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Abstract

In the stable marriage problem (SM for short), we are given sets of men and women,

and each person’s preference list that strictly orders the members of the other gender

according to his/her preference. The question is to find a stable matching, that is,

a matching containing no pair of man and woman who prefer each other to their

partners. Such a pair is called a blocking pair. It is known that any instance admits

at least one stable matching, and there is a polynomial time algorithm to find one.

Many extensions are studied and they are collectively called stable matching problems.

Stable matching problems have already been applied in the real world, such as

assigning residents to hospitals or assigning students to schools; however, some ap-

plications have requirements in addition to stability, for example, assigning as many

residents as possible. In this thesis, we study computational tractability of various

extensions of stable matching problems in order to fulfill such requirements and make

them more widely applicable.

In Chapter 3, we give a hardness result for a problem of finding a maximum car-

dinality matching that is as stable as possible. In the stable marriage problem that

allows incomplete preference lists, all stable matchings for a given instance have the

same size. However, if we ignore the stability, there can be larger matchings. For a

problem of finding a maximum cardinality matching that contains minimum number

of blocking pairs, it was proved that this problem is not approximable within some

constant unless P=NP. We substantially improve this lower bound.

In Chapter 4, we define a many-to-one extension of SM called hospitals/residents

problems with lower quotas (HRLQ for short). In HRLQ, the two sets are residents and

hospitals, and each hospital has lower and upper quotas on the number of residents to

be assigned. Only matchings that satisfy both upper and lower quotas for all hospitals

are feasible. In this setting, there can be instances that admit no stable matching,

but the problem of asking if there is a stable matching is solvable in polynomial time.

In case there is no stable matching, we consider the problem of finding a matching
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with minimum number of blocking pairs. We show that this problem is hard to

approximate. We then consider another measure for optimization criteria, i.e., the

number of residents who are involved in blocking pairs. We show that this problem

is still NP-hard but has a polynomial-time algorithm with non-trivial approximation

ratio.

In Chapter 5, we give algorithms and an NP-completeness proof for the problems

of finding stable matching without edge crossings. As an extension of SM that can

represent some of physical constraints, problems of finding a stable matching without

edge crossings has been considered. There are two stability notions, strongly stable

noncrossing matching (SSNM) and weakly stable noncrossing matching (WSNM), de-

pending on the strength of blocking pairs. It was proved that a WSNM always exists

and a polynomial-time algorithm to find one is known; however, the complexities of

determining existence of an SSNM and finding a largest WSNM remained open. We

show that both problems are solvable in polynomial time. We also show that our al-

gorithms are applicable to extensions where preference lists may include ties, except

for one case which we show to be NP-complete.

In Chapter 6, we consider strategy-proofness in an extension of SM. SM can be seen

as a game among participants, who have true preferences in mind, but may submit a

falsified preference list hoping to obtain a better partner than the one assigned when

true preference lists are used. We say that an algorithm is strategy-proof if, when it is

used, no person can obtain a better partner by submitting a falsified preference list

in any instance. There are some positive and negative results on strategy-proofness

for SM. The stable marriage problem with ties and incomplete lists (SMTI for short)

is an extension of SM in which preference lists may contains ties and may include

only a subset of the member of the opposite gender. By contrast to SM, there is

an SMTI-instance that admits stable matchings of different sizes, and the problem

of finding a stable matching of the maximum size, called MAX SMTI, is NP-hard.

There are a plenty of approximability and inapproximability results for MAX SMTI,

but there is no result on strategy-proofness. We introduce it to MAX SMTI, and

investigate the trade-off between strategy-proofness and approximability.

These results contribute to understanding computational tractability of complex

stable matching problems for real-world applications. Our results have also made sev-

eral contributions to the overall study of stable matching problems. One is strength-

ening the common understanding that minimizing the number of blocking pairs is
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difficult. The hardness results shown in Chapters 3 and 4 add evidences to it. An-

other contribution is obtaining tight results for the stable matching problems. We

give tight upper and lower bounds on approximation ratios for several variants and a

tight condition on the existence of polynomial-time algorithm for a decision problem.

Our results also provide an avenue for subsequent studies. There are subsequent stud-

ies that circumvent our hardness results by considering alternative solution concepts.

In addition, our proof technique for showing strategy-proofness given in Chapter 6 is

generic, and was used in subsequent work.
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Chapter 1

Introduction

1.1 Background

The stable marriage problem (SM for short) is a widely known problem first studied

by Gale and Shapley [GS62]. We are given sets of men and women, and each person’s

preference list that strictly orders the members of the other gender according to

his/her preference. The question is to find a stable matching, that is, a matching

containing no pair of man and woman who prefer each other to their partners. Such

a pair is called a blocking pair. Gale and Shapley proved that any instance admits

at least one stable matching, and gave an algorithm to find one, known as the Gale-

Shapley algorithm. SM and its extensions are collectively referred to as stable matching

problems.

Some of stable matching problems have already been applied in the real world. In

the United States, the National Intern Matching Program (currently the National

Resident Matching Program, NRMP) has been matching residents with hospitals

since 1952. The algorithm used there was essentially the same as the Gale-Shapley

algorithm. Since then, stable matching problems have been applied to assigning

residents to hospitals [GI89, CaR, IMS00], assigning students to schools [TST01,

APR05, APRS05], and finding donors for kidney exchange [RSÜ04]. One of the

reasons for this widespread application of stable matching problems is that stability

is important in real world applications. Roth has shown empirical evidence that

algorithms which always output stable matchings last longer than those which may

output unstable matchings [Rot02].

When applying stable matching problems, various conditions are required in ad-

dition to stability. For example, in the 1970s, there was a decline in the number of

participants in the NRMP because the algorithm used at the time could not satisfy
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the desire of resident couples to be assigned to hospitals near each other [Rot84]. To

solve this problem, the algorithm was redesigned to take the couple’s preferences into

account [RP99]. Another example is the school choice in New York [APR05]. When

revising the school choice system in New York, in addition to stability, strategy-

proofness was considered important. Strategy-proofness for an algorithm ensures that

no participant can falsify his or her input to obtain a better outcome. Without this

property, participants will have an incentive to submit a fake preference list, and the

correct output will not be obtained. As such, it is desirable to be able to satisfy

a variety of requirements in order for stable matching problems to continue to be

applied.

Various stable matching problems have been considered for real-world applications.

One of the main classes of stable matching problems is a set of variants with gen-

eralized inputs or outputs. As for output generalization, the problem of finding a

many-to-one matching, called the hospitals/residents problem (HR for short) [GS62],

and the one for many-to-many [Sot99] are studied. As for input generalization, vari-

ants with different number of parties are considered. The stable roommates problem

(SR for short) [GS62] is a problem of finding a stable matching within a single party

rather than two parties. There are also problems with three parties [Knu76] and more

parties [Lic15].

Another class of variants includes preference list generalization. A typical example

of this class is the problem that allows an incomplete list where the preference list

comprises only a subset of the opposite set [GS62]. This is called SM with incomplete

lists (SMI for short). SM with ties (SMT for short) [GI89] is another typical variant,

which allows ties in preference lists.

There is also a set of variants with constraints to exclude undesirable matchings.

In applications, there are often requirements for matching other than stability, as in

the case with couples [RP99] we saw above. The constraints of this class of problems

are considered in connection with such requirements. For example, an extension of

HR called the student-project allocation problem [AIM07] models the assignment of

students to projects in a university. In this problem, in addition to a capacity of each

project, there is a capacity for a lecturer that bounds the number of students assigned

to the projects offered by her. In addition, the lower quota constraint, which gives a

lower bound on the number of residents assigned to each hospital [BFIM10], has been

studied to prevent imbalance in the number of residents assigned to hospitals in HR.
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For the same purpose, the common quota constraint, which gives an upper bound on

the sum of the number of residents assigned to each hospital for a subset of hospitals

[BFIM10, KK10], and the classified constraint, which sets upper and lower bounds on

the number of residents assigned to some subset of residents [Hua10], have also been

studied.

1.2 Purpose of this Thesis

In real-world applications of stable matching problems, conditions such as above gen-

eralizations and constraints, and even combinations of them, are often required. How-

ever, since such a complex problem is rarely computationally tractable, it is desirable

to be able to balance the conditions by weakening each condition to make it com-

putationally tractable. In this thesis, as steps toward making this possible, we aim

to investigate the computational tractability of stable matching problems under var-

ious conditions. Specifically, we study algorithms for problems that prioritize con-

straints other than stability, algorithms for stable matching problems with physical

constraints, and strategy-proof algorithms for stable matching problems.

We first study algorithms for stable matching problems in which stability is not a

constraint but an objective function for optimization. In the real world, stability is

not necessarily the top priority. For example, when assigning residents, it may be

desirable to increase the number of assigned residents or reduce the imbalance in the

number of assigned residents, even at the cost of stability. We therefore study, in

Chapters 3 and 4, the problem of finding a matching that is “as stable as possible”

while satisfying some conditions.

In Chapter 3, we study the computational tractability of the problem of finding

maximum matching that is “as stable as possible” in SMI. Possible measures of in-

stability are the number of blocking pairs [EH08, NR04, KMV94] and the number of

blocking residents that are included in a blocking pair [EH08, RX97]. We consider

minimizing the number of blocking pairs, which is the more natural of the two. The

problem is defined by Biró et al. [BMM10].

In Chapter 4, we define an extension of HR, which we call HR with lower quotas

(HRLQ for short), with a lower bound on the number of residents assigned to each

hospital. We show some hardness and approximability results for the problem of

finding a matching that is “as stable as possible” among the ones satisfying the lower

quotas. The lower quota is a constraint that naturally responds to the request of
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real-world applications to reduce the imbalance in the number of residents assigned

to each hospital. For HR with lower quota constraint, three models—i.e., Biró et

al.’s [BFIM10], Huang’s [Hua10], and ours—were proposed at around the same time.

These models have led to many subsequent studies.

Next, we consider physical constraints. When we try to apply matching algorithms

in the real world, we are often faced with physical constraints. For example, when we

wire a circuit or build a bridge over a river, we need to find a matching such that no

wires or bridges cross each other. Ruangwises and Itoh [RI19] incorporated the notion

of noncrossing matchings [Ata85, CLW15, KT86, MOP93, WW85] to stable matching

problems. In Chapter 5, we positively solve the two open problems proposed in [RI19]

and extend it to an extension of SM called SMTI.

Finally, we study strategy-proof algorithms for stable matching problems. Opti-

mization algorithms find a solution based on the assumption that the input is correct;

however, this is not always the case in the real world. A participant who submits an

input may try to get a better output by submitting false information. To discourage

such attempts, strategy-proofness has been studied in an area of economics. We say

that an algorithm is strategy-proof if no participant can obtain a better output by

falsifying his/her input. It is known that there is no strategy-proof algorithm that

finds a stable matching in SM [Rot82]. By contrast, one form of the Gale-Shapley

algorithm is man-strategy-proof [DF81, Rot82], which means that no man can obtain a

better output by falsifying his input. In Chapter 6, we give strategy-proof algorithms

for SMTI, for which no strategy-proof algorithm was previously known.

1.3 Results of this Thesis

In Chapter 3, we give a hardness result for a problem of finding a maximum cardinality

matching that is as stable as possible. In SMI, all stable matchings for a given instance

have the same size. However, if we ignore the stability, there can be larger matchings.

Biró et al. [BMM10] defined the problem of finding a maximum cardinality matching

that contains minimum number of blocking pairs. A restriction of the problem is

called MAX SIZE MIN BP (p, q)-SMI, where p (q) is an upper bound on the length of

each man’s (woman’s, respectively) preference list. They showed the following results;

(1) MAX SIZE MIN BP (∞, ∞)-SMI is NP-hard and cannot be approximated within

the ratio of n1−ε for any constant ε > 0, unless P=NP; (2) MAX SIZE MIN BP (3,

3)-SMI is APX-hard and cannot be approximated within the ratio of 3557
3556 ≃ 1.00028
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unless P=NP; (3) MAX SIZE MIN BP (2, ∞)-SMI is solvable in O(n3) time, where

n is the number of men in an input. We improved the lower bound of (2), namely, we

improved the constant 3557
3556 to n1−ε for any ε > 0.

In Chapter 4, we define HRLQ. In HRLQ, the two sets are residents and hospitals,

and each hospital has lower and upper quotas on the number of residents to be as-

signed. Only matchings that satisfy both upper and lower constraints for all hospitals

are feasible. In this setting, there can be instances that admit no stable matching, but

the problem of asking if there is a stable matching is solvable in polynomial time. In

case there is no stable matching, we consider the problem of finding a matching that is

“as stable as possible”, namely, a matching with a minimum number of blocking pairs.

We show that this problem is hard to approximate within the ratio of (|H|+ |R|)1−ϵ

for any positive constant ϵ where H and R are the sets of hospitals and residents,

respectively. We then tackle this hardness from two different angles. First, we give

an exponential-time exact algorithm whose running time is O((|H||R|)t+1), where t

is the number of blocking pairs in an optimal solution. Second, we consider another

measure for optimization criteria, i.e., the number of residents who are involved in

blocking pairs. We show that this problem is still NP-hard but has a polynomial-time√
|R|-approximation algorithm.

In Chapter 5, we give algorithms and an NP-completeness proof for the problems

of finding stable matching without edge crossings. Ruangwises and Itoh [RI19] intro-

duced stable noncrossing matchings, where participants of each side are aligned on

each of two parallel lines, and no two matching edges are allowed to cross each other.

They defined two stability notions, strongly stable noncrossing matching (SSNM) and

weakly stable noncrossing matching (WSNM), depending on the strength of block-

ing pairs. They proved that a WSNM always exists and presented an O(n2)-time

algorithm to find one for an instance with n men and n women. They also posed

open questions of the complexities of determining existence of an SSNM and finding

a largest WSNM. We show that both problems are solvable in polynomial time. Our

algorithms are applicable to extensions where preference lists may include ties, except

for one case which we show to be NP-complete. This NP-completeness holds even if

each person’s preference list is of length at most two and ties appear in only men’s

preference lists. To complement this intractability, we show that the problem is solv-

able in polynomial time if the length of preference lists of one side is bounded by one

(but that of the other side is unbounded).
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In Chapter 6, we give strategy-proof algorithms for finding largest cardinality

matchings in SM with ties and incomplete lists (SMTI for short). SMTI is an ex-

tension of SM in which preference lists may contains ties and may include only a

subset of the members of the opposite gender. In SM, a mechanism that always out-

puts a stable matching is called a stable mechanism. One of the well-known stable

mechanisms is the man-oriented Gale-Shapley algorithm (MGS for short), which is a

form of Gale-Shapley algorithm. MGS is strategy-proof to the men’s side, i.e., no man

can obtain a better outcome by falsifying a preference list [DF81, Rot82]. We call such

a mechanism a man-strategy-proof mechanism. Unfortunately, MGS is not a woman-

strategy-proof mechanism.*1 Roth has shown that there is no stable mechanism that

is simultaneously man-strategy-proof and woman-strategy-proof, which is known as

Roth’s impossibility theorem [Rot82]. We extend these results to SMTI. Since it is an

extension of SM, Roth’s impossibility theorem takes over to it. Therefore, we focus on

the one-sided-strategy-proofness. In SMTI, one instance can have stable matchings

of different sizes, and it is natural to consider the problem of finding a largest stable

matching, known asMAX SMTI. Thus we incorporate the notion of approximation ra-

tios used in the theory of approximation algorithms. We say that a stable-mechanism

is a c-approximate-stable mechanism if it always returns a stable matching of size at

least 1/c of a largest one. We also consider a restricted variant of MAX SMTI, which

we call MAX SMTI-1TM, where only men’s lists can contain ties (and women’s lists

must be strictly ordered). Since MAX SMTI-1TM is NP-hard [MII+02] and current

best upper bounds for the approximation ratios of MAX-SMTI and MAX SMTI-

1TM are 1.5 [McD09, Pal14, Kir13] and 1+1/e ≃ 1.368 [LP19], respectively, we work

on designing strategy-proof approximation algorithms. Our results are summarized

as follows: (i) MAX SMTI admits both a man-strategy-proof 2-approximate-stable

mechanism and a woman-strategy-proof 2-approximate-stable mechanism. (ii) MAX

SMTI-1TM admits a woman-strategy-proof 2-approximate-stable mechanism. (iii)

MAX SMTI-1TM admits a man-strategy-proof 1.5-approximate-stable mechanism.

All these results are tight in terms of approximation ratios. Also, all these results

apply for strategy-proofness against coalitions. The current best polynomial-time

approximation algorithms for MAX SMTI and MAX SMTI-1TM have the approx-

imation ratios better than those in our negative results. Hence our results provide

*1 Of course, if we flip the roles of men and women, we can see that the woman-oriented Gale-

Shapley algorithm (WGS) is a woman-strategy-proof but not a man-strategy-proof mechanism.
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gaps between polynomial-time computation and strategy-proof computation.

These results contribute to understanding computational tractability of complex

stable matching problems for real-world applications. Our results have also made sev-

eral contributions to the overall study of stable matching problems. One is strength-

ening the common understanding that minimizing the number of blocking pairs is dif-

ficult. The hardness results shown in Chapters 3 and 4 add evidences to it. Another

is obtaining tight results, in terms of upper and lower bounds on the approximation

ratio and condition for the existence of a polynomial-time algorithm. Our results also

provide an avenue for subsequent studies. There are subsequent studies that circum-

vent our hardness results by considering alternative solution concepts. In addition,

our proof technique for showing strategy-proofness given in Chapter 6 is generic, and

was used in subsequent work. More detailed discussions will be given in Chapter 7.
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Chapter 2

Preliminaries

2.1 Stable Matching Problems

2.1.1 Stable Marriage Problem

The stable marriage problem (SM for short), introduced by Gale and Shapley [GS62]

(see also [GI89]), is defined as follows: An instance consists of n men m1,m2, . . . ,mn,

n women w1, w2, . . . , wn, and each person’s preference list, which is a total order of all

the members of the opposite gender. If a person qi precedes a person qj in a person

p’s preference list, then we write qi ≻p qj and interpret it as “p prefers qi to qj”. In

this thesis, we denote a preference list in the following form:

m2 : w3 w1 w4 w2,

which means that m2 prefers w3 best, w1 second, w4 third, and w2 last (this example

is for n = 4). A matching is a set of n (man, woman)-pairs in which no person

appears more than once. For a matching M , M(p) denotes the partner of a person

p in M . If, for a man m and a woman w, both w ≻m M(m) and m ≻w M(w) hold,

then we say that (m,w) is a blocking pair (BP for short) for M or (m,w) blocks M .

Note that both m and w have incentive to be matched with each other ignoring the

given partner, so it can be thought of as a threat for the current matching M . A

matching with no blocking pair is a stable matching. The problem requires to find a

stable matching.

It is known that any instance admits at least one stable matching, and one can

be found by the Gale-Shapley algorithm (or GS algorithm for short) in O(n2) time

[GS62].



22 Chapter 2 Preliminaries

2.1.2 Incomplete Lists

One possible extension of SM is to allow incomplete preference lists, which we call

SM with incomplete lists (SMI for short); namely, each person includes a subset of

the members of the opposite gender in the preference list. We call such an instance

an SMI-instance. If a person q appears in a person p’s preference list, we say that

q is acceptable to p. If p and q are acceptable to each other, we say that (p, q) is an

acceptable pair. We assume without loss of generality that acceptability is mutual,

i.e., p is acceptable to q if and only if q is acceptable to p. Now a matching is defined

as a set of disjoint pairs of mutually acceptable man and woman, and hence is not

necessarily perfect. If a person p is not included in a matching M , we say that p

is single in M and write M(p) = ∅. Every person prefers to be matched with an

acceptable person rather than to be single, i.e., q ≻p ∅ holds for any p and any q

acceptable to p. Accordingly, the definition of a blocking pair is extended as follows:

A mutually acceptable pair of man m and woman w is a blocking pair for a matching

M if (i) m and w are not matched together in M , (ii) either m is single or prefers

w to his partner in M , and (iii) either w is single or prefers m to her partner in M .

The size of a matching M , denoted |M |, is the number of pairs in M . There can

be many stable matchings for one instance, but all stable matchings are of the same

size [GS85].

2.1.3 Ties

We then extend the above definitions to the case where preference lists may contain

ties. Such an extension is called SM with ties and incomplete lists denoted SMTI.

A tie of a person p’s preference list is a set of one or more persons who are equally

preferred by p, and p’s preference list is a strict order of ties. We call such an instance

an SMTI-instance. In a person p’s preference list, suppose that a person q1 is in tie

T1, q2 is in tie T2, and p prefers T1 to T2. Then we say that p strictly prefers q1 to q2

and write q1 ≻p q2. If q1 and q2 are in the same tie (including the case that q1 and

q2 are the same person), we write q1 =p q2. If q1 ≻p q2 or q1 =p q2 holds, we write

q1 ⪰p q2 and say that p weakly prefers q1 to q2. When there are ties, we denote a

preference list in the following form:

m2 : w3 (w1 w4),
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which represents that m2 prefers w3 best, w1 and w4 second with equal preference,

but does not want to be matched with w2. When ties are present, there are three

possible definitions of blocking pairs, and accordingly, there are three stability notions,

super-stability, strong stability, and weak stability [Irv94]:

• In the super-stability, a blocking pair for a matching M is an acceptable pair

(m,w) ̸∈ M such that w ⪰m M(m) and m ⪰w M(w).

• In the strong stability, a blocking pair for a matching M is an acceptable pair

(p, q) ̸∈ M such that q ⪰p M(p) and p ≻q M(q). Note that the person q, who

strictly prefers the counterpart p of the blocking pair, may be either a man or

a woman.

• In the weak stability, a blocking pair for a matching M is an acceptable pair

(m,w) ̸∈ M such that w ≻m M(m) and m ≻w M(w).

In the case of super and strong stabilities, there exist instances that do not admit a

stable matching. (See [GI89, Man13] for more details.)

Note that in the case of SM, the size of a matching is always n by definition, but it

may be less than n in the case of SMTI. In fact, there is an SMTI-instance that admits

stable matchings of different sizes, and the problem of finding a stable matching of

the maximum size, called MAX SMTI, is NP-hard [IMMM99, MII+02]. There are a

plenty of approximability and inapproximability results for MAX SMTI. The current

best upper bound on the approximation ratio is 1.5 [McD09, Pal14, Kir13] and lower

bounds are 33/29 ≃ 1.1379 assuming P ̸=NP and 4/3 ≃ 1.3333 assuming the unique

games conjecture (UGC for short) [Yan07]. There are several attempts to obtain better

algorithms (e.g., polynomial-time exact algorithms or polynomial-time approximation

algorithms with better approximation ratio) for restricted instances; one of the most

natural restrictions is to admit ties in preference lists of only one gender, which we

call SMTI-1T. MAX SMTI-1T (i.e., the problem of finding a maximum cardinality

stable matching in SMTI-1T) remains NP-hard, and as for the approximation ratio,

the current best upper bound is 1+1/e ≃ 1.368 [LP19] and lower bounds are 21/19 ≃
1.1052 assuming P ̸=NP and 5/4 = 1.25 assuming UGC [HIMY07, Yan07].

2.1.4 Many-to-One Extension

The hospitals/residents problem (HR for short) is a many-to-one extension of SMI.

The two sets are residents and hospitals, and a hospital may match more than one
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residents. Each hospital h has an upper quota q. We write the name of a hospital

with its quota, such as h[q]. A matching is an assignment of residents to hospitals

(possibly leaving some residents unassigned), where matched residents and hospitals

are in the preference list of each other. Let M(r) be the hospital to which resident

r is assigned under a matching M (if it exists), and M(h) be the set of residents

assigned to hospital h. A feasible matching is a matching such that |M(h)| ≤ q for

each hospital h[q]. We may sometimes call a feasible matching simply a matching

when there is no fear of confusion. For a matching M and a hospital h[q], we say that

h is full if |M(h)| = q, under-subscribed if |M(h)| < q, over-subscribed if |M(h)| > q,

and empty if |M(h)| = 0. For a matching M , we say that a pair comprising a resident

r and a hospital h who include each other in their lists forms a blocking pair for M if

the following two conditions are met: (i) r is either unassigned or prefers h to M(r),

and (ii) h is under-subscribed or prefers r to one of the residents in M(h).

