A CONJECTURE TO FIND FOUR-TERM ARITHMETIC PROGRESSIONS OF PIATETSKI-SHAPIRO SEQUENCES

KOTA SAITO
GRADUATE SCHOOL OF MATHEMATICS
NAGOYA UNIVERSITY

Abstract

For every non-integral $\alpha>1$, the sequence of the integer parts of n^{α} ($n=$ $1,2, \ldots)$ is called the Piatetski-Shapiro sequence with exponent α. Let $\operatorname{PS}(\alpha)$ be the set of all terms of this sequence. The aim of this article is to propose a conjecture to find infinitely many four-term arithmetic progressions of $\operatorname{PS}(\alpha)$.

1. Introduction

We let $\lfloor x\rfloor$ denote the integer part of $x \in \mathbb{R}$. For every non-integral $\alpha>1$, the sequence $\left(\left\lfloor n^{\alpha}\right\rfloor\right)_{n=1}^{\infty}$ is called the Piatetski-Shapiro sequence with exponent α, and we let $\operatorname{PS}(\alpha)$ be the set of all terms of this sequence. A real sequence $\left(a_{j}\right)_{j=0}^{k-1}$ is called a k-term arithmetic progression ($k-A P$) if there exists $\ell>0$ such that

$$
a_{j}=a_{0}+j \ell
$$

for all $j=0,1, \ldots, k-1$. In this article, we discuss APs of $\operatorname{PS}(\alpha)$. By the result of Frantzikinakis and Wierdl [FW09], $\operatorname{PS}(\alpha)$ contains arbitrarily long APs for all $1<\alpha<2$. Further, Matsusaka and the author recently showed that for all $2<\beta<\gamma$, there are uncountably many $\alpha \in[\beta, \gamma]$ such that $\operatorname{PS}(\alpha)$ contains infinitely many 3-APs [MS21]. More precisely, for any fixed $a, b, c \in \mathbb{N}$, they showed that the Hausdorff dimension of

$$
\begin{aligned}
\{\alpha \in[\beta, \gamma]: a x+b y & =c z \text { has infinitely many solutions } \\
(x, y, z) & \left.\in \operatorname{PS}(\alpha)^{3} \text { with } \#\{x, y, z\}=3\right\}
\end{aligned}
$$

is greater than or equal to $1 / s^{3}$. By substituting $a=b=1$ and $c=2$, they obtained the result on 3-APs of $\operatorname{PS}(\alpha)$. However, there is no research to find 4 - APs of $\operatorname{PS}(\alpha)$ when $\alpha>2$ is non-integral. The aim of this article is to propose a sufficient condition to find infinitely many 4 - APs of $\operatorname{PS}(\alpha)$. Let $\alpha>1$, and we define the following condition which depends on α.

Condition 1.1. There exists $\xi>\alpha^{2}$ such that for infinitely many tuples $(p, q, r, s) \in \mathbb{N}^{4}$ with $p<q<r<s$, one has

$$
\begin{equation*}
\left|p^{\alpha}+r^{\alpha}-2 q^{\alpha}\right| \leq q^{-\xi}, \quad\left|q^{\alpha}+s^{\alpha}-2 r^{\alpha}\right| \leq q^{-\xi} \tag{1.1}
\end{equation*}
$$

Theorem 1.2. Assume that there exists $\alpha>1$ satisfying Condition 1.1. Then $\operatorname{PS}(\alpha)$ contains infinitely many four-term arithmetic progressions.

In view of this theorem, we would expect to find infinitely many 4-APs of $\operatorname{PS}(\alpha)$ by using simultaneous Diophantine approximations. However, we do not find any α which satisfies Condition 1.1.

Question 1.3. Let $1<\beta<\gamma$. What is a lower bound for the Hausdorff dimension of

$$
\begin{gathered}
\left\{\alpha \in(\beta, \gamma): \text { for infinitely many }(p, q, r, s) \in \mathbb{N}^{2} \text { with } p<q<r<s,\right. \\
\left.\left|p^{\alpha}+r^{\alpha}-2 q^{\alpha}\right| \leq q^{-\gamma^{2}}, \quad\left|q^{\alpha}+s^{\alpha}-2 r^{\alpha}\right| \leq q^{-\gamma^{2}}\right\} ?
\end{gathered}
$$

If the set had positive Hausdorff dimension, then by Theorem 1.2, we would find uncountably many $\alpha \in(\beta, \gamma)$ such that $\operatorname{PS}(\alpha)$ contains infinitely many four-term arithmetic progressions.
Notation 1.4. Let \mathbb{N} be the set of all positive integers. For $x \in \mathbb{R}$, let $\{x\}$ denote the fractional part of x. For all $\ell \in \mathbb{N}$, we define $[\ell]=\mathbb{N} \cap[1, \ell]$. Let $\sqrt{-1}$ denote the imaginary unit, and define $\mathrm{e}(x)$ by $e^{2 \pi \sqrt{-1} x}$ for all $x \in \mathbb{R}$.

