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Abstract
We study an asymptotic behaviour of the pressure functional
Plp+ 1) = P(p) + pit +pat® + -+ pat” +0(t") (¢t — 0)

with potentials ¢ and i on a countable Markov shift X. We show that if the transition matrix of X
is finitely primitive, the potentials ¢ and 1) are real-valued locally Holder continuous functions on X,
and a sufficient condition for an asymptotic expansion of ¢ — P(¢ + t) is satisfied, then the 3-th
coeflicient ps of this expansion has a limit representation which looks like the asymptotic variance pa
well. The form of the coefficient p, (¢ > 4) is also investigated under a special condition for .

1 Introduction

Let X be a countable Markov shift with finitely primitive transition matrix (see Section
3 for definition). Take real-valued locally Holder continuous functions ¢ and ¢ on X. We
study an asymptotic behaviour of the pressure functional, namely

P(p+tp) = P() + pit + pot® + -« + put™ +o(t") (t — 0).

Here P(p + t1)) is called the topological pressure of ¢ + ¢ [4] which is defined by (3.1)
in Section 3. It is known that if P(p + #1)) has the expansion P(p) + pit + pat? + o(t?)
and suitable conditions hold then p; and p, have the forms [8]

p= /l/)du (1.1)
D2 = 2'n—>oon/ ("Zzl /Xz/)du)oa}“Yd,u, (1.2)
k=0

where p is the o-invariant Borel probability Gibbs measure of the potential ¢ and o is the
shift transformation. We are interested in whether p; (k > 3) has the expression similar
to the asymptotic variance ps.

Our main results is as follows: if we fix an integer n > 3 and assume that a sufficient
condition ((4.1) in Section 4) for asymptotic expansion of order n of pressure functional is
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satisfied, then we give a explicit formula for the limit of (315" (¥~ [ ' ¥ dp)oat)k) /mlk/
asm — oo for each 2 < k < n (Theorem 4.3), where [k/2] denotes the largest integer i
with @ < k/2. As a corollary, we obtain the formula of the 3-th coefficient:

1.1 s 0\ 3
Ps =5 lim m ( 2 (v — /X’l/J du) oo ) dp (1.3)
(Corollary 4.4). On the other hand, each p, (¢ > 4) does not have a similar form in general
(Remark 4.6). Nevertheless, under the cases ps = - -+ = p,—1 = 0, we have a similar form
for the coefficient p, as well as (1.3) (Proposition 4.7). By using this proposition, we see
that if 4 is cohomologous to a constant, then all coefficients py, (2 < k < n) are zero.

Note that in the infinite state case, the function ¢ — P(¢ + t¢) may be not analytic
at t = 0 in general though the finite state case implies that the function ¢ — P(p + t))
is analytic on R by using analytic perturbation theory for suitable transfer operators [5].
Then we need a new method for obtaining the asymptotic expansion in the infinite state
case. By developing the asymptotic analysis of the pressure of perturbed potential for the
finite state case to the countable state case, we obtain the higher asymptotic expansion of
P(p + tb) (Proposition 4.1). Furthermore, we also extend a transfer operator technique
of Kotani and Sunada [3] in subshift of finite type to a technique in countable Markov
shift. In this study, we need the exponential decay of correlation for ¢ in countable state
space and it is guaranteed by a spectral gap property of suitable transfer operators [1]
(see also Theorem 3.6). By using these arguments, our main results are showed.

In a future work, we shall study the asymptotic expansion of the Hausdorff dimension
of the limit sets generated by a perturbed infinite graph Markov systems using our results
and techniques in this paper. Remark that in a suitable limit set, its Hausdorff dimension
is given by a solution s of P(s¢) = 0 of a physical potential ¢ which is sometime called
a Bowen’s formula. We shall investigate representations of the higher-order coefficients.
In another application, information of the higher-order coeflicient of pressure functionals
will be useful for improving of convergence of a central limit theorem.

The next section 2 is mentioned about previous related results which is given by [3]. In
Section 3, we recall the notion of symbolic dynamics with countable state space and the
notion of thermodynamic formalism which need to state our results. The main results are
precisely given in Section 4. In particular, the outlines of proofs are stated in the same

section. In the finial section 5, we give a simple concrete example.
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20K03636.



