames to make
a super-frame. We implemented an acoustic encoder that consisted of five-layer
bidirectional LSTMs with 320 cells. The dropout rate for training each BiLSTM
layer was set to 0.2. The attention-based decoder consisted of a one-layer LSTMs
with 320 cells, 320-dimensional hidden states with tanh nodes, and a softmax

1http://taku910.github.io/mecab
2We evaluated the quality of TTS model in [80]

37

CHAPTER 3. SYNTHESIZING WAVEFORM TO AUGMENT TRAINING DATA FOR
ASR

output layer for word entries. We used Adam optimizer with the standard settings
described in [81]. We also used a weight decay of 1e-5 and gradient clipping
with a threshold of 2.0. The BiLSTM encoders and convolution networks in the
decoders were initialized with random values drawn from He initialization [78]
and the other networks were initialized in a uniform distribution with the range
(-0.1, 0.1). Since providing long input sequences often slows convergence at the
beginning of the training, the input data were sorted by the length of frames
before creating minibatches. In decoding with the attention-based ASR model,
we used a simple beam search with a beam width of 4.

We also trained neural language models with 3 layers of unidirectional LSTMs
with 256 memory cells for the language model integration based on shallow
fusion. Each word was mapped to a 512-dimensional continuous vector before
being fed to LSTMs.

End-to-End Text-to-Speech Model

The phone encoder consists of a 512-dimensional phone embedding, a 256-
dimensional speaker embedding, three convolution layers with 512 filters, and
one-layer BiLSTM with 256 cells. The location-sensitive attention mechanism [82]
summarizes the encoder outputs. The attention weight at each decoding step
is calculated by using the 128-dimensional projected vectors of the decoder
LSTM state, the encoder output sequence, and the location features. The location
features are calculated by convolving 32 one-dimensional convolution filters
with a length of 31 to the cumulative vector of the attention weights in all past
decoding steps. The pre-net consists of two fully-connected linear layers with
256 ReLU units. We sum the pre-net output, the speaker embedding, and the
encoded representation with the attention vector. The decoder network consists
of 2-layer unidirectional LSTMs with 1024 memory cells. The decoder LSTM
outputs, together with the attention context vector, were passed through a linear
projection layer to predict five frames of the target lmfb features.

Fig. 3.6 shows examples of generated speech of the multi-speaker model. We
generated these pieces of speech from the same text and different speaker IDs.

38

3.4. EXPERIMENTAL EVALUATIONS

Table 3.1: Comparison of lmfb-input ASR and waveform-input ASR [WER (%)].

Training data SPS APS+SPS
Testset APS SPS APS SPS
lmfb-input ASR w/o masking 23.30 9.69 10.30 9.06
lmfb-input ASR w/ masking 21.97 8.88 9.56 8.75
waveform-input ASR w/o masking 22.56 9.08 10.03 7.97
waveform-input ASR w/ masking 20.92 8.53 9.40 7.92

It is confirmed that the multi-speaker model could produce various speakers’
speech as these lmfb features and waveform were different in terms of the length
of speech and the spectrum patterns because the Tacotron 2 based model not
only generates the lmfb features but also estimates the lengths of them.

For synthesizing the waveform, we used WaveNet [83] vocoder3 with condi-
tioning on 80-dimensional lmfb features of the TTS setting4. The upsampling
layer assumes the lmfb features with a frame shift of 12.5 ms. The dilation was
1, 2, 4, ..., 128, 1, ..., 128 repeatedly, and the total number of layers is 16. Each
dilated CNN has 128 channels with a kernel size of 2. We used the PyTorch [84]
toolkit to train all networks with Nvidia TITAN RTX.

The TTS system often fails to generate some pieces of speech correctly. For
example, some synthesized speech samples were silent, and their lengths were
too short. On the other hand, the lengths of some speech samples were too long.
We discarded speech samples if they are are not within some thresholds.

3.4.3 Results of Waveform-input ASR vs. Lmfb-input ASR

We compared the performance of two ASR systems in Table 3.1: one is the
standard ASR, whose input is lmfb features. The other is the waveform-input
ASR, whose input is raw waveforms. In this table, we evaluated the models
trained using the SPS (281 hours) and APS+SPS (528.9 hours) datasets on the
APS and SPS testsets. We also applied SpecAugment to the lmfb-input ASR, and
the masking method presented in Section 5.2 to the waveform-input ASR. The

3https://github.com/NVIDIA/nv-wavenet
4In a preliminary experiment, we observed that the WaveNet with the typical ASR setting

(40-channel, and 10 ms shift and 25 ms window) does not generate a waveform properly.

39

CHAPTER 3. SYNTHESIZING WAVEFORM TO AUGMENT TRAINING DATA FOR
ASR

Figure 3.6: Examples of generated speech from the multi-speaker model. These
examples were generated from the same text and different speaker IDs.

40

3.4. EXPERIMENTAL EVALUATIONS

waveform-input ASR performed comparable to or better than the lmfb-input
ASR in all cases. There are significant differences in the WERs for the APS testset
using SPS and the SPS testset using APS+SPS. For the APS testset using SPS
training set, the waveform-input ASR with masking achieved WER of 20.92%,
which is much better than the lmfb-input ASR with SpecAugment. We use the
waveform-input ASR with masking and the lmfb-input ASR with SpecAugment
as the baseline. We also use the models using APS+SPS dataset as the oracle
model.

3.4.4 Results of Simulated Domain Adaptation to APS

In order to simulate a domain adaptation scenario, we chose SPS as a source
domain and APS as a target domain since domain adaptation to academic topics
from general topics is often required. Using the source domain data, we trained
the baseline ASR model and the multi-speaker speech synthesizer. For the target
domain, we assumed only text transcription data for adaptation. We generated
speech data from the texts of the target domain to retrain the ASR model.

The results are shown in Table 3.2. By using the text-only data of APS, we
synthesized about 209 hours of speech data. The baseline WERs were over
20%, as shown in Table 3.2. When we applied an LM shallow fusion using the
APS text, the improvement was limited since the APS topics is different from
the SPS topics. If we can prepare real speeches for the APS dataset, both the
lmfb-input and waveform-input ASR models achieved WER of 9.23%. When
we used the single-speaker Tacotron 2 model for synthesizing the additional
training data, a large improvement from the baseline is obtained. Among them,
“waveform-output TTS and lmfb-input ASR" is better than “lmfb-output TTS
and lmfb-input ASR". The best WER in the single speaker setting was 12.90%
with the “waveform-output TTS and waveform-input ASR". After the domain
adaptation, the LM fusion leads to a large improvement.

The multi-speaker models obtained over 0.6% WER reduction from the single
speaker models in all settings. In this experiment, we compared two settings
of “lmfb-output TTS and lmfb-input ASR": ASR-matched setting (40-channels

41

CHAPTER 3. SYNTHESIZING WAVEFORM TO AUGMENT TRAINING DATA FOR
ASR

Table 3.2: ASR performance [WER (%)] for the APS testset (eval1). In this table,
we used the paired-data of the SPS training set and only transcriptions of the
APS training set.

Training data eval 1 +LM
SPS (real speech, lmfb-input ASR) 21.97 21.72
+ APS (real speech) [oracle] 9.56 9.23

Single speaker TTS:
lmfb-output TTS and lmfb-input ASR, ASR-matched settings 15.54 14.75
waveform-output TTS and lmfb-input ASR 14.56 13.80

Multi speaker TTS:
lmfb-output TTS and lmfb-input ASR, ASR-matched settings 13.55 13.08
lmfb-output TTS and lmfb-input ASR, TTS-matched settings 13.32 12.88
waveform-output TTS and lmfb-input ASR 13.05 12.58

SPS (real speech, waveform-input ASR) 20.92 20.80
+ APS (real speech) [oracle] 9.40 9.23

Single speaker TTS:
waveform-output TTS and waveform-input ASR 13.68 12.90

Multi speaker TTS:
waveform-output TTS and waveform-input ASR 12.77 12.27

Table 3.3: Recognition rate of original OOV in the eval1 (APS testset).

unknown words for SPS vocabulary 1143
Coverage rate of original OOV 905 / 1143 (80.05%)
Recognition rate of original OOV 782 / 1143 (68.42%)

using a 25 ms window with a shift of 10 ms) and TTS-matched setting (80-
channels using a 50 ms window with a shift of 12.5 ms). It is shown that the
former is outperformed by the latter, but they are behind the performance of
the waveform-output using the WaveNet vocoder, which improved the quality
of lmfb features. In this case, too, the best WER of the augmented model was
12.27% with the “waveform-output TTS and waveform-input ASR" with the
multi-speaker model. This model improved the WER by 41.01% relatively from
the model without domain adaptation. These results show that the waveform-
output TTS using WaveNet makes the ASR model better than the lmfb-output
TTS. The waveform-input ASR realized further improvement.

Table 3.3 shows how the adapted model recognizes unknown words that do

42

3.4. EXPERIMENTAL EVALUATIONS

Table 3.4: ASR performance [WER (%)] for JNAS testset. In this table, we use
multi-speaker TTS trained with CSJ. JNAS dataset has 85.5 hours of real speeches.

Training data WER(%)
CSJ (real speech, lmfb-input ASR) [baseline] 15.79
+ JNAS (real speech, lmfb-input ASR) [oracle] 5.24
+ JNAS (waveform-output TTS and lmfb-input ASR) 10.18
+ newspaper article 9.07
(waveform-output TTS and lmfb-input ASR)

CSJ (real speech, waveform-input ASR) [baseline] 13.79
+ JNAS (real speech, waveform-input ASR) [oracle] 5.52
+ JNAS (waveform-output TTS and waveform-input ASR) 10.12
+ newspaper article 7.95
(waveform-output TTS and waveform-input ASR)

not appear in the target domain. When we use only SPS vocabulary, 1143 words
of the APS testset cannot be recognized. Among them, 905 words (80.05%) are
included in the augmented (SPS + APS) vocabulary. The “data augmentation
method (waveform-output TTS and waveform-input ASR)" in Table 3.2 correctly
recognized 782 out of 1143 words (68.42%). It enhanced the ASR model’s language
model capability and recognized a majority of new words.

3.4.5 Results of Adaptation to Newspaper Domain Leveraging
A Large Amount of Newspaper Texts

Next, we conducted adaptation to a newspaper domain. For this experiment, we
used the JNAS dataset [10]. JNAS is a read speech corpus of Japanese newspaper
articles. It has 85.5 hours for training data and 20 minutes for testset. For
synthesizing training data for the JNAS testset, we also used an external language
resource. We collected 500k sentences randomly from newspaper articles of
Mainichi Shinbun, one of the major newspapers in Japan.

Table 3.4 shows the evaluation of adaptation to the newspaper domain using
the JNAS testset. In this evaluation, we used the real speech of both CSJ-APS
and CSJ-SPS (528.8 hours) to train the ASR and multi-speaker TTS models. We
generated 58 hours speeches from the JNAS transcript. The original JNAS data
provides 85.5 hours of real speeches. The generated speech is much shorter (58.8

43

CHAPTER 3. SYNTHESIZING WAVEFORM TO AUGMENT TRAINING DATA FOR
ASR

hours) than the real one because we do not use the silence as an input label of
TTS, and the silence, including short pause, is not inserted in the synthesized
speech. We also generated 768.9-hour data from 500k newspaper articles. The
lmfb-input and waveform-input ASR using only the CSJ dataset obtained WERs
of 15.79% and 13.79%. They are very high because the CSJ domain is different
from the JNAS domain. When we mixed the CSJ and original JNAS dataset, the
WERs were 5.24% and 5.52%. The models that used the CSJ and synthetic JNAS
dataset improved approximately 4⇠5% in WERs from the baseline CSJ model.
When a large amount of speech was generated using newspaper articles, a large
improvement is achieved. The best WER was 7.95% with the “waveform-output
TTS and waveform-input ASR". This result showed that the waveform-input
ASR enhanced with the data augmentation is most effective when preparing a
large amount of synthesized data.

3.4.6 Analysis on Learned Filter

In the feature extraction part, the role of CNN filters is to extract characteristics
from a waveform to minimize the cross-entropy between a predicted label
sequence and a ground-truth label sequence. In the conventional ASR systems,
we use Mel filter to approximate the human auditory system’s response. When
it comes to decreasing the dimension of input features, the role of CNN filters
is close to the Mel filter. While the Mel filter is used for the frequency-domain
spectrogram, the feature extraction is used for the time-domain waveform.
Fig. 3.7 shows the examples of learned filters. We extract them from CNN filters
in Fig. 3.7. We see that each CNN filter extracts different characteristics. In
particular, they extract different frequencies. Fig. 3.8 shows a comparison with
the Mel filter (top) and the learned filter of the proposed model (bottom) on the
frequency domain. We obtain the frequency-domain learned filter to transform
the time-domain weights of CNN filters by an STFT. Note that the order of CNN
filters is meaningless, and all filters are not in order of frequency. In Fig. 3.8, we
roughly sorted them by frequency. The horizontal axis indicates the frequency,
and the vertical axis indicates the channel dimension.