2. Preparation

Let $d \in \mathbb{N}$. We mainly discuss the case when $d=1$ or 2 . For all $\mathbf{x}=\left(x^{(1)}, \ldots, x^{(d)}\right) \in \mathbb{R}^{d}$, we define $\{\mathbf{x}\}=\left(\left\{x^{(1)}\right\}, \ldots,\left\{x^{(d)}\right\}\right)$. Let $\left(\mathbf{x}_{n}\right)_{n=1}^{N}$ be a sequence composed of $\mathbf{x}_{n} \in \mathbb{R}^{d}$ for all $1 \leq n \leq N$. We define the discrepancy of $\left(\mathbf{x}_{n}\right)_{n=1}^{N}$ by

$$
\mathcal{D}_{1 \leq n \leq N}\left(\mathbf{x}_{n}\right)=\sup _{\substack{0 \leq b_{i}<b_{i} \leq 1 \\ \forall i \in[d]}}\left|\frac{\#\left\{n \in \mathbb{N} \cap[1, N]:\left\{\mathbf{x}_{n}\right\} \in \prod_{i=1}^{d}\left[a_{i}, b_{i}\right)\right\}}{N}-\prod_{i=1}^{d}\left(b_{i}-a_{i}\right)\right|
$$

We can find upper bounds of the discrepancy from evaluating exponential sums by the following inequality. This is shown by Koksma [Kok50] and Szüsz [Szü52] independently: there exists $C_{d}>0$ which depends only on d such that for all $H \in \mathbb{N}$, we have

$$
\begin{equation*}
\mathcal{D}_{1 \leq n \leq N}\left(\mathbf{x}_{n}\right) \leq C_{d}\left(\frac{1}{H}+\sum_{\substack{0<\|\mathbf{h}\|_{\infty} \leq H \\ \mathbf{h} \in \mathbb{Z}^{d}}} \frac{1}{\nu(\mathbf{h})}\left|\frac{1}{N} \sum_{n=1}^{N} \mathrm{e}\left(\left\langle\mathbf{h}, \mathbf{x}_{n}\right\rangle\right)\right|\right) \tag{2.1}
\end{equation*}
$$

where we let $\langle\cdot, \cdot\rangle$ denote the standard inner product and define

$$
\|\mathbf{h}\|_{\infty}=\max \left\{\left|h^{(1)}\right|, \ldots,\left|h^{(d)}\right|\right\}, \quad \nu(\mathbf{h})=\prod_{i=1}^{d} \max \left\{1,\left|h^{(i)}\right|\right\}
$$

for all $\mathbf{h}=\left(h^{(1)}, \ldots, h^{(d)}\right) \in \mathbb{R}^{d}$. This inequality is sometimes reffered as the Erdős-TuránKoksma inequality. We refer [DT97, Theorem 1.21] to the readers for more details. In order to evaluate upper bounds for the right-hand side on (2.1), we will use the following lemma which is called van der Corput's k-th derivative test.
Lemma 2.1. Let V_{1}, V_{2} be real numbers with $V_{2}-V_{1} \geq 1$. Let $f:\left[V_{1}, V_{2}\right] \rightarrow \mathbb{R}$ be a function which has continuous derivatives up to the k-th order, where $k \geq 4$. Let λ_{k} and T be positive real numbers. Suppose that

$$
\lambda_{k} \leq\left|f^{(k)}(x)\right| \leq T \lambda_{k}
$$

for all $x \in\left[V_{1}, V_{2}\right]$. Then there exists $C(T, k)>0$ such that

$$
\left|\sum_{V_{1}<n \leq V_{2}} \mathrm{e}(f(n))\right| \leq C(T, k)\left(\left(V_{2}-V_{1}\right) \lambda_{k}^{1 /\left(2^{k}-2\right)}+\left(V_{2}-V_{1}\right)^{1-2^{2-k}} \lambda_{k}^{-1 /\left(2^{k}-2\right)}\right)
$$

Proof. See the book written by Titchmarsh [Tit86, Theorem 5.13].

3. Lemma

We write $O(1)$ for a bounded quantity. If this bound depends only on some parameters a_{1}, \ldots, a_{n}, then for instance we write $O_{a_{1}, a_{2}, \ldots, a_{n}}(1)$. As is customary, we often abbreviate $O(1) X$ and $O_{a_{1}, \ldots, a_{n}}(1) X$ to $O(X)$ and $O_{a_{1}, \ldots, a_{n}}(X)$ respectively for a non-negative quantity X. We also state $f(X) \ll g(X)$ and $f(X) \ll_{a_{1}, \ldots, a_{n}} g(X)$ as $f(X)=O(g(X))$ and $f(X)=O_{a_{1}, \ldots, a_{n}}(g(X))$ respectively, where $g(X)$ is non-negative.
Lemma 3.1. Let $\alpha>1, \xi>\alpha^{2}, 0<\epsilon<\left(\xi-\alpha^{2}\right) / \alpha$, and $\delta>0$. Then there exists $\theta=\theta(\alpha, \xi, \epsilon)>0$ such that for all $p, q \in \mathbb{N}$ with $p<q$, by setting $V=\left(\delta q^{\xi}\right)^{1 / \alpha}$ and $U=q^{\left(\xi-\alpha^{2}\right) / \alpha^{2}-\epsilon / \alpha}$, either one has

$$
\mathcal{D}_{V<v \leq 2 V}\left((v p)^{\alpha},(v q)^{\alpha}\right)<_{\alpha, \xi, \epsilon, \delta} q^{-\theta},
$$

or there exist $h_{1}, h_{2} \in \mathbb{N}$ with $h_{2}<h_{1} \leq q^{\theta}$ such that $\left|h_{1}(p / q)^{\alpha}-h_{2}\right| \leq q^{-\xi / \alpha+\epsilon}$ and

$$
\mathcal{D}_{U<u \leq 2 U}\left((u q)^{\alpha} / h_{1}\right)<_{\alpha, \xi, \epsilon, \delta} q^{-2 \theta}
$$

