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Abstract

With the recent developments in mobile and sensor technologies, a large amount of event

data on social and natural phenomena are being continuously generated from a plurality

of sources such as social media, medical records, and business transactions. The grow-

ing volumes of event data open up new opportunities for researchers and practitioners to

better understand the underlying phenomena and mitigate social problems. Especially,

predicting spatio-temporal events is a key component of applications in many fields in-

cluding transportation, public safety, and health care. Point processes provide a principled

framework for modeling event data and have found many applications in a diverse range of

fields. However, these models are limited since the event occurrence is governed by various

complex contextual factors; and thus it dynamically changes over time. Such factors can

be either observable or unobservable. It remains unexplored how these factors cause the

emergence of spatio-temporal dynamics in event data.

This thesis focuses on establishing point process models for modeling and predicting

spatio-temporal event data. In this thesis, we introduce two approaches to take into ac-

count the influence of either observable or unobservable factors, by integrating deep neural

networks and the point process frameworks. First, we explore how to fully exploit informa-

tion on contextual factors to achieve an accurate prediction for spatio-temporal events. In

Chapter 2, we present a Poisson process model combined with a convolutional neural net-

work (CNN) that e↵ectively utilizes rich contextual information. In Chapter 3, we extend

this approach to triggering processes and develop a Hawkes process model that learns the

time-decaying influence from the past events and the contribution of contextual observable

factors. Next, we describe how to estimate the underlying e↵ect of unobservable factors

from event data. In Chapter 4, we propose a Hawkes process model that infers the influence

of unobservable contextual factors via a neural network, where the impact of unobservable

contextual factors are modeled by latent variables. In each chapter, we carry out exten-

sive experiments on real-world datasets from several representative applications, including

transportation, public safety, crime, public health, social media, and natural disasters, and

3



demonstrate the proposed models’ capabilities for event prediction.
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Chapter 1

Introduction

1.1 Motivation and Applications

In today’s digital world, a large amount of data on spatio-temporal (or temporal) events

have become available. For example, tra�c sensors generate a variety of spatio-temporal

event data in urban areas on human mobility and tra�c events. Social media produces

vast quantities of event data on social behaviors generated by the users. We refer to such

data as spatio-temporal (temporal) event data. The growing volumes of event data open

up new opportunities for expanding our knowledge about social and natural phenomena.

The main interest of our research lies in modeling temporal and spatio-temporal event

data and investigating spatial and temporal evolutions of phenomena to predict future

events. Modeling event data and predicting future events is crucial for many practical

applications across domains such as transportation, public safety, health care, and envi-

ronmental management. This thesis analyzes temporal and spatio-temporal event data

from the following domains.

• Transportation – With advanced sensing techniques, it is possible to collect trip data

of many kinds of transport vehicles including taxis, sharing bikes, and buses. Such

trip data records the trip starting and ending geo-location, along with time. The

dataset could enable us to better understand tra�c phenomena, and help mitigate

tra�c problems. For example, if taxi dispatch service operators can estimate with

high accuracy the future taxi pick-up times and locations, they can allocate taxis to

the right places and the right times in advance.

• Public safety – Several data projects produce a vast amount of data on political

conflict and violence, compiled from press reports, social media, and government

archives. Such data contains the dates, locations, and types of all reported political
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violence and protest events across the countries, including protests, conflicts, fights,

and mass violence. Providing predictions and early warnings of violence benefits

conflict management sectors in allocating resources to prevent violence.

• Crime – Modern police organizations collect and store detailed reports on crime

incidents. The police’s criminal reports typically involve the date and time of occur-

rence, crime types, geographic location. Understanding patterns in criminal activity

and predicting crime hot spots enable law enforcement agencies to e↵ectively allocate

o�cers to prevent or respond to incidents.

• Public health – Disease surveillance systems collect and monitor data on disease

outbreaks to trigger appropriate public health interventions. This dataset codes the

locations, dates, and times of disease outbreaks. Policymakers would be able to design

prompt interventions to curb the spread of disease given a better understanding of

the mechanisms behind the transmission and more reliable predictions.

• Social media – The widespread adoption of communication tools, such as social me-

dia platforms, has generated a wealth of data on human activities such as information

sharing in social networks. These activities are often represented as a sequence of

timestamped events. For instance, we have the records of information spreading

traces with the timestamps of spreading behaviors (e.g., creating and sharing con-

tent). Predicting cascade dynamics may help optimize business performance (e.g.

designing social marketing campaigns).

• Natural disasters – Annually, hundred earthquakes are obtained from various seismic

stations all over the world. Earthquake data provide important information on the

time, magnitude, and epicenter location of an earthquake. Accurate and timely

prediction of an earthquake and early warning can save lives and prevent damages

caused by earthquakes.

Many social and natural phenomena exhibit self-exciting or triggering properties, where

the previous events trigger future events. For instance, infectious diseases like COVID-19

are transmitted from one county to another, leading to a worldwide pandemic [91]. In the

context of social media, ones’ social behaviors (e.g., posting and spreading information) are

likely to trigger other users’ responses. These responses further trigger more responses, re-

sulting in an information cascade. The occurrence of an earthquake increases the likelihood

of a second earthquake nearby in space and time.

Point processes o↵er a powerful mathematical tool for modeling event data in con-

tinuous time and/or space. A spatio-temporal point process is a random process whose
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realization consists of a list of discrete events in continuous time and space. The dynamics

of the point process are determined by the so-called “intensity” function that describes the

rate of events occurring at any location and at any time. The two most representative mod-

els of point processes are Hawkes processes and Inhomogeneous Poisson processes. Hawkes

processes [31] explicitly model the influence of the past events and capture triggering pat-

terns between events (i.e., di↵usion processes). Hawkes processes have been proven e↵ective

for modeling di↵usion processes, including earthquakes and aftershocks [59], near-repeat

patterns of crimes [59], financial transactions [23, 5, 32], online purchases [108, 22, 18, 102],

and information cascades [119, 81, 26]. Inhomogeneous Poisson processes provide a flexible

way to learn the temporal and/or spatial variation in the event occurrences. This class of

point processes does not directly model the triggering patterns; but it can learn the local

spatio-temporal interactions between events empirically. Inhomogeneous Poisson processes

have been successfully applied to a wide spectrum of events such as financial events [45],

wildfires [85] and infrastructure failures [24].

However, predicting spatio-temporal events is still challenging, because event occur-

rence is determined by various contextual factors, which can change over time. Contextual

factors can be classified into observable and unobservable ones.

• Observable contextual factors. Observable contextual factors are defined as a set of

observable features. Such features might include transportation networks [28], land

use [8], and social and tra�c information [121, 100, 12] as well as time of day and

weather [?, 12]. Most of them take the form of unstructured representations. For

example, information about geographical characteristics can be obtained from map

images. Tra�c and social event information can be expressed in the form of natural

language expressions. This demands a framework that can capture the complex

dynamics of event occurrence given the rich contextual features present.

• Unobservable contextual factors. Some of the relevant contextual factors are un-

observable or inaccessible. These factors implicitly a↵ect temporal and/or spatial

dynamics in the occurrence of events. For example, information di↵usion heavily

depends on ongoing peoples’ interests; nevertheless, the time-evolution of peoples’

interest in a given topic is generally unknown and not directly observable. This de-

mands a framework that models the dynamics occurring due to underlying hidden

context.

In this thesis, we develop two approaches for modeling temporal and spatio-temporal

event data to capture the temporal and/or spatial variation of event occurrence that is gov-

erned by contextual factors. First, we present two methods for predicting spatio-temporal
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events with the use of rich contextual information based on two popular point processes:

Hawkes process (chapter 2) and inhomogeneous Poisson processes (chapter 3). Second, we

propose a novel Hawkes process method that can capture the impact of underlying and

unobservable factors behind the di↵usion processes (chapter 4).

1.2 Overview and Summary of Contributions

The key contributions of this thesis are three new methods for modeling temporal and

spatio-temporal event data. This thesis consists of three main parts corresponding to the

three methods as follows. The first two parts propose novel point process models integrat-

ing rich observable features and learning their complex e↵ects on the event occurrence.

In chapter 2, we develop an inhomogeneous Poisson process model that can leverage the

contextual features, such as map images and social/tra�c event descriptions, that impact

event occurrence. In chapter 3, we propose a novel Hawkes process model for modeling

di↵usion processes and predicting spatio-temporal events, which leverages the external

features contained in georeferenced images (e.g., satellite images and map images), that

impact triggering processes. The last part aims to learn the e↵ects of underlying and unob-

servable factors on the event occurrence. In chapter 4, we present a novel Hawkes process

model for modeling di↵usion processes and predicting future events, which estimates latent

features that influence the time-evolving dynamics behind the di↵usion processes.

Table 1.1 summarizes the core contributions of this thesis and their organization with

references to the chapters. The next few subsections provide a chapter by chapter outline

of the thesis.

Table 1.1: Contributions and organization of the thesis.

Contextual factors
Conventional tools Observable Unobservable

Inhomogeneous
Poisson process

Inhomogeneous Poisson process
with use of rich contextual features.
Chapter 2; [70]

Intensity-free approach for
point process modeling.
[106, 13]

Hawkes process

Hawkes process with
use of rich contextual features.
Chapter 3; [73]

Hawkes process for learning
impact of underlying factors.
Chapter 4; [72]
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1.2.1 Spatio-temporal Event Prediction with Rich Contextual Informa-

tion (Chapter 2)

Originally published at the 25th International Conference on Knowledge Discovery & Data

Mining (KDD 2019) [70] and Transactions of the Japanese Society for Artificial Intelligence

[71].

This chapter aims to predict when and where events will occur in cities, like taxi pick-

ups, crimes, and vehicle collisions. Though many point processes have been proposed to

model events in a continuous spatio-temporal space, none of them allow for the consider-

ation of the rich contextual factors that a↵ect event occurrences, such as weather, social

activities, geographical characteristics, and tra�c.

In this chapter, we propose DMPP (Deep Mixture Point Processes), a point process

model for predicting spatio-temporal events with the use of rich contextual information; a

key advance is its incorporation of the heterogeneous and high-dimensional context avail-

able in image and text data. Specifically, we design the intensity of our point process

model as a mixture of kernels, where the mixture weights are modeled by a deep neural

network. This formulation allows us to automatically learn the complex nonlinear e↵ects

of the contextual factors on event occurrence. At the same time, this formulation makes

analytical integration over the intensity, which is required for point process estimation,

tractable.

We conduct extensive experiments on real-world data sets from three urban domains.

Concerning event occurrence, the proposed method achieves better predictive performance

than all existing methods on all data sets.

1.2.2 Context-aware Spatio-temporal Event Prediction via Convolutional

Hawkes Processes (Chapter 3)

Originally published at Machine Learning Journal (ECML-PKDD Journal Track) [73]

This chapter tackles the problem of predicting spatio-temporal events like disease out-

breaks, armed conflicts, and crimes and revealing the underlying triggering patterns is a

crucial task for many applications, ranging from disease control to global politics.

Traditional event prediction models based on Hawkes processes capture the spatio-

temporal relationships between events, but cannot incorporate complex and heterogeneous

external features, including population distribution, weather, and terrain. In this chapter,

we propose an event prediction method that e↵ectively utilizes the rich external informa-
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tion present in sets of unstructured data (e.g., map images, satellite images, and weather

maps). Specifically, we extend a convolutional neural network (CNN) by combining it

with continuous kernel convolution; and design the conditional intensity of Hawkes pro-

cess based on the extended neural network model that accepts images as its input. Our

approach of using the continuous convolution kernel provides a flexible way to discover the

complex e↵ect of external factors on the triggering process, as well as yielding tractable

optimization algorithms.

We use real-world event data from di↵erent domains (i.e., disease outbreaks, armed

conflicts, and protests) to demonstrate that the proposed method has better prediction

performance than existing methods.

1.2.3 Dynamic Hawkes Processes for Discovering Time-evolving Com-

munities’ States behind Di↵usion Processes (Chapter 4)

Originally published at the 27th International Conference on Knowledge Discovery & Data

Mining (KDD 2021) [72]

Sequences of events including infectious disease outbreaks, social network activities,

and crimes are ubiquitous and the data on such events carry essential information about

the underlying di↵usion processes between communities (e.g., regions, online user groups).

Modeling di↵usion processes and predicting future events is crucial in many applications

including epidemic control, viral marketing, and predictive policing.

Hawkes processes o↵er a central tool for modeling the di↵usion processes, in which the

influence from the past events is described by the triggering kernel. However, the triggering

kernel parameters, which govern how each community is influenced by past events, are

assumed to be static over time. In the real world, the di↵usion processes depend not

only on the influences from the past but also the current (time-evolving) states of the

communities, e.g., people’s awareness of the disease and people’s current interests.

In this chapter, we propose a novel Hawkes process model that can capture the un-

derlying dynamics of community states behind the di↵usion processes and predict the

occurrences of events based on the dynamics. Specifically, we model the latent dynamic

function that encodes these hidden dynamics by a mixture of neural networks. Then we

design the triggering kernel using the latent dynamic function and its integral. The pro-

posed method, termed DHP (Dynamic Hawkes Processes), o↵ers a flexible way to learn

complex representations of the time-evolving communities’ states, while at the same time

it allows computing the exact likelihood, which makes parameter learning tractable.
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We carry out extensive experiments using four real-world event datasets: Reddit, News,

Protest, and Crime. The results show that DHP outperforms the existing works. Case

studies demonstrate that DHP uncovers the hidden state dynamics of communities that

underlie the di↵usion processes by the latent dynamic function.
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Chapter 2

Spatio-temporal Event Prediction

with Rich Contextual Information

2.1 Introduction

With the fast development of the internet of things (IoT) technology, large volumes of event

data are being generated from various sources including surveillance systems and sensors.

Such event data includes information about time and geolocation, indicating where and

when each event occurred. For instance, taxi pick-up records are represented as a list of

events consisting of the pick-up locations and the departure times. Crimes are recorded

together with the time and location at which the crime took place. Predicting events

is a key component of applications in many fields such as urban planning, transportation

optimization, and location-based marketing. If taxi dispatch service operators can estimate

with high accuracy the future taxi pick-up times and locations, they can allocate taxis to

the right places and the right times in advance. Criminal incident prediction will help law

enforcement agencies to implement e↵ective police activities that can suppress criminality.

Predicting spatio-temporal events, however, is extremely challenging, because event oc-

currence is determined by various contextual factors. Such contextual features also include

geographical characteristics, e.g., transportation networks [28] and land use [8]; temporal

attributes, e.g., day of week and weather conditions [114, 12]; and other features, e.g.,

social and tra�c information [121, 100, 12]. Data on these contextual features can either

be observable or unobservable. In this chapter, we explore how to integrate observable

contextual features a↵ecting the occurrence of spatio-temporal events.

In this chapter, we aim to develop a framework that can capture the complex dynamics

of event occurrence given the contextual features present. The conventional approach to
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this problem is based on regression models [121, 88, 35]. They are intended to model the

aggregated number of events within a predefined spatial region and time interval, which

is fundamentally di↵erent from our task. We focus more on the point process approach

to model a sequence of events in continuous time and space, without aggregation, by

using explicit information about location and/or time; and predicting the precise time and

location at which each event will occur.

Point process is a sophisticated framework for modeling a sequence of events in con-

tinuous time and space; it directly estimates an intensity function that describes the rate

of events occurring at any location and any time. The influence of the contextual features

can be modeled by special point process models [17, 33, 29], where the intensity function is

described as a function of covariates, i.e., the contextual features. However, this approach

has a fundamental limitation. In many practical cases, their assumptions on the functional

form of covariates may be too restrictive to capture complex and intricate e↵ects of con-

textual features; they do not accommodate unstructured data such as images and texts.

Most contextual features take the form of unstructured representations. For example, in-

formation about geographical characteristics can be obtained from map images. Tra�c

and social event information can be expressed in the form of natural language expressions.

In this chapter, we propose an event prediction method that e↵ectively incorporates

such unstructured data into the point process model. Motivated by the recent success

of the deep learning approach, we use it to enhance the point process model. The naive

approach is to directly model the intensity by a deep neural network. Unfortunately,

this approach triggers the intractable optimization problem as integral computations are

required to determine the likelihood needed for estimation.

We address this through a novel formulation of spatio-temporal point processes. Specif-

ically, we design the intensity as a deep mixture of experts, whose mixture weights are

modeled by a deep neural network. This method called DMPP (Deep Mixture Point Pro-

cesses), enables us to incorporate unstructured contextual features (e.g., road networks

and social/tra�c event descriptions) into the predictive model, and to automatically learn

their complex e↵ects on event occurrence. Moreover, this formulation yields a tractable

optimization problem. Our mixture model-based approach permits the likelihood to be de-

termined from tractable integration. Learning can be done with simple back-propagation.

We conduct experiments on three real-world data sets from multiple urban domains and

show that our DMPP consistently outperforms existing methods in event prediction tasks.

The experiments also demonstrate that DMPP provides useful insights about why and

under which circumstances events occur. By utilizing a recently developed self-attention
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mechanism [54, 52], DMPP helps us better understand how the contextual features influence

event occurrence. Such insights could further aid policy makers in creating more e↵ective

strategies.

The main contributions of this chapter can be summarized as follows:

• We propose DMPP, a novel method for spatio-temporal event prediction. It accu-

rately and e↵ectively predicts spatio-temporal events by leveraging the contextual

features, such as map images and social/tra�c event descriptions, that impact event

occurrence.

• We integrate the deep learning approach into the point process framework. Specif-

ically, we extract the intensity by using a deep mixture of experts, whose mixture

weights are modeled by a deep neural network. This formulation allows us to utilize

the information present in unstructured contextual features, and to automatically

discover their complex e↵ects on event occurrence, while at the same time yielding

tractable optimization.

• We develop an e�cient estimation procedure for training and evaluating DMPP.

• We conduct extensive experiments on real-world data sets from three urban domains.

With regard to event occurrence, the proposed method achieves better predictive

performance than all existing methods on all data sets.

