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Abstract 

We study an asymptotic behaviour of the pressure functional 

P(cp + tゆ） ＝ P（ゃ） ＋p1t+p2t2 + ・ ・ ・ +Pn『+0(『） （t →0) 

with potentials <p andゆona countable Markov shift X. We show that if the transition matrix of X 
is finitely primitive, the potentials <p and心arereal-valued locally Holder continuous functions on X, 
and a sufficient condition for an asymptotic expansion of t→ P（ゃ＋ t心） issatisfied, then the 3-th 
coefficient p3 of this expansion has a limit representation which looks like the asymptotic variance p2 

well. The form of the coefficient pq (q :2'. 4) is also investigated under a special condition for似

1 Introduction 

Let X be a countable Markov shift with finitely primitive transition matrix (see Section 

3 for definition). Take real-valued locally Holder continuous functions cp and心onX.We 

study an asymptotic behaviour of the pressure functional, namely 

P(cp + t心） ＝P(cp) +Pit+ P2t2 + ・ ・ ・ + Pntn + o(『） （t →0). 

Here P(cp + t心） iscalled the topological pressure of cp + tゆ[4]which is defined by (3.1) 

in Section 3. It is known that if P(cp十加） hasthe expansion P(cp) + p1t + p2t2 + o（柱）

and suitable conditions hold then p1 and p2 have the forms [8] 

Pl =J心dμ
X 
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where μ is the(J-invariant Borel probability Gibbs measure of the potential cp and(Jis the 

shift transformation. We are interested in whether Pk (k 2'. 3) has the expression similar 

to the asymptotic variance p2. 

Our main results is as follows: if we fix an integer n 2'. 3 and assume that a sufficient 

condition ((4.1) in Section 4) for asymptotic expansion of order n of pressure functional is 
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satisfied, then we give a explicit formula for the limit of /t(（区□□（心―Ix心dμ)oゲ）り／m[k/2]

as m →oo for each 2 ~ k ~ n (Theorem 4.3), where [k/2] denotes the largest integer i 

with i ~ k/2. As a corollary, we obtain the formula of the 3-th coefficient: 

1 
m-1 

3 1 
加＝正匹OO冨！x(苫←JX心dμ)o戸） dμ (1.3) 

(Corollary 4.4). On the other hand, each Pq (q 2'. 4) does not have a similar form in general 

(Remark 4.6). Nevertheless, under the cases p2 = • • • = Pq-I = 0, we have a similar form 

for the coefficient Pq as well as (1.3) (Proposition 4.7). By using this proposition, we see 

that if心iscohomologous to a constant, then all coefficients Pk (2 ~ k ~ n) are zero. 

Note that in the infinite state case, the function t→P(cp + tル） maybe not a叫 ytic

at t = 0 in general though the finite state case implies that the function t→ P（中十 tル）

is analytic on瞑 byusing analytic perturbation theory for suitable transfer operators [5]. 

Then we need a new method for obtaining the asymptotic expansion in the infinite state 

case. By developing the asymptotic analysis of the pressure of perturbed potential for the 

finite state case to the countable state case, we obtain the higher asymptotic expansion of 

P(cp + t心） （Proposition 4.1). Furthermore, we also extend a transfer operator technique 

of Kotani and Sunada [3] in subshift of finite type to a technique in countable Markov 

shift. In this study, we need the exponential decay of correlation for cp in countable state 

space and it is guaranteed by a spectral gap property of suitable transfer operators [1] 

(see also Theorem 3.6). By using these arguments, our main results are showed. 

In a future work, we shall study the asymptotic expansion of the Hausdorff dimension 

of the limit sets generated by a perturbed infinite graph Markov systems using our results 

and techniques in this paper. Remark that in a suitable limit set, its Hausdorff dimension 

is given by a solutions of P(scp) = 0 of a physical potential cp which is sometime called 

a Bowen's formula. We shall investigate representations of the higher-order coefficients. 

In another application, information of the higher-order coefficient of pressure functionals 

will be useful for improving of convergence of a central limit theorem. 

