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NON-AUTONOMOUS CONFORMAL ITERATED FUNCTION SYSTEMS 

WITH OVERLAPS 

YUTO NAKAJIMA 

1. INTRODUCTION 

A Non-autonomous Iterated Function System (NIFS)<l>=（｛副｝iEJ(j)）f=1on a compact 
subset X C 良m consists of a sequence of finite collections of uniformly contracting maps 

副： X→X, where J(J) is a finite set. The system <l> is an Iterated Function System (for 

short, IFS) if the collections｛叡｝iEJU)are independent of j. In comparison to usual IFSs, 
(j) 

we allow the contractions ¢y1 applied at each step j to vary as j changes. 
Rempe-Gillen and Urbanski [9] introduced Non-autonomous Conformal Iterated Function 

Systems (NCIFSs). An NCIFS <l> =（｛副｝iEJ(J)農 ona compact subset X C 町m consists 
(j) 

of a sequence of collections of uniformly contracting conformal maps討： X →X satisfying 
some mild conditions containing the Open Set Condition (OSC) which is defined as follows. 

We say that a sequence(｛副｝iEJ(j))芦 offinite collections of maps on a compact subset X 

with int(X) =J 0 satisfies the OSC if for all j E N and all distinct indices a, b E JU), 

紺 (int(X))n副(int(X))= 0. (1) 

Then the limit set of the NCIFS <l> =（｛副｝iEJ(j)）芦 isdefined as the set of possible limit 

points of sequences 
(1) （2) （i) 

釦（¢匹…（叫 (x)）…））， WjE J(J) for all j E {1, 2,..., i}, x E X. Rempe-
Gillen and Urba固skiintroduced the lower pressure function広： ［0,oo）→ [-oo, oo] of the 
NCIFS <l>. Then the Bowen dimension sq, of the NCIFS <l> is defined by蹄＝ sup{s~ 

0 : E瓜s)> O} = inf{s ~ 0 : E.<I>(s) < O}. Rempe-Gillen and Urbanski proved that the 
Hausdorff dimension of the limit set is the Bowen dimension of the NCIFS ([9, 1.1 Theorem]). 
For related results for non-autonomous systems, see [2]. 

In this paper, we study NIFSs with overlaps on良匹 Here,we do not assume the OSC. 
We introduce transversal families of non-autonomous conformal iterated function systems 
on町． Weshow that if a d-parameter family of such systems satisfies the transversality 
condition, then for almost every parameter value the Hausdorff dimension of the limit set 
is the minimum of m and the Bowen dimension. Moreover, we give an example of a family 
{ <l>t}tEU of parameterized NIFSs such that { <I》thEusatisfies the transversality condition but 
<l>t does not satisfy the OSC for any t E U. The method of transversality is utilized for 
parametrized IFSs involving some complicated overaps (e.g., [8], [11], [4], [5], [10]). For some 
general family of functions with the transversality condition, see [10], [6], [13]. 

2. MAIN RESULT 

In this section we present the framework of transversal families of non-autonomous con-
formal iterated function systems and we present the main results on them. For each j E N, 
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let J(J) be a finite set. For any n, k EN with n::::; k, we set 

岱＝ ＂戸）， I~:=fr四，『＝ ＂戸）， and100 := IT四
j=n J=n j=l J=l 

Let UC配． Forany t E U, let叱＝ （州）芦 bea sequence of e a sequence of collections of maps on a 

set X c応， where

砂＝｛咄： X →XhEJ(j). 

Let n, k EN with n::; k. For any w = w心 n+l・・・Wk EI~, we set 

如，t:=心，tO • • • 0吟？，t・

Let n EN. For any w = w四 n+l・ ・ ・ E I;;" and any j E N, we set 

叫：＝ W四 n+l・ ・ ・ Wn+j-l E I；；十j-1.

Let V C股m be an open set and let ¢ : V→¢(V) be a diffeomorphism. We denote 
by Dcp(x) the derivative of¢ evaluated at x. We say that ¢ is conformal if for any x E V 
Dcp(x)：野n→]Rm is a similarity linear map, that is, Dcp(x) = Cx ・ Ax, where Cx > 0 and 
Ax is an orthogonal matrix. For any conformal map ¢ : V→¢(V), we denote by ID¢(x)I 
its scaling factor at x, that is, if we set Dcp(x) = ex・ 上 wehave ID¢(x)I = Cx-For any set 
AcV  we set 

IID¢11A := sup{ID¢(x)I : x EA}. 

We denote by心 thed-dimensional Lebesgue measure on配． Weintroduce the transversal 
family of non-autonomous conformal iterated function systems by employing the settings in 
[9] and [10]. 