44

3.5. SUMMARY

Figure 3.7: Examples of learned filter on time domain. These filters are extracted
from weights of CNN filters in Fig. 3.5. The kernel size of each CNN filter is 400
samples for 16kHz waveforms (400/16000 = 25ms).

As in the Mel filter bank, we see that the learned filter is concentrated in
the low-frequency range and does not focus on the high-frequency range. This
is because the energy of human speech on high frequency is high, and the
low-frequency part is important to recognize human speech. It can be seen that
many of them look at a wider range of frequencies per filter, and the number of
filters that focus on low frequency is larger than the Mel filter.

3.5 Summary

In this chapter, we have presented the waveform-based data augmentation
method for end-to-end ASR systems. To realize the waveform-output TTS, we

45

CHAPTER 3. SYNTHESIZING WAVEFORM TO AUGMENT TRAINING DATA FOR
ASR

Mel�filter

Learned�filter

Figure 3.8: Comparison of Mel filter and learned filter. We roughly sorted learned
filter by frequency.

use the WaveNet vocoder. The WaveNet vocoder makes better lmfb features,
improving the ASR performance. To fully utilize waveform-output TTS, we have
also designed the waveform-input ASR and a fine-tuning method by masking.
We have shown that the masking method for the wave-input ASR achieved
comparable or better performance than the standard lmfb-input ASR with
SpecAugment. We have also demonstrated that the waveform-output TTS and
waveform-input ASR achieved better performance than the waveform-output
TTS and lmfb-input ASR in two domain adaptation scenarios. Future work
includes improvement of multi-speaker TTS model for spontaneous speech for

46

3.5. SUMMARY

generating better and more data set.

47

CHAPTER 3. SYNTHESIZING WAVEFORM TO AUGMENT TRAINING DATA FOR
ASR

48

Chapter 4

Generating ASR Features via a
Discrete Representation

4.1 Introduction

In Chapter 3, we proposed the waveform-input ASR for effective training. Al-
though adding a frontend is effective for improving the ASR performance, the
amount of training data is increased since the number of parameters is larger.
Above all, it is not easy to prepare the paired data of speech and transcription.
Most recently, approaches using speech-only data have been investigated. In
particular, unsupervised pre-training or self-supervised learning is attracting
increasing interest. Self-supervised learning has emerged as a paradigm to
learn general data representations from unlabeled data. It has been particularly
successful for natural language processing [85, 86] and computer vision [87, 88].
In the speech processing field, many attempts of the self-supervised manner
have been made [12–14, 89–91] in order to learn the representation. Oord et
al. introduced contrastive predictive coding (CPC) [12]. The CPC combines
predicting future observations (predictive coding) with a probabilistic contrastive
loss. It predicts the future samples in a latent space and maximizes the loss when
feeding negative examples. Schneider et al. explored unsupervised pre-training
for speech recognition refereed to as wav2vec [89]. The wav2vec is pretrained
with a simple multi-layer convolutional neural network optimized via a noisy
contrastive binary classification task. Unlike the CPC, the wav2vec is designed

49

CHAPTER 4. GENERATING ASR FEATURES VIA A DISCRETE
REPRESENTATION

for frame-wise phoneme classification and applies the learned representations to
improve strong supervised ASR systems. Chung et al. proposed autoregressive
predictive coding (APC) that uses autoregressive models to encode temporal
information of a past acoustic sequence [90]. Beaevski et al. introduced vector
quantization discrete representation into the wav2vec architecture and BERT
architecture to make sophisticated context representation from the discrete rep-
resentation [13]. Moreover, they masked the speech input in the latent space and
solved a contrastive task defined over a quantization of the latent representations,
which are jointly learned referred to as wav2vec 2.0 [14]. Liu et al. used multi-layer
transformer encoders to achieve bidirectional encoding, and this framework
allows the model to consider past and future contexts at the same time [91].
These works achieved comparable or better performance than the conventional
lmfb-input ASR models.

In this chapter, we investigate the use of self-supervised features for data
augmentation using TTS. The use of synthesized lmfb data brings only a limited
improvement compared with using real data since the synthesized features are
different from real speech. Moreover, the TTS system often generates unrealistic
speech.

In this work, we propose a novel data augmentation scheme using a discrete
representation. In this scheme, TTS generates a discrete representation instead of
log Mel-scale filterbank (lmfb) features and predicts discrete ID sequences from
texts. We also use features converted from the discrete ID when we train an ASR
model. We adopt vq-wav2vec [13], which is an unsupervised training method to
produce a discrete representation. The use of a discrete representation has two
benefits over the standard use of TTS by experimental evaluations: (1) a discrete
representation is much easier to predict than the lmfb features of continuous
values; (2) it reduces speaker dependency, which the TTS has trouble separating
from the segmental information.

50

4.2. VQ-WAV2VEC

4.2 VQ-wav2vec

Vq-wav2vec learns a discrete representation of speech frames through a self-
supervised future time-step prediction task. The model is based on three
convolutional neural networks, in which the encoder produces a representation
zi for each time step i with a rate of 100 Hz, a quantization module converts zi to
a discrete representation ẑi, and the aggregator combines the multiple encoder
time steps into a new representation ci. The quantization module replaces the
original representation zi by ẑi = concat(ei,1, ..., ei,G) from a shared fixed-size
codebook E 2 RV⇥d/G, which contains V representations of size d/G, where d is
the dimension of ẑi, and G is the number of groups. We represent each row by
an integer index and then represent the feature vector ẑi by the indices wi 2 [V]G,
where each element wi,g corresponds to a fixed codebook vector. For instance,
when G = 2, two-dimensional code is generated e.g. (15, 24) and (36, 87). We
concatenate the elements, e.g. “15-24” and “36-87” when feeding to BERT.

In the context prediction, wav2vec loss [89] is defined as follows:

Lwav2vec
k

= �
T�kX

i=1

(log �(ẑT
i+k

h(ci)) + � E
ẑ⇠pn

[log �(�˜̂z
T
h(ci)]) (4.1)

where T is the sequence length, � is a sigmoid function, h is an affine transforma-
tion, and thus �(ẑT

i+k
h(ci)) is the probability of a sample zi+k, that is k-steps in the

future, being correctly predicted. ˜̂z are negative samples uniformly drawn from
the same uttrance. In addition to wav2vec loss, Gumbel-Softmax or K-means loss
is added between ẑi and zi. In this work, we used K-means clustering and added
the loss of vector quantization [92] to Lwav2vec

k
. As a result, the vq-wav2vec model

maximizes Lvq�wav2vec as follows:

Lvq�wav2vec =
KX

k=1

Lwav2vec
k

+ (ksg(z)� ẑk2 + �kz � sg(ẑ)k2) (4.2)

where sg(x) ⌘ x, d
dxsg(x) ⌘ 0, and � is a hyperparameter.

51

CHAPTER 4. GENERATING ASR FEATURES VIA A DISCRETE
REPRESENTATION

4.2.1 BERT for VQ Codes

BERT is also used for training a more sophisticated representation of the context
features in vq-wav2vec architecture. BERT [86] is originally one of the self-
supervised learning approaches in natural language processing. The main
principal characteristics of BERT are introducing bidirectional encoding based on
Transformer and a masked language model (MLM) objective. While a standard
language model objective (softmax cross entropy) makes the representation of
left-to-right context, the MLM objective enables the representation of both the left
and the right context, which allows us to pretrain a deep bidirectional Transformer.
In the MLM task, we randomly replace the label with a special [MASK] label.
The BERT model predicts the labels of [MASK] instead of predicting the next
timestep label. In addition, it is pre-trained using a next sentence prediction
task to capture the relationship between sentences. In the fine-tuning step, we
add a linear layer to predict the target label of interest and update the whole
parameters.

In the vq-wav2vec task, we use the BERT for discrete representations and
apply the MLM task. We randomly make the [MASK] labels for the concatenated
vq-codes. We do not use next sentence prediction because the BERT model for
vq-wav2vec does not need to train the relationship between two speeches. In
this work, we also do not fine-tune the BERT model and use the BERT model as
the feature extraction model. We use the last layer’s hidden states as the input
features of the ASR model.

4.3 Data Augmentation via Discrete IDs

4.3.1 Conventional Data Augmentation by TTS

The conventional data augmentation scheme using TTS [22–24,30,66] has four
steps.

1. Training TTS which predicts lmfb features from a phone sequence.
2. Generating lmfb features using unpaired texts.

52

4.3. DATA AUGMENTATION VIA DISCRETE IDS

3. Converting lmfb features into waveform by a vocoder.
4. ASR training using the generated waveform data mixed with real data.

In this scheme, the vocoder is used for bridging the gap between the lmfb
features of the ASR model and the TTS model.

Although the generated speech data give some improvement of the ASR
performance, the gain is limited since the TTS does not completely reproduce the
real speech. To alleviate the problem, Mimura et al. [22] froze the ASR acoustic
encoder when training with the synthesized data. Wang et al. [27,28] investigated
the consistency regularization when incorporating TTS with ASR. Zheng et al. [30]
introduced the loss for regularization of the decoder when finetuning to improve
the ASR model for out-of-vocabulary words. Fazel et al. [32] investigated the
multi-stage training strategy by combining weighted multi-style training, data
augmentation, encoder freezing, and parameter regularization. Several studies
used speaker information to generate multi-speaker speech such as speaker
ID [23], VAE latent variables [24], pre-trained speaker verification model [32],
and global style token (GST) [66]. Chen et al. [26] jointly trained the pre-trained
TTS and ASR using a GAN-based model to increase the acoustic diversity in the
synthesized data.

4.3.2 Data Augmentation via Discrete ID Sequences

A major problem with the conventional data augmentation using TTS is the
mismatch between the synthetic and real speech data. Conventionally, lmfb
features are used as an intermediate representation for both TTS and ASR. Since
an lmfb feature is a continuous value and the loss used for training does not
address phonetic constraints, the TTS model often generates unrealistic data
that do not exist in real speech. Moreover, neural TTS tends to generate many
errors such as too short or repeated speech, and multi-speaker TTS model causes
more errors than the single speaker model. It is much more difficult to train a
multi-speaker TTS model since the amount of training data available is usually
quite limited per speaker and multi-speaker features have more variety. These

53

CHAPTER 4. GENERATING ASR FEATURES VIA A DISCRETE
REPRESENTATION

Figure 4.1: Overall architecture of the proposed data augmentation for ASR. (1)
Train vq-wav2vec and BERT using the real waveform. (2) Perform TTS training
using discrete IDs and texts (phones). (3) Generate discrete IDs from texts
(phones). (4) Generate features from discrete IDs via BERT (5) Perform ASR
training using the final hidden states of BERT and texts (subwords).

problems pose a bottleneck for effective data augmentation for ASR model
training.

To address the above two problems, we introduce a discrete representation
to be used for both ASR and TTS. Theoretically, the unreal features which do
not exist in real features are not generated because the TTS model selects the
discrete IDs from a finite set. Moreover, using discrete IDs for a TTS target makes
the TTS task easier since selecting IDs from the fixed classes is considered to
be easier than predicting a continuous values. Fig. 4.1 shows an overview of
the proposed method. In this work, we use the vq-wav2vec module for the

54

4.3. DATA AUGMENTATION VIA DISCRETE IDS

FastSpeech�2 Linear
Linear concat

ID2

CNN BatchNorm tanh dropout
× 4
CNN

softmax
ID1

softmax

softmax ID1
softmax ID2

Figure 4.2: Postnet architecture of the proposed TTS system. The vq-wav2vec
model generates two IDs from a 10ms segment of speech, which the TTS system
predicts.

intermediate representation to convert waveform into the discrete IDs because
the vq-wav2vec achieved promising performance of ASR [13]. The output layer
of the TTS is a softmax layer corresponding to the discrete IDs. The proposed
architecture has five steps.

1. Train vq-wav2vec and BERT.
2. Train TTS to predict discrete IDs from texts using paired training data.
3. Generate discrete ID sequences from text-only training data for ASR.
4. Convert the ID sequences to ASR features through BERT.
5. Perform ASR training using the generated data mixed with real data.