The next section 2 is mentioned about previous related results which is given by [3]. In 

Section 3, we recall the notion of symbolic dynamics with countable state space and the 

notion of thermodynamic formalism which need to state our results. The main results are 

precisely given in Section 4. In particular, the outlines of proofs are stated in the same 

section. In the finial section 5, we give a simple concrete example. 

Acknowledgment. This study was partially supported by JSPS KAKENHI Grant Number 

20K03636. 
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2 Related results 

In this section, we recall the asymptotic expansion of pressure functional on compact 

smooth manifold with topological mixing Anosov diffeomorphism [3]. Let X be a compact 

smooth manifold and T : X →X a topologically mixing Anosov diffeomorphism (see 

[2] for definition). Denoted byμ the T-invariant probability Gibbs measure on X. For 

砂互・．．，臼 EC00(X→恥）， let

Cor(cp。 9 互•．．，四） ＝ Ot。?k9:18tklog (Jx exp （言吋 dμ)lo= ＝lk=0. 

Theorem 2.1 ([3, Theorem 1 and Theorem 2]) Let X be a compact smooth mani-

fold, T: X →X topologically mixing Anosov diffeomorphism and take cp of C00(X→ 
股）． Denotedby μ the T-invariant Gibbs measure for cp on X. Then for cp0,...，臼 E

C00(X→股），

が＋1 00 
P(cp + t。cp。+...+tk四） ＝ L Cor(cp。9凸°斤，．．．，臼°戸），

叫・ • • 8tk to=--・=tk=O n1,...,nk=-oo 

where the right hand side converges absolutely. 

Corollary 2.2 ([3, Corollary 1]) Under the same condition of Theorem 2.1, for心E

C00(X), the pressure functional has an infinite series at t = 0: 

P(cp + tゆ） ＝P(cp) +Pit+・.. + Pk抄＋・・・

with 

P1=μ（ゆ）

1 
00 

加＝心OOCov（腐心 oT門＝はOO(JXゆゆ oTndμ-L心dμJX心dμ)

1 
Pk =-

k! 
文 Cov（心，心 oT圧...，ゆ oT知 ー1) fork 2'. 2. 

n1,…，nk-1 =-00 

Remark 2.3 It is not hard to show that the coefficient p2 in the above corollary has the 

form (1.2) replacing u by T. On the other hand, it is not easy to check that the coefficient 

p3 in the above has the form (1.3). 

3 Preliminarily 

We start with the notion of symbolic dynamics with countable state space [4, 6, 7]. Let 

S be a countable set with distinct topology and A = (A(ij))sxs a zero-one matrix, i.e. 
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A(ij) = 0 or A(ij) = 1 for all i,j ES. The set 

X = { w = w0w1 ・ ・ ・ E且S:A(w糾 k+1)= 1 for any k 2". O} 

endowed with product topology induced by the discrete topology on S, and endowed with 

the shift transformation a : X →X is defined by (aw)n = Wn+i for any n ~ 0. This is 

called a countable Markov shift (or topological Markov shift) with state space S and with 

transition zero-one matrix A. In what follows, we assume X =J 0. An element w of X 

denotes w = w0w1w2 ・ ・ ・ with w0, w1, w2, ・ ・ ・ ES. 

Word w =叫W2...Wn E sn is admissible if A(W凸） ＝A(w2叫） ＝・・ ・ = A(wn-1叫） ＝ 

1. For admissible word w E S叫 cylinderset is defined by [w] := { w E X : w0 ・ ・ ・ Wn-I = 

w }. The transition matrix A is finitely irreducible if there exists a finite subset F C 

LJ~=l sn such that for any a, b E S, there is w E F so that a・ w ・ b is admissible, where 

a ・ w is the concatenation of a and w. The matrix A is called finitely primitive if there 

exists a finite subset F c SN with an integer N ~ 1 so that for any a, b E S, a• w • b is 

admissible for some w E F [4]. Note that finitely primitively implies finitely irreducibility. 

