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Abstract

The computational model, which is an effective solution for complicated

problems, has gained remarkable achievements in solving biological issues.

Most past computational models designed for solving biological issues utilized

general mathematical algorithms or machine learning methods (e.g., neural

networks with traditional structures). However, many novel algorithms from

informatics can be effectively combined with computational models of bi-

ological systems to improve performances. In this study, we proposed two

novel computational models to study pseudoknotted RNA secondary structure

comparison problem and protein kinase inhibitor interaction sites prediction

problem, respectively.

Biology as one of the most influential nature science nowadays is a com-

plex discipline involving physical structure, chemical composition, function,

development, and evolution, where the gene and protein play vital roles in

several biological processes as typical issues in bioinformatics area. Genes are

foremen that hand out instructions to create life, and the difference of genes

determines the species diversity. Besides, proteins involving every process of

cell life activities are required components of the creature’s body. Thus, it is

absolute that both the gene and protein are critical issues in biology.

With the strong development of science and technology in the century,

many research fields are hard to further make headway due to the limitation

of single-field, thus cross-field study is necessary and important to break the

situation. Bioinformatics is in a cross-field of informatics and biology, which

applies informatics methods to solve biological problems. Many studies of

bioinformatics have effectively taken the biology field forward by applying

several informatics methods. In the research, two models are proposed to

solve biological issues with complex data structures.

A computational approach is developed to compare RNA secondary struc-

tures by topological centroid identification and tree edit distance. In the

study, a given graph representing an RNA secondary structure is transformed

to a tree rooted at one of the vertices constituting the topological centroid

that is identified by removing cycles with PEELING processing for the graph.

Then, tree-represented RNA secondary structures are compared by using tree
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edit distance and functional gene groups defined by Gene Ontology, where

the proposed method showed better clustering results according to their GOs

than canonical RNA sequence-based comparison. Furthermore, the combina-

tion of the tree edit distance and the sequence edit distance showed a better

classification of the pseudoknotted RNA secondary structures.

Then, a machine learning model is designed to analyze the mechanism of

protein kinases and inhibitors, which is a graph convolutional neural network

(i.e., PISPKI model) attached WL Box module. The WL Box is a novel

module that assembles multiple switch weights to effectively compute graph

features, which is based on the well-knownWeisfeiler-Lehman algorithm. The

proposed PISPKI model was evaluated by testing with shuffled datasets and

ablation analysis using 11 kinase classes. The accuracy of the PISPKI model

varied from 83% to 86%, demonstrating the superior performance compared

to two baseline models.
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Chapter 1

Introduction





1 Introduction

1.1 Background

Biology is one of the most influential nature science, which involves many

complex disciplines such as physical structure, chemical composition, func-

tion, development, and evolution. Designing computational models is a com-

mon and effective way to solve biological issues nowadays. The graph as

a complicated data structure can carry more information and fits to de-

scribe biological data. Thus, to design computational models for analyzing

graph-structured biological data, there are two sub-issues: (1) selecting and

accurately representing valuable data for biological problems; (2) developing

models that can effectively process transformed graph data, where dealing

with data of genes and proteins is a critical issue in biology.

Genes, deoxyribonucleic acids (i.e., DNA) or ribonucleic acids (i.e., RNA),

are key macromolecules for the continuity of creature life. Due to the stability

of deoxyribonucleic acid double helix, DNA molecules do not have compli-

cated plane structures (2D) or stereo structures (3D). However, RNA is not,

whose single-stranded structure causes RNA molecules to have special sec-

ondary structures and tertiary structures depending on different sequences.

Herein, the secondary structure plays a vital role in related technology de-

velopments such as nanotechnology and RNA-based computing. Four types

of bases (i.e., A, U, G, and C) form to helix, stem-loop, and pseudoknot

of RNA secondary structure due to different affinities between two bases.

Furthermore, the pseudoknot, which is a double-hairpin structure with an

extended quasi-continuous double-helical stem region, as the most complex

one in RNA secondary structure motifs has significant meanings in biological

processes but is hard to be computed and analyzed because it is irregular.
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Chapter. 1 Introduction

Therefore, studying with pseudoknotted RNA secondary structures is a chal-

lenge.

Besides, the inhibitor is a class of molecules that influences protein activ-

ities, and the protein kinase is a phosphotransferase enzyme that catalyzes

the transfer of phosphate (PO3−
4 ) during phosphorylation, where protein ki-

nase inhibitors can block activities of kinases and play vital roles to inhibit

the addition of phosphate groups to the target protein by interacting with

protein kinase residues via electrostatic forces, hydrogen bonding, and van

der Waals forces at specific interaction sites. Phosphorylation of proteins,

a central reaction to various biological processes and the regulation of most

aspects of cell functions, is a common but complex post-translational modi-

fication to modulate cell proliferation, differentiation, and apoptosis. Hence,

researching the mechanism of protein kinase inhibitors is a valuable way for

understanding phosphorylation and related phenomena.

However, previous studies mostly applied general mathematical algo-

rithms and machine learning methods due to lacking professional knowledge

of computer science and informatics. Advanced technologies can be utilized

to help them solve the problem and improve effectiveness in various aspects

(Fig.1). Recently, bioinformatics and computational biology made signifi-

cant contributions to vaccine and drug developments during the COVID-19

pandemic [1][2][3][4], which further confirms that applying computational

models on biological issues can achieve significant progress to science.

1.2 Importance of Cross-field

Compared to the last century, it is increasingly harder to propose a novel

study or develop an excellent product in a single field. Most studies are

limited by views and technical barriers. Furthermore, the most complex
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1.3 Contribution

Figure 1: Computational models work on drug discovery procedure

global issues, such as global warming, epidemic, cancer, food, energy, and

population, are impossible to be solved by experts from a single field. For

example, to solve the global warming issue, aerography, agronomy, zoology,

bionomics, and informatics are needed. Besides, economic and political issues

also should be considered in global warming. There are several ways to let

different field experts solve a complex issue together, but the communication

may not be smooth due to lacking professional knowledge in other fields,

which alerts us cross-field experts are needed and cross-field studies should

be further progressed.

1.3 Contribution

In this research, we developed two novel methods as shown below.

In the first study, a novel tree representation approach was proposed and
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Chapter. 1 Introduction

developed based on topological centroid identification and tree edit distance,

which was applied to compare and analyze pseudoknotted RNA secondary

structures. The pseudo-knotted RNA secondary structure is one of the most

crucial substructures for elucidating their individual functions and promoting

medical applications. In the proposed method, a given graph representing

an RNA secondary structure is transformed to a tree rooted at one of the

vertices constituting the topological centroid that is identified by removing

cycles with PEELING processing for the graph. Then, tree-represented RNA

secondary structure collected from a public database is compared by using

the tree edit distance and functional gene groups defined by Gene Ontology

(GO). In experiments, the proposed model showed better clustering results

according to their GOs than canonical RNA sequence-based comparison.

In the second study, we firstly applied machine learning method on the

binding mechanism research of protein kinases and inhibitors, where atoms

of protein kinase inhibitors that have interactions with residues from protein

kinases was defined as the interaction sites. To study the issue, we proposed

and designed a novel machine learning module called the WL Box that is

assembled to the PISPKI (Prediction of Interaction Sites of Protein Kinase

Inhibitors) model, which is a graph convolutional neural network (GCN) to

predict the interaction sites of protein kinase inhibitors. The WL Box is

a module based on the well-known Weisfeiler-Lehman algorithm, which as-

sembles multiple switch weights to effectively compute graph structures and

output more significant features. The proposed PISPKI model defeated two

baseline models and had good performance on shuffled datasets testing. Fur-

thermore, we also designed and performed an ablation experiment to confirm

the architecture rationality of the model.
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1.4 Organization

1.4 Organization

In Chapter 2, a few basic background knowledge is briefly introduced due

to the cross-field, where we hope every reader can understand the research

regardless of their areas on computer science, biology, or other majors.

In Chapter 3, an approach based on topological centroid identification

and tree edit distance is utilized to compare pseudo-knotted RNA secondary

structures. Comparison results are shown by the hierarchical clustering anal-

ysis with gene ontology.

In Chapter 4, a novel machine learning module is designed and attached

to the proposed PISPKI model that is applied to analyze the binding mech-

anism of protein kinases and inhibitors, whose performance is evaluated by

baseline experiment, shuffle dataset testing, and ablation study.

In Chapter 5, two proposed studies are summarized along with future

work.
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2 Preliminaries

2.1 Data structure

2.1.1 String structure

The string is a primitive data type that represents a sequence of alphabets or

symbols, such as S = s1s2...sn, where each element from the string can be op-

tionally edited. It is the most common and simple data structure in computer

science and has been widely applied in gene analysis [5][6][7]. However, it

only can be utilized to describe limited information such as ordered sequences

of DNAs or RNAs, because it is unable to further show more complex struc-

ture, which leads to the string structure only having poor performance on

most complicated biological issues.

String edit distance is an approach that quantifies and measures the de-

gree of dissimilarity between two strings by counting the minimum number

of operations with which one string can be transformed into the other, where

the Levenshtein distance is the most well known, proposed by Levenshtein

in 1965 [8]. There are three operations: insertion, deletion, and substitution.

Fig.2 shows an example for string edit distance of two RNA sequences, where

sequence AUGCCAUAC is transformed to sequence UGCGCUCAC by four

edit steps: deleting the base A, substituting a base C with base G, substitut-

ing a base A with base C, and inserting a base C. During the computation of

the string edit distance, setting weights can be utilized to get different results

and let the program avoid operations that we do not prefer. For example,

suppose weights of three operations are 1, the string edit distance between

two RNA sequences is 4 in Fig.2. If we reset the weight of a substitution

operation to 3 and do not recompute the edit steps, the edit distance is 8.

Whereas, the optimal solution of edit steps has been changed because of the
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Chapter. 2 Preliminaries

Figure 2: String edit distance between RNA sequence AUGCCAUAC and
UGCGCUCAC

high weight of substitution operations, where each substitution operation

should be replaced by one insertion and one deletion operation. Hence, the

string edit distance is 6.