In step 1, we use the original vq-wav2vec with which the two discrete IDs (G = 2)
are generated every 10ms.

Then, we use the FastSpeech 2-based model to synthesize discrete ID se-
quences. For this purpose, we replace the lmfb prediction layer of FastSpeech 2
with two output layers to predict these discrete IDs. We add a Postnet in order to
divide the hidden state from FastSpeech 2 into two (G) streams of representations
for two (G) IDs and to smooth this sequence of representations. Fig. 4.2 shows
the Postnet architecture of the proposed method. The Postnet concatenates the

55

CHAPTER 4. GENERATING ASR FEATURES VIA A DISCRETE
REPRESENTATION

hidden states of the linear layers corresponding to ID1 and ID2 and then applies
five convolution layers. We finally sum the outputs of the linear layers and CNN
and separate them into two outputs corresponding to ID1 and ID2. For the
training, we used two softmax cross-entropy losses for the FastSpeech 2 output
and Postnet output. When generating IDs, we use the Postnet output.

For the FastSpeech 2 model training, we also need to align between the
transcriptions and audio in advance. For this purpose, we train a CTC-based ASR
model on the same data and conduct forced alignment. The original FastSpeech 2
model uses additional prosodic information such as F0 and energy. In particular,
we use F0 and energy to build a baseline FastSpeech 2 model that generates lmfb
features. However, we do not use this information in our method that predicts
discrete ID sequences. In inference, we generate an ID sequence from a phone
sequence. Unlike the standard lmfb-output FastSpeech 2 model, we predict IDs
by selecting index which have maximum value from outputs. The generated IDs
are concatenated and fed into BERT to generate the ASR features.

4.4 Experimental Evaluations

4.4.1 Datasets and Tasks

All experiments were conducted with English TTS and ASR models using the
LibriSpeech [93] corpus. We converted the sampling rate of the waveforms to
16 kHz for all datasets. To train the TTS model, we used train-clean-100 of the
LibriTTS corpus [94], which is derived from LibriSpeech and designed for TTS
tasks. In LibriTTS, train-clean-100, which is subset of LibriSpeech train-clean-100,
has 53 hours’ worth of paired data from 247 speakers (male: 123, female: 124).

We used 85 phones and the speaker ID as inputs to the TTS. We converted
each word sequence to a phone sequence with an open-source grapheme-to-
phone tool1. To obtain the ground-truth alignment for FastSpeech 2 training,
we also used a CTC-based ASR model trained with LibriTTS train-clean-100.
We also trained a standard FastSpeech 2 model as a baseline, which generated

1https://github.com/Kyubyong/g2p

56

4.4. EXPERIMENTAL EVALUATIONS

80-dimensional lmfb features based on a 50-ms window with a shift of 12.5ms.
To obtain F0, we used WORLD [45]. We also used MelGAN [54] conditioning on
the lmfb features trained with LibriTTS train-clean-100 to generate a waveform
and then converted it into the ASR-matched lmfb features again.

After data augmentation with the TTS, we trained and evaluated the ASR
models with LibriSpeech and TED-LIUM release 2 (TED-LIUM 2) [95]. We used
real speech and transcription data of LibriSpeech train-clean-100.

We augmented the data by using the text data of train-clean-360 for LibriSpeech
testset and TED-LIUM 2 training set for TED-LIUM 2 testset. We trained ASR
models on three training data on each corpus.

• Baseline model: train-clean-100 (real).
• Augmented model: train-clean-100 (real) + synthesized data of train-clean-

360 or TED-LIUM 2.
• Oracle model: train-clean-100 (real) + real data of train-clean-360 or TED-

LIUM 2.

We also prepared standard lmfb-input ASR systems for comparison. We
used 80-dimensional lmfb features based on a 25-ms window with a shift of 10
ms. In the vq-input ASR systems, we used the 1024-dimensional final hidden
states of BERT as the input. We used the pre-trained vq-wav2vec with K-means
clustering and RoBERTaBASE models2, which were trained with waveforms of
LibriSpeech 960h. In the experiments on the vq-input ASR, we did not finetune
the vq-wav2vec and BERT models. In all tasks, we used 1000-class subwords
based on byte-pair encoding [96]. We used the transcription and the official text
data for training the language model of each dataset on the basis of the same
subwords.

4.4.2 Network Configurations

We built an lmfb-output TTS model and a discrete ID-output TTS model based
on FastSpeech 2. The FastSpeech 2-based models had six transformer layers in

2https://github.com/pytorch/fairseq/tree/master/examples/wav2vec

57

CHAPTER 4. GENERATING ASR FEATURES VIA A DISCRETE
REPRESENTATION

the encoder and decoder with 384 model dimensions, 1536 feed-forward network
dimensions, and 4 attention heads. The Postnet has five CNN layers with kernel
size 5. The learning rate was warmed up over the first 1000 updates and then
linearly decayed. In the discrete ID-output TTS, we used an L1 loss for the
alignment prediction and two softmax cross-entropy losses for the FastSpeech
2 output and Postnet output, which corresponded to IDs. In the lmfb-output
TTS, we added the Postnet without blocks for generating discrete IDs for fair
comparison. We used five L1 losses in order to predict the alignment, F0, energy,
FastSpeech 2-output lmfb features, and Postnet-output lmfb features.

We also built an lmfb-input ASR model and vq-input ASR, whose input
consisted of BERT’s hidden states. The ASR models were attention-based encoder-
decoder models. The encoder had 5-layer BiLSTMs with 320-dimensional hidden
states. The decoder was composed of a 1-layer unidirectional LSTM with an
attention mechanism. SpecAugment [17] is applied, with two frequency masks
with F = 27 and two time masks with T = 100 in the lmfb-input ASR model
and two frequency masks with F = 260 and two time masks with T = 100 in the
vq-input ASR model. We sorted all of the training data in ascending order of
speech length and trained the ASR model epoch by epoch. In the augmentation,
we also sorted the mixed data and did not try to balance the real and synthetic
speech in a batch.

In inference, we set the beam search width to 4 and applied shallow fu-
sion [97] with an LM weight of 0.2. The language model was composed of four
unidirectional LSTM layers with 512 model dimensions.

The vq-wav2vec is composed of eight CNN encoder layers with 512 channels
and 12 CNN aggregator layers with 512 channels [13]. K-means clustering
with two groups of 320 classes (V = 320, G = 2, d = 512) was used for vector
quantization. For BERT-based ASR feature generation, we used RoBERTaBASE

models with 12 layers, 768 model dimensions, 3072 feed-forward network
dimensions, and 12 attention heads to generate ASR features [13].

58

4.4. EXPERIMENTAL EVALUATIONS

Table 4.1: ASR results (WER) on LibriSpeech.

dev-clean dev-other test-clean test-other
Baseline
Real 100h lmfb 9.40 30.22 9.76 32.08

vq 9.59 25.34 10.14 26.20
Augmented
Real 100h lmfb 7.12 29.41 7.87 30.16
+ TTS 360h vq 6.50 21.00 6.96 22.33

Oracle
Real 100h lmfb 4.70 18.40 5.06 18.65
+ Real 360h vq 5.54 18.16 5.76 18.92

4.4.3 Results

Results of LibriSpeech

Table 4.1 lists the word error rates (WERs) on the LibriSpeech dev and test sets.
With the baseline model using LibriSpeech 100h, the WERs of lmfb-input and
vq-input ASR were over 9% in the clean settings and 25% in the other settings.
When augmented with 360 hours of TTS data, the conventional lmfb-based model
achieved 2.28-, 0.81-, 1.89-, and 1.92-point improvements on each test set from
the baseline lmfb-input ASR model. On the other hand, the proposed vq-based
augmentation achieved 3.09-, 4.34-, 3.18-, and 3.87-point improvements from the
baseline. We presume that the oracle model, which we trained with the real data
of train-clean-100 and train-clean-360, was the upper bound of the augmented
models. The reduction in WER from that of the baseline augmentation achieved
by the proposed augmentation method relative to the error between the baseline
and oracle turned out to be 76.3%, 60.4%, 73.6%, 53.2%, for dev-clean, dev-other,
test-clean, and test-other, respectively. These ratios are much better than those
achieved by lmfb-input data augmentation, which were 48.5%, 6.9%, 40.2%, and
14.3%, respectively. These results show that the proposed method mitigated the
mismatch between synthetic and real features. In particular, it was more effective
on the dev-other and test-other sets. This suggests that vq-wav2vec is more robust
in adverse conditions for ASR.

59

CHAPTER 4. GENERATING ASR FEATURES VIA A DISCRETE
REPRESENTATION

Table 4.2: ASR results (WER) on TED-LIUM 2

dev test
Baseline
Real 100h lmfb 34.58 33.75

vq 31.29 31.99
Augmented
Real 100h lmfb 28.11 30.05
+ TTS TED-LIUM 2 vq 21.49 22.49

Oracle
Real 100h lmfb 10.56 9.88
+ Real Tedilum 2 vq 13.24 13.33

Results of domain adaptation to TED-LIUM 2

In the experiment described in the previous section, we used LibriSpeech data to
train all of the vq-wav2vec, TTS, and ASR models. In the experiment described in
this section, we applied the proposed model to a completely different task (TED-
LIUM 2). Table 4.2 shows the WERs on the dev and test set of TED-LIUM 2.
With the baseline model using only LibriSpeech 100h, the WERs of the lmfb-
input and vq-input ASR models were 30% apparently due to the speaking style
difference. The conventional data augmentation yielded 6.5-point and 3.7-point
improvements on the respective test sets. The proposed data augmentation
yielded a 9.8-point improvement on the dev set and 9.5 points on the test set. The
proposed model filled 54.3% of the WER gap between the baseline and the oracle.
It was also effective in a completely unknown domain. These results show that
the discrete representation is robust against domain mismatches.

ASR Training Using Only Synthetic Features

Table 4.3 shows WERs when we trained the ASR models using only synthetic
data. Even when the TTS model was trained with the LibriSpeech dataset, the
WERs of the lmfb-input ASR model were over 50% for the LibriSpeech clean data
sets. This is because there is a serious mismatch between the generated and real
lmfb features. The proposed model had an WER of 15.18% in the dev-clean set
and 16.85% on the test-clean set. These results show that the discrete ID-based

60

4.5. DISCUSSIONS

Table 4.3: ASR results (WER) using only synthetic features. In the LibriSpeech
task, we evaluated the ASR models on dev-clean and test-clean.

dev test

TTS LibriSpeech 460h lmfb 53.97 52.16
vq 15.18 16.85

TTS TED-LIUM 2 211h lmfb 90.41 88.34
vq 40.04 43.54

TTS model generates features similar to those of real data. The lmfb-based ASR
model did not work at all on TED-LIUM 2.

4.5 Discussions

Fig. 4.3 shows a t-SNE visualization calculated for the same phones using 5-
speaker lmfb features and vq-wav2vec features. We can clearly distinguish
speakers in the lmfb features, but have trouble identifying speakers in the
vq-wav2vec features. This result suggests that vq-wav2vec reduces speaker-
dependent information. This property is good for stable training of the multi-
speaker TTS.

Fig. 4.4 compares t-SNE visualizations of the real and synthetic features. The
real features were extracted from one speaker. We can see that the features are
separated by phones in both features. In the proposed method, the same phone’s
synthetic and real features are much more similar compared to the lmfb features.
Accordingly, the proposed approach improved the ASR performance because
of its characteristics of (1) reducing speaker diversity and (2) using codebook
indices rather than generating speech.

4.6 Summary

We have proposed a novel data augmentation method for ASR that leverages TTS
via a discrete representation. The conventional method has a serious mismatch
between the generated and real speech, which results in a limited improvement
in ASR. To mitigate this mismatch, we introduce vq-wav2vec-based IDs as an

61

CHAPTER 4. GENERATING ASR FEATURES VIA A DISCRETE
REPRESENTATION

Figure 4.3: Comparison of t-SNE visualizations of lmfb and vq-wav2vec features.
Each color represents a different speaker.

intermediate representation instead of lmfb features. In the experimental evalua-
tions, the proposed model gave a more effective data augmentation. Moreover, it
reduced some speaker-dependent information and generated features that were
close to the real data.

62

4.6. SUMMARY

Figure 4.4: Comparison of t-SNE visualizations using lmfb and vq-wav2vec
features on two phones (IY and OW). Bluish colors represent OW sounds and
reddish colors represent IY sounds, darker being real and lighter synthetic.