The matrix A has the big images and pre-images (BIP) property if there is a finite set 

S。=｛a1,...，知｝ ofS such that for any b E S, there exist 1 ::=; i, j ::=; N such that 

A(a;b) = A(baj) = 1. 

Remark 3.1 The matrix A is finitely irreducible if and only if A is irreducible and has the 

BIP property. Similarity, the matrix A is finitely primitive if and only if X is topologically 

mixing and A has the BIP property [7]. 

For 0 E (0, 1), a metric d0 : X x X → 恥 isdefined by 

do(w, V) ＝ ｛ °mm{nこ0•wn#vn} (W # u) 

0 (w=v). 

Remark 3.2 The metric topology induced by d0 coincides with the product topology 

induced by the discrete topology on S. 

Remark 3.3 (X, d0) is a complete and separable metric space. Moreover, if { a E S : 

[a] =J 0} is an infinite set, then X is not compact. 

Next we introduce some function spaces and the notion of thermodynamic formalism 

[4, 8]. Put応＝股 orC. A function f : X →応 is0-locally Lipschitz continuous 

if c(f) := supeESsup{lf(w) -J(v)l/de(w,v) : w,v E [e], w =J v} < oo. A function 

f: X →区 iscalled a locally Holder continuous function if f is a 0-locally Lipschitz 
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continuous for some 0 E (0, 1). We set 

C(X爪） ＝｛f: X →狐： continuousfunctions} 

Cb(X，恥） ＝｛f E C(X,区)： ||fllooく oo} with llflloo := sup lf(w)I 
wEX 

恥(X瓜） ＝｛f: X →応： 0-locallyLipschitz continuous } 

F0,b(X，恥）＝｛fE F0(X,JK) : II!||= < oo} with llf 110 := II!|に+c(f).

The spaces (Cb(X，恥）， II・|に） and(F0,b(X, JK), 11 ・ 110) are Banach spaces. Note the inclusion 

F0(X瓜） CF。!（X広） for0 < 0'. The symbol恥 maybe omitted from these definitions 

when恥＝ C． 

For function i.p : X →恥 thetopological pressure P(i.p) of i.p is given by 

1 
n-1 

P(<p) = n三；；；log 区 exp(sup区ゃ（心））
WESn:［切］＃O WE[W] k=0 

(3.1) 

if it exists [4]. 

Remark 3.4 If the transition matrix of X is finitely irreducible and cp is in F0(X皇）

with P(cp) < oo, then P(cp) coincides with the Gurevich pressure Pc位） ofcp which is 

introduced in [6]. 

A CJ-invariant Borel probability measure μ on X is said to be a Gibbs measure of the 

potential cp : X →股 ifthere exist c ;::: 1 and P E股 suchthat for any w E X and n ;::: 1 

-1 < μ([wow1... Wn-1]) 

―exp(-nP＋とに註（砂w))
：：：： c. 

Remark 3.5 If A is finitely irreducible and cp is in F0(X皇） withP(cp) < oo, then the 

Gibbs measure of cp uniquely exists and P equals P(cp) [4]. 

For a real-valued function cp on X, the Ruelle operator.crp associated to cp is defined by 

.c』（w)= L erp(e-w) f(e ・ w) 

eES: t(e)=i(wo) 

if this series converges in CC for a complex-valued function f on X and for w E X. It is 

known that if the incidence matrix is finitely irreducible and cp is in F0(X凪） withfinite 

topological pressure, then.crp becomes a bounded linear operator both on the Banach 

spaces Fe,b(X)皿 dCb(X). We state a version of Ruelle-Perron-Frobenius Theorem as 

follows. 

Theorem 3.6 ([1]) Let X be a countable Markov shift with finitely primitive transition 

matrix. Let cp E F0(X晨） withfinite pressure. Then the Ruelle operator.crp : Fe,b(X)→ 
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応 (X)。に hasthe spectral decomposition 

ら＝入P十冗

such that 

(1)入isthe spectral radius of,C : F;。,b(X)→F。,b(X)and is a simple eigenvalue ofら；

(2) Pis the eigenprojection of the eigenvalue入of,Conto the one-dimensional eigenspace. 