It is also known that any HR-instance admits at least one stable matching, and

one can be found by the GS algorithm in O(m) time [GS62, GI89], where m is the

number of acceptable pairs.

2.2 Gale-Shapley Algorithm

Algorithm 1 Gale-Shapley Algorithm [GS62]

1: Let M := ∅.
2: while there is an unassigned resident r in M whose preference list is non-empty

do

3: Let h be the first hospital on r’s current preference list.

4: Remove h from r’s preference list.

5: Let M := M ∪ {(r, h)}.
6: if h is over-subscribed in M then

7: Let r′ be the worst resident for h in M(h).

8: Let M := M \ {(r′, h)}.
9: end if

10: end while

11: Output M .
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For completeness, the GS algorithm [GS62] for HR*1 is shown in Algorithm 1. We

call this the resident-oriented Gale-Shapley algorithm (RGS for short). Since SM and

SMI are special cases of HR, this also outputs a stable matching for a given SM or

SMI instance. In SM and SMI, this is called the man-oriented Gale-Shapley algorithm

(MGS for short). In addition, this is also referred to as woman-oriented Gale-Shapley

algorithm (WGS for short) when the gender roles are swapped.

2.3 Strategy-Proofness

The stable marriage problem can be seen as a game among participants, who have

true preferences in mind, but may submit a falsified preference list hoping to obtain

a better partner than the one assigned when true preference lists are used. Formally,

let S be a mechanism, that is, a mapping from instances to matchings, and we denote

S(I) the matching output by S for an instance I. We say that S is a stable mechanism

if, for any instance I, S(I) is a stable matching for I. For a mechanism S, let I be an

instance, M be a matching such that M = S(I), and p be a person. We say that p has

a successful strategy in I if there is an instance I ′ in which people except for p have

the same preference lists in I and I ′, and p prefers M ′ to M (i.e., M ′(p) ≻p M(p)

with respect to p’s preference list in I), where M ′ is a matching such that M ′ = S(I ′).

This situation is interpreted as follows: I is the set of true preference lists, and by

submitting a falsified preference list (which changes the set of lists to I ′), p can obtain

a better partner M ′(p). We say that S is a strategy-proof mechanism if, when S is

used, no person has a successful strategy in any instance. Also we say that S is a man-

strategy-proof mechanism if, when S is used, no man has a successful strategy in any

instance. A woman-strategy-proof mechanism is defined analogously. A mechanism is

a one-sided-strategy-proof mechanism if it is either a man-strategy-proof mechanism

or a woman-strategy-proof mechanism.

It is known that there is no strategy-proof stable mechanism for SM [Rot82], which

is known as Roth’s impossibility theorem. By contrast, MGS, described in Algorithm 1,

is a man-strategy-proof stable mechanism for SM [Rot82, DF81]. By the symmetry

of men and women, WGS is a woman-strategy-proof stable mechanism.

*1 To be more precise, Algorithm 1 is a modified version of the original algorithm by Gale and

Shapley [GS62]. In the original algorithm, all unassigned residents apply to the first hospital

on their preference list at the same time, whereas in Algorithm 1, each resident applies one by

one.
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2.4 Measure of Approximation Algorithms

We say that an algorithm A is an r(n)-approximation algorithm for a mini-

mization (maximization, respectively) problem if it satisfies A(x)/opt(x) ≤ r(n)

(opt(x)/A(x) ≤ r(n), respectively) for any instance x of size n, where opt(x) and

A(x) are the costs (e.g., the size of a stable matching in the case of MAX SMTI) of

the optimal and the algorithm’s solutions, respectively. The infimum r(n) such that

A is an r(n)-approximation algorithm is called the approximation ratio of A.

2.5 Related Work

There has been a huge amount of studies on the stable matching problem so that

even several books have been published on the subject [Knu76, GI89, RS90, Man13].

In this section, we introduce studies that are closely related to the variants we study

in this thesis.

Since Abraham et al.’s work on SR with incomplete lists (SRI for short) [ABM05],

there have been some studies on the problem of finding a matching that is “as stable

as possible”, including SMI by Biró et al. [BMM10] and HRLQ in Chapter 4 of this

thesis. In all three problems, it has been shown that minimizing the number of BPs is

not only NP-hard but also hard to approximate within a constant ratio. In response

to these hardness results, there have been several studies, such as the computational

tractability of SRI [BMM12] and SR with ties and incomplete lists (SRTI) [CIM19]

when the length of the preference list is limited, and the parametrized complexities

in SR [CHSY18] and HRLQ [MS20].

Many studies have been conducted to consider other stability notions in HRLQ. For

example, Fragiadakis et al. [FIT+16] studied a problem of finding a matching with re-

laxation of stability, called envy-freeness. Krishnaa et al. defined another relaxation of

stability called relaxed stability and presented an algorithm for finding a matching that

satisfies a lower quota under this stability [KLNN20]. Nasre and Nimbhorkar [NN17]

gave an algorithm to find a maximum popular matching, which is another relaxation

of stability. Arulselvan et al. showed that the problem of finding a maximum-weight

many-to-one matching in a bipartite graph is NP-hard [ACG+18]. Furthermore, ex-

tensions of these results are proposed [GIK+16, HG21, Lim21, MNNR18].

Biró, et al. [BFIM10] also considered lower quotas in HR. In contrast to our model,
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which requires the lower quotas of all the hospitals to be satisfied, their model allows

some hospitals to be closed, i.e., to receive no residents. They proved that the problem

of deciding whether there is a feasible solution is NP-complete. Boehmer and Heeger

showed parameterized complexity for this problem [BH20]. The problem of finding

a Pareto optimal matching for the house allocation problem has also been studied

[MT13, Kam13, CF17, CFP21] under this model.

As another variant of HRLQ, Huang [Hua10] considered classified stable match-

ings, in which each hospital defines a family of subsets of residents and declares

upper and lower quotas for each of the subsets. He proved a dichotomy theorem

for the problem of deciding the existence of a stable matching; namely, if the subset

families satisfy some structural property, then the problem is in P, otherwise, it is

NP-complete. Fleiner and Kamiyama [FK12] generalized Huang’s result to many-

to-many case, where not only hospitals’ side but also the residents’ side can declare

upper and lower quotas. Yokoi [Yok17] further extended the model and showed a

polynomial-time algorithm.

In relation to noncrossing matching, Arkin et al. [ABE+09] considered the problem

where each participant is given as a point in Rd (d ≥ 1) and the preference lists

are set in ascending order of the Euclidean distance between the two points. They

gave polynomial-time algorithms to find a stable matching in SR and SR with ties

(SRT). They also considered an extension in SR where the matching is defined as a

set of triples instead of a set of pairs, and showed an instance that admits no stable

matching. The problem of determining the existence of stable matching was open, but

it was recently solved by Chen and Roy [CR21], who showed that it is NP-complete

when d = 2.

There are some literature studying trade-offs between approximability and strategy-

proofness. Krysta et al. [KMRZ19] consider to approximate the size of a Pareto

optimal matching in the house allocation problem, where preference lists may include

ties. They give upper and lower bounds on the approximation ratio of randomized

strategy-proof mechanisms for computing a Pareto optimal matching. Dughmi and

Ghosh [DG10] study the generalized assignment problem (GAP for short) and its

variants. Their objective is to maximize the sum of the values of the assigned jobs.

They present a strategy-proof O(log n)-approximate mechanism for the GAP, where

n represents the number of jobs. The following papers discuss strategy-proofness in

the stable matching problem with indifference. Erdil and Ergin [EE08] consider HR
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where only hospitals’ preference lists may have ties. They consider the algorithm that

first breaks ties according to a tie-breaking rule τ and then applies RGS (let us call

this algorithm GSτ ). They give an instance and a tie-breaking rule τ such that GSτ

does not produce a resident-optimal stable matching. They also show that seeking for

a resident-optimal stable matching loses strategy-proofness, that is, no deterministic

resident-optimal stable mechanism can be resident-strategy-proof. Abdulkadiroğlu et

al. [APR09] give an evidence to support GSτ . They show that for any tie-breaking rule

τ , no resident-strategy-proof mechanism dominates GSτ (with respect to residents).
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Chapter 3

Almost Stable Maximum Matchings

In this chapter, we improve the lower bound on the approximation ratio for the

problem of finding the maximum matching with the minimum number of blocking

pairs in SMI.

Biró et al. [BMM10] defined the following optimization problem, called MAX SIZE

MIN BP SMI: Given an SMI instance, find a matching that minimizes the number of

blocking pairs among all the maximum cardinality matchings. For integers p and q,

MAX SIZE MIN BP (p, q)-SMI is the restriction of MAX SIZE MIN BP SMI so that

each man’s preference list is of length at most p, and each woman’s preference list is

of length at most q. p = ∞ or q = ∞ means that the lengths of preference lists are

unbounded. Let n be the number of men in an input. Biró et al. [BMM10] showed

the following results; (1) MAX SIZE MIN BP (∞, ∞)-SMI is NP-hard and cannot be

approximated within the ratio of n1−ε for any constant ε > 0, unless P=NP; (2) MAX

SIZE MIN BP (3, 3)-SMI is APX-hard and cannot be approximated within the ratio

of 3557
3556 ≃ 1.00028 unless P=NP; (3) MAX SIZE MIN BP (2, ∞)-SMI is solvable in

O(n3) time.

We improve the hardness of the above (2), namely, we improve the constant 3557
3556

to n1−ε for any constant ε > 0. Our reduction uses basically the same idea as the one

used in [BMM10] to prove the above (1). In [BMM10], some persons need to have

preference lists of unbounded lengths for two reasons: One is for garbage collection,

and the other is to create a large gap on the costs between “yes”-instances and “no”-

instances. We perform a non-trivial modification of the construction and demonstrate

that such gadgets can be replaced by persons with preference lists of length at most

three.
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3.1 Inapproximability of MAX SIZE MIN BP (3, 3)-SMI

Theorem 1. MAX SIZE MIN BP (3, 3)-SMI is not approximable within n1−ε where

n is the number of men in a given instance, for any ε > 0, unless P = NP .

We demonstrate a polynomial-time reduction from the same problem as [BMM10],

EXACT Maximal Matching (EXACT-MM) restricted to subdivision graphs of cubic

graphs, which is NP-complete [O’M07]. A graph G is a subdivision graph if it is

obtained from another graph H by replacing each edge (u, v) of H by two edges

(u,w) and (w, v) where w is a new vertex. In this problem, we are given a graph G

which is a subdivision graph of some cubic graph, as well as a positive integer K, and

asked if G contains a maximal matching of size exactly K. Hereafter, we simply say

“EXACT-MM” to mean EXACT-MM with the above restrictions.

Given an instance (G,K) of EXACT-MM, we construct an instance I of MAX SIZE

MIN BP (3, 3)-SMI in such a way that (i) I has a perfect matching, (ii) if (G,K) is a

“yes”-instance of EXACT-MM, then I has a perfect matching with small number of

blocking pairs, and (iii) if (G,K) is a “no”-instance of EXACT-MM, then any perfect

matching of I has many blocking pairs.

3.1.1
(
m
r

)
–gadget

Before going to the main body of the reduction, we first introduce the
(
m
r

)
–gadget.

This gadget plays a role of garbage collection, just asX and Y in the proof of Theorem

1 of [BMM10].

Let X be a set of men of size m where X = {x1, · · · , xm}, and r (0 < r ≤
m) be an integer. The

(
m
r

)
–gadget (with respect to X and r), denoted C(X, r),

consists of the following 2mr − r men (
∪

1≤i≤m Ai) ∪ (
∪

1≤j≤r Cj) and 2mr women

(
∪

1≤i≤m Bi) ∪ (
∪

1≤j≤r Dj).

Ai = {aji : 1 ≤ j ≤ r}, Bi = {bji : 1 ≤ j ≤ r} (1 ≤ i ≤ m)
Cj = {cij : 2 ≤ i ≤ m}, Dj = {dij : 1 ≤ i ≤ m} (1 ≤ j ≤ r)

Each person’s preference list is defined in Fig. 3.1. A person p’s preference list

“p : a b c” means that p prefers a, b, and c in this order. For each xi ∈ X, the unique

woman b1i of C(X, r) who includes xi in her preference list is referred to as C(X, r)[xi].

The role of the gadget C(X, r) is to receive any subset X ′ ⊆ X such that |X ′| = r

without creating many blocking pairs, as formally stated in the following lemmas.
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a1i : di1 b2i b1i b1i : a1i xi

a2i : di2 b3i b2i b2i : a2i a1i
a3i : di3 b4i b3i b3i : a3i a2i
...

...
ar−1
i : dir−1 bri br−1

i br−1
i : ar−1

i ar−2
i

ari : dir bri bri : ari ar−1
i

d1j : c2j aj1
c2j : d2j d1j d2j : c3j c2j aj2
c3j : d3j d2j d3j : c4j c3j aj3
c4j : d4j d3j d4j : c5j c4j aj4
...

...

cm−1
j : dm−1

j dm−2
j dm−1

j : cmj cm−1
j ajm−1

cmj : dmj dm−1
j dmj : cmj ajm

Fig. 3.1 Preference lists of C(X, r)

In the following lemmas, we assume that each man xi ∈ X includes the woman

C(X, r)[xi](= b1i ) in his preference list.

Lemma 1. Let X be a set of men and r be an integer such that 0 < r ≤ |X|. Then,

for any X ′ ⊆ X such that |X ′| = r, there is a matching M for X and C(X, r) such that

(i) all members of C(X, r) are matched, (ii) all men in X ′ are matched with women

in C(X, r) and all men in X \X ′ are single, and (iii) no person in X is included in

a blocking pair, and the number of blocking pairs for M is at most r.

Proof. Let X ′ = {xi1 , xi2 , · · · , xir} (1 ≤ i1 < i2 < · · · < ir ≤ m). We construct

the matching M as follows. For each j (1 ≤ j ≤ r), add the following pairs to M :

(akij , b
k+1
ij

) for k = 1, . . . , j − 1; (akij , b
k
ij
) for k = j + 1, . . . , r; (ajij , d

ij
j ); (ck+1

j , dkj )

for k = 1, . . . , ij − 1; (ckj , d
k
j ) for k = ij + 1, . . . ,m; and (xij , b

1
ij
). (Fig. 3.2 gives

an example for a specific ij .) Also, for each i such that xi ∈ X \ X ′, add (aki , b
k
i )

for k = 1, . . . , r to M . It is easy to see that (i) and (ii) are satisfied. Also, it is

straightforward to check that blocking pairs are only (c
ij
j , d

ij
j ) (1 ≤ j ≤ r, ij ̸= 1),

and hence there are at most r blocking pairs.

Lemma 2. Let X be a set of men and r be an integer such that 0 < r ≤ |X|. Let M

be any matching for X and C(X, r) that matches all members of C(X, r). Then the

number of single men in X is |X| − r.
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Proof. This is obvious because any member in C(X, r) includes only persons in C(X, r)

and X in the preference list, and there are r more women than men in C(X, r).

When X is a set of women, we similarly define the
(
m
r

)
–gadget by exchanging the

roles of men and women.

3.1.2 Main Part of the Reduction

Let I ′ = (G,K) be an instance of EXACT–MM, where G is a subdivision graph of

some cubic graph and K is a positive integer. Since G is a bipartite graph, we can

write it as G = (U,W,E) such that U = {u1, · · · , un1} andW = {w1, · · · , wn2}, where
each vertex in U (W , respectively) has degree exactly 2 (3, respectively). (Hence n1

and n2 are related as 2n1 = 3n2.) Without loss of generality, we may assume that

K < min(|U |, |W |) and that G has a matching of size K.

As in [BMM10], we give the following definitions: For each ui ∈ U , let wpi and wqi

be the two neighbors of ui in G, where pi < qi, and for each wj ∈ W , let urj , usj ,

and utj be the three neighbors of wj in G, where rj < sj < tj . Also, for each ui ∈ U

and wj ∈ W such that (ui, wj) ∈ E, define σj,i = 1, 2 according to whether wj is wpi

or wqi respectively, and define τi,j = 1, 2, 3 according to whether ui is urj or usj or

utj respectively. For a given ε > 0, define B = ⌈ 3
ε⌉ and C = (n1 + n2)

B+1.

For each vertex ui ∈ U , we construct 2C + 3 men and 2C + 2 women, whose

preference lists are given in Fig. 3.3, where men’s lists are given in the left and

women’s lists are given in the right of the figure. We denote U(ui) the set of these

men and women. Define the set U0 = {u0
1, · · · , u0

n1
} (consisting of men, one from

each U(ui) (1 ≤ i ≤ n1)). We then construct
(

n1

n1−K

)
–gadget C(U0, n1 −K).

Similarly, for each wj ∈ W , we construct 3C + 3 men and 3C + 4 women, whose

preference lists are given in Fig. 3.4. We denote W(wj) the set of these men and

women. Define the set W 0 = {w0
1, · · · , w0

n2
} (consisting of women, one from each

W(wj) (1 ≤ j ≤ n2)), and construct
(

n2

n2−K

)
–gadget C(W 0, n2 −K).

The reduction is now completed. The resulting instance I contains the same number

n = (2 + 2C + 2n1 − 2K)n1 + (3 + 3C + 2n2 − 2K)n2 +K of men and women. Note

that each person’s preference list is of length at most three. It is not hard to see that

the reduction can be performed in time polynomial in the size of I ′.

3.1.3 Properties of Gadgets

Before proceeding to the correctness proof, we prove useful lemmas:
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Lemma 3. For any edge (ui, wj) ∈ E, we can form a matching M restricted to

people in U(ui) ∪W(wj) so that (i) all people in U(ui) ∪W(wj) are matched, (ii) M

contains at most 2 blocking pairs, and (iii) for any extension of M to a complete

matching of I, no person in U(ui) ∪W(wj) will create a blocking pair with a person

not in U(ui) ∪W(wj).

Proof. We construct a matching M as follows. Since (ui, wj) ∈ E, there are integers k

and l such that σj,i = k and τi,j = l, by the definition of σ and τ . We first add (uk
i , w

l
j)

to M . Next, we consider people in U(ui). Add the following pairs to M : (g1i,1, z
2
i );

(gsi,1, e
s−1
i,1 ) for s = 2, . . . , C; (g1i,2, e

C
i,1); (gsi,2, e

s−1
i,2 ) for s = 2, . . . , C; and (u0

i , e
C
i,2).

If k = 1, then add (u2
i , z

1
i ), otherwise, add (u1

i , z
1
i ). Finally, we consider people in

W(wj). Add the following pairs to M : (v3j , h
1
j,1); (f

s
j,1, h

s+1
j,1 ) for s = 1, . . . , C − 1;

(fC
j,1, h

1
j,2); (f

s
j,2, h

s+1
j,2 ) for s = 1, . . . , C−1; (fC

j,2, h
1
j,3); (f

s
j,3, h

s+1
j,3 ) for s = 1, . . . , C−1;

and (fC
j,3, w

0
j ). If l = 1, add (v1j , w

2
j ) and (v2j , w

3
j ); if l = 2, add (v1j , w

1
j ) and (v2j , w

3
j );

if l = 3, add (v1j , w
1
j ) and (v2j , w

2
j ).

It is straightforward to verify that Condition (i) is satisfied. To see that Conditions

(ii) and (iii) hold, observe the following: In U(ui), all men of the form gsi,t for any t, s,

and u0
i are matched with their first choices. Clearly, these men do not form a blocking

pair. Also, women who include only these men in their preference lists cannot form

a blocking pair. So, only u1
i , u

2
i , z

1
i , and z2i can form a blocking pair. If we check the

cases of k = 1 and k = 2, we can verify that at most one blocking pair is possible.

Similarly, in W(wj), all women of the form hs
j,t for any t, s, and w0

j are matched with

their first choices. So, only v1j , v
2
j , v

3
j , w

1
j , w

2
j , and w3

j can be a part of a blocking

pair. We may conclude that there is at most one blocking pair by checking cases

l = 1, 2, 3.

Lemma 4. In any matching of I that matches all members of U(ui) (W(wj), re-

spectively), all people in U(ui) (W(wj), respectively), except for one man (woman,

respectively), are matched among themselves.

Proof. This is true because any woman in U(ui) includes only men in U(ui) in her

preference list. The case for W(wj) can be proved similarly.

Lemma 5. Suppose that (ui, wj) ∈ E. Let M be any matching of I such that all

people in U(ui) and W(wj) are matched by M and both (u0
i , C(U0, n1 −K)[u0

i ]) and

(w0
j , C(W 0, n2 − K)[w0

j ]) are in M . Then there are at least C blocking pairs for M

(formed by only people in U(ui) ∪W(wj)).
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Proof. Since (u0
i , C(U0, n1 − K)[u0

i ]) ∈ M and all people in U(ui) are matched in

M , by tracing the women’s preference lists, the partners of women in U(ui) are

uniquely determined, namely, (gsi,t, e
s
i,t) ∈ M for any t, s, and (ut

i, z
t
i) ∈ M for t = 1, 2.

Similarly, we may uniquely determine the pairs withinW(wj), namely, (fs
j,t, h

s
j,t) ∈ M

for any t, s, and (vtj , w
t
j) ∈ M for t = 1, 2, 3.

Since (ui, wj) ∈ E, there are integers k and l such that σj,i = k and τi,j = l by the

definition of σ and τ . Then, all (gsi,k, h
s
j,l) (1 ≤ s ≤ C) are blocking pairs for M .

3.1.4 Correctness of the Reduction

We first show that I admits a perfect matching. As we have assumed that G has

a matching of size K, let it be M ′. For each edge (ui, wj) ∈ M ′, we match peo-

ple in U(ui) and W(wj) as in the proof of Lemma 3. There are exactly n1 − K

unmatched vertices in U . Let Ũ0(⊆ U0) consist of men corresponding to these un-

matched vertices, i.e. Ũ0 = {u0
i : ui ∈ U is unmatched in M ′}. We match people in

Ũ0 and
(

n1

n1−K

)
–gadget C(U0, n1 − K) as in the proof of Lemma 1. Also, for each

i such that u0
i ∈ Ũ0, match every woman in U(ui) to her first choice man. Sim-

ilarly, there are exactly n2 − K unmatched vertices in W . Define W̃ 0(⊆ W 0) as

W̃ 0 = {w0
j : wj ∈ W is unmatched in M ′}. Again, using the proof of Lemma 1, we

match people in W̃ 0 and
(

n2

n2−K

)
–gadget C(W 0, n2 − K). Finally, for each j such

that w0
j ∈ W̃ 0, match every man in W(wj) to his first choice woman. By a careful

observation, together with Lemma 1 (i) and (ii) and Lemma 3 (i), it can be verified

that the above constriction yields a perfect matching.

Now suppose that G has a maximal matching M ′ of size K. We construct a

perfect matching M of I from M ′ as described above. We will count the number of

blocking pairs for M . By Lemma 1 (iii), C(U0, n1 −K) and C(W 0, n2 −K) contain

at most n1 −K and n2 −K blocking pairs, respectively, and people in these gadgets

do not create blocking pairs with people outside respective gadgets. Next we look

at gadgets corresponding to vertices. For a pair of vertices ui and wj such that

(ui, wj) ∈ M ′, there are at most 2 blocking pairs formed by people in U(ui) and

W(wj) by Lemma 3 (ii). Since |M ′| = K, there are at most 2K such blocking pairs.

Also, by Lemma 3 (iii), people in U(ui) and W(wj) do not form blocking pairs with

people outside U(ui) ∪ W(wj). Finally, we consider the gadgets corresponding to

the vertices unmatched in M ′. Consider the gadget U(ui) where ui is unmatched

in M ′. By the construction of M , all women in U(ui) are matched with their first
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choices, and cannot form a blocking pair. Hence only the possibility is that a man

gsi,σj,i
forms a blocking pair with a woman hs

j,τi,j
for some j and s. If this is the

case, then (ui, wj) ∈ E, but by the maximality of M ′, wj is matched in M ′. Then,

by the construction of M , hs
j,τi,j

must be matched with her first choice and hence

(gsi,σj,i
, hs

j,τi,j
) cannot be a blocking pair. Similarly, no people in W(wj) where wj

is unmatched in M ′ cannot form a blocking pair. In summary, the total number of

blocking pairs is at most (n1 −K) + (n2 −K) + 2K = n1 + n2.