Proof. Take any $p, q \in \mathbb{N}$ with $p<q$. Take a small parameter $\theta=\theta(\alpha, \xi, \epsilon)>0$, and large parameter $q_{0}=q_{0}(\alpha, \xi, \epsilon)$ which satisfies $q_{0}^{\theta} \geq 2$. Let $\eta=\xi / \alpha-\epsilon+2 \theta$. We may assume that $q \geq q_{0}$. Let $H=\left\lfloor q^{\theta}\right\rfloor$, and let $L\left(h_{1}, h_{2}\right)=h_{1}(p / q)^{\alpha}+h_{2}$ for all $h_{1}, h_{2} \in \mathbb{Z}$. By (2.1), we have

$$
\mathcal{D}_{V<v \leq 2 V}\left((v p)^{\alpha},(v q)^{\alpha}\right) \ll \frac{1}{H}+\sum_{0<\left\|\left(h_{1}, h_{2}\right)\right\|_{\infty} \leq H} \frac{1}{\nu\left(h_{1}, h_{2}\right)}\left|S\left(h_{1}, h_{2}\right)\right|
$$

where $S\left(h_{1}, h_{2}\right)=\frac{1}{V} \sum_{V<v \leq 2 V} \mathrm{e}\left(L\left(h_{1}, h_{2}\right) q^{\alpha} v^{\alpha}\right)$. Firstly, we discuss the case when

$$
\begin{equation*}
\left|L\left(h_{1}, h_{2}\right)\right| \geq q^{-\eta} \tag{3.1}
\end{equation*}
$$

for all $h_{1}, h_{2} \in \mathbb{Z}$ with $0<\left\|\left(h_{1}, h_{2}\right)\right\|_{\infty} \leq H$. Let $k=\lfloor\alpha(\alpha+\xi) / \xi\rfloor+1$. Here $\alpha(\alpha+\xi) / \xi>$ $\alpha>1$, which implies that $k \geq 2$. In addition, $k=\lfloor\alpha(\alpha+\xi) / \xi\rfloor+1>\alpha(\alpha+\xi) / \xi>\alpha$. Fix any $h_{1}, h_{2} \in \mathbb{Z}$ with $0<\left\|\left(h_{1}, h_{2}\right)\right\|_{\infty} \leq H$. Define $f(x)=L\left(h_{1}, h_{2}\right) q^{\alpha} x^{\alpha}$. Then

$$
\left|L\left(h_{1}, h_{2}\right)\right| q^{\alpha} V^{\alpha-k}<_{\alpha, \xi}\left|f^{(k)}(x)\right|<_{\alpha, \xi}\left|L\left(h_{1}, h_{2}\right)\right| q^{\alpha} V^{\alpha-k}
$$

for all real numbers $x \in(V, 2 V]$. Therefore by Lemma 2.1, we obtain
(3.2) $\left|S\left(h_{1}, h_{2}\right)\right|<_{\alpha, \xi}\left(\left|L\left(h_{1}, h_{2}\right)\right| q^{\alpha} V^{\alpha-k}\right)^{1 /\left(2^{k}-2\right)}+V^{-2^{2-k}}\left(\left|L\left(h_{1}, h_{2}\right)\right| q^{\alpha} V^{\alpha-k}\right)^{-1 /\left(2^{k}-2\right)}$.

Let S_{1} and S_{2} be the first and second term on the right-hand side of (3.2), respectively. Then we have

$$
S_{1}^{2^{k}-2} \leq\left|L\left(h_{1}, h_{2}\right)\right| q^{\alpha} V^{\alpha-k}<_{\alpha, \xi, \delta} q^{\theta} q^{\alpha} q^{(\alpha-k) \xi / \alpha} .
$$

Further, we observe that

$$
\alpha+\frac{(\alpha-k) \xi}{\alpha}<\alpha+\frac{(\alpha-\alpha(\alpha+\xi) / \xi) \xi}{\alpha}=0
$$

Therefore, by taking small $\theta>0$, one has $S_{1}<_{\alpha, \xi, \delta} q^{-2 \theta}$.
Let us next evaluate S_{2}. By (3.1), it follows that

$$
S_{2}^{\alpha\left(2^{k}-2\right)} \ll_{\alpha, \xi, \delta} q^{-2^{2-k}\left(2^{k}-2\right) \xi} q^{\eta \alpha} q^{-\alpha^{2}} q^{\xi(k-\alpha)} .
$$

By $2 \leq k \leq \alpha(\alpha+\xi) / \xi+1$, the exponent of q is

$$
\begin{aligned}
& -2^{2-k}\left(2^{k}-2\right) \xi+\eta \alpha-\alpha^{2}+\xi(k-\alpha) \\
& \leq\left(-4+2^{3-k}\right) \xi+\xi-\epsilon \alpha+2 \theta \alpha-\alpha^{2}+\xi(\alpha(\alpha+\xi) / \xi+1-\alpha) \\
& \leq-\epsilon \alpha+2 \theta \alpha<0
\end{aligned}
$$

if θ is sufficiently small. Therefore, by taking small $\theta>0$, one has $S_{2} \lll \alpha, \xi^{q^{-2 \theta}}$. Hence

$$
\mathcal{D}_{V<v \leq 2 V}\left((v p)^{\alpha},(v q)^{\alpha}\right) \ll_{\alpha, \xi, \delta} q^{-\theta}+q^{-2 \theta}(\log H)^{2} .
$$