Definition 2.1 (Transversal family of non-autonomous conformal iterated function systems). 
Let m E N and let X C正 bea non-empty compact convex set. Let d E N and let U C配

be an open set. For each j EN, let J(j) be a finite set. Lett E U. For any j EN, let砂 bea 

collection｛蟷： X → X}tEI(3) 0f maps硲onX. Let剌＝ （砂）戸 Wesay that仇｝tEU
is a Transversal family of Non-autonomous Conformal Iterated Function Systems (TNCIFS) 
if { <l">t}tEU satisfies the following six conditions. 

l. Conformality : There exists an open connected set VっX(independentof i,j and t) 

such that for any i,j and t EU, ¢i1) extends to a C1 conformal map on V such that i.t 

咽(V)c V. 
2. Uniform contraction : There is a constant 0く 1< l such that for any t E U, any 

n E N, any w E I;;" and any j E N, 

ID鱈 ，t(x)I:::::,1

for any x EX. 
3. Bounded distortion : There exists a Borel measurable locally bounded function K : 

U →[1, oo) such that for any t EU, any n EN, any w EI;;" and any j EN, 

ID¢叫，t(x1)I-<:'.K(t)ID¢wl;,t（四）1 (2) 

for any x1, x2 E V. 
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4. Distortion continuity: For any r, > 0 and to E U, there exists r5 = r5(r,, to) > 0 such 
that for any t E U with It -tolさo,for any n,j EN and for any w EI芦

exp(-jr,) :S 
IID鰐，tollx

< exp(Jり）．（3)
―||D鰐，tllx―

We define the address map as follows. Let t E U. For all n EN and all w EI;;'°, 

oo n鰐，t(X)
j=l 

is a singleton by the uniform contraction property. It is denoted by {Yw,n,t}, The 
map 

冠，t：Iご→ X

is defined by w H Yw,n,t・ Then匹 ，tis called the n-th address map corresponding to 
t. Note that for any t E U and n EN the map Kn,t is continuous with respect to the 
product topology on I~ ・

5. Continuity: Let n EN. The function I~ x Uう (w,t)→屈，t(w)is continuous. 
6. Transversality condition : For any compact subset G C U there exists a sequence of 

positive constants { Cn}~=l with 

lim 
logCn 

=0 
n→oo n 

such that for all w, TE I~ with Wn cJ Tn and for all r > 0, 

ら ({tE G : l1rn,t(w) -7rn,t(T)|::::; r}）::::; Cnr匹

Remark 2.2. If m 2". 2, the Conformality condition implies the Bounded distortion condition. 
For the details, see [9, page. 1984 Remark]. 

Remark 2.3. Let n EN and let t EU. Then for any w EI謬

知，t（W)＝lim虹，t(x),
J→OO 

where x EX. 

Remark 2.4. In the case of usual IFSs, the constants Cn in the transversality condition are 
independent of n since then-th address maps 7rn,t are independent of n. 

Let { <I>t}tEU be a TNCIFS. For any n E N and t E U, the n-th limit set Jn,t of <Pt is defined 
by 

Jn,t:＝四，t（Iご）．

For any t E U, we define the lower pressure function凸： ［0, oo)→ ［ーoo,oo] of <I>t as the 
following. For any s 2". 0 and n EN, we set 

加（s)：＝ L(IID如，tllx)8,
wEJn 

and 

1 
比(s):= liminf =-log Zn,t(s) E [-oo, oo]. 

n→oo n 



68

By [9, Lemma 2.6], the lower pressure function has the following monotonicity. If釘 <s2,
then either both凸(s1)and E..心） areeq叫 tooo, both are eq叫 to-oo, or凸(s1)＞凸(s砂
Then for any t E U, we set 

s(t) := sup{s 2: 0 :止（s)> O} = inf{ s 2: 0 :止（s)< O}, 

where we set sup 0 = 0 and inf 0 = oo. The value s(t) is called the Bowen dimension of <l>t. 
We set Jt := J1,t for any t E U. We now give the main result of this paper. 

Main Theorem. Let仇｝tEUbe a TNCIFS. Suppose that the function t→s(t) is a real-
valued and continuous function on U. Then 

dim爪Jt)= min{m,s(t)} 

for Ld-a.e. t E U. 

Main Theorem is a generalization of [10, Theorem 3.1 (i)]. 