In pa仕icular,

町＝ ifhdv,
X 

where h is the corresponding positive eigenfunction of the eigenvalue入andv is the cor-

responding positive eigenvector of入ofthe dual operator,C~ : F;。,b(X)＊→ F。,b(X)*
with v(h) = l; 

(3)四＝如＝ 0and the spectral radius of R : F;。,b(X)→F。,b(X)is less than入；

(4) P(cp) equals log入andhv becomes the Gibbs measure of the potential cp. 

For the sake of convenience, we call the number入inabove the Pe汀 oneigenvalue ofら

Remark 3. 7 When the transition matrix A is finitely irreducible, the assertions of The-

orem 3.6 are correct excluding (3). In fact, finitely irreducibility implies that R has the 

eigenvalue 入e21ri✓コ／P for each i = 1, 2,...,P -1 with the period p of A as nonnegative 

irreducible matrices. 

4 Main results 

Recall that X is a countable Markov shift with countable state space S and with finitely 

primitive transition zero-one matrix A. Fix an integer n 2: 1. Let r.p,ゆEFe(X皇）． We

introduce a sufficient condition for the asymptotic expansion of order n of [O, oo) :3 t,-+ 

P(r.p +t心）：

（<fJ)n There exists t。>0such that for any k = 0, 1,..., n, 

区supsupe'P(W)＋砂(W)1心(w)lk< oo. 
iES wE[i] O<'.t<'.to 

(4.1) 

Proposition 4.1 ([9]) Let X be a countable Markov shift with finitely irreducible inci-

dence matrix. Assume that the condition (iP)n is satisfied for a fixed integer n ;::=: 1. Then 

P(cp十加） hasthe form 

P(cp十加） ＝P(cp)+p1t＋亨＋・ ・・+Pn『+0(『） in股 (4.2) 

as t→0 for some numbers Pk E艮
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Outline of pmof. Note that the number P(ip十加） isfinite for all O S tさt。fromthe 

condition（外 puttingk = 0. The Taylor expansion e'P+tゆ＝区こ。 C％が／k!implies the 

asymptotic expansion of the operator.Crp十t心

£<p＋tゅ＝ら＋ら，it+・・・+.Crp,n『＋勾t,・)tn 

with the coefficient.Crp,k =.Crp o（炉／k!)and the remainder Cn(t, •). The condition（<P)n 

implies the following two pro~erties: (i) each.Crp,k is a bounded linear operator acting on 

F。,b(X);(ii) the remainder II.Cn(t, ・)1100 vanishes as t→0. Consequently, it follows from 

(i)(ii) in above that the Perron eigenvalue r,(t) of.Crp十tゅhasthe expansion 

TJ(t)＝入＋叩＋・..+ T/n『+o(『） (4.3) 

as t→0 with coefficients限 E股 (k= 1, 2,..., n), where入isthe Perron eigenvalue of 

L'P. Hence the function t→P(cp + t心） ＝logrJ(t) satisfies the expansion (4.2) with the 

coefficient 

~ (-l)l-1 
加＝区 l．入l L 7/i1 •, • 7/勾

l=l i1,...,iz:>1 

(k=l,...,n). 

打＋・・・十り＝K

ロ

Remark 4.2 Assume that the condition (<I>)n is satisfied for an integer n 2:'. 2. Then the 

coefficients p1 and p2 have the forms (1.1) and (1.2), respectively. 

Denoted by入(t)the Perron eigenvalue of the operator.C'P十t（心ーμ（心））． Note that if (<l>)n is 

satisfied, then so is for心：＝心―μ（ル）． Thereforewe have the asymptotic expansion of 

the Perron eigenvalue入(t)of.C<p+t（ゆーμ（ゆ））

入(t)=入＋入1t+駅＋・・・＋入nザ十 o(t門in恥

as t→0 with coefficients入kE艮 (k= 1, 2,..., n). In particular,入1=μ（心ーμ（心）） ＝ 0 

holds. 