Conversely, suppose that there is a perfect matching M of I that contains less than

C blocking pairs. By Lemma 4, for each ui ∈ U , all people in U(ui), except for

one man (which we call a free-man), are matched among themselves. Hence there

are exactly n1 free-men. By Lemma 2, M matches exactly n1 − K men from U0

with women in C(U0, n1 −K). Clearly, all these men are free-men. So, there are K

remaining free-men. We will define free-women similarly, and by a similar argument,

there are K remaining free-women. Since M is a perfect matching, these men and

women are matched together.

Define M ′ as M ′ = {(ui, wj) : (x, y) ∈ M,x ∈ U(ui), y ∈ W(wj)}. If (x, y) ∈ M

for some x (∈ U(ui)) and y (∈ W(wj)), then (ui, wj) ∈ E by the construction of

preference lists of I. Also, it is easy to see that x and y are one of K free-men and

free-women, respectively, mentioned above. Hence, M ′ is a matching of G of size K.

We show that M ′ is maximal. For suppose not. Then, there is an edge (ui, wj) ∈ E

both of whose endpoints are unmatched in M ′. By the construction of M ′, u0
i ∈ U(ui)

is matched with the woman C(U0, n1 −K)[u0
i ] and w0

j ∈ W(wj) is matched with the

man C(W 0, n2−K)[w0
j ], in M . But then by Lemma 5, M contains at least C blocking

pairs, a contradiction. Hence M ′ is maximal, and we can conclude that if G has no

maximal matching of size K, then there is no perfect matching of I with less than

C(= (n1 + n2)
B+1) blocking pairs.

Hence, the existence of (n1 + n2)
B-approximation algorithm for MAX SIZE MIN

BP (3, 3)-SMI implies a polynomial-time algorithm for EXACT–MM, which implies

P=NP. We will show that (n1 + n2)
B ≥ n1−ε. Recall that

n = (2 + 2C + 2n1 − 2K)n1 + (3 + 3C + 2n2 − 2K)n2 +K, (3.1)

by which we obtain n ≤ 5(n1 + n2)
B+2, and hence

(n1 + n2)
B ≥ 5−

B
B+2n

B
B+2 . (3.2)

We may assume without loss of generality that n1 ≥ 3. Since each vertex in U and
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W has degree 2 and 3, respectively, 2n1 = 3n2. So, we have n1 + n2 ≥ 5. Also,

K < min(n1, n2) by hypothesis. Thus, Equation (3.1) implies that n ≥ 5B and hence,

5−
B

B+2 ≥ n− 1
B+2 . Since B + 2 ≥ 3

ε , Inequality (3.2) implies that (n1 + n2)
B ≥ n1−ε,

which completes the proof of Theorem 1.

3.2 Concluding Remarks

In this chapter, we proved that MAX SIZE MIN BP SMI is not approximable within

n1−ε for any ε > 0 unless P=NP, even when all preference lists are of length at most

3, where n is the number of men in an input.

Our inapproximability proof is artificial; it used a very long chain of preference

dependencies to produce a large gap in the number of blocking pairs. Since such long

chains seem to occur rarely in the real world, it is interesting future work to consider

the computational tractability under the assumption that such long chains do not

exist.
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Fig. 3.2 A part of the matching described in the proof of Lemma 1
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u1
i : z1i w

τi,pi
pi z1i : u1

i u2
i

u2
i : z1i z2i w

τi,qi
qi z2i : u2

i g1i,1

g1i,1 : z2i h1
pi,τi,pi

e1i,1 e1i,1 : g1i,1 g2i,1

g2i,1 : e1i,1 h2
pi,τi,pi

e2i,1 e2i,1 : g2i,1 g3i,1

g3i,1 : e2i,1 h3
pi,τi,pi

e3i,1 e3i,1 : g3i,1 g4i,1
...

...

gC−1
i,1 : eC−2

i,1 hC−1
pi,τi,pi

eC−1
i,1 eC−1

i,1 : gC−1
i,1 gCi,1
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i,1 hC
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i
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i ]

Fig. 3.3 Preference lists of U(ui)
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Fig. 3.4 Preference lists of W(wj)
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Chapter 4

The Hospitals/Residents Problem

with Lower Quotas

In this chapter, we study an extension of HR where each hospital declares not only

an upper bound but also a lower bound on the number of residents it accepts. Conse-

quently, a feasible matching must satisfy the condition that the number of residents

assigned to each hospital is between its upper and lower quotas. We call this problem

HR with lower quota (HRLQ). In HRLQ, stable matchings do not always exist. How-

ever, it is easy to decide whether or not there is a stable matching for a given instance,

since in HR the number of students a specific hospital h receives is identical for any

stable matching (this is a part of the well-known Rural Hospitals Theorem [GS85]).

Namely, if this number satisfies the upper and lower bound conditions of all the hos-

pitals, it is a feasible (and stable) matching, and otherwise, no stable matching exists.

In case there is no stable matching, it is natural to seek for a matching that is “as

stable as possible”.

We first consider the problem of minimizing the number of blocking pairs, which is

quite popular in the literature (e.g., [KMV94, ABM05, BMM10]). As we will show in

Section 4.1, it seems that the introduction of the lower quota intrinsically increases

the difficulty of the problem. Actually, we show that this problem is NP-hard and

cannot be approximated within a factor of (|H|+ |R|)1−ε for any positive constant ε

unless P=NP, where H and R denote the sets of hospitals and residents, respectively.

This inapproximability result holds even if all the preference lists are complete (i.e.,

include all the members of the other side), all the hospitals have the same preference

list, (e.g., determined by scores of exams and known as the master list [IMS08]),

and all the hospitals have an upper quota of one. On the positive side, we give a

polynomial-time (|H| + |R|)–approximation algorithm, which shows that the above
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inapproximability result is almost tight.

We then tackle this hardness from two different angles. First, we give an

exponential-time exact algorithm with running time O((|H||R|)t+1), where t is the

number of blocking pairs in an optimal solution. Note that this is a polynomial-time

algorithm when t is a constant. Second, we consider another measure for optimization

criteria, i.e., the number of residents who are involved in blocking pairs. We show

that this problem is still NP-hard, but give a quadratic improvement, i.e., we give a

polynomial-time
√

|R|-approximation algorithm. We also give an instance showing

that our analysis is tight up to a constant factor. Furthermore, we show that if our

problem has a constant approximation factor, then the Densest k-Subgraph Problem

(DkS) has a constant approximation factor also. Note that the best known approx-

imation factor of DkS has long been |V |1/3 [FKP01] in spite of extensive studies,

and was improved to |V |1/4+ϵ for an arbitrary positive constant ϵ [BCC+10]. The

reduction is somewhat tricky; it is done through a third problem, called the Minimum

Coverage Problem (MinC), and exploits the best approximation algorithm for DkS.

MinC is relatively less studied and only NP-hardness was previously known for its

complexity [Vin07]. As a by-product, our proof gives a similar inapproximability

result for MinC (Lemma 17), which is of independent interest.

4.1 Preliminaries

An instance of HRLQ consists of a set R of residents and a set H of hospitals. Each

hospital h has lower and upper quotas, p and q (p ≤ q), respectively. We sometimes

say that the quota of h is [p, q], or h is a [p, q]-hospital. For simplicity, we also write

the name of a hospital with its quotas, such as h[p, q]. Each member (resident or

hospital) has a preference list that orders a subset of the members of the other party.

Minimum-blocking-pair hospitals/residents problem with lower quota (Min-BP

HRLQ for short) is the problem of finding a feasible matching with the minimum

number of blocking pairs. Min-BP 1ML-HRLQ (“1ML” standing for “1 master list”)

is the restriction of Min-BP HRLQ so that in a given instance, preference lists of all

the hospitals are identical. 0-1 Min-BP HRLQ is the restriction of Min-BP HRLQ

where a quota of each hospital is either [0, 1] or [1, 1]. 0-1 Min-BP 1ML-HRLQ is

Min-BP HRLQ with both “1ML” and “0-1” restrictions.

Minimum-blocking-resident hospitals/residents problem with lower quota (Min-BR

HRLQ for short) is the problem of finding a feasible matching with the minimum
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number of blocking residents. Min-BR 1ML-HRLQ, 0-1 Min-BR HRLQ, and 0-1

Min-BR 1ML-HRLQ are defined similarly.

We assume without loss of generality that the number of residents is at least the sum

of the lower quotas of all the hospitals, since otherwise there is no feasible matching.

We call this assumption the number of residents assumption (or the NR-assumption

for short). Also, we impose the following restriction, the complete list restriction

(or the CL-restriction for short), to guarantee existence of a feasible solution: every

hospital with a positive lower quota must have a complete preference list, and every

resident’s list must include all such hospitals. (We remark in Section 4.4 that allowing

arbitrarily incomplete preference lists makes the problem extremely hard.)

As a starting example, consider n residents and n + 1 hospitals, whose preference

lists and quotas are as follows. Here, “· · · ” in the residents’ preference lists denotes

an arbitrary order of the remaining hospitals.

r1 : h1 hn+1 · · ·
r2 : h1 h2 hn · · ·
r3 : h2 h1 h3 · · ·
r4 : h3 h1 h4 · · ·
...

ri : hi−1 h1 hi · · ·
...

rn : hn−1 h1 hn · · ·

h1[0, 1] : r1 r2 · · · rn

h2[1, 1] : r1 r2 · · · rn
...

hn[1, 1] : r1 r2 · · · rn

hn+1[1, 1] : r1 r2 · · · rn

Note that we have n [1, 1]-hospitals all of which have to be filled by the n

residents. Therefore, let us modify the instance by removing the [0, 1]-hospital

h1 and apply the Gale-Shapley algorithm (in this chapter we always use RGS

shown in Section 2.2, which is the resident-oriented version). Then the resulting

matching is M1 = {(r1, hn+1), (r2, h2), (r3, h3), · · · , (rn, hn)}, which contains at

least n blocking pairs (between h1 and every resident). However, the matching

M2 = {(r1, hn+1), (r2, hn), (r3, h2), (r4, h3), . . . , (rn, hn−1)} contains only three

blocking pairs, namely (r1, h1), (r2, h1), and (r2, h2).

4.2 Minimum-Blocking-Pair HRLQ

In this section, we consider the problem of minimizing the number of blocking pairs.
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4.2.1 Inapproximability

We first prove a strong inapproximability result for the restricted subclass.

Theorem 2. For any positive constant ε, there is no polynomial-time (|H|+ |R|)1−ε-

approximation algorithm for 0-1 Min-BP 1ML-HRLQ unless P=NP, even if all the

preference lists are complete.

Proof. We demonstrate a polynomial-time reduction from the well-known NP-

complete problem Vertex Cover (VC for short) [GJ79]. In VC, we are given a graph

G = (V,E) and a positive integer K ≤ |V |, and asked if there is a subset C of vertices

of G such that |C| ≤ K, which contains at least one endpoint of each edge. Let

I0 = (G0,K0) be an instance of VC where G0 = (V0, E0) and K0 is a positive integer.

Define n = |V0|. For a constant ε, define c = ⌈ 8
ε⌉, B1 = nc, and B2 = nc − |E0|.

We construct the instance I of 0-1 Min-BP 1ML-HRLQ from I0. The set of residents

is R = C ∪ F ∪ S, and the set of hospitals is H = V ∪ T ∪X. Each set is defined as

follows:

C = {ci | 1 ≤ i ≤ K0}
F = {fi | 1 ≤ i ≤ n−K0}

Si,j = {si,j0,a | 1 ≤ a ≤ B2} ∪ {si,j1,a | 1 ≤ a ≤ B2} ((vi, vj) ∈ E0, i < j)

S =
∪

Si,j

V = {vi | 1 ≤ i ≤ n}
T i,j = {ti,j0,a | 1 ≤ a ≤ B2} ∪ {ti,j1,a | 1 ≤ a ≤ B2} ((vi, vj) ∈ E0, i < j)

T =
∪

T i,j

X = {xi | 1 ≤ i ≤ B1}

Each hospital in X has a quota [0,1], and other hospitals have a quota [1,1]. Note

that |C|+ |F | = |V |(= n) and |S| = |T |(= 2|E0|B2). Since any hospital in V ∪ T has

a quota [1,1], any feasible matching is a one-to-one correspondence between R and

V ∪T , and every hospital in X must be empty. Note that |H| = n+2|E0|B2+B1 and

|R| = n+2|E0|B2; hence |H|+|R| = 2n+4|E0|B2+B1 = 2n−4|E0|2+(4|E0|+1)nc <

n2 + 4nc+2 + nc ≤ 6nc+2, which is polynomial in n.

Next, we construct preference lists. Fig. 4.1 shows preference lists of residents,

where [[V ]] (respectively [[X]]) denotes a total order of elements in V (respectively

X) in an increasing order of indices. The symbol “· · · ” denotes an arbitrarily ordered
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list of all the other hospitals that do not explicitly appear in the list.

ci : [[V ]] [[X]] . . . (1 ≤ i ≤ K0)

fi : [[V ]] [[X]] . . . (1 ≤ i ≤ n−K0)

si,j0,1 : ti,j0,1 vi ti,j1,1 [[X]] . . . ((vi, vj) ∈ E0, i < j)

si,j0,2 : ti,j0,2 vi ti,j0,3 [[X]] . . . ((vi, vj) ∈ E0, i < j)

...

si,j0,B2−1 : ti,j0,B2−1 vi ti,j0,B2
[[X]] . . . ((vi, vj) ∈ E0, i < j)

si,j0,B2
: ti,j0,B2

vi ti,j0,1 [[X]] . . . ((vi, vj) ∈ E0, i < j)

si,j1,1 : ti,j0,2 vj ti,j1,2 [[X]] . . . ((vi, vj) ∈ E0, i < j)

si,j1,2 : ti,j1,2 vj ti,j1,3 [[X]] . . . ((vi, vj) ∈ E0, i < j)

...

si,j1,B2−1 : ti,j1,B2−1 vj ti,j1,B2
[[X]] . . . ((vi, vj) ∈ E0, i < j)

si,j1,B2
: ti,j1,B2

vj ti,j1,1 [[X]] . . . ((vi, vj) ∈ E0, i < j)

Fig. 4.1 Preference lists of residents

Preference lists of hospitals are identical and are obtained from the mas-

ter list “[[C]] [[S]] [[F ]]”. Here, [[C]] and [[F ]] are as before a total order

of all the residents in C and F , respectively, in an increasing order of in-

dices. [[S]] is a total order of [[Si,j ]] ((vi, vj) ∈ E0, i < j) in any order, where

[[Si,j ]] = si,j1,1 si,j0,1 si,j0,2 · · · si,j0,B2
si,j1,2 · · · si,j1,B2

.

Now the reduction is completed. Before showing the correctness proof, we will see

some properties of the reduced instance. For a resident r and a hospital h, if h appears

to the right of the [[X]]-part of r’s list, we call (r, h) a prohibited pair.

Lemma 6. If a matching M contains a prohibited pair, then the number of blocking

pairs in M is at least B1.

Proof. Suppose that a matching M contains a prohibited pair (r, h). By the definition

of prohibited pairs, r prefers any hospital x ∈ X to h. On the other hand, recall that

any hospital x ∈ X is empty in any feasible matching, and hence, under-subscribed.
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Hence, (r, x) is a blocking pair for every x ∈ X. Since |X| = B1, the proof is

completed.

Now, recall that for each edge (vi, vj) ∈ E0 (i < j), there are the set of residents

Si,j and the set of hospitals T i,j . We call this pair of sets a gi,j-gadget, and write it as

gi,j = (Si,j , T i,j). For each gadget gi,j , let us define two perfect matchings between

Si,j and T i,j as follows:

M0
i,j = {(si,j0,1, t

i,j
0,1), (s

i,j
0,2, t

i,j
0,2), . . . , (s

i,j
0,a, t

i,j
0,a), . . . , (s

i,j
0,B2−1, t

i,j
0,B2−1),

(si,j0,B2
, ti,j0,B2

), (si,j1,1, t
i,j
1,2), (s

i,j
1,2, t

i,j
1,3), . . . ,

(si,j1,a, t
i,j
1,a+1), . . . , (s

i,j
1,B2−1, t

i,j
1,B2

), (si,j1,B2
, ti,j1,1)}, and

M1
i,j = {(si,j0,1, t

i,j
1,1), (s

i,j
0,2, t

i,j
0,3), . . . , (s

i,j
0,a, t

i,j
0,a+1), . . . , (s

i,j
0,B2−1, t

i,j
0,B2

),

(si,j0,B2
, ti,j0,1), (s

i,j
1,1, t

i,j
0,2), (s

i,j
1,2, t

i,j
1,2), . . . ,

(si,j1,a, t
i,j
1,a), . . . , (s

i,j
1,B2−1, t

i,j
1,B2−1), (s

i,j
1,B2

, ti,j1,B2
)}.

Fig. 4.2 shows M0
i,j and M1

i,j on preference lists of Si,j , where the [[X]]-part and

thereafter are omitted.�� �
si,j0,1 : ti,j0,1 vi ti,j1,1�� �
si,j0,2 : ti,j0,2 vi ti,j0,3

.

.

. �� �
si,j0,B2−1 : ti,j0,B2−1 vi ti,j0,B2�� �
si,j0,B2
: ti,j0,B2

vi ti,j0,1�� �
si,j1,1 : ti,j0,2 vj ti,j1,2�� �
si,j1,2 : ti,j1,2 vj ti,j1,3

.

.

. �� �
si,j1,B2−1 : ti,j1,B2−1 vj ti,j1,B2�� �
si,j1,B2
: ti,j1,B2

vj ti,j1,1

�� �
si,j0,1 : ti,j0,1 vi ti,j1,1�� �
si,j0,2 : ti,j0,2 vi ti,j0,3

.

.

. �� �
si,j0,B2−1 : ti,j0,B2−1 vi ti,j0,B2�� �
si,j0,B2
: ti,j0,B2

vi ti,j0,1�� �
si,j1,1 : ti,j0,2 vj ti,j1,2�� �
si,j1,2 : ti,j1,2 vj ti,j1,3

.

.

. �� �
si,j1,B2−1 : ti,j1,B2−1 vj ti,j1,B2�� �
si,j1,B2
: ti,j1,B2

vj ti,j1,1

Fig. 4.2 Matchings M0
i,j (left) and M1

i,j (right)

Lemma 7. For a gadget gi,j = (Si,j , T i,j), M0
i,j and M1

i,j are the only perfect match-

ings between Si,j and T i,j that do not include a prohibited pair. Furthermore, each of
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M0
i,j and M1

i,j contains only one blocking pair (r, h) such that r ∈ Si,j and h ∈ T i,j.

(Hereafter, we simply state this as a “blocking pair between Si,j and T i,j”.)

Proof. Construct a bipartite graph Gi,j , where each vertex set is Si,j and T i,j , and

there is an edge between r(∈ Si,j) and h(∈ T i,j) if and only if (r, h) is not a prohibited

pair. One can see that Gi,j is a cycle of length 4B2. Hence there are only two perfect

matchings between Si,j and T i,j , and they are actually M0
i,j and M1

i,j . Also, it is easy

to check that M0
i,j contains only one blocking pair (si,j1,1, t

i,j
0,2), and M1

i,j contains only

one blocking pair (si,j0,1, t
i,j
0,1).

We are now ready to show the gap for inapproximability.

Lemma 8. If I0 is a “yes” instance of VC, then I has a solution with at most n2+|E0|
blocking pairs.

Proof. Suppose that G0 has a vertex cover of size at most K0. If its size is less

than K0, add arbitrary vertices to make the size exactly K0, which is, of course, still

a vertex cover. Let this vertex cover be V0c(⊆ V0), and let V0f = V0 \ V0c. For

convenience, we use V0c and V0f also to denote the sets of corresponding hospitals.

We construct a matching M of I according to V0c. First, match each resident in

C with each hospital in V0c, and each resident in F with each hospital in V0f , in an

arbitrary way. Since |C ∪ F | = |V | = n, there are at most n2 blocking pairs between

C ∪ F and V .

For each gadget gi,j = (Si,j , T i,j) ((vi, vj) ∈ E0, i < j), we use one of the two

matchings in Lemma 7. Since V0c is a vertex cover, either vi or vj is included in

V0c. If vi is in V0c, use M1
i,j , otherwise, use M0

i,j . It is then easy to see that there is

no blocking pair between Si,j and H \ T i,j or R \ Si,j and T i,j . Also, as proved in

Lemma 7, there is only one blocking pair between Si,j and T i,j in either case.

Therefore, the number of blocking pairs is at most n2 between C ∪ F and V , and

exactly |E0| within gi,j-gadgets, and hence n2 + |E0| in total, which completes the

proof.

Lemma 9. If I0 is a “no” instance of VC, then any solution of I has at least B1

blocking pairs.

Proof. Suppose that I admits a matching M with less than B1 blocking pairs. We

show that I0 has a vertex cover of size K0.
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First, recall that any feasible matching must be a one-to-one correspondence be-

tween R and V ∪T . Also, by Lemma 6, if M contains a prohibited pair then there are

at least B1 blocking pairs, contradicting the assumption. Thus, M does not contain

a prohibited pair. Since |C ∪ F | = |V | and any resident r ∈ C ∪ F includes only V

to the left of the [[X]]-part in the preference list, M must include a perfect matching

between C ∪ F and V .

Next, consider a gadget gi,j = (Si,j , T i,j) and observe the preference lists of Si,j .

Since vi and vj are matched with residents in C ∪ F , for M to contain no prohibited

pairs, all residents in Si,j must be matched with hospitals in T i,j . By Lemma 7,

there are only two possibilities, namely, M0
i,j and M1

i,j , and either matching admits

one blocking pair within each gi,j . Hence there are |E0| such blocking pairs for all

gi,j-gadgets.

Suppose that the matching between Si,j and T i,j is M0
i,j . Then, if the hospital

vj is matched with a resident in F , there are B2 blocking pairs between vj and

si,j1,1, . . . , s
i,j
1,B2

. Then, we have |E0| + B2 = B1 blocking pairs, contradicting the

assumption. Hence, vj must be matched with a resident in C. On the other hand,

suppose that the matching for gi,j is M
1
i,j . If the hospital vi is matched with a resident

in F , again there are B2 blocking pairs, between vi and si,j0,1, . . . , s
i,j
0,B2

. Therefore, vi

must be matched with a resident in C. Namely, for each edge (vi, vj), either vi or vj is

matched with a resident in C. Hence, the collection of vertices whose corresponding

hospitals are matched with residents in C is a vertex cover of size K0. This completes

the proof.

Finally, we estimate the gap obtained by Lemmas 8 and 9. As observed previ-

ously, nc < |H| + |R| ≤ 6nc+2. Hence, B1/(n
2 + |E0|) ≥ nc/2n2 = 8nc+22−4n−4 ≥

8nc+2n−8 > (|H|+|R|)1− 8
c ≥ (|H|+|R|)1−ε. Hence a polynomial-time (|H|+|R|)1−ε-

approximation algorithm for 0-1 Min-BP 1ML-HRLQ solves VC, implying P=NP.

4.2.2 Approximability

The following theorem shows that an almost tight upper bound can be achieved by a

simple approximation algorithm for the general class.

Theorem 3. There is a polynomial-time (|H| + |R|)–approximation algorithm for

Min-BP HRLQ.

Proof. Before showing an algorithm, we introduce some terms used to describe the
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algorithm. In a matching M , define a deficiency of a hospital hi[pi, qi] to be max{pi−
|M(hi)|, 0}. We say that a hospital hi[pi, qi] has surplus if hi satisfies |M(hi)|−pi > 0.

The following simple algorithm (Algorithm 2) achieves the approximation ratio of

|H|+ |R|.

Algorithm 2 An (|H|+ |R|)–approximation algorithm for Min-BP HRLQ

1: Consider an instance I of Min-BP HRLQ as an instance of HR by ignoring lower

quotas. Then apply the Gale-Shapley algorithm to I and obtain a matching M .