2 Related results

In this section, we recall the asymptotic expansion of pressure functional on compact
smooth manifold with topological mixing Anosov diffeomorphism [3]. Let X be a compact
smooth manifold and T : X — X a topologically mixing Anosov diffeomorphism (see
[2] for definition). Denoted by u the T-invariant probability Gibbs measure on X. For
©0s P15+ o6 € C®(X — R), let

Gk+1 k
Cor(po, 1, - -, pr) = E log / exp Z tigi | du
. .

i=0

to=-=t,=0
Theorem 2.1 ([3, Theorem 1 and Theorem 2]) Let X be a compact smooth mani-
fold, T : X — X topologically mizing Anosov diffeomorphism and take ¢ of C°(X —
R). Denoted by p the T-invariant Gibbs measure for ¢ on X. Then for go,...,pr €
C>*(X — R),

ak+1
Oty - - Oty

oo

= Z Cor(pg, 1 0T™, ... poT"*),

to==1=0 N1,...,Mp=—00

P +topo+ -+ + tepr)

where the right hand side converges absolutely.

Corollary 2.2 ([3, Corollary 1]) Under the same condition of Theorem 2.1, for ¢ €
C™(X), the pressure functional has an infinite series at t = 0:

Pp+t) = P(p) +prt + - +ppt* + -

with
p1=n(¥)
JR 1
=— Cov(th,ipoT") = = p o T dp — hd bd
D2 Q,L:Z_OO ov(tp,1poT™) 2n=2_00 (/x Y1) o 1 /XI/) /L/Xq/) /L)
1 oo
p=r >0 Cov(p o T o) fork 22

Remark 2.3 It is not hard to show that the coefficient p, in the above corollary has the
form (1.2) replacing o by T. On the other hand, it is not easy to check that the coefficient
ps in the above has the form (1.3).

3 Preliminarily

We start with the notion of symbolic dynamics with countable state space [4, 6, 7]. Let
S be a countable set with distinct topology and A = (A(ij))sxs & zero-one matrix, i.e.
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A(ij) =0 or A(ig) =1 for all 7,5 € S. The set

00
X ={w=wow;--- € HS : A(wgwyy1) = 1 for any k > 0}
n=0

endowed with product topology induced by the discrete topology on S, and endowed with
the shift transformation o : X — X is defined by (ow),, = w,11 for any n > 0. This is
called a countable Markov shift (or topological Markov shift) with state space S and with
transition zero-one matrix A. In what follows, we assume X # (). An element w of X
denotes w = wowiws - - - with wy, wi,wq, -+ € S.

Word w = wyws ... w, € S™is admissible it A(wiwy) = A(waws) = -+ = A(wp_1wy,) =
1. For admissible word w € S™, cylinder set is defined by [w] :={w € X : wp -+ wy_1 =
w}. The transition matrix A is finitely irreducible if there exists a finite subset F' C
U,—, S™ such that for any a,b € S, there is w € F' so that a - w - b is admissible, where
a - w is the concatenation of a and w. The matrix A is called finitely primitive if there
exists a finite subset F' C SV with an integer N > 1 so that for any a,b € S, a-w - b is
admissible for some w € F [4]. Note that finitely primitively implies finitely irreducibility.
The matrix A has the big images and pre-images (BIP) property if there is a finite set
So = {ay, -+ ,ay} of S such that for any b € S, there exist 1 < i, < N such that
A(ab) = A(ba;) = 1.

Remark 3.1 The matrix A is finitely irreducible if and only if A is irreducible and has the

BIP property. Similarity, the matrix A is finitely primitive if and only if X is topologically
mixing and A has the BIP property [7].

For 6 € (0,1), a metric dg : X x X — R is defined by

emin{nzo:w"#vn} (UJ 7& ’l))

dy(w,v) =
) 0 (w=w).

Remark 3.2 The metric topology induced by dy coincides with the product topology
induced by the discrete topology on S.

Remark 3.3 (X, dy) is a complete and separable metric space. Moreover, if {a € S :
[a] # 0} is an infinite set, then X is not compact.