Now we are in a position to state one of our main results: 

Theorem 4.3 ([9]) Let X be a countable Markov shift with finitely primitive transition 

matrix. Assume that the condition（<I>)n is satisfied for a fixed inte，げn：：：：： 2. Denoted by 

μ the Gibbs measure of ((J. Then for any k = 2, 3,..., n 

m1兜omI[／2]]Jx(旦-JX心dμ)oゲ）kdμ=｛亨伽）［K／2]
~(P2) 

where [k/2] means the largest integer i with i :S k/2. 

[k/2]-1 
p3 

(k is even) 

(k is odd), 

(4.4) 
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Outline of proof. Let cp(t, •) = cp + t（心ーμ（心））． Weconsider the following three steps: 

Step I: Them-th iteration of.Ccp(t,-) has the asymptotic expansion 

£嘉，） ＝勾＋M1,mt+ ・ ・ ・ + Mn,mtn＋ぷ，m(t,-)tn

for each m 2: 1 with Mぃ＝ £炉（区：：閏（心ーμ（ゆ））oが）k/k! and with IIMn,m(t, ・) lloo→0. 

Indeed, this assertion is obtained by calculating m-iteration of the both side of the ex-

pansion.Ccp(t,-)＝ら＋M1t+・ ・ -+Mntn+Mn(t,•)ザ withMn(t, ・) satisfying IIMn(t, ・)lloo→ 
0. 

Step II: The asymptotic expansion of m-th power of eigenvalue入(t)of.Ccp(t,-) has the 

expansion 

入(t罰＝炉＋ふ，mt+・・・十入n,m『+o(tり

and each入k,msatisfies 

入k,m v(Mk,mh) 
＝ 入m 入m

+ o(mlk/2l). (4.5) 

This assertion follows from Step I, an argument of [3] and the property of spectral gap in 

Theorem 3.6(3). 

Step III: 

入；mm= { :：／2:＼ （［）::／22)][k/2]-1 P3 :： ：二~)
+ o(mlk/21). (4.6) 

Indeed, since入k,mis the k-th coefficient of（入＋ふ炉＋・・・十入ntn+o(『））庄 weobtain 

入
[k/2] 

；五m＝苫（mm:t)！

ーJ
 

、
＼
ー
ー
ノ

ふ
一
入（
 

1-jli 

KII
>

k
 

ー＿＿

い
―
-
K

k
・3

3
k
 

＞＿ 

▽

丑

＋

＋r+
＋
 

ね
．
ね

32
2
 

崎二＋a戸記＋・..+ai贔m[k/2]

k,m k,m with some numbers a'. E良 (i= 1, 2,..., [k/2]). In particular, a7,;7~1 is equal to the right [k/2] 
hand side of (4.4). Hence the assertion of the theorem holds from (4.5) and (4.6) together 

with the equations P2＝ふ／入 and四＝ふ／入．ロ

Corollary 4.4 ([9]) Let X be a countable Markov shift with finitely primitive transition 

matrix. Assume that the condition（<[))n is satisfied for a fixed integer n 2'. 3. Then the 

3-th coefficient of the expansion oft→P(r_p十加） hasthe form (1.3). 
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Proof. The assertion immediately follows from Theorem 4.3 by putting k = 3. ロ

Remark 4.5 Theorem 4.3 says that if p2 =JO and p3 =J 0, then the speed of convergence 

µ(（L;:~1 （心ーµ（心）） 0 (Ji）り→ 0has exactly the order l/m[k/21 for any k ;=:: 2. 