2: If there is an unassigned resident in M , output M .

3: Move residents from hospitals with surplus to the hospitals with positive deficien-

cies in an arbitrary way (but so as not to create new positive deficiency) to fill all

the deficiencies. Then output the modified matching.

Obviously, Algorithm 2 runs in polynomial time. Note that because of the NR-

assumption and the CL-restriction, line 3 is executable, namely, there are sufficiently

many residents in hospitals with surplus to fill all the deficiencies.

We first show that if a matching M is returned at line 2, M is an optimal solution.

Let r be a resident unassigned in M . Then r must have been rejected by all the

hospitals with a positive lower quota, since r includes all such hospitals in the list

because of the CL-restriction. Therefore, any such hospital is full in M , that is, M is

a feasible matching. Hence, we obtain a feasible stable matching, which is clearly an

optimal solution.

In the following, we assume that all the residents are assigned in M . Let k be the

sum of the deficiencies over all the hospitals. Then, k residents are moved. Suppose

that resident r is moved from hospital h to another hospital. Then, it is easy to see

that a new blocking pair includes either r or h since only they can become worse off.

Hence, there arise at most |H| + |R| new blocking pairs per resident movement and

there are at most k(|H| + |R|) blocking pairs in total. On the other hand, we show

in the following that if there are k deficiencies in M , an optimal solution contains at

least k blocking pairs. These observations give an (|H| + |R|)-approximation upper

bound.

Let Mopt be an optimal solution. For convenience, we think that a hospital hi[pi, qi]

has qi distinct positions, each of which can receive at most one resident. Define the

bipartite graph GM,Mopt = (VR, VH , E) as follows: Each vertex in VR corresponds to

a resident in I, and each vertex in VH to a position (so, |VH | =
∑

qi). If resident r is
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assigned by M to hospital h, then in GM,Mopt , we include an edge (called an M -edge)

between r ∈ VR and some position p ∈ VH of h, and similarly, if resident r is assigned

by Mopt to hospital h, then we include an edge (called an Mopt-edge) between r and

some position p of h, so that a single vertex p receives at most one M -edge and at

most one Mopt-edge. Without loss of generality, we may assume that if a resident r

is assigned to the same hospital by M and Mopt, r is assigned to the same position p.

(In this case, we have parallel edges between r and p.) Hence, if a resident is assigned

to different positions by M and Mopt, then he/she is assigned to different hospitals.

Note that each vertex of GM,Mopt has degree at most two.

Note that Mopt satisfies all the lower quotas, while M has k deficiencies. This

means that there are at least k vertices in VH that are matched in Mopt but not in

M . It is easy to see that these k vertices are endpoints of k disjoint paths in GM,Mopt
,

in which Mopt-edges and M -edges appear alternately. By a standard argument (for

example, see the proof of Lemma 4.2 of [HIMY07]), we can show that each such path

contains at least one blocking pair for M or Mopt, but all of them are for Mopt because

M is stable. This completes the proof.

4.2.3 Exponential-Time Exact Algorithm

Our goal in this section is to design non-trivial exponential-time algorithms by using

the parameter t denoting the optimal cost, i.e., the number of blocking pairs in an

optimal solution. Perhaps a natural idea is to set the number ci of residents (pi ≤ ci ≤
qi) assigned to each hospital hi[pi, qi], so that the sum of ci’s over all the hospitals is

equal to the number of residents. However, there is no obvious way of setting such

ci’s rather than exhaustive search, which will result in blow-ups of the computation

time even if t is small. Furthermore, even if we would be able to find suitable setting

of ci’s, we are still not sure how to assign the residents to hospitals optimally (see the

example of Section 4.1).

However, once we guess a set of blocking pairs included in a matching, we can easily

test whether it is a correct guess or not by using the Gale-Shapley algorithm and the

Rural Hospitals theorem. Based on this observation, we will show an O((|H||R|)t+1)-

time exact algorithm for Min-BP HRLQ.

Theorem 4. There is an O((|H||R|)t+1)-time exact algorithm for Min-BP HRLQ,

where t is the number of blocking pairs in an optimal solution of a given instance.
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Proof. For a given integer k > 0, the following procedure A(k) finds a solution (i.e.,

a matching between residents and hospitals) whose cost (i.e., the number of blocking

pairs) is at most k if any. Starting from k = 1, our algorithm (Algorithm E) runs

A(k) until it finds a solution, by increasing the value of k one by one. A(k) is quite

simple, for which the following informal discussion suffices.

Let I be a given instance. First, we guess a set B of k blocking pairs. Since there are

at most |H||R| pairs, there are at most (|H||R|)k choices of B. For each (r, h) ∈ B,

we remove h from r’s preference list (and r from h’s list). Let I ′ be the modified

instance. We then apply the Gale-Shapley algorithm to I ′. If all the lower quotas

are satisfied, then it is a desired solution, otherwise, we fail and proceed to the next

guess.

We show that Algorithm E runs correctly. Consider any optimal solution Mopt

and consider the execution of A(k) for k = t for which our current guess B contains

exactly the t blocking pairs of Mopt. Then, it is not hard to see that Mopt is stable in

I ′ and satisfies all the lower quotas. Then by the Rural Hospitals theorem, any stable

matching for I ′ satisfies all the lower quotas. Hence if we apply the Gale-Shapley

algorithm to I ′, we find a matching M that satisfies all the lower quotas. Note that

M has no blocking pair in I ′. Then, M has at most t blocking pairs in the original

instance I because, when a removed hospital h is returned back to the preference list

of r, only (r, h) can be a new blocking pair.

Finally, we bound the time-complexity of Algorithm E. For each k, we apply the

Gale-Shapley algorithm to at most (|H||R|)k instances, where each execution can be

done in time O(|H||R|). Therefore, the time-complexity is O((|H||R|)k+1) for each

k. Since we find a solution when k is at most t, the whole time-complexity is at most

Σt
k=1O((|H||R|)k+1) = O((|H||R|)t+1).

4.3 Minimum-Blocking-Resident HRLQ

In this section, we consider the problem of minimizing the number of blocking resi-

dents.

4.3.1 NP-hardness

We first show a hardness result.

Theorem 5. Min-BR 1ML-HRLQ is NP-hard even if all the preference lists are
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complete.

Proof. We will show a polynomial-time reduction from the NP-complete problem

CLIQUE [GJ79]. In CLIQUE, we are given a graph G = (V,E) and a positive integer

K ≤ |V |, and asked if G contains a complete graph with K vertices as a subgraph.

Let I0 = (G0,K0) be an instance of CLIQUE where G0 = (V0, E0) and 0 < K0 ≤
|V0|. We will construct an instance I of Min-BR 1ML-HRLQ. Let n = |V0|, m = |E0|,
and B be a positive integer such that B > 2K0. Let R = C ∪ E be the set of

residents and H = V ∪ {x} be the set of hospitals of I. Each set is defined as C =

{ci | 1 ≤ i ≤ K0}, E = {eki,j | (vi, vj) ∈ E0, 1 ≤ k ≤ B}, and V = {vi | 1 ≤ i ≤ n}.
(There is a one-to-one correspondence between the set V of hospitals and the set V0

of vertices, so we use the same symbol vi to refer to both vertex and the corresponding

hospital.)

Corresponding to each edge (vi, vj) ∈ E0, there are B residents eki,j(1 ≤ k ≤ B).

We will call them residents associated with (vi, vj). Preference lists and quotas are

given in Fig. 4.3. For a set X, “[X]” means an arbitrarily (but fixed) ordered list

of the members in X, and “. . .” means an arbitrarily ordered list of all the other

hospitals that do not appear explicitly in the list. Note that all the preference lists

are complete, and all the hospitals have the same preference list.

ci : [V ] x (1 ≤ i ≤ K0)

eki,j : vi vj x . . . ((vi, vj) ∈ E0, 1 ≤ k ≤ B)

vi[0, 1] : [C] [E] (1 ≤ i ≤ n)

x[mB,mB] : [C] [E]

Fig. 4.3 Preference lists of residents and preference lists and quotas of hospitals

Lemma 10. If I0 is a “yes” instance of CLIQUE, then there is a feasible matching

of I having at most (m−
(
K0

2

)
)B +K0 blocking residents.

Proof. Suppose that G0 has a clique V ′
0 of size K0. We will construct a matching M

of I from V ′
0 . We assign all the residents in C to the hospitals in V ′

0 in an arbitrary

way, and all the residents in E to the hospital x. Since V ′
0 is a clique, (vi, vj) ∈ E0

for any pair of vi, vj ∈ V ′
0(i ̸= j). There are B residents eki,j (1 ≤ k ≤ B) associated

with the edge (vi, vj). These residents are assigned to the hospital x inferior to the
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hospitals vi and vj in M , but the hospitals vi and vj are assigned residents in C,

better than eki,j . Hence all eki,j are non-blocking residents. There are B
(
K0

2

)
such

residents eki,j and the total number of residents is mB+K0. Hence there are at most

(m−
(
K0

2

)
)B +K0 blocking residents in M .

Lemma 11. For a matching X of I, let cost(X) be the number of blocking residents

of X. For an arbitrary feasible matching M of I, there is a feasible matching M ′ of

I such that (i) M ′ assigns every resident in C to a hospital in V and (ii) cost(M ′) ≤
cost(M) +K0.

Proof. First, if some residents are unassigned inM , we modifyM by assigning them to

arbitrary hospitals. This is possible because all the preference lists are complete and

the number of residents is at most the sum of the upper quotas. Clearly, this does not

increase the cost. Let Cx = {c | c ∈ C,M(c) = x} and Ev = {e | e ∈ E,M(e) ∈ V }.
Then, |Cx| = |Ev| since |M(x)| = |Cx| + (|E| − |Ev|) and |M(x)| = mB = |E| by
the lower quota of x. If Cx is empty, we are done because we can let M ′ = M .

Hence, suppose that Cx is nonempty. Let M ′ be a matching obtained by M by

exchanging assigned hospitals between Cx and Ev arbitrarily. Then M ′ is feasible

and the following (1)–(3) are easy to verify:

(1) Any resident in C \Cx does not change its assigned hospital, and no hospital in

V becomes worse off. Therefore, no new blocking resident arises from C \Cx. (2) Any

resident r in Cx is a blocking resident in M because r is assigned to x and there is a

hospital in V that receives a resident from Ev. Therefore, no new blocking resident

arises from Cx. (3) For the same reason as (1), no new blocking resident arises from

E \ Ev.

Hence, only residents in Ev can newly become blocking residents. Since |Ev| =
|Cx| ≤ |C| = K0, we have that cost(M ′) ≤ cost(M) +K0.

Lemma 12. If I0 is a “no” instance of CLIQUE, then any feasible matching of I

contains at least (m−
(
K0

2

)
+ 1)B −K0 blocking residents.

Proof. Suppose that there is a matching M of I that contains less than (m−
(
K0

2

)
+

1)B − K0 blocking residents. We will show that G0 contains a clique of size K0.

We first construct a matching M ′ using Lemma 11. Then M ′ contains less than

(m −
(
K0

2

)
+ 1)B blocking residents, and any resident in C is assigned to a hospital

in V . Note that every resident in E is now assigned to x since x’s lower quota is
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mB = |E|. Define V ′
0 ⊆ V0 be the set of vertices corresponding to the assigned

hospitals in V . Clearly, |V ′
0 | = K0. We claim that V ′

0 is a clique.

Recall that there are mB +K0 residents. Since we assume that there are less than

(m−
(
K0

2

)
+1)B blocking residents, there are more than K0+

(
K0

2

)
B−B non-blocking

residents, and since |C| = K0, there are more than
(
K0

2

)
B−B non-blocking residents

in E. Consider the following partition of E into B subsets: Ek = {eki,j | (vi, vj) ∈ E0}
(1 ≤ k ≤ B). Then the above observation on the number of non-blocking residents in

E implies that there is a k such that Ek contains at least
(
K0

2

)
non-blocking residents.

Since every resident in E is assigned to x, only eki,j such that both vi and vj are in

V ′
0 can be non-blocking. This means that any pair of vertices in V ′

0 causes such a

non-blocking resident, implying that V ′
0 is a clique.

Because B > 2K0, we have (m−
(
K0

2

)
+ 1)B −K0 > (m−

(
K0

2

)
)B +K0. Hence by

Lemmas 10 and 12, Min-BR 1ML-HRLQ is NP-hard.

We can prove the NP-hardness for more restricted case using the following

Lemma 13. Since the same reduction will be used in the approximability part

(Section 4.3.2), we state the lemma in a stronger form than is needed here.

Lemma 13. If there is a polynomial-time α–approximation algorithm for 0-1 Min-

BR HRLQ, then there is a polynomial-time α–approximation algorithm for Min-BR

HRLQ.

Proof. We give a polynomial-time approximation preserving reduction from Min-BR

HRLQ to 0-1 Min-BR HRLQ. Let I be an instance of Min-BR HRLQ. We construct

an instance I ′ of 0-1 Min-BR HRLQ in polynomial time: The set of residents of I ′

is the same as that of I. Corresponding to each hospital hi[pi, qi] of I, I
′ contains pi

hospitals hi,1, · · · , hi,pi
with quota [1, 1], and qi − pi hospitals hi,pi+1, · · · , hi,qi with

quota [0, 1]. For any j, the preference list of a hospital hi,j of I ′ is the same as that

of a hospital hi of I. The preference list of a resident r of I ′ is constructed from the

preference list of the corresponding resident in I by replacing hi by hi,1 · · · hi,qi for

each hospital hi of I. Without loss of generality, we can assume that qi ≤ |R| for each
i. Hence I ′ can be constructed in polynomial time.

From a feasible matching M ′ for I ′, it is easy to construct a feasible matching M

for I; just adding (r, hi) to M for each (r, hi,j) ∈ M ′. Let cost, cost′, opt and opt′ be

the costs of M , M ′, the optimal costs of I and I ′, respectively. In order to complete

the proof, we must show that cost
opt ≤ cost′

opt′ . To this end, it is enough to show (i)
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cost ≤ cost′, and (ii) opt′ ≤ opt. For (i), it is easy to verify that if r is a blocking

resident for M , then so is r for M ′ too. For (ii), we show that from (any) matching X

for I, we can construct a matching X ′ for I ′ without increasing the cost. Consider a

hospital hj . Let rj,1, rj,2, · · · , rj,|X(hj)| be the residents in X(hj) and suppose that hj

prefers these residents in this order. We construct a matching X ′ by adding (rj,k, hj,k)

to X ′ for all k and j. Again, it is easy to see that X ′ is feasible for I ′ and if r is a

blocking resident for X ′, then r is also a blocking resident for X.

Corollary 1. 0-1 Min-BR 1ML-HRLQ is NP-hard even if all the preference lists are

complete.

Proof. Note that the reduction in the proof of Lemma 13 preserves the “1ML” prop-

erty and the completeness of the preference lists. Then the corollary is immediate

from Theorem 5 and Lemma 13.

4.3.2 Approximability

For the approximability, we note that Algorithm 2 in the proof of Theorem 3 does

not work. For example, consider the instance introduced in Section 4.1. If we apply

the Gale-Shapley algorithm, resident ri is assigned to hi for each i, and we need to

move r1 to hn+1. However since h1 becomes empty, all the residents become blocking

residents. On the other hand, the optimal cost is 2 as we have seen there. Thus the

approximation ratio becomes as bad as Ω(|R|).

Theorem 6. There is a polynomial-time
√

|R|–approximation algorithm for Min-BR

HRLQ.

We know by Lemma 13 that it is enough to attack 0-1 Min-BR HRLQ. Hence we

give a
√

|R|–approximation algorithm for 0-1 Min-BR HRLQ (Lemma 15) to prove

Theorem 6. In 0-1 Min-BR HRLQ, the number of residents assigned to each hospital

is at most one. Hence, for a matching M , we sometimes abuse the notation M(h) to

denote the resident assigned to h (if any) although it was originally defined as the set

of residents assigned to h.

Algorithm

To describe the idea behind our algorithm, recall again Algorithm 2 presented in the

proof of Theorem 3: First, apply the Gale-Shapley algorithm to a given instance
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I and obtain a matching M . Next, move residents arbitrarily from assigned [0, 1]-

hospitals to empty [1, 1]-hospitals. Suppose that in the course of the execution of

Algorithm 2, we move a resident r from a [0, 1]-hospital h to an empty [1, 1]-hospital.

Then, of course r creates a blocking pair with h, but some other residents may also

create blocking pairs with h because h becomes empty. Hence, consider the following

modification. First, set the upper quota of a [0, 1]-hospital h to ∞ and apply the

Gale-Shapley algorithm. Then, all residents who “wish” to go to h actually go there.

Hence, even if we move all such residents to other hospitals, only the moved residents

can become blocking residents. By doing this, we can bound the number of blocking

residents by the number (given by the function g introduced below) of those moving

residents. In the above example, we extended the upper quota of only one hospital,

but in fact, we may need to select two or more hospitals to select sufficiently many

residents to be sent to other hospitals so as to make the matching feasible. However,

at the same time, this number should be kept minimum to guarantee the quality of

the solution.

As mentioned above, we define g(h, h): For an instance I of HR, suppose that

we extend the upper quota of hospital h to ∞ and find a stable matching of this

new instance. Define g(h, h) as the number of residents who are assigned to h in

this stable matching. Recall that this quantity does not depend on the choice of the

stable matching by the Rural Hospitals theorem [GS85]. Extend g(h, h) to g(A,B)

for A,B ⊆ H such that g(A,B) denotes the number of residents assigned to hospitals

in A when we change upper quotas of all the hospitals in B to ∞.

We now propose Algorithm 3 for 0-1 Min-BR HRLQ. The idea is to find a small

number of residents (victims) to be moved, and construct a feasible matching M∗

in which only the victims are blocking. First we apply the Gale-Shapley algorithm

to a given instance I while ignoring the lower quotas of I and obtain a matching

Ms. The matching Ms is used to find non-empty [0, 1]-hospitals (denoted H ′
0,1 in

the description of Algorithm 3) from which the victims will be selected. Next, we

estimate the popularity of the hospital h in H ′
0,1 using g(h, h) defined above, and

select a certain number of least popular hospitals S from H ′
0,1 (we will later show

that H ′
0,1 is large enough to select S). We then apply the Gale-Shapley algorithm

again while setting the upper quotas of hospitals in S to ∞ and obtain a matching

M∞. The residents who came to hospitals in S are victims and we move these residents

to the empty [1, 1]-hospitals to obtain the final solution M∗ (we will later show that
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there are enough number of victims to fill the empty [1, 1]-hospitals). We can show

that the number of victims is small enough because we have selected less popular

hospitals to S.

We will introduce notations used to describe Algorithm 3 formally. Let I be a given

instance. Define Hp,q to be the set of [p, q]-hospitals of I. Recall from Section 4.2

that the deficiency of a hospital is the shortage of the assigned residents from its

lower quota (with respect to the matching obtained by the Gale-Shapley algorithm).

Now define the deficiency of the instance I as the sum of the deficiencies of all the

hospitals of I, and denote it D(I). Since we are considering 0-1 Min-BR HRLQ, D(I)

is exactly the number of empty [1, 1]-hospitals.

Algorithm 3 A
√

|R|–approximation algorithm for 0-1 Min-BR HRLQ

1: Apply the Gale-Shapley algorithm to I by ignoring the lower quotas. Let Ms be

the obtained matching. Compute the deficiency D(I).

2: H ′
0,1 := {h | Ms(h) ̸= ∅, h ∈ H0,1}. (If Ms(h) = ∅, then residents never come to

h in the following lines 3 and 4.)

3: Compute g(h, h) for each h ∈ H ′
0,1 by using the Gale-Shapley algorithm.

4: From H ′
0,1, select D(I) hospitals with smallest g(h, h) values (ties are broken

arbitrarily). Let S be the set of these hospitals. Extend the upper quotas of

all hospitals in S to ∞, and run the Gale-Shapley algorithm. Let M∞ be the

obtained matching.

5: In M∞, move residents who are assigned to hospitals in S arbitrarily to empty

hospitals to make the matching feasible. (We first make [1, 1]-hospitals full. This

is possible because of the NR-assumption and the CL-restriction. If there is

a hospital in S still having two or more residents, then send surplus residents

arbitrarily to empty [0, 1]-hospitals, or simply make them unassigned if there is

no [0, 1]-hospital to send them to.) Output the resulting matching M∗.

We first prove the following property of the original HR problem.

Lemma 14. Let I0 be an instance of HR, and h be any hospital. Let I1 be a modi-

fication of I0 so that only the upper quota of h is increased by 1. Let Mi be a stable

matching of Ii for each i ∈ {0, 1}. Then, (i) |M0(h)| ≤ |M1(h)|, and (ii) ∀h′ ∈ H\{h},
|M0(h

′)| ≥ |M1(h
′)|.

Proof. If M0 is stable for I1, then we are done, so suppose not. We will construct a
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stable matching for I1 by successive modifications starting from M0. Because M0 is

stable for I0, if M0 has blocking pairs for I1, then all of them involve h. Let r be the

resident such that (r, h) is a blocking pair and there is no blocking pair (r′, h) such that

h prefers r′ to r. If we assign r to h (possibly by canceling the previous assignment of

r if r was assigned in M0), all the blocking pairs including h are removed. If no new

blocking pairs arise, again we are done. Otherwise, r must be previously assigned

to some hospital, say h′, and all the new blocking pairs involve h′. We then choose

the resident r′, most preferred by h′ among all the blocking residents, and assign

r′ to h′. We continue this operation until there arise no new blocking pairs. This

procedure eventually terminates because each iteration improves exactly one resident.

By the termination condition, the resulting matching is stable for I1. Note that by

this procedure, only h can gain one more resident, and at most one hospital may

lose one resident. By the Rural Hospitals theorem, the number of residents assigned

to each hospital is the same in M1 and the current matching. This completes the

proof.

Obviously, Algorithm 3 runs in polynomial time. We show that Algorithm 3 runs

correctly, namely that the output matching M∗ satisfies the quotas. To do so, it

suffices to show the following conditions

|H ′
0,1| ≥ D(I) (4.1)

and
|{r | M∞(r) ∈ S}| ≥ |{h | h ∈ H1,1,M∞(h) = ∅}| (4.2)

so that lines 4 and 5 are executable, respectively.

For Equation (4.1), let N1 be the number of residents assigned to hospitals in H1,1

in Ms. Then |Ms| = |H ′
0,1| + N1 and D(I) = |H1,1| − N1. We can assume that all

the residents are assigned in Ms since otherwise, we already have a feasible stable

matching (as explained in the proof of Theorem 3) and therefore |Ms| = |R|. From

these equations, we have |H ′
0,1| = D(I)+|R|−|H1,1|. By the NR-assumption, it follows

that |R| ≥ |H1,1|, from which we have |H ′
0,1| ≥ D(I) as required. For Equation (4.2),

it suffices to show that the number N2 of residents assigned to S ∪H1,1 in M∞ is at

least the number of hospitals in H1,1, i.e., |H1,1|. Note that empty hospitals in Ms are

also empty in M∞ by Lemma 14. Therefore, the number N2 of residents assigned to

hospitals in H \ (S∪H1,1) in M∞ is at most the number of hospitals in H ′
0,1 \S. Thus

N2 ≤ |H ′
0,1|− |S| and N2 = |R|−N2 ≥ |R|− (|H ′

0,1|− |S|). By the definition of D(I),
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we have that |H ′
0,1|+|H1,1| = |R|+D(I). Thus, N2 ≥ |R|−(|R|+D(I)−|H1,1|−|S|) =

|H1,1| (recall that |S| = D(I)).

Analysis of the Approximation Ratio

Lemma 15. The approximation ratio of Algorithm 3 is at most
√
|R|.

Proof. Let I be a given instance of 0-1 Min-BR HRLQ and let fopt and falg be the

costs of an optimal solution and the solution obtained by Algorithm 3, respectively.

First, note that any resident r who is assigned to a hospital h ∈ H \S in M∞ prefers

no hospital in S to h, since otherwise, r and such a hospital (in S) form a blocking

pair for M∞, a contradiction (recall that the upper quota of any hospital in S is ∞).