This implies that

$$
\mathcal{D}_{V<v \leq 2 V}\left((v p)^{\alpha},(v q)^{\alpha}\right) \ll_{\alpha, \xi, \epsilon, \delta} q^{-\theta}
$$

Let us next discuss the case when there exist $h_{1}, h_{2} \in \mathbb{Z}$ with $0<\left\|\left(h_{1}, h_{2}\right)\right\|_{\infty} \leq H$ such that $\left|L\left(h_{1}, h_{2}\right)\right| \leq q^{-\eta}$. In this case, it follows that either $h_{1}<0<h_{2}$ or $h_{2}<0<h_{1}$. Indeed, if $h_{1}, h_{2} \geq 0$ or $h_{1}, h_{2} \leq 0$ holds, then by $0<\left\|\left(h_{1}, h_{2}\right)\right\|_{\infty} \leq H$, one has

$$
q^{-\eta} \geq\left|L\left(h_{1}, h_{2}\right)\right|=\left|h_{1}\right|(p / q)^{\alpha}+\left|h_{2}\right| \geq(1 / q)^{\alpha}=q^{-\alpha} .
$$

Therefore, $\xi / \alpha-\epsilon \leq \eta \leq \alpha$ which contradicts $\epsilon<\left(\xi-\alpha^{2}\right) / \alpha$. Hence

$$
\left|L\left(h_{1}, h_{2}\right)\right|=\left\|h_{1}\left|(p / q)^{\alpha}-\right| h_{2}\right\| \leq q^{-\eta} .
$$

In addition, this implies that $\left|h_{1}\right| \geq(q / p)^{\alpha}\left|h_{2}\right|-q^{\alpha-\eta} / p^{\alpha}>\left|h_{2}\right|$ since $\eta>\alpha$ and $q>p$. We replace $\left|h_{1}\right|$ and $\left|h_{2}\right|$ with h_{1} and h_{2}, respectively. Let $\psi=\eta-2 \theta=\xi / \alpha-\epsilon$. Let $U=q^{(\psi-\alpha) / \alpha}$. Let $K=\left\lfloor q^{2 \theta}\right\rfloor$. By (2.1),

$$
\mathcal{D}_{U<u \leq 2 U}\left((u q)^{\alpha} / h_{1}\right) \ll \frac{1}{K}+\sum_{1 \leq h \leq K} \frac{|T(h)|}{h},
$$

where $T(h)=\frac{1}{U} \sum_{U<u \leq 2 U} \mathrm{e}\left(h(u q)^{\alpha} / h_{1}\right)$. Let $\ell=\lfloor\alpha \psi /(\psi-\alpha)\rfloor+1$. We define $g(x)=$ $(x q)^{\alpha} / h_{1}$. Then for all real numbers $x \in(U, 2 U]$

$$
q^{\alpha} U^{\alpha-\ell} / h_{1}<_{\ell, \alpha}\left|g^{(\ell)}(x)\right|<_{\ell, \alpha} q^{\alpha} U^{\alpha-\ell} / h_{1}
$$

Hence, by Lemma 2.1, one has

$$
T(h) \ll_{\ell, \alpha}\left(q^{\alpha} U^{\alpha-\ell} / h_{1}\right)^{1 /\left(2^{\ell}-2\right)}+U^{-2^{2-\ell}}\left(q^{\alpha} U^{\alpha-\ell} / h_{1}\right)^{-1 /\left(2^{\ell}-2\right)}
$$

Let T_{1} and T_{2} be the first and second term on the right-hand side of this equation. Then

$$
T_{1}^{2^{\ell}-2}=q^{\alpha} U^{\alpha-\ell} / h_{1} \leq q^{\alpha} q^{(\alpha-\ell)(\psi-\alpha) / \alpha}
$$

The exponent of q is

$$
\alpha+(\alpha-\ell)(\psi-\alpha) / \alpha<\alpha+(\alpha-\psi \alpha /(\psi-\alpha))(\psi-\alpha) / \alpha=0 .
$$

Therefore, by taking small $\theta>0$, we have $T_{1} \ll \alpha, \ell q^{-3 \theta}$. Let us evaluate T_{2}. We have

$$
T_{2}^{\alpha\left(2^{\ell}-2\right)} \leq U^{-2^{2-\ell}\left(2^{\ell}-2\right) \alpha} H^{\alpha} q^{-\alpha^{2}} U^{(\ell-\alpha) \alpha}<_{\alpha, \ell} q^{-2^{2-\ell}\left(2^{\ell}-2\right)(\psi-\alpha)} q^{-\alpha^{2}} q^{(\ell-\alpha)(\psi-\alpha)} H^{\alpha}
$$