2.2 Related Work

Point process is a general mathematical framework for modeling a sequence of events; it

directly estimates the rate of event occurrence, by using explicit information about location

and/or time. Early work mainly focused on the temporal aspect of events. The temporal

Hawkes processes [31] are a class of temporal point process models that can capture burst

phenomena; in these models, the probability of future events is assumed to be strengthened

by past events, with the influence decaying exponentially over time. They have been used

for analysing disease transmissions [15], financial transactions [5, 2], terrorist attacks [78],

social activities [37, 25], search behaviors [51], and so on. Recent studies have expanded its

application to human mobility modeling. Wang et al. [99] proposed Hawkes process variant

to identify trip purpose. Du et al. [21] presented a recurrent marked temporal point process

(RMTPP) and demonstrated its e↵ectiveness in predicting the timing of taxi pick-ups. Log

Gaussian Cox process (LGCP) has been used to e↵ectively model temporal events, such

as wildfires [85] and infrastructure failures [24], in which the logarithm of the intensity is
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assumed to be drawn from a Gaussian process. The spatio-temporal point process is a

more general framework, and considers both spatial and temporal domains. The spatio-

temporal self-exciting point processes, an extension of temporal Hawkes processes, have

been used for modeling seismicity [66], contagious diseases [83], and crime incidents [59],

among other applications The spatio-temporal LGCP has been applied to model wildfires

[85] and infrastructure failures [24].

All these methods, however, have one fundamental limitation: they ignore contextual

features even though they are known to influence event occurrence. Human activities are

largely influenced by environmental features, i.e., weather, geographical characteristics and

tra�c conditions. These features must be considered to accurately predict future events.

Their influence has been modeled by a special point process model, called the proportional

hazards model [17]; it treats the intensity rate as a function of covariates. One major

limitation of this model is that it assumes that the contextual features create only linear

e↵ects. Most features have highly non-linear e↵ects on real world event occurrence. The

simplest solution is to fit non-linear functions, such as polynomials [33] and splines [29], to

covariates. Unfortunately, their assumptions may be too restrictive to capture complex and

intricate e↵ects of contextual features. Also, this approach forces us to carefully choose

or design the functional form of the covariates so that they accurately capture reality.

However, in practice, how the contextual features influence event occurrence is largely

unknown.

This paper constructs a novel point process method called DMPP; it extends the spatio-

temporal point process with a deep learning model. The pioneering work by [21, 106, 107]

is most related to our approach. However, they focus only on the temporal dynamics of

event occurrence, and so ignore spatial dynamics. Also, those methods are optimized to

predict the timing of the next event. Instead, we are interested in predicting longer event

sequences. Moreover, none of these methods accept contextual features.

2.3 Preliminaries

In this section, before introducing our method, we first provide the necessary theoretical

background to the point process.

Point process is a random sequence of event occurrences over a domain. We assume

here a sequence of events with known times and locations. Let x = (t, s) be the event

written as the pair of time t 2 T and location s 2 S, where T⇥ S is a subset of R⇥R2. In

the following, we denote the number of events falling in subset A of T ⇥ S as N(A). The

general approach to identifying a point process is to estimate the “intensity” �(x). The
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intensity �(x) represents the rate of event occurrence in a small region, and is defined as

�(x) = �(t, s) ⌘ lim
|dt|!0,|ds|!0

E[N(dt⇥ ds)]

|dt||ds| , (2.1)

where dt is a small interval around time t, |dt| is its duration, ds is a small region containing

location s, and |ds| is its area. E indicates an expectation measure. The functional form of

intensity is designed to appropriately capture the underlying dynamics of event occurrence.

Given a sequence of events X = {xi = (ti, si)}Ni=1, ti 2 T and si 2 S, the likelihood is

given by

p(X|�(x)) =
NY

i=1

�(xi) · exp
✓
�
Z

T⇥S
�(x)dx

◆
. (2.2)

2.4 Deep Mixture Point Processes

This section presents the proposed method referred to as DMPP (Deep Mixture Point

Processes). We first introduce the notations and definitions used in this paper. We then

provide the model formulation of DMPP followed by parameter learning and prediction.

The neural network architecture used in DMPP is detailed in Section 2.4.2.

2.4.1 Problem Definition

We introduce the notations used in this paper and formally define the problem of event

prediction.

Let X = {xi = (ti, si)}Ni=1 denote a sequence of events over space and time, where

(ti,si)2 T⇥ S 2 R⇥ R2 and N is the total number of events known.

Further, we are also given contextual information associated with the spatio-temporal

region T⇥ S. Let D = A1, A2, ..., AK be a set of contextual features, where Ak is the k-th

feature, and K is the number of contextual features. Examples of the contextual features

include weather, social/tra�c event information and geographical characteristics. The

social/tra�c event information may be a collection of social/tra�c event descriptions that

include locations and times. In this case, A• is represented by a set of four-element tuples,

each of which has the following format: <time, latitude, longitude, description>.

Information about the geographical characteristics can be obtained from map images.

Given the contextual features D up to time T + �T , and the event sequence X up to

time T , we aim to learn a predictor that:

• predicts times and locations of events in the future time window [T, T + �T ];
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• predicts the number of events within any given spatial region and the time period in

[T, T + �T ],

by leveraging D and X .

2.4.2 Model Formulation

In this work, we construct a novel point process method for spatio-temporal event pre-

diction that can incorporate unstructured contextual features such as map images and

social/tra�c event descriptions. Our point process intensity must be designed so that it is

flexible enough to capture the highly complex e↵ects of contextual features, while at the

same time being tractable. Deep learning models have proven to be an extremely useful,

especially in automatically extracting the meaningful information contained in the unstruc-

tured data including images and text descriptions. Inspired by this, we propose a novel

formulation of point process model by integrating it with deep learning approach. The

proposed method is referred to as DMPP (Deep Mixture Point Processes). In particular,

we model the intensity by a neural network function that accepts contextual features as

its input.

Intensity function.

We develop a flexible and computationally e↵ective way of using kernel convolution to

specify the intensity function. Formally, we design the intensity as a function of contextual

features:

�(x|D) =

Z
f
�
u,Z(u;D); ✓

�
k(x,u)du, (2.3)

where u = (⌧, r) for ⌧ 2 T and r 2 S, k(·,u) is a kernel function centered at u. f(·) is any
deep learning model that returns a nonnegative scalar, and ✓ denotes a set of the parameters

of the deep neural network. Z(u,D) = {Z1(u;A1), ..., ZK(u;AK)} is a set of the feature

values at the spatio-temporal point u, where Zk is defined as the operator to extract values

of k-th feature at u. As one example, social/tra�c event descriptions can be represented

by tuples of time, location and event descriptions. In this case, operator Z outputs a list

of social/tra�c event descriptions scheduled within [⌧ � �⌧, ⌧ + �⌧ ] and located within

a predefined distance, ||r � r
0|| < �r, given u = (⌧, r). As another example, given a

map image representing geographical characteristics, Z returns the feature vectors (e.g.,

RGB values) of the map image around r. The formulation of (2.7) is built upon a process

convolution approach [34, 49, 47]; but we extend it so that the point process intensity
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accepts unstructured contextual features, by integrating it with a deep neural network.

This extension enables us to integrate unstructured contextual data, and automatically

learn their complex e↵ects on event occurrence. Although being flexible and expressive,

this intensity is intractable as it involves the integral of the neural network function f(·).
Thus, by introducing J representative points U = {uj}Jj=1 in the spatio-temporal region,

we obtain a discrete approximation to (2.7):

�(x|D) =
JX

j=1

f
�
uj , zj ; ✓

�
k(x,uj), (2.4)

where each point uj = (⌧j , rj) consists of its time ⌧j 2 T and location rj 2 S. Here we

define Z(uj ;D) as zj , which represents the contextual feature vector associated with the

j-th point uj . Consequently, the intensity is described as a mixture of kernel experts, in

which mixture weights are modeled by a deep neural network whose inputs are contextual

features. The resulting model yields the automatic learning of their influences as well as

making the learning problem tractable (discussed in Section 4.3).

Configuration of representative points.

The set of representative points is structured as follows. We first introduce M discrete

points placed uniformly along time axis within [0, T + �T ] to define time points T : 0 =

⌧
0
1 < ... < ⌧

0
M

= T + �T . Similarly, we set L discrete points within the spatial region to

define space points S: r
0
1, ..., r

0
L
, where r

0
l
2 S. The set of representative points is defined

by the Cartesian product of the space and time points:

U = {(⌧, r) | ⌧ 2 T ^ r 2 S}. (2.5)

Therefore J = ML. There are some options in locating the representative points, either

fixing them or optimizing them in terms of spatial coordinates. In this paper, we choose the

former and fix them on a regular grid, as simplifies the computation. Note that the number

of representative points, J , determines the trade-o↵ between approximation accuracy and

computation complexity. Larger J improves approximation, while reducing computational

cost. A sensitivity analysis of the impact of J is given in the experimental section.
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Kernel function.

We can make various assumptions as to the kernel function k(x,uj). For example, we can

use a Gaussian kernel:

k(x,uj) = exp
�
� (x� uj)

>⌃�1(x� uj)
�
, (2.6)

where ⌃ is a 3 ⇥ 3 covariance matrix (bandwidth) of the kernel. Other kernel functions,

such as Matern, sigmoid, periodic (trigonometric), and compactly supported kernels [104]

are viable alternatives. In the experiment, we explored three kinds of kernel functions:

uniform, Gaussian, and compactly supported Gaussian. We define each kernel below.

Uniform kernel.

k(x,uj) = (||x� uj || < w),

where (·) is an indicator function.

Gaussian kernel.

k(x,uj) = exp
�
� (x� uj)

>⌃�1(x� uj)
�
,

where ⌃ is a 3⇥ 3 covariance matrix.

Compactly supported Gaussian kernel.

k(x,uj) = exp
�
� (x� uj)

>⌃�1(x� uj)
�
· (||x� uj || < w),

where ⌃ is a 3 ⇥ 3 covariance matrix, (·) is an indicator function, and w is a positive

parameter that thresholds the kernels, ||x � uj || � w, to zeros. This means that k(x,uj)

will be zero when x and uj are far enough away. The use of the compactly supported kernel

allows for an e↵ective learning algorithm, especially for large data size N and for large

numbers of representative points, J . The objective (3.13) involves kernel evaluations for

all pairs of xi and uj , resulting in an N⇥J kernel matrix K with elements Kij = k(xi,uj).

The back-propagation is carried out by taking the derivation of K, which requires O(NJ)

operations at each iteration (O(|I|J) for the mini-batch optimization). The computation

burden can be impractically heavy when the data size N (the mini-batch size |I|) or the

number of representative points J is large. The use of the compactly supported kernel

allows us to scale up the learning algorithm. Such a kernel ensures that the kernel element

Kij is zero whenever the distance between xi and uj is above a certain threshold. This

leads to a sparse structure in the kernel matrix, K, thus allowing for fast sparse matrix
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computations.

Neural network model.

The neural network model f(·) can be designed to suit the input data. We consider the

general case wherein image features (e.g., map images) and text features (e.g., social/traf-

fic event descriptions) are available. We propose an attention network architecture that

fully exploits visual and textual information. The proposed architecture consists of three

components: an image attention network to extract image features, a text attention net-

work to encode text features, and a multimodal fusion module. We construct the image

attention network by combining a CNN with the spatial attention model proposed by [54].

We design the text attention network on a CNN designed for sentences [39] and an at-

tention mechanism [52]. The structured texts are split into words and then processed by

the text attention network. Lastly, the extracted features from images and texts are fused

into a single representation via the multimodal fusion module, and input to the intensity

function.

In the following, we detail each component of the neural network. This section details

the architecture of the neural network used in our experiment, see Figure 2.1. Our neural

network consists of three components: (i) the image attention network, (ii) the text atten-

tion network, (iii) the multimodal fusion module. This section describes each component

in detail. In this paper, we describe the proposal assuming the use of two types of features:

map images and social/tra�c event descriptions. Note that the proposed method can be

easily extended to handle other types of features.

(i) Image attention network. We construct the image network by combining CNN

with a self-attention mechanism, which extracts attention for regions of the image. Suppose

we have a collection of map images {Ij}Jj=1, Ij 2 RNw⇥Nh⇥Nc , where Nw, Nh, Nc represent

width, height, and the number of image features (e.g., three color channels), respectively.

In the following discussion, we omit index j for the sake of simplicity. The image attention

network accepts images I, and passes them through convolutional transformation followed

by pooling and activation layers.

P = gp(Cp ⇤ I), Q = gq(Cq ⇤ I) (2.7)

where ⇤ denotes the convolution; Cp and Cq are the parameter matrices to be learnt; gp(·)
and gq(·) are a set of activation and pooling operations. For our experiment, we use 3

⇥ 3 same convolution so as to straightforwardly visualize the attention weights developed

for the image features. Subsequently, we process P through a spatial attention model

31



consisting of a single self-attention layer followed by a softmax function:

Am = softmax
�
M2tanh(M1P

>)
�
, (2.8)

where M1 2 Rd⇥da and M1 2 Rr⇥da are parameter matrices. In the experiment, we set

d = Nc, da = 32, r = 1. The attention weights Am 2 RNh⇥Nw indicate which regions of the

image were focused on during training. Then, we multiply the intermediate map P by the

attention Am. The output of the self-attention layer, B, is processed by a three layer CNN

with a set of 3 ⇥ 3 convolutions. The output is then processed by two fully connected

layers, with size of 512, and the rectified linear unit (ReLU) activation functions.

(ii) Text attention network. Social/tra�c event descriptions are represented as a

sequence of words {Wj}Jj=1, Wj 2 RNs⇥Nv , where Ns is the length of the sentence and Nv

is the vocabulary size. We design the text network on the CNN designed for sentences

[39] and an attention mechanism [52]. First, the text attention network reads the input

sequence of 1-of-K word vectors W = [w1, ...,wNs ], w 2 {0, 1}Nv and transforms it into

a set of hidden vectors H = [h1, ...,hNs ], where hi is a r-dimensional vector. We then

feed the vectors into the attention network. In particular, we transform the set of hidden

vectors H = [h1, ...,hNs ] into new vectors with dimension dc such that

At = softmax
�
T2tanh(T1H

>)
�
, (2.9)

where T1 2 Rr and T1 2 Rr are parameter matrices. We set r = 1 in our experiment.

At 2 RNs , the attention weight for each word, reflects the importance of the word. We

multiply the hidden vectors H with the attention weights At, and feed the results through

a three layer CNN. The output of the CNN is transformed by two fully connected layers

with size of 8, ReLU activation functions, and dropout of 0.1.

(iii) Multimodal fusion module. The positions of the representative points, u, are

processed by two fully connected layers with 32 units and relu activations. Their output

and the outputs of the attention network (the image attention network or text attention

network) are concatenated. This is followed by fully connected layers with relu activation

functions. The hyper-parameters of the last fully connected layers for the multimodal

fusion module are tuned on the validation set.
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Figure 2.1: The architecture of the neural network used in the proposed method.

2.4.3 Parameter Learning

Given a list of observed events up to time T (total of N events) X , the logarithm of the

likelihood function is written as

log p(X|�(x)) =
NX

i=1

log �(xi|D)�
Z

T⇥S
�(x|D)dx

=
NX

i=1

log
JX

j=1

f(uj , zj ; ✓)k(xi,uj)�
JX

j=1

f(uj , zj ; ✓)

Z

T⇥S
k(x,uj)dx, (2.10)

where T ⇥ S is the domain of the observation. Notably, the above log-likelihood can be

solved tractably with integratable kernel functions. Our mixture model-based approach

with representative points allows the neural network model f(·), which cannot be inte-

grated analytically in general, to be moved outside the integral. This permits us to use

the simple back-propagation algorithm. For many well-known kernel functions, such as

Gaussian, polynomial, the integral of the second term is written as closed-form solutions

or approximations. In the case of the Gaussian kernel, it is described by an error function.

During the training phase, we adopt mini-batch optimization. Over the set of indices se-

lected in a mini-batch I, by normalizing the first term in (3.13), the objective function can
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be written as

log p(X|�(x)) = N

|I|
X

i2I
log

JX

j=1

f(uj , zj ; ✓)k(xi,uj)�
JX

j=1

f(uj , zj ; ✓)

Z

T⇥S
k(x,uj)dx,

(2.11)

where |I| denotes the mini-batch size. We apply back-propagation to find all the model

parameters, ⇥ = {⌃, ✓}, that maximize the above log-likelihood, by taking the derivative

of (2.11) w.r.t. kernel parameter ⌃ and neural network parameters ✓.

2.4.4 Prediction

Here we present a procedure for future event prediction.

We denote representative points within the test period T⇤ = (T, T + �T ] as

U⇤ = {(⌧, r) | T < ⌧  T + �T} ⇢ U . (2.12)

Given the learned parameters of the neural network, ✓̂, we first calculate f(uj , zj ; ✓̂) for

each representative point. Using the set of estimated functions {f(uj , zj ; ✓̂)}uj2U⇤ and the

estimated kernel parameter ⌃̂, we derive intensity �̂(x) for the test period based on (4.3).

Given the sequence of events observed in the test period T⇤, D = {xN+1, ...,xN+n},
analogous to (3.13), the log-likelihood for the test data is calculated as

L⇤ = log p(D|�̂(x)) =
N+nX

i=N+1

log
X

uj2U⇤

f
�
uj , zj ; ✓̂

�
k(xi,uj)

�
X

uj2U⇤

f
�
uj , zj ; ✓̂

� Z

T⇤⇥S
k(x,uj)dx. (2.13)

The point process model can be used to predict the expected number of events. The

number of events is derived by integrating the estimated intensity over specific time period

P ⇢ T⇤ and region of interest Q ⇢ S such that

N(P ⇥Q) =

Z

P⇥Q

�̂(x)dx =
X

uj2U⇤

f
�
uj , zj ; ✓̂

� Z

P⇥Q

k(x,uj)dx, (2.14)

where N(A) is the number of events that fall into subset A. As discussed in Section 4.3,

the above integral has a tractable solution.
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2.5 Experiments

In this section, we use real-world data sets from di↵erent domains to evaluate the predictive

performance of our model.