63

CHAPTER 4. GENERATING ASR FEATURES VIA A DISCRETE
REPRESENTATION

64

Chapter 5

Mel-to-Mel Network to Refine
Generated Speech

5.1 Introduction

In Chapter 3, we investigated waveform-based data augmentation using the
vocoder. Other works also used a vocoder to convert the lmfb feature into a
waveform [24,25, 29–32], which is again converted into an lmfb feature used for
the ASR input. An alternative way is to directly use the synthesized lmfb features
without any post-processing [22, 23, 26–28], but it results in worse performance.

The neural network-based vocoder is generally used since it delivers better per-
formance than the conventional vocoders such as the Griffin-Lim algorithm [29].
The benefit of using the vocoder is that we can design ASR and TTS models
independently since we can use an optimal setting for lmfb features for respective
systems. Moreover, the vocoder improves the quality of data and performance of
augmentation compared with the direct use of lmfb features. In this way, the
vocoder is regarded as a post-processing network for enhancing the lmfb feature.

However, synthesizing waveforms takes a huge amount of time because the
waveform has much longer sequence lengths than the lmfb feature. Moreover,
we need to generate a huge amount of the ASR training data, and the ASR
system needs not waveforms but lmfb features. In this Chapter, we propose a
phone-informed post-processing network to refine the synthesized lmfb features.
The proposed network focuses on filling the gap between real and synthesized

65

CHAPTER 5. MEL-TO-MEL NETWORK TO REFINE GENERATED SPEECH

lmfb features and is used instead of the vocoder. Refinement on the lmfb feature
takes less inference time than the vocoder synthesizing waveforms. For improved
enhancement, we use text information, specifically phone information of the
speech, which is readily available in the TTS task.

5.2 Phone-Informed Post-Processing Network for Speech
Refinement

5.2.1 Baseline Architecture of Data Generation

For data augmentation for ASR, we compose a multi-speaker text-to-mel network,
which is generally used [23–25,32]. There are some options for the multi-speaker
embeddings such as speaker IDs [23], VAE latent variables [24], pre-trained
speaker verification model [32], and a global style token (GST) [25]. In this work,
we use a speaker ID embedding.

5.2.2 Phone-Informed Mel-to-Mel Network

In the standard TTS task, the role of the vocoder is to generate a waveform that
people can hear and evaluate. On the other hand, in the data augmentation task,
the vocoder aims to fill the discrepancy between the lmfb feature settings of ASR
and TTS without changing the input of each model. Moreover, the vocoder can
alleviate the quality gap between the real and synthesized lmfb features. We
observe that synthesized lmfb feature become clear after applying the vocoder.
However, the vocoder model takes a long time for inference. Moreover, the
text-to-mel and vocoder models must be applied step by step. We also need to
convert the waveform to a lmfb feature again.

In this work, we propose a phone-informed post-processing network instead
of the vocoder, whose data generation time is much smaller than the vocoder.
Specifically, we compose a mel-to-mel network to directly refine the synthesized
lmfb feature and fill the gap from the real speech. Refining the speech on
the lmfb features domain takes less time than that on the waveform domain.
For general speech enhancement, masking is widely applied to noisy (not Mel)

66

5.2. PHONE-INFORMED POST-PROCESSING NETWORK FOR SPEECH
REFINEMENT

spectrograms [98], but it cannot use text information because it is not usually
available. However, it is well known that enhancement will be improved given
phone information of the speech [99, 100], which is available in TTS and data
augmentation tasks. Thus, we use phone embedding information.

Fig. 5.1 shows an architecture of the proposed phone-informed post-processing
network. We train the FastSpeech 2-based model at the first stage. After training it,
we do not update its parameters. Next, we compose a Transformer-based network
that consumes the generated lmfb feature and the output of the variance adaptor
which corresponds to phone embedding information. The generated lmfb feature
and the output of the variance adaptor are taken from the FastSpeech 2-based
model. The residual block is adopted in the proposed method as in the postnet [9]
in FastSpeech 2. We use an L1 loss between the predicted and the ground-truth
lmfb feature for the objective of training the proposed network. Although the
FastSpeech 2-based model is trained on the same criteria, it must learn a complex
mapping from a text to the lmfb feature together with the duration, pitch, and
energy. On the other hand, the proposed post-processing network is expected to
minimize the L1 loss more efficiently since it is given an approximate spectrogram.
Moreover, we also feed phone information, which is readily available, unlike
general speech enhancement. However, the length of the text is much shorter
than that of the lmfb feature. In this work, we use the output of the variance
adaptor in the FastSpeech 2 model, which predicts the duration of each phone
and extends the outputs of the encoder to the duration. The output length of the
variance adaptor is the same as the predicted lmfb feature length.

When we use the vocoder network, we can change the setting of the synthe-
sized lmfb feature to that used in the ASR via a waveform. On the other hand,
the proposed method needs to use the same setting such as the FFT size, the
frame length and shift1. However, recent ASR networks such as Transformer use
some CNN sub-sampling layers, and thus the difference of the settings in TTS
and ASR can be filled.

1We must match only the number of frequency bins. In this work, we used 80-dimensional
frequency bins in both ASR and TTS tasks.

67

CHAPTER 5. MEL-TO-MEL NETWORK TO REFINE GENERATED SPEECH

encoder
Phone�

VarianceAdaptor

Phone�information(Output�of�variance�adaptor)

decoder

Mel

Transformerencoder

Refined�Mel

FastSpeech�2-based�text-to-mel�network

concat

Phone-informed�mel-to-mel�network�(Proposed)

(1) (2)

Post-netwith�FastSpeech�2

Figure 5.1: The architecture of the proposed phone-informed post-processing
network. (1) FastSpeech 2-based model. (2) Proposed post-processing network
using the synthesized lmfb feature and phone information (the output of the
variance adaptor).

68

5.3. EXPERIMENT EVALUATIONS

5.3 Experiment Evaluations

5.3.1 Datasets and Tasks

We conducted two domain adaptation experiments, one in English and the other
in Japanese. In training the TTS and ASR models in English, we used LibriTTS [94]
and LibriSpeech corpus [93]. We downsampled waveforms of LibriTTS to match
the sampling rate to 16kHz in all datasets. In LibriTTS and LibriSpeech, we used
the train-clean-100 subset. The train-clean-100 of LibriSpeech contains 100 hours
of speech data. The train-clean-100 of LibriTTS contains 53.8 hours of speech
data including 247 speakers (Female: 123, Male: 124)

For the TTS model, a word sequence was converted into 85-class phones by an
open-source grapheme-to-phone tool2. To obtain the alignment for training the
variance adaptor, we also trained a CTC-based ASR model with the train-clean-100
and conducted forced alignment. A pitch (F0) was predicted by WORLD [45].

For ASR tasks, a word sequence was converted into 10k-class byte-pair-
encoding (BPE) units. In this experiment, we suppose that speech generation
is used for domain adaptation from read speech (LibriSpeech) to spontaneous
speech. For the target domain, we used TED-LIUM release-2 corpus [95] of 91,967
utterances (211 hours). We used only transcription for generating speech. The
generated speech was mixed with the real speech of LibriSpeech when training
the ASR model. For language model integration, we used official TED-LIUM 2
text data.

In the task in Japanese, we used the CSJ [11], which has two different
domain subsets named SPS (Simulated Public Speaking) and APS (Academic
Presentation Speech). While SPS is speech on everyday topics, APS is live
recordings of academic presentations. SPS has 324.1 hours of speech including
1704 speakers. We trained the TTS and ASR models using the real speech of
SPS3. For the TTS model, a word sequence was converted into 33-class phones.
In the ASR task, we used 10k-class BPE units. We tried to adapt the ASR model

2https://github.com/Kyubyong/g2p
3We used about 160 hours in training the TTS model since 324.1-hour speech is too large for

training the TTS model.

69

CHAPTER 5. MEL-TO-MEL NETWORK TO REFINE GENERATED SPEECH

to the APS subset using the transcription of 151,627 utterances (299.5 hours) as
the target domain. For evaluation, we used eval1, which is APS domain speech.

5.3.2 FastSpeech 2-Based TTS and Proposed Network

We used a FastSpeech 2-based model as the text-to-mel model. The encoder
consisted of a 6-layer Transformer block with 384 model dimensions, 1,536 feed-
forward network dimensions, and four attention heads. The variance adaptor
consisted of three variance predictors which have two CNN layers with a ReLU
activation and layer normalization to predict the duration, pitch, and energy.
The 6-layer Transformer with 4-head and 384-dimensional hidden states which
consumes the output of the variance adaptor predicted 80-dimensional lmfb
features with a shift of 12.5 ms. We added the post-net which had five CNN
layers with a kernel size 5. For the multi-speaker TTS model, speaker IDs were
fed to the encoder and decoder. In speech generation, we randomly selected one
speaker ID per one sentence. We used a linear warmup for the 4k steps. The
TTS models were trained with a gradient norm clipping of 1.0, and each batch
contains totally 10k frames.

The proposed post-processing network consisted of 6-layer Transformer
blocks with 384 model dimensions, 1,536 feed-forward network dimensions, and
four attention heads. It consumes the predicted lmfb feature and the output of
variance adaptor. It is trained on the same setting as the FastSpeech 2-based
model encoder.

For comparison of our proposed method, we used the VocGAN vocoder [56]
which converts lmfb features into a waveform. We implemented it based on an
open-source code4 and trained it using LibriTTS. We changed the up-sampling
rates of the generator to 5, 5, 2, 2, and 2 to generate a 16kHz sampling waveform.

5.3.3 Transformer-Based ASR System

The ASR model consisted of two CNN subsampling layers (each subsampling fac-
tor is 2), 12-layer Conformer-based encoder [40] with 4-head and 256-dimensional

4https://github.com/rishikksh20/VocGAN

70

5.3. EXPERIMENT EVALUATIONS

Table 5.1: Results of TED-LIUM 2 dev and test set (WER [%]) and data generation
time of the TTS step.

Method dev test time
Baseline model: Real (train-clean-100) 30.19 27.60 –
Adapted Model: Real (train-clean-100)

+ TTS (TED-LIUM 2)
w/o vocoder and post-processing 17.12 17.79 ⇥1
w/ vocoder 16.71 16.76 ⇥2.75
Proposed method 16.71 16.62 ⇥1.26
Proposed method + vocoder 16.87 16.37 ⇥3.01
Oracle Model: Real (TED-LIUM 2) 9.28 8.56 –

hidden states, and 1-layer unidirectional LSTM decoder with an attention mecha-
nism which had 256-dimensional hidden states. We used the 80-dimensional
lmfb feature with a frame shift of 10ms as the input features for the real speech. In
training, we applied a label smoothing [38] with a factor of 0.1, SpecAugment [17],
and multi-task learning with the CTC loss. We used a linear warmup for the
25k steps. In the adaptation, we did not try to balance the real and synthetic
speech in a batch. In decoding, we set the beam search width to 10. For shallow
fusion, we composed a language model with a 4-layer unidirectional LSTM with
512-dimensional hidden states, and the LM weight was set to 0.2.

5.3.4 Results

Table 5.1 shows the word error rates (WERs) for TED-LIUM 2 dev and test set
and the data generation time relative to that of the FastSpeech 2 model. The
data generation time of the model with the vocoder includes conversion of the
generated waveform to the lmfb features. When we did not use any generated
speech, WERs were not good because there was a serious domain mismatch
between LibriSpeech and TED-LIUM 2. By using the generated speech by the
TTS model, we observe 43.3% and 35.5% relative improvement on the dev and
test set of TED-LIUM 2 without any post-processing. Applying the vocoder
yielded further improvement (44.6% and 39.3% relative improvement). Our
proposed post-processing network achieved sightly better performance than the

71

CHAPTER 5. MEL-TO-MEL NETWORK TO REFINE GENERATED SPEECH

Table 5.2: Effect of phone information in the proposed method.

dev test
w/ phone information (w/ F0 and energy) 16.54 16.62
w/ phone information (w/o F0 and energy) 16.52 16.88
w/o phone information 16.89 17.16

vocoder (45.2% and 39.8% relative improvement) in a much smaller amount of
data generation time. We confirmed that our proposed method enhanced the
effect of data generation with a simple framework. When we use both proposed
mel-to-mel and vocoder, that is we first refine the lmfb features and convert it to
a waveform, the ASR performance is also improved in the testset. However, the
improvement is slight, and it is not synergistic since the effects of refinement are
overlapped and both models have similar errors.

