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PROGRESSIONS OF PIATETSKI-SHAPIRO SEQUENCES 

KOTA SAITO 
GRADUATE SCHOOL OF MATHEMATICS 

NAGOYA UNIVERSITY 

ABSTRACT. For every non-integral a > 1, the sequence of the integer parts of研 (n=
1, 2,...) is called the Piatetski-Shapiro sequence with exponent a. Let PS(a) be the set 
of all terms of this sequence. The aim of this article is to propose a conjecture to find 
infinitely many four-term arithmetic progressions of PS(a). 

1. INTRODUCTION 

We let lx」denotethe integer part of x E恥． Forevery non-integral a > 1, the sequence 

(ln門）':;:=1is called the Piatetski-Shapiro sequence with exponent a, and we let PS(a) be 

the set of all terms of this sequence. A real sequence (a況闊 iscalled a k-term arithmetic 

progression (k-AP) if there exists£> 0 such that 

aj = a。+j£
for all j = 0, 1,..., k -1. In this article, we discuss APs of PS(a). By the result of 
Frantzikinakis and Wierdl [FW09], PS(a) contains arbitrarily long APs for all 1 <a< 2. 

Further, Matsusaka and the author recently showed that for all 2 </3 ＜ 1, there are 
uncountably many a E [/3，1] such that PS(a) contains infinitely many 3-APs [MS21]. 
More precisely, for any fixed a, b, c EN, they showed that the Hausdorff dimension of 

{a E [/3，1] : ax + by = cz has infinitely many solutions 

(x,y,z) E PS(a)3 with #{x,y,z} = 3} 

is greater than or equal to 1/s3. By substituting a=  b = 1 and c = 2, they obtained 
the result on 3-APs of PS(a). However, there is no research to find 4-APs of PS(a) when 
a > 2 is non-integral. The aim of this article is to propose a sufficient condition to find 

infinitely many 4-APs of PS(a). Let a> 1, and we define the following condition which 

depends on a. 

Condition 1.1. There exists t>ふ suchthat for infinitely many tuples (p, q, r, s) E N4 

with p < q < r < s, one has 

(1.1) I炉＋戸ー 2q叶::::;q―く＇ 『＋翌ー 2r門さ q―<．

Theorem 1.2. Assume that there exists a > 1 satisfying Condition 1.1. Then PS(a) 
contains infinitely many four-term arithmetic progressions. 

In view of this theorem, we would expect to find infinitely many 4-APs of PS(a) by 
using simultaneous Diophantine approximations. However, we do not find any a which 

satisfies Condition 1.1. 
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Question 1.3. Let 1く (3<T  What is a lower bound for the Hausdorff dimension of 

{a E ((3,"f): for infinitely many (p, q, r, s) E炉 withp < q < r < s, 

1Pa +戸ー 2q門:Sq―已附＋翌ー 2r門こ□｝？

If the set had positive Hausdorff dimension, then by Theorem 1.2, we would find un-
countably many a E ((3,'Y) such that PS(a) contains infinitely many four-term arithmetic 
progress10ns. 

Notation 1.4. Let N be the set of all positive integers. For x E良 let{ x} denote the 
fractional part of x. For all /i, E N, we define［月＝ Nn[l,R].Let ✓可 denote the imaginary 
unit, and define e(x) by e21r✓コx for all x E及

2. PREPARATION 

Let d E N. We mainly discuss the case when d = 1 or 2. For all x = (x<lJ,..., x(d)) E記
we define {x} =(｛砂｝，．．．，｛x(d)}).Let (x砂贔 bea sequence composed of況 E配 for
all 1 :Sn :S N. We define the discrepancy of (x孔贔 by

# {n E Nn [1,N]: {xn} E I1い[a;,b;)} ;. 
叩五N凶） ＝ sup -II(bt -a』.

0年 <bi51 N 
嶼 [dl i=l 

We can find upper bounds of the discrepancy from evaluating exponential sums by the 
following inequality. This is shown by Koksma [Kok50] and Sziisz [Szii52] independently: 
there exists Cd> 0 which depends only on d such that for all HEN, we have 