2.1.2 Tree

The tree is a data type widely used to describe hierarchical abstract infor-

mation, which is a finite set consisting of k nodes n1, ..., nk. There exists a

unique node called root in a tree T , and the rest of the nodes can be di-

vided into m non-overlapped subsets called subtrees t1, ..., tm. Subtrees of

the tree structure are recursive, which means subordinate subtrees can be

continuously found in each subtree. As a hierarchical structure, the tree is

acyclic and each node owns a parent except the root. The degree of a node

represents the number of subtrees, where the node is called leaf if and only

if the degree equals 0. The children of a parent node are the nodes that are

directly connected with the parent node from subtrees. If two nodes have
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2.1 Data structure

Figure 3: Tree structure

the same parent, they are siblings (Fig.3). Furthermore, The tree can be

ordered or unordered. A tree where the children of each node are assigned

by specific order is an ordered tree. Otherwise, it is an unordered tree.

The similarity evaluation of two trees can be computed by the tree edit

distance. However, complicated structures led to the time complexity of the

tree edit distance problem becoming O(mn), so optimal solutions of com-

puting minimum edit steps are needed to build. Zhang and Shasha (1989)

successfully reduced the time complexity to O(m2n2) by developing an al-

gorithm that applied similar edit operations with the string edit distance

(Section 2.1.1) [9], where defined i) Insertion: insert a node (child) under

a node (parent) from the tree, where the node can inherit a subtree from

the parent. ii) Deletion: delete a node from the tree and the parent inherit

its subtrees if the node is not a leaf. iii)Substitution: substitute the label

13



Chapter. 2 Preliminaries

Figure 4: Tree edit distance

of a node from the tree. Similar to the string edit distance, the weight can

be utilized to avoid unwanted operations (Fig.4). Demaine further devel-

oped an optimal solution whose time complexity was O(n2m(1+ log(m
n
))) in

2009 [10]. Thus, now, tree edit distance computing is a simple and effective

method that calculates the dissimilarity measure of two trees and has been

widely applied to computer science issues [11][12][13] but seldom to biology.

2.1.3 Graph theory

The graph is a discrete data structure consisting of a set of n vertices and

m edges to describe relationships between vertices by edges represented by

G = (V,E), where V = {v1, ..., vn} and E = {e1, ..., em}. As shown in Fig.5,

each vertex can attach information such as name, label, color, and/or shape to

describe typical targets including proteins or genes in biology. And an edge is

formed by two endpoints (vertices) to build the connection between vertices

by different relationships, which can be directed or undirected (Fig.5). The

degree of a vertex denotes the number of edges that are incident to the vertex

in a graph denoted by TD(v). Different from the degree of a node from a tree,

14



2.1 Data structure

Figure 5: Graph structure

the degree of any vertex cannot be 0 (for connected graphs). For a directed

graph, outdegree OD(v) and indegree ID(v) are defined to describe vertice

and directions of edges , where TD(v) = OD(v) + ID(v) for any vertices

v. Connections of a graph are usually represented by adjacency matrix A

that is a square matrix sized by n × n, where Aij is assigned a value 1 if

vertices vi and vj are connected by an edge. A subgraph of the graph can

be built by vertices that are connected with each other, which is formed by

a subset of vertices and edges of the graph. The vertex subset must contain

all endpoints of the edge subset.

In graph theory, if any nodes from a graph cannot return to itself by only

passing each edge once, the graph is an acyclic graph. As mentioned in Sec-

tion 2.1.2, trees are acyclic, which means it is possible to transform acyclic

graphs into trees, where different trees can be gotten by selecting different

vertices as the root (Fig.6).
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Figure 6: The transformation between acyclic graph and trees

The edit distance can also be utilized to compare two graphs. Fig.7

shows an example of the graph edit distance between two simple graphs.

However, different from the string and tree edit distance, the optimal edit

path is needed to be computed in most graph edit distance issues, because

the graph does not have a ”core” such as the root of the tree or the initial

element of the string. Hence, bottlenecks still exist in the graph edit distance

problem even though neural network approaches have been numerously at-

tempted [14][15][16]. The loss function, which computes the degree of graph

deformation, is hard to be defined by edit operations and steps. Furthermore,

the time complexity of graph edit distance is exponential (O(mn)) [17]. Thus,

the graph edit distance is not recommended to evaluate complicated graph

structures unless efficient algorithms can be developed.
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2.1 Data structure

Figure 7: Graph edit distance

2.1.4 Plane graph and Topology

If edges in a graph can be drawn in the plane so that any two edges do not

cross, the graph is a planar graph, otherwise it is a non-planar graph. A

planar graph embedded in the plane (i.e., a planar graph with a mapping

from nodes to points in the plane) is called a plane graph Fig.8. Edges from

a plane graph split the plane into several regions, which are called face. An

inner face of a plane graph is the region bounded by a set of edges where

no other vertex or edge exists. The rest of one region that is not the inner

face is called the outer face as shown in Fig.5. There are three theorems:

i) any subgraphs of a plane graph are still plane graphs; ii) if a graph has a

non-plane subgraph, the graph must be a non-plane graph; iii) the planarity

cannot be changed by adding parallel edges or loop *, which allows limited

edits for the structure of a plane graph.

The topology focuses on the invariance of the object in continuous defor-

mations. Let X be a set, and X be one of the families of sets � of X. If the

following three conditions hold, the family of sets X is called a topological

space: i)X, ∅ ∈ X ; ii) if α, β ∈ X , then α ∩ β ∈ X ; iii) if X1 ⊂ X , then

∪α∈X1 ∈ X . In topology, a coffee cup can equal a donut because both of

*Loop: an edge that connects a vertex to itself.
�Family of sets: a collection of subsets of a given set.
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Figure 8: The plane graph

them have one hole, but if the handle of the coffee cup is broken or some-

body eats the donut, the topologies of them are changed, which means that

the topology concerns more essential properties of objects.

Figure 9: Vertex topology of an example graph

The graph topology is usually applied to optimize network diagrams such

as Internet, firewall, router, switch, and LAN, where these successful pro-

ductions prove the feasibility of applying topology on graph theory. For

example, if two vertices have the same connection, the two vertices have the

18



2.1 Data structure

same topology in the graph (Fig.9), then vertices having the same topol-

ogy can be combined to optimize the graph. Furthermore, more complicated

topology operations can be applied to graph theory. Indeed, we combine the

topology and data structure transformation approach to solve a biological

issue in Chapter 3.

2.1.5 Doubly-connected-edge-list

Doubly-connected-edge-list (DCEL) is the most common format that repre-

sents an undirected plane graph, which is an edge-based structure including

three sets (i.e., vertex, half-edge, and face). Each edge from the plane graph

is transformed into two opposite directed half-edges that form a pair of twin

half-edges, and half-edges are orderly arranged (i.e., previous half-edge &

next half-edge) as shown in Fig.10, which facilitates traversing faces and

visiting all half-edges around a given vertex to detect the topology of a plane

graph.

Figure 10: Doubly-connected-edge-list structure and data structure
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2.2 Artificial Neural network

2.2.1 Traditional neuron

The artificial neural network (ANN) is a bionic application of creatures’ nerve

cells, which can effectively receive signals and give responses through training

and learning. The ANN contains an input layer, an output layer, and several

hidden layers. Neurons, which are the most essential components of ANNs,

exchange messages with each other. If each neuron of a layer of an ANN

exchanges messages with all neurons of the next layer, the ANN is a fully

connected neural network. As shown in Fig.11, a traditional neuron receives

messages from the preceding layer and processes them by weights, activation

function, and bias in the fully connected neural network. An output y of a

traditional neuron is computed by

y = θ(
∑
i

wixi + β),

where θ denotes an activation function; wi is a trainable weight; β denotes

the bias or threshold; xi is the input message from ith neuron in the preceding

layer.

2.2.2 Graph convolutional neuron

The convolutional neural network is an advanced deep learning architecture

based on the traditional neural network (i.e., fully connected neural network),

which applies the special convolutional neuron that can accurately process

graphs or figures. Fig.12 shows the procedure of the convolutional neuron.

Compared to the traditional neuron, the convolutional neuron can process

messages in high dimensions such as matrices, where the trainable multi-

dimensional kernal is utilized to extract features. The kernel moves from

20



2.2 Artificial Neural network

Figure 11: Artifical neural network and tranditional neuron

the top left and the distance of movement depends on the step. After being

processed by a convolutional neuron, the input matrix is resized to

[
W −Kw + P

S
+ 1,

H −Kh + P

S
+ 1],

where W and H are the width and height of the input matrix, respectively;

the size of convolutional kernel K is [Fw, Fh]; P and S denote the padding

length and step in the convolutional neuron.

The output matrix o is computed by

o[x, y] =
Kw∑
i=1

Kh∑
j=1

wij ·M [S(x− 1) + i, S(y − 1) + j],

where wij is the trainable weight at ith row jth column in the kernel K.

In Chapter 4, a novel module (i.e., convolutional neuron) is developed

based on a well-known graph isomorphism algorithm.
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Figure 12: Computation of convolutional neuron

2.2.3 Pooling

Amounts of datasets that are processed by convolutional neural networks

are large, where the amounts may further increase after passing through

convolutional neurons. Usually, fully connected layers are the last few layers

of a convolutional neural network. These large amounts of datasets overload

fully connected layers. Hence, pooling is set between the convolutional layer

and the fully connected layer, which summarises pooling regions of features

bymax, average, or etc., where, the invariance including translation, rotation,

and scale of data is further improved. Furthermore, pooling can effectively

reduce information redundancy and avoid over-fitting.

Each unit [x, y] of the average pooling output can be computed by

p[x, y] =
Kw∑
i=1

Kh∑
j=1

p0[Kw(x− 1) + i,Kh(y − 1) + j]/KwKh

22



2.2 Artificial Neural network

where Kw and Kh denote the width and height of pooling.

Figure 13: Comparison of strandard pooling and Region of Interest pooling

However, the output size of the standard pooling as introduced above

depends on the input from convolutional layers. As mentioned in Section

2.2.2, the output size of the convolutional neuron is influenced by kernel

size. Besides, the input of the convolutional neural network is unfixed-size in

most studies, which could further lead the output of convolutional neurons

uncertain. However, messages outputted by pooling are processed by fully

connected layers, which need fixed-size inputs. Zero-padding � is commonly

utilized to fix the problem, but it may reduce the performance of the model.

Region of interest (RoI) pooling can process the input to the fixed-size output.

Fig.13 shows the comparison of standard pooling and RoI pooling.

Each unit [x, y] of average RoI pooling out can be computed by

p[x, y] = KwKh

W
Kw∑
i=1

H
Kh∑
j=1

p0[
W

Kw

(̇x− 1) + i,
H

Kh

(̇y − 1) + j]/WH

�Zero padding is a technique typically employed to make the size of the input sequence
equal to the maximum size of all inputs by padding 0.
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where W and H denote the width and height of the input matrix; Kw

and Kh represent the size of RoI.