In Table 5.2, we evaluated the effect of the use of the output of the variance
adaptor, which has phone information together with F0 and energy. The model
without phone embedding information uses only lmfb features generated by the
FastSpeech 2 model. In this case, improvement of the ASR performance is limited
and worse than the case using the vocoder. On the other hand, when we remove
the additional acoustic prediction (F0 and energy), the result is not changed so
much. These results show that the use of the phone embedding information is
critical for improving the speech refinement and ASR performance.

Table 5.3 presents an investigation which frequency bins we should refine. In
this experiment, we refined the lmfb features of the specified bins. Enhancing all
bins (“1-80”) achieved the best performance. Partial refinement improved the
performance, but the improvement was limited. Fig. 5.2 shows the L1 loss of the
FastSpeech 2 and proposed model. It indicates that the loss at high frequency
bins are larger than that at low frequency bins because the low frequency bins
have a constant high energy, which is more easily learned. The generated lmfb
feature at high frequency bins still has a large gap with the real lmfb feature and
filling the gap improves the ASR performance. We also confirmed the loss of the
proposed model is lower than that of the FastSpeech 2 model in all frequency
bins. This suggests the proposed model improves lmfb feature effectively.

72

5.3. EXPERIMENT EVALUATIONS

Table 5.3: Comparison of frequency bins (80-dim, 0-8kHz) selectively refined
in the proposed method. All models used the phone information. Low bin
corresponds to low frequency.

Method dev test
1-20 17.20 16.65
21-80 17.21 16.85
1-80 16.54 16.62

Figure 5.2: Values of L1 losses of the FastSpeech 2 (blue), proposed model
(yellow), and the average of frequency bins in the FastSpeech 2 (red). The loss
was calculated for each frequency bin from random 1,000 dev-clean samples.

In the proposed method, we used a residual block and did not predict lmfb
feature directly. We used a replacement block as an alternative. The network with
a replacement block directly predicts lmfb feature to be replaced. Table 5.4 shows
that the residual block model achieves higher performance than the replacement
block.

Table 5.5 shows the results of domain adaptation in the Japanese data sets.
The model without any processing achieves 40.4% relative improvement from
the baseline model. When we compare the augmented and oracle models, the
absolute WERs difference is lower than 2 points. This is because the speaking style

73

CHAPTER 5. MEL-TO-MEL NETWORK TO REFINE GENERATED SPEECH

Table 5.4: Comparison of the residual and replacement blocks in the proposed
method. These networks used the phone information and refined all bins.

Method dev test
replacement block 16.92 16.80
residual block 16.54 16.62

Table 5.5: Results of CSJ test set (WER [%]) and data generation time.

Method eval1 time
Baseline model: Real (SPS) 17.09 –
Adapted Model: Real (SPS)

+ TTS (APS)
w/o vocoder and post-processing 10.19 ⇥1
w/ vocoder 10.09 ⇥2.03
Proposed method 9.74 ⇥1.26
Oracle Model: Real (SPS+APS) 8.37 –

of SPS is spontaneous and similar to that of APS. The proposed model realizes a
large improvement in much less data generation time. In the CSJ experiments,
the data generation time of the vocoder is shorter than in TED-LIUM 2 cases
since the duration of TED-LIUM 2 speech is longer than that of CSJ (the average
duration of TED-LIUM 2 synthesized speech is 7.3s and that of CSJ is 5.3s).
We confirm the proposed network refines the synthesized speech effectively in
different kinds of data sets.

5.4 Discussions

Fig. 5.3 and 5.4 show examples of generated lmfb features. They are based on lmfb
features which the FastSpeech 2 model generated (top). In the middle, we used
the vocoder network to convert the lmfb feature into the waveform and made the
lmfb feature again. In the bottom, we used the proposed mel-to-mel network
and refined the lmfb feature. We see that an abrupt transition (around 100 ⇠ 150
timesteps) of F0 is improved by both the vocoder and proposed network in Fig. 5.3.
The FastSpeech 2 model sometimes generates an unnatural transition since it
predicts the lmfb features in parallel. While the vocoder network sometimes

74

5.5. SUMMARY

decreases the energy of lmfb features at high-frequency bins (around 100 ⇠
150 timesteps), the proposed model keeps the structure of the lmfb feature. In
Fig. 5.4, we see that the output of FastSpeech 2 around 100 timesteps is collapsed.
This collapse is not improved when using the vocoder. It is enhanced by our
proposed model. Our proposed method refines the lmfb features better since
the refinement task given a generated lmfb feature is easier than the waveform
prediction task. It results in ASR performance improvement.

5.5 Summary

In this chapter, we have proposed the phone-informed post-processing network
for data augmentation for the ASR model using the TTS model without the
vocoder network. Unlike the vocoder network, we directly refine the generated
lmfb feature derived from the text-to-mel network (FastSpeech 2-based model).
The proposed network uses not only the predicted lmfb feature but also the output
of the variance predictor which corresponds to the phone information. In the
experimental evaluations, the proposed method resulted in a large improvement
from the baseline and better performance than the vocoder in a much smaller
amount of data generation time. We also showed that the use of the phone
information is critical for improving the performance.

75

CHAPTER 5. MEL-TO-MEL NETWORK TO REFINE GENERATED SPEECH

Vocoder�

Proposedmel-to-mel�network

Output�of FastSpeech 2

Figure 5.3: Example of generated lmfb features. The output of the FastSpeech
2 (top) is generated given the text "oil and gas made from coal to which the
whalers had not been paying attention." In the vocoder (middle), we converted
the top lmfb features into the waveform and again made the lmfb feature. In the
proposed mel-to-mel network, we refined the lmfb feature given the top lmfb
feature (bottom).

76

5.5. SUMMARY

Output�of FastSpeech 2

Vocoder�

Proposedmel-to-mel�network

Figure 5.4: Example of the output of the FastSpeech 2 (top), the vocoder (middle),
and the proposed mel-to-mel network (bottom). The input text is "so you may be
asking well why is it important that I know what entertains people why should I
know this of course old media companies and advertisers need to know this."

77

CHAPTER 5. MEL-TO-MEL NETWORK TO REFINE GENERATED SPEECH

78

Chapter 6

Conclusions

This chapter reviews the contributions of this thesis, the comparison of three
methods, and the future directions.

6.1 Contributions

The end-to-end ASR models achieve high performance when a large amount
of training data is available. However, the training of end-to-end ASR requires
paired data of speech and transcription, and it costs a lot of manual works and
time to prepare them. We focus on the data augmentation methods that use the
TTS system, and have investigated three approaches.

In Chapter 3, we presented waveform-based data augmentation on both ASR
and TTS. The proposed approach was based on a waveform-output TTS model
and a waveform-input ASR. In a waveform-output TTS, we used not only a
text-to-mel network but also a vocoder network. In the waveform-input ASR,
we introduce CNN filters and a masking method similar to SpecAugment. We
compared the waveform-input ASR with two kinds of lmfb-input models: (1)
lmfb features are directly generated by TTS, and (2) lmfb features are converted
from the waveform generated by TTS. Experimental evaluations show that
the combination of waveform-output TTS and the waveform-input end-to-end
ASR model outperforms the lmfb-input ASR models in two domain adaptation
settings.

In Chapter 4, we presented a data augmentation method via a discrete

79

CHAPTER 6. CONCLUSIONS

speech representation. Thanks to the development of an unsupervised approach,
particularly a self-supervised approach, we can use another acoustic feature
instead of lmfb features. In this work, we used the discrete ID produced by
vq-wav2vec as an intermediate representation instead of lmfb features. The TTS
model predicts a discrete ID sequence that is easier to train than a continuous
value of lmfb features. Using a discrete representation based on vq-wav2vec not
only makes TTS training easier but also mitigates the mismatch with real data.
The ASR model also consumes an ID-based feature. Experimental evaluations
show that the proposed method outperforms the data augmentation method
using the conventional TTS. We found that it reduces speaker dependency, and
the generated features are distributed more closely to the real ones.

In Chapter 5, we presented a post-processing network that refines lmfb
features, where the model directly predicts lmfb features given the lmfb features
generated by the text-to-mel network. In Chapter 3, we used a vocoder network to
convert the generated feature into a waveform. It improved the ASR performance,
but requires a huge amount of runtime since a waveform has much longer than
the lmfb feature. Moreover, converting into a waveform is not necessary for
data augmentation. Therefore we proposed a mel-to-mel network to refine
the lmfb features directly. The direct refinement takes less runtime than the
vocoder. Experimental evaluations demonstrated that the proposed network
achieves better word error rates than the vocoder network in an English domain
adaptation task (read speech to spontaneous speech) in a much smaller amount
of data generation time. It was also shown that phone information is critical
for the improvement. We also confirmed the effect of the proposed model in a
Japanese domain adaptation task.

6.2 Comparison of Approaches

In this thesis, we proposed three data augmentation approaches for ASR using
TTS. We compare the architecture of each approach and their advantages and
disadvantages in this section.

80

6.2. COMPARISON OF APPROACHES

Chapter�3

Chapter�4

Chapter�5

Front-end�of�ASR�

CNN-based�layer��+�Waveform-input�ASR(learnable,�joint�training)

ASR�model�

lmfb-input�ASR

BERT-based�model(ID�→�ASR�input)� ID-based-input�ASR�

Generation�(TTS) Bridging�between�ASR�and�TTS

Vocoder(lmfb�→�waveform)

Mel-to-mel�network(lmfb�→�lmfb)

Text-to-mel�network(text�→�lmfb)

Text-to-mel�network(text�→�lmfb)

Text-to-ID�network(text�→�ID)

TTS�outputs

Vq-wav2vec(waveform→�ID)

Figure 6.1: The role of each network and comparison of each chapter. "—-" means
we do not use any learnable network.

6.2.1 Architecture

Fig. 6.1 shows the comparison of the network architecture in each approach.
In Chapter 3, we must prepare three models: a waveform-input ASR model, a
text-to-mel network, and a vocoder network. The waveform-input ASR model
includes learnable front-end CNN layers for a waveform and an encoder decoder
architecture that predicts a target linguistic label sequence given the output of
the front-end. We update the parameters of the two modules using the same
criterion (likelihood between predicted and ground-truth labels). We do not
change the architecture of a text-to-mel network and a vocoder network.

In Chapter 4, we composed four models: a vq-wav2vec network, a BERT-
based model, a text-to-ID network, and an ID-based-input ASR model. The
vq-wav2vec network consumes a waveform to convert a discrete representation.
It is regarded as a front-end. Unlike Chapter 3, we separately train the vq-
wav2vec model and the ASR model. We also use the BERT-based model, which
acquires contextualized information for the ASR given an ID sequence. In the
data augmentation, the role of the BERT-based model is close to a vocoder. In
addition to vq-wav2vec, we change the output of the generation network. While
the original text-to-mel network predicts an lmfb feature sequence (continuous

81

CHAPTER 6. CONCLUSIONS

values), the text-to-ID network predicts an ID sequence. We change the MAE
criterion into likelihood between a ground-truth ID sequence and a predicted
ID sequence. The input of the ASR model is the hidden state of the BERT-based
model.

In chapter 5, we composed three modules; an ASR model, a text-to-mel
network, and a mel-to-mel network. The mel-to-mel network refines the generated
lmfb features. We do not change the architecture of the ASR model and the
text-to-mel network and do not use a vocoder network.

6.2.2 Advantages and Disadvantages

Chapter 3 work has three advantages.

• The vocoder network improves the TTS quality, and we fully utilize the
generated waveform to add the learnable front-end.

• We do not need to consider the differences of lmfb features between ASR
and TTS since raw waveforms can be converted into lmfb features with any
setting.

• We optimize the front-end by the likelihood for the linguistic label, which
is the goal of the ASR task, while the lmfb features are not designed for
minimizing the ASR loss.

However, there are two disadvantages compared with other works.

• The waveform-input ASR has a large amount of parameters and the ASR
model needs a lot of time to train and recognize.

• In this method, we need to compose a vocoder network and convert an lmfb
feature into a waveform. Generating a waveform takes a long time since a
waveform has a longer sequence than the lmfb features.

Chapter 4 work has three advantages.

• While waveform-input ASR models need the paired data to train the front-
end, the self-supervised model can utilize waveform-only data to train the

82

6.3. INVESTIGATION ON MISMATCH OF TTS

self-supervised model (vq-wav2vec).
• The TTS task is much easier since the target of TTS is changed to a discrete

representation from a continuous value.
• The generated speech exists in the real speech because the text-to-ID model

predicts IDs which is derived from the real speech.

There are three disadvantages.