2.5.1 Datasets

Event data

We used three event data sets from di↵erent domains collected in New York City and

Chicago from Jan 1, 2016 to April 1, 2016 (the observation period is 13 weeks). The

details are as follows.

NYC Collision Data. New York City vehicle collision (NYC Collision) data set

contains ⇠ 32 thousand motor vehicle collisions. Every collision is recorded in the form of

time and location (latitude and longitude coordinates).

Chicago Crime Data. Chicago crime data set is a collection of reported incidents of

crime that occurred in Chicago; it contains ⇠ 13 thousand records, each of which shows

time, and latitude and longitude of where the crime happened.

NYC Taxi Data. New York City taxi pick-up (NYC Taxi) data set consists of ⇠
30 million pick-up records in New York City collected by the NYC Taxi and Limousine

Commission (TLC). Each record contains pick-up time, latitude and longitude coordinate.

To reduce data size, we randomly selected 100 thousand events for our experiment.

For the 13-week observation period, we selected the last seven days as the test set, the

last seven days before the test period as the validation set, and used the remaining data

as the training set. Thus, T = 120960min and �T = 10080min.

Urban contextual data

We used the following urban data as the contextual features.

Map Image. As the image features, we used the map image of the cities acquired

from OpenStreetMap (OSM) database 1. For each representative point uj = (⌧j , rj), we

extracted the image around rj (i.e., about 300m⇥ 500m square grid space) and used its

RGB vector as the input of the image attention network.

Social/Tra�c Event Description. We collected tra�c events (e.g., major street

construction works and street events) and social events (e.g., sports events, musical concerts

and festivals) in New York City as held by the 511NY website2 during Jan 2016 through

1Map data copyrighted OpenStreetMap contributors and available from https://www.openstreetmap.org
2https://www.511ny.org
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April 2016. The 13 week period contained a total of 8,968 descriptions. Each social/tra�c

event record contains a description of the event, as well as its start time ts, end time te and

location (latitude and longitude coordinates). For each representative point uj = (⌧j , rj),

we extracted social/tra�c event descriptions satisfying ts < ⌧j < te and located within a

predefined distance, �r from rj . If the point contains more than one sentence, we selected

the spatially closest one. If the point contains no sentences, we used dummy variables. We

used their descriptions, a sequence of 1-of-K coded word vectors, as the input of the text

network. In this paper, we set �r to the walking distance of 620m, following [12].

2.5.2 Experimental Setup

Hyper-parameters of each model are tuned by grid-search on the validation set. For DMPP,

we used the Adam algorithm [42] as the optimizer, with �1 = 0.01, �2 = 0.9, and learning

rate of 0.01. For the multimodal fusion module of DMPP, we tuned the hyper-parameters

as follows: layer size nl in {1,2,3,4}; number of units per layer nu in {16, 32, 64}. The mini-

batch size |I| is selected from the set {8, 16, 32}. Following the prior settings in [21], we

also applied L2 regularization with �=0.001 in both models. The number of representative

points are tuned on the validation set in terms of the number of time points, M , and the

number of space points, L. For each representative point, we extract a 20 ⇥ 20 image patch

from the map image of the entire region-of-interest (i.e., Manhattan for NYC Collision data

and NYC Taxi data, City of Chicago for Chicago Crime data), resize it to 10 ⇥ 10 pixels,

and use its RGB vector as the input image. This corresponds to 290m⇥ 500m square grid

space for NYC Collision data and NYC Taxi data, and 290m⇥ 600m square grid space for

Chicago Crime data. Therefore, Nw = 10, Nh = 10, Nc = 3. In the text network, we only

consider the first 200 most frequent words, and use the first 5 words of each sentence. For

our input descriptions, we zero-pad to ensure a sentence length of 5 words. Thus, Nv = 200

and Ns = 5. The tested combinations were M = {24, 28, 168} and L = {4, 8, 10, 12}. We

used three kinds of kernel functions: uniform, Gaussian, compactly supported Gaussian

(the definitions are provided in Section 2.4.2). Also, we explored various map styles: OSM

default (the original map of Figure 2.8a), Watercolor (the original map of Figure 2.8b),

Greyscale. The best settings for DMPP are given in the corresponding section.

2.5.3 Evaluation Metrics

We evaluated the predictive performance using two metrics: LogLike (predictive log-

likelihood) and MAPE (Mean Absolute Percentage Error). For the first metric, given the

learned model, we calculated log-likelihood on the test data (LogLike) for each event as
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Figure 2.2: MAPE for event number prediction from six methods on three data sets: NYC
Collision data (left); Chicago Crime data (middle); NYC Taxi data (right). Lower is better.
DMPP is the proposed method. The error bars are omitted as the deviations are negligible.

L⇤
/Nt, where L⇤ is the test log-likelihood defined by Equation (7) and Nt is the number of

test events. MAPE is used to evaluate the performance of event number prediction; it is

defined as the absolute di↵erence between the predicted number of events and the actual

number:

MAPE =
NrX

r=1

NbX

t=1

|nr,t � n̂r,t|/nr,t, (2.15)

where nr,t is the number of events observed in the r-th grid cell and t-th time interval, and

n̂r,t is the corresponding prediction. Nr is the number of grid cells and Nb is the number

of time bins for which predictions are made. In our experiment, we partitioned the region

of interest using a 10 ⇥ 10 uniform grid, and divided the test period (seven days) into 14

time bins with a fixed uniform interval of 12 hours. Therefore Nr = 100 and Nb = 14. For

DMPP, we predicted the number of events for each pair of spatial grid cell and future time

bin, using Equation (6).

2.5.4 Comparison Methods

We compared the proposed model and its variants with three existing methods.

• HP (Homogeneous Poisson process): The intensity is assumed to be constant over

space and time: �(x) = �0. The optimization can be solved in closed form. Given the

test period [T, T + �T ] and the region of interest S, the likelihood of HP is written

as

log p(X|�(x) = �0) = n log �0 � �0�T |S|, (2.16)
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where n is the number of test samples, �T is the length of the test period, and | · |
is the operator providing the area of a spatial region.

• LGCP (Log Gaussian Cox process) [20]: LGCP is a kind of Poisson process with vary-

ing intensity, where the log-intensity is assumed to be drawn from a Gaussian process

(See Appendix C). For LGCP, we performed the comparison only on event number

prediction, since the log-likelihood of this model is computationally intractable. The

inference is based on the Markov chain Monte Carlo (MCMC) approach (see [92] for

details). For event number prediction, we sampled events from LGCP using the thin-

ning method [50], and compared the aggregated number of events within predefined

spatial regions and time periods with the ground truth. We implement the general

LGCP method described in [92], whose intensity is defined as

�(x) = µ(t) (s) exp
�
y(x)

�
, (2.17)

where µ(t) and  (s) are temporal and spatial background rates, respectively. y(·) is
a Gaussian process with the following covariate function:

cov(x,x0) = �
2
GP exp (�(x� x

0)>✓GP(x� x
0)), (2.18)

where �GP is the scale parameter, ✓GP is the bandwidth.

• RMTPP (Recurrent Marked Temporal Point Process) [21]: RMTPP uses RNN to

describe the intensity of the marked temporal point process; it assumes a partially

parametric form for the intensity, and can capture temporal burst phenomena. This

model is primarily intended to model event timing; to allow comparison, we mapped

latitude and longitude values into location names and treating them as marks, using

Neighborhood Names GIS data 3,4 (details are provided in Appendix C). Finally, we

obtained 48 unique locations for NYC Collision and NYC Taxi data, 44 for Chicago

Crime data. The following hyper-parameters are tuned on the validation set: Number

of units per layer in {16, 32, 64} and mini-batch size in {8, 16, 32}. We set unit size

as 16 and batch size as 32 for NYC Collision data, unit size as 16 and batch size as

8 for Chicago Crime data, unit size as 16 and batch size as 16 for NYC Taxi data.

We use the log-likelihood (LogLike) as defined in [21]. Note that the likelihood of

3NYC Neighborhood Names GIS data, https://data.cityofnewyork.us/City-Government/Neighborhood-
Names-GIS/99bc-9p23

4Chicago Neighborhood Names GIS data, https://data.cityofchicago.org/Facilities-Geographic-
Boundaries/Boundaries-Neighborhoods/bbvz-uum9
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Table 2.1: Comparison of the proposed method and its variants to the baselines. The num-
ber indicates the predictive log-likelihood per event (LogLike) for the test data. Higher
is better.

NYC Collision Chicago Crime NYC Taxi

HP 8.232 9.384 10.473

DMPP Naive 8.296 9.614 11.311
DMPP Text 8.297 NA 11.318
DMPP Image 8.409 9.621 11.333

RMTPP is for the location names, not for latitude and longitude values. For event

number prediction, we generate the sequence of events by sequentially predicting the

timing of the next event. In particular, given the event sequence {t1, ..., tN}, we

compute the timing of next event t̂N+1, using Equation (13) in [21]. Using t̂N+1 as

known data, we then predict the timing of next event t̂N+2 based on the new sequence

{t1, ..., tN , t̂N+1}. This procedure is repeated until t̂N+i > T + �T . The predicted

location names are mapped to latitude and longitude coordinates by simply using

their centroids; and then the generated events are aggregated into counts.

We introduce three variants of DMPP below.

• DMPP Naive: The simplest variant of DMPP, it does not incorporate any contex-

tual features. The neural network of DMPP accepts the location and time of each

representative point uj .

• DMPP Image/Text: The DMPP variants that incorporate either map images or the

social/tra�c event descriptions, as well as the locations and times of the representa-

tive points.

2.5.5 Environment

RMTPP and our DMPP are implemented using the Chainer deep network toolkit [93]. All

the methods are run on a Linux server with an Intel Xeon CPU, and a GeForce GTX

TITAN GPU. The GPU code is implemented using CUDA 9.

2.5.6 Quantitative Results

Figure 2.2 shows the overall MAPE of the six di↵erent methods on the three data sets for

event number prediction. In this figure, the error bars are omitted as the deviations are
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negligible. The results indicate the superiority of our approach. HP performs worse than

the other methods across almost all data sets, as it does not consider the spatio-temporal

variation of the rate of event occurrence. We can see this in Figure 2.3, which depicts events

generated by four di↵erent methods from the Chicago Crime data. We simulated events

with the thinning algorithm [50], using the learned intensity of each method. LGCP presents

better performance for NYC Collision and NYC Taxi data, as it captures spatio-temporal

variations. RMTPP achieves relatively better performance than LGCP only for the Chicago

Crime data. The result suggests that the assumption of RMTPP, the temporal burst

phenomena, holds for Chicago Crime data, but not for NYC Collision data and NYC Taxi

data. Even our simple model, DMPP Naive, largely surpasses all existing methods. The

result implies that the parametric assumptions of the existing methods are too restrictive,

and do not capture real urban phenomena. Also, RMTPP intensity is influenced by all

the past events, regardless of how spatially far away, so it is not suited for spatio-temporal

events. The di↵erences between DMPP Naive and the best among the existing methods are

significant (two-sided t-test: p-value< 0.01) for all data sets. DMPP Naive outperforms

LGCP in terms of MAPE by 0.229 for the NYC Collision data, from 0.778 to 0.315 for

the NYC Taxi data. DMPP Naive outperforms RMTPP in terms of MAPE by 0.254 for

the Chicago crime data. DMPP Text further improves DMPP Naive to 0.624 for the NYC

Collision data, to 0.312 for NYC Taxi data. We can clearly see that DMPP Image o↵ers

significantly improved prediction performance. From these results, we can conclude that

considering urban contexts is very e↵ective in improving event prediction performance. The

results also suggest that our proposal, DMPP, e↵ectively utilizes the information provided

by urban contexts.
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(a) Number of time points (b) Number of space points

Figure 2.4: Impact of numbers of representative points on MAPE performance of DMPP

Image.

Table 2.1 lists the LogLike values (predictive log-likelihood) of the four di↵erent meth-

ods for the three data sets, i.e., NYC Collision (vehicle collision) Data, Chicago Crime

Data and NYC Taxi (taxi pick-up) Data. Note that DMPP Text is not applicable to

Chicago Crime data, as no text data is available for Chicago. The proposal, DMPP, out-

performs HP. Even the simplest variant of DMPP, DMPP Naive explains the observed event

sequences better than these existing methods, which demonstrates the expressiveness of

DMPP. DMPP Text also outperforms HP. DMPP Image achieves the best performance

among all methods. This again shows the e↵ectiveness of incorporating the urban contexts

and our point process formulation with the deep neural network.

Sensitivity study

Here we analyze the impact of parameters on DMPP, including (1) number of representative

points; (2) kernel function (3) map style; and (4) neural network structure.

Number of Representative Points. Figure 2.4 shows the impact of the numbers

of representative points on the performance of DMPP Image. Figure 2.4(a) shows that

MAPE is slightly improved when M = 168 for NYC Collision data, M = 48 for Chicago

Crime data, and M = 24 for NYC Taxi data. As shown in Figure 2.4(b), the prediction

performance of DMPP generally tends to increase with number of time points M . Overall,

DMPP is moderately robust to variations in the numbers of representative points. In this

experiment, we fixed the network depth nl to 4, the number of units per layer nu to 32 and

batch size |I| to 16.

Choice of Kernel Function. Figure 2.5 presents the prediction results with three

kernel functions: Uniform, Gaussian, compactly supported Gaussian(definitions are pro-
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(a) Kernel function

Figure 2.5: Impact of kernel functions on MAPE performance of DMPP Image.

(a) Map style

Figure 2.6: Impact of map style on MAPE performance of DMPP Image.

vided in Appendix B). We can observe that the compactly supported kernel o↵ers similar

accuracy to the Gaussian kernel, while a↵ording a computational advantage (See Appendix

B). The uniform kernel performs worst. Throughout this paper, we use the compactly sup-

ported Gaussian kernel as the default setting. The hyper-parameters were set to nl = 4,

nu = 32, |I| = 16, M = 24 and L = 20 in this experiment.

Choice of Map Style. Figure 2.6 demonstrates the e↵ect of map style. The

predictive performance appears to be insensitive to the style of map images. For NYC

Taxi data, MAPE is slightly improved when using the OSM default style. This may

because the OSM default map distinguishes minor and major roads by color (as shown in

the original map image of Figure 2.8b). As the default setting, we use OSM default style

for NYC Collision and NYC Taxi data, and Watercolor for Chicago Crime data. In this

experiment, we set nl = 4, nu = 32, |I| = 16, M = 24 and L = 20.

Network Structure. We show the impact of network structures in Figure 2.7. The

prediction performance slightly improves when layer size is 4, for NYC Collision data and
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(a) Layer size (b) Number of units per layer

(c) Batch size

Figure 2.7: Impact of network structures on MAPE performance of DMPP Image.

NYC Taxi data, layer size 3 for Chicago Crime data. DMPP performs robustly for large

number of units nu >= 32 across all the data sets. The prediction accuracy is likely to

become better for larger batch size (Figure 2.7(c)). In this experiment, we fix M = 24

and L = 12, respectively. The optimal value of network hyper-parameters correspond to

nl = 4, nu = 16, |I| = 32 for NYC Collision data, nl = 3, nu = 64, |I| = 32 for Chicago

Crime data, nl = 4, nu = 64, |I| = 8 for NYC Taxi data.

In conclusion, DMPP is moderately robust to variations in the hyper-parameters, and

so can yield steady performance under di↵erent conditions.

2.5.7 Qualitative Results

To demonstrate that our model provides useful insights as to why and under which cir-

cumstances events occur, we analyze what was learned by our method.

Figure 2.8 visualizes the learned attention for the map images from NYC Taxi data

(Figure 2.8a) and Chicago Crime data (Figure 2.8b). Here we fed the map images (left)

into the learned image attention network, and plot the output attention weights (right).
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In the attention heatmaps (right), the light and dark regions correspond to high and low

attention weights, respectively. We can see that DMPP assigns high attention weights to

major roads (depicted by pink in the original map image) for the NYC Taxi data in Figure

2.8a. The minor roads (depicted by light orange) draw less attention. This indicates that

taxi pick-ups take place mostly on roads, especially on major roads. Interestingly, for

Chicago Crime data (Figure 2.8b), the attention mechanism weights both the roads and

land cover. Apparently, the roads have the highest attention weights. This may because

crime is found both on roads and in building. These results suggest that our method can

elucidate the key spatial components related to event occurrence.

Figure 2.9 shows the attention weights for the event descriptions overlaid with the

learned intensity around Midtown Manhattan from Mar 24th to 31th. For the sake of

clarity, only the first word of each sentence is depicted. The word Special appears usually

with event; Operational stands for Operational (activity). The darker shade of red for

the texts indicates higher attention values. In the heatmaps, red corresponds to high

intensity value, while blue represents low value. For NYC Taxi data (Figure 2.9a), the

learned intensity yields high values in Midtown and Murrey Hill of Manhattan. Seemingly,

the attention mechanism also highlights the words associated with these regions. Mainly

words related to the social events, e.g., Concert and Special (event), are highlighted. In

contrast, the words associated with tra�c events, such as Construction and Operational

(activity), gain more attention, in the NYC Collision data (Figure 2.9b). The above results

suggest that tra�c events a↵ect the collision rate, whereas social events drive the taxi pick-

up demand. Figure 2.10 further supports this. It visualizes the top 15 words ranked by

attention weight learned from each data set; larger size denotes higher attention. For

NYC Taxi data, social events (e.g., special (event) and concert), as well as tra�c event

(e.g., construction), tend to receive attnetion. For NYC Collision data, tra�c events,

e.g., construction and operational (activity), seem to draw more attention. These results

demonstrate that DMPP identifies important words that a↵ect event occurrence. The

descriptions thus found help us explain why and in which contexts events occur.