To fit the novel machine learning module developed in this research, spa-

tial pyramid pooling, which is an advanced existing RoI pooling module [18],

is applied to the model in Chapter 4.
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3 An Approach for Comparison of Pseudo-

knotted RNA Secondary Structures

3.1 Background

3.1.1 RNA secondary structure

RNAs are an essential component of various biological processes such as the

transmission of genetic information from DNAs to proteins and regulation of

expression, regulation, coding, decoding of genes. These are polymer macro-

molecules constituted by nucleic acids with four nucleobases (i.e., Adenines,

Uracils, Guanines, and Cytosines). In RNA molecules, nucleotides are basic

building blocks of nucleic acids connected by 3’5’ phosphodiester bonds to

create backbones, which show end-to-end connections of 3’ - hydroxyl groups

and 5’ - phosphate groups between two nucleotides of nucleic acids. The

sequence of nucleobases of nucleic acids is the primary structure of the RNA.

Different from the double-stranded helix of the DNA, the RNA does not

have the two strands connected by hydrogen bonds but has a single-stranded

folded onto itself (Fig.14). Different affinities between two nucleobases make

RNAs have special secondary structures, where Adenines (A) prefer to pair

with Uracils (U) and Guanines (G) prefer to pair with Cytosines (C).

It is widely believed and accepted that there is a strong correlation be-

tween RNA function and structure, so that prediction and comparison of

RNA structures are fundamental analyses to elucidate the functions of indi-

vidual RNAs. However, the prediction problem of RNA tertiary (3D) struc-

ture directly from its sequence is difficult in terms of both biological and

computational experiments. Therefore, RNA secondary structures that can

be mathematically well-formulated have attracted much attention, and var-
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Figure 14: Difference of secondary structure between DNA and RNA

ious algorithms for RNA secondary structure analysis have been proposed.

Hofacker et al. developed a software tool called the Vienna RNA package to

compute and compare RNA secondary structures [19]. They applied the tool

to long RNA molecules, the heat capacity of RNA secondary structures, and

RNA hybridization. Dulucq and Tichit transformed RNA secondary struc-

tures into tree structures and compared them with focusing on computational

complexity based on tree edit distance [20].

3.1.2 Pseudo-knotted RNA

The pseudo-knot is a structural motif in the RNA and one of the most com-

plex secondary structures, which contains at least two stem-loop structures

where half of one stem is intercalated between the two halves of the other

one. Stems are referred to continuously paired nucleobases (i.e., two com-

plementary sequences), and there are several type stem-loop structures: i)
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Figure 15: RNA secondary structure

the hairpin-loop consists of a stem joined by non-pairing bases in a loop,

ii)the internal-loop includes two stems joined by non-pairing bases separated

by one or two loops, iii) the multi-loop is made up by three or more stems

joined by non-pairing bases in two or more loops. As shown in Fig.15, most

RNA secondary structures such as multi-loop or hairpin-loop are regular, but

the pseudo-knot may exist in any two stem-loop structures. Pseudo-knots

are hard to be detected by existing computational biology approaches such

as dynamic programming, which is the reason why the pseudo-knot is known

as the most complex RNA secondary structure.

As mentioned above, most methods do not support pseudo-knotted struc-
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tures in RNA secondary structure due to their complex prevalent folding mo-

tif [21]. Although the pseudoknot has significant meanings in biological pro-

cesses [22], it is known that both prediction and alignment of pseudoknotted

RNA secondary structure are NP-hard problems [23, 24, 25], so that certain

pseudoknot structures are often ignored or transformed into pseudoknot-free

structures by removal operations for efficient computation [26]. Andronescu

et al. developed a constraint-based parameter estimation algorithm to pre-

dict RNA secondary structure using pseudoknot-removed data [27]. More-

over, Smit et al. classified RNA structure into structural components for

explaining universal compositional patterns in rRNA secondary structure

categories, and they discarded pseudoknot and gave up analyzing this region

[28]. However, recently, fast and accurate integer programming-based predic-

tion methods for pseudoknotted RNA secondary structures were developed

and reported their usefulness in terms of practicality in [29] and [30]. On the

other hand, transforming RNA secondary structure to the tree is a common

preprocess for the comparison. However, pseudoknotted RNAs are difficult

to be reduced into trees due to their structural complexity. Thus there are

few methods dealing with the comparison of arbitrary pseudoknotted RNA

secondary structures [31]. There is a software package named RNAforester

that can compare RNA secondary structures but only for pseudoknot-free

RNAs [32]. Evans developed a polynomial-time algorithm by restricting the

pseudoknot topology to be aligned [33]. In contrast, Möhl et al. aligned

arbitrary pseudoknotted RNA secondary structures under an assumption on

costs of RNA secondary structure edit operations but the time complexity for

the worst-case is exponential [34]. Although PSMAlign succeeded in efficient

alignments of pseudonotted structures by identifying similar stem structures,

it is a local alignment approach and the worst-case time complexity is also
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exponential [35]. From the above, dealing with pseudoknot regions is a big

obstacle for RNA secondary structure studies.

3.1.3 Data structure transformation

Data structure transformation is a common approach that simplifies com-

plicated issues. In this thesis, a novel method for comparing pseudoknotted

RNA secondary structures is developed based on the tree edit distance via

identifying topological centroids of input plane graphs representing RNA sec-

ondary structures based on PEELING algorithm devised in [36] and building

topological centroid trees from the plane graphs. To show the effectiveness

of the proposed method, we perform hierarchical clustering analysis of real

pseudoknotted RNA secondary structures obtained from a public database

PseudoBase++ [37]. The results suggest that the proposed method classifies

the pseudoknotted structures according to their functional groups defined by

Gene Ontology (GO) [38, 39] much better than the simple comparison of their

sequences based on the string edit distance. In addition, we report a case that

a distance metric combining the string edit distance and the tree edit dis-

tance also yields better clustering performance for the pseudoknotted struc-

tures. The proposed method for transforming a plane graph to a tree, plane-

Graph2tree, is available at (https://github.com/feiqiwang/planeGraph2tree).

3.2 Method

An RNA secondary structure can be described as a plane graph even it is

with pseudo-knots [43]. The proposed method (Fig.16)firstly identifies the

topological centroid of an input plane graph of RNA secondary structure,

by PEELING algorithm with detecting and removing of specific groups of

edges, faces, and subgraphs called singly exposed edges, singly exposed face,
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Figure 16: The approach for analyzing pseudo-knotted RNA secondary struc-
tures

and adjunct subgraphs, respectively [36]. Then, the disjointed plane graph is

transformed into a tree (i.e., an acyclic graph) according to reorganization

rules (Section3.2.3). The gotten tree generates a set containing several

patterns depending on the type of topological centroid. Based on the above,

two pattern sets from two different plane graphs of RNA secondary structures

are computed by tree edit distance to analyze the similarity.

3.2.1 PEELING

Let G(V,E) be an undirected graph, where V = {v1, ..., vN} is a finite set

of vertices and E is a finite set of edges. Each vertex is assigned a label

l(vi) ∈ {A,U,G,C,X, Y }. The edge is represented by (vi, vj) ∈ E where vi

and vj are connected in G. A graph is called a plane graph, if G is connected

and its planar embedding is given. Each edge (vi, vj) has a face set F(vi,vj),

32



3.2 Method

where (vi, vj) is related to faces in the set. The areas inside and outside of the

connected graph are called inner faces and outer face fouter
§, respectively.

Let C be the directed cycle consisting of the edges of the outer face, where

edges are visited in the clockwise order as follow:

C = {(vi, vj)|fouter ∈ F(vi,vj)}.

A function Φ((vi, vj), (vj, vk)) is defined to determine whether two edges

are connected or not, where Φ((vi, vj), (vj, vk)) = 1 if edges are connected,

otherwise, 0. An inner face of G is called singly exposed if its outer edges in

C are connected in C (ignoring direction of edges), where an edge is called an

outer one if it also belongs to the outer face. Those edges are collected to a

collection that is added to the set

Pf = {{(vi, vj), ..., (vl, vk)|(F(vi,vj) ∩ ... ∩ F(vl,vk))− fouter ̸= ∅

∧Φ((vi, vj), ...) · ... · Φ(..., (vl, vk)) = 1 ∧ fouter ∈ F(vi,vj)∧, ...,∧F(vl,vk)}}.

Similarly, an edge is called singly exposed if it is not belonging to an inner

face and one of its endpoints is of degree 1. D(vi) is a function counting the

number of vertex vi existing in E. Each identified single exposed edge is

collected to the set

Pe = {(vi, vj)|fouter ∈ F(vi,vj) ∧ (D(vi) = 1 ∨ D(vj) = 1)}.

In addition, each maximally connected subgraph surrounded by a singly

exposed face with sharing only one outer vertex is called an adjunct subgraph,

and all edges belong to the subgraph are collected as a list added to the

§More detailed defination is shown in Section2.1.4 Plane graph and topology
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adjunct subgraph set Pg.

3.2.2 Topological centroid identification

The topological centroid is a unique structural feature of the graph, which is

generated from topology rules. By ultilizing topological centroid, meaningless

information loss can be avoided due to reorganizations of graphs. To identify

the topological centroid of a given plane graph G, the PEELING repeats

the following two procedures until there does not exist any singly exposed

face or edge in G: i) identify all singly exposed faces, single exposed edges,

and adjunct subgraph, then ii) delete outer edges and adjunct subgraphs

in these exposed faces and edges Fig.17, where the topological centroid is

either a vertex, an edge, or a face.

3.2.3 Reorganization

Topological centroid tree is a tree having its topological centroid identified

by PEELING as the root. If the topological centroid is either an edge or

a face, one of the vertices constituting them is determined as the root. As a

result, multiple topological centroid trees are generated from one input plane

graph (Fig.18).

As mentioned in Section 3.2.1, three sets Pf , Pe, and Pg containing

all edges of inputted plane graph except the topological centroid are gotten

in PEELING procedure. During the building procedure of the topological

centroid tree, the acyclic graph is firstly reorganized from the inputted plane

graph with three sets following rules: i) the second vertex of the last edge of

each list belonging to a single exposed face is replaced by a new generated

vertex (leaf node) that is assigned the same label with original vertex such as

editing (v1, v2) to (v1, v2′) meanwhile l(v2) = l(v2′), ii) single exposed edges
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Figure 17: PEELING procedure

in Pe recover connection relationship with the rest of parts of the graph, and

iii) each adjunct subgraph in Pg is processed by PEELING and reorganized

itself following i) and ii) then reconnected to the graph.