Therefore, even if we move residents from hospitals in S at line 5, no unmoved resident

becomes a blocking resident. Thus only moved residents can be blocking residents

and
falg ≤ g(S, S). (4.3)

We then give a lower bound on the optimal cost. To do so, recall the proof of

Theorem 3, where it is shown that any optimal solution for instance I of Min-BP

HRLQ has at least D(I) blocking pairs. It should be noted that those D(I) blocking

pairs do not have any common resident. Thus we have

fopt ≥ D(I). (4.4)

Now here is our key lemma to evaluate the approximation ratio.

Lemma 16. In line 3 of Algorithm 3, there are at least D(I) different hospitals

h ∈ H ′
0,1 such that g(h, h) ≤ fopt.

The proof will be given in a moment. By this lemma, we have g(h, h) ≤ fopt for

any h ∈ S, since at line 4 of Algorithm 3, we select D(I) hospitals with the smallest

g(h, h) values. This implies that∑
h∈S

g(h, h) ≤ D(I)fopt. (4.5)

Also, by Lemma 14, we have
g(h, S) ≤ g(h, h) (4.6)

for any h ∈ S. Hence, by Equations (4.3), (4.6), (4.5) and (4.4), we have

falg ≤ g(S, S) =
∑
h∈S

g(h, S) ≤
∑
h∈S

g(h, h) ≤ D(I)fopt ≤ (fopt)
2.
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Therefore, we have that
√
falg ≤ fopt, and hence

falg

fopt
≤

√
falg ≤

√
|R|, completing

the proof of Lemma 15.

Proof of Lemma 16. Let h be a hospital satisfying the condition of the lemma. In

order to calculate g(h, h) in line 3, we construct a stable matching, say Mh for the

instance I∞(h) in which the upper quota of h is changed to ∞. We do not know

what kind of matching Mh is, but in the following, we show that there is a stable

matching, say M2, for I∞(h) such that |M2(h)| ≤ fopt. Matchings Mh and M2 may

be different matchings, but we can guarantee that |Mh(h)| = |M2(h)| ≤ fopt by the

Rural Hospitals theorem. A bit trickily, we construct M2 from an optimal matching.

Let Mopt be an optimal solution of I (which of course we do not know). Let Rb and

Rn be the sets of blocking residents and non-blocking residents for Mopt, respectively.

Then |Rb| = fopt by definition. We modify Mopt as follows: Take any resident r ∈ Rb.

If r is unassigned, we do nothing. Otherwise, force r to be unassigned. Then there

may arise new blocking pairs involving residents in Rn. Let BP1 be the set of such

new blocking pairs. Note that all of the blocking pairs in BP1 include the hospital h′

to which r was assigned. Among the residents involved in BP1, we select the resident

r′ who is most preferred by h′ and assign r′ to h′. Then, all the blocking pairs in BP1

disappear. However, there may arise new blocking pairs (BP2) involving residents in

Rn, and all the blocking pairs in BP2 include the hospital h
′′ to which r′ was assigned.

In a similar way as the proof of Lemma 14, we continue to move residents until no

new blocking resident arises from Rn (but this time, we move only residents in Rn as

explained above). We do this for all the residents in Rb, and let M1 be the resulting

matching.

The following properties (4.7) and (4.8) are immediate:

There are at least fopt unassigned residents in M1, (4.7)

since residents in Rb are unassigned in M1.

Residents in Rn are non-blocking for M1. (4.8)

We prove the following properties:

There are at most fopt empty [1, 1]-hospitals in M1. (4.9)

Define H ′ = {h | h ∈ H ′
0,1 and h is empty in M1}. Then

|H ′| ≥ D(I). (4.10)
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For (4.9), note that all the [1, 1]-hospitals are full in Mopt. It is easy to see that, in

the above procedure for each r ∈ Rb, at most one assigned hospital is made empty.

Since |Rb| = |fopt|, the number of such hospitals is at most |fopt| and hence the claim

holds.

For (4.10), let H1 be the set of hospitals assigned in M1. We have that

H ′ = H ′
0,1 \ (H1 ∩H0,1) (4.11)

by the definition of H ′, and that

|H ′
0,1| = |R|+D(I)− |H1,1| (4.12)

by the definition of D(I). Also, the above property (4.7) implies that |R|−|H1| ≥ fopt

and (4.9) implies that |H1,1| − |H1 ∩H1,1| ≤ fopt, from which we have that

|H1 ∩H0,1| = |H1| − |H1 ∩H1,1|
≤ (|R| − fopt) + (fopt − |H1,1|)
= |R| − |H1,1|. (4.13)

From Equations (4.11) to (4.13), we have |H ′| ≥ |H ′
0,1| − |H1 ∩H0,1| ≥ (|R|+D(I)−

|H1,1|)− (|R| − |H1,1|) = D(I), as required.

Let h be an arbitrary hospital in H ′. We show that g(h, h) ≤ fopt. Then, this

completes the proof of Lemma 16 because H ′ ⊆ H ′
0,1 and (4.10). Since h is empty in

M1, residents in Rn are still non-blocking for M1 in I∞(h) (whose definition is in the

beginning of this proof) by the property (4.8). Now, choose any resident r from Rb,

and apply the Gale-Shapley algorithm to I∞(h) starting from M1. This execution

starts from the proposal by r, and at the end, nobody in Rn ∪ {r} is a blocking

resident for I∞(h). Since hospitals assigned in M1 never become empty, and since

unassigned residents in Rn never become assigned, h receives at most one resident. If

we do this for all the residents in Rb, the resulting matching M2 is stable for I∞(h),

and h is assigned at most |Rb| = fopt residents. As mentioned previously, this implies

g(h, h) ≤ fopt.

Tightness of the Analysis

We give an instance of 0-1 Min-BR HRLQ for which Algorithm 3 produces a solution

of cost |R| −
√
|R| but the optimal cost is at most 2

√
|R|. Namely, the analysis of

Lemma 15 is tight up to a constant factor.
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Let R = C ∪ D ∪ E and H = A ∪ B ∪ X, where C = {ci | 1 ≤ i ≤ n}, D =

{di,j | 1 ≤ i ≤ n, 1 ≤ j ≤ n − 2}, E = {ei | 1 ≤ i ≤ n}, A = {ai | 1 ≤ i ≤ n},
B = {bi | 1 ≤ i ≤ n}, and X = {xi | 1 ≤ i ≤ n2−n}. The preference lists of residents
are

ci : ai bi [[X]] · · · (1 ≤ i ≤ n)

di,j : bi [[X]] · · · (1 ≤ i ≤ n, 1 ≤ j ≤ n− 2)

ei : bi [[A]] [[X]] · · · (1 ≤ i ≤ n)

and the preference lists and quotas of hospitals are

ai[0, 1] : ci · · · (1 ≤ i ≤ n)

bi[0, 1] : di,1 · · · (1 ≤ i ≤ n)

xi[1, 1] : · · · (1 ≤ k ≤ n2 − n)

where [[X]] denotes x1 · · · xn2−n and [[A]] denotes a1 · · · an. “· · · ” denotes an

arbitrarily ordered list of the members that do not appear explicitly. Note that all

the preference lists are complete. The deficiency of this instance is n. If we set the

upper quota of ai to ∞, then n + 1 residents ci, e1, e2, . . . , en are assigned to ai, so

g(ai, ai) = n + 1 for all 1 ≤ i ≤ n. If we set the upper quota of bi to ∞, then

n − 1 residents ei, di,1, di,2, . . . , di,n−2 are assigned to bi, so g(bi, bi) = n − 1. Thus,

Algorithm 3 constructs S = {b1, · · · , bn} at line 4 and the solution has n2 − n =

|R| −
√

|R| blocking residents. However, consider the following matching: First,

apply the Gale-Shapley algorithm for D and B ∪ X. Then, assign the residents in

C ∪E to the empty hospitals in X arbitrarily. Then, nobody in D can be a blocking

resident. Hence the cost is at most 2n = 2
√

|R|. Therefore, the approximation ratio

is at least (|R| −
√

|R|)/(2
√

|R|) = Ω(
√

|R|).

4.3.3 Inapproximability

For the hardness of Min-BR HRLQ, we have only NP-hardness, but we can give a

strong evidence for its inapproximability. The Densest k-Subgraph Problem (DkS)

is the problem of finding, given a graph G and a positive integer k, an induced

subgraph of G with k vertices that contains as many edges as possible. This problem

is NP-hard because it is a generalization of Max CLIQUE. Its approximability has

been studied intensively but there still remains a large gap between approximability

and inapproximability: The best known approximation ratio is |V |1/4+ϵ [BCC+10],

while there is no PTAS under reasonable assumptions [Fei02, Kho06]. The following
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Theorem 7 shows that approximating Min-BR HRLQ within a constant ratio implies

the same for DkS.

Theorem 7. If Min-BR 1ML-HRLQ has a polynomial-time c-approximation algo-

rithm, then DkS has a polynomial-time (1 + ϵ)c4-approximation algorithm for any

positive constant ϵ.

Proof. The proof uses another problem called Minimum Coverage Problem

(MinC) [Vin07]. In MinC, we are given a family P of subsets of a base set U
and a positive integer t, and asked to select t sets from P so that their union is

minimized. Theorem 7 can be easily proved by combining the following two lemmas,

whose proofs will be given shortly:

Lemma 17. If MinC admits a polynomial-time c-approximation algorithm, then DkS

admits a polynomial-time (1+ ϵ)c4-approximation algorithm for any positive constant

ϵ.

Lemma 18. If Min-BR 1ML-HRLQ admits a polynomial-time d-approximation al-

gorithm, then MinC admits a polynomial-time (1 + ϵ)d-approximation algorithm for

any positive constant ϵ.

Suppose that Min-BR 1ML-HRLQ admits a polynomial-time c-approximation algo-

rithm. Given an arbitrary positive constant ϵ, we choose ϵ′ such that ϵ′ ≤ (1+ ϵ)
1
5 −1

in Lemmas 17 and 18. By Lemma 18, MinC admits a polynomial-time (1 + ϵ′)c-

approximation algorithm and then by Lemma 17, DkS admits a polynomial-time

(1+ϵ′)5c4-approximation algorithm. By the choice of ϵ′, we have (1+ϵ′)5c4 ≤ (1+ϵ)c4,

and hence the proof of Theorem 7 is completed.

Proof of Lemma 17. We will construct a polynomial-time (1 + ϵ)c4-approximation

algorithm for DkS using a c-approximation algorithm A for MinC. Suppose that we

are given a graph G = (V,E) and an integer k as an instance I of DkS. We regard

each vertex in V as an element and each edge in E as a set of size two containing

its two endpoints, and consider it as an instance of MinC. Recall that in MinC, we

are given a positive integer t which specifies the number of sets we must select. We

repeatedly apply algorithm A to this instance by increasing the target value of t one

by one from one, until A outputs a solution of cost c(k+1) or more for the first time.

Let t̃ be the value of t at this point and s̃ be the value output by A. (If A never

outputs such a solution even when t = |E|, it means that |V | < c(k + 1) in the given
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graph. This is more desirable case for us, as shown below.) Then, s̃ ≥ c(k + 1) by

the above condition, and the optimal value of MinC when the target value is t̃ is at

least k+1 since A is a c-approximation algorithm. This means that there is no subset

of k vertices in G containing t̃ edges; in other words, the optimal value of the DkS

instance I is less than t̃.

Note that when the target values in MinC differ by one, the two corresponding

optimal values differ by at most two because adding one edge increases the number of

vertices by at most two. Therefore, s̃ ≤ c2(k+1)+ c since otherwise, s̃ > c2(k+1)+ c

and the optimal value of MinC when the target value is t̃ is more than c(k + 1) + 1,

namely at least c(k + 1) + 2, because A is a c-approximation algorithm. Then, when

the target value is t̃− 1, the optimal value of MinC is at least c(k + 1) by the above

observation, and hence Amust have already output a solution of value at least c(k+1),

a contradiction.

We now have a subgraph G′ of G with s̃ vertices and at least t̃ edges. We then

solve DkS approximately for G′ (with the same k) using the greedy algorithm given

in [AITT00]. We can find a subgraph of G′ with k vertices and at least k(k−1)
s̃(s̃−1) t̃

edges, which is a s̃(s̃−1)
k(k−1) -approximate solution of the original problem I (recall that

the optimal value of I is less than t̃). Since s̃ ≤ c2(k + 1) + c as proved above,

s̃(s̃− 1)

k(k − 1)
≤ c4 +

(3k + 1)c4 + 2(k + 1)c3 − kc2 − c

k(k − 1)
.

Note that for any fixed constants c and ϵ, we can find a constant k0 such that
(3k+1)c4+2(k+1)c3−kc2−c

k(k−1) ≤ ϵc4 for all k ≥ k0. Also, note that DkS when k is a constant

is solvable in polynomial time. Thus, given a DkS instance, solving optimally when

k < k0, and using the above reduction otherwise, is a desirable (1+ϵ)c4-approximation

algorithm.

If A does not output a solution when determining s̃, we know that |V | < c(k + 1)

as discussed previously. In this case we simply apply the above greedy algorithm to

G itself instead of G′. The optimal cost is at most |E| and the algorithm’s cost is

at least k(k−1)
|V |(|V |−1) |E|, so the approximation ratio is at most |V |(|V |−1)

k(k−1) . By a similar

argument as above, we can show that this is bounded by (1 + ϵ)c2 for any positive ϵ

for large enough k. This completes the proof.

Proof of Lemma 18. We give a polynomial-time reduction from MinC to Min-BR

1ML-HRLQ. Suppose that a given instance I0 of MinC consists of the base set
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U= {u1, u2, . . . , un}, a collection P= {P1, P2, . . . , Pm} of subsets of U , and a pos-

itive integer t (the number of subsets to be selected). We construct an instance I of

Min-BR 1ML-HRLQ.

Let R = C∪U be the set of residents and H = P ∪{x} be the set of hospitals, where

each set is defined as follows: C = {ci | 1 ≤ i ≤ m− t}, U = {uj
i | 1 ≤ i ≤ n, 1 ≤ j ≤

B}, and P = {pi | 1 ≤ i ≤ m}. Note that |R| = nB +m − t. Here, B is a positive

integer determined later. Preference lists and quotas are defined in Fig. 4.4. For each

i (1 ≤ i ≤ n), residents uj
i (1 ≤ j ≤ B) correspond to the element ui of the base set

U of MinC. Each [0, 1]-hospital pi corresponds to the subset Pi of MinC instance I0.

For each resident uj
i , the set P (i) contains the hospital pk if and only if the element

ui is contained in the set Pk in I0. For a set S, “[S]” denotes an arbitrarily ordered

list of the members in S. Note that all the preference lists of hospitals are identical.

It is easy to see that the reduction can be performed in polynomial time.

ci : [P ] x (1 ≤ i ≤ m− t)

uj
i : [P (i)] x [P \ P (i)] (1 ≤ i ≤ n, 1 ≤ j ≤ B)

pi[0, 1] : [C] [U ] (1 ≤ i ≤ m)

x[nB, nB] : [C] [U ]

Fig. 4.4 Preference lists of residents and hospitals

Let opt(I0) and opt(I) be the optimal costs of I0 and I, respectively. In the follow-

ing, we show that (i) opt(I) ≤ B · opt(I0) + (m − t), and (ii) from a solution of I of

cost a, we can construct a solution of I0 of cost at most (a+m− t)/B in polynomial

time.

Hence, if there is a polynomial-time d-approximation algorithm for Min-BR 1ML-

HRLQ, namely, if a
opt(I) ≤ d, then we can obtain

(a+m− t)/B

opt(I0)
≤ d+

(d+ 1)(m− t)

B · opt(I0)

≤ d+
2md

B · opt(I0)

≤ (1 +
2m

B
)d.

Now, if we take B ≥ 2
ϵm, then (1 + 2m

B )d ≤ (1 + ϵ)d, as desired.
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We first prove (i). Let P∗ be an optimal solution (a subset of size t) for I0. We

will construct a solution M of I as follows: Let M(uj
i ) = x for all i and j. Assign

residents in C to hospitals corresponding to subsets in P \ P∗ in an arbitrary way.

For each Pj ∈ P∗, let the hospital pj be empty. Consider a resident uj
i and consider

a subset Pk of I0 that contains the element ui. Note that uj
i prefers the hospital

pk to x. If Pk ̸∈ P∗, then pk receives a resident better than uj
i in M and hence

(uj
i , pk) is not a blocking pair. If Pk ∈ P∗, then pk is empty in M and hence (uj

i , pk)

is a blocking pair. Hence, P∗ does not include any Pk that contains ui (in other

words, the element ui does not contribute to the cost of P∗) if and only if uj
i is not a

blocking resident. There are (m− t) + nB residents and among them B(n− opt(I0))

are non-blocking as observed. Thus the number of blocking residents for M is at most

(m− t) + nB −B(n− opt(I0)) = B · opt(I0) + (m− t), which completes the proof of

(i).

We then prove (ii). Consider a feasible matching M of cost a. We may assume

without loss of generality that all the residents are assigned in M because if not,

we can assign unassigned residents to under-subscribed hospitals arbitrarily without

increasing the cost. Let Cx = {c | c ∈ C,M(c) = x} and Up = {u | u ∈ U,M(u) ∈ P}.
Then, |Cx| = |Up| since |M(x)| = |Cx|+ (|U | − |Up|) and |M(x)| = nB = |U | by the

lower quota of x.

Let M ′ be a matching obtained by M by exchanging assigned hospitals between

Cx and Up arbitrarily. The following (1)–(3) are easy to verify: (1) Any resident in

C \Cx does not change its assigned hospital, and no hospital in P becomes worse off.

Therefore, no new blocking resident arises from C \ Cx. (2) Any resident r in Cx is

a blocking resident in M because r is assigned to x and there is a hospital in P that

receives a resident from Up. Therefore, no new blocking resident arises from Cx. (3)

For the same reason as (1), no new blocking resident arises from U \Up. Hence, only

residents in Up can newly become blocking residents. Since |Up| = |Cx| ≤ |C| = m−t,

the number of blocking residents for M ′ is at most a+ (m− t).

Construct a solution P ′ of I0 from M ′ such that P ′ = {Pi | hospital pi is empty

in M ′}. Clearly, |P ′|= t. We show that the cost of P ′ is at most (a + m − t)/B.

Partition U into B subsets Uj = {uj
i | 1 ≤ i ≤ n} (1 ≤ j ≤ B). Then there is an

integer j such that Uj contains at most (a + m − t)/B blocking residents. If uj
i is

non-blocking, all the hospitals superior to x for uj
i are assigned in M ′, and hence by

the construction of P ′, no subset containing ui is selected in P ′, i.e., the element ui
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does not contribute to the cost of P ′. Hence, only elements ui whose corresponding

residents uj
i are blocking can contribute to the cost of P ′. Therefore, the cost of P ′

is at most (a+m− t)/B.

4.4 Concluding Remarks

In this chapter, we defined HRLQ. Then, we showed that Min-BP HRLQ is hard to

approximate within the ratio of (|H|+|R|)1−ϵ for any positive constant ϵ where H and

R are the sets of hospitals and residents, respectively. We then gave an exponential-

time exact algorithm whose running time is O((|H||R|)t+1), where t is the number

of blocking pairs in an optimal solution. We also considered another measure for

optimization criteria, i.e., the number of residents who are involved in blocking pairs.

We showed that Min-BR HRLQ is still NP-hard but has a polynomial-time
√

|R|-
approximation algorithm.

A future research is to obtain lower bounds on the approximation factor for Min-BR

HRLQ (we even do not know its APX-hardness at this moment). Since this problem

is harder than the Densest k-Subgraph Problem, which is a problem of finding an

induced subgraph with k vertices that contains as many edges as possible, it should

be a reasonable challenge.

As for Min-BP HRLQ, it is interesting to consider a decision variant, namely, the

problem of asking whether an optimal solution contains at most k blocking pairs for

a given integer k. In Theorem 2, we have shown that the problem of determining

whether the optimal cost is at most nδ or at least n1−δ is NP-hard for any constant

δ(> 0), where n = |H| + |R|. This implies that the decision problem is NP-hard if

k = O(nδ) for any δ. On the other hand, Theorem 4 implies that the problem is

solvable in polynomial time when k is a constant. It is interesting to consider the

complexity of the problem when k is between them, e.g., k =polylog(n).

Another direction was to develop an FPT algorithm (parameterized by the optimal

cost t) for Min-BP HRLQ, improving Theorem 4. Recently, this was solved negatively

by Mnich and Schlotter [MS20]. As a special case of a theorem shown in [MS20], it

is proved that Min-BP HRLQ is not fixed-parameter tractable parameterized by t.

Finally, we remark on the possibility of generalization of instances: In this chap-

ter, we guarantee existence of feasible matchings by the CL-restriction (Section 4.1).

However, even if we allow arbitrarily incomplete lists (and even ties), it is decidable
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in polynomial time if the given instance admits a feasible matching [Gab83]. Thus,

it might be interesting to seek approximate solutions for instances without the CL-

restriction. Unfortunately, however, we can easily imply its |R|1−ϵ-approximation

hardness in the following way.

Consider the problem of finding a maximum cardinality matching with the fewest

blocking pairs, given a stable marriage instance with incomplete preference lists (call it

Min-BP SMI for short). Its approximation hardness of n1−ϵ for any positive constant ϵ

is already known [BMM10], where n is the number of men in an input. The reduction

given in Chapter 3, whose idea was taken from [BMM10], constructs an instance

of Min-BP SMI having a perfect matching and creates a large gap on the number

of blocking pairs between “yes” instances and “no” instances. We can verify that

this gap holds also for the number of men involved in blocking pairs. If we regard

instances produced by this reduction as ones of Min-BR HRLQ, by considering men

and women as residents and hospitals, respectively, and setting the quotas to [1, 1]

for all the hospitals, then we can show |R|1−ϵ-approximation hardness of 0-1 Min-BR

HRLQ.
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Chapter 5

Algorithms for Noncrossing

Matchings

In this chapter, we give algorithms and a hardness result for problems of finding a

noncrossing matching.

Ruangwises and Itoh [RI19] incorporated the notion of noncrossing matchings

[Ata85, CLW15, KT86, MOP93, WW85] to SMI. In their model, there are two par-

allel lines where n men are aligned on one line and n women are aligned on the other

line. A matching is noncrossing if no two edges of it cross each other. A stable

noncrossing matching is a matching which is simultaneously stable and noncross-

ing. They defined two notions of stability: In a strongly stable noncrossing matching

(SSNM), the definition of a blocking pair is the same as that of the standard stable

marriage problem. Thus the set of SSNMs is exactly the intersection of the set of

stable matchings and that of noncrossing matchings. In a weakly stable noncrossing

matching (WSNM), a blocking pair has an additional condition that it must not cross

matching edges. Ruangwises and Itoh [RI19] proved that a WSNM exists for any

instance, and presented an O(n2)-time algorithm for the problem of finding a WSNM

(denoted Find WSNM). They also showed that the same results hold for the weak

stability when ties are present in preference lists. Furthermore, they demonstrated

that an SSNM does not always exist, and that there can be WSNMs of different

sizes. Concerning these observations, they posed open questions on the complexities

of the problems of determining the existence of an SSNM (denoted Exist SSNM)

and finding a WSNM of maximum cardinality (denoted Max WSNM).

Table 5.1 summarizes previous and our results, where our results are described in

bold. We first show that both the above mentioned open problems are solvable in

polynomial time. Specifically, Exist SSNM is solved in O(n2)-time by exploiting the
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well-known Rural Hospitals theorem (Proposition 1) and Max WSNM is solved in

O(n4)-time by an algorithm based on dynamic programming (Theorem 10).

We then consider SMTI where preference lists may include ties. SMTI has three

stability notions, super-, strong, and weak stability [Irv94]. We show that our algo-

rithm for solving Max WSNM is applicable to all of the three stability notions with

slight modifications (Corollary 4). We also show that our algorithm for solving Ex-

ist SSNM can be applied to super- and strong stabilities without any modification

(Corollaries 2 and 3). In contrast, we show that Exist SSNM is NP-complete for

the weak stability (Theorem 8).