• We need to compose four models separately
• Vq-wav2vec and BERT-based model have a large amount of parameters, and

it takes a long time for training and generation.
• Self-supervised model needs a lot of speech data to achieve high performance

of the ASR models.

Chapter 5 work has two advantages.

• The generation is faster than a vocoder since we do not need to predict a
waveform that has a long-time sequence.

• We do not have to change the basic architecture of both the ASR and TTS
models.

Chapter 5 work has two disadvantages.

• The mel-to-mel model cannot fill the differences between ASR and TTS lmfb
settings.

• It is possible that the generated lmfb features do not exist in the real lmfb
features.

6.3 Investigation on Mismatch of TTS

When we compare Table 3.2 in Chapter 3 and Table 5.5 in Chapter 5, the
performance gap between the augmented model and oracle model still exists
because of the TTS quality. We used Tacotron 2 in Chapter 3 and FastSpeech
2 in Chapter 5 for a text-to-mel model. Training the text-to-mel model using

83

CHAPTER 6. CONCLUSIONS

spontaneous speech is especially difficult for the autoregressive model (Tacotron
2) since it generates speech using previous timesteps and needs to train a wide
variety of speech. Moreover, we used WaveNet in Chapter 3 and VocGAN in
Chapter 5 as a vocoder. We observe that generated waveform using WaveNet
contains a lot of unnatural noises.

The performance gap between the augmented model and oracle model is
also different for English and Japanese (e.g., Table 5.1 and Table 5.5). While
we used readout speech (LibriTTS) in English to train the TTS model, we used
spontaneous speech (CSJ-SPS) for Japanese. The speaking style of CSJ-SPS is close
to that of the target domain (CSJ-APS). These results suggest that the mismatch
between the real and generated speech depends on the TTS quality and speaking
style. In this section, we investigate the effects of TTS for ASR performance using
LibriTTS and TED-LIUM 2. The architecture of TTS model and ASR model is the
same in Chapter 5. While LibriTTS provides read speeches, the target domain
(TED-LIUM 2) is spontaneous lecture speech. The generated speech is basically
read-style speech and there are differences in the speaking style. Moreover,
converting an lmfb feature into a waveform has some errors when we use a
vocoder. In Table 6.1, we compare the effect of the TTS model settings, training
data (speaking style) and vocoder. In “LibriSpeech + TTS (trained by LibriTTS)”,
we train the FastSpeech 2 model using both speech and transcription of LibriTTS.
In “LibriSpeech + TTS (trained by LibriTTS) w/ vocoder”, we also train a vocoder
using LibriTTS in addition to the FastSpeech 2 model and convert an lmfb feature
into a waveform.. In “LibriSpeech + TTS (trained by TED-LIUM 2)”, we train
the FastSpeech 2 model using both speech and transcription of TED-LIUM 2.
In “LibriSpeech + TTS (trained by TED-LIUM 2) w/ vocoder”, we also train a
vocoder using TED-LIUM 2 in addition to the FastSpeech 2 model and convert
an lmfb feature into a waveform. In “LibriSpeech + TED-LIUM 2 (Real speech)
w/ vocoder”, we use real speeches but just lmfb features and convert them
into a waveform with a vocoder. We then make lmfb features from a converted
waveform. It aims to confirm the effect of speaking style, and the quality of
mel-to-mel networks, and the quality of vocoder networks. We see that the TTS

84

6.3. INVESTIGATION ON MISMATCH OF TTS

Table 6.1: Comparison of dataset for TTS training. We evaluate the WER [%] on
TED-LIUM 2 test set. In “LibriSpeech + TTS (trained by TED-LIUM 2)”, we train
the FastSpeech 2 model using both speech and transcription of TED-LIUM 2. In
“LibriSpeech + TTS (trained by TED-LIUM 2) w/ vocoder”, we use a vocoder in
addition to the FastSpeech 2 model. In “LibriSpeech + TED-LIUM 2 (Real speech)
w/ vocoder”, we use real speeches but just lmfb features that are converted into
a waveform.

dev test
LibriSpeech (train-clean-100) 31.95 28.92
LibriSpeech + TTS (trained by LibriTTS) 17.12 17.79
LibriSpeech + TTS (trained by LibriTTS) w/ vocoder 16.71 16.76
LibriSpeech + TTS (trained by TED-LIUM 2) 15.06 14.02
LibriSpeech + TTS (trained by TED-LIUM 2) w/ vocoder 14.23 13.81
LibriSpeech + TED-LIUM 2 (real speech) w/ vocoder 10.90 10.77
LibriSpeech + TED-LIUM 2 [oracle] 9.28 8.56

model using TED-LIUM 2 dataset yields 2.95 points improvement compared
with that using the LibriTTS dataset. This improvement can be attributed to
the fact that the speaking style is matched to the target domain. However, the
improvement is limited and there is 5.25-point difference from the oracle model
in the test set. This result shows that the discrepancy between real and generated
speech affects the ASR performance much. When we converted the real lmfb
features into waveforms using a vocoder and trained the ASR system based on
the converted waveforms, the performance is slightly degraded from the oracle
model. This result indicates that the vocoder network also causes the discrepancy
between the real and generated features, but the difference is small (2.21 points)
compared to the oracle model.

When we compare Table 4.2 in Chapter 4 and Table 5.1 in Chapter 5, we also
observe that the effects of the data augmentation are different. We used different
encoders of ASR model and Conformer encoder achieves higher performance
than the LSTM encoder. We consider one reason of the difference is SpecAugment.
In Chapter 5, we applied a larger amount of masks than in Chapter 4. The masking
can alleviate the mismatch of the generated speech.

85

CHAPTER 6. CONCLUSIONS

6.4 Future Work

This section describes several open problems regarding the methods developed
in this thesis and future research directions.

In all the proposed methods, we comprise the ASR and TTS systems separately,
and the TTS system does not consider the ASR performance. One direction is to
integrate the TTS architecture with the ASR model and optimize them jointly.
However, there is the possibility that the joint training loss causes over-fitting
of the ASR model or the TTS model. Instead of the shared criterion, we will
introduce GAN-based architecture to improve the TTS quality and utilize the
synthesized speech effectively.

Basically, we assume that the high quality of generated speech is good for
speech recognition. However, noise injection such as SpecAugment and changing
tempo such as speed perturbation methods positively impact speech recognition.
These speeches are unreal, but the ASR performance is improved. Moreover,
a recent scalable end-to-end speech synthesis model has been investigated to
control the synthesized voice. For example, a FastSpeech 2 model can change
the pitch of generated speech when we change the pitch prediction. These
changed speeches are less natural, but we can generate various speech. It is
thus necessary to investigate the use of generated speech for improving the ASR
models. Moreover, it is worth investigating the relationship between unreal
speech and ASR performance.

In this thesis, we mainly investigate approaches to improve the generated
speech quality. One problem of all the works is that the generated speech does
not have diversity compared with the real speech. A multi-speaker TTS model
alleviates the problem, but we need to investigate a TTS system that can generate
variant speech. We will leverage waveform-only data to generate more variety of
speech to train the TTS model. Another way may be to use a voice conversion
model to acquire more diverse speech from the generated speech.

In this thesis, we do not investigate the balance of synthesized speech and
real speech or a method to select the text for effective training. It is better to train

86

6.4. FUTURE WORK

the ASR model effectively using a small amount of generated data. It is worth
investigating the methods to consider the ratio of synthesized speech and real
speech. We will also investigate the effect of the data augmentation when we
have a small amount of in-domain data.

87

CHAPTER 6. CONCLUSIONS

88

Bibliography

[1] T. Sakai and S. Doshita, “The Phonetic Typewriter: Its Fundamentals and
Mechanism,” in IFIP Congress 62,, pp. 445–450, 1962.

[2] K.-F. Lee, Automatic speech recognition: the development of the SPHINX system,
vol. 62. Springer Science & Business Media, 1988.

[3] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research
groups,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[4] A. Graves and N. Jaitly, “Towards End-To-End speech recognition with
recurrent neural networks,” in International Conference on Machine Learning
(ICML), pp. 1764–1772, 2014.

[5] J. Olive, “Rule synthesis of speech from dyadic units,” in IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, pp. 568–
570, 1977.

[6] É. Moulines and F. Charpentier, “Pitch-synchronous waveform process-
ing techniques for text-to-speech synthesis using diphones,” in Speech
Communication, vol. 9, pp. 453–467, 1990.

[7] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura,
“Simultaneous modeling of spectrum, pitch and duration in HMM-based
speech synthesis,” in European Conference on Speech Communication and
Technology (Eurospeech), pp. 2347–2350, 1999.

[8] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kitamura,
“Speech parameter generation algorithms for HMM-based speech synthesis,”
IEEE International Conference on Acoustics, Speech, and Signal Processing

89

Bibliography

(ICASSP), vol. 3, pp. 1315–1318, 2000.
[9] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang,

Y. Wang, R. Skerry-Ryan, et al., “Natural TTS synthesis by conditioning
WaveNet on mel spectrogram predictions,” in INTERSPEECH, pp. 4779–
4783, 2017.

[10] K. Itou, M. Yamamoto, K. Takeda, T. Takezawa, T. Matsuoka, T. Kobayashi,
K. Shikano, and S. Itahashi, “Jnas: Japanese speech corpus for large
vocabulary continuous speech recognition research,” Journal of the Acoustical
Society of Japan (E), vol. 20, no. 3, pp. 199–206, 1999.

[11] K. Maekawa, H. Koiso, S. Furui, and H. Isahara, “Spontaneous Speech
Corpus of Japanese,” in LREC, pp. 947–9520, 2000.

[12] A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” CoRR, vol. abs/1807.03748, 2018.

[13] A. Baevski, S. Schneider, and M. Auli, “vq-wav2vec: Self-supervised
learning of discrete speech representations,” in International Conference on
Learning Representations (ICLR), 2020.

[14] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A framework
for self-supervised learning of speech representations,” in Advances in
Neural Information Processing Systems (H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, eds.), vol. 33, pp. 12449–12460, Curran Associates,
Inc., 2020.

[15] G. Zavaliagkos and T. Colthurst, “Utilizing untranscribed training data
to improve performance,” in DARPA Broadcast News Transcription and
Understanding Workshop, Landsdowne, pp. 301–305, 1998.

[16] D. S. Park, Y. Zhang, Y. Jia, W. Han, C.-C. Chiu, B. Li, Y. Wu, and Q. V. Le,
“Improved Noisy Student Training for Automatic Speech Recognition,” in
Proc. Interspeech 2020, pp. 2817–2821, 2020.

[17] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V.
Le, “SpecAugment: A Simple Data Augmentation Method for Automatic
Speech Recognition,” in INTERSPEECH, pp. 2613–2617, 2019.

[18] A. Kannan, Y. Wu, P. Nguyen, T. N. Sainath, Z. Chen, and R. Prabhavalkar,

90

Bibliography

“An analysis of incorporating an external language model into a sequence-
to-sequence model,” in International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pp. 5824–5828, IEEE, 2018.

[19] J. Shin, Y. Lee, and K. Jung, “Effective sentence scoring method using bert
for speech recognition,” in Proceedings of The Eleventh Asian Conference on
Machine Learning (W. S. Lee and T. Suzuki, eds.), vol. 101 of Proceedings of
Machine Learning Research, pp. 1081–1093, 2019.

[20] A. Tjandra, S. Sakti, and S. Nakamura, “Attention-based wav2text with
feature transfer learning,” in IEEE Automatic Speech Recognition and Under-
standing Workshop (ASRU), pp. 309–315, 2017.

[21] A. Tjandra, S. Sakti, and S. Nakamura, “Listening while speaking: Speech
chain by deep learning,” in IEEE Automatic Speech Recognition and Under-
standing Workshop (ASRU), pp. 301–308, 2017.

[22] M. Mimura, S. Ueno, H. Inaguma, S. Sakai, and T. Kawahara, “Leveraging
sequence-to-sequence speech synthesis for enhancing acoustic-to-word
speech recognition,” in Workshop on Spoken Language Technology (SLT),
pp. 477–484, 2018.

[23] S. Ueno, M. Mimura, S. Sakai, and T. Kawahara, “Multi-speaker sequence-
to-sequence speech synthesis for data augmentation in acoustic-to-word
speech recognition,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 6161–6165, 2019.

[24] A. Rosenberg, Y. Zhang, B. Ramabhadran, Y. Jia, P. Moreno, Y. Wu, and
Z. Wu, “Speech recognition with augmented synthesized speech,” in
IEEE Automatic Speech Recognition and Understanding Workshop (ASRU),
pp. 996–1002, 2019.