3.2.4 Tree edit distance

After transforming input plane graphs to topological centroid trees by PEEL-

ING and reorganization procedure, gotten trees are compared by tree edit

distance under the unit cost model [41]. The tree edit distance is one of

the most widely used measures for comparing tree structured data and it

is defined by the cost of the minimum cost sequence of edit operations for
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Figure 18: Building procedure of topological centroid tree
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Figure 19: Computation of the topological centroid tree edit distance

transforming a tree into another tree, where an edit operation is either a

deletion of a non-root node, an insertion of a non-root node, or a substitu-

tion of the label of a node. The unit cost model means that the cost of each

edit operation is 1. Although the tree edit distance is computed between a

pair of trees, as explained in the last section, there are multiple possibili-

ties for which vertex becomes root in each topological centroid tree when its

topological centroid is either an edge or a face. Therefore, here we define

the topological centroid tree edit distance as the minimum tree edit distance

for all combinatorial pairs of the trees with different root nodes derived from

respective input topological centroid trees (Fig.19).

3.3 Experiment

To demonstrate the effectiveness, the proposed method was applied to a real

dataset of pseudoknotted RNA secondary structures. Since it is widely ac-

cepted that there is a strong correlation between the structures and functions

of biological molecules, we perform the hierarchical clustering analysis that

classifies the pseudoknotted structures based on the similarity computed by
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Figure 20: Experiment procedure

the (topological centroid) tree edit distance and the functional groups de-

fined by GO. The experiment procedure is shown in Fig.20. In this study,

experimental datasets were collected in BPSEQ format, then an algorithm

(DCEL converter) was developed for transforming BPSEQ dataset to the

doubly-connected-edge-list (DCEL) format, which supplied suitable input

datasets to planeGraph2tree program that was developed based on PEEL-

ING (Section.3.2.1) and reorganization rules (Section.3.2.3). Costs (weights)

of tree edit distance operations (i.e., inseration, deletion, and substitution)

are uniformly set to 1.

3.3.1 Database

304 pseudoknotted RNA secondary structures were collected from Pseu-

doBase++ [37]. The dataset is orderly annotated by PKB-number (PKB1–

PKB304) and each of them is described in BPSEQ format, which simply
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represents data structure by three columns; i) the first column is the index

ordered from 5’ to 3’ for an RNA sequence, ii) the second column contains

the label that acronym of nucleotide type which is either of A, U, G, C, X,

or Y, where X and Y means the nucleotide would be any type and C or U,

respectively, and iii) the third column informs the index of paired partner for

the nucleotide, and it is set to be 0 if the nucleotide is unpaired.

On the other hand, the PEELING algorithm assumes that an input

plane graph is given by the double-connected-edge-list (DCEL) format [36].

The DCEL is an edge-based data structure for easily manipulating and

traversing a plane graph, and it contains the three sets of record (i.e. half-

edges, vertices, and faces) to represent topology of a plane graph. Each edge

on a plane graph is represented by two opposite directed half-edges called

twins, and all half-edges should be linked by their heads and tails each other.

Each half-edge stored an incident vertex, an incident face, and next/previous

half-edges while each vertex and face stored an incident half-edge, respec-

tively.

Thus, when applying PEELING, the collected dataset was transformed

from BPSEQ format to the DCEL format as a preprocessing. However, the

detailed information of PKB71 and PKB75 are not provided in the database,

so that the 302 pseudoknotted structures except for them were selected from

the 304 structures.

3.3.2 DCEL converter

A C++ program (i.e., DCEL converter) was developed to transform BPSEQ

into DCEL format. The algorithm is shown in Appendix Algorithm 2.

i) All nucleobases are represented as vertices and connected by two inverse

half-edges, where a vertex stores the label of nucleobases and the incident
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Figure 21: Two ways to add half-edges

half-edge. And each half-edge stores its previous half-edge, next half-edge,

twin half-edge, and target vertex (line 1-12 ). ii) The pair information from

the BPSEQ text guide program connecting two vertices (nucleobases), where

some store items of related half-edges are rewritten. There are two ways to

add half-edges as shown in Fig.21. A direction-swap rule is built to swap

the way to add half-edges. The program continuously works in one way ((a)

or (b) in Fig.21) unless the direction-swap rule holds (line 13-40 ). iii) Each

loop of half-edges is a face storing the index and an arbitrary half-edge from

the loop, which is recorded in set F . (line 41 ) In the end, the DCEL plane

graph was identified by Euler’s formula (i.e., n(V ) − n(E) + n(F ) = 2¶),

where a developed repair sub-program will run if the formula is not tenable

(line 42 ).

3.3.3 Gene ontology

Gene ontology (GO) is a major representation method in bioinformatics to

unify the gene attribute, where three GO domains (i.e., biological process,

¶n(*) is a function that counts the number of the set and n(E) equals half of the number
of half-edges.
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molecular function, and cellular component) are utilized to describe the func-

tions of genes. The biological process (BP) domain refers to operations of

molecular events that involve complicated biological processes in creature

bodies such as DNA repair or signal transducer [42]. The molecular function

domain describes the molecular level of elemental activities with products

such as transport [44]. The cellular component is about the structural situ-

ation of a gene product in a cell [45]. Since three domains describe different

features and gene products play different roles in biological processes, a gene

can have multiple gene ontology terms even in the same domain. Each GO

term has unity and unique identification such as GO:0006401 that can be in-

dexed in the Gene Ontology Resource database which contains the domain,

aspect, definition, relationship of a GO. In each domain, there is a directed

acyclic graph (tree) to describe the relationship between GO terms. The

GO term [child node] is a part of the GO term [parent node]. Appendix

Fig.S1 shows an acyclic relationship graph between nine GO terms, which

is quite complicated. This study aims to compare and analyze RNA (gene)

secondary structures, but evaluation could be complicated if genes have too

many GO terms. Thus, focusing on genes with fewer GO terms should be

recommended in this study.

3.3.4 Algorithm validation evaluation

For the collected 302 pseudoknotted RNA secondary structures, GO infor-

mation was obtained through EMBL number [46] and Rfam database [47].

However, 100 out of the 302 structures were removed from this analysis

since their EMBL number or Rfam information was lacking. As for the re-

maining 202 structures, 111 structures were further extracted to which only

one GO term was assigned in order to simplify our clustering analysis, and
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Figure 22: An example of ideal clustering result based on gene ontology terms

they include thirteen different GOs (GO:0000372, GO:0006401, GO:0006412,

GO:0006417, GO:0006452, GO:0019079, GO:0039689, GO:0039705, GO:0043022,

GO:0045069, GO:0045727, GO:0046782, and GO:0075523). As mentioned in

Section 3.3.3, GO terms describe typical features for genes. Thus, if our ap-

proach can effectively identify RNA secondary structures that have the same

or similar GO terms, the validation can be proved. The hierarchical cluster-

ing analysis is applied and Fig.22 shows an example of an ideal clustering

result based on gene ontology terms.

3.4 Results

79 pseudonotted structures assigned either one of the four GOs (GO:0043022

GO:0046782 GO:0006417, and GO:0075523) which were most frequently in-

cluded in the 111 structures were extracted. The hierarchical clustering re-

42



3.4 Results

sults for the 79 structures by hclust with ward method on a programming

language R are shown in Fig.23. The input distance matrix for the hclust

was computed by RTED, which is a software for computing the tree edit

distance between ordered trees [48]. The labels show PKB numbers and GO

numbers, and Fig.23(a) and (b) correspond to the results of the string edit

distance-based comparison of the RNA sequences and our tree edit distance-

based comparison of the RNA secondary structures, respectively. As shown

in the results, the RNAs were classified better according to their functions

by the tree edit distance-based RNA comparison than the sequence-based

comparison. For example, the RNAs with GO:0075523 were classified to one

branch in the tree edit distance-based comparison whereas they were sepa-

rated into two branches in the sequence-based comparison. The tendency

can also be seen in GO:0006417, that is, most of the RNAs with GO:0006417

except for three RNAs (PKB119, PKB120, and PKB180) are classified into

one branch in the tree edit distance-based comparison but those were divided

into two branches in the sequence-based comparison.

To further evaluate the effectiveness of our comparison approach, we

demonstrated another clustering analysis for a larger set of GOs and clas-

sified them according to their two super families, macromolecule metabolic

process (MMP) and viral process (VP). For the 13 GOs from the 111 struc-

tures selected in the last paragraph, GO:0043022 is classified to the category

of molecular function while rest of 12 GOs are classified to the category of

biological process. Therefore, we selected 77 pseudoknotted RNA secondary

structures of the 12 GOs with removing the 34 structures of GO:0043022 in

the following analysis. Among the 12 GOs, the six and the five GOs have

the same ancestor MMP (GO:0043170) and VP (GO:0016032), respectively,

and GO:0039705 is a common offspring of MMP and VP (Fig.24).
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Figure 23: Hierarchical clustering results for pseudoknotted RNA secondary
structures based on four GOs

Figure 24: GO functional group classification
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The clustering results of the 77 RNA structures with 12 GOs from the

two super families of MMP and VP are shown in Fig.25. Fig.25(a) and (b)

are the clustering results based on the string edit distance and the tree edit

distance for the structures, respectively. In this experiment, the clustering

result of a combination of the string edit distance and the tree edit distance

is also shown in Fig.25(c), where the combination means that the distance

metric is defined by the sum of the edit distance and the tree edit distance.

As a result, there was no significant difference between the clustering results

based on the string edit distance and the tree edit distance. However, 10

structures of MMP separated into two or three different branches in these

two methods were clustered in one branch in the combination method (See

labels surrounded by red boxes in Fig.25). Since they have similar secondary

structures, it can be concluded that there exits a case that the sensitivity

for the difference in pseudoknotted RNA secondary structures transformed

from the plane graphs was increased by combining the string edit distance

and the tree edit distance.

3.5 Discussions

A novel approach for comparing pseudoknotted RNA secondary structures

based on the tree edit distance by transforming input plane graphs rep-

resenting RNA secondary structures to trees via the topological centroid

computing was introduced in this study. In the computational experiments

using real pseudoknotted RNA secondary structures collected from a public

database PseudoBase++, the proposed method showed much better hierar-

chical clustering results of the structures according to their GOs than the

simple sequence-based comparison. In addition, the effectiveness of using a

distance metric combining the string edit distance and the tree edit distance
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Figure 25: Hierarchical clustering results for pseudoknotted RNA secondary
structure based on larger functional groups MMP and VP
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was also shown.