2.6 Conclusion and Future work

In this chapter, we studied the problem of event prediction with the use of rich contextual

features. Our solution, DMPP (Deep Mixture Point Process), is a novel point process

model based on a deep learning approach. DMPP models the point process intensity by

a deep mixture of kernels. The key advantage of DMPP over existing methods is that it

can utilize the highly-dimensional and multi-sourced data provided by rich urban contexts,
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including images and sentences, and automatically discover their complex e↵ects on event

occurrence. Moreover, by taking advantage of the mixture model-based approach, we have

developed an e↵ective learning algorithm. Using real-world data sets from three di↵erent

domains, we demonstrated that the proposed method outperforms existing methods in

terms of prediction accuracy.
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(a) NYC Taxi

(b) Chicago Crime

Figure 2.8: Attention weights for the map images learned from NYC Taxi data and Chicago
Crime. Left: original map image. Right: learned attention weights; lighter shade indicates
stronger attention values.
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(a) NYC Taxi

(b) NYC Collision

Figure 2.9: Learned attention weights for social/tra�c descriptions with the learned inten-
sity around Midtown Manhattan from Mar 28th to Apr 4th. Darker shade of red for the
texts denotes higher attention weight.
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(a) NYC Taxi (b) NYC Collision

Figure 2.10: Word cloud of top 15 words by attention weight; larger size denotes higher
attention.
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Chapter 3

Context-aware Spatio-temporal

Event Prediction via

Convolutional Hawkes Processes

3.1 Introduction

Spatio-temporal event data are being accumulated in many important fields such as health

care and public safety. Such data contains time and location, indicating when and where

events have happened. For example, electronic health records are represented as a sequence

of events with locations and times of disease outbreaks. Armed conflicts are recorded with

locations and times at which the conflicts took place.

A wide range of event sequences are demonstrations of spatio-temporal processes that

have “self-exciting” or triggering patterns. In all the aforementioned examples, event occur-

rence is triggered by preceding events. For instance, disease outbreaks can ignite secondary

outbreaks, often leading to epidemics. A conflict between rival ethnic groups may trigger

a cycle of retaliation.

Modeling such triggering processes and predicting future events is crucial for realizing

many applications such as disease control and harmonizing global politics. For instance,

if local health authorities can predict when, where and which events will trigger disease

outbreaks, they can make more e↵ective intervention policies [97]. Better understanding

and prediction of conflicts will help governments take more appropriate actions to reduce

life and economic losses.

Hawkes process is a general mathematical framework for modeling triggering processes;

it is characterized by a conditional intensity that describes the rate of events occurring
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at any location and at any time. Hawkes process has been adopted for modeling a wide

spectrum of events, including infectious disease [80], terrorist attacks [78], crimes [59] and

earthquakes [68]. However, these models fail to adequately depict the real di↵usion process,

since its conditional intensity is modeled as a function of spatio-temporal distance, and

the impact of contextual factors on triggering processes is ignored. Real-world triggering

processes are determined not only by the spatio-temporal relationship between events but

also by contextual factors such as population distribution, weather, road network, and

terrain. These contextual features can be spatially heterogeneous and change over time.

For example, infectious diseases spread among high population areas [60]. The transmission

of diseases is also influenced by other contextual factors, including trading patterns [64],

land use [76] and weather [75]. Conflicts tend to be more accentuated in densely populated

areas [?].

In this thesis, we develop two promising approaches for capturing the e↵ect of con-

textual factors on the triggering process based on two di↵erent assumptions: Contextual

information is fully observable and unobservable. In this chapter, we consider the case

where rich contextual information sets are becoming accessible. For example, with the de-

velopment of remote sensing techniques, high-resolution satellite images are being collected

and are available at various spectral, spatial, and temporal resolutions. Also, open-source

GIS platforms have become commonplace; they provide geographic features including road

network and land use, in the form of a colored map. These images contain meaningful

information that can rarely be found in traditional information sources, and o↵er detailed

spatial patterns of various contextual factors, ranging from human demography to weather

and land use, as well as their temporal variations.

Several studies [57, 40, 86] have extended Hawkes process to incorporate contextual

factors, e.g., regional populations [57], mobility flows between regions [40] and weather

conditions [86]. But these methods are based on hand-crafted features engineered by

domain experts and make a simplified assumption on the conditional intensity as a function

of these features. Thus these methods cannot handle unstructured data like images, which

contain rich, meaningful information.

In this chapter, we propose an event prediction method that e↵ectively utilizes the

rich contextual features present in georeferenced images. Inspired by the recent success of

deep learning models in computer vision [95, 113], we use them to enhance the Hawkes

process model. The most straightforward way is to directly replace the Hawkes process

intensity with a neural network that accepts these images as its input. Although this

approach enables the automatic discovery of meaningful information from the images and
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thus improve event prediction performance, it su↵ers from the intractable optimization

problem, as integral computations are required to determine the likelihood needed for

estimation.

We solve this by introducing a novel architecture for Hawkes processes. In particular,

we extend a convolutional neural network (CNN) by combining it with continuous ker-

nel convolution; the conditional intensity of Hawkes process is designed on the extended

model. Our approach of using the continuous convolution kernel provides a flexible way

of learning the complex contextual features present in the images, allowing us to capture

the spatial heterogeneity of the triggering process. Notably, our formulation permits the

likelihood to be determined by tractable integration. In the proposed method, referred to

as Convolutional Hawkes process (ConvHawkes), the parameters of the neural network and

the convolutional kernel can be simultaneously optimized to maximize the likelihood by

using gradient-based algorithms.

We conduct experiments on three real-world datasets from multiple domains and show

that ConvHawkes consistently outperforms existing methods in event prediction tasks. The

experiments also demonstrate that ConvHawkes provides a better understanding of the un-

derlying mechanisms by which various contextual factors influence the triggering processes.

The main contributions of this chapter are as follows:

• We propose a novel Hawkes process model, ConvHawkes (Convolutional Hawkes pro-

cess) for modeling di↵usion processes and predicting spatio-temporal events. It ac-

curately and e↵ectively predicts spatio-temporal events by leveraging the contextual

features contained in georeferenced images (e.g., satellite images and map images),

that impact triggering processes.

• We present an extension of the neural network model and integrate it into the Hawkes

process framework. This formulation allows us to utilize the contextual features

present in the unstructured image data, and to automatically discover their complex

e↵ects on the triggering process, while at the same time yielding tractable optimiza-

tion.

• We conduct extensive experiments on real-world datasets from di↵erent domains.

With regard to event occurrence, the proposed method achieves better predictive

performance than several existing methods on all datasets.
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3.2 Related Work

Spatio-temporal prediction constitutes an important problem with various applications

such as public safety, transportation, health care, and environment. The conventional ap-

proach to this problem is regression. Early works are based on traditional machine learning

methods, including classical time-series models like vector autoregression (VAR) [10, 125]

and autoregressive integrated moving average (ARIMA) [94], and support vector regression

(SVR) [117]. Recently, deep learning models have been successfully applied to this prob-

lem. For example, Ma et al. [55] and Zhao et al. [120] employ long short-term memory

(LSTM) networks for tra�c prediction, which captures the long-term temporal dependen-

cies. Several studies [115, 114, 38] use convolutional neural networks (CNNs) to capture the

non-linear spatial dependencies. Yao et al. [109] combine LSTM and CNN to jointly model

both spatial and temporal dependencies in tra�c data. In recent literature, graph neural

networks (GNNs) have been adopted for spatio-temporal tra�c graphs [112, 30, 118] and

epidemic forecasting [40] to handle the complex spatio-temporal correlations. However, all

the aforementioned methods focus on predicting the aggregated number of events within a

predefined spatial region and time interval. This task is fundamentally di↵erent from ours.

In this paper, we aim to directly model a sequence of events in continuous time and space,

without aggregation, by using explicit information about location and/or time.

Point process is a powerful mathematical framework for modeling a sequence of events

that occur in a continuous space and/or time domain. Hawkes processes [31] have been

proven e↵ective in describing the phenomenon of mutual excitation between events (i.e.,

triggering process); examples include earthquakes and aftershocks [61, 66, 124], gang-on-

gang violence [53], terrorist attacks [78], near repeat crimes [59, 123], disease transmission

[15, 80], financial transactions [5], and social activities [7, 27]. Early work made fixed

parametric assumptions regarding the functional form of the conditional intensity, which

is often too restrictive to depict real triggering process. Recent studies employ neural

networks to enhance the expressiveness of point processes. For example, Xiao et al. [106]

present a generative adversarial network-based framework for estimating the intensity of

an inhomogeneous Poisson process. Chen et al. [13] leverage neural ODEs to parameterize

marked temporal point processes. These models are based on inhomogeneous Poisson

processes; they do not directly consider the influence of past events. Some other works

[21, 56] propose to parameterize the intensity of temporal Hawkes processes by a recurrent

neural network (RNN) to learn the non-linear influence from past events. Omi et al.

[74] generalize the RNN-based Hawkes process model to further improve its expressive

power. Transformer Hawkes process [126] and self-attentive Hawkes process [116] employ
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a self-attention mechanism to capture the non-linear temporal correlation between events.

These models focus on learning the temporal dependencies between events, and cannot

be easily extended to account for the spatial aspect. More recent work [122] extends

this approach to spatio-temporal Hawkes processes to consider both spatial and temporal

domains. Despite the advances, all the above methods ignore the e↵ects of external factors

on the triggering processes.

Some e↵orts have been made to incorporate external features into Hawkes processes.

For instance, several studies have proposed temporal Hawkes process methods that take

account of external features such as population density [57], transportation networks [105,

3], human mobility patterns [40], weather [86, 59], fault structure [61]. However, it is still

challenging to e↵ectively utilize complex unstructured data like images.

Another line of work [70] takes account of the external features represented in images

and texts by combining Poisson process modeling and deep neural network. However, the

method of [70] assumes that events occur independently of one another, and thus does

not adequately describe the triggering phenomena in which there exists strong interaction

between events. We focus on the triggering process, and aim at capturing history-dependent

and self-exciting phenomena such as diseases, armed conflicts and earthquakes.

3.3 Preliminaries

This section starts by providing the theoretical background to spatio-temporal Hawkes

processes.

Point process is a random sequence of event occurrences over a domain. We assume

here a sequence of events with known times and locations. Let (t, s) be the event written

as the pair of time t 2 T and location s 2 S, where T ⇥ S is a subset of R ⇥ R2. We

denote the number of events falling in subset A of T ⇥ S as N(A). The general approach

to identifying a point process is to estimate “intensity” function �(t, s). Intensity �(t, s)

represents the rate of event occurrence in a small region. Given the history H(t) up to t,

intensity is defined as

�(t, s|H(t)) ⌘ lim
|dt|!0,|ds|!0

E[N(dt⇥ ds)|H(t)]

|dt||ds| , (3.1)

where dt is a small interval around time t, |dt| is its length and ds is a small region

containing location s, |ds| is its area. E is an expectation term. The functional form of

intensity is designed to appropriately capture the underlying dynamics of event occurrence.

The Hawkes process is an important class of point process models, and its intensity is
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modeled as the cumulative e↵ects from all the past events H(t), represented by

�
�
t, s|H(t)

�
= µ+

X

i:ti<t

↵ig(t� ti, s� si), (3.2)

where µ is a base intensity independent of the preceding events. ti and si is the time and

location of the i-th event; ↵i is a constant that represents the strength of the influence of

the i-th event; g(·) � 0 is a triggering kernel that specifies the decaying e↵ect of the i-th

event. For computational simplicity, the triggering kernel function is often factorized into

temporal and spatial components as follows:

g(t� ti, s� si) = g1(t� ti)g2(s� si), (3.3)

where g1(·) and g2(·) are temporal and spatial decay functions, respectively. Typical choices

for the temporal decay function include power-law, exponential, and Rayleigh functions

[58]. Gaussian kernel is commonly used as the spatial decay function.

Given a sequence of events, D = {(tn, sn)}Nn=1, tn 2 T and sn 2 S, the likelihood is

given by

p
�
D|�(t, s)

�
=

NY

n=1

�(tn, sn) · exp
✓
�
Z

T⇥S
�(t, s)dtds

◆
. (3.4)

3.4 Problem Definition

This subsection formally defines the problem of spatio-temporal event prediction.

Event Sequence. Each event is represented by the tuple (t, s), where t 2 T ✓ R
denotes its time and s 2 S ✓ R2 is its location (i.e., latitude and longitude). We assume

that we have a sequence of N events up to time T , denoted by D = {(tn, sn)}Nn=1.

Image Sequence. Additionally, we have an image dataset (e.g., satellite image, night

light image, weather map). The image dataset is represented as a sequence of images, e.g.,

a collection of satellite images acquired at di↵erent times covering the area of interest S.
An image dataset example is presented on the left in Figure 3.2. Formally, we denote

I 2 RC⇥H⇥W as the image, where H and W are image height and width, respectively; C

is the number of channels. Each image is annotated with time ⌧ when the observation was

made. Each pixel of image I[h,w] is georeferenced and corresponds to a fixed geospatial

area (e.g., 500 m by 500 m). The corresponding latitude/longitude coordinates of the

geospatial area for the (h,w)-th pixel are represented by xh,w, where xh,w is the coordinates

of the pixel center. For specific kinds of images (e.g., weather map), besides historical
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Figure 3.1: Illustration of the proposed method.

sequence, future sequence of the images (e.g., weather forecast maps) is available. Let

I = {(Il, ⌧l)}Ll=1 be the sequence of images over the time window [0, T + �T ), where L is

the number of observations.

Event Prediction Problem. Given the event sequence D in the observation time

window [0, T ), and the image dataset I in the time period [0, T + �T ], we aim to

• predict the number of events within any given spatial area and time period in [T, T +

�T ]

• predict times and locations of events in the future time window [T, T + �T ],

by leveraging D and I.

3.5 Convolutional Hawkes processes

This section presents the proposed method for spatio-temporal event prediction, referred

to as ConvHawkes (Convolutional Hawkes process). We provide the model formulation of

ConvHawkes followed by parameter learning and prediction.

3.5.1 Model Overview

We propose a novel extension of Hawkes process for modeling triggering processes and

predicting spatio-temporal events. The triggering processes are significantly influenced by
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Figure 3.2: Overall architecture of the contextual e↵ect module.

the contextual factors such as population, weather, road network and terrain.

The idea of this work is to leverage image data (e.g., satellite image and weather map)

to capture such heterogeneity in the contextual factors and determine their e↵ect on the

triggering process. To this end, we incorporate the neural network model into the Hawkes

process formulation. We illustrate our method in Figure 4.1. Specifically, we extend

the neural network that learns the influence of the contextual factors by incorporating

continuous kernel convolution, and parameterize the Hawkes process intensity based on the

extended model. The proposed model learns latent contextual features from georeferenced

images; and also learns contextual e↵ects at each location, while at the same time providing

tractable learning.

3.5.2 Model Formulation

We develop a flexible and tractable framework based on Hawkes process to learn the un-

derlying contextual e↵ects and spatio-temporal relationships between events from image

data, e.g., satellite image, map image and weather map. Formally, ConvHawkes designs the

conditional intensity as follows:

�(t, s|H(t)) = µ+
X

j:tj<t

↵
�
t, s|I

�
| {z }
contextual

e↵ect

�(t� tj , s� sj)| {z }
Spatio-temporal

decay

, (3.5)

where µ is the background rate of event occurrence. As seen in Equation (4.3), our model

consists of two components: contextual e↵ect and spatio-temporal decay. The contex-

tual e↵ect ↵(·) is specified by a neural network function, which captures the influence of

the contextual factors. The spatio-temporal decay �(·) is designed by a triggering kernel

function over space and time that describes the decay in the influence of past events with
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spatio-temporal distance. In the following, we describe the formulation of each component

and the rationale behind them.

contextual e↵ect. We model the contextual e↵ect ↵(·) based on a neural network

model. The architecture of the contextual e↵ect module is given in Figure 3.2.

For each image dataset, the image sequence is first processed by a convolutional neural

network (CNN). The CNN is designed such that its output has the same size of the input

image sequence, which makes it straightforward to utilize the time stamps, and location

information of the images in the subsequent continuous convolution layer. We can use

the encoder-decoder-based CNN [111, 110], CNN-RNN encoder-decoder [4], or other deep

neural networks that are suitable for the given image data. In this paper, we choose

a simple CNN with Nl layers. As shown in the experimental section (Section 3.6.6), our

proposed method produces satisfactory prediction performance even with this simple neural

architecture. Each image of the image sequence Il is fed into the CNN architecture and

transformed into the latent feature map hl, where hl 2 RH⇥W⇥d. Here d is the dimension

size of the latent feature map. For the sake of simplicity, we fix d = 1 in the experiments.

Next we apply continuous kernel convolution to these latent feature map to expand the

learned latent feature map over discrete pixel space onto the continuous spatio-temporal

space. Formally, given the latent feature map hl and their associated time ⌧l and latitude/-

longitude coordinates for each pixel xh,w, the output of the convolutional layer at time t

and location s is written by

↵
�
(t, s)|I

�
=

X

l

X

h,w

hl[h,w]f(t� ⌧l, s� x
h,w), (3.6)

where f(·) is a convolution kernel defined as continuous functions over the temporal and

spatial plane. The definition for the continuous convolution kernel f(·) is provided later in

this subsection. hl[h,w] 2 Rd denotes the (h,w)-th pixel of latent feature map hl. ↵(·) is
a scalar function that quantifies the contextual e↵ects at time t and location s. Intuitively,

the contextual feature map ↵
�
(t, s)|I

�
indicates how likely an event is to occur at time t and

location s given preceding events that trigger it. This procedure is inspired by the work of

[84, 101], which generalizes the discrete convolution used in standard CNNs to a continuous

one. Our method is unique in that it does not require any discrete approximation. The

above formulation enables the neural network model to be directly injected in the end-to-

end framework of Hawkes process. At the same time, it yields tractable optimization (as

discussed in Section 4.4.2).