This NP-completeness holds even for a restricted case where the length of each

person’s preference list is at most two and ties appear in only men’s preference lists.

To complement this intractability, we show that if each man’s preference list contains

at most one woman (but women’s preference lists may be of unbounded length), the

problem is solvable in O(n)-time (Theorem 9). If we parameterize this problem by two

positive integers p and q that bound the lengths of preference lists of men and women,

respectively, Theorem 8 shows that the problem is NP-complete even if p ≤ 2 and

q ≤ 2, while Theorem 9 shows that the problem is solvable in polynomial time if p = 1

or q = 1 (by symmetry of men and women). Thus the computational complexity of

the problem is completely solved in terms of the length of preference lists. We remark

that this is a rare case since many NP-hard variants of the stable marriage problem

can be solved in polynomial time if the length of preference lists of one side is bounded

by two [IMO09, BMM10, BMM12, MO19].

5.1 Preliminaries

A pair in a matching can be seen as an edge on the plane, so we may use “pair” and

“edge” interchangeably. Two edges (mi, wj) and (mx, wy) are said to cross each other

if they share an interior point, or formally, if (x− i)(y − j) < 0 holds. A matching is

noncrossing if it contains no pair of crossing edges.

For a matching M , a noncrossing blocking pair for M is a blocking pair for M that

does not cross any edge of M . A matching M is a weakly stable noncrossing matching

(WSNM) if M is noncrossing and does not admit any noncrossing blocking pair. A

matching M is a strongly stable noncrossing matching (SSNM) if M is noncrossing

and does not admit any blocking pair. Note that an SSNM is always a WSNM by

definition but the converse is not true.
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Table 5.1 Previous and our results (our results in bold)

Exist SSNM Find WSNM Max WSNM

SMI O(n2) [Proposition 1] O(n2) [RI19] O(n4) [Theorem 10]

SMTI super- O(n2) [Corollary 2] O(n4) [Corollary 4]

strong O(n3) [Corollary 3] O(n4) [Corollary 4]

weak NPC∗1 [Theorem 8] O(n2) [RI19] O(n4) [Corollary 4]

O(n)∗2 [Theorem 9]

∗1 even if each person’s preference list contains at most two persons and ties appear

in only men’s preference lists.
∗2 if each man’s preference list contains at most one woman.

We then extend the above definitions to the case where preference lists may contain

ties. When ties are present, there are three possible definitions of blocking pairs

and three stability notions as described in Section 2.1.3. With these definitions of

blocking pairs, the terms “noncrossing blocking pair”, “WSNM”, and “SSNM” for

each stability notion can be defined analogously. In the SMTI case, we extend the

names of stable noncrossing matchings using the type of stability as a prefix. For

example, a WSNM in the super-stability is denoted super-WSNM.

Note that, in this chapter, the terms “weak” and “strong” are used in two differ-

ent meanings. This might be confusing but we decided not to change these terms,

respecting previous literature.

For implementation of our algorithms, we use ranking arrays described in Sec-

tion 1.2.3 of [GI89]. Although in [GI89] ranking arrays are defined for complete

preference lists without ties, they can easily be modified for incomplete lists and/or

with ties. Then, by the aid of ranking arrays, we can determine, given persons p,

q1, and q2, whether q1 ≻p q2 or q2 ≻p q1 or q1 =p q2 in constant time. Also we can

determine, given m and w, if (m,w) is an acceptable pair or not in constant time.
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5.2 Strongly Stable Noncrossing Matchings

5.2.1 Algorithm for SMI

In SMI, an easy observation shows that existence of an SSNM can be determined in

O(n2) time:

Proposition 1. There exists an O(n2)-time algorithm to find an SSNM or to report

that none exists, given an SMI-instance.

Proof. Note that an SSNM is a stable matching in the original sense. In SMI, there

always exists at least one stable matching [GI89], and due to the Rural Hospitals

theorem [GS85, Rot84, Rot86], the set of matched agents is the same in any stable

matching. These agents can be determined in O(n2) time by using the Gale-Shapley

algorithm [GS62]. There is only one way of matching them in a noncrossing manner.

Hence the matching constructed in this way is the unique candidate for an SSNM.

All we have to do is to check if it is stable, which can be done in O(n2) time.

5.2.2 Algorithms and Hardness Result for SMTI

In the presence of ties, super-stable and strongly stable matchings do not always

exist. However, there is an O(n2)-time (O(n3)-time, respectively) algorithm that

finds a super-stable (strongly stable, respectively) matching or reports that none

exists [Irv94, KMMP07]. Also, the Rural Hospitals theorem takes over to the super-

stability [IMS00] and strong stability [IMS03]. Therefore, the same algorithm as in

Section 5.2.1 applies for these cases, implying the following corollaries:

Corollary 2. There exists an O(n2)-time algorithm to find a super-SSNM or to report

that none exists, given an SMTI-instance.

Corollary 3. There exists an O(n3)-time algorithm to find a strong-SSNM or to

report that none exists, given an SMTI-instance.

In contrast, the problem becomes NP-complete for the weak stability even for a

highly restricted case:

Theorem 8. The problem of determining if a weak-SSNM exists, given an SMTI-

instance, is NP-complete, even if each person’s preference list contains at most two

persons and ties appear in only men’s preference lists.
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Proof. Membership in NP is obvious. We show NP-hardness by a reduction from

3SAT [Coo71]. An instance of 3SAT consists of a set of variables and a set of clauses.

Each variable takes either true (1) or false (0). A literal is a variable or its negation.

A clause is a disjunction of at most three literals. A clause is satisfied if at least one

of its literals takes the value 1. A 0/1 assignment to variables that satisfies all the

clauses is called a satisfying assignment. An instance f of 3SAT is satisfiable if it has

at least one satisfying assignment. 3SAT asks if there exists a satisfying assignment.

3SAT is NP-complete even if each variable appears exactly four times, exactly twice

positively and exactly twice negatively, and each clause contains exactly three literals

[BKS03]. We use 3SAT instances restricted in this way.

Now we show the reduction. Let f be an instance of 3SAT having n variables xi

(1 ≤ i ≤ n) and m clauses Cj (1 ≤ j ≤ m). For each variable xi, we construct a

variable gadget. It consists of six men pi,1, pi,2, pi,3, pi,4, ai,1, and ai,2, and four

women qi,1, qi,2, qi,3, and qi,4. A variable gadget corresponding to xi is called an

xi-gadget. For each clause Cj , we construct a clause gadget. It consists of seven men

yj,k (1 ≤ k ≤ 7) and nine women vj,k (1 ≤ k ≤ 6) and zj,k (1 ≤ k ≤ 3). A clause

gadget corresponding to Cj is called a Cj-gadget. Additionally, we create a man s

and a woman t, who constitute a gadget called the separator.

Thus, there are 6n + 7m + 1 men and 4n + 9m + 1 women in the created SMTI-

instance, denoted I(f). Finally, we add dummy persons who have empty preference

lists to make the numbers of men and women equal. They do not play any role in the

following arguments, so we omit them.

Suppose that xi’s kth positive occurrence (k = 1, 2) is in the di,kth clause Cdi,k
as

the ei,kth literal (1 ≤ ei,k ≤ 3). Similarly, suppose that xi’s kth negative occurrence

(k = 1, 2) is in the gi,kth clause Cgi,k as the hi,kth literal (1 ≤ hi,k ≤ 3). The

preference lists of ten persons in the xi-gadget are constructed as shown in Fig. 5.1.

Here, each preference list is described as a sequence from left to right according to

preference, i.e., the leftmost person is the most preferred and the rightmost person is

the least preferred. Tied persons (i.e., persons with the equal preference) are included

in parentheses. Men are aligned in the order of pi,1, pi,3, ai,1, ai,2, pi,2, and pi,4 from

top to bottom, and women are aligned in the order of qi,1, qi,3, qi,2, and qi,4. (See

Fig. 5.2. Edges depicted in the figure are those within the variable gadget.)

It might be helpful to explain here intuition behind a variable gadget. People there

are partitioned into two groups, {pi,1, ai,1, pi,2, qi,1, qi,2} and {pi,3, ai,2, pi,4, qi,3, qi,4}.
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pi,1: qi,1 zgi,1,hi,1
qi,1: ai,1 pi,1

ai,1: (qi,1 qi,2) qi,2: ai,1 pi,2

pi,2: qi,2 zdi,1,ei,1

pi,3: qi,3 zgi,2,hi,2 qi,3: ai,2 pi,3

ai,2: (qi,3 qi,4) qi,4: ai,2 pi,4

pi,4: qi,4 zdi,2,ei,2

Fig. 5.1 Preference lists of persons in xi-gadget

Fig. 5.2 Alignment of agents in a variable gadget. This gadget admits two non-

crossing stable matchings highlighted in blue and red, associated with assignment

xi = 0 and xi = 1, respectively.

The first group corresponds to the first positive occurrence and the first negative

occurrence of xi. It has two stable matchings {(pi,1, qi,1), (ai,1, qi,2)} (blue in Fig. 5.2)

and {(ai,1, qi,1), (pi,2, qi,2)} (red). We associate the former with the assignment xi = 0

and the latter with the assignment xi = 1. The second group corresponds to the

second positive occurrence and the second negative occurrence of xi. It has two

stable matchings {(pi,3, qi,3), (ai,2, qi,4)} (blue) and {(ai,2, qi,3), (pi,4, qi,4)} (red). We

associate the former with xi = 0 and the latter with xi = 1. Entanglement of two

groups as in Fig. 5.2 plays a role of ensuring consistency of assignments between the

first and the second group. Depending on the choice of the matching in the first

group, edges with the same color must be chosen from the second group to avoid

edge-crossing.
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Let us continue the reduction. We then construct preference lists of clause gadgets.

Consider a clause Cj , and suppose that its kth literal is of a variable xjk . Define ℓj,k

as

ℓj,k =


1 if this is the 1st negative occurrence of xjk

2 if this is the 1st positive occurrence of xjk

3 if this is the 2nd negative occurrence of xjk

4 if this is the 2nd positive occurrence of xjk .

The preference lists of persons in the Cj-gadget are as shown in Fig. 5.3. The align-

ment order of persons in each clause gadget is the same as in Fig. 5.3. Since a clause

gadget is complicated, we show a structure in the leftmost figure of Fig. 5.4 (three

matchings Nj,1, Nj,2, and Nj,3 will be used later).

yj,1: (vj,1 vj,3) vj,1: yj,1

yj,2: (vj,2 zj,1) vj,2: yj,2

yj,3: (vj,3 vj,4) vj,3: yj,1 yj,3

yj,4: (zj,2 vj,5) zj,1: yj,2 pj1,ℓj,1

yj,5: (vj,4 vj,6) zj,2: yj,4 pj2,ℓj,2

yj,6: (vj,5 zj,3) vj,4: yj,5 yj,3

yj,7: vj,6 vj,5: yj,6 yj,4

vj,6: yj,5 yj,7

zj,3: yj,6 pj3,ℓj,3

Fig. 5.3 Preference lists of persons in Cj-gadget

Finally, each of the man and the woman in the separator includes only the other

in the list (Fig. 5.5). They are guaranteed to be matched together in any stable

matching.

Alignment of the whole instance is depicted in Fig. 5.6. Variable gadgets are placed

top, then followed by the separator, clause gadgets come bottom. The separator plays

a role of prohibiting a person of a variable gadget to be matched with a person of a

clause gadget; if they are matched, then the corresponding edge crosses the separator.

Now the reduction is completed. It is not hard to see that the reduction can be

performed in polynomial time and the conditions on the preference lists stated in the

theorem are satisfied.
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Fig. 5.4 Acceptability graph of a clause gadget Cj and its matchings Nj,1, Nj,2, and Nj,3

s: t t: s

Fig. 5.5 Preference lists of the man and the woman in the separator

We then show the correctness. First, suppose that f is satisfiable and let A be

a satisfying assignment. We construct a weak-SSNM M of I(f) from A. For an

xi-gadget, define two matchings

• Mi,0 = {(pi,1, qi,1), (ai,1, qi,2), (pi,3, qi,3), (ai,2, qi,4)} (blue in Fig. 5.2) and

• Mi,1 = {(ai,1, qi,1), (pi,2, qi,2), (ai,2, qi,3), (pi,4, qi,4)} (red in Fig. 5.2).

If xi = 0 under A, then add Mi,0 to M ; otherwise, add Mi,1 to M . For a Cj-gadget,

we define three matchings

• Nj,1 = {(yj,1, vj,1), (yj,2, vj,2), (yj,3, vj,3), (yj,4, zj,2), (yj,5, vj,6), (yj,6, zj,3)},
• Nj,2 = {(yj,1, vj,3), (yj,2, zj,1), (yj,3, vj,4), (yj,4, vj,5), (yj,5, vj,6), (yj,6, zj,3)}, and
• Nj,3 = {(yj,1, vj,3), (yj,2, zj,1), (yj,4, zj,2), (yj,5, vj,4), (yj,6, vj,5), (yj,7, vj,6)},

that are depicted in Fig. 5.4. Note that, for each k ∈ {1, 2, 3}, only zj,k (among zj,1,

zj,2, and zj,3) is single in Nj,k. If Cj is satisfied by the kth literal (k ∈ {1, 2, 3}),
then add Nj,k to M . (If Cj is satisfied by more than one literal, then choose one

arbitrarily.) Finally add the pair (s, t) to M .

It is not hard to see that M is noncrossing. We show that it is weakly stable.
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Fig. 5.6 Alignment of agents

Clearly, neither s nor t in the separator forms a blocking pair. Next, consider the

xi-gadget. In Mi,0, women qi,2 and qi,4 are matched with the first-choice man. The

woman qi,1 is matched with the second-choice man pi,1 but her first-choice man ai,1

is matched with a first-choice woman qi,2. Similarly, qi,3’s first-choice man ai,2 is

matched with a first-choice woman qi,4. Men pi,1, ai,1, pi,3, and ai,2 are matched with

a first-choice woman. Hence these persons cannot be a part of a blocking pair; only

pi,2 and pi,4 may participate in a blocking pair. Similarly, we can argue that, in Mi,1,

only pi,1 and pi,3 may participate in a blocking pair.

Consider a Cj-gadget. In Nj,1, all the men except for yj,7 are matched with a

first-choice woman. yj,7’s unique choice vj,6 is matched with the first-choice man yj,5.

Hence no man in this gadget can participate in a blocking pair, and so no blocking

pair exists within this gadget. Since zj,2 and zj,3 are matched with their respective

first-choice woman, only the possibility is that zj,1 forms a blocking pair with pj1,ℓj,1

of a variable gadget. The same observation applies for Nj,2 and Nj,3 and we can see

that for each k ∈ {1, 2, 3} only zj,k can participate in a blocking pair in Nj,k.

To summarize, if there exists a blocking pair, it must be of the form (pi,ℓ, zj,k) for

some i, ℓ, j, and k, and both pi,ℓ and zj,k are single in M . Suppose that ℓ = 1. The

reason for (pi,1, zj,k) being an acceptable pair is that Cj ’s kth literal is ¬xi, a negative

occurrence of xi. Since pi,1 is single, Mi,1 ⊂ M and hence xi = 1 under A. Since
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zj,k is single, Nj,k ⊂ M and hence Cj is satisfied by its kth literal ¬xi, but this is a

contradiction. The other cases ℓ = 2, 3, 4 can be argued in the same manner, and we

can conclude that M is stable.

Conversely, suppose that I(f) admits a weak-SSNM M . We construct a satisfying

assignment A of f . Before giving construction, we observe structural properties of M

in two lemmas:

Lemma 19. For each i (1 ≤ i ≤ n), either Mi,0 ⊂ M or Mi,1 ⊂ M .

Proof. Note that preference lists of the ten persons of the xi-gadget include persons

of the same xi-gadget or some persons from clause gadgets. Hence, due to the sep-

arator, persons of the xi-gadget can only be matched within this gadget to avoid

edge-crossings.

Note that a stable matching is a maximal matching. With regard to pi,1, ai,1,

pi,2, qi,1, and qi,2, there are three maximal matchings {(pi,1, qi,1), (ai,1, qi,2)},
{(ai,1, qi,1), (pi,2, qi,2)}, and {(pi,1, qi,1), (pi,2, qi,2)}, but the last one is blocked by

(ai,1, qi,1) and (ai,1, qi,2). Hence either the first or the second one must be in M .

With regard to pi,3, ai,2, pi,4, qi,3, and qi,4, there are three maximal matchings

{(pi,3, qi,3), (ai,2, qi,4)}, {(ai,2, qi,3), (pi,4, qi,4)}, and {(pi,3, qi,3), (pi,4, qi,4)}, but the

last one is blocked by (ai,2, qi,3) and (ai,2, qi,4). Hence either the first or the second

one must be in M .

If we choose {(pi,1, qi,1), (ai,1, qi,2)}, then we must choose {(pi,3, qi,3), (ai,2, qi,4)} to

avoid edge-crossing, which constitute Mi,0. If we choose {(ai,1, qi,1), (pi,2, qi,2)}, then
we must choose {(ai,2, qi,3), (pi,4, qi,4)}, which constitute Mi,1. Hence either Mi,0 or

Mi,1 must be a part of M .

Lemma 20. For a Cj-gadget, at least one of zj,1, zj,2, and zj,3 is unmatched in M .

Proof. Note that preference lists of the persons of the Cj-gadget include persons of

the same Cj-gadget or some persons from variable gadgets. To avoid edge-crossing,

persons must be matched within the same Cj-gadget.

For contradiction, suppose that all zj,1, zj,2, and zj,3 are matched in M . Then

(yj,2, zj,1), (yj,4, zj,2), and (yj,6, zj,3) are in M (Fig. 5.7(1)). To avoid edge-crossing,

(yj,3, vj,3), (yj,3, vj,4), and (yj,7, vj,6) must not be in M (Fig. 5.7(2)). The pair

(yj,5, vj,4) must be in M as otherwise (yj,3, vj,4) is a blocking pair (Fig. 5.7(3)). For

M to be a matching, (yj,5, vj,6) must not be in M (Fig. 5.7(4)). Then (yj,7, vj,6) is a

blocking pair, a contradiction.



5.2 Strongly Stable Noncrossing Matchings 79

��� ��� ��� ���

Fig. 5.7 Situation in the proof of Lemma 20. Red solid edges are those confirmed

to be in M , blue dashed edges are those confirmed not to be in M , and black

dashed edges are uncertain.

For each i, either Mi,0 ⊂ M or Mi,1 ⊂ M holds by Lemma 19. If Mi,0 ⊂ M holds

then we set xi = 0 in A, and if Mi,1 ⊂ M holds then we set xi = 1 in A. We show

that A satisfies f . Let Cj be an arbitrary clause. By Lemma 20, at least one of zj,1,

zj,2, and zj,3 is unmatched in M . If there are two or more unmatched women, then

choose one arbitrarily and let this woman be zj,k. We show that Cj is satisfied by its

kth literal. Suppose not.

First suppose that the kth literal of Cj is the first positive occurrence of xi. Then,

by construction of preference lists, (pi,2, zj,k) is an acceptable pair. If xi = 0 under A,

then Mi,0 ⊂ M by construction of A, and hence pi,2 is single in M . Thus (pi,2, zj,k)

is a blocking pair, which contradicts stability of M . Hence xi = 1 under A and Cj

is satisfied by xi. When the kth literal of Cj is the second positive occurrence of xi,

the same argument holds if we replace pi,2 by pi,4.

Next suppose that the kth literal of Cj is the first negative occurrence of xi. Then,

by construction of preference lists, (pi,1, zj,k) is an acceptable pair. If xi = 1 under A,

then Mi,1 ⊂ M by construction of A, and hence pi,1 is single in M . Thus (pi,1, zj,k)

is a blocking pair, which contradicts stability of M . Hence xi = 0 under A and Cj is

satisfied by ¬xi. If the kth literal of Cj is the second negative occurrence of xi, the

same argument holds if we replace pi,1 by pi,3. Thus A is a satisfying assignment of

f and the proof is completed.
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Next we give a positive result.

Theorem 9. The problem of determining if a weak-SSNM exists, given an SMTI-

instance, is solvable in O(n)-time if each man’s preference list contains at most one

woman.

Proof. Let I be an input SMTI-instance. First, we construct the bipartite graph

GI = (UI , VI , EI), where UI and VI correspond to the sets of men and women in I,

respectively, and (m,w) ∈ EI if and only if m is a first-choice of w. For a vertex

v ∈ VI , let d(v) denote its degree in GI . Since acceptability is mutual, if a woman

w’s preference list in I is nonempty, d(w) ≥ 1 holds. Note that it can happen that

d(w) ≥ 2 because preference lists may contain ties. In the following lemma, we

characterize (not necessarily noncrossing) stable matchings of I.

Lemma 21. M is a stable matching of I if and only if M ⊆ EI and each woman

w ∈ VI such that d(w) ≥ 1 is matched in M .

Proof. Suppose that M is stable. If M ̸⊆ EI , there is an edge (m,w) ∈ M \EI . The

fact (m,w) ̸∈ EI means that m is not w’s first-choice so there is an edge (m′, w) ∈ EI

such that m′ ≻w m. Since (m,w) ∈ M , m′ is single in M . Therefore, (m′, w) is a

blocking pair for M , a contradiction. If there is a woman w ∈ VI such that d(w) ≥ 1

but w is single in M , then any man m such that (m,w) is an acceptable pair is a

blocking pair because m is also single in M , a contradiction.

Conversely, suppose that M satisfies the conditions of the right hand side. Then

each woman who has a nonempty list is matched with a first-choice man, so there

cannot be a blocking pair.

By Lemma 21, our task is to select from EI one edge per woman w such that

d(w) ≥ 1, in such a way that the resulting matching is noncrossing. We do this

greedily. M is initially empty, and we add edges to M by processing vertices of VI

from top to bottom. At wi’s turn, if d(wi) ≥ 1, then choose the topmost edge that

does not cross any edge in M , and add it to M . If there is no such edge, then we

immediately conclude that I admits no weak-SSNM. If we can successfully process

all the women, we output the final matching M , which is a weak-SSNM.

In the following, we formalize the above idea. A pseudo-code of the whole algorithm

Weak-SSNM-1 is given in Algorithm 4.

We show the correctness. Suppose that Weak-SSNM-1 outputs a matching M .
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Algorithm 4 Weak-SSNM-1

Require: An SMTI-instance I.

Ensure: A weak-SSNM M or “No” if none exists.

1: Construct the bipartite graph GI = (UI , VI , EI).

2: Let M := ∅.
3: for i = 1 to n do

4: if d(wi) ≥ 1 then

5: Let j∗ (if any) be the smallest j such that (mj , wi) ∈ EI and M ∪{(mj , wi)}
is a noncrossing matching.

6: Let M := M ∪ {(mj∗ , wi)}.
7: if no such j∗ exists then

8: Output “No” and halt.

9: end if

10: end if

11: end for

12: Output M .

M is noncrossing by the condition of line 5, and M is stable because the construction

of M follows the condition of Lemma 21.

Conversely, suppose that I admits a weak-SSNMM∗. We show thatWeak-SSNM-

1 outputs a matching. Suppose not, and suppose that Weak-SSNM-1 failed when

processing woman (vertex) wk. Let M̄ be the matching constructed so far by Weak-

SSNM-1. Then for each i (1 ≤ i ≤ k − 1), wi is single in M∗ if and only if she is

single in M̄ . Also, since M∗ ⊆ EI by Lemma 21, we can show by a simple induction

that for each i (1 ≤ i ≤ k − 1), if M∗(wi) = mp and M̄(wi) = mq, then q ≤ p. Then,

at line 5, we could have chosen (M∗(wk), wk) to add to M̄ , a contradiction.

Finally, we consider time-complexity. Since the preference list of each man contains

at most one woman, the graph GI at line 1 can be constructed in O(n)-time and

contains at most n edges. The for-loop can be executed in O(n)-time because each

edge is scanned at most once in the loop; whether or not an edge crosses edges of M

at line 5 can be done in constant time by keeping the maximum index of the matched

men in M at any stage.
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5.3 Maximum Cardinality Weakly Stable Noncrossing

Matchings

In this section, we present an algorithm to find a maximum cardinality WSNM. For

an instance I, let opt(I) denote the size of the maximum cardinality WSNM.