Let $\xi^{\prime}=\psi-\alpha$. Note that $\xi^{\prime}>0$ holds since $\xi>\alpha^{2}+\alpha \epsilon$ and $\psi=\xi / \alpha-\epsilon$. From $2 \leq \ell \leq \alpha\left(\alpha+\xi^{\prime}\right) / \xi^{\prime}+1$, the exponent of q is

$$
\begin{aligned}
& -2^{2-\ell}\left(2^{\ell}-2\right) \xi^{\prime}-\alpha^{2}+(\ell-\alpha) \xi^{\prime} \\
& \leq-4 \xi^{\prime}+2^{3-2} \xi^{\prime}-\alpha^{2}+\left(\alpha\left(\alpha+\xi^{\prime}\right) / \xi^{\prime}+1-\alpha\right) \xi^{\prime} \\
& \leq-2 \xi^{\prime}-\alpha^{2}+\left(\alpha^{2} / \xi^{\prime}+1\right) \xi^{\prime}=-\xi^{\prime}
\end{aligned}
$$

Therefore $T_{2}^{\alpha\left(2^{\ell}-2\right)}<_{\alpha, \ell} q^{-\xi^{\prime}+\alpha \theta}$. By taking sufficiently small $\theta=\theta(\alpha, \xi, \epsilon)$, we have $T_{2}<_{\alpha, \ell} q^{-3 \theta}$. Hence we obtain

$$
\mathcal{D}_{U<u \leq 2 U}\left((u q)^{\alpha} / h_{1}^{\prime}\right) \ll_{\alpha, \ell} q^{-2 \theta}+q^{-3 \theta} \log q \ll_{\alpha, \xi, \epsilon} q^{-2 \theta}
$$

4. Proof of Theorem 1.2

Let $\alpha>1$. Suppose that α satisfies Condition 1.1. Then there exists $\xi>\alpha^{2}$ such that infinitely many (p, q, r, s) 's with $p<q<r<s$ satisfy (1.1). Let $\left(\left(p_{n}, q_{n}, r_{n}, s_{n}\right)\right)_{n=1}^{\infty}$ be a sequence of which each term satisfies (1.1). We may assume that $q_{1}<q_{2}<\cdots \rightarrow \infty$. If not, then there are at most finitely many (p, q, r, s) 's satisfy (1.1). This is a contradiction. Let $0<\epsilon<\left(\xi-\alpha^{2}\right) / \alpha$, and $\delta=2^{-6}$. Take any large $n \in \mathbb{N}$. By Lemma 3.1, by setting $V_{n}=\left(\delta q_{n}^{\xi}\right)^{1 / \alpha}$ and $U_{n}=q_{n}^{\left(\xi-\alpha^{2}\right) / \alpha^{2}-\epsilon / \alpha}$, either we have

$$
\mathcal{D}_{V_{n}<v \leq 2 V_{n}}\left((v p)^{\alpha},(v q)^{\alpha}\right)<_{\alpha, \epsilon, \xi, \delta} q_{n}^{-\theta},
$$

or there exist $h_{1}, h_{2} \in \mathbb{N}$ with $h_{2}<h_{1} \leq q_{n}^{\theta}$ such that $\left|h_{1}\left(p_{n} / q_{n}\right)^{\alpha}-h_{2}\right| \leq q_{n}^{-\xi / \alpha+\epsilon}$ and

$$
\mathcal{D}_{U_{n}<u \leq 2 U_{n}}\left(\left(u q_{n}\right)^{\alpha} / h_{1}\right) \ll_{\alpha, \epsilon, \xi, \delta} q_{n}^{-2 \theta} .
$$

In the farmer case, let

$$
A_{n}=\left\{v \in\left(V_{n}, 2 V_{n}\right] \cap \mathbb{N}:\left(\left\{\left(v p_{n}\right)^{\alpha}\right\},\left\{\left(v q_{n}\right)^{\alpha}\right\}\right) \in[1 / 8,1 / 4) \times[0,1 / 8)\right\} .
$$

By the definition of the discrepancy, it follows that

$$
\# A_{n}=V_{n} / 64+O\left(V_{n} q_{n}^{-\theta}\right)
$$

Therefore $A_{n} \neq \emptyset$ if n is sufficiently large. Fix any $v_{n} \in A$. Then we have

$$
\begin{aligned}
& \left(v_{n} r_{n}\right)^{\alpha}=2\left(v_{n} q_{n}\right)^{\alpha}-\left(v_{n} p_{n}\right)^{\alpha}+E_{n}^{(1)} \\
& =2\left\lfloor\left(v_{n} q_{n}\right)^{\alpha}\right\rfloor-\left\lfloor\left(v_{n} p_{n}\right)^{\alpha}\right\rfloor+2\left\{\left(v_{n} q_{n}\right)^{\alpha}\right\}-\left\{\left(v_{n} p_{n}\right)^{\alpha}\right\}+E_{n}^{(1)}
\end{aligned}
$$

where we let $E_{n}^{(1)}=\left(v_{n} r_{n}\right)^{\alpha}-2\left(v_{n} q_{n}\right)^{\alpha}+\left(v_{n} p_{n}\right)^{\alpha}$. By $v_{n} \in A_{n}$, it follows that

$$
1 / 8=1 / 4-1 / 8 \leq 2\left\{\left(v_{n} q_{n}\right)^{\alpha}\right\}-\left\{\left(v_{n} p_{n}\right)^{\alpha}\right\} \leq 1 / 2 .
$$