Remark 4.6 The coefficient Pk for k ;=:: 4 is not displayed as well as (1.3) in general. In 

fact, if either k is even and p2 =J O or k is odd and p2p3 =J 0, then the formula (4.4) implies 

m匹00]f (豆-Jいdμ)oが kdμI = +oo. 
X i=O X 

） 

We next consider the case p2 = ・ ・ ・ = Pq-I = 0 and pq # 0 for some q：：：：：ふ

Proposition 4. 7 ([9]) Let X be a countable Markov shift with finitely primitive transi-

tion zero-one matrix. Assume that the condition（<P)n is satisfied for a fixed integer n：：：：：ふ

and P2 = ・ ・ ・ = Pq-1 = 0 for some 3 :S q :S n. Then for each k = q, q + 1,..., n 

m［い Jx（苫⑯-JX心dμ)oゲ）kdμ → ー＋
 

q
 

p
 

ーql 
／
 

lkq 
p
 
• 

q

l

n

「

／
 

lkq

＿
 

p
 

!qJlklfql
り

k

因

僅

仇

’

v

、

(k = 0 (mod q)) 

(k三 1(mod q)) 

(otherwise). 

(4.7) 

as m →oo. Consequently, 

1 
m-1 

Pq＝了 lim』/（こ（心
q! m →oom Jx 

-J 心dμ)oゲ）qdμ 
i=O X 

1 1 
m-1 . .  q+1 

Pq+1 =(q+ 1)！ m1兜い元［（t('l/;ー！Xいdμ)0 (Yir+l dμ. 

Outline of proof. Note that the assumptions p2 = • • • = Pq-I = 0 imply入2=..・= 

入ぃ＝ 0.Thus we rewrite 

入；';2-=a斤m+a~,m厨＋・・• +afi贔m[k/p]

with 

砕贔＝ こ
Jq,•••,ike'.0 

Jq+…+jk=［k/q] 
qjq+…＋kjk=K 

且(p;]Jl
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k,m 
It is directly checked that the number a~,;7~1 equals the right hand side of (4. 7) in the case [k/p] 

k三 i(mod q) (i = 0 or 1). A proof of the remainder part is similar to the proof of 

Theorem 4.3. ロ

Remark 4.8 By virtue of Proposition 4.7, we see that if心iscohomologous to a constant, 

then Pk = 0 for each k = 2, 3,..., n, whereゆiscohomologous to a constant if there exist 

a continuous function u : X → 股 anda constant c E股 suchthat心＝ u-uou+c. 

5 An example 

We remark that in the finite state case (i.e. ~S < oo), the function t→P(cp + tい） is

analytic on股 forany cp,'ljJ E F0(X皇）． Inparticular, the condition（外）nholds for any 

n 2:: 1 in this case. On the other hand, in the infinite state case, the function t→ P(cp+t心）
may be not analytic at a point. 

For example, put n 2:: 3, s = {l, 2,... }, X = IT~=O s, p(i) = l/(i(logir+2) and 

cp(w) =心（w)= Iog(p(w0 + 2)) for w EX. 

Proposition 5.1 ([9]) Under the notation n, S, X,p(i), cp，心 inabove, the condition（外）n

is fulfilled and（<I>)n+I does not hold. In particular, P(cp十加） isnot differentiable at t = 0. 

Moreover, the coefficient Pk (k = 1, 2, 3) has the form 

00 

Pl=と
p(l) log p(l) 

l=3 入

P2 ＝し匹0021こm=3rr:=lp(tJ）（言 (logp(％）一言p(l)l:gp(l))）2 

P3い 00t1喜＿3rr:=1p(%)(~ (logp(％）一言p(l)l:gp(l))）39 

where入＝江:3p(i).

Proof. We will check the validity of the condition（,JJ)n. Note that p(i + 2) < 1 for any 

i E S and n 2". 1. For k 2". 1, the series in the condition（,JJ)k satisfies 

区supsupe'P(W)＋如(W)1心(w)ド＝文p(i)(-logp(i)l 

iES wE[i]099o i=3 

＝t C) (n + 2)k-l文(loglogi)K-l

l=0 i=3 
i(log i)n+2-l. 
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The series ~:3(loglogi)k-l/(i(logit+2-1) converges for any n + 2 -l 2'. 2, i.e. n 2'. l. 

Therefore (<I>)n is fulfilled. On the other hand, If k = n +land l = n + l, then this series 

does not converge. This means that the condition (<I>)n+l fails. Note that P(t.p + tゆ） is

not differentiable at t = 0 by P(t.p + t'tp) = +oo for any t < 0. ロ
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