[25] N. Rossenbach, A. Zeyer, R. Schluter, and H. Ney, “Generating Synthetic
Audio Data for Attention-based Speech Recognition Systems,” in IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 7064–7068, 2020.

[26] Z. Chen, A. Rosenberg, Y. Zhang, G. Wang, B. Ramabhadran, and P. J.
Moreno, “Improving Speech Recognition Using GAN-Based Speech Synthe-

91

Bibliography

sis and Contrastive Unspoken Text Selection,” in INTERSPEECH, pp. 556–
560, 2020.

[27] G. Wang, A. Rosenberg, Z. Chen, Y. Zhang, B. Ramabhadran, Y. Wu, and
P. Moreno, “Improving speech recognition using consistent predictions on
synthesized speech,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 7029–7033, 2020.

[28] G. Wang, A. Rosenberg, Z. Chen, Y. Zhang, B. Ramabhadran, and P. J.
Moreno, “SCADA: Stochastic, Consistent and Adversarial Data Augmenta-
tion to Improve ASR,” in INTERSPEECH, pp. 2832–2836, 2020.

[29] A. Laptev, R. Korostik, A. Svischev, A. Andrusenko, I. Medennikov, and
S. Rybin, “You do not need more data: Improving end-to-end speech
recognition by text-to-speech data augmentation,” International Congress on
Image and Signal Processing, BioMedical Engineering and Informatics (CISP-
BMEI), 2020.

[30] X. Zheng, Y. Liu, D. Gunceler, and D. Willett, “Using synthetic audio to
improve the recognition of out-of-vocabulary words in end-to-end asr
systems,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5659–5663, 2021.

[31] G. Kurata, G. Saon, B. Kingsbury, D. Haws, and Z. Tüske, “Improving
Customization of Neural Transducers by Mitigating Acoustic Mismatch of
Synthesized Audio,” in INTERSPEECH, pp. 2027–2031, 2021.

[32] A. Fazel, W. Yang, Y. Liu, R. Barra-Chicote, Y. Meng, R. Maas, and J. Droppo,
“SynthASR: Unlocking Synthetic Data for Speech Recognition,” in INTER-
SPEECH, pp. 896–900, 2021.

[33] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural networks for
language modeling,” in INTERSPEECH, 2012.

[34] T. Kudo and J. Richardson, “Sentencepiece: A simple and language inde-
pendent subword tokenizer and detokenizer for neural text processing,”
arXiv preprint arXiv:1808.06226, 2018.

[35] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare
words with subword units,” in Proceedings of the 54th Annual Meeting of

92

Bibliography

the Association for Computational Linguistics (Volume 1: Long Papers), (Berlin,
Germany), pp. 1715–1725, Association for Computational Linguistics, Aug.
2016.

[36] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connectionist
Temporal Classification : Labelling Unsegmented Sequence Data with
Recurrent Neural Networks,” in International Conference on Machine Learning
(ICML), pp. 369–376, 2006.

[37] S. Kim, T. Hori, and S. Watanabe, “Joint CTC-attention based end-to-end
speech recognition using multi-task learning,” in International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), pp. 4835–4839, 2017.

[38] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” in IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826, 2016.

[39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), vol. 30,
Curran Associates, Inc., 2017.

[40] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang,
Z. Zhang, Y. Wu, and R. Pang, “Conformer: Convolution-augmented
Transformer for Speech Recognition,” in INTERSPEECH, pp. 5036–5040,
2020.

[41] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu, “FastSpeech 2:
Fast and high-quality end-to-end text to speech,” in International Conference
on Learning Representations (ICRL), 2020.

[42] Y. Ren, Y. Ruan, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu, “Fast-
speech: Fast, robust and controllable text to speech,” in Advances in Neural
Information Processing Systems, vol. 32, 2019.

[43] I. Elias, H. Zen, J. Shen, Y. Zhang, Y. Jia, R. Weiss, and Y. Wu, “Parallel
tacotron: Non-autoregressive and controllable tts,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5694–5698,

93

Bibliography

2021.
[44] I. Elias, H. Zen, J. Shen, Y. Zhang, Y. Jia, R. Skerry-Ryan, and Y. Wu, “Parallel

Tacotron 2: A non-autoregressive neural tts model with differentiable
duration modeling,” in INTERSPEECH, pp. 141–145, 2021.

[45] M. Morise, F. Yokomori, and K. Ozawa, “WORLD: A vocoder-based
high-quality speech synthesis system for real-time applications,” IEICE
Transactions on Information and Systems, vol. E99.D, no. 7, pp. 1877–1884,
2016.

[46] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative
model for raw audio,” in Arxiv, 2016.

[47] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande, E. Lock-
hart, F. Stimberg, A. van den Oord, S. Dieleman, and K. Kavukcuoglu,
“Efficient neural audio synthesis,” CoRR, vol. abs/1802.08435, 2018.

[48] A. van den Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals,
K. Kavukcuoglu, G. van den Driessche, E. Lockhart, L. Cobo, F. Stimberg,
N. Casagrande, D. Grewe, S. Noury, S. Dieleman, E. Elsen, N. Kalchbrenner,
H. Zen, A. Graves, H. King, T. Walters, D. Belov, and D. Hassabis, “Parallel
WaveNet: Fast high-fidelity speech synthesis,” in Proceedings of the 35th
International Conference on Machine Learning (J. Dy and A. Krause, eds.),
vol. 80 of Proceedings of Machine Learning Research, pp. 3918–3926, PMLR,
10–15 Jul 2018.

[49] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A flow-based generative
network for speech synthesis,” in International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pp. 3617–3621, 2019.

[50] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible
1x1 convolutions,” in Advances in Neural Information Processing Systems
(S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, eds.), vol. 31, Curran Associates, Inc., 2018.

[51] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in

94

Bibliography

Neural Information Processing Systems (Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Q. Weinberger, eds.), vol. 27, Curran Associates, Inc.,
2014.

[52] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” in Advances in Neural Information
Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc.,
2017.

[53] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 5967–5976, 2017.

[54] K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W. Z. Teoh, J. Sotelo,
A. de Brébisson, Y. Bengio, and A. C. Courville, “MelGAN: Generative
adversarial networks for conditional waveform synthesis,” in Advances in
Neural Information Processing Systems, vol. 32, 2019.

[55] R. Yamamoto, E. Song, and J.-M. Kim, “Parallel wavegan: A fast waveform
generation model based on generative adversarial networks with multi-
resolution spectrogram,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 6194–6198, 2020.

[56] J. Yang, J. Lee, Y. Kim, H. Cho, and I. Kim, “VocGAN: A high-fidelity
real-time vocoder with a hierarchically-nested adversarial network,” in
INTERSPEECH, pp. 200–204, 2020.

[57] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversarial networks for
efficient and high fidelity speech synthesis,” in Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural Information Processing
Systems (NeurIPS) (H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, eds.), 2020.

[58] A. Sriram, H. Jun, S. Satheesh, and A. Coates, “Cold fusion: Training
seq2seq models together with language models,” in INTERSPEECH,
pp. 387–391, 2018.

[59] R. Masumura, N. Makishima, M. Ihori, A. Takashima, T. Tanaka, and

95

Bibliography

S. Orihashi, “Phoneme-to-Grapheme Conversion Based Large-Scale Pre-
Training for End-to-End Automatic Speech Recognition,” in INTERSPEECH,
pp. 2822–2826, 2020.

[60] Y. Tang, J. Pino, C. Wang, X. Ma, and D. Genzel, “A general multi-task
learning framework to leverage text data for speech to text tasks,” in IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 6194–6198, 2021.

[61] S. Karita, S. Watanabe, T. Iwata, A. Ogawa, and M. Delcroix, “Semi-
supervised end-to-end speech recognition,” in INTERSPEECH, pp. 2–6,
2018.

[62] S. Karita, S. Watanabe, T. Iwata, M. Delcroix, A. Ogawa, and T. Nakatani,
“Semi-supervised end-to-end speech recognition using text-to-speech and
autoencoders,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 6166–6170, 2019.

[63] A. Gibiansky, S. Arik, G. Diamos, J. Miller, K. Peng, W. Ping, J. Raiman, and
Y. Zhou, “Deep voice 2: Multi-speaker neural text-to-speech,” in Advances
in Neural Information Processing Systems (NIPS), pp. 2962–2970, 2017.

[64] W. Ping, K. Peng, A. Gibiansky, S. O. Arik, A. Kannan, S. Narang, J. Raiman,
and J. Miller, “Deep voice 3: Scaling text-to-speech with convolutional
sequence learning,” in International Conference on Learning Representations
(ICRL), 2018.

[65] N. Li, S. Liu, Y. Liu, S. Zhao, M. Liu, and M. Zhou, “Close to human quality
TTS with transformer,” arXiv preprint, 1809.08895, 2018.

[66] N. Rossenbach, A. Zeyer, R. Schluter, and H. Ney, “Generating Synthetic
Audio Data for Attention-based Speech Recognition Systems,” in IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 7064–7068, 2020.

[67] Y. Huang, L. He, W. Wei, W. Gale, J. Li, and Y. Gong, “Using Personalized
Speech Synthesis and Neural Language Generator for Rapid Speaker
Adaptation,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 7394–7398, 2020.

96

Bibliography

[68] N. Jaitly and G. Hinton, “Learning a Better Representation of Speech
Soundwaves using Restricted Boltzmann Machines,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5884–5887,
2011.

[69] D. Palaz, R. Collobert, and M. Magimai-Doss, “Estimating phoneme class
conditional probabilities from raw speech signal using convolutional neural
networks,” in INTERSPEECH, pp. 1766–1770, 2013.

[70] Z. Tüske, P. Golik, R. Schlüter, and H. Ney, “Acoustic modeling with deep
neural networks using raw time signal for LVCSR,” in INTERSOEECH,
pp. 890–894, 2014.

[71] D. Palaz, M. Magimai-Doss, and R. Collobert, “Convolutional neural
networks-based continuous speech recognition using raw speech signal,”
in IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4295–4299, 2015.

[72] T. N. Sainath, R. J. Weiss, A. Senior, K. W. Wilson, and O. Vinyals, “Learning
the speech front-end with raw waveform CLDNNs,” in INTERSPEECH,
pp. 1–5, 2015.

[73] M. Ravanelli and Y. Bengio, “Speech and speaker recognition from raw
waveform with SincNet,” arXiv preprint arXiv:1812.05920, 2018.

[74] M. Ravanelli and Y. Bengio, “Speaker recognition from raw waveform
with SincNet,” in 2018 IEEE Spoken Language Technology Workshop (SLT),
pp. 1021–1028, IEEE, 2018.

[75] N. Zeghidour, Q. Xu, V. Liptchinsky, N. Usunier, G. Synnaeve, and
R. Collobert, “Fully Convolutional Speech Recognition,” in arXiv preprint
arXiv:1812.06864, 2018.

[76] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The
missing ingredient for fast stylization,” arXiv preprint arXiv:1607.08022,
2016.

[77] H. Sak, A. Senior, K. Rao, and F. Beaufays, “Fast and Accurate Recurrent
Neural Network Acoustic Models for Speech Recognition,” in INTER-
SPEECH, pp. 1468–1472, 2015.

97

Bibliography

[78] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1026–1034,
2015.

[79] R. Sonobe, S. Takamichi, and H. Saruwatari, “JSUT corpus: free large-scale
Japanese speech corpus for end-to-end speech synthesis,” arXiv preprint,
1711.00354, 2017.

[80] S. Ueno, M. Mimura, and T. Kawahara, “End-to-end speech synthesis for
multiple speakers using the corpus of spontaneous japanese,” in Acoustical
Society of Japan (ASJ), pp. 1085–1086, 2018.

[81] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv preprint, 1412.6980, pp. 1–15, 2014.

[82] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-
Based Models for Speech Recognition,” in Advances in Neural Information
Processing Systems (NIPS), pp. 577–585, 2015.

[83] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative
model for raw audio,” in Arxiv, 2016.

[84] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in Advances in Neural Information Processing Systems (NIPS)
Workshop on Deep Learning, 2017.

[85] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in Proceedings
of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
(New Orleans, Louisiana), pp. 2227–2237, Association for Computational
Linguistics, June 2018.

[86] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” in Proceedings
of the 2019 Conference of the North American Chapter of the Association for

98

Bibliography

Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), (Minneapolis, Minnesota), pp. 4171–4186, Association for
Computational Linguistics, June 2019.