5.3.1 Algorithm for SMI

Let I ′ be a given instance with men m1, . . . ,mn and women w1, . . . , wn. To simplify

the description of the algorithm, we translate I ′ to an instance I by adding a man

m0 and a woman w0, each of whom includes only the other in the preference list,

and similarly a man mn+1 and a woman wn+1, each of whom includes only the other

in the preference list. It is easy to see that, for a WSNM M ′ of I ′, M = M ′ ∪
{(m0, w0), (mn+1, wn+1)} is a WSNM of I. Conversely, any WSNM M of I includes

the pairs (m0, w0) and (mn+1, wn+1), and M ′ = M \ {(m0, w0), (mn+1, wn+1)} is

a WSNM of I ′. Thus we have that opt(I) = opt(I ′) + 2. Hence, without loss of

generality, we assume that a given instance I has n+ 2 men and n+ 2 women, with

m0, w0, mn+1, and wn+1 having the above mentioned preference lists.

Let M = {(mi1 , wj1), (mi2 , wj2), . . . , (mik , wjk)} be a noncrossing matching of I

such that i1 < i2 · · · < ik and j1 < j2 · · · < jk. We call (mik , wjk) the maximum pair

of M . Suppose that (mx, wy) is the maximum pair of a noncrossing matching M .

We call M a semi-WSNM if each of its noncrossing blocking pairs (mi, wj) (if any)

satisfies x ≤ i ≤ n+1 and y ≤ j ≤ n+1. Intuitively, a semi-WSNM is a WSNM up to

its maximum pair. Note that any semi-WSNM must contain (m0, w0), as otherwise

it is a noncrossing blocking pair. For 0 ≤ i ≤ n + 1 and 0 ≤ j ≤ n + 1, we define

X(i, j) as the maximum size of a semi-WSNM of I whose maximum pair is (mi, wj);

if I does not admit a semi-WSNM with the maximum pair (mi, wj), X(i, j) is defined

to be −∞.

Lemma 22. opt(I) = X(n+ 1, n+ 1).

Proof. Note that any WSNM of I includes (mn+1, wn+1), as otherwise it is a noncross-

ing blocking pair. Hence it is a semi-WSNM with the maximum pair (mn+1, wn+1).

Conversely, any semi-WSNM with the maximum pair (mn+1, wn+1) does not include

a noncrossing blocking pair and hence is also a WSNM. Therefore, the set of WSNMs

is equivalent to the set of semi-WSNMs with the maximum pair (mn+1, wn+1). This
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completes the proof.

To compute X(n+ 1, n+ 1), we shortly define quantity Y (i, j) (0 ≤ i ≤ n+ 1, 0 ≤
j ≤ n + 1) using recursive formulas, and show that Y (i, j) = X(i, j) for all i and j.

We then show that these recursive formulas allow us to compute Y (i, j) in polynomial

time using dynamic programming.

We say that two noncrossing edges (mi, wj) and (mx, wy) (i < x, j < y) are con-

flicting if they admit a noncrossing blocking pair between them; precisely speaking,

(mi, wj) and (mx, wy) are conflicting if the matching {(mi, wj), (mx, wy)} admits a

blocking pair (ms, wt) such that i ≤ s ≤ x and j ≤ t ≤ y. Otherwise, they are

nonconflicting. Intuitively, two conflicting edges cannot be consecutive elements of a

semi-WSNM.

Now Y (i, j) is defined in Equations (5.1) to (5.4). For convenience, we assume that

−∞+ 1 = −∞. In Equation (5.4), Y (i′, j′) in max{} is taken among all (i′, j′) such

that (i) 0 ≤ i′ ≤ i−1, (ii) 0 ≤ j′ ≤ j−1, (iii) (mi′ , wj′) is an acceptable pair, and (iv)

(mi, wj) and (mi′ , wj′) are nonconflicting. If no such (i′, j′) exists, max{Y (i′, j′)} is

defined as −∞ and as a result Y (i, j) is also computed as −∞.

Y (0, 0) = 1 (5.1)

Y (0, j) = −∞ (1 ≤ j ≤ n+ 1) (5.2)

Y (i, 0) = −∞ (1 ≤ i ≤ n+ 1) (5.3)

Y (i, j) =

{
1 + max{Y (i′, j′)} (if (mi, wj) is an acceptable pair)

−∞ (otherwise)

(1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1) (5.4)

Lemma 23. Y (i, j) = X(i, j) for any i and j such that 0 ≤ i ≤ n + 1 and 0 ≤ j ≤
n+ 1.

Proof. We prove the claim by induction. We first show that Y (0, 0) = X(0, 0). The

matching {(m0, w0)} is the unique semi-WSNM with the maximum pair (m0, w0),

so X(0, 0) = 1 by definition. Also, Y (0, 0) = 1 by Equation (5.1). Hence we are

done. We then show that Y (0, j) = X(0, j) for 1 ≤ j ≤ n + 1. Since (m0, wj) is
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an unacceptable pair, there is no semi-WSNM with the maximum pair (m0, wj), so

X(0, j) = −∞ by definition. Also, Y (0, j) = −∞ by Equation (5.2). We can show

that Y (i, 0) = X(i, 0) for 1 ≤ i ≤ n+ 1 by a similar argument.

Next we show that Y (i, j) = X(i, j) holds for 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n + 1.

As an induction hypothesis, we assume that Y (a, b) = X(a, b) holds for 0 ≤ a ≤ i− 1

and 0 ≤ b ≤ j − 1. First, observe that if X(i, j) ̸= −∞, then X(i, j) ≥ 2. This is

because two pairs (m0, w0) and (mi, wj) must be present in any semi-WSNM having

the maximum pair (mi, wj).

We first consider the case that X(i, j) ≥ 2. Let X(i, j) = k. Then, there is a

semi-WSNM M with the maximum pair (mi, wj) such that |M | = k. Let M ′ =

M \ {(mi, wj)} and (mx, wy) be the maximum pair of M ′. It is not hard to see

that M ′ is a semi-WSNM with the maximum pair (mx, wy) and that |M ′| = k − 1.

Therefore, X(x, y) ≥ k − 1 by the definition of X, and Y (x, y) = X(x, y) ≥ k − 1

by the induction hypothesis. Since M is a semi-WSNM, (mi, wj) and (mx, wy) are

nonconflicting, so (x, y) satisfies the condition for (i′, j′) in Equation (5.4). Hence

Y (i, j) ≥ 1 + Y (x, y) ≥ k. Suppose that Y (i, j) ≥ k + 1. By the definition of Y , this

means that there is (i′, j′) that satisfies conditions (i)–(iv) for Equation (5.4), and

Y (i′, j′) ≥ k. By the induction hypothesis, X(i′, j′) = Y (i′, j′) ≥ k. Then there is a

semi-WSNM M ′ with the maximum pair (mi′ , wj′) such that |M ′| ≥ k. Since M ′ is

a semi-WSNM, and (mi′ , wj′) and (mi, wj) are nonconflicting, M = M ′ ∪ {(mi, wj)}
is a semi-WSNM with the maximum pair (mi, wj) such that |M | = |M ′|+ 1 ≥ k+ 1.

This contradicts the assumption that X(i, j) = k. Hence Y (i, j) ≤ k and therefore

Y (i, j) = k as desired.

Finally, consider the case that X(i, j) = −∞. If (mi, wj) is unacceptable, then the

latter case of Equation (5.4) is applied and Y (i, j) = −∞. So assume that (mi, wj) is

acceptable. Then the former case of Equation (5.4) is applied. It suffices to show that

for any (i′, j′) that satisfies conditions (i)–(iv) (if any), Y (i′, j′) = −∞ holds. Assume

on the contrary that there is such (i′, j′) with Y (i′, j′) = k. Then X(i′, j′) = k by the

induction hypothesis, and there is a semi-WSNM M ′ such that |M ′| = k, (mi′ , wj′)

is the maximum pair of M ′, and (mi′ , wj′) and (mi, wj) are nonconflicting. Then

M = M ′ ∪ {(mi, wj)} is a semi-WSNM such that (mi, wj) is the maximum pair and

|M | = |M ′|+1 = k+1, implying that X(i, j) = k+1. This contradicts the assumption

that X(i, j) = −∞ and the proof is completed.

Now we analyze time-complexity of the algorithm. Computing each Y (0, 0), Y (0, j),
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and Y (i, 0) can be done in constant time. For computing one Y (i, j) according to

Equation (5.4), there are O(n2) candidates for (i′, j′). For each (i′, j′), checking

if (mi′ , wj′) and (mi, wj) are conflicting can be done in constant time with O(n4)-

time preprocessing described in subsequent paragraphs. Therefore one Y (i, j) can

be computed in time O(n2). Since there are O(n2) Y (i, j)s, the time-complexity for

computing all Y (i, j)s is O(n4). Adding the O(n4)-time for preprocessing mentioned

above, the total time-complexity of the algorithm is O(n4).

In the preprocessing, we construct three tables S, A, and B.

• S is a Θ(n4)-sized four-dimensional table that takes logical values 0 and 1. For

0 ≤ i′ ≤ i ≤ n+ 1 and 0 ≤ j′ ≤ j ≤ n+ 1, S(i′, i, j′, j) = 1 if and only if there

exists at least one acceptable pair (m,w) such that m ∈ {mi′ ,mi′+1, . . . ,mi}
and w ∈ {wj′ , wj′+1, . . . , wj}. Since S(i, i, j, j) = 1 if and only if (mi, wj) is an

acceptable pair, it can be computed in constant time. In general, S(i′, i, j′, j)

can be computed in constant time as follows.

S(i′, i, j′, j) =

{
1 (if (mi, wj) is an acceptable pair)

S(i′, i− 1, j′, j) ∨ S(i′, i, j′, j − 1) (otherwise)

Hence S can be constructed in O(n4) time by a simple dynamic programming.

• A is a Θ(n3)-sized table. For convenience, we introduce an imaginary person λ

who is acceptable to any person, where q ≻p λ holds for any person p and any

person q acceptable to p. For 0 ≤ i ≤ n+ 1 and 0 ≤ j′ ≤ j ≤ n+ 1, A(i, j′, j)

stores the woman whom mi most prefers among {wj′ , . . . , wj , λ}. Then, for

i and j, A(i, j, j) = wj if (mi, wj) is an acceptable pair and A(i, j, j) = λ

otherwise. A(i, j′, j) can be computed as the better of A(i, j′, j−1) and A(i, j, j)

in mi’s list. By the above arguments, each element of A can be computed in

constant time and hence A can be constructed in O(n3) time.

• B plays a symmetric role to A; for 0 ≤ i′ ≤ i ≤ n + 1 and 0 ≤ j ≤ n + 1,

B(i′, i, j) stores the man whom wj most prefers among {mi′ , . . . ,mi, λ}. B can

also be constructed in O(n3) time.

It is easy to see that (mi′ , wj′) and (mi, wj) are conflicting if and only if one of

the following conditions hold. Condition 1 can be clearly checked in constant time.

Thanks to the preprocessing, Conditions 2–4 can also be checked in constant time.

1. (mi′ , wj) or (mi, wj′) is a blocking pair for the matching {(mi′ , wj′), (mi, wj)}.
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2. S(i′ + 1, i− 1, j′ + 1, j − 1) = 1. (If this holds, there is a blocking pair (m,w)

such that m ∈ {mi′+1,mi′+2, . . . ,mi−1} and w ∈ {wj′+1, wj′+2, . . . , wj−1}.)
3. mi prefers A(i, j′ + 1, j − 1) to wj or mi′ prefers A(i′, j′ + 1, j − 1) to wj′ . (If

this holds, there exists a blocking pair (m,w) such that m ∈ {mi′ ,mi} and

w ∈ {wj′+1, . . . , wj−1}.)
4. wj prefers B(i′ + 1, i − 1, j) to mi or wj′ prefers B(i′ + 1, i − 1, j′) to mi′ . (If

this holds, there exists a blocking pair (m,w) such that m ∈ {mi′+1, . . . ,mi−1}
and w ∈ {wj′ , wj}).

This completes the explanation on preprocessing, and from the discussion so far,

we have the following theorem:

Theorem 10. There exists an O(n4)-time algorithm to find a maximum cardinality

WSNM, given an SMI-instance.

5.3.2 Algorithm for SMTI

Similarly to the SMI case, a weak-WSNM exists in any SMTI-instance, as remarked

in page 415 of [RI19]: Given an SMTI-instance I, break all the ties arbitrarily and

obtain an SMI-instance I ′. Let M be a WSNM of I ′. Then it is not hard to see that

M is also a weak-WSNM of I. In contrast, there is a simple instance that admits

neither a strong- nor a super-WSNM (Fig. 5.8). The empty matching is blocked by

any acceptable pair. The matching {(m1, w1)} is blocked by (m2, w2). The matching

{(m2, w2)} is blocked by (m1, w1). The matching {(m1, w1), (m2, w2)} is blocked by

(m2, w1). The matching {(m2, w1)} is blocked by (m1, w1).

m1: w1 w1: (m1 m2)

m2: w1 w2 w2: m2

Fig. 5.8 An instance that admits neither a strong-WSNM nor a super-WSNM

Nevertheless, the algorithm in Section 5.3.1 can be applied to SMTI straightfor-

wardly. Necessary modifications are summarized as follows:

• As mentioned above, existence of a WSNM is not guaranteed. If our algorithm

outputs Y (n+ 1, n+ 1) = −∞, then it means that no solution exists.

• The definition of two edges (mi, wj) and (mx, wy) being conflicting must be
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modified depending on one of the three stability notions.

• The definitions of the tables A and B need to be modified as follows. A(i, j′, j)

stores one of the women whom mi most prefers among {wj′ , . . . , wj , λ}.
Similarly, B(i′, i, j) stores one of the men whom wj most prefers among

{mi′ , . . . ,mi, λ}.
• In the SMI case, A(i, j′, j) is computed as the better of A(i, j′, j−1) and A(i, j, j)

in mi’s list. But now it can happen that A(i, j′, j − 1) =mi
A(i, j, j), in which

case A(i, j′, j) can be either A(i, j′, j − 1) or A(i, j, j). (Strictly speaking, this

treatment was needed already in the SMI case because there can be a case that

A(i, j′, j − 1) = A(i, j, j) = λ, but there we took simplicity.)

• Conditions 3 and 4 in checking confliction of two edges need to be modified

as follows. In the super- and strong stabilities, “prefers” should be replaced

by “weakly prefers”. In the weak stability, “prefers” should be replaced by

“strictly prefers”.

With these modifications, whether two edges are conflicting or not can be checked

in constant time. Therefore, we have the following corollary:

Corollary 4. There exists an O(n4)-time algorithm to find a maximum cardinal-

ity super-WSNM (strong-WSNM, weak-WSNM) or report that none exists, given an

SMTI-instance.

5.4 Concluding Remarks

In this chapter, we gave algorithms for determining existence of an SSNM and find-

ing a largest WSNM. We showed that our algorithms are applicable to extensions

where preference lists may include ties, except for one case which we show to be

NP-complete. This NP-completeness holds even if each person’s preference list is of

length at most two and ties appear in only men’s preference lists. To complement

this intractability, we also showed that the problem is solvable in polynomial time if

the length of preference lists of one side is bounded by one (but that of the other side

is unbounded).

One of interesting future works is to consider optimization problems. For example,

in SMI we have shown that it is easy to determine if there exists an SSNM with

zero-crossing. What is the complexity of the problem of finding an SSNM with the

minimum number of crossings, and if it is NP-hard, is there a good approximation
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algorithm for it? Also, it might be interesting to consider noncrossing stable matchings

for other placements of agents, e.g., on a circle or on general position in 2-dimensional

plane.
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Chapter 6

Strategy-Proof Approximation

Algorithms for SMTI

In this chapter, we consider the strategy-proofness in MAX SMTI, and investigate

the trade-off between strategy-proofness and approximability.

In the case of incomplete preference lists, there may be unmatched (i.e., single)

persons. Thus, we have to extend the definition of a person preferring one matching

to another. We say that a person p prefers M ′ to M if either M ′(p) ≻p M(p) holds

or p is single in M but is matched in M ′ with some acceptable woman. Then the

definition of strategy-proofness for SM naturally takes over to SMTI.

Since SMTI is a generalization of SM, Roth’s impossibility theorem for SM [Rot82]

holds also for MAX SMTI (regardless of approximability): That is, there is no

strategy-proof stable mechanism for MAX SMTI. Therefore, we focus on one-sided -

strategy-proofness. We first show that MAX SMTI admits a 2-approximate-stable

mechanism, which is achieved by a simple extension of the GS algorithm. We also

show that this result is tight. We next consider a restricted version, MAX SMTI-1T.

Throughout the chapter, we assume that ties appear in men’s lists only (and women’s

lists must be strict). In the following, we use the name MAX SMTI-1TM to stress

that only men’s preference lists may contain ties. As for woman-strategy-proofness,

we obtain the same result as for MAX SMTI. That is, MAX SMTI-1TM admits a

woman-strategy-proof 2-approximate-stable mechanism, and this result is tight. For

man-strategy-proofness, we can reduce the approximation ratio to 1.5, which is the

main result of this chapter.

We remark that no assumptions on running times are made for our negative results,

while algorithms in our positive results run in linear time. Note also that the current

best polynomial-time approximation algorithms for MAX SMTI and MAX SMTI-
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1TM have the approximation ratios better than those in our negative results. Hence

our results provide gaps between polynomial-time computation and strategy-proof

computation.

6.1 Algorithms for MAX SMTI

In this section, we show that there is a 2-approximate-stable mechanism for MAX

SMTI. It is achieved by a simple extension of the GS algorithm. We also show that

this result is tight. We start with the positive part:

Lemma 24. MAX SMTI admits both a man-strategy-proof 2-approximate-stable

mechanism and a woman-strategy-proof 2-approximate-stable mechanism.

Proof. Consider a mechanism S∗ that is described by the following algorithm. Given

a MAX SMTI instance I, S∗ first breaks each tie so that persons in a tie are ordered

increasingly in their indices, that is, if qi and qj are in the same tie of p’s list, then after

the tie break qi ≻p qj holds if and only if i < j. Let I ′ be the resulting instance. Its

preference lists are incomplete but do not include ties. That is, I ′ is an SMI-instance.

It then applies MGS for SMI to I ′ and obtains a stable matching M for I ′. It is easy

to see that M is stable for I. Also it is well-known that in MAX SMTI, any stable

matching is a 2-approximate solution [MII+02]. Hence S∗ is a 2-approximate-stable

mechanism.

We then show that S∗ is a man-strategy-proof mechanism. Suppose not. Then

there is a MAX SMTI instance I and a man m who has a successful strategy in I.

Let J be a MAX SMTI instance in which only m’s preference list differs from I, and

by using it m obtains a better outcome. Let MI and MJ be the outputs of S∗ on I

and J , respectively. Then m prefers MJ to MI , that is, either (i) MJ(m) ≻m MI(m)

with respect to m’s true preference list in I, or (ii) m is single in MI and matched

in MJ , and MJ(m) is acceptable to m in I. Let I ′ and J ′, respectively, be the SMI-

instances constructed from I and J by breaking ties in the above mentioned manner.

Then MI and MJ are, respectively, the results of MGS applied to I ′ and J ′. Since I ′

is the result of tie-breaking of I and m prefers MJ to MI in I, m prefers MJ to MI

in I ′. Note that, due to the tie-breaking rule, the preference lists of people except

for m are same in I ′ and J ′. This means that when MGS is used in SMI, m can

have a successful strategy in I ′ (i.e., to change his list to that of J ′), contradicting

man-strategy-proofness of MGS for SMI (page 57 of [GI89]).
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If we exchange the roles of men and women in S∗, we obtain a woman-strategy-proof

2-approximate-stable mechanism.

We then show the negative part. We remark that ϵ is not necessarily a constant.

Lemma 25. (1) For any positive ϵ, there is no man-strategy-proof (2−ϵ)-approximate-

stable mechanism for MAX SMTI, even if ties appear in only women’s preference lists.

(2) For any positive ϵ, there is no woman-strategy-proof (2 − ϵ)-approximate-stable

mechanism for MAX SMTI, even if ties appear in only men’s preference lists.

Proof. (1) Consider the instance I1 given in Fig. 6.1, where m3’s preference list

is empty. It is straightforward to verify that I1 has two stable matchings M1 =

{(m1, w1), (m2, w2)} and M2 = {(m1, w2), (m2, w3)}, both of which are of maximum

size.

m1: w2 w1 w1: m1

m2: w2 w3 w2: (m1 m2)

m3: w3: m2

Fig. 6.1 A MAX SMTI instance I1

Let S be an arbitrary (2− ϵ)-approximate-stable mechanism for MAX SMTI. Since

S is a stable mechanism, it must output either M1 or M2 on I1. First suppose that

it outputs M1. Let I ′1 be the instance obtained from I1 by deleting w1 from m1’s

preference list. Then since M2 is still a stable matching for I ′1 and S is a (2 − ϵ)-

approximate-stable mechanism, S must output a stable matching of size 2. But since

M2 is now the only stable matching of size 2, S outputs M2 on I ′1. Thus m1 can obtain

a better partner by manipulating his preference list. On the other hand, suppose that

S outputs M2 on I1. Then let I ′′1 be the instance obtained from I1 by deleting w3

from m2’s preference list. By a similar argument, S must output M1 on I ′′1 and hence

m2 can obtain a better partner by manipulation. We have shown that, for any (2−ϵ)-

approximate-stable mechanism S, some man has a successful strategy in I1 and hence

S is not a man-strategy-proof mechanism.

(2) We use the instance I2 given in Fig. 6.2, which is symmetric to I1. By the same

argument as above, we can show that for any (2−ϵ)-approximate-stable mechanism S,

some woman has a successful strategy in I2 and hence S is not a woman-strategy-proof
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m1: w1 w1: m2 m1

m2: (w1 w2) w2: m2 m3

m3: w2 w3:

Fig. 6.2 A MAX SMTI instance I2

mechanism.

Thus, we have the following theorem:

Theorem 11. MAX SMTI admits both a man-strategy-proof 2-approximate-stable

mechanism and a woman-strategy-proof 2-approximate-stable mechanism. On the

other hand, for any positive ϵ, MAX SMTI admits neither a man-strategy-proof (2−ϵ)-

approximate-stable mechanism nor a woman-strategy-proof (2− ϵ)-approximate-stable

mechanism.

6.2 Non-strategy-proofness of Existing Algorithms

Since MGS is a man-strategy-proof stable mechanism for SM, such types of algorithms

are good candidates for man-strategy-proof 1.5-approximation mechanism for MAX

SMTI-1TM. Existing 1.5-approximation algorithms for MAX SMTI for one-sided ties

are of GS-type, but in these algorithms, proposals are made from the side with no ties

(women, in our case), so we cannot use them for our purpose. On the other hand, there

are 1.5-approximation algorithms for the general MAX SMTI [McD09, Pal14, Kir13],

which are fortunately of GS-type and can handle proposals from the side with ties

(men, in our case). Hence one may expect that these algorithms will work. However,

it is not the case.

Király [Kir13] presented a 1.5-approximation algorithm for general MAX SMTI

(i.e., ties can appear on both sides), which is named “New Algorithm”. We modify

it in the following two respects.

1. Men’s proposals do not get into the second round.

2. When there is arbitrarity, the person with the smallest index is prioritized.

Ideas behind these modifications are as follows: For item 1, since there is no ties

in women’s preference lists, executing the second round does not change the result.
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The role of item 2 is to make the algorithm deterministic, so that the output is a

function of an input (as we did in the proof of Lemma 24). For completeness, we give

a pseudo-code of the algorithm, denoted M-KNA to stand for “Modified Király’s New

Algorithm”, in Algorithm 5.

Each person takes one of three states, “free”, “engaged”, and “semi-engaged”.