(2.1) 割 <n<N(心)<;C, (½ + O<ls<Uふ]te(〈h,x砂），

where we let〈,〉 denotethe standard mnh::;roduct and d define) 

llhlloo = max{lh(1ll,..., lh(d)I}, v(h) = IJ max{l, lh叫｝
i=l 

for all h = (h(l),..., h(d)) E配． Thisinequality is sometimes reffered as the Erdos-Toran-
Koksma ineq叫 ity.We refer [DT97, Theorem 1.21] to the readers for more details. In 
order to evaluate upper bounds for the right-hand side on (2.1), we will use the following 
lemma which is called van der Corput's k-th derivative test. 

Lemma 2.1. Let見怜 bereal numbers with怜＿ M ：：：：： 1. Let f : [Vi，怜l→股 bea 
function which has continuous derivatives up to the k-th order, where k：：：：： 4. L位入kand 
T be positive real numbers. Suppose that 

入K三If(K)(x)1三T入K

for all x E［闘怜].Then there exists C (T, k) > 0 such that 

L e(f(n)) さC(T,k)((½-Vi)入t/(2k-2) +（怜ー Vi)l-22-k入;1/(2k-2)).

v1<n3V2 

Proof. See the book written by Titchmarsh [Tit86, Theorem 5.13]. 口
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3. LEMMA 

We write 0(1) for a bounded quantity. If this bound depends only on some parameters 
a1,..., an, then for instance we write Oa1,a2,...,aJ1). As is customary, we often abbreviate 
O(l)X and Oa1,..,an(l)X to O(X) and 0吐•,．，an(X) respectively for a non-negative quantity 
X. We also state J(X) ≪ g(X) and J(X) ≪a1,..,,an g(X) as J(X) = O(g(X)) and 
J(X) = 0吐．，aJg(X))respectively, where g(X) is non-negative. 

Lemma 3.1. Let a > 1, f > a2, 0 < E く（＜—ふ）／a, and 6 > 0. Then there exists 
0 = 0(a, [, c) > 0 such that for all p, q E N with p < q, by setting V =（研）I/aand 
u = qce足）／a2-c/a either one has 

訊'<v:<=2v((vp)",(vqド） <<a,e,e,'5q―0, 

or there exist h1, h2 E N with加 <h1さq0such that lh1(p/q)°'-h叶さ q―€/a+e and 

割「<u:<=w((uq)°'/hリ≪a,E,e,'5q―20. 

Proof. Take any p, q EN with p < q. Take a small parameter 0 = 0(a, [, c) > 0, and large 
parameter q。=q0(a,[, c) which satisfies qg 2'. 2. Let'T/ = [/a -E + 20. We may assume 
that q 2'. q。.LetH = ll」,andlet L(h1, h砂＝ h1(p/qt十加 forall h1, h2 E Z. By (2.1), 
we have 

1 1 
瞑 v:<=2v((vp)尺（疇） ≪万十 L ~IS(h1，加） I,

O<ll(h1,h2)lloo:<=H 
v(h1,hり

where S(h1，加） ＝ ~~V<vく2v e(L(hぃ加）qa炉）． Firstly,we discuss the case when 

(3.1) IL(h1,h2)l 2: q―n 

for all h1, h2 E Z with O < ll(h1, h2)llooさH.Let k = la(a十く）／（」＋1.Here a(a+~)/~ > 
a> 1, which implies that k 2". 2. In addition, k = la(a + ~)/~」 +l>a(a+~)/~>a.
Fix any h1,h2 E Z with O < ll(h1,h2)lloo :SH. Define f(x) = L(hぃ加）qa研． Then

IL(h1, h2)lq"'V"'-k ≪a,E llkl(x)I ≪a,E IL(h1, h2)lq"'V"'-k 

for all real numbers x E (V, 2V]. Therefore by Lemma 2.1, we obtain 

(3.2) IS(h1, h2) I ≪a,e (IL(h1, h2) lq"'V"'-k)lf(2k-2) + v-22-k (IL(h1, h2) lq"'V"'-k)-lf(2k-2). 