Continuous convolution kernel. To ensure computation simplicity, we factorize the
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continuous convolution kernel f(·) into temporal and spatial components such that:

f(t� ⌧, s� x) = h(t� ⌧)k(s� x), (3.7)

where h(·) and k(·) are the kernel functions for temporal and spatial convolutions, respec-

tively. In our case, we use the uniform kernel for the temporal convolution, which is defined

by

h(t� ⌧) = 1[⌧ � � < t < ⌧ + �], (3.8)

where 1[·] is an indicator function that indicates 1 when the condition holds, and 0 other-

wise; � is the binwidth parameter. Without loss of generality, in our experiment, we fix

� as the time interval between the observations. This is equivalent to piece-wise approx-

imation. If we have no future observations or predictions of the images, the last image

in the image sequence is used for prediction. For the spatial convolution, we can select a

Gaussian kernel:

k(s� x) = exp
�
� (s� x)>⌃�1

k
(s� x)

�
, (3.9)

where ⌃k is a 2 ⇥ 2 covariance matrix (bandwidth) of the kernel. We can use other

convolution kernel functions, such as uniform and Rayleigh.

Spatio-temporal decay. Following previous work [19, 79], the spatio-temporal decay

kernel functions are taken to be separable in space and time such that:

�(t� tj , s� sj) = (t� tj)⇣(s� sj). (3.10)

Regarding the temporal decay function �(·), the exponential decay function is the standard

choice:

(t� tj) = exp
�
� �(t� tj)

�
, (3.11)

where � > 0 is the decay factor. This implies that the occurrence of an event grows when

events occur but their influence decreases exponentially at the rate of � over time.

A typical form of the spatial decay function is based on a Gaussian distribution as

follows:

⇣(s� sj) = exp
�
� (s� sj)

>⌃�1
⇣

(s� sj)
�
, (3.12)
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where ⌃⇣ is a 2⇥2 covariance matrix (bandwidth) of the kernel. Intuitively, when the j-th

event occurs, the probability of the next event occurring is higher in the neighborhood of

location sj . The bandwidth parameter ⌃⇣ quantifies how strongly the influence from each

past event decays over space. Other kernel functions, such as uniform and Rayleigh are

viable alternatives.

3.5.3 Parameter Learning

Given a list of observed events up to time T (total of N events) D and the image dataset

I, the logarithm of the likelihood function is written as

L =
NX

n=1

log


µ+ ↵(tn, sn)

X

j:tj<tn

�(tn � tj , sn � sj)

�
(3.13)

�

µT |S|+

NX

n=1

Z
T

tn

Z

S
↵(t, s)�(t� tn, s� sn)dtds

| {z }
call this ⇤n

�
,

where |S| denotes the area of spatial region S. The computation di�culty comes from the

integral of the neural network function (i.e., CNN) in the contextual e↵ect ↵(·) of term ⇤n.

With our formulation, the neural network function hl can be moved outside the integral,

and ⇤n is rewritten as

⇤n =
X

l

X

h,w

hl[h,w]

Z
T

tn

(t� tn)h(t� ⌧l)dt

Z

S
⇣(s� sn)k(s� x

h,w)ds. (3.14)

Consequently, we can obtain closed form solutions of the integral in term ⇤n for standard

decay and convolution kernel functions. With the uniform kernel function (Equation 3.22),

the integral over time can be performed analytically as follows:

Z
T

tn

1[⌧ � �⌧ < t < ⌧ ]g(t� tn)dt =
⇥
G(t� tn)

⇤max (⌧,max (tn,⌧��⌧))
max (tn,⌧��⌧)

, (3.15)

where G(·) is the derivative of the temporal decay kernel g(·). For the exponential decay

defined in Equation (3.11), it can be written as

G(t� tn) = � exp
�
� �(t� tn)

�
. (3.16)

For the pair of the Gaussian convolutional kernel (Equation 3.9) and Gaussian decay
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function (Equation 3.12), the integral over space S is described as the sum of error functions:

Z

S
⇣(s� sj)k(s� xh,w)ds (3.17)

=

Z

S
exp

�
� (s� x)>⌃�1

k
(s� x)

�
exp

�
� 1

2
(s� sj)

>⌃�1
⇣

(s� sj)
�
ds

=
1p

det(2⇡(⌃k + ⌃⇣))
exp

⇥
� 1

2
(sj � x)>(⌃k + ⌃⇣)

�1(sj � x)
⇤

⇥
Z

S
exp

�
� 1

2
(s� xc)

>⌃�1
c (s� xc)

�
ds,

where

xc =
�
⌃�1
k

+ ⌃�1
⇣

��1�
⌃�1
k

sj + ⌃�1
⇣

x
�

(3.18)

⌃c =
�
⌃�1
k

+ ⌃�1
⇣

��1
(3.19)

The Gaussian integral in the above equation can be expressed in terms of the error function

for the diagonal covariance matrices ⌃k and ⌃⇣ . The integral in the likelihood (Equation

3.13) has analytic form for many other kernels including Rayleigh and power-law. In the

case of the Gaussian kernel pair defined by Equation (3.9) and Equation (3.12), it is given

by an error function. The resulting log-likelihood is fully tractable, permitting the use of

gradient-based algorithms. We apply simple back-propagation for training ConvHawkes.

During the training phase, we adopt mini-batch optimization.

3.5.4 Event Number Prediction

The point process model can be used to predict the expected number of events by integrat-

ing the estimated intensity over specific time period WT = [Tp, Tq] and the area of interest

WS ⇢ S such that

N(WT ⇥WS) =

Z

WT

Z

WS

�(t, s)dtds (3.20)

=
X

l

X

h,w

hl[h,w]

Z
Tq

Tp

⇣(t� tn)h(t� ⌧l)dt

Z

WS

⇣(s� sn)k(s� x
h,w)ds,

where N(A) is the number of events that fall into subset A. As mentioned in Section 4.4.2,

we can obtain closed form solutions of the above integral.

Moreover, the ConvHawkes model can simulate the occurrence time of the next event

and its location by adopting the thinning algorithm [80].
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Table 3.1: Statistics of Datasets used in this paper.

Area Time span Source # of events

Conflict Africa 1 Mar, 2018 - 31 Mar, 2020 ACLED3 16,801
Protest Middle East 1 Mar, 2018 - 31 Mar, 2020 ACLED3 34,243
Disease Europe 1 Mar, 2020 - 31 Aug, 2020 EMPRES-i2 21,529

3.6 Experiments

We used real-world event datasets from di↵erent domains to evaluate the predictive per-

formance of ConvHawkes.

3.6.1 Datasets

We used three real-world event datasets and five image datasets. All the datasets are

publicly available. The statistics of these datasets are given in Table 4.3.

Event Data

We conducted experiments on three event datasets from di↵erent domains.

• Conflict: Conflict dataset, which is provided by ACLED project1, consists of roughly

17,000 armed conflicts in Africa dated from April 1, 2018 to March 31, 2020. Every

event is recorded in the form of time and location (latitude and longitude coordi-

nates).

• Protest: Protest dataset, which was gathered by ACLED project3, contains over

34,000 demonstration events in Middle East over a four year period from April 1,

2018 to March 31, 2020. Each record contains time and location of the protest.

• Disease: Disease dataset is a collection of reported incidents of animal disease out-

breaks that occurred in Europe, provided by EMPRES-i2, it contains 21,529 records,

each of which shows time, latitude and longitude.

1Armed Conflict Location and Event Dataset (ACLED). https://www.acleddata.com. Accessed on
December 10, 2021.

2EMPRES Global Animal Disease Information System (EMPRES-i). http://empres-i.fao.org/

eipws3g/. Accessed on April 1, 2021.

63



Georeferenced Image

We incorporated five image datasets as the contextual features: nightlight, landcover,

weather, population and road. These georeferenced images were all sourced from open

GIS databases.

• The source of nightlight image is the Night time Lights of the World data processed

and distributed by the NGDC3, we used the 16, 801 ⇥ 43, 201 tiles that cover the

entire world.

• For landcover image, the data source is the world map image file, at scale of 1 : 10m,

provided within the Natural Earth4 package.

• The world map files for weather and population were taken from GeoNetwork

website5 with a spatial resolution of 5 arc minutes, namely,

– weather: [clim.tif]

– population: [popd.tif]

– livestock: [lvstd.tif]

– terrain: [slp.tif]

• For road, the shapefile of roads was downloaded from gROADS6. The shapefile was

converted into a GeoTIFF file.

The input images were saved in GeoTIFF format. As preprocessing, we cropped GeoTIFF

images for the three areas of interest (i.e., Africa, Middle East, Europe) and resized them to

120⇥114 pixels for Africa, 120⇥147 for Middle East, 120⇥127 for Europe. The examples

of a population image is given in Figure 3.5(a) and Figure 3.6(a), and landcover image

in Figure 3.7(a). In the experiment, we only used static images which not contain time

information. Thus, the number of observations L is fixed to 1. Details of the data collection

procedure are given below.

3Image and Data processing by the National Oceanic and Atmospheric Administration’s (NOAA) Na-
tional Geophysical Data Center (NGDC). https://ngdc.noaa.gov/ngdc.html. Accessed on April 1, 2021.

4Natural Earth. https://www.naturalearthdata.com. Accessed on April 1, 2021.
5Food and Agriculture Organization (FAO), GeoNetwork. http://www.fao.org/geonetwork. Accessed

on April 1, 2021.
6NASA Socioeconomic Data and Applications Center (SEDAC), Global Roads Open Access Data Set,

Version 1 (gROADSv1). http://dx.doi.org/10.7927/H4VD6WCT. Accessed on April 15, 2021.
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3.6.2 Comparison Methods

We compared the proposed ConvHawkes against four widely used point process methods.

• HPP (Spatio-temporal homogeneous Poisson Process): The intensity is assumed to

be constant over time and space:

�(t, s) = �0, (3.21)

where �0 denotes the constant intensity rate. This optimization can be solved in

closed form.

• RMTPP (Recurrent Marked Temporal Point Process) [21]: RMTPP uses RNN to

describe the intensity of the marked temporal point process. RMTPP is primarily

intended to model event timing and categorical event feature (marker). To allow com-

parison, we partitioned the area of interest using a pre-defined rectangular grid; and

mapped latitude and longitude values of event data into particular grids (hereafter

referred to as regions). Then the latitude and longitude coordinates were replaced

by a region index. The region indices are regarded as marks.

• Hawkes (Spatio-temporal Hawkes Process) [80]: Intensity is given by Eq. (3.3), which

does not accept any additional features. We choose an exponential decay function,

see Eq. (3.11), as the temporal decay function h(·), and Gaussian kernel shown as

Eq. (3.12) for the spatial decay function k(·).

• DMPP (Deep Mixture Point Process) [70]: This method incorporates the contextual

features represented in images and texts by combining Poisson process modeling and

deep neural networks. We used the same image datasets used in ConvHawkes as the

contextual features for DMPP.

3.6.3 Experimental Settings

For the experiments, we divided each dataset into training, validation and test sets in

chronological order with the ratios of 80%, 10%, and 10%. The model parameters were

trained using the ADAM optimizer [42] with a learning rate of 0.002. We tuned all the

models using early stopping based on the log-likelihood performance on the validation set

with a maximum of 200 epochs and a patience of 10 epochs. Batch size was set to 256 for

all methods. The hyperparameters of each model were optimized via grid search. For the

neural networks-based models (i.e., RMTPP, DMPP and ConvHawkes), we chose the number
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of layers Nl from {1, 2, 3, 4, 5}, and the number of units per layer Nu from {1, 3, 5, 8}. For
CNN-based methods (i.e., DMPP and ConvHawkes), we searched the filter size Nk in the

CNN over {1, 3, 5}. The uniform kernel function was selected for the temporal and spatial

convolution. We factorize the convolutional kernel function f(·) into temporal and spatial

components, and model each component by the uniform kernel:

f(t� ⌧, s� x) = 1[|t� ⌧ | < �]1[||s� x|| < w], (3.22)

where 1[·] is an indicator function, and � and w are positive parameters that threshold the

kernels to zeros. In our experiment, we fix � as the time interval between the observations;

w is the pixel size of the image. This is equivalent to a piece-wise approximation. Here we

consider the simplest case for the implementation simplicity; but note that our method can

be easily generalized to other forms. The chosen hyperparameters are presented in Section

4.6.7. The pixel intensities of color channels were normalized to [0,1], and then used as

input of our model.

3.6.4 Implementation Details

All code was implemented using Python 3.9 and Keras [16] with a TensorFlow backend

[1]. We conducted all experiments on a machine with four 2.8GHz Intel Cores and 16GB

memory.

3.6.5 Evaluation Metrics

Our experiments use the following two metrics in evaluating all models. For both metrics,

lower values indicate better performance.

• NLL (Negative Log-Likelihood) is used to assess the likelihood of the occurrence of

the events over the test period; it is calculated as

N+NtX

n=N

"
� log �(tn, sn) +

Z
tn

ti�1

Z

S
�(t, s)dtds

#
, (3.23)

where Nt is the number of events in the test period.

• NMAE (Normalized Mean Absolute Error) evaluates the discrepancies between the

predicted number of events in small time intervals and pre-defined regions and the

ground truth. We first split the test time period [T, T + �T ] into S successive

small time intervals. Also, we partitioned the area of interest S into R uniform grid
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Table 3.2: Negative log-likelihood (NLL). Lower is better. The best performance is shown
in bold. Our proposal, ConvHawkes, outperforms four existing methods.

Conflict Protest Disease

HPP -8.872 -9.130 -9.081
Hawkes -10.156 -10.525 -10.806
DMPP -9.531 -9.465 -9.902

Proposed -11.548 -11.583 -11.988

Table 3.3: Normalized Mean Absolute Error (NMAE) with standard deviation (in the
bracket). Lower is better. The best performance is shown in bold. Our proposal, Con-
vHawkes, outperforms four existing methods.

Conflict Protest Disease

HPP 1.144 (0.055) 1.116 (0.096) 1.277 (0.230)
RMTPP 0.876 (0.094) 0.925 (0.159) 0.940 (0.300)
Hawkes 0.464 (0.023) 0.520 (0.064) 0.481 (0.087)
DMPP 0.685 (0.041) 0.867 (0.119) 0.865 (0.231)

Proposed 0.344 (0.015) 0.466 (0.043) 0.423 (0.073)

regions. For each time interval (ts, ts+1] and each region (sr, sr+1), given the history

of events up to ts, we predicted the number of events in (ts, ts+1] and (sr, sr+1],

N̂((ts, ts+1], (sr, sr+1]), described in Eq. (3.20). Then, we measured the average

normalized di↵erence between the predicted and observed number of events over all

the time intervals and the pre-defined regions as follows:

NMAE =

P
R

r=1

P
S

s=1

��N̂
�
(ts, ts+1], (sr, sr+1]

�
�N

�
(ts, ts+1], (sr, sr+1]

���
P

R

r=1

P
S

s=1N
�
(ts, ts+1], (sr, sr+1]

� , (3.24)

where N̂ ((ts+1, ts], (sr, sr+1]) is the predicted number of events in the small time

interval (ts+1, ts] and the grid region (sr, sr+1] and N(·) is the ground truth at the

s-th time interval and r-th region. In our experiment, we partitioned the spatial

area of interest using a 5⇥ 5 uniform grid, and divided the test period into 20 time

intervals. Therefore S = 20 and R = 25.

3.6.6 Performance Comparison

In this section, we compare ConvHawkes with existing point process methods for event

prediction.
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(a) RMTPP (b) DMPP

(c) Hawkes (d) ConvHawkes

Figure 3.3: Conditional intensity of diseases in Europe estimated by each method at March
1st 2020. The x-axis and y-axis represent longitude and latitude respectively.

Table 3.2 shows the negative log-likelihood (NLL) of the test data for the three event

datasets. Note that since the temporal point processes (i.e., RMTPP) cannot calculate

spatial likelihood, the NLL results of these methods are not reported on this table. We

trained the proposed method with each of the five image datasets (i.e., nightlight, land-

cover, weather, population, road) and reported the best performance among the di↵erent

image datasets in Table 3.2 and Table 3.3. The population image yields the best prediction

performance for Conflict and Protest datasets; the landcover produces the best result for

Disease dataset. We can see that the proposal, ConvHawkes, outperforms all existing

methods examined across all the datasets. HPP delivers the worst prediction accuracy

since it fails to account for temporal or spatial dependencies between events. DMPP per-

forms worse than Hawkes on all the datasets. This is expected, because DMPP does not

explicitly model the mutual excitation between events and thus cannot capture triggering

patterns. For all the datasets, Hawkes outperformed the other existing methods. This

is possibly because Hawkes models the mutual excitation between events with decay over

spatio-temporal distances, while DMPP does not explicitly consider the spatial dependen-
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Table 3.4: Performance comparison of the proposed method with di↵erent images on three
event datasets. The number indicates NLL. Lower is better. The best performance is in
boldface and second best is underlined.

Conflict Protest Disease

nightlight -11.207 -11.379 -11.272

landcover -11.021 -10.814 -11.115
weather -11.111 -11.336 -11.149

population -11.548 -10.918 -10.959
road -10.937 -11.050 -11.088

cies between events. ConvHawkes produces even better performance than Hawkes. The

results suggest that our method can extract the meaningful features from the images, and

e↵ectively learn their impact on the triggering processes.

Table 3.3 reports the Normalized Mean Absolute Error (NMAE) of five di↵erent meth-

ods on the three event datasets. The result again demonstrates the e↵ectiveness of our

approach. Compared to the strongest baseline, ConvHawkes o↵ers a NMAE improvement

of 34.9% for the Conflict data (p < 0.001; paired t-test), 11.6% NMAE improvement for

the Protest data (p < 0.1), 13.7% NMAE improvement for the Disease data (p < 0.001).

This supports the above conclusion.

Our ConvHawkes demonstrated improvements in all evaluation metrics used. This is

probably because ConvHawkes can capture the spatial heterogeneity of the triggering pro-

cess as well as the spatio-temporal decay e↵ects. We can see this in Figure 3.3, which

depicts the conditional intensity of diseases learned by four di↵erent methods on March 1,

2020. In Figure 3.3(c), the spatial influences seem to be evenly distributed for Hawkes. Con-

vHawkes intensity (Figure 3.3(d)) is more unevenly distributed along the densely populated

urban areas.

Sensitivity Analysis

In this section, we analyze the impact of hyperparameters and experimental settings. We

report the prediction performance of ConvHawkes under di↵erent settings for the three

event datasets.