Next we introduce some function spaces and the notion of thermodynamic formalism
[4, 8. Put K=Ror C. A function f : X — K is 0-locally Lipschitz continuous
if ¢(f) := sup,egsup{|f(w) — f(v)|/dp(w,v) : w,v € [e], w # v} < co. A function
f X — Kis called a locally Holder continuous function if f is a 6-locally Lipschitz



continuous for some 6 € (0,1). We set

C(X,K)={f : X — K : continuous functions}
Co(X, K) ={f € C(XK) - [flloo <00} with || f]loc := sup |f(w)]
we

Fy(X,K)={f : X — K : 6-locally Lipschitz continuous }
Foo(X,K) ={f € Fp(X, K) : [[flloc <00} with | f]lg == [ flloo + c(f)-
The spaces (Cp(X,K), ||+ ||oc) and (Fy (X, K), |- |lo) are Banach spaces. Note the inclusion
Fy(X,K) € Fp(X,K) for § < @'. The symbol K may be omitted from these definitions

when K = C.
For function ¢ : X — R, the topological pressure P(yp) of ¢ is given by

n—1
. 1
P(p) = nh_}mm - log Z exp(sup Z p(o*w)) (3.1)
wesn 0 Y€ ko

if it exists [4].

Remark 3.4 If the transition matrix of X is finitely irreducible and ¢ is in Fy(X,R)
with P(p) < oo, then P(y) coincides with the Gurevich pressure Pg(p) of ¢ which is
introduced in [6].

A o-invariant Borel probability measure p on X is said to be a Gibbs measure of the
potential ¢ : X — R if there exist ¢ > 1 and P € R such that for any w € X and n > 1

Ry w([wows - . - wp1])

~ exp(—nP + 315 p(otw))
Remark 3.5 If A is finitely irreducible and ¢ is in Fy(X,R) with P(¢) < oo, then the
Gibbs measure of ¢ uniquely exists and P equals P(y) [4].

C

<ec.

For a real-valued function ¢ on X, the Ruelle operator L, associated to ¢ is defined by

Lofw)= Y ef(e-w)
€S t(e)=i(wo)
if this series converges in C for a complex-valued function f on X and for w € X. It is
known that if the incidence matrix is finitely irreducible and ¢ is in Fy(X,R) with finite
topological pressure, then £, becomes a bounded linear operator both on the Banach
spaces Fpy(X) and Cp(X). We state a version of Ruelle-Perron-Frobenius Theorem as
follows.

Theorem 3.6 ([1]) Let X be a countable Markov shift with finitely primitive transition
matriz. Let ¢ € Fy(X,R) with finite pressure. Then the Ruelle operator L, : Fyy(X) —
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Fyo(X) of ¢ has the spectral decomposition
L,= P+R
such that
(1) X is the spectral radius of £ : Fpp(X) — Fyyp(X) and is a simple eigenvalue of Ly,;

(2) P is the eigenprojection of the eigenvalue X of L onto the one-dimensional eigenspace.
In particular,

Pf:/xfhdz/,

where h is the corresponding positive eigenfunction of the eigenvalue A and v is the cor-
responding positive eigenvector of X of the dual operator L7, : Fop(X)* — Fpp(X)*
with v(h) = 1;

(3) PR =RP = O and the spectral radius of R : Fyp(X) — Fypup(X) is less than A;
(4) P(p) equals log A and hv becomes the Gibbs measure of the potential .
For the sake of convenience, we call the number A in above the Perron eigenvalue of L.

Remark 3.7 When the transition matrix A is finitely irreducible, the assertions of The-
orem 3.6 are correct excluding (3). In fact, finitely irreducibility implies that R has the
eigenvalue Ae?™V=1/? for each i = 1,2,...,p — 1 with the period p of A as nonnegative

irreducible matrices.

4 Main results

Recall that X is a countable Markov shift with countable state space S and with finitely
primitive transition zero-one matrix A. Fix an integer n > 1. Let ¢,1¢ € Fp(X,R). We
introduce a sufficient condition for the asymptotic expansion of order n of [0,00) 3 ¢ —
P+ ty):

(®),, There exists to > 0 such that for any k =0,1,...,n,

sup sup e?@HPE (W) < oo, (4.1)
=5 welil 0<t<to

Proposition 4.1 ([9]) Let X be a countable Markov shift with finitely irreducible inci-
dence matriz. Assume that the condition (), is satisfied for a fized integer n > 1. Then
P(p + 1) has the form

P(p +t)) =P(p) + pit + pat® + - -+ + put™ + o(t") in R (4.2)

ast — 0 for some numbers p; € R.