However, the secondary structural information was degenerated when

converting a plane graph into a tree, so that a complete comparison has

not been achieved. For example, when focusing on a certain branch of a tree,

whether it was originally a single exposed edge or a resulting edge of PEEL-

ING for a single exposed face is not taken into account in the comparison.

In addition, when there exist a single exposed edge and a single exposed face

having the same label sequence, it may be difficult to distinguish them since

they become identical each other after PEELING.

There are other points to note besides the loss of the structural informa-

tion. In this comparison method, a tree structure is given as an ordered tree,

that is, an order relationship from left to right is defined between child ver-

tices. Indeed, an RNA secondary structure is often represented as an ordered

tree, but a tree generated by the proposed method has no order relationship

between vertices disconnected by PEELING. Thus, it is considered to be

appropriate to treat it as an unordered tree. The tree edit distance compu-

tation between unordered trees, however, is known to be NP-hard [49], and

there is no effective algorithm that can compute the distance in polynomial

time. Therefore, in this study, a tree is treated as an ordered tree in order

to efficiently compute the tree edit distance while sacrificing some accuracy.

Finally, of note, we collected pseudoknotted RNA secondary structures

from PseudoBase++ and performed clustering analysis according to GO in-

formation based on the assumption that there exits a strong correlation be-

tween the structures and functions of biological molecules. However, Pseu-

doBase++ provides not the whole structure but the partial structure for each

RNA, so that it may be insufficient to evaluate the clustering results in terms

of their functions. Nevertheless, the fact that the proposed method showed
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better clustering results than the simple sequence comparisons suggests that

the partial structures of RNAs may contribute to their functions.
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4 A Novel Prediction Model for Interaction

Sites of Protein Kinase Inhibitors

4.1 Background

Phosphorylation of proteins, which is central to various biological processes

and the regulation of most aspects of cell functions [50], is a common but

complex post-translational modification to modulate cell proliferation [51],

differentiation [52], and apoptosis [53]. Many studies about protein post-

translational modification have effectively taken the biology field forward by

using machine learning methods [54][55].

4.1.1 Protein kinase in phosphorylation

A protein kinase is a phosphotransferase enzyme that catalyzes the transfer

of phosphate (PO3−
4 ) groups donated by high-energy adenosine triphosphate

(ATP) molecules to specific residues in order to regulate activities of proteins

[56][57][58][59][60][61]. Because phosphorylation is an important biochemical

process, protein kinases have been investigated as potential therapeutic tar-

gets [62][63][64][65][66]. In addition, kinase inhibitors block the activities of

kinases and are vital to inhibit the addition of phosphate groups to the tar-

get protein [67]. Here, exploring the binding mechanism plays a crucial role

on kinase inhibitor design. Many studies on the development of molecular

drugs have focused on protein kinase inhibitors for the treatment of infectious

diseases [68] and cancers [69].

51



Chapter. 4 A Novel Prediction Model for Interaction Sites of Protein Kinase Inhibitors

4.1.2 Inhibitor

During the process of protein phosphorylation, the γ-phosphate group of the

ATP molecule is replaced by a hydroxide ion from water that is hydrolyzed

to an inorganic phosphate ion existing in the environment [70]. Afterward,

protein kinases transport the inorganic phosphate ions to the residues of

the protein substrates [71], which are typically serine, threonine, or tyrosine

residues [72]. Based on the specific phosphorylated residue, these molecules

are classified as serine/threonine, tyrosine-specific, histidine-specific, and as-

partyl/glutamyl protein kinases [73]. Although there exist various classes of

protein kinases, the characteristics of members of the same class are homol-

ogous [74][75]. However, protein kinases can be incorporated into protein-

ligand complexes that bind to molecular inhibitors [76] that block the trans-

portation process [77]. Kinase inhibitors interact with protein kinase residues

via electrostatic forces, hydrogen bonding, and van der Waals forces at spe-

cific interaction sites. We define those atoms that have interactions with

residues from protein kinases as the interaction sites for inhibitors in this

research.

4.1.3 Contribution

Bioinformatics is a versatile tool to research complicated biological processes,

and machine learning continues to gain popularity for the development of

tools to analyze biological data. A graph convolutional neural (GCN) net-

work is a recently developed neural network to directly operate and analyze

graphic structures and has been widely applied for analysis of protein-ligand

complexes, structure-embedded graph representation [78], structure-based

virtual screening [79], prediction of binding affinity [80][81], and prediction
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Figure 26: The inhibition process for protein kinase

of binding residues [83]. Moreover, many novel algorithms have been pro-

posed for solving specific biological issues in recent years [82]. Although most

previous studies have focused on issues with protein-ligand complexes, to our

knowledge, there is no previous study on the prediction of the interaction sites

of inhibitor molecules based on known protein kinase-ligand complexes. As

compared with affinity prediction, the prediction of interaction sites with a

GCN network is more intuitive, allowing for the collection of the features of

protein kinase inhibitors for designing more effective drug design. Here, a

novel machine learning module, the Weisfeiler-Lehman (WL) Box, was de-

signed and a GCN network with WL Boxes was developed as a tool to predict

the interaction sites of different classes of protein kinase inhibitors. The WL

Box is based on an algorithm proposed in 1968 by Weisfeiler and Lehman

to solve the graph isomorphism problem [84]. Most past studies that utilized

the Weisfeiler-Lehman algorithm on machine learning modules simply pro-
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cessed vertex and edge information as inputs. However, we flexibly applied

edge information to develop novel components (i.e., switch weights) on pro-

posed modules. To the best of our knowledge, this is the first application of

a GCN network to predict the interaction sites of protein kinase inhibitors.

The result confirmed that the WL Box is an effective tool for the analysis of

protein kinase inhibitors and drug prediction studies.

4.2 Method

4.2.1 Preliminaries

Here, an inhibitor molecule is defined as an undirected graph denoted by

G, which is represented by a 2-tuple (F, S), where F is a feature matrix

representing the feature of the vertices and S is an adjacency matrix rep-

resenting relationships among the vertices for N atoms and Ne type bonds.

Set C = {c1, ..., cm, ..., cNc} consists of Nc color types, where each color cm

is represented by an Nc-dimensional binary vector. For each color vector

cm = (cm1 , c
m
2 , ..., c

m
i , ..., c

m
Nc
), element cmi is assigned a value of 1 if and only

if m = i; otherwise the element is assigned a value 0.

Let G(V,E) be an undirected graph representing an inhibitor molecule,

where V = {v1, . . . , vN} is a set of atoms and E is a set of edges. Information

on atoms (i.e., vertices in G) is represented by a binary feature matrix F of

size N×Nc in which each row corresponds to an atom and the corresponding

row vector is a color vector representing the atom type. Information on the

edges ofG is represented by an adjacency matrix S of sizeN×N . Sij (i.e., the

element of the ith row and jth column) is assigned a value of 0 if {vi, vj} /∈ E,

otherwise matrix Sij denotes the bond type (i.e., Sij ∈ {1, 2, . . . , Ne}).
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Since graphs representing chemical structures are also considered, there

is no self-loop; thus all diagonal elements of S are assigned a value 0. To

effectively utilize the adjacency matrix, each vertex vi is assigned a label

index li according to the feature matrix row color cm by

li = m.

Then, the convolutional layer input matrix Sconv is obtained by the struc-

ture adjacency matrix S and the diagonal matrix as

Sconv = S − diag(l1, l2, , .., lN).

4.2.2 Weisfeiler-Lehman algorithm

The Weisfeiler-Lehman (WL) algorithm, which was first proposed in 1968 to

solve the graph isomorphism problem [84], has recently been widely applied

in neural network models. For every vertex vi, features from neighboring

vertices are aggregated and computed to update its own feature, which is

computed as follows:

x′(vi) = AGG(x(vi), emb{x(vj)|vj ∈ N(vi)}), (1)

where x(·) and x′(·) are the original and updated features of vertices,

respectively, and N(vi) denotes a set of neighboring vertices for vertex vi,

while emb is an embedding function based on neighborhood aggregation that

concatenates features from neighboring vertices of vi, and AGG is a cus-

tom function computing feature from the target vertex and its neighboring

vertices. By implementing different functions, features can be updated in

different ways. In addition, vertices can always have special features by sev-
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Figure 27: Weisfeiler-Lehman algorithm

eral repetitions even with large graphs. Subsequently, the isomorphism of

two graphs can be analyzed by examining the different features of updated

set of vertices.

As mentioned in Section 4.2.1, every vertex and edge have a solid color

and label, respectively, and the colors of vertices are updated individually

with the colors of the neighboring vertices and labels of the connected edge

as illustrated in Fig.27. The aggregation function is called mix, which can

blend multiple colors together. Here, the mix ratio is dependent on the labels

of the edges between the updated and neighboring vertices. After several

repetitions of the algorithm, every vertex has a unique blended color as the

feature in the inhibitor molecule graph.
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4.3 Model

The architecture of the proposed PISPKI model is shown in Fig.28. The

model framework consists of four main parts: data preprocessing, WL Boxes,

convolutional layers, and dense layers. First, each inhibitor molecule with N

atoms is transformed to N pairs of feature matrices and structure adjacency

matrices, where the ith atom is marked in the ith feature matrix to predict

whether the corresponding atom is an interaction site. Note that the output

of the model is assigned a value of 1 if the marked atom is predicted to be

an interaction site. The feature matrices and structure adjacency matrices

contain, respectively, atom and bond information of the molecules. Due to

uncertainties about the number of atoms of the molecules, the sizes of the two

matrices can be alterabled for different input data. Notably, zero-padding is

not applied to satisfy all input data in the same size. After preprocessing,

each pair of matrices is added to two submodules: WL Boxes and convolu-

tional layers. The WL Boxes mainly process feature matrices using structure

adjacency matrices as auxiliary information. Matrices with more significant

features can be obtained from the output of WL Boxes; then the pooling layer

processes new feature matrices into fixed-length vectors by applying the spa-

tial pyramid pooling (SPP). By contrast, the convolutional layer processes

structure adjacency matrices in which some atom information about the fea-

ture matrices is embedded in the diagonal elements, and the output is also

processed by the SPP into a fixed-length vector. The resulting two vectors

are concatenated as input to the dense layers for binary classification. Re-

markably, the output vector from the pooling layer is obtained by combining

the pooled results of the updated feature matrices and structure adjacency

matrices, and the lengths of the vectors from the updated feature matrices

are larger than those from the updated structure adjacency matrices, indi-
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Figure 28: Architecture of the PISPKI model

cating that the output from the WL Boxes offers more information for the

prediction of interaction sites by the classifier in the dense layer, thereby the

WL Box module is the core of the PISPKI model.