Impact of Di↵erent Images. Table 3.4 examines the importance of di↵erent images

for event prediction by individually incorporating each of the image datasets into the pro-

posed model. For Conflict data, NLL is improved when adding population image. This

is consistent with the prior observation: unrest spreads among densely populated areas.

We can see that incorporating nightlight images improves the prediction performance for
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(a) Number of layers (b) Number of units

(c) Filter size

Figure 3.4: Impact of hyper-parameters on NLL performance.

Protest and Disease datasets. This is probably because nightlight is correlated to popula-

tion density. We can observe that the weather image is important for Disease data. This

finding matches the previous study: weather change a↵ects on disease transmission [75].

In general, ConvHawkes can achieve stable performance across di↵erent image datasets.

ConvHawkes with di↵erent image datasets is consistently better than all the comparison

methods (Table 3.2), which ensures all the image datasets used in this paper are important

for event prediction, and that ConvHawkes can e↵ectively utilize these images.

Network Structure. We show the impact of network structures in Figure 3.4(a)-

3.4(c). Except for the parameters being tested, all other parameters were held to default

values. The NLL performance tends to be stable for all datasets. The prediction perfor-

mance slightly improves when layer size Nl is 3 for Conflict data, 2 for Protest data, and

1 for Disease data. As shown in Figure 3.4(b), ConvHawkes performs robustly for di↵erent

number of units, Nu, across all data sets. The prediction performance saturates as filter

size Nk in the CNN increases. The proposed method yields similar results for the other

metrics (i.e., NMAE). Throughout the experiment, we set Nl = 3, Nu = 3, Nk = 3 for
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(a) Input population image (b) Learned feature map

(c) Intensity

Figure 3.5: Learned feature map and intensity for Conflict dataset

Conflict dataset; Nl = 2, Nu = 3, Nk = 3 for Protest dataset; and Nl = 1, Nu = 3, Nk = 3

for Disease dataset.

3.6.7 Analysis of Feature Learning

To further verify the above conclusion, we qualitatively explore the estimated intensity and

the latent feature maps learned from the input image by our method.

Figure 3.5-3.7 show the input image, the learned latent feature map and intensity

for Conflict, Protest, Disease datasets. The x-axis and y-axis represent longitude and

latitude respectively. Figure 3.5(a) and Figure 3.6(a) show the input population image

for Africa and Middle East, respectively. Figure 3.7(a) is the input landcover image for

Europe. In the learned feature maps (Figure 3.5(b), 3.6(b), 3.7(b)), the lighter shades

are higher feature values and the darker shades indicate lower feature values. In Figure

3.5(b) and Figure 3.6(b), we can observe that ConvHawkes highlights coastal areas for

Conflict and Protest datasets. This is expected, since the unrest events are strengthened
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(a) Input population image (b) Learned feature map

(c) Intensity

Figure 3.6: Learned feature map and intensity for Protest dataset

in densely populated coastal areas. ConvHawkes (Figure 3.5(c) and Figure 3.6(c)) exhibits

heterogeneous intensity, in which the spatial influence is spread along the coastal areas. As

shown in Figure 3.7, the landcover image serves as an important feature for Disease dataset.

This may because landcover is associated with other characteristics including weather and

population. The proposed method can automatically discover discriminative features from

the images, providing insights about the e↵ects the underlying contextual factors have on

the triggering process.
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(a) Input landcover image (b) Learned feature map

(c) Intensity

Figure 3.7: Learned feature map and intensity for Disease dataset
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3.7 Conclusion

In this thesis, we tackle the problem of spatio-temporal event prediction, with the aim

of incorporating the spatio-temporal inhomogeneity of the triggering pattern driven by

the contextual factors (e.g. population, weather, and road network). In this chapter, we

consider the case where there are rich contextual information is available. In order to

take into account rich contextual information, we develop a novel Hawkes process model

based on a deep learning approach, referred to as ConvHawkes (Convolutional Hawkes

Process). Specifically, we combine CNN with continuous kernel convolution and model

the Hawkes process intensity parameter by using an extended neural network model. The

key advantage of ConvHawkes over existing methods is that it can utilize the rich contexts

present in image data, including satellite images, map images, and weather maps, and

automatically discover their complex e↵ects on the event triggering processes. At the same

time, this formulation makes analytical integration over the intensity, which is required

for Hawkes process estimation, tractable. Using three real-world datasets from di↵erent

domains (i.e., armed conflicts, protests, diseases), we demonstrated that the proposed

method is able to provide higher event prediction accuracy than existing methods. To the

best of our knowledge, this work is the first attempt towards incorporating image data into

self-exciting spatio-temporal point process models.
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Chapter 4

Dynamic Hawkes Processes for

Discovering Time-evolving

Communities’ States behind

Di↵usion Processes

4.1 Introduction

Throughout this thesis, we study the problem of modeling and predicting spatio-temporal

events. A huge amount of data on spatio-temporal events is generated from diverse social

and natural phenomena. In this chapter, we focus on social phenomena that exhibit self-

exciting or triggering patterns, including user activities in social networks and information

dissemination.

Many phenomena exhibit di↵usion patterns among multiple communities. For example,

infectious diseases like COVID-19 are transmitted from one county to another, leading to a

worldwide pandemic [91]. Information such as opinions, news, and articles are shared and

disseminated among online communities, e.g., user groups in social networks, news websites,

and blogs. Such di↵usion phenomena are recorded as multiple sequences of events, which

indicate when and in which community the event occurred. Understanding the di↵usion

mechanism and predicting future events is crucial for many practical applications across

domains. For example, policymakers would be able to design prompt and appropriate

interventions to curb the spread of disease given a better understanding of the mechanisms

behind the transmission and more reliable predictions.

Temporal point processes provide an elegant mathematical framework for modeling
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event sequences. In these methods, the probability of event occurrences is determined by

the intensity function. Hawkes process is an important class of point processes for mod-

eling di↵usion processes. These models use the triggering kernel to characterize di↵usion

processes and estimate their parameters via maximum likelihood. The triggering kernel

encodes the magnitude and speed of influence from the past events, namely, how likely

and quickly the past events in one community (i.e., “source” community) will a↵ect the

occurrence of a particular event in another community (i.e., “target” community). Hawkes

process and its variants have been applied in diverse areas, from epidemic modeling [41]

to social network analysis [119, 81, 26]. However, they have focused on learning the static

influence of the past events on the current event, thereby largely overlooking the factor

of time-evolution. In reality, the di↵usion processes depend not only on the influences

from the past but also on the current state of the target communities. For example, the

outbreaks of infectious diseases in one community (e.g., country) can also be driven by

people’s awareness of the disease in each community (country) and their preventive behav-

iors which can constantly change over time, on top of the record of the disease occurrence.

As another example, information di↵usion heavily depends on ongoing peoples’ interests in

the target community (e.g., online user group). In particular, the spread of information to

one target community (user group) is strengthened when a topic deemed to be important

by the target community emerges in the online space; while it is weakened in accordance

with a gradual loss in peoples’ interest in the topic.

A few studies have considered the underlying dynamics of such “states” in communities.

For instance, the SIR-Hawkes model [82] redesigned the triggering kernel of the Hawkes

process by incorporating the recovered (immune) population dynamics over the course of

the pandemic. Kobayashi et al. [43] proposed a time-dependent triggering kernel that

varies periodically in time for modeling daily cycles of human activity. However, these

approaches rely on hand-crafted functions for describing the latent dynamics of states

and so demand expert domain knowledge. Moreover, they may not be flexible enough

to accommodate the complexity and heterogeneity of the real world. In fact, in many

practical applications, the complete set of factors is largely unknown and thus di�cult to

model through restricted parametric forms. Taking information di↵usion as an example,

the time-evolution of peoples’ interest in a given topic is generally unknown and not directly

observable.

A potential solution is to directly model the triggering kernel parameters using a flex-

ible function of time (e.g., neural network). Alas, naively employing this approach makes

parameter learning intractable since the log-likelihood of Hawkes processes involves the
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integral of the triggering kernel. Computing the integral of the triggering kernel in combi-

nation with the neural network is generally infeasible.

In this chapter, we propose a novel Hawkes process model referred to as DHP (Dynamic

Hawkes Process) which automatically learns the underlying dynamics of the communities’

states behind the di↵usion processes in a manner that allows tractable learning. We intro-

duce the latent dynamics function for each community that represents its hidden dynamic

states. Our core idea is to extend the triggering kernel by combining it with the latent

dynamics function and its integral. Specifically, we model the magnitude of di↵usion by the

latent dynamics function and the speed of di↵usion by the integral of the latent dynamics

function. This design choice o↵ers two benefits. First, the resulting triggering kernel can

be expressed as a product of two components: composite function with the “inner” func-

tion being the integral of the latent dynamics function and the “outer” function being the

basic triggering kernel; and the derivative of the inner function of that composite function

(i.e., the latent dynamics function). Hence, by applying the substitution rule for definite

integrals (i.e., the chain rule in reverse), we can obtain a closed-form solution for the inte-

gral of the triggering kernel involved in the log-likelihood. Second, it allows capture of the

simultaneous changes of magnitude and speed of the di↵usion as they are related through

the latent dynamics function and its integral, which is desirable for many applications. For

example, in the context of disease spread, active preventative measures can reduce both

the magnitude and the speed of the infection. To model the integral of the latent dynamics

function, we utilize and extend a monotonic neural network [89, 14]. This formulation en-

ables DHP to learn flexible representations of the community state dynamics that underlie

the di↵usion processes. It should be noted that DHP can be easily extended to capture

the time-evolving relationships between communities, by introducing the latent dynamics

function for pairs of communities. In this work, we adopt DHP to demonstrate the hidden

state dynamics of individual communities.

The main contributions of this chapter are:

• We propose a novel Hawkes process framework, DHP (Dynamic Hawkes Process) for

modeling di↵usion processes and predicting future events. The proposal, DHP, is

able to learn the time-evolving dynamics of community states behind the di↵usion

processes.

• We introduce latent dynamics function; it reflects the hidden community dynamics

and designs the triggering kernel of the Hawkes process intensity using the latent

dynamics function and its integral. The resulting model is computationally tractable

and flexible enough to approximate the true evolution of the community states un-
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derlying the di↵usion processes.

• We carry out extensive experiments using four real-world event datasets: Reddit,

News, Protest, and Crime. The results show that DHP outperforms the existing

works. Case studies demonstrate that DHP uncovers the hidden state dynamics of

communities that underlie the di↵usion processes by the latent dynamic function.

4.2 Related Work

With the evolution of data collection technology, extensive event sequences with precise

timestamps are becoming available in an array of fields such as public health and safety

[59, 103, 46], economics and finance [11, 5, 32], communications [26], reliability [6, 96, 90],

and seismology [65, 69, 67]. Temporal point processes provide a principled theoretical

framework for modeling such event sequences, in which the occurrences of events are de-

termined by the intensity function.

Classical examples of temporal point processes include reinforced Poisson process [77],

self-correcting point process [36], and Hawkes process [31]. The Reinforced Poisson process

[77] considers the cumulative count of past events and a time-decreasing trend, and has been

recently applied for predicting online popularity [87]. The intensity of the self-correcting

point process [36] increases steadily and this trend is corrected by past observed events.

Although these models have been widely used, they are not suitable for modeling di↵usion

processes between communities as they cannot explicitly model the influence of the past

events underlying di↵usion processes. Hawkes process [31] explicitly models the influence of

the past events and captures triggering patterns between events (i.e., di↵usion processes).

Hawkes processes have been proven e↵ective for modeling di↵usion processes, including

earthquakes and aftershocks [59], near-repeat patterns of crimes [59], financial transactions

[23, 5, 32], online purchases [108, 22, 18, 102], and information cascades [119, 81, 26].

Recent studies employ neural network architectures to model point process intensity.

In [21], the authors design the intensity using RNN. Omi et al. [74] extended our work

by combining it with a monotonic neural network. Compared to classical point process

methods, RNN-based models provide a more flexible way to handle the complex dependen-

cies between events. However, the above methods focus on learning the triggering patterns

of di↵usion processes, i.e., influences from past events, and disregard the current (time-

evolving) states of the communities. In the real world, event occurrences largely depend

on the current community states (e.g., people’s awareness of the disease, ongoing people’s

interest), which can evolve over time, as well as the past.
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Several studies incorporate the time-variant dynamics of the community states behind

di↵usion processes into the Hawkes process formulation. For instance, the SIR-Hawkes

model [82] considers recovered (immune) population dynamics to enhance the prediction

of infectious disease events over the course of pandemic. Kobayashi et al. [43] proposed

a time-dependent Hawkes process that accounts for the circadian and weekly cycles of

human activity. Navaroli et al. [62] used nonparametric estimation to learn cyclic human

activities underlying digital communications. All of the above methods, unfortunately,

rely on a domain expert’s knowledge to elucidate the dynamics of the communities states

behind di↵usion processes. Such dynamics are often quite complex and remain unexplored

in many practical applications.

Di↵erent from the existing methods, our proposed method both incorporates the tem-

poral dynamics of communities’ states and the past influences.

4.3 Preliminaries

This section provides the general framework of point processes on which our work is built,

and the formal definition of the event prediction problem studied in this paper.

4.3.1 Hawkes Processes

Point process is a random sequence of events occurring in continuous time {t1, t2, · · · tI},
with ti 2 [0, T ). Point processes are fully determined by “intensity” function �(t). Given

the history of events H(t) up to time t, the intensity is defined as

�(t) ⌘ lim
�t!0

E[N(t+ �t)�N(t)|H(t)]

�t
, (4.1)

where N(t) is a number of events falling in [0, t), �t is a small time interval, and E is

an expectation. The intensity value �(t) at time t measures the probability that an event

occurs in the infinitesimal time interval [t, t+ �t) given past events H(t).

Hawkes process [31] is an important class of point processes, and can describe self-

exciting phenomena. The intensity of Hawkes process is defined as

�(t) = µ+
X

j:tj<t

g(t� tj), (4.2)

where µ � 0 is a background rate and g(·) � 0 is a triggering kernel encoding the aug-

menting or attenuating e↵ect of past events on current events. Intuitively, each event at

time tj elevates the occurrence rate of events at time t by the amount g(t� tj) for t > tj .
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The univariate Hawkes process can be extended to multivariate Hawkes Process (MHP)

to handle the mutual excitation of events (i.e., di↵usion) among di↵erent communities

(denoted by dimensions). Suppose we have I historical observations D = {(ti,mi)}Ii=1

with time ti 2 [0, T ) and community mi 2 {1, ...,M}. In our setting, the communities

indicate countries, city districts, online user groups or news websites. For anM -dimensional

multivariate Hawkes process, the intensity of the m-th dimension takes the following form:

�m(t) = µm +
X

j:tj<t

gm,mj (t� tj), (4.3)

where µm is the background rate of dimension m and gm,mj (·) � 0 is the triggering kernel

that captures the impact of an event in community mj on the occurrence of an event in

community m. The typical choice for the triggering kernel is the exponential memory

kernel, which is defined by

gm,mj (�j) = ↵m,mj exp (��m,mj�j), (4.4)

where �j represents the time interval �j = t � tj , ↵m,mj quantifies the magnitude of the

influence from community mj on the event occurrence in community m, and �m,mj controls

how quickly its e↵ect decays in time (i.e., speed of the di↵usion). Other candidates include

power law kernel [67], Raleigh kernel [98], and log-normal distribution [62].

The negative log-likelihood function of a multivariate Hawkes process over time interval

[0, T ] is given by:

L =
IX

i=1

log �mi(ti)�
MX

m=1

Z
T

0
�m(t)dt. (4.5)

4.3.2 Problem Definition

An event is represented by the pair (t,m), where t and m denote time and community

(e.g., country, news website) where the event happened, respectively. An event sequence is

defined as the set of events D = {(ti,mi)}Ii=1 with ti 2 [0, T ), where I denotes the number

of events that have occurred up to time T .

Event Prediction Problem. Given the event sequence D in the observation time

window [0, T ), we aim to leverage D to predict the number of events within any given time

period; and the event times in the future time window [T, T + �T ].

The key notations used in the paper are listed in Table 4.1.
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Table 4.1: Table of symbols.

Symbol Definition

H(t) event sequence up to t

N(t) total number of events up to t

N
m(t) number of events of dimension m up to t

�m(t) intensity function for dimension m

µm background rate for dimension m

gm,m0(t) triggering kernel between dimension m and dimension m
0

↵m,m0 interactions between dimension m and demension m
0

fm(t) dynamic function for dimension m

Fm(t) integral of dynamic function for dimension m

�c
m(t) neural network function of dimension m for component c
M number of dimensions
C number of mixture components
L number of layers of neural network
S number of time intervals in test time period

4.4 Dynamic Hawkes Processes

In this section, we present DHP (Dynamic Hawkes Process), a novel multivariate Hawkes

process framework for event prediction; it can learn the time-evolution of the communities

underlying the di↵usion processes. Figure 4.1 illustrates DHP. We design the triggering

kernel of DHP intensity (panel A in Figure 4.1) as the product of two components: the

triggering kernel with the input of time-rescaled events (panel B in Figure 4.1), which learns

the decay influence from the past events; and the latent dynamics function (panel C) to

adjust the magnitude of the influence from the past events. The latent dynamics function

describes the time-evolving states of the communities (indicated by dimensions). In the

context of disease spread, the latent dynamics function represents the dynamics of people’s

awareness of the disease in each country. For information di↵usion, it characterizes the

temporal evolution of readers’ interests in news websites. We elaborate on the formulation

of DHP in Section 4.4.1, followed by parameter learning (Section 4.4.2) and prediction

procedure (Section 4.5).