Since $\left|E_{n}^{(1)}\right| \leq \delta=2^{-6}$, we find that $2\left\{\left(v_{n} q_{n}\right)^{\alpha}\right\}-\left\{\left(v_{n} p_{n}\right)^{\alpha}\right\}+E_{n}^{(1)} \in[0,1)$. Thus

$$
\left\{\left(v_{n} r_{n}\right)^{\alpha}\right\}=2\left\{\left(v_{n} q_{n}\right)^{\alpha}\right\}-\left\{\left(v_{n} p_{n}\right)^{\alpha}\right\}+E_{n}^{(1)}
$$

Let $E_{n}^{(2)}=\left(v_{n} q_{n}\right)^{\alpha}+\left(v_{n} s_{n}\right)^{\alpha}-2\left(v_{n} r_{n}\right)^{\alpha}$. Then we have

$$
\begin{aligned}
\left(v_{n} s_{n}\right)^{\alpha} & =2\left(v_{n} r_{n}\right)^{\alpha}-\left(v_{n} q_{n}\right)^{\alpha}+E_{n}^{(2)} \\
& =2\left\lfloor\left(v_{n} r_{n}\right)^{\alpha}\right\rfloor-\left\lfloor\left(v_{n} q_{n}\right)^{\alpha}\right\rfloor+2\left\{\left(v_{n} r_{n}\right)^{\alpha}\right\}-\left\{\left(v_{n} q_{n}\right)^{\alpha}\right\}+E_{n}^{(2)} .
\end{aligned}
$$

By $v_{n} \in A_{n}$, we obtain that

$$
\begin{gathered}
2\left\{\left(v_{n} r_{n}\right)^{\alpha}\right\}-\left\{\left(v_{n} q_{n}\right)^{\alpha}\right\}+F_{n}=3\left\{\left(v_{n} q_{n}\right)^{\alpha}\right\}-2\left\{\left(v_{n} p_{n}\right)^{\alpha}\right\}+2 E_{n}^{(1)}+E_{n}^{(2)}, \\
1 / 8=3 / 8-1 / 4 \leq 3\left\{\left(v_{n} q_{n}\right)^{\alpha}\right\}-2\left\{\left(v_{n} p_{n}\right)^{\alpha}\right\} \leq 3 / 4, \\
\left|2 E_{n}^{(1)}+E_{n}^{(2)}\right| \leq 3 \delta \leq 2^{-4} .
\end{gathered}
$$

These imply that $\left\{\left(v_{n} s_{n}\right)^{\alpha}\right\}=2\left\{\left(v_{n} r_{n}\right)^{\alpha}\right\}-\left\{\left(v_{n} q_{n}\right)^{\alpha}\right\}+E_{n}^{(2)}$. Therefore

$$
\begin{aligned}
& \left|\left\lfloor\left(v_{n} p_{n}\right)^{\alpha}\right\rfloor+\left\lfloor\left(v_{n} r_{n}\right)^{\alpha}\right\rfloor-2\left\lfloor\left(v_{n} q_{n}\right)^{\alpha}\right\rfloor\right| \\
& \leq\left|E_{n}^{(1)}\right|+\left|\left\{\left(v_{n} p_{n}\right)^{\alpha}\right\}+\left\{\left(v_{n} r_{n}\right)^{\alpha}\right\}-2\left\{\left(v_{n} q_{n}\right)^{\alpha}\right\}\right| \\
& \leq \delta+\delta=2 \delta=2^{-5},
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\left\lfloor\left(v_{n} q_{n}\right)^{\alpha}\right\rfloor+\left\lfloor\left(v_{n} s_{n}\right)^{\alpha}\right\rfloor-2\left\lfloor\left(v_{n} r_{n}\right)^{\alpha}\right\rfloor\right| \\
& \leq\left|E_{n}^{(2)}\right|+\left|\left\{\left(v_{n} q_{n}\right)^{\alpha}\right\}+\left\{\left(v_{n} s_{n}\right)^{\alpha}\right\}-2\left\{\left(v_{n} r_{n}\right)^{\alpha}\right\}\right| \\
& \leq \delta+\delta=2 \delta=2^{-5} .
\end{aligned}
$$

Hence we conclude that

$$
\left\lfloor\left(v_{n} p_{n}\right)^{\alpha}\right\rfloor+\left\lfloor\left(v_{n} r_{n}\right)^{\alpha}\right\rfloor=2\left\lfloor\left(v_{n} q_{n}\right)^{\alpha}\right\rfloor, \quad\left\lfloor\left(v_{n} q_{n}\right)^{\alpha}\right\rfloor+\left\lfloor\left(v_{n} s_{n}\right)^{\alpha}\right\rfloor=2\left\lfloor\left(v_{n} r_{n}\right)^{\alpha}\right\rfloor .
$$

In the latter case when there exist $h_{1}, h_{2} \in \mathbb{N}$ with $h_{2}<h_{1} \leq q_{n}^{\theta}$ such that

$$
\left|h_{1}\left(p_{n} / q_{n}\right)^{\alpha}-h_{2}\right| \leq q_{n}^{-\xi / \alpha+\epsilon-2 \theta}, \quad \mathcal{D}_{U_{n}<u \leq 2 U_{n}}\left(\left(u q_{n}\right)^{\alpha} / h_{1}\right) \ll_{\alpha, \epsilon, \xi} q_{n}^{-2 \theta}
$$

where $U_{n}=q_{n}^{\left(\xi-\alpha^{2}\right) / \alpha^{2}-\epsilon / \alpha}$. Let

$$
B_{n}=\left\{u \in\left(U_{n}, 2 U_{n}\right]: h_{1}^{-1} 2^{-6} \leq\left\{\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\}<h_{1}^{-1} 2^{-5}\right\}
$$