4.3.1 WL Box

The WL Box, which is the core of the PISPKI model, is based on the WL

algorithm as described in Section 4.2.2. A WL Box consists of L × T wl-

neurons that are arranged by L layers and T time steps. Every layer contains

T end-to-end wl-neurons and the feature matrix F is given an input for every

first wl-neuron of the layers. Then, the wl-neuron updates the hidden state

of the feature matrix in accordance with the WL algorithm and the structure

adjacency matrix S is applied as supplementary information. The updated

hidden state of the wl-neuron transfers to the next wl-neuron in each layer

for T − 1 time steps. The output of the last wl-neuron from the layer is

an output of the WL Box. Hence, L new feature matrices can be obtained

that contain more significant feature information in a WL Box. Furthermore,
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hidden states of feature matrices are updated in each layer individually, and

there is no message exchange between layers in the box, as shown in Fig.29.

The hidden state of a row is recurrently updated by

h
(t)
l (i) = h

(t−1)
l (i) +

N∑
j=1

w
(t)
l,Sij

h
(t−1)
l (j), (2)

where h
(t)
l represents the current hidden state of the wl-neuron of the

layer l at time step t, in which l < L and t < T ; h
(0)
l denotes the ini-

tial state of the first neuron of the layer l, and h
(0)
l = F . Let h

(t)
l =

(h
(t)
l (1), h

(t)
l (2), ..., h

(t)
l (N)), and the ith row vector of h

(t)
l is represented by

h
(t)
l (i); w

(t)
l,Sij

, which is a trainable switch weight (real number) depending on

the layer, time step, and bond type Sij ∈ {0, 1, ..., Ne}, where w
(t)
l,0 equals

zero in any wl-neuron regardless of the layers and time steps.

Finally, the hidden states of the last neuron of each layer l at time step T

are combined to a tensor F [i, j, l] as the output of a WL Box after processing

with the activation function by

F [i, j, l] = σ(h
(T )
l [i, j]), (3)

where F represents an output tensor of the WL Box, and F [−,−, l] denotes

the lth block that is defined as a two-dimensional matrix consisting of all

elements and the array from tensor F when the index is equal to l in rank

3 in the tensor; σ is an activation function, and h
(T )
l is the last hidden state

of the lth layer at time step T . Besides, the structure adjacency matrix S is

invariant during the process in the WL Box and can be completely delivered

to the next module if needed.
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Figure 29: Structure of the WL Box

4.3.2 Multiple WL Box

Multiple WL Boxes can be implemented sequentially to further improve the

feature matrix of the model. Two WL Boxes are assembled for the model

as shown in Fig.28. Notably, the second WL Box, which differs from the

first WL Box, receives a tensor F as the input rather than matrix F , and

so on. To get around this issue, superscripts are sequentially assigned to

the feature tensor F , such as F (1), ...,F (M) and the layer number L, such as

L(1), ..., L(M), denoting the output tensor and maximum layer number of the

first to the Mth WL Box, respectively. The feature tensor of each WL Box

is updated by

F (m) =

 ConcatL
(m−1)

l=1 (Θ(F (m−1)[−,−, l])) ,m ≥ 2

Θ(F ) ,m = 1
(4)

where F (m) and F (m−1) represent the output tensor of the mth and m−

1th WL Box of the model, respectively; Θ denotes the WL update process
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function in a WL Box, as defined by Equations 2 and 3; F (m−1)[−,−, l] ∈

RNc×N is the lth block of F (m−1), and F is the model input feature matrix.

Every block F (m−1)[−,−, l] from tensor F (m−1) is assigned to the mth WL

Box as an individual input, and all L(m−1) output tensors are concatenated

into one tensor F (m) for the following computation operation.

4.3.3 Pyramid spatial pooling

The spatial pyramid pooling (SPP) layer is applied to normalize the output

from the WL Boxes and convolutional layers in this study, which is a novel

and effective machine learning module proposed by He in 2015 [18]. Different

from classical pooling modules, SPP is a type of extensive research for re-

gion of interest operation, which further works with different sizes of pooling

kernels in a matrix, and then concatenates the pooling results to a vector as

the output. This also applies to hand-crafted pooling regions [85] over scales

of kernels that are dependent on different sizes of input matrices and adopts

the spatial pyramid operation to obtain more comprehensive pooled feature

maps, which are then converted to a fixed length vector (Fig.30).

A spatial pyramid consists of multiple stages, and each stage runs a pool-

ing operation using the corresponding pooling coefficient. The notation k

represents the pooling coefficient with k = 1, ..., K, where K is the stage

number of a spatial pyramid. During each operation by the spatial pyra-

mid, a hand-crafted kernel is applied, which yields precise k× k output from

the inputted two-dimensional matrix. Due to differences in kernel size, each

input is extended to

pk0 = Ξk(F ), (5)

where F is a block of a tensor or matrix of Nc ×N and Ξk is the matrix
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Figure 30: The structure of spatial pyramid pooling

extension function for pooling coefficient k. By applying the function, F is

extended to a matrix pk0 = Rk·⌈Nc
k

⌉×k·⌈N
k
⌉, and all extended elements are equal

to 0.

Here, the SPP layer receives two tensors F and S from the last WL Box

and the convolutional layer. Two spatial pyramids are constructed (with

stage numbers KF and KS) to individually compute the two tensors. The

pooling operation works with every block KF and KS times for the input

tensors F and S, respectively. Maximum SPP is applied to the output tensor

F of the WL Box. For the kth stage of the spatial pyramid, each element of

the xth column and yth row of matrix pkf is computed by

pkf [x, y] =
I∑

i=1

J∑
j=1

pk0[I · (x− 1) + i, J · (y − 1) + j]/IJ, (6)

62



4.3 Model

where k denotes the pooling coefficient, k ∈ {1, ..., KF}; pk0 is an extended

matrix computed by Equation 5; pk0[X, Y ] denotes the element of the Xth

column and Y th row; (I, J) is the hand-crafted region in the kth stage, where

I = ⌈Nc

k
⌉ and J = ⌈N

k
⌉.

Similarly, the average SPP was applied to the output tensor S from the

convolutional layer. For the kth stage of the spatial pyrmaid, each element

of the xth column and yth row of matrix pks is computed by

pks [x, y] = max(pk0[I · (x− 1) : I, J · (y − 1) : J ]), (7)

where k denotes the pooling coefficient, k ∈ {1, ..., KS}; pk0 is an extended

matrix computed by Equation 5, pk0[X : I, Y : J ] denotes a submatrix

collecting elements from Xth to (X + I)th columns and Y th to (Y + J)th

rows; I and J constitute the hand-crafted region of the kth stage, where

I = ⌈Nc

k
⌉ and J = ⌈N

k
⌉.

Finally, all elements are collated from the pooling matrices to an output

vector as

P = Concat(Φ(p1f ),Φ(p
2
f ), ...,Φ(p

KF
f ),Φ(p1s), ...,Φ(p

KS
s )), (8)

where Φ is a function that converts a matrix to a vector, such as Φ(p2f ) =

(p2f [1, 1], p
2
f [1, 2], p

2
f [2, 1], p

2
f [2, 2]).

Then, the output of the SPP layer is sent to a binary classifier for inter-

action site prediction by the dense layer.
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4.4 Experiments

4.4.1 Dataset preprocess

Protein-ligand complexes and interaction sites were collected from the sc-

PDB three-dimensional database of ligandable binding sites [86] and grouped

by protein UniProt identifications from the Protein Data Bank [87]. In to-

tal, 1,064 protein-ligand complexes datasets of 22 protein kinases were ex-

tracted and categorized into 11 corresponding kinase classes as shown in

AppendixTable S1. A program was developed to convert the mol2 file to

a model input file consisting of the feature matrix F ∈ {0, 1}35×N and the

structure adjacency matrix S ∈ {0, 1, 2, 3, 4}N×N for each inhibitor molecule

consisting of N atoms from the protein-ligand complex. According to the

mol2 format, there are 35 atom types and eight bond types. The categorical

features of every atom were one-hot encoded as a color label and aligned with

the feature matrix F . The bond defined as single, triple, dummy, unknown,

and not connected were classified as TYPE 1, a double bond as TYPE 2, an

amide bond as TYPE 3, and an aromatic bond as TYPE 4. The TYPE 1

category consists of five bond types (i.e., single, triple, dummy, unknown, and

not connected) in the dataset. Here, the single bond is the most common

bond type, and the remaining four bond types are rare. The structure adja-

cency matrix S is a record of the connection relationships between two atoms

and their corresponding BOND TYPE of the inhibitor molecule. TYPE 0

can be used for any two atoms with bond types that are not mentioned in

the the mol2 file.
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4.4.2 Experiment setup

An individual prediction model was established for each class of kinases. An

inhibitor molecule with N atoms provides N data pairs (F , S) by assigning

a specific mark to the label of each atom of feature matrix F . If a marked

atom binds with a residue of the kinase, the corresponding output assigned

a value of 1, otherwise, 0. The binding types between atoms and residues

were ignored, as the binding state was the focus of this study. Each of the

original datasets was expanded to the one with at least 2,560 positive and

2,560 negative samples by using the method described in Section 4.4.3,

and the resulting expanded rates are shown in the last column of Table

2. The dataset was randomly split into three parts: one tenth positive/one

tenth negative datasets into the test dataset, one tenth positive/one tenth

negative datasets into the validation dataset, and rest of datasets into the

training dataset, where three datasets were totally non-overlapping. Training

datasets were used to train PISPKI models of each kinase class for several

epochs, and models were evaluated by validation datasets at each epoch after

training. Furthermore, bootstrapping was applied to the training and vali-

dation datasets to uniformly assign samples at each epoch. The program

was developed with PyTorch [88]. As shown by the model setup in Table

1, early-stopping [89] was set to 5 epochs to avoid overfitting issues and the

accuracy of the sixth to last validation was recorded. After training was

completed, the model was evaluated with the testing dataset.

Noise Elimination Multiple protein-ligand complexes consisted of the

same protein (kinase) and ligand (inhibitor), but with different interaction

sites. However, unique confusing events can occur, such as the existence of

a kinase inhibitor with two crystal structures (α and β) and an atom of the
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Components Parameters
WL Box 1 3 layers × 3 time steps
WL Box 2 3 layers × 3 time steps

Conv-layer 1
1 input channel
2 output channel
3 × 3 kernels

Conv-layer 2
2 input channel
5 output channel
3 × 3 kernels

SPP cofficient
feature matrix: 10
Structure matrix: 3

Dense layers 2000 neurons × 5 layers
Activation function Leaky ReLU
Ealry stopping 5 epochs
Dropout 0.05

Turn size
2048×2(Training dataset)
256×2(Validation dataset)

Batch size 16

Table 1: Model setup

inhibitor that binds with a residue of the kinase of crystal structure α but

does not bond with any residue of crystal structure β.