Initially, all the persons are free. At lines 5, 10 and 14, man m proposes to woman

w. Basically, the procedure is exactly the same as that of MGS. If w is free, then we

let M := M ∪ {(m,w)} and both m and w be engaged (we say w accepts m). If w is

engaged to m′ (i.e., (m′, w) ∈ M) and if m ≻w m′, then we let M := M ∪ {(m,w)} \
{(m′, w)}, m be engaged, and m′ be free. We also delete w from m′’s preference list

(we say w accepts m and rejects m′). If w is engaged to m′ and m′ ≻w m, then we

delete w from m’s preference list (we say w rejects m).

There is an exception in the acceptance/rejection rule of a woman, when she re-

ceives the first and second proposals. This is actually the key for guaranteeing 1.5-

approximation, but this rule is not used in the subsequent counter-example so we omit

it here. Readers may consult to the original paper [Kir13] for the full description of

the algorithm.

It is already proved that the (original) Király’s algorithm always outputs a stable

matching which is a 1.5-approximate solution, and it is not hard to see that the same

results hold for the above M-KNA for MAX SMTI-1TM. However, as the example in

Figs. 6.3 and 6.4 shows, it is not a man-strategy-proof mechanism.

m1: w2 w1 w1: m2 m4 m1

m2: (w1 w3) w2: m4 m1

m3: w3 w3: m2 m3

m4: w1 w2 w4:

Fig. 6.3 A counter-example (true lists)

If M-KNA is applied to the true preference lists in Fig. 6.3, the obtained match-

ing is {(m2, w1), (m3, w3), (m4, w2)}. Suppose that m1 flips the order of w1 and w2

(Fig. 6.4). This time, M-KNA outputs {(m1, w2), (m2, w3), (m4, w1)} and m1 suc-

cessfully obtains a partner w2. By proposing to w1 first, m1 is able to let m2 propose

to w3. This allows m4 to obtain w1, which prevents m4 from proposing to w2. This
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Algorithm 5 Modified Király’s New Algorithm (M-KNA) [Kir13]

1: Let M := ∅ and all people be free.

2: while there is a free man whose preference list is non-empty do

3: Among those men, let m be the one with the smallest index.

4: if the top of m’s current preference list consists of only one woman w then

5: Let m propose to w.

6: end if

7: if the top of m’s current preference list is a tie then

8: if all the women in the tie are engaged then

9: Among those women, let w be the one with the smallest index.

10: Let m propose to w.

11: end if

12: if there is a free woman in the tie then

13: Among those free women, let w be the one with the smallest index.

14: Let m propose to w.

15: end if

16: end if

17: end while

18: Output M .

m1: w1 w2 w1: m2 m4 m1

m2: (w1 w3) w2: m4 m1

m3: w3 w3: m2 m3

m4: w1 w2 w4:

Fig. 6.4 A counter-example (manipulated by m1)

eventually makes it possible for m1 to obtain w2.

We finally remark that the same example shows that the other two 1.5-

approximation algorithms [McD09, Pal14] (with the tie-breaking rule 2 above) are

not man-strategy-proof mechanisms either.
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6.3 Algorithms for MAX SMTI-1TM

Recall that MAX SMTI-1TM is a restriction of MAX SMTI where ties can appear in

men’s preference lists only. Then the following corollary is immediate from Lemma 24

and Lemma 25(2).

Corollary 5. MAX SMTI-1TM admits a woman-strategy-proof 2-approximate-stable

mechanism, but no woman-strategy-proof (2 − ϵ)-approximate-stable mechanism for

any positive ϵ.

We then move to man-strategy-proofness. For man-strategy-proofness, we can re-

duce the approximation ratio to 1.5. We start with the negative part:

Lemma 26. For any positive ϵ, there is no man-strategy-proof (1.5− ϵ)-approximate-

stable mechanism for MAX SMTI-1TM.

Proof. The proof goes like that of Lemma 25. Consider the instance I3 in Fig. 6.5.

I3 has four matchings of size 3, namely, M3 = {(m1, w1), (m2, w2), (m3, w3)},
M4 = {(m1, w1), (m2, w2), (m3, w4)}, M5 = {(m1, w1), (m2, w3), (m3, w4)}, and

M6 = {(m1, w2), (m2, w3), (m3, w4)}. Among them, M3 and M6 are stable (M4

is blocked by (m3, w3) and M5 is blocked by (m1, w2)). Hence any (1.5 − ϵ)-

approximate-stable mechanism outputs either M3 or M6, since a stable matching of

size 2 is not a (1.5− ϵ)-approximate solution.

m1: w2 w1 w1: m1

m2: (w2 w3) w2: m2 m1

m3: w3 w4 w3: m2 m3

m4: w4: m3

Fig. 6.5 A MAX SMTI-1TM instance I3

Consider an arbitrary (1.5− ϵ)-approximate-stable mechanism S for MAX SMTI-

1TM, and suppose that S outputs M3 on I3. Then if m1 deletes w1 from the list, M6

is the unique maximum stable matching (of size 3); hence S must output M6 and so

m1 can obtain a better partner w2. Similarly, if S outputs M6 on I3, m3 can force S

to output M3 by deleting w4 from the list. In either case, some man has a successful
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strategy in I3 and hence S is not a man-strategy-proof mechanism.

Finally, we give a proof for the positive part, which is the main result of this chapter.

Lemma 27. There exists a man-strategy-proof 1.5-approximate-stable mechanism for

MAX SMTI-1TM.

Proof. We give Algorithm 6 and show that it is a man-strategy-proof 1.5-approximate-

stable mechanism by three subsequent lemmas (Lemmas 28 to 30). Algorithm 6 first

translates an SMTI-1TM instance I to an SMI-instance I ′ using Algorithm 7, then

applies MGS to I ′ and obtains a matching M ′, and finally constructs a matching M

of I from M ′. The new instance I ′ contains 2n men ai and bj (1 ≤ i ≤ n, 1 ≤ j ≤ n)

and 2n women sj and tj (1 ≤ j ≤ n) (lines 2 and 3 of Algorithm 7). It is important to

note that a man ai corresponds to a man mi of I, while a man bj and two women sj

and tj correspond to a woman wj of I. As will be seen later, bj is definitely matched

with sj or tj in M ′, and the other woman (i.e., either sj or tj who is not matched

with bj) plays a role of woman wj of I: If she is single in M ′, then wj is single in M .

If she is matched with ai in M ′, then wj is matched with mi in M .

Algorithm 6 An algorithm for MAX SMTI-1TM

Require: An instance I for MAX SMTI-1TM.

Ensure: A matching M for I.

1: Construct an SMI-instance I ′ from I using Algorithm 7.

2: Apply MGS to I ′ and obtain a matching M ′.

3: Let M := {(mi, wj) | (ai, sj) ∈ M ′ ∨ (ai, tj) ∈ M ′} and output M .

We briefly give a high-level idea behind Algorithm 6. Consider an application of

MGS to I ′ at line 2. Since men’s proposal order does not affect the outcome, it is

convenient to first let bj propose to his first choice woman sj for each j. At this

moment, there are n pairs (bj , sj) (1 ≤ j ≤ n). We regard this as an initial state,

and as long as (bj , sj) is a pair, tj acts as wj . At some point, if sj receives a proposal

from some man ai for the first time, sj rejects bj and bj then proposes to his second

choice woman tj , which is accepted. We regard this as a change of the state, and the

role of wj is taken over to sj . Once this happens, (bj , tj) remains a pair till the end

of the algorithm. Recall that at line 4 of Algorithm 7, each man makes two copies of

each tie. This is regarded as allowing a man to propose to woman wj twice, first to

tj and second to sj .
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Algorithm 7 Translating instances

Require: An instance I for MAX SMTI-1TM.

Ensure: An instance I ′ for SMI.

1: Let X and Y be the sets of men and women of I, respectively.

2: Let X ′ := {ai | mi ∈ X} ∪ {bj | wj ∈ Y } be the set of men of I ′.

3: Let Y ′ := {sj | wj ∈ Y } ∪ {tj | wj ∈ Y } be the set of women of I ′.

4: Each ai’s list is constructed as follows: Consider a tie (wj1 wj2 · · · wjk) in mi’s

list in I. We assume without loss of generality that j1 < j2 < · · · < jk. (If not,

just arrange the order, which does not change the instance.) Replace each tie

(wj1 wj2 · · · wjk) by a strict order of 2k women tj1 tj2 · · · tjk sj1 sj2 · · · sjk . A

woman who is not included in a tie is considered as a tie of length one.

5: Each bj ’s list is defined as “bj : sj tj”.

6: For each j, let P (wj) be the list of wj in I, and Q(wj) be the list obtained from

P (wj) by replacing each man mi by ai. Then sj and tj ’s lists are defined as

follows:
sj : Q(wj) bj

tj : bj Q(wj)

With these observations in mind, we can see that MGS for I ′ simulates the following

GS-type algorithm for the original MAX SMTI instance I.

• Each free man proposes to a woman from the top of the list. When he en-

counters a tie T , he proposes to the women in T in a predetermined order

(i.e., smaller index first). If he is rejected by all of them, he starts the second

sequence of proposals to the women in T in the same order. If he is rejected

by all the women in T again, then he proceeds to the next tie.

• Each woman’s acceptance/rejection policy is as follows: If two proposals are

first proposals, she respects her preference list. Similarly, if both are second

proposals, she respects her preference list. If one is a first proposal and the

other is a second proposal, she always chooses the second proposal (regardless

of her list). Hence, once a woman receives a second proposal of some man, she

never accepts a first proposal thereafter.

This algorithm achieves an approximation ratio of 1.5 for MAX SMTI, although

we do not prove it here. A beneficial point of this algorithm is that a man’s proposal
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order is predetermined and is not affected by other persons’ states. As we explained

in Section 6.2, absence of this property prevented existing algorithms from being

man-strategy-proof.

The reason why we do not use this algorithm directly but translate it to an algorithm

using MGS for SMI is to make the proof of man-strategy-proofness simpler; this

translation allows us to attribute man-strategy-proofness of Algorithm 6 to that of

MGS for SMI, as we did in the proof of Lemma 24.

Now we start formal proofs for the correctness.

Lemma 28. Algorithm 6 always outputs a stable matching.

Proof. Let M be the output of Algorithm 6 and M ′ be the matching obtained at

line 2 of Algorithm 6. We first show that M is a matching. Since M ′ is a matching,

ai appears at most once in M ′, so mi appears at most once in M . Observe that bj is

matched in M ′, as otherwise (bj , tj) blocks M ′, contradicting the stability of M ′ in

I ′. Hence at most one of sj and tj can be matched with ai for some i, which implies

that wj appears at most once in M . Thus M is a matching.

We then show the stability of M . Since M ′ is the output of MGS, it is stable in

I ′. Now suppose that M is unstable in I and there is a blocking pair (mi, wj) for M .

There are four cases:

Case (i): both mi and wj are single. Since mi is single in M , line 3 of Algorithm 6

implies that ai is single in M ′. Since wj is single in M , sj is not matched in M ′

with anyone in Q(wj), i.e., sj is single or matched with bj . Note that (ai, sj)

is a mutually acceptable pair because (mi, wj) is a blocking pair, and ai ≻sj bj

in I ′ by construction. Thus (ai, sj) blocks M
′, a contradiction.

Case (ii): wj ≻mi M(mi) and wj is single. Let M(mi) = wk. Then, by construc-

tion of M , M ′(ai) is either sk or tk. By construction of I ′, wj ≻mi
wk implies

both sj ≻ai sk and sj ≻ai tk, and in either case we have that sj ≻ai M ′(ai)

in I ′. Since wj is single in M , by the same argument as Case (i), sj is either

single or matched with bj in M ′. Hence (ai, sj) blocks M
′.

Case (iii): mi is single and mi ≻wj M(wj). Since mi is single in M , ai is single in

M ′ by the same argument as Case (i). Let M(wj) = mk. Then, by construction

of M , either sj or tj is matched with ak, and the other is matched with bj since

bj can never be single as we have seen in an earlier stage of this proof. In

particular, M ′(sj) is either ak or bj . Note that mi ≻wj
mk in P (wj) implies
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ai ≻sj ak in Q(wj), so in either case ai ≻sj M ′(sj) in I ′ due to the construction

of sj ’s list. Therefore (ai, sj) blocks M
′.

Case (iv): wj ≻mi M(mi) and mi ≻wj M(wj). By the same argument as Case

(ii), we have that sj ≻ai
M ′(ai) in I ′. By the same argument as Case (iii), we

have that ai ≻sj M ′(sj) in I ′. Hence (ai, sj) blocks M
′.

Lemma 29. Algorithm 6 always outputs a 1.5-approximate solution.

Proof. Let I be an input, Mopt be a maximum stable matching for I, and M be the

output of Algorithm 6. We show that
|Mopt|
|M | ≤ 1.5. Let G = (X ∪Y,E) be a bipartite

(multi-)graph with vertex bipartition X and Y , where X corresponds to men and

Y corresponds to women of I. The edge set E is a union of M and Mopt, that is,

(mi, wj) ∈ E if and only if (mi, wj) is a pair in M or Mopt. If (mi, wj) is a pair in

both M and Mopt, then E contains two edges (mi, wj), which constitute a “cycle”

of length two. An edge in E corresponding to M (Mopt, respectively) is called an

M -edge (Mopt-edge, respectively). Since the degree of each vertex of G is at most 2,

each connected component of G is an isolated vertex, a cycle, or a path.

It is easy to see that G does not contain a single Mopt-edge as a connected com-

ponent, since if such an edge (mi, wj) exists, then (mi, wj) is a blocking pair for M ,

contradicting the stability of M . In the following, we show that G does not contain,

as a connected component, a path of length three mi−wj−mk−wℓ such that (mi, wj)

and (mk, wℓ) are Mopt-edges and (mk, wj) is an M -edge. If this is true, then for any

connected component C of G, the number of M -edges in C is at least two-thirds of

the number of Mopt-edges in C, implying
|Mopt|
|M | ≤ 1.5.

Suppose that such a path exists. Note that mi and wℓ are single in M . If mi ≻wj

mk, then (mi, wj) blocks M . Since women’s preference lists do not contain ties, we

have that mk ≻wj mi. If wℓ ≻mk
wj , then (mk, wℓ) blocks M . If wj ≻mk

wℓ, then

(mk, wj) blocks Mopt. Hence wj and wℓ are tied in mk’s list. Then by construction

of I ′, (i) tℓ ≻ak
sj . (Hereafter, referring to Fig. 6.6 would be helpful. Here, the order

of tj and tℓ in ak’s list is uncertain, i.e., it may be the opposite, but this order is not

important in the rest of the proof.) Since wℓ is single in M , either sℓ or tℓ is single

in M ′. If sℓ is single in M ′, then (bℓ, sℓ) blocks M
′, a contradiction. Hence (ii) tℓ is

single in M ′. Since M(mk) = wj , either M ′(ak) = sj or M ′(ak) = tj holds. In the

former case, (i) and (ii) above imply that (ak, tℓ) blocks M ′, so assume the latter,
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ai: · · · sj · · · sj : · · · ai · · · bj

bi: si ti tj : bj · · · ak · · ·

ak: · · · tj · · · tℓ · · · sj · · · sℓ: · · · bℓ

bk: sk tk tℓ: bℓ · · ·

aℓ: · · ·

bℓ: sℓ tℓ

Fig. 6.6 A part of the preference lists of I ′

i.e., M ′(ak) = tj . Recall from the proof of Lemma 28 that either sj or tj is matched

with bj in M ′, so M ′(sj) = bj . Since (mi, wj) is an acceptable pair in I, we have that

ai ≻sj bj due to the construction of sj ’s list. Since mi is single in M , ai is single in

M ′. Hence (ai, sj) blocks M
′, a contradiction.

Lemma 30. Algorithm 6 is a man-strategy-proof mechanism.

Proof. The proof is similar to that of Lemma 24. Suppose that Algorithm 6 is not a

man-strategy-proof mechanism. Then there are MAX SMTI-1TM instances I and J

and a man mi having the following properties: I and J differ in only mi’s preference

list, and mi prefers MJ to MI , where MI and MJ are the outputs of Algorithm 6 for

I and J , respectively. Then either (i) MJ(mi) ≻mi MI(mi) in I, or (ii) mi is single

in MI and MJ(mi) is acceptable to mi in I.

Let I ′ and J ′ be the SMI-instances constructed by Algorithm 7. Since I and J

differ in only mi’s preference list, I ′ and J ′ differ in only ai’s preference list. Let MI′

and MJ′ , respectively, be the outputs of MGS applied to I ′ and J ′. In case of (i),

we have that MJ′(ai) ≻ai MI′(ai) in I ′, due to line 4 of Algorithm 7 and line 3 of

Algorithm 6. In case of (ii), ai is single in MI′ because mi is single in MI , and MJ′(ai)

is acceptable to ai in I ′ because MJ(mi) is acceptable to mi in I. This implies that

ai has a successful strategy in I ′, contradicting man-strategy-proofness of MGS for

SMI [GI89].

By Lemmas 28 to 30, we can conclude that Algorithm 6 is a man-strategy-proof
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1.5-approximate-stable mechanism for MAX SMTI-1TM.

Thus, we have the following theorem:

Theorem 12. MAX SMTI-1TM admits a man-strategy-proof 1.5-approximate-stable

mechanism, but no man-strategy-proof (1.5−ϵ)-approximate-stable mechanism for any

positive ϵ.

6.4 Extensions

In the above discussion, man-strategy-proofness (woman-strategy-proofness) is de-

fined in terms of a manipulation of a preference list by one man (woman). We can

extend this notion to a coalition of men (or women) as follows; a coalition C of men

has a successful strategy if there is a way of falsifying preference lists of members

of C which improves the outcome of every member of C. It is known that MGS is

strategy-proof against a coalition of men in this sense (Theorem 1.7.1 of [GI89]), and

this strategy-proofness holds also in SMI (page 57 of [GI89]). Since all our strategy-

proofness results (Lemmas 24 and 30) are attributed to strategy-proofness of MGS

in SMI, we can easily modify the proofs so that Theorem 11, Corollary 5, and Theo-

rem 12 hold for strategy-proofness against coalitions.

Clearly, the negative parts of Theorem 11, Corollary 5, and Theorem 12 hold for

a many-to-one extension of MAX SMTI, denoted MAX HRT. Also, we can show

that man-strategy-proofness in Theorems 11 and 12 carry over to resident-strategy-

proofness in MAX HRT by cloning hospitals (see e.g., page 283 of [IM08] for cloning).

By contrast, woman-strategy-proofness in Theorem 11 and Corollary 5 do not hold for

hospital-strategy-proofness in MAX HRT; there is no hospital-strategy-proof stable

mechanism even without ties (see Section 1.7.3 of [GI89]).

When only ties are present (SMT) or only incomplete lists are present (SMI), all the

stable matchings of one instance have the same cardinality. The former is due to the

fact that any stable matching is a perfect matching, and the latter is due to the Rural

Hospitals theorem [GS85, Rot84, Rot86]. Hence approximability is not an important

issue in these cases. As for strategy-proofness, since SMT and SMI are generalizations

of SM, Roth’s impossibility theorem holds and no strategy-proof stable mechanism

exists. Existence of one-sided strategy-proofness for SMI is already known as we have

mentioned above, and that for SMT follows directly from Theorem 11.
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6.5 Concluding Remarks

In this chapter, we first gave a man-strategy-proof 2-approximate-stable mechanism

and a woman-strategy-proof 2-approximate-stable mechanism for MAX SMTI. We

also considered a restricted variant of MAX SMTI, which we call MAX SMTI-1TM,

where only men’s lists can contain ties (and women’s lists must be strictly ordered).

Then we gave a woman-strategy-proof 2-approximate-stable mechanism and a man-

strategy-proof 1.5-approximate-stable mechanism for MAX SMTI-1TM. All these re-

sults are tight in terms of approximation ratios.

Considering strategy-proof algorithms for other stable matching problems is in-

teresting. Since our technique of obtaining strategy-proofness by constructing an

algorithm as a translation of an instance and applying existing strategy-proof algo-

rithm is generic, it may be useful for constructing strategy-proof algorithms for other

problems. Recently, it is used to construct strategy-proof algorithms for some stable

matching problems [GMMY22, Yok21].
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Chapter 7

Conclusion

In this thesis, we studied computational tractability of various extensions of stable

matching problems. In Chapter 3, we improved inapproximability of MAX SIZE MIN

BP SMI. In Chapter 4, we defined HRLQ and showed some positive and negative

results on its optimization variants. In Chapter 5, we positively solved two open

problems on noncrossing stable matchings in SMI, and extended them to SMTI. In

Chapter 6, we considered strategy-proof approximation algorithms for MAX SMTI

and showed polynomial-time approximation algorithms that have tight approximation

ratios. These results contribute to the understanding of computational tractability

of complex problems for further applications of stable matching problems in the real

world.

Our results have also made several contributions to the overall study of stable

matching problems. One contribution is to strengthen the common understanding

that minimizing the number of BPs is difficult. Although the number of BPs is a

natural and effective measure of the degree of instability [EH08], minimizing it in

SR and SRT [ABM05] and in MAX SMI [BMM10] were shown to be very difficult.

We strengthened the results of Biro et al. [BMM10] in Chapter 3, and showed in

Chapter 4 that minimizing the number of BPs is also difficult for HRLQ. These

results are evidence of the computational intractability of minimizing the number of

BPs in stable matching problems.

Another contribution is that we have obtained tight results for the stable matching

problems. Tight result is a steady step forward in the understanding of computational

tractability. In Chapter 4, we showed a polynomial-time (|H| + |R|) approximation

algorithm for Min-BP HRLQ and a tight lower bound (|H|+ |R|)1−ϵ for any positive

ϵ of approximation ratio. In Chapter 6, we showed tight upper and lower bounds

of approximation ratios of man-strategy-proof and woman-strategy-proof algorithms
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for MAX SMTI and MAX SMTI-1TM. Furthermore, in Chapter 5, we showed that

there is a polynomial-time algorithm for the problem of determining the existence of

weak-SSNM in SMTI if the length of each man’s preference list is less than or equal

to one and that this condition is tight.

Our results also provide an avenue for subsequent studies. The constraint on the

lower quotas of HR defined in Chapter 4 reflects an important real-world requirement

of balancing the number of residents assigned to hospitals. Together with models

introduced in [BFIM10, Hua10], it has triggered a number of subsequent studies on

HRLQ such as direct subsequent works [ÁBM16, FK16, Yok17, BH20, MS20], ex-

tensions to other variants [MT13, Kam13, CF17, CFP21], and works with relaxation

of stability as shown below. In addition, the inapproximability results presented in

Chapters 3 and 4 showed that using the number of blocking pairs or the number

of blocking residents as a measure of instability is unrealistic in terms of computa-

tional complexity. It led to consider alternative notion of stability. Envy-freeness

seems to be a good candidate of alternatives since it is a relaxation of stability. In

envy-free matchings, we allow for the existence of a blocking pair between a vacant

position in a hospital and a resident. In fact, there has been several studies on the

problem of finding an envy-free matching or almost envy-free matching in HRLQ

[FIT+16, Yok20, HG21]. In addition to envy-freeness, problems of finding a matching

with relaxation of stability called relaxed stability [KLNN20] or other notion called

popularity [NN17, MNNR18] in HRLQ have also been studied. In Chapter 6, we

gave a generic technique of proving strategy-proofness that rewrites the algorithm

that we want to show strategy-proofness to a translation of an instance and apply-

ing existing strategy-proof algorithm. It seems useful for other proofs of strategy-

proofness; since proving strategy-proofness tends to be complicated. This technique

is used to construct strategy-proof algorithms for some stable matching problems

[GMMY22, Yok21].
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[CFP21] Ágnes Cseh, Tobias Friedrich, and Jannik Peters. Pareto optimal

and popular house allocation with lower and upper quotas. CoRR,

abs/2107.03801, 2021.

[CHSY18] Jiehua Chen, Danny Hermelin, Manuel Sorge, and Harel Yedidsion. How

hard is it to satisfy (almost) all roommates? In 45th International Collo-



107

quium on Automata, Languages, and Programming, ICALP 2018, volume

107 of LIPIcs, pages 35:1–35:15. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2018.
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