By the definition of the discrepancy, it follows that

$$
\# B_{n}=U_{n} h_{1}^{-1} 2^{-6}+O\left(U_{n} q_{n}^{-2 \theta}\right) \geq U_{n} q_{n}^{-\theta} 2^{-6}+O\left(U_{n} q_{n}^{-2 \theta}\right)>0
$$

Therefore $B_{n} \neq \emptyset$ if n is sufficiently large. Fix any $u_{n} \in B_{n}$. Then we observe that

$$
\left(u_{n} q_{n}\right)^{\alpha}=h_{1}\left\lfloor\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\rfloor+h_{1}\left\{\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\} .
$$

Since $u_{n} \in B_{n}$, we also observe that $2^{-6} \leq h_{1}\left\{\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\} \leq 2^{-5}$. Thus

$$
\begin{equation*}
\left\{\left(u_{n} q_{n}\right)^{\alpha}\right\}=h_{1}\left\{\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\} . \tag{4.1}
\end{equation*}
$$

Let $E_{n}^{(3)}=\left(u_{n} p_{n}\right)^{\alpha}-\left(h_{2} / h_{1}\right)\left(u_{n} q_{n}\right)^{\alpha}$. It follows that

$$
\begin{aligned}
& \left(u_{n} p_{n}\right)^{\alpha}=\left(h_{2} / h_{1}\right)\left(u_{n} q_{n}\right)^{\alpha}+E_{n}^{(3)} \\
& =h_{2}\left\lfloor\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\rfloor+h_{2}\left\{\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\}+E_{n}^{(3)}
\end{aligned}
$$

By $u_{n} \in B_{n}, 1 \leq h_{2}<h_{1} \leq q_{n}^{\theta}$, and $u_{n} \leq U_{n}=q_{n}^{\left(\xi-\alpha^{2}\right) / \alpha^{2}-\epsilon / \alpha}$, we have

$$
q_{n}^{-\theta} 2^{-6} \leq h_{2} \cdot h_{1}^{-1} 2^{-6} \leq h_{2}\left\{\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\} \leq h_{2} \cdot h_{1}^{-1} 2^{-5} \leq 2^{-5}-q_{n}^{-\theta} 2^{-5},
$$

$\left|E_{n}^{(3)}\right|=\left(u_{n} q_{n}\right)^{\alpha}\left|h_{1}\left(p_{n} / q_{n}\right)^{\alpha}-h_{2}\right| / h_{1} \leq U_{n}^{\alpha} q_{n}^{\alpha} q_{n}^{-\xi / \alpha+\epsilon-2 \theta}=q_{n}^{\left(\xi-\alpha^{2}\right) / \alpha-\epsilon} q_{n}^{\alpha} q_{n}^{-\xi / \alpha+\epsilon-2 \theta}=q_{n}^{-2 \theta}$.
Therefore, we obtain $\left\{\left(u_{n} p_{n}\right)^{\alpha}\right\}=h_{2}\left\{\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\}+E_{n}^{(3)}$ by taking large n. Further, let $E_{n}^{(4)}=\left(u_{n} r_{n}\right)^{\alpha}-2\left(u_{n} q_{n}\right)^{\alpha}+\left(u_{n} p_{n}\right)^{\alpha}$. We observe that

$$
\begin{aligned}
& \left(u_{n} r_{n}\right)^{\alpha}=2\left(u_{n} q_{n}\right)^{\alpha}-\left(u_{n} p_{n}\right)^{\alpha}+E_{n}^{(4)} \\
& =2 h_{1}\left\lfloor\left(u_{n} q_{n}\right)^{\alpha}\right\rfloor-\left\lfloor\left(u_{n} p_{n}\right)^{\alpha}\right\rfloor+2\left\{\left(v_{n} q_{n}\right)^{\alpha}\right\}-\left\{\left(v_{n} p_{n}\right)^{\alpha}\right\}+E_{n}^{(4)} .
\end{aligned}
$$

In addition, we have $\left|E_{n}^{(4)}\right| \leq U_{n}^{\alpha} q_{n}^{-\xi}=q_{n}^{\left(\xi-\alpha^{2}\right) / \alpha-\epsilon} q_{n}^{-\xi}=q_{n}^{-(1-1 / \alpha) \xi-\alpha-\epsilon}$. Further,

$$
\begin{aligned}
& 2\left\{\left(u_{n} q_{n}\right)^{\alpha}\right\}-\left\{\left(u_{n} p_{n}\right)^{\alpha}\right\}+E_{n}^{(4)} \\
& =2 h_{1}\left\{\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\}-\left\{\left(u_{n} p_{n}\right)^{\alpha}\right\}+E_{n}^{(4)} \\
& =2 h_{1}\left\{\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\}-h_{2}\left\{\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\}-E_{n}^{(3)}+E_{n}^{(4)} \\
& =\left(2 h_{1}-h_{2}\right)\left\{\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\}-E_{n}^{(3)}+E_{n}^{(4)}
\end{aligned}
$$

Note that $h_{1}>h_{2}$ and $u_{n} \in B_{n}$ imply

$$
2^{-6}=h_{1} h_{1}^{-1} 2^{-6} \leq\left(2 h_{1}-h_{2}\right)\left\{\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\} \leq 2 h_{1} \cdot h_{1}^{-1} 2^{-5}=2^{-4} .
$$