To eliminate this type of noisy data, the notation B(K)
I was used to denote

inhibitor molecule I having M crystal structures on kinase K to represent a

set consisting of all atoms binding withK. With B
(K,I)
m designating a binding

atom set for one of the crystal structures composed of inhibitor I and kinase

K, the following definition is obtained:

B(K)
I =

M⋃
m=1

B(K,I)
m .

Then, for atom i of the inhibitor molecule I, the interaction state Y
(K,I)
i
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for kinase K is determined by

Y
(K,I)
i =

 1, i ∈ B(K)
I ,

0, otherwise.

4.4.3 Dataset expander program

Due to the limited number of original datasets (Appendix Table S2), a

dataset expander algorithm was developed inspired by the expansion method

widely applied with image recognition datasets. A seed is randomly assigned

to the reindex rows or columns of matrices, and the reindex operation Ψ

does not change the structure of the inhibitor molecule but creates a different

input data pair. An example of the structure adjacency matrix expansion

is shown in Appendix Fig.S2. Each input pair (F, S) from the original

dataset is modified to a new pair utilizing the same seeds for F and S while

maintaining the same output Y as follows:


F ′ = Ψr,c(F, seed)

S ′ = Ψr(S, seed)

Y ′ = Y

where F ′, S ′ and Y ′ are the created feature matrix, structure adjacency

matrix, and output, respectively. In addition, Ψr,c indicates that the reindex

operation was applied to both rows and columns, whereas Ψr indicates appli-

cation to rows only. By utilizing different seeds with an original pair, multiple

different sample pairs can be obtained up to PN
N = N !, where N is the atom

number of the inhibitor molecule. The batch process method of the expander
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Algorithm 1 Dataset expander program

Input: Orignal feature dataset F ; original structure dataset S; expansion rate r
Output: Enlarged feature dataset Fe; enlarged structure dataset Se

1: original dataset length l← len(F )
2: random seed seed← random()
3: for x = 1 to l × r do
4: new feature matrix f ← reindexrow(F [x mod l], seed)
5: f ← reindexcolumn(f, seed)
6: Fe.append(f)
7: Se.append(reindexrow(S[x mod l], seed))
8: if x mod 10 == 0 then
9: seed← random()
10: end if
11: end for
12: return Fe, Se

program is shown in Algorithm 1. As mentioned in Section 4.4.1, orig-

inal datasets transformed from the mol2 format were collected with arrays

of atoms in a particular order. The dataset expander program can also po-

tentially support the model to improve compatibility with datasets collected

from formats other than mol2.

4.5 Results

4.5.1 Baseline experiment

The performance of the proposed PISPKI model was comprehensively evalu-

ated by comparison with Support Vector Machine (SVM) and Convolutional

Neural Network (Conv-Net) models as baselines, where the SVM model ap-

plies the radial basis function kernel and Conv-Net has a traditional architec-

ture consisting of two convolutional layers and a fully connected layer. Fea-

ture matrices with zero-padding were used as input for the baseline models.
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Kinase
Number of

Subclass Nmax
Conv-Net SVM PISPKI(%) Expansion

PLC* (%) (%) Validation Test rate(p/n)

3-phosphoinositide-dependent
41 1 73 79.0 74.0 84.0 84.7 8/3

protein kinase
Aurora kinase 58 1 81 56.7 70.0 79.1 80.8 10/3
Circadian clock protein kinase 16 1 44 50.0 85.0 93.0 91.5 190/89
Cyclin-dependent kinase 280 1 67 76.0 68.3 86.7 85.1 2/1
Death-associated protein kinase 28 1 62 68.3 74.0 80.9 83.5 27/11
Dual specificity mitogen-activated

24 1 58 71.7 63.0 84.0 81.9 8/5
protein kinase kinase
Glucokinase 20 1 55 78.3 75.0 85.5 85.5 25/9
Glycogen synthase kinase 40 1 74 61.7 67.0 84.4 85.5 11/3
Serine/threonine-protein kinase 197 4 69 63.3 67.3 85.4 85.0 2/1
Tyrosine-protein kinase 99 5 93 56.5 65.9 84.4 86.7 3/1
Proto-oncogene tyrosine-protein

17 1 76 73.3 65.0 83.6 79.5 180/60
kinase
Mitogen-activated protein kinase 244 4 87 78.8 64.9 86.9 87.5 1/1

*PLC=protein-ligand complex

Table 2: Comparison of the validation and test (%) performance of different
models

The highest accuracy of 10 repeated experiments was recorded. Compari-

son of the proposed PISPKI model and the two baseline models is shown in

Table 2.

The accuracy of the PISPKI model to predict whether an atom from an

inhibitor molecule is an interaction site or not mostly ranged from 83% to

86% for the different kinase classes, which was notably better than that of

the two baseline models. In addition, both the Conv-Net and SVM models

were unstable with different datasets of kinase classes, whereas the proposed

model was not. Although the accuracy for the Circadian clock protein kinase

was high, the prediction accuracy of the model is not necessarily high because

the corresponding dataset contained only 16 protein-ligand complexes.

However, the expansion rate has no effect on the prediction of the inter-

action site, with the exception of extreme situations, such as the Circadian

clock protein kinase mentioned above. Nonetheless, the performance of the

model can be improved by applying a small number of expansion operations,

as the accuracies of datasets with expansion rates of less than 3, such as the

mitogen-activated protein kinase, tyrosine-protein kinase, serine/threonine-

protein kinase, and cyclin-dependent kinase, are stable at about 86%.
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Figure 31: Comparison of the performance of the shuffled and testing datasets

4.5.2 Shuffle dataset testing

The effectiveness of the PISPKI model was further assessed with shuffled

datasets. Due to the limited number, portions of the validation datasets were

randomly extracted and the interaction sites were shuffled to create shuffled

datasets. Consider two cases : (1) the PISPKI model could still predict the

interaction sites of shuffled datasets with an accuracy equal to or greater than

that of the testing datasets; and (2) the model is not compatible with shuffled

datasets or the accuracy is obviously degraded. The baseline accuracy was

set to 50% to denote the state “cannot work”, as such a situation is a binary

classification issue. Case (1) suggests the model is compatible with both

correct and incorrect data, indicating a problematic state, whereas case (2)

confirmed the effectiveness of the model. The performances of the shuffled

and testing datasets for each kinase class are compared in Fig.31. The

PISPKI model is incompatible with shuffled datasets, thereby validating its

effectiveness.
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4.5.3 Ablation study

To ensure and discuss the necessity of each part of the PISPKI model, an

ablation experiment was designed in which the performance of the model

was assessed by removing components. In the experiment, only four typical

kinase class datasets with expansion rates of less than 3 were collected. Then,

(1) two WL Boxes; (2) one WL Box; (3) and the Conv-layers were abandoned,

and (4) 35 atom subtypes were merged into 16 colors by combining the same

types of chemical elements to successively construct four incomplete models,

which are illustrated in Fig.32. The performance of the incomplete models

was compared to that of the PISPKI model(Fig.33).

The performance of the PISPKI model was significantly compromised

by removing two WL Boxes from most datasets, which obviously decreased

the accuracy. In addition, the model was incompatible with the mitogen-

activated protein kinase dataset, thereby confirming that the WL Box is the

core of the PISPKI model. As shown in the third column of each dataset in

the figure, reducing the number of WL Boxes to one had very limited influ-

ence on the model. However, compared with the full model, the performance

of the truncated model was improved by adding extra WL Boxes. The con-

volutional layers seem to be an insignificant component of in most datasets,

which still suggests potential advantages. Notably, the convolutional layers

only process original structures and feature label information as mentioned

in Section 4.3. Although the WL Boxes process the feature and structure

information more exquisitely, the original information processed by the con-

volutional layers facilitates inference of the interaction sites more accurately

in complicated cases. In the last ablation experiment, the necessity of feature

richness, which represents the quality of each feature, was tested. For this

evaluation, datasets from mol2 files were collected, which encoded atoms in
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Figure 32: Ablation experiment setting

the SYBYL format that were further divided into 35 subtypes (color) and

combined into 16 types (color) based on chemical elements as illustrated in

32(e). By the combination operation, the performance of the model with

the different datasets decreased by various degrees. The results not only

highlight the importance of SYBYL atom types but also serve as a reminder

that the performance of the PISPKI model can be improved by enhancing

feature richness.
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Figure 33: Ablation analysis

In the ablation experiments, incomplete models were applied to examine

differences in performance loss observed from the datasets. The effects on the

cyclin-dependent kinase and serine/threonine-protein kinase datasets were

very limited by applying incomplete models. However, the tyrosine-protein

kinase and mitogen-activated protein kinase datasets had extremely low and

high impacts, respectively. As mentioned above, the PISPKI model aims to

solve the issue with interaction site prediction. However, there were multiple

different sub-issues due to the kinase class, which is another reason why the

accuracy of the baseline models was extremely variable with different kinase

class datasets (Table 2).

4.6 Discussions

In this study, a novel machine learning model (i.e., WL algorithm-based GCN

network) was designed and developed to predict interaction sites of protein

inhibitors in phosphorylation. The accuracy of the model was consistently
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83% to 86%, which can be greatly improved by applying datasets with low ex-

pansion rates compared to the two baseline models. The model performance

can be improved by the addition of feature richness. At present, features are

transformed from inhibitor molecules based on SYBYL atom types, which

contain more information than chemical elements. More information about

atoms can be collected to enhance the richness of features such as radius,

atomic mass, formal charge, and aromaticity. In addition, the protein kinase

residue information should also be used as input to the model. Furthermore,

the limitation of datasets effects the model performance. This research was

not only limited by input feature richness but also by the small number of

datasets because there have been relatively few investigations to identify the

interaction sites of inhibitor molecules. The spatial pyramid pooling (SPP)

module facilitated compatibility of the model with inhibitor molecules having

different number of atoms. Furthermore, the importance of the WL Box was

confirmed by the ablation study (Section 4.5.3), which showed that the ad-

dition of multiple WL Boxes can enhance performance. Although applying a

complicated model on a simple issue is not recommended owing to potential

performance degradation because of excess trainable parameters, the PISPKI

model can predict most interaction sites and solve other complicated biology

issues. Hence, stable model performance is absolutely critical.
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5 Conclusion

In this thesis, we studied computational methods for analyzing graph-structured

biological data with focusing on the comparison of pseudoknotted RNA sec-

ondary structures and prediction of interaction sites of protein kinase in-

hibitors.