4.4.1 Model Formulation

The proposed model specifies the intensity of Hawkes process for dimension m as

�m(t) = µm +
X

j:tj<t

gm,mj (�̃j)fm(t), (4.6)
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where µm is the background rate for the m-th dimension (i.e., community), gm,mj (·) is

any chosen triggering kernel between dimension m and dimension mj such as exponential

memory kernel or log-normal distribution, and �̃j is the time-rescaled or transformed time

interval between the current time t and the time of j-th event tj . fm(t) � 0 represents

the dynamics of the m-th community underlying the di↵usion processes at time t, which

controls the magnitude of di↵usion. The transformed time interval �̃j is defined by the

integral of the latent dynamics function between tj and t as follows:

�̃j =

Z
t

tj

fm(⌧)d⌧ = Fm(t)� Fm(tj), (4.7)

where Fm(t) denotes the integral function of the continuous-time dynamics fm(t), that is

Fm(t) =

Z
t

0
fm(⌧)d⌧. (4.8)

The above formulation can be understood by considering an analogy drawn from the time-

rescaling theorem [9]. Intuitively, this transformation adjusts the influence of each event

by stretching or shrinking time based on the value of the latent dynamics function fm(t).

When fm(t) < 1, the interval times are lengthened so that event times are further separated.

Likewise, when fm(t) > 1, the interval times are compressed so that events are drawn closer

together. If fm(t) = 1 for all t > 0,

�̃j =

Z
t

tj

1d⌧ = t� tj , (4.9)

and Equations 4.6 and 4.7 reduce to a simple multivariate Hawkes process (Equation 4.3).

This formulation assumes that the speed of di↵usion varies according to the temporal

dynamics of the target community m, which is captured by fm(t). This assumption is

realistic; for instance, disease spread is controlled by people’s awareness of the disease in

each country and their preventive behaviors. Information di↵usion is largely influenced

by the reader’s interest in each news website. It is worth mentioning that the latent

dynamic function can be easily extended to consider the dynamics of pairwise interactions

between dimensions, by redefining the latent dynamics function as fm,mj (t). The following

discussion holds even under this extension.

Our formulation allows considering the latent state of each dimension m at current time

t as well as the influence from the past events. Also, it can capture the simultaneous changes

in di↵usion magnitude and speed, which is desirable for many applications (as discussed in

the following paragraph). Most importantly, it enables us to compute the analytic integral
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Figure 4.1: An illustration of DHP. Panel A represents individual events (i.e., input event
sequence) and the dynamic interaction term for dimension �. The di↵erent dimensions (i.e.,
communities) are shown in di↵erent colors and markers. Panels B and C show the modified
triggering kernel

P
j
gm,mj (�̃j) and the latent dynamic function fm(t) for dimension �,

respectively. Panel D depicts the interactions between communities at two di↵erent times.
The size of each node represents the level of activity; the width of each arrow represents
the level of interaction at each time.

of the intensity, which is required for evaluating the log-likelihood (further discussion can

be found in Section 4.4.2) and predicting the number of future events (See Section 4.5).

Triggering Kernel. The triggering kernel can have many forms. For example, we can

assume the exponential memory kernel for gm,mj (·), i.e.,

�m(t) = µm +
X

j:tj<t

fm(t)↵m,mj exp
�
��m,mj

�
Fm(t)� Fm(tj)

��
, (4.10)

where ↵m,mj encompasses the magnitude of the static interaction between the m-th and

mj-th dimension; and �m,mj weights the decay of the influence over time. Notice that,

the above formulation relies on the implicit assumption that the magnitude and speed

of di↵usion are related through the latent dynamics function fm(t), which controls the
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magnitude of di↵usion; its integral Fm(t) governs the speed of di↵usion. For example,

when fm(t) = 2 for every t, the second term of Equation 4.10 is 2↵ exp (�2��j), where

�j = t � tj . When fm(t) = 0.5 for every t, it is 0.5↵ exp (�0.5��j). This assumption is

reasonable since the magnitude and speed of di↵usion vary simultaneously in many cases.

Taking disease transmission as an example, active prevention measures can both reduce

the magnitude and the speed of the infection. The influence on the magnitude of di↵usion

from the latent dynamics function is tuned by ↵, and the influence on the speed of di↵usion

from its integral is tuned by �.

Latent dynamics function. The design of fm(·) is flexible to so any non-negative

function can be used. Inspired by [74], we utilize and extend a monotonic neural network

[89, 14] that learns a strictly monotonic function to design the latent dynamics function.

Concretely, we model the integral function Fm(t) using the monotonic neural network.

This guarantees that its derivative (i.e., the latent dynamics function fm(t)) is strictly non-

negative, so intensity �m(t) results in a non-negative function. In describing the integral

function we propose to further enhance the expressiveness of the monotonic neural network

by using a mixture of monotonic neural networks. Formally,

Fm(t) =
CX

c=1

⇡c�
c

m(t) + b0t, (4.11)

where C is the number of mixture components, �c
m(·) is the c-th monotonic neural network,

⇡c is the mixture weight of the c-th component, and b0 is a bias parameter for the output

layer. To preserve monotonicity of the integral of the latent dynamics function Fm(t), we

impose non-negative constraints on the mixture weights {⇡1, ...,⇡C} and parameter b0. For

each dimension, we construct L fully connected neural layers with monotonic activation

functions. Whenever the context is clear, we simplify notation �c
m(·) to �(·). At each layer

l 2 {1, 2, ..., L} of the monotonic neural network, the hidden-state vector h(l) is given by

h
(l) = �(W(l)

h
(l�1) + b

(l)), (4.12)

where W
(l) and b

(l) are parameter matrix and vector to learn for l-th layer, respectively.

�(·) is a monotonic non-linear function. The input of the first layer is time t: h
(0) = t.

Following the previous work [89, 14], we use tanh activation for hidden layers and softplus

for the last layer. The output of the monotonic neural network is

�(t) = Bh
(L)

, (4.13)
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where B is a learnable weight matrix. The weight parameter matrices W
(l) and B are

imposed to be non-negative. The latent dynamics function fm(t), which is the derivative

of the monotonic neural network Fm(t), takes the following form,

fm(t) =
X

c

⇡c�
c

m(t) + b0, (4.14)

where �cm(t) is the gradient of the monotonic neural network �c
m(t) with respect to time

t, namely

�
c

m(t) =
d�c

m(t)

dt
. (4.15)

The gradient �cm(t) can be obtained by applying the automatic di↵erentiation implemented

in deep learning frameworks such as TensorFlow[1]. As we place no restriction on the

parametric forms of the community dynamics underlying the di↵usion processes, our model

can fit various complex dynamics of each community’s state.

This design choice enables us to automatically learn unknown complex dynamics of the

communities’ states behind the di↵usion processes, while at the same time allowing us to

compute the exact log-likelihood for training as described in Section 4.4.2.

4.4.2 Parameter Learning

Given the history of events up to but not including T , D = {(ti,mi)}Ii=1, we learn all

the parameters of DHP by minimizing the negative log-likelihood of the observed event se-

quences. Specifically, we simultaneously estimate the neural network weights and the kernel

parameters {µ,A,�}: the background rates µ = {µ1, .., µM}, the matrix of interactions

A = (↵i,j) 2 RM⇥M , and the decay rates � = {�1, ..,�M}. The negative log-likelihood

function of DHP over time interval of [0, T ) is obtained by substituting Equation 4.6 into

Equation 4.5:

L =
IX

i=1


log

⇣
µmi +

X

j:tj<ti

gmi,mj

�
Fmi(ti)� Fmi(tj)

�
fmi(ti)

⌘
(4.16)

�
MX

m=1

⇣
µm(ti � ti�1) +

Z
ti

ti�1

X

j:tj<t

gm,mj

�
Fm(t)� Fm(tj)

�
fm(t)dt

| {z }
⇤i

⌘�
.
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Table 4.2: Integral for some common kernels.

Type Equation g(t) Integral G(t)

Exponential (EXP) ↵ exp (��t) �↵

�
exp (��t)

Power-law (PWL) ↵�

(↵+�t)(p+1) � ↵

p(↵+�t)p

Raleigh (RAY) ↵t exp (��t2) � ↵

2� exp (��t2)

The problem here is to obtain integral ⇤i in the last term, which reduces to

⇤i =
X

j:tj<ti�1

Z
ti

ti�1

gm,mj

⇣
Fm(t)� Fm(tj)| {z }

inner part

⌘
fm(t)dt. (4.17)

Notice that the integrand of the above integral can be regarded as the product of compos-

ite function gm,mj (Fm(·)) and the derivative fm(t) of the “inner” part of that composite

function. Hence, we can solve the integral of Equation 4.17 in closed form by applying

u substitution (also called “the reverse chain rule”) technique. Making the substitution

x = Fm(t) � Fm(tj) gives dx = fm(t)dt. Changing variables from t to x, the integral of

Equation 4.17 becomes,

Z
ti

ti�1

gm,mj

⇣
Fm(t)� Fm(tj)

⌘
fm(t)dt (4.18)

=

Z
F (ti)�F (tj)

F (ti�1)�F (tj)
gm,mj (x)dx =

⇥
Gm,mj (x)

⇤
F (ti)�F (tj)

F (ti�1)�F (tj)

= Gm,mj (F (ti)� F (tj))�Gm,mj (F (ti�1)� F (tj))

where Gm,mj (t) denotes the integral of gm,mj (t). This can be computed analytically for

many common kernels. In our experiment, we used three types of triggering kernel: Expo-

nential, Power-law and Raleigh. Table 4.2 presents their equations and integrals, where ↵

and � are parameters of the triggering kernel. p is the scaling exponent of the power-law

(p > 1) and we fix p = 2 in the experiment.

Given the exact log-likelihood, we back-propagate the gradients of the loss function L.
In the experiment, we employ mini-batch optimization.
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Table 4.3: Statistics of Datasets used in this paper.

Source Time span # Events Communities

Reddit Reddit1 1 Mar - 31 Aug, 2020 23,059 25 subreddits
News GDELT2 20 Jan - 24 Mar, 2020 19,541 40 news websites
Protest ACLED3 1 Mar - 21 Nov, 2020 22,313 35 countries
Crime Chicago Data Portal4 1 Mar - 19 Dec, 2020 29,318 13 community areas

4.5 Preidiction

For each time interval (ts, ts+1] and each dimension m, given the history of events up to

time ts, we calculate the expected number of events in (ts, ts+1] by

Z
ts+1

ts

�m(⌧)⌧. (4.19)

As discussed in Section 4.4.2, this integral takes analytic form for the proposed method.

Similarly to Equation 4.18, we obtain

N̂
m((ts, ts+1]) =

Z
ts+1

ts

�m(⌧)⌧ = µm(ts+1 � ts) (4.20)

+
X

j:tj<ts

Gm,mj (F (ts+1)� F (tj))�Gm,mj (F (ts)� F (tj)) ,

where N̂
m ((ts+1, ts]) is the predicted number of events in the given time interval (ts+1, ts]

for dimension m.

4.6 Experiments

We start by setting up the qualitative and quantitative experiments, and then report their

results.

4.6.1 Datasets

We used four real-world event datasets from di↵erent domains.

• Reddit: We crawled the o�cial Reddit API1 to gather timestamped hyperlinks

between Reddit communities (i.e., subreddits) over 6 months from March 1 to August

31, 2020. The data collection procedure followed the one used in [44]. During crawling

1Reddit API. http://www.reddit.com/dev/api. Accessed on December 10, 2020.
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we selected the 25 most popular subreddits, and retrieved hyperlinks among those

subreddits: we identified and recorded posts in one source subreddit that contain links

to di↵erent target subreddits. This process finally yielded a total of roughly 23,000

posts, each of which had submission time, source subreddit, and target subreddit.

We treated a list of hyperlinks to each target subreddit as a separate sequence and

considered target subreddits as communities (i.e., dimensions). The source subreddit

was not used for training but for qualitative evaluation (Figure 4.3). Following the

work of [63], we use a list of hyperlinks to each target subreddit as a separate sequence

and consider target subreddits as communities (i.e., dimensions).

• News: News dataset, which is provided by GDELT project [48] through its API2,

consists of roughly 20,000 news articles related to COVID-19 dated from January 20

to March 24, 2020. The original dataset contains over a million of news articles related

to COVID-19. Each piece of news had a timestamp and a URL. We extracted the

domain of news websites from a URL and obtained more than 1,000 unique domains.

We filtered out 40 country-specific domains and used them as communities. The

granularity of time is one second.

• Protest: Protest dataset, which was gathered by ACLED3, contains over 20,000

demonstration events in 35 countries during 9 months from March 1 to November 21,

2020. We sampled 35 popular countries and retrieved events from those countries.

Each event was associated with two attributes: timestamp and country. The dataset

was recorded at minute level.

• Crime: Crime dataset is publicly available from the City of Chicago Data Portal4;

it includes about 30,000 reported crimes from 13 community areas of Chicago from

1 March to 19 December 2020. Each event recorded the time and community area

where a crime happened. The time granularity is one minute.

All the datasets are publicly available. The statistics of these datasets are given in Table

4.3.

2Global Dataset of Events, Location, and Tone (GDELT). http://gdeltproject.org. Accessed on Decem-
ber 23, 2020.

3Armed Conflict Location and Event Dataset (ACLED). https://www.acleddata.com. Accessed on
December 10, 2020.

4Chicago Data Portal. https://data.cityofchicago.org/. Accessed on December 30, 2020.
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4.6.2 Comparison Methods

We compare DHP against five widely used point process methods that incorporate the

influence of the past events:

• HPP (Homogeneous Poisson Process): It is the simplest point process where the

intensity is assumed to be constant over time. Its intensity is defined by �m(t) = �m,

where �m denotes the constant intensity rate for m-th community.

• RPP (Reinforced Poisson Processes) [87, 77]: RPP accounts for the aging e↵ect and

the cumulative count of past events. For each dimension m, the intensity of RPP is

characterized by

�m(t) = �m(t)Nm(t), (4.21)

where �m(t) is the relaxation function that characterizes the aging e↵ect, and N
m(t)

is the number of events of dimension m that have occurred up to t. Following the

prior work [87], we define �m(t) by the following relaxation log-normal function:

�m(t) =
exp (�(log t� ↵m)2/2�2m)p

2⇡�mt
, (4.22)

where ↵m and �m are parameters, which are local to the dimension.

• SelfCorrecting (Self-correcting Point Process) [36]: Its intensity is assumed to increase

linearly over time and this tendency is corrected by the historical events. The inten-

sity function of SelfCorrecting is assumed to increase steadily over time with the rate

�m > 0; this trend is corrected by constant ⇢m > 0 every time an event arrives. Its

intensity function associated with dimension m is given by

�m(t) = exp
�
↵m + �m(t� ⇢mN

m(t))
�
, (4.23)

where ↵m, �m, and ⇢m are parameters, and N
m(t) is the number of events of dimen-

sion m in (0, t].

• Hawkes (Hawkes Process): Its intensity is parameterized by Equation 4.3, which

explicitly models the influence of the past events by using the static triggering kernel.

• RMTPP (Recurrent Marked Temporal Point Process) [21]: It employs RNN to encode

the non-linear e↵ects of past events. The event sequences are first embedded by RNN

and then used as the input of the intensity.
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4.6.3 Experimental Settings

For the experiments, we divided each dataset into train, validation, and test sets by chrono-

logical order with the ratios of 70%, 10%, and 20%. The model parameters were trained

using the ADAM optimizer [42]. We tuned all the models using early stopping based on

the log-likelihood performance on the validation set with a maximum of 100 epochs for

the Reddit and News datasets and 30 epochs for the Protest and Crime datasets. Batch

size is set to 128. The hyperparameters of each model are optimized via grid search. For

the neural networks-based models (i.e., RMTPP and DHP), we choose the number of layers

from {1, 2, 3, 4, 5}. For Hawkes process methods (i.e., Hawkes and DHP), the kernel func-

tion is selected from three commonly used kernels: exponential memory, power-law, and

Raleigh kernels. These are mathematically defined in Table 4.2. For DHP, we search on

the number of mixtures C over {1, 2, 3, 4, 5}. The chosen hyperparameters are presented

in Section 4.6.5.

4.6.4 Evaluation Metrics

Our experiments use the following two metrics in evaluating all models. For both metrics,

lower values indicate better performance.

• NLL (Negative Log-Likelihood) is used to assess the likelihood of the occurrence of

the events over the test period; it is calculated as

I+nX

i=I

"
� log �mi(ti) +

MX

m=1

Z
ti

ti�1

�m(t)dt

#
, (4.24)

where n is the number of events in the test period.

• MAPE (Mean Absolute Percentage Error) evaluates the discrepancies between the

predicted number of events in small time intervals and the ground truth. We first split

the test time period [T, T+�T ] into S successive small time intervals using 15-minute

periods. For each time interval (ts, ts+1] and each dimension m, given the history of

events up to ts, we predict the number of events in (ts, ts+1], N̂m((ts, ts+1]), described

in Equation 4.20 of Section 4.5. Then, we measure the average normalized di↵erence

between the predicted and observed number of events across all time intervals as

follows:

MAPE =
1

M

MX

m=1

��PS

s=1 N̂
m
�
(ts, ts+1]

�
�
P

S

s=1N
m
�
(ts, ts+1]

���
P

S

s=1N
m
�
(ts, ts+1]

� , (4.25)
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where N̂
m ((ts+1, ts]) is the predicted number of events in the small time interval

(ts+1, ts] and N
m(·) is the ground truth at the s-th time interval and m-th dimension.

4.6.5 Implementation Details

All code was implemented using Python 3.9 and Keras [16] with a TensorFlow backend

[1]. We conducted all experiments on a machine with four 2.8GHz Intel Cores and 16GB

memory.

The model parameters were trained using the ADAM optimizer [42] with �1 = 0.9,

�2 = 0.999 and a learning rate of 0.002. For the neural networks-based models (i.e., RMTPP

and DHP), the number of hidden units in each layer is fixed as 8. In our experiment, the

number of mixtures is set to 3 for Reddit, News and Protest datasets, and to 5 for Crime

dataset. In all experiments, we used the power-law kernel. The number of layers is set to

2 for Reddit and Protest datasets, 1 for News dataset, 3 for Crime dataset, respectively.

91



T
ab

le
4.
4:

N
eg
at
iv
e
lo
g-
li
ke
li
h
oo

d
(N

L
L
)
an

d
M
ea
n
A
b
so
lu
te

P
er
ce
nt
ag

e
E
rr
or

(M
A
P
E
)
w
it
h
st
an

d
ar
d
d
ev
ia
ti
on

(i
n
th
e
b
ra
ck
et
).