Outline of proof. Note that the number P(¢ + t) is finite for all 0 < ¢t < ¢y from the
condition (@),, putting k = 0. The Taylor expansion e**% = Y e¥y*¢* /k! implies the
asymptotic expansion of the operator L,y

Loty =Ly + Lort -+ Lont™ + Lo(t, )t

with the coefficient £, = £, o (¢*/k!) and the remainder £, (¢,-). The condition (&),
implies the following two properties: (i) each L, is a bounded linear operator acting on
Fy,(X); (ii) the remainder ||£,(, )|/ vanishes as ¢ — 0. Consequently, it follows from
(i)(ii) in above that the Perron eigenvalue n(t) of L1, has the expansion

n(t) =X+t + - -+ nat"™ + o) (4.3)

ast — 0 with coefficients n,, € R (k = 1,2,...,n), where X is the Perron eigenvalue of
L. Hence the function ¢t — P(p + t1)) = logn(t) satisfies the expansion (4.2) with the
coefficient

S m (k=1,....n).

Q1,0 >1:
i1+ ti=k

Pk:Z C

Remark 4.2 Assume that the condition (P),, is satisfied for an integer n > 2. Then the
coefficients p; and ps have the forms (1.1) and (1.2), respectively.

Denoted by A(t) the Perron eigenvalue of the operator Ly p(wy). Note that if (), is
satisfied, then so is for ¢ := ¢ — u(¢)). Therefore we have the asymptotic expansion of
the Perron eigenvalue A(t) of Lo sp—u(y))

At) = A+ Mt + Xot? + -+ M\t +o(t") in R

ast — 0 with coefficients A, € R (k= 1,2,...,n). In particular, \y = u(¢p — pu(1)) =0
holds.
Now we are in a position to state one of our main results:

Theorem 4.3 ([9]) Let X be a countable Markov shift with finitely primitive transition
matriz. Assume that the condition (D), is salisfied for a fized integer n > 2. Denoted by
1 the Gibbs measure of . Then for any k=2,3,....,n

= 1 () /2 ki
lim k/2] k! / Z ¢ - / tdp) o 0 du = [k/2]i (p2) o ( 1'5 even)
e i= T (P2) ps (K is odd),

(4.4)
where [k/2] means the largest integer i with i < k/2.
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Outline of proof. Let p(t, ) = ¢ + t(¢¥ — u(v))). We consider the following three steps:
Step I: The m-th iteration of L, .) has the asymptotic expansion

'C’:?(t,) = LZI + Ml,mt +oee Mn,mtn + Mn,m(tv ')tn

for each m > 1 with My, ,,, = E?O(Z?;Bl(q/}—u(w)) Ok /L and with | Mo, (t, )]|ee — 0.

Indeed, this assertion is obtained by calculating m-iteration of the both side of the ex-
pansion Ly ) = Lo+ Myt -+ Mt + M, (t, )t" with M,,(t, -) satisfying | M, (¢, )]«
0.

K

Step II: The asymptotic expansion of m-th power of eigenvalue A(t) of L) has the

expansion

)\( )"L )\NL + )\1 ’nf _"_ _"_ )\I,LJ,LtTL _"_ O(t”)

and each A, satisfies

Akem mh

km _ V(Mpmh) + o(m/2). (4.5)
A A

This assertion follows from Step I, an argument of [3] and the property of spectral gap in

Theorem 3.6(3).
Step III:

Nem [k/g] (p2)™*? (k is even)

A m (p2)[k/2]71p3 (k is odd)
T o(mlb/2), e

Indeed, since Ay, is the k-th coefficient of (A + Agt? + -+ - + Apt™ + o(t™))™, we obtain

N &2 1 7
)x’ﬁ :; (m —1)! ,.Z,;o H ( )

72+ Hig=i
2jo+-+kjp=k

k,m

=a"™m + dbmm? 4+ a[k/z] m/k/2

with some numbers a/"™ € R (i = 1,2, ..., [k/2]). In particular, aﬁc’%] is equal to the right
hand side of (4.4). Hence the assertion of the theorem holds from (4.5) and (4.6) together
with the equations p, = Ao/ and p3 = A3/A. |

Corollary 4.4 ([9]) Let X be a countable Markov shift with finitely primitive transition
matriz. Assume that the condition (®), is satisfied for a fized integer n > 3. Then the
3-th coefficient of the expansion of t — P(p + t) has the form (1.3).