Let S1 and S2 be the first and second term on the right-hand side of (3.2), respectively. 
Then we have 

st-2 :S IL(h1，加）附va-k≪a,E,c5 q゚q°'q(a-k)E/a.

Further, we observe that 

(a-k)~ _ _, (a -a(a + ~) / ~)~ 
a+ < a+ ＝ 0. 

a a 

Therefore, by taking small 0 > 0, one hasふく<a,E,6q-20. 
Let us next evaluate S2. By (3.1), it follows that 

a(2k-2) 
S2 ≪a,e,c5 q 

-22-k(2k-2)EnT/°'n-a2 nE(k-a) q q q 

By 2 :S k さ a(a+ ＜）／~ + 1, the exponent of q is 

-22-k(2k -2)~+ 叩—ぷ＋ ~(k-a)

:S (-4 + 23-k)<＋く一 m + 20a -a2 + ~(a(a + ~)/~ + 1-a) 

< -€a+20a < O 
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if 0 is sufficiently small. Therefore, by taking small 0 > 0, one has S2 ≪a,E q-20. Hence 

訊'<v'.o2v((vp)a,(vq)"') ≪a,E,li q―0+q―20(log H)2. 

This implies that 

瞑 v9v((vp)尺(vq)°')≪a,E,e,li q―°. 

Let us next discuss the case when there exist h1,h2 E Z with O < ll(h1,h2)1100'.SH such 
that IL(h1, h2)I'.S q―'1. In this case, it follows that either h1 < 0 < h2 or加 <0< h1・

Indeed, if h1, h2 ~ 0 or h1, h2さ0holds, then by O < ll(hぃ加）lloo'.SH, one has 

q―'1 ~ IL(h1, h2)I = lh叶 (p/q)"'+|加|~ (l/q)"'= q―り

Therefore, [/a -E'.ST/'.Sa which contradicts E < ([ -aり／a.Hence 

IL(h1，加）I=llh1l(p/q)"'-lh2II'.Sq―n. 

In addition, this implies that lh叶~ (q/p)"'lh2I -q':x-1J/p" > 1h21 since TJ > a and q > p. 
We replace 1h11 and 1h21 with h1 and h2, respectively. Let心＝ n -20 = [／a -€. Let 
U=q⑯-a)/a. Let K = lq20」.By(2.1), 

1 
如U'.o2U( （四）"/hリ«—＋こ

IT(h)I 
K'~ h '  

l<h<k 

where T(h) = b区U<u'.o2Ue(h(uq)"/h1)-Let£= la心／（心ー a)」＋ 1.We define g(x) = 
(xq)"'/h1. Then for all real numbers x E (U, 2U] 

q屹ra-e/h1心，alg(el(x)I ≪£,a q叩 a-£/h1. 

Hence, by Lemma 2.1, one has 

T(h) ≪e,a (q叩 a-e/h1)l/(2C2)+ u-22-¥q叩 a-£/h1)―1/(2£-2). 

Let T1 and T2 be the first and second term on the right-hand side of this equation. Then 

rt-2 = q叩 a-e/h1さq°'q(a-f)(心-a)／a.

The exponent of q is 

a+ (a-£)（心ー a)/a<a+ (a―心a/(ル-a））（心ー a)/a= 0. 

Therefore, by taking small 0 > 0, we have T1 ≪a,£ q―30. Let us evaluate T2. We have 

Tごばー2)'.Su-22-£(2£-2)叩 q―凸(f-a)a≪a,£ q―22-£(2£-2)（い一a)q―a2q(f-a)（い一叫Ia.

Lett=心-a. Note that t > 0 holds since [ > a2十位 and心＝匂a-E. From 
2'.S £'.S a(a + t)/t + 1, the exponent of q is 

-22-£(2£ -2)(―ぶ＋ （£-a)( 

'.S -4(+ 23-2(―ヽ＋ （a(a+0/(+1-a)( 

三ー2(' —ぷ＋ （a責'+1)(=-(. 