[87] P. Bachman, R. D. Hjelm, and W. Buchwalter, “Learning representations
by maximizing mutual information across views,” in Advances in Neural
Information Processing Systems (H. Wallach, H. Larochelle, A. Beygelzimer,
F. d�Alché-Buc, E. Fox, and R. Garnett, eds.), vol. 32, Curran Associates,
Inc., 2019.

[88] O. J. Hénaff, A. Srinivas, J. D. Fauw, A. Razavi, C. Doersch, S. M. A. Eslami,
and A. van den Oord, “Data-efficient image recognition with contrastive
predictive coding,” CoRR, vol. abs/1905.09272, 2019.

[89] S. Schneider, A. Baevski, R. Collobert, and M. Auli, “wav2vec: Unsuper-
vised pre-training for speech recognition,” arXiv preprint arXiv:1904.05862,
2019.

[90] Y.-A. Chung, W.-N. Hsu, H. Tang, and J. Glass, “An Unsupervised Au-
toregressive Model for Speech Representation Learning,” in Proc. INTER-
SPEECH, pp. 146–150, 2019.

[91] A. T. Liu, S.-w. Yang, P.-H. Chi, P.-c. Hsu, and H.-y. Lee, “Mockingjay:
Unsupervised speech representation learning with deep bidirectional
transformer encoders,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2020.

[92] A. van den Oord, O. Vinyals, and k. kavukcuoglu, “Neural discrete rep-
resentation learning,” in Advances in Neural Information Processing Systems
(NIPS), 2017.

[93] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An
ASR corpus based on public domain audio books,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5206–5210,
2015.

[94] H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia, Z. Chen, and Y. Wu,
“LibriTTS: A corpus derived from librispeech for text-to-speech,” arXiv
preprint arXiv:1904.02882, 2019.

99

Bibliography

[95] A. Rousseau, P. Deléglise, and Y. Estève, “Enhancing the TED-LIUM
corpus with selected data for language modeling and more TED talks,” in
Proceedings of the Ninth International Conference on Language Resources and
Evaluation (LREC), pp. 3935–3939, 2014.

[96] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” in Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1715–1725, 2016.

[97] C. Gulcehre, O. Firat, K. Xu, K. Cho, L. Barrault, H.-C. Lin, F. Bougares,
H. Schwenk, and Y. Bengio, “On using monolingual corpora in neural
machine translation,” arXiv preprint arXiv:1503.03535, 2015.

[98] H. Erdogan, J. R. Hershey, S. Watanabe, and J. Le Roux, “Phase-sensitive
and recognition-boosted speech separation using deep recurrent neural
networks,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 708–712, 2015.

[99] K. Kinoshita, M. Delcroix, A. Ogawa, and T. Nakatani, “Text-informed
speech enhancement with deep neural networks,” in INTERSPEECH,
pp. 1760–1764, 2015.

[100] K. Schulze-Forster, C. S. J. Doire, G. Richard, and R. Badeau, “Joint
phoneme alignment and text-informed speech separation on highly cor-
rupted speech,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 7274–7278, 2020.

100

List of Publications

Refereed International Journal Papers

1) Sei Ueno, Masato Mimura, Shinsuke Sakai, and Tatsuya Kawahara: Syn-
thesizing Waveform Sequence-to-Sequence to Augment Training Data for
Sequence-to-Sequence Speech Recognition, Acoustical Science and Technol-
ogy, Vol.42, No.6, pp.333–343, 2021.

Refereed International Conference Papers

2) Sei Ueno and Tatsuya Kawahara: Phone-Informed Refinement of Synthe-
sized Mel Spectrogram for Data Augmentation in Speech Recognition, IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
accepted, 2022.

3) Sei Ueno, Masato Mimura, Shinsuke Sakai, and Tatsuya Kawahara: Data
Augmentation for ASR Using TTS via a Discrete Representation, IEEE Au-
tomatic Speech Recognition and Understanding Workshop (ASRU), pp.68–75,
2021.

4) Sei Ueno, Masato Mimura, Shinsuke Sakai, and Tatsuya Kawahara: Multi-
Speaker Sequence-to-Sequence Speech Synthesis for Data Augmentation
in Acoustic-to-Word Speech Recognition, IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp.6161–6165, 2019.

5) Sei Ueno, Takafumi Moriya, Masato Mimura, Shinsuke Sakai, Yoshikazu Ya-
maguchi, Yushi Aono, and Tatsuya Kawahara:Encoder Transfer for Attention-
Based Acoustic-to-Word Speech Recognition, INTERSPEECH, pp.2424–2428
2018.

101

List of Publications

6) Sei Ueno, Hirofumi Inaguma, Masato Mimura, and Tatsuya Kawahara:
Acoustic-to-Word Attention-Based Model Complemented with Character-
Level CTC-Based Model. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP),pp.5804-5808, 2018.

Refereed International Conference Papers (co-authored
works)

7) Kohei Matsuura, Sei Ueno, Masato Mimura, Shinsuke Sakai, and Tatsuya
Kawahara:Speech Corpus of Ainu Folklore and End-to-End Speech Recog-
nition for Ainu Language. International Conference on Language Resources and
Evaluation (LREC), pp.2622-2628, 2020.

8) Viet-Trung Dang, Tianyu Zhao, Sei Ueno, Hirofumi Inaguma, and Tatsuya
Kawahara: End-to-End Speech-to-Dialog-Act Recognition. INTERSPEECH,
pp.3910–3914, 2020.

9) Hayato Futami, Hirofumi Inaguma, Sei Ueno, Masato Mimura, Shinsuke
Sakai, and Tatsuya Kawahara: Distilling the Knowledge of BERT for Sequence-
to-Sequence ASR. INTERSPEECH, pp.3635–3639, 2020.

10) Han Feng, Sei Ueno, and Tatsuya Kawahara: End-to-End Speech Emo-
tion Recognition Combined with Acoustic-to-Word ASR Model. INTER-
SPEECH, pp.501—505, 2020.

11) Masato Mimura, Sei Ueno, Hirofumi Inaguma, Shinsuke Sakai, and Tatsuya
Kawahara: Leveraging Sequence-to-Sequence Speech Synthesis for Enhanc-
ing Acoustic-to-Word Speech Recognition. IEEE Spoken Language Technology
Workshop (SLT), pp.477-484, 2018.

12) Takafumi Moriya, Sei Ueno, Yusuke Shinohara, Marc Delcroix, Yoshikazu
Yamaguchi, and Yushi Aono: Multi-Task Learning with Augmentation
Strategy for Acoustic-to-Word Attention-Based Encoder-Decoder Speech
Recognition. INTERSPEECH, pp.2399-2403, 2018.

102

List of Publications

Domestic Conferences

13) 上乃聖,河原達也: 音声認識のデータ拡張のための音素情報を用いた合成音声
の強調,日本音響学会研究発表会講演論文集, 1-3-4,春季 2022.

14) 上乃聖,河原達也: 音声認識のデータ拡張のための合成音声の周波数スペクト
ログラム強調,情報処理学会研究報告, SLP-139-28, 2021.

15) 上乃聖,三村正人,河原達也: 音声合成による wav2vec 2.0を用いた音声認識
のデータ拡張,日本音響学会研究発表会講演論文集, 1-3-5,秋季 2021.

16) 上乃聖,三村正人,河原達也: 複数話者を対象とした非自己回帰型ニューラル
音声合成,日本音響学会研究発表会講演論文集, 3-2-25,春季 2021.

17) 上乃聖, 三村正人, 河原達也: vq-wav2vec による離散 ID を扱う音声認識の
データ拡張,日本音響学会研究発表会講演論文集, 1-2-16,春季 2021.

18) 上乃聖, 三村正人, 坂井信輔, 河原達也: Wave2word: 音声波形を入力とする
単語単位End-to-End音声認識,日本音響学会研究発表会講演論文集, 1-3-6,秋
季 2019.

19) 上乃聖,三村正人,坂井信輔,河原達也: 多数話者コーパスを用いたEnd-to-End
音声合成による単語単位End-to-End音声認識のデータ拡張,日本音響学会研
究発表会講演論文集, 2-9-2,春季 2019.

20) 上乃聖,三村正人,坂井信輔,河原達也: 音声波形を入力とする単語単位 End-
to-End音声認識,情報処理学会研究報告, SLP-129-2, 2019.

21) 上乃聖,三村正人,坂井信輔,河原達也:End-to-End音声合成を用いた単語単位
End-to-End音声認識のデータ拡張,情報処理学会研究報告, SLP-125-2, 2018,
学生論文賞受賞.

22) 上乃聖,三村正人,河原達也: End-to-End音声合成を用いた単語単位 End-to-
End音声認識の学習データ拡張, 日本音響学会研究発表会講演論文集, 1-2-6,
秋季 2018.

23) 上乃聖,三村正人,河原達也: 『日本語話し言葉コーパス』を用いた多数話者
End-to-End音声合成,日本音響学会研究発表会講演論文集, 1-4-2,秋季 2018.

24) 上乃聖,森谷崇史,三村正人,坂井信輔,篠原雄介,山口義和,青野裕司,河原達
也: 転移学習による注意機構付き単語単位音声認識の適応,電子情報通信学会
技術研究報告, SP2018-23, 2018,学生ポスター賞受賞.

103

List of Publications

25) 上乃聖,森谷崇史,三村正人,坂井信輔,篠原雄介,山口義和,青野裕司,河原達
也: 単語単位エンコーダデコーダ音声認識モデルの転移学習を用いた適応,日
本音響学会研究発表会講演論文集, 1-2-5,秋季 2018.

26) 上乃聖, 稲熊寛文, 三村正人, 河原達也: CTCによる文字単位のモデルを併用
した attention による単語単位の End-to-End音声認識, 情報処理学会研究報
告, SLP-120-16, MUS-118-16, 2018.

27) 上乃聖, 稲熊寛文, 三村正人, 河原達也: 文字単位のモデルを併用した単語単
位の End-to-End音声認識, 日本音響学会研究発表会講演論文集, 3-8-5, 春季
2018,学生優秀賞受賞.

104

	Abstract
	Acknowledgment
	Contents
	Introduction
	Background
	Task Formulation
	Automatic Speech Recognition (ASR)
	Text-to-Speech (TTS)

	Problems of End-to-End ASR Models
	Need for a Large Amount of Paired Data of Speech and Transcription
	Data Sparseness and Uneven Distributions

	Data Augmentation Using Speech-only or Text-only Data
	Data Augmentation for ASR Using TTS
	Approaches
	Synthesizing Waveform as Training Data for ASR
	Generating ASR Features via Discrete IDs
	Mel-to-Mel Network to Refine Generated Spectral Features

	Organization of this Thesis

	Review of Automatic Speech Recognition and Text-to-Speech
	DNN-HMM Hybrid ASR Systems
	End-to-End Architecture for ASR
	Connectionist Temporal Classification
	Attention-Based Encoder Decoder Model
	Transformer
	Conformer

	End-to-End Architecture for TTS
	Tacotron 2
	FastSpeech 2
	WaveNet-Based Vocoder
	GAN-Based Vocoder

	Synthesizing Waveform to Augment Training Data for ASR
	Introduction
	TTS for ASR Training
	Lmfb-output TTS and Lmfb-input ASR
	Waveform-output TTS and Lmfb-input ASR
	Waveform-output TTS and Waveform-input ASR

	Waveform-input ASR
	Feature Extraction
	Data Augmentation by Masking

	Experimental Evaluations
	Datasets and Tasks
	System Configuration
	Results of Waveform-input ASR vs. Lmfb-input ASR
	Results of Simulated Domain Adaptation to APS
	Results of Adaptation to Newspaper Domain Leveraging A Large Amount of Newspaper Texts
	Analysis on Learned Filter

	Summary

	Generating ASR Features via a Discrete Representation
	Introduction
	VQ-wav2vec
	BERT for VQ Codes

	Data Augmentation via Discrete IDs
	Conventional Data Augmentation by TTS
	Data Augmentation via Discrete ID Sequences

	Experimental Evaluations
	Datasets and Tasks
	Network Configurations
	Results

	Discussions
	Summary

	Mel-to-Mel Network to Refine Generated Speech
	Introduction
	Phone-Informed Post-Processing Network for Speech Refinement
	Baseline Architecture of Data Generation
	Phone-Informed Mel-to-Mel Network

	Experiment Evaluations
	Datasets and Tasks
	FastSpeech 2-Based TTS and Proposed Network
	Transformer-Based ASR System
	Results

	Discussions
	Summary

	Conclusions
	Contributions
	Comparison of Approaches
	Architecture
	Advantages and Disadvantages

	Investigation on Mismatch of TTS
	Future Work

	Bibliography
	List of Publications