Proof. The assertion immediately follows from Theorem 4.3 by putting k = 3. |

Remark 4.5 Theorem 4.3 says that if ps # 0 and p3 # 0, then the speed of convergence
(S0 (b — () 0 09)F) — 0 has exactly the order 1/m!*/? for any k > 2.

Remark 4.6 The coefficient py, for k > 4 is not displayed as well as (1.3) in general. In
fact, if either k is even and py # 0 or k is odd and pops # 0, then the formula (4.4) implies

m 1
lim — /z/)du oa) dp| =
m — o0 M 1,:0
We next consider the case p, = --- = p,_; = 0 and p, # 0 for some ¢ > 3:

Proposition 4.7 ([9]) Let X be a countable Markov shift with finitely primitive transi-
tion zero-one matriz. Assume that the condition (P),, is satisfied for a fixed integer n > 3,

and py = -+ =py—1 =0 for some 3 < g <n. Then for each k =q,q+1,....,n
k!
. DK (k=0 (mod q)
k!
k/q / (Z (Che /deu oa) du — ngc/q] ot (k=1 (mod q)
o(1) (otherwise).

(4.7)
asm — oo. Consequently,

b=y lim X(g(w—A¢du>oai)qdu

qlm = com

+1

m 1
1
po = f, (S [ vanes) i

1=

Outline of proof. ~Note that the assumptions p, = -+ = p;-1 = 0 imply Ay = -+ =
Ag-1 = 0. Thus we rewrite

Ak, k k k.
/\—7';" =ay™"m +ay"m? + - + a[k’/"]m[k/p]
with
k m
Upesp) =

LiE>0:
Jq+ +Jk [k/a]
qjqt-t+kjp=k
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It is directly checked that the number afk’;';] equals the right hand side of (4.7) in the case
k=i (mod ¢) (i =0 or 1). A proof of the remainder part is similar to the proof of
Theorem 4.3. O

Remark 4.8 By virtue of Proposition 4.7, we see that if ¢ is cohomologous to a constant,
then p, = 0 for each k = 2,3, ..., n, where ¥ is cohomologous to a constant if there exist
a continuous function v : X — R and a constant ¢ € R such that ¢y =u —uou—+c.

5 An example

We remark that in the finite state case (i.e. 45 < 00), the function ¢ — P(p + t) is
analytic on R for any p,9 € Fp(X,R). In particular, the condition (2), holds for any
n > 1in this case. On the other hand, in the infinite state case, the function t — P(p+t1))
may be not analytic at a point.

For example, put n > 3, S = {1,2,...}, X = [[>2, S, p(i) = 1/(i(log7)"?) and
p(w) = ¥(w) = log(p(wo + 2)) for w € X.

Proposition 5.1 ([9]) Under the notation n, S, X, p(i), ¢, ¢ in above, the condition (D),

is fulfilled and (D), 41 does not hold. In particular, P(o+tw) is not differentiable at t = 0.
Moreover, the coefficient py (k = 1,2,3) has the form

=3 A
b2 :%mlﬂnm ) HF/\lf(m (Z (logp(yk) _ Zp(l)hj\gp(l)>>
Pt k=1 1=3
D3 :%mhamoo“ ;_3 H]—;f(zj) (; <10gp(2k) B ; p(l) l(j\gp(l)>> |

where A = Y2, p(i).

Proof. We will check the validity of the condition (&),. Note that p(i +2) < 1 for any
1€ S and n > 1. For k > 1, the series in the condition (@), satisfies

sup sup e?@HYE]|() Zp —log p(i))*

icS weli] 0<t<to
k bl (log log )k~
_lz_;(l> (n+2) Z (logi)m2-1~
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The series Y .-, (loglogi)*~!/(i(logi)"**7") converges for any n+2 —1 > 2, ie. n > L.
Therefore (P),, is fulfilled. On the other hand, If K =n+1 and [ = n+ 1, then this series
does not converge. This means that the condition (&), fails. Note that P(¢ + to) is
not differentiable at ¢ = 0 by P(¢ + tv) = +o0 for any ¢t < 0. O
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