Therefore r;(2t_2l ≪a,e q―E'+ao_ By taking sufficiently small 0 = 0(a, [, E), we have 

T2 ≪a,£ q -30 . Hence we obtain 

'Du<u9u((uq)"'/h~) ≪a,e q―2° + q―30 log q ≪a,E,e q―20. 

ロ
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4. PROOF OF THEOREM 1.2 

Let a > 1. Suppose that a satisfies Condition 1. 1. Then there exists f > a2 such that 
infinitely many (p, q, r, s)'s with p < q < r < s satisfy (1.1). Let ((pn, qn, rn,% ))~=l be a 
sequence of which each term satisfies (1.1). We may assume that q1くゅく・..→ 00. If 
not, then there are at most finitely many (p, q, r, s)'s satisfy (1.1). This is a contradiction. 

LetO<Eく（C-ふ）／a,and o = 2-6. Take any large n EN. By Lemma 3.1, by setting 
(E-aり／a2-E/a

Vn=（磁）l/aand Un = q~ either we have 

訊伍<v<:'.2Vn((Vp)°', (vq)"') ≪a,<,E,8 q;―°, 

or there exist h1, h2 E N with加 <h1::::; q! such that lh1 (Pn加）a-加 I 三 qn-E/a+€ and 

割 nく応2Un((uqn)a/h1) ≪a,<,E,8 q:;;,20. 

In the farmer case, let 

An= {v E (Vn, 2V,』nN:({(vpn)°'},{(vqn)°'}) E [1/8,1/4) x [0,1/8)}. 

By the definition of the discrepancy, it follows that 

#An = Vn/ 64 + O(V,ぷ 0).

Therefore Anヂ0if n is sufficiently large. Fix any Vn E A. Then we have 

(vnrn)a = 2(v面）aー (VnPn)°'+E~l) 

= 2l(vnqn)°'」-l(vnPn)0'」＋2{(vnqn)a}-{(VnPn：戸｝ + E~l) 

where we let Eい＝（Vnrn)a -2(v晶）a+(vnPn)<>. By Vn E An, it follows that 

1/8 = 1/4 -1/8さ2{(vが1n)a}-{ (VnPn)a}さ1/2.

Since IE~1)1 ご:0 = 2-6, we find that 2{(vnqn)<>} -{(vnPn)<>} + E~l) E [O, 1). Thus 

{(vnrn)°'} = 2{(vnqn)°'} -{(VnPn)a} + E~り．

Let E炉＝ （い汀＋ （Vふ）a-2(vnrn)"'. Then we have 

(VnSn)°'= 2(Vn在）aー (v面）a+E~2) 

= 2 l(Vnr n)°'」-l(vnqn)°'」+2{(vnrn)°'}-{(vnqn)°'} + E~2l. 

By Vn E An, we obtain that 

2{ (VnT n)°'} -{(Vnqn)°'} + Fn = 3{ (Vnqn)°'} -2{ (VnPn)a} + 2E~l) + E~2), 

1/8 = 3/8 -1/4::::; 3{(vnqn)°'} -2{(VnPn)°'}::::; 3/4, 

l2Eい＋E罰::::;315::::; 2―4. 

These imply that { (Vnsn)"'} = 2{ (v11]噌n)"'}-{(Vnqn)<>} + E~2). Therefore 

I l(vnPn)°'」+l(vnrn)"'」-2l(vnqn)°'」|
::::; IE2ll + l{(VnPn)a} + {(vnrn)a} -2{(vが1n)"'}I

三6+6= 28 = 2-59 
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and 

I l(Vnqn)°'」+l(VnSn)°'」-2l(vnrn)a」|
さ:|E~2)1 + l{(vnqn)°'} + {(vnsn)°'} -2{(vnrn)"'}I 

：：：： /j + /j = 2/j = 2―5. 