The proposed approach for comparison pseudo-knotted RNA secondary

structures is comprised of a novel tree representation by topological cen-

troid identification and their comparison methods based on the tree edit

distance, where a given graph representing an RNA secondary structure is

transformed to a tree rooted at one of the vertices constituting the topological

centroid that is identified by removing cycles with PEELING processing for

the graph. When comparing tree-represented RNA secondary structures col-

lected from a public database using the tree edit distance and functional gene

groups defined by Gene Ontology (GO), the proposed method showed better

clustering results according to their GOs than canonical RNA sequence-based

comparison. In addition, we also reported a case that the combination of the

tree edit distance and the sequence edit distance showed a better classification

of the pseudoknotted RNA secondary structures. In the study, only partial

structures (i.e., pseudo-knots) for RNA molecules were analyzed. The ap-

proach should be extended for comparison of whole RNA molecules to further

analyze secondary structures. Moreover, the costs of substitution operations

of the tree edit distance between different labels (nucleobases) are uniform,

but the four types of nucleobases have differences, and those nucleobases of

RNAs should not be simply regarded as just labels �. In this study, a novel

approach was initially applied to the RNA secondary structure issue, so nu-

�Objects of most common computational models have simple features that usually do not have deep
relationships with each other. But, nucleobases are not. For example, base A has closer relationships with
base U compared to base C or base G based on the structure of the molecule.
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cleobases were processed as labels. Future work should attach importance

to differences between four nucleobases, and applying various costs of substi-

tution operations between nucleobases should be considered. Furthermore,

machine learning methods (e.g. graph convolutional neural network) should

also be applied to solve the RNA secondary structure issue.

To solve the binding mechanism issue, a novel machine learning module

(i.e., the WL Box) was designed and assembled to the Prediction of Inter-

action Sites of Protein Kinase Inhibitors (PISPKI) model, which is a graph

convolutional neural network (GCN) to predict the interaction sites of protein

kinase inhibitors. The WL Box is a novel module based on the well-known

Weisfeiler-Lehman algorithm, which assembles multiple switch weights to

effectively compute graph features. The PISPKI model was evaluated by

testing with shuffled datasets and ablation analysis using 11 kinase classes.

The accuracy of the PISPKI model varied from 83% to 86%, demonstrating

the superior performance compared to two baseline models. The effectiveness

of the model was confirmed by testing with shuffled datasets. Furthermore,

the performance of each component of the model was analyzed via the abla-

tion study, which demonstrated that the WL Box module was critical. There

are some rooms for improvements of the proposed method. For examples,

it is useful to utilize more information about atoms to enhance the richness

of features such as radius, atomic mass, formal charge, and aromaticity. In

addition, the protein kinase residue information should also be used as input

to the model.
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Appendix

Algorithm 2 DCEL converter

Input: list of nucleobase labels L; list of pairs P

Output: vertex List V ; half-edge list E; face list F

1: for l in L:

2: v=new vertex(); v.label=l; V.add(v)

3: end for

4: he=new half edge();he.targetV=V[0];E.add(he)

5: for i in 1...V.len-1:

6: he=new half edge();he.targetV=V[i];he.prevE=V[i-1];he.prevE.nextE=V[i];E.add(he)

7: end for

8: he=new half edge();he.targetV=V[-2];he.prevE=E[-1];he.twinE=E[-1];he.E.add(he)

9: for i in V.len-2...0:

10: he=new half edge();he.targetV=V[i];he.prevE=V[i-1];he.prevE.nextE=V[i];

11: he.twinE=he.prevE.twinE.nextE;E.add(he);

12: end for

13: while true:

14: if (P[e.targetV]!=0)

15: e2=search pair half edge 16: he1=new half edge();he2=new half edge()

he1.twinE=he2;he2.twinE=he1;

17: switch (Direction):

18: case:1

19: he1.targetV=e.targetV;he2.targetV=e2.targetV

20: he1.nextE=e2.twinE;e2.twinE=he1;

21: he1.prevE.prevE=e.nextE.twinE;e.nextE.twinE.nextE=he1;

22: he2.nextE=e.twinE;e.twinE.prevE=he2;
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23: he2.prevE=e2.nextE.twinE;e2.nextE.twinE.nextE=he2;

24: E.add(he1);E.add(he2)

25: e=e.prevE 26: case:2

27: he1.targetV=e2.targetV;he2.targetV=e.targetV

28: he1.nextE=e.twinE;e.twinE.prevE=he1;

29: he1.prevE=e2.nextE.twinE;e2.nextE.twinE.nextE=he1;

30: he2.nextE=e2.twinE;e2.twinE.prevE=he2;

31: he2.prevE=e.nextE.twinE;e.nextE.twinE.nextE=he2;

32: E.add(he1);E.add(he2)

33: e=e.nextE

34: Direction swap judge()

35: end switch

36: end if

37: if e.targetV=V[-1]:

38: break

39: end if

40: end while

41: F=loop identify()

42: repair program()

43: return V ,E,F
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Figure S1: Acyclic relationship graph for nine gene ontology terms
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Kinase class UniPort AC
3-phosphoinositide-denpendent protein kinase O15530
Aurora kinase O14965
Circadian clock protein kinase Q79PF4
Cyclin-denpendent kinase P24931
Death-associated protein kinase P53355
Dual specificity mitogen-activated protein kinase kinase Q02750
Glucokinase P35557
Glycogen synthase kinase P49841

Serine/threonine-protein kinase

O96017
P51955
P11309
O14757

Tyrosine-protein kinase

O60674
P00519
P43405
P06239
P08631

Proto-oncogene tyrosine-protein kinase P00523

Mitogen-activated protein kinase

P28482
Q16539
P47811
P53779

Table S1: Kinase classes
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Kinase class
Dataset quality

(p/n)
3-phosphoinositide-denpendent protein kinase 362/1060
Aurora kinase 273/1146
Circadian clock protein kinase 14/29
Cyclin-denpendent kinase 2521/7377
Death-associated protein kinase 98/253
Dual specificity mitogen-activated protein kinase kinase 337/596
Glucokinase 104/294
Glycogen synthase kinase 329/1038
Serine/threonine-protein kinase 1796/5654
Tyrosine-protein kinase 1003/3419
Proto-oncogene tyrosine-protein kinase 146/460
Mitogen-activated protein kinase 2826/7324

Table S2: Dataset quality
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Bosc, C., ... & Andrieux, A. (2006). Phosphorylation of microtubule-

associated protein STOP by calmodulin kinase II. Journal of Biological

Chemistry, 281(28), 19561-19569.

[78] Lim, J., Ryu, S., Park, K., Choe, Y. J., Ham, J., & Kim, W. Y.

(2019). Predicting drug-target interaction using a novel graph neural

network with 3D structure-embedded graph representation. Journal of

Chemical Information and Modeling, 59(9), 3981-3988.

[79] Qin, T., Zhu, Z., Wang, X. S., Xia, J., & Wu, S. (2021). Computational

representations of protein-ligand interfaces for structure-based virtual

screening. Expert Opinion on Drug Discovery, (just-accepted).

[80] Shen, H., Zhang, Y., Zheng, C., Wang, B., & Chen, P. (2021). A cas-

cade graph convolutional network for predicting protein-ligand binding

affinity. International Journal of Molecular Sciences, 22(8), 4023.

XX



[81] Son, J., & Kim, D. (2021). Development of a graph convolutional neural

network model for efficient prediction of protein-ligand binding affini-

ties. PloS One, 16(4), e0249404.

[82] Bao, W., Yang, B., & Chen, B. (2021). 2-hydr Ensemble: Lysine 2-

hydroxyisobutyrylation identification with ensemble method. Chemo-

metrics and Intelligent Laboratory Systems, 104351.

[83] Hwang, H., Dey, F., Petrey, D., & Honig, B. (2017). Structure-based

prediction of ligand-protein interactions on a genome-wide scale. Pro-

ceedings of the National Academy of Sciences, 114(52), 13685-13690.

[84] Weisfeiler, B., & Leman, A. (1968). The reduction of a graph to canon-

ical form and the algebra which appears therein. NTI, Series, 2(9),

12-16.

[85] Zhu, X., Hu, H., Lin, S., & Dai, J. (2019). Deformable convnets v2:

More deformable, better results. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (pp. 9308-9316).

[86] Desaphy, J., Bret, G., Rognan, D., & Kellenberger, E. (2015). sc-PDB:

a 3D-database of ligandable binding sites-10 years on.Nucleic Acids

Research, 43(D1), D399-D404.

[87] Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N.,

Weissig, H., ... & Bourne, P. E. (2000). The protein data bank. Nucleic

Acids Research, 28(1), 235-242.

[88] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,

G., ... & Chintala, S. (2019). Pytorch: An imperative style, high-

performance deep learning library. Advances in Neural Information

Processing Systems, 32, 8026-8037.

XXI



[89] Bjarte Mehus Sunde. Early-stopping-pytorch

https://github.com/Bjarten/early-stopping-pytorch.git (2018).

XXII


	Introduction
	Background
	Importance of Cross-field
	Contribution
	Organization

	Preliminaries
	Data structure
	String structure
	Tree
	Graph theory
	Plane graph and Topology
	Doubly-connected-edge-list

	Artificial Neural network
	Traditional neuron
	Graph convolutional neuron
	Pooling


	An Approach for Comparison of Pseudoknotted RNA Secondary Structures
	Background
	RNA secondary structure
	Pseudo-knotted RNA
	Data structure transformation

	Method
	PEELING
	Topological centroid identification
	Reorganization
	Tree edit distance

	Experiment
	Database
	DCEL converter
	Gene ontology
	Algorithm validation evaluation

	Results
	Discussions

	A Novel Prediction Model for Interaction Sites of Protein Kinase Inhibitors
	Background
	Protein kinase in phosphorylation
	Inhibitor
	Contribution

	Method
	Preliminaries
	Weisfeiler-Lehman algorithm

	Model
	WL Box
	Multiple WL Box
	Pyramid spatial pooling

	Experiments
	Dataset preprocess
	Experiment setup
	Dataset expander program

	Results
	Baseline experiment
	Shuffle dataset testing
	Ablation study

	Discussions

	Conclusion