Therefore we have $\left\{\left(u_{n} r_{n}\right)^{\alpha}\right\}=2\left\{\left(u_{n} q_{n}\right)^{\alpha}\right\}-\left\{\left(u_{n} p_{n}\right)^{\alpha}\right\}+E_{n}^{(4)}$ for sufficiently large n. We next let $E_{n}^{(5)}=\left(u_{n} q_{n}\right)^{\alpha}+\left(u_{n} s_{n}\right)^{\alpha}-2\left(u_{n} r_{n}\right)^{\alpha}$. Similarly to the evaluation of $E^{(4)}$, it follows that $\left|E_{n}^{(5)}\right| \leq q_{n}^{-(1-1 / \alpha) \xi-\alpha-\epsilon}$. In addition, we observe that

$$
\left(u_{n} s_{n}\right)^{\alpha}=2\left\lfloor\left(u_{n} r_{n}\right)^{\alpha}\right\rfloor-\left\lfloor\left(u_{n} q_{n}\right)^{\alpha}\right\rfloor+2\left\{\left(u_{n} r_{n}\right)^{\alpha}\right\}-\left\{\left(u_{n} q_{n}\right)^{\alpha}\right\}+E_{n}^{(5)},
$$

and

$$
\begin{aligned}
& 2\left\{\left(u_{n} r_{n}\right)^{\alpha}\right\}-\left\{\left(u_{n} q_{n}\right)^{\alpha}\right\} \\
& =2\left(2 h_{1}-h_{2}\right)\left\{\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\}-h_{1}\left\{\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\}-E_{n}^{(3)}+E_{n}^{(4)} \\
& =\left(3 h_{1}-2 h_{2}\right)\left\{\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\}-E_{n}^{(3)}+E_{n}^{(4)} .
\end{aligned}
$$

Note that $h_{1}>h_{2}$ and $u_{n} \in B_{n}$ imply

$$
2^{-6}=h_{1} \cdot h_{1}^{-1} 2^{-6} \leq\left(3 h_{1}-2 h_{2}\right)\left\{\left(u_{n} q_{n}\right)^{\alpha} / h_{1}\right\} \leq 3 h_{1} \cdot h_{1}^{-1} 2^{-5} \leq 2^{-3} .
$$

Therefore $\left\{\left(u_{n} s_{n}\right)^{\alpha}\right\}=2\left\{\left(u_{n} r_{n}\right)^{\alpha}\right\}-\left\{\left(u_{n} q_{n}\right)^{\alpha}\right\}+E_{n}^{(5)}$. Similarly to the farmer case, by taking sufficiently large $n \in \mathbb{N}$, we conclude that

$$
\left\lfloor\left(u_{n} p_{n}\right)^{\alpha}\right\rfloor+\left\lfloor\left(u_{n} r_{n}\right)^{\alpha}\right\rfloor=2\left\lfloor\left(u_{n} q_{n}\right)^{\alpha}\right\rfloor, \quad\left\lfloor\left(u_{n} q_{n}\right)^{\alpha}\right\rfloor+\left\lfloor\left(u_{n} s_{n}\right)^{\alpha}\right\rfloor=2\left\lfloor\left(u_{n} r_{n}\right)^{\alpha}\right\rfloor .
$$

Hence $\operatorname{PS}(\alpha)$ contains infinitely many 4 -APs assuming that α satisfies Condition 1.1

Acknowledgement

The author would like to thank Professor Yuzuru Sato, Professor Kouji Yano, and Professor Hiroki Sumi for the opportunity to give a talk in RIMS Workshop 2021 "Integrated Research on Random Dynamical Systems and Multi-Valued Dynamical Systems". This work was supported by JSPS KAKENHI Grant Number JP19J20878.

References

[DT97] Michael Drmota and Robert F. Tichy, Sequences, discrepancies and applications, Lecture Notes in Mathematics, vol. 1651, Springer-Verlag, Berlin, 1997. MR 1470456
[FW09] N. Frantzikinakis and M. Wierdl, A Hardy field extension of Szemerédi's theorem, Adv. Math. 222 (2009), no. 1, 1-43. MR 2531366
[Kok50] Jurjen Ferdinand Koksma, Some theorems on Diophantine inequalities, Scriptum no. 5, Math. Centrum Amsterdam, 1950. MR 0038379
[MS21] T. Matsusaka and K. Saito, Linear Diophantine equations in Piatetski-Shapiro sequences, Acta Arith. 200 (2021), no. 1, 91-110. MR 4319608
[Szü52] Péter Szüsz, Über ein Problem der Gleichverteilung, Comptes Rendus du Premier Congrès des Mathématiciens Hongrois, 27 Août-2 Septembre 1950, Akadémiai Kiadó, Budapest, 1952, pp. 461-472. MR 0056036
[Tit86] E. C. Titchmarsh, The theory of the Riemann zeta-function, second ed., The Clarendon Press, Oxford University Press, New York, 1986, Edited and with a preface by D. R. Heath-Brown. MR 882550

Kota Saito, Graduate School of Mathematics, Nagoya University, Furo-cho, ChikusaKU, NAGOYA, 464-8602, Japan

Email address: m17013b@math.nagoya-u.ac.jp