Hence we conclude that 

l(vnPn)°'」＋ l(vnrn)"'」=2l(vnqn)°'」,l(vnqn)°'」+l(vnsn)"'」=2l(vnrn)°'」．
In the latter case when there exist h1, h2 E N with加＜ h :::: q~ such that 

伽(Pn加）a_加：：：： q；E/a+C-2°, D広くU<::2Un((％）a/hリ «a,€，E qn-20 

where U 
(E-&)/a2_€/ a 

n = qn.  Let 

Bn = {u E (Un,2U』：叩2-6：：：： {(u贔）ツ柘｝ ＜h11い｝

By the definition of the discrepancy, it follows that 

#Bn = Un応 T6+ O(Unq戸） 2'.'.Unq:;;,0戸＋ O(Unq戸） ＞〇．

Therefore Bn cf-0 if n is sufficiently large. Fix any叫 EBn. Then we observe that 

(unqn)°'= h1 l(unqn)°'/h1」+h1{(unqn)a/h1}.
Since叫 EBn, we also observe that 2-5：：：：柘｛（％伽）a/h1}：：：： 2-5_Thus 

(4.1) ｛（叫伽）吋＝ h孔（％伽）a／hl}．

Let E四＝ （UnPn)"'-（加／h1)(un伽）"'.It follows that 

(unPn)°'= (h凸）（Un江 ＋Ei3)

=h叶(u面）"/h叶＋加{(u贔）a凡｝ ＋ Ei3)． 

By Un E Bn, l :::; h2 < h1 :::; q~, and Un :::; Un = q~•— °'2)/a2-</a, we have 

qn-02―6 :::;加・叩2―6:::;加｛（疇）"'/h1}:::;加． h戸2―5:::; 2―5 _ qn-02―5, 

IE屈I=(un伽)"'lh1(Pn/q砂a-h叶／h1:::;ui心q；も／a+e-20= qi~-a2)/a-<心q;＜／a+€-20 = qn-20. 

Therefore, we obtain { (UnPn)"'}＝加{(u晶）a凡｝ ＋ E炉bytaking large n. Further, let 

犀＝（Unrn)°'-2(U面）°'+(UnPn)". We observe that 

(uげ訂＝ 2(u面）aー (UnPn)"'+E砂

= 2h几(unqn)"'」-l(UnPn)0」+2{(Vnqn)°'} -{(VnPn)°'} + Ei4). 

In addition, we have IE罰:::;u;:炉＝ q~~-a2)ja-<q;;,~ = q;;(l-l/a)~-a-<_ Further, 

2{(u面）"}-{(unPn)"'} + E砂

=2柘{(u面）勺叫— {(unPn)"} + E砂

=2柘{(u贔）°'/hサー加{(u面）a／h』-E屈＋ E砂

= (2柘ー加）｛（U晶）"/hi}-E四＋ Ei4) 

Note that h1 >加 andUn E Bn imply 

2―6 = h1hけ2―6:::; (2柘ー加）｛（U面）a凡｝三 2柘． h112―5=2―4.
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Therefore we have { (Unr n)a} = 2{ (Unqn)"} -{(UnPn)"} + E~4) for sufficiently large n. We 

next let E四＝ （U面）"+(u→)a-2(unr n)". Similarly to the evaluation of E(4), it follows 

that IE~5)I::::; q;,,(l-l/a)e-a-<_ In addition, we observe that 

and 

(unsn)0『 =2l(u訂 n)a」-l(unqn)門＋ 2{(un在）"}-{ (Unqn)"} + E屈，

2{(unrn)"} -{(un伽）a}

= 2(2凡ー加）｛（t伍q砂a/hi} -h1 { (U叫 n)"'/h1}-E屈＋ E~4)

= (3h1 -2加）｛（Un伽）a／hl}-E屈＋ E砂．
Note that h1 > h2 and Un E Bn imply 

2―6 = h1 ・ h112―6さ(3h1-2加）｛（U面）勺柘｝::::;3h1 ・ h112―5 ::::; 2―3. 

Therefore { (Un%）吋＝ 2{(u訂 n)a}-{(uが1n)吋 (5) 
+ E;,,,''1. Similarly to the farmer case, by 

taking sufficiently large n EN, we conclude that 

l(unPn)門十 l(Unrn)"」=2l(Unqn)門， l(unqn)門＋ l(unSn)門＝ 2l(unrn)門．

Hence PS(a) contains infinitely many 4-APs assuming that a satisfies Condition 1.1 
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