L
ow

er
is

b
et
te
r.

T
h
e
b
es
t
p
er
fo
rm

an
ce

is
in

b
ol
d
.
O
u
r
p
ro
p
os
al
,
D
H
P
,
ou

tp
er
fo
rm

s
fi
ve

ex
is
ti
n
g
m
et
h
od

s.

R
ed

d
it

N
ew

s
P
ro
te
st

C
ri
m
e

N
L
L

M
A
P
E

N
L
L

M
A
P
E

N
L
L

M
A
P
E

N
L
L

M
A
P
E

H
P
P

-5
.6
37

0.
55

3
(0
.2
04

)
-5
.7
10

0.
60

0
(0
.0
44

)
-5
.7
53

0.
34

5
(0
.0
60

)
-6
.7
95

0.
14

4
(0
.0
14

)
H
a
w
k
e
s

-5
.6
96

0.
45

8
(0
.1
07

)
-6
.1
67

0.
47

1
(0
.0
85

)
-6
.2
60

0.
41

5
(0
.3
71

)
-6
.7
99

0.
17

9
(0
.0
16

)
R
P
P

-5
.5
68

0.
59

5
(0
.2
59

)
-6
.1
50

0.
48

1
(0
.5
22

)
-5
.6
43

0.
58

1
(0
.7
59

)
-6
.7
81

0.
17

5
(0
.0
21

)
S
e
lf
C
o
rr
e
c
t
in
g

-5
.6
62

0.
47

5
(0
.1
58

)
-5
.9
73

0.
45

2
(0
.0
59

)
-5
.7
50

0.
52

4
(0
.6
74

)
-6
.8
03

0.
12

3
(0
.0
05

)
R
M
T
P
P

-
0.
31

1
(0
.0
61

)
-

0.
44

6
(0
.1
25

)
-

0.
63

9
(1
.3
37

)
-

0.
30

2
(0
.0
10

)

P
ro
p
o
s
e
d

-
6
.4
4
7

0
.3
0
5
(0
.0
45

)
-
6
.3
0
1

0
.4
4
2
(0
.0
39

)
-
6
.9
1
4

0
.3
1
8
(0
.0
49

)
-
6
.9
8
3

0
.1
1
7
(0
.0
08

)

92



4.6.6 Performance Evaluation

In this section, we first compare DHP with existing methods on event prediction. Table 4.4

presents the negative log-likelihood (NLL) of the test data and Mean Absolute Percentage

Error (MAPE) for di↵erent methods on the real-world event datasets. In this table, we

omit the result of RMTPP since its log-likelihood function di↵ers from those used in the

other methods, (it is defined for the whole event sequence from all communities, not for

the separate sequences of the individual communities, which precludes fair comparison).

As shown in the table, our proposal, DHP, outperforms the four existing methods across

all the datasets in terms of NLL. HPP has the worst NLL in most cases since it does not

explore the temporal variation of the event occurrences. RPP and SelfCorrecting cannot

achieve good results as they encode strong assumptions on the functional forms of the

intensity, which limits the expressivity of the model. Hawkes surpasses HPP, RPP, and

SelfCorrecting, which explicitly models the dependencies between past and current events.

However, it still falls short for modeling the dynamic changes of the community states in

the di↵usion process. Our DHP achieves even better NLL than Hawkes. This verifies that

incorporating latent community dynamics is essential for event prediction and that DHP

can learn e↵ective representations of the time-evolving dynamics of community states.

DHP achieves the best MAPE for all datasets. RMTPP performs the second best in

terms of MAPE for Reddit and News datasets, which is probably because RMTPP exploits

the power of RNN for learning non-linear dependencies between events. But RMTPP

performs poorly for Protest and Crime datasets since it cannot capture changes in the event

occurrences due to the temporal evolution of communities’ states, e.g., a large reduction

in protest events due to the COVID-19. DHP outperforms all other methods across the

datasets on the two metrics. The above result reveals the e↵ectiveness of encoding the

community state dynamics governing the di↵usion process for event prediction. It also

suggests that the assumption of DHP, i.e., the magnitude and speed of di↵usion are related,

holds for real di↵usion processes.

4.6.7 Sensitivity Study

In this section, we analyze the impacts of hyperparameters or experimental settings. We

report the prediction performance of DHP under di↵erent settings for the four datasets.

Number of mixtures. We examine how the number of mixture components,

C, determines the prediction performance of DHP. Figure 4.2(a) shows the negative log-

likelihood (NLL) on the test data with respect to di↵erent numbers of mixtures {1, 2, 3, 4, 5}.
In this experiment, we fixed the number of layers as 3 and used the power-law kernel. The
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(a) Number of mixtures (b) Triggering kernel

(c) Number of layers

Figure 4.2: Sensitivity Study: NLL performance of DynamicHawkes on di↵erent settings
for four datasets.

NLL performance tends to be stable for all the datasets. It slightly increases as the number

of mixture components becomes larger for Protest and Crime dataset. The results indicate

that increasing the number of mixtures can improve the expressiveness of the model.

Kernel functions. We investigate the e↵ect of three kernel functions: exponential

kernel, power-law kernel, and Raleigh kernel, where the number of mixtures and the number

of layers are set to 3. As shown in Figure 4.2(b), the power-law kernel yields the best

performance on all datasets.

Number of layers. Figure 4.2(c) evaluates the sensitivity of our neural network

�c
m(t) to the number of layers L 2 {1, 2, 3, 4, 5} by fixing the number of mixtures as 3 and

using the power-law kernel. We observe that DHP yields better NLL results for the Protest

dataset with larger numbers of layers. For the other three datasets, it has little e↵ect on

the performance.

In general, DHP shows stable and robust prediction performance across di↵erent set-

tings.
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Figure 4.3: Visual comparison of predicted interactions among reddit communities (i.e.,
subreddits) from Reddit dataset. The bottom two rows are the predicted results of our
DHP and Hawkes. The last row is the ground truth. Columns correspond to times indicated
by the label on the top. Nodes represent subreddits. Their colors indicate their categories.
For DHP (middle), the size of the m-th node is proportional to

P
m0 ↵m,m0fm(t) and the

width of edge between nodes m and m
0 is proportional to ↵m,m0fm(t).
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Figure 4.4: Intensity with observed event sequences and latent dynamics function for two
Reddit communities (i.e., subreddits): news and space. The latent dynamics function
increases rapidly for news and slowly for space following the onset of the COVID-19
lockdown.

Figure 4.5: Learned triggering kernel between 8 selected subreddits at 3 di↵erent time
points. Nodes denote subreddits, color indicates category. Node size is proportional to
latent dynamics function for each subreddit. Edge width is proportional to triggering
kernel, which indicates strength of di↵usion between pairs of subreddits. We can see the
latent dynamics function increases over time for most subreddits from March to May, 2020.
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Figure 4.6: February 24, 2020.

Figure 4.7: March 15, 2020.

Figure 4.8: Inferred interactions among 15 major news websites from di↵erent countries
by DHP on News dataset at two di↵erent time points. Nodes refer to domain names of
news websites. We used the top-level domain to specify the country in which each news
website is based. Notes are colored by regions. The size of the m-th node is given byP

m0 ↵m,m0fm(t) and the edge width between nodes m and m
0 by ↵m,m0fm(t).
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Figure 4.9: Learned intensity and latent dynamic function for two news websites in China
and UK from February 14 to March 25, 2020.

Figure 4.10: Intensity and latent dynamic function learned by DHP on Protest dataset for
two countries.
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4.6.8 Case Studies

In order to further verify the capability of DHP, we analyze the temporal dynamics of the

community states behind the di↵usion process learned by DHP from each dataset.

Figure 4.3 visualizes the interactions between selected 8 Reddit communities (i.e., sub-

reddits) learned from Reddit dataset. In each row, we compare the estimated interactions

between subreddits by DHP (middle) and Hawkes (bottom), and the ground truth (top).

For the ground truth, node size corresponds to the aggregated number of hyperlinks for

each “target” community in the default 5-day interval; the weight of each edge represents

the number of hyperlinks between source community m
0 and target community m. For

DHP, node size is proportional to
P

m0 ↵m,m0fm(t); edge width is ↵m,m0fm(t). For Hawkes,

node size is
P

m0 ↵m,m0 ; edge width is ↵m,m0 . Note that Hawkes produces the same results

across times since it assumes the triggering kernel is static over time. We can see that the

interactions learned by DHP are more consistent with the true evolution of the interactions

between online user communities compared to Hawkes.

In Figure 4.4 and 4.5, we present the the dynamics of community states learned by

our DHP for Reddit dataset. Figure 4.4 shows the intensity �m(t) and estimated dynamics

function fm(t) learned for Reddit dataset, along with the observed event sequences for

the two subreddits. Figure 4.5 shows the learned triggering kernel between eight selected

subreddits at three di↵erent time points. In this figure, the nodes denote subreddits colored

by category; its size is proportional to latent dynamics function for each subreddit. The

edge width is proportional to the triggering kernel, which indicates the strength of di↵usion

between pairs of subreddits. The latent dynamics function increases up to the end of May,

rapidly for news and slowly for space. This is probably due to the COVID-19 lockdown.

These results demonstrate that our DHP learns a reasonable representation of the latent

temporal dynamics of the online communities.

Figure 4.8 shows inferred interactions among news websites from 15 countries learned

for News dataset. In these figures, the node size denotes the value of the latent dynamics

function
P

m0 ↵m,m0fm(t) for each news website; the edge width denotes the strength of

interactions between them ↵m,mjfm(t). East Asian and South-East Asian countries (de-

noted by blue and yellow) rise to their peaks around late February (See Figure 4.6) and

then decrease until mid-March (Figure 4.7), while the other countries are peaked around

or after March 15 (Figure 4.7), not in February (Figure 4.6). We can also see in Figure

4.9 that the dynamic function peaks around mid-February for China (left), followed by the

United Kingdom with the peak of mid-March (right). These trends are synchronized to

the growth of the pandemic in each country. East Asian and South-East Asian countries
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experienced their first peak in COVID-19 cases ahead of the other countries, which would

trigger the people’s early interest on COVID-19 related topics and accelerate the spread of

COVID-19 related news early on. This confirms that our proposal, DHP, well reproduces

the complex evolution in news website activities.

Figure 4.10 shows the intensity and latent dynamic function learned from the Protest

dataset. According to a previous study5, in contrast to the online events, the pandemic

initially leads to a reduction in protest events and the trend was corrected after several

weeks. DHP well characterizes this trend. In China (left), the dynamic function decreased

following the onset of the coronavirus around the beginning of March and returned to a

moderate level by mid-June. For Russia, it declined gradually from March until the begin-

ning of July, where the first peak of the pandemic occured around May 11. In conclusion,

DHP uncovers the latent community dynamics underlying the di↵usion processes, and so

provides meaningful insights about the di↵usion mechanism.

4.7 Conclusion and Future Work

Modeling and predicting di↵usion processes are important tasks in many applications. In

this chapter, we presented a novel Hawkes process framework, DHP (Dynamic Hawkes

Process), that can learn the temporal dynamics of the community states underlying di↵u-

sion processes. The proposed DHP allows for the automatic discovery of the community

state dynamics underlying the di↵usion processes as well as o↵ering tractable learning. By

conducting extensive experiments on four real event datasets, we demonstrate that DHP

provides better performance for modeling and predicting di↵usion processes than several

existing methods.

For future work, we plan to explore the following two directions. First, DHP can

be extended to capture the pairwise dynamics of the interactions among communities by

introducing the latent dynamics function for pairs of communities. We will extend DHP

to this case and conduct experiments to evaluate the performance of the extended DHP in

capturing the time-evolving dynamics of the pairwise interactions between communities.

Secondly, DHP is built on the assumption that the magnitude and speed of the di↵usion

are related to each other, which may limit the flexibility of the model. We will explore how

to modify DHP to ease this assumption.

5https://acleddata.com/2020/09/03/demonstrations-political-violence-in-america-new-data-for-
summer-2020/
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we address the problem of predicting spatio-temporal events to capture

the influence of contextual factors on the spatio-temporal event occurrences. We present

novel point process models by integrating spatio-temporal point processes with deep neural

networks. In chapters 2 and 3, we propose two new point process models integrating rich

observable features and learning their complex e↵ects on the event occurrence. In chapter 2,

we study how to learn the e↵ect of rich contextural factors on the event occurrence. To

this end, we propose an inhomogeneous Poisson process model that can e↵ectively exploit

unstructured data that represents contextual information. In chapter 3, we investigate

how to learn the influence of rich contextural factors on the triggering processes. To do so,

we develop a Hawkes process model that e↵ectively utilizes the rich external information

present in unstructured data. In chapter 4, we aim to learn the e↵ects of underlying and

unobservable factors on the triggering processes. chapter 4 presents a Hawkes process model

that learns the underlying dynamics of community states behind the di↵usion processes

and predicts the occurrences of events based on the dynamics. In this section, we briefly

summarize the main contributions of this thesis.

5.1.1 Spatio-temporal Event Prediction with Rich Contextual Informa-

tion (Chapter 2)

We propose an inhomogeneous point process model, referred to as Deep Mixture Point

Processes (DMPP), for spatio-temporal event prediction. It accurately and e↵ectively pre-

dicts spatio-temporal events by leveraging the contextual features, such as map images

and social/tra�c event descriptions, that impact event occurrence. We integrate the deep
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learning approach into the point process framework. Specifically, we extract the intensity

by using a deep mixture of experts, whose mixture weights are modeled by a deep neural

network. This formulation allows us to utilize the information present in unstructured con-

textual features, and to automatically discover their complex e↵ects on event occurrence,

while at the same time yielding tractable optimization. We develop an e�cient estimation

procedure for training and evaluating DMPP. We conduct extensive experiments on real-

world data sets from three urban domains. With regard to event occurrence, the proposed

method achieves better predictive performance than all existing methods on all data sets.

5.1.2 Context-aware Spatio-temporal Event Prediction via Convolutional

Hawkes Processes (Chapter 3)

We propose a novel Hawkes process model, Convolutional Hawkes process (ConvHawkes)

for modeling di↵usion processes and predicting spatio-temporal events. It accurately and

e↵ectively predicts spatio-temporal events by leveraging the contextual features contained

in georeferenced images (e.g., satellite images and map images), that impact triggering

processes. We present an extension of the neural network model and integrate it into the

Hawkes process framework. This formulation allows us to utilize the contextual features

present in the unstructured image data, and to automatically discover their complex e↵ects

on the triggering process, while at the same time yielding tractable optimization. We

conduct extensive experiments on real-world datasets from di↵erent domains. With regard

to event occurrence, the proposed method achieves better predictive performance than

several existing methods on all datasets.

5.1.3 Dynamic Hawkes Processes for Discovering Time-evolving Com-

munities’ States behind Di↵usion Processes (Chapter 4)

We propose a novel Hawkes process framework, Dynamic Hawkes Process (DHP) for mod-

eling di↵usion processes and predicting future events. The proposal, DHP, is able to learn

the time-evolving dynamics of community states behind the di↵usion processes. We in-

troduce latent dynamics function; it reflects the hidden community dynamics and designs

the triggering kernel of the Hawkes process intensity using the latent dynamics function

and its integral. The resulting model is computationally tractable and flexible enough to

approximate the true evolution of the community states underlying the di↵usion processes.

We carry out extensive experiments using four real-world event datasets: Reddit, News,

Protest, and Crime. The results show that DHP outperforms the existing works. Case

studies demonstrate that DHP uncovers the hidden state dynamics of communities that
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underlie the di↵usion processes by the latent dynamic function.

5.2 Future Research

In this section, we discuss possible future directions for extending the proposed models.

Although our experiments throughout the thesis have proven the e↵ectiveness of our

proposed models, their predictive power still has room for improvement. To further en-

hance the prediction performance, we can consider several approaches. First, additional

features can also be incorporated into the proposed models. Throughout this thesis, we

focus on incorporating particular contextual features. In chapters 2 and 3, we leverage

rich contextual features (e.g., satellite images and map images). In addition to these fea-

tures, we can also consider simple features like time of day, weather, and transportation

networks. Second, the studies in this thesis only use either observable or unobservable con-

textual features. In chapters 2 and 3, we exploit observable contextual features, directly,

whereas chapter 4 relies on inference to learn the contribution of unobservable contextual

factors. In practice, however, contextual features are partially observable, where only some

contextual features are explicitly known while others are missing. We want to integrate the

two di↵erent approaches in chapters 2 and 3 and chapter 4 to exploit partially observable

features. Last but not least, our approach can be extended to more recent point process

models. The proposed models are based on basic point process models: Inhomogeneous

Poisson processes and Hawkes processes. Recent works employ state-of-the-art neural net-

work architectures to capture the non-linear temporal correlation between events, including

Transformer Hawkes process [126] and self-attentive Hawkes process [116]. Di↵erent from

these methods, this thesis focuses on modeling the time-evolving states of target locations

at a future time, instead of the past influence. The proposed models can be integrated

into these recent point processes. This allows for capturing both complex influences from

historical events and the time evolution of current states driven by external factors.

In this thesis, we proposed three new point process models and applied the proposed

models to several applications to evaluate their e↵ectiveness: transportation, public safety,

crime, public health, social media, and natural disasters. For future work, we try to

apply our models to other applications such as financial transactions, online purchases, and

infrastructure failures. In financial transactions, social mood plays an important role in

modeling the change in the transaction price. We can employ ConvHawkes (Convolutional

Hawkes process) to extract indicators of social mood from large-scale online data such as

surveys, media content. We can also use DHP (Dynamic Hawkes Process) to automatically

learn hidden social moods from transaction data. ConvHawkes (Convolutional Hawkes
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process) can be used to leverage item features (e.g., reviews, item description, and user’

feedback) for online purchasing prediction.

104



Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Gregory S. Corrado, Andy Davis, Je↵rey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian J. Goodfellow, Andrew Harp, Geo↵rey Irving, Michael Isard, Yangqing
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