3. EXAMPLE 

In this section, we give an example of a family｛叱｝tEUof parameterized NCIFSs such that 
｛<l>t}tEU satisfies the transversality condition but全tdoes not satisfy the open set condition 
for any t E U. We set lDl := {z E C : lzl < I}. For any holomorphic function f on lDl, 
we denote by f'(z) the complex derivative off evaluated at z E lDl. For the transversality 
condition, we now give a slight variation of [11, Lemma 5.2]. For the reader's convenience we 
include the proof in Appendix. 

Lemma 3.1. Let 1{ be a compact subset of the space of holomorphic functions on lDl endowed 
with the compact open topology. We set 

MH:=｛入 ElDl : there exists f E甘 suchthat f（入） ＝ f’（入） ＝O}. 

Let G be a compact subset of lDl¥MH. Then there exists K = K(H, G) > 0 such that for any 
f E 1{ and any r > 0, 

ら（｛入 EG: If（入）l:Sr}）:cc;Kr乞 (4) 

We now give a family仇｝tEUof parametrized systems such that仇｝tEUis a TNCIFS 
but <Pt does not satisfy the open set condition (1) for any t E U. In order to do that, we set 

U := { t E C : ltl < 2 x 5―5/8, t r:f_恥｝．

Note that 2 x 5-5/s ~ 0.73143 > 1／v'2. Lett EU. For each j EN, we define 

砂＝｛z→硲(z),z,-+¢昇(z)}:= {z→tz,z→tz + y }-
Proposition 3.2. For any t E U, the system（州）芦1does not satisfy the open set condition. 

Proof. Suppose that the system（砂）fa=lsatisfies the open set condition (1). Then there 

exists a compact subset X C C with int(X) ヲ~ 0 such that ¢~f (int (X)) n ¢乳(int(X))= 0. 
Hence there exist x E X and r > 0 such that 

硲(B(x,r))n硲(B(x,r))= B(tx, ltlr) n B(tx + 1/j, ltlr) = 0. 

In particular, we have for all j E飩

This is a contradiction. 

1 
21tlr<マ・

J 
ロ
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We set 
1 

X:={zEC: lzl:s:~}-

Then we have that for any t E U, for any j EN and for any i E J(j) := {1, 2}，硲(X)C X. 
(j) （j) 

We set bt = 0 and b'iJ = I/j for each j. Let n,j EN. We give the following lemma. 

Lemma 3.3. Lett EU. For any w = Wn n+j-1 ・ ・ ・ Wn+j-1 E /;.;:·,-• and any z E X  we have 

j 

如，t(z)＝心，t°.．． o ¢ど二喜(z)= t五＋と心＋：二！）ti-1,
i=l 

where b 
(n十i-1)
Wn+9-1 E {0, n十い｝． Inparticular, for any w = Wn ・ ・ ・ Wn+j-1 ・ ・ ・ EI戸

oo 

豆 t(w)＝と殴：げti-1_ 
i=l 

Proof. This can be shown by induction on j. ロ

We can show that the family { <I>t}tEU of systems is a TNCIFS as follows. 

l. Conformality : Let t E U. For any j E N and any i E J(j),咄(z)= tz + bりisa 
similarity map on C. 

2. Uniform Contraction : We set'Y = 2 x 5-5/s. Then for any w E I：：サー1and z EX, 

ID知 (z)I = ltlj ::::;'Yj 

by Lemma 3.3. 

3. Bounded distortion: By Lemma 3.3, for any w = Wn ・ ・ ・ Wn+j-1 EI：：十j-land z EC, 

ID¢w,t(z)I = ltli. We define the Borel measurable locally bounded function K: U→ 
[1, oo) by K(t) = 1. Then for any w EI：：十j-1'

ID¢w,t(z1)I-,:: K(t)ID¢w,t(z2)I 

for all z1, z2 EC. 
4. Distortion continuity : Fix t。EU.Since the map t→log ltl is continuous at t。EU,

for any rJ > 0 there exists r5 = r5(rJ, to) > 0 such that for any t E U with Ito -ti＜ふ

I log Ito I -log 1t11 < rJ. 

Hence we have 

I log It。lj/WI < jrJ, 

which implies that for any w E l;{'r', n+j-l 

IID如，t。II
exp(-jc) < ~ = exp(log It。l1/ltl1) < exp(jc). 

IID如，t11 

5. Continuity : By Lemma 3.3, we have for any t E U and any w E I~, 
00 

冠，t(W)＝と殴［げti-1_ 
i=l 

Hence the map (w, t)→'Trn,t(w) is continuous on I;;'° XU. 
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6. Transversality condition : We introduce a set g of holomorphic functions on lI)) and 
the set⑰ of double zeros in lI)) for functions which belong to Q. 

g = ｛f(t) ＝士1+〗研 aj E [-1, l]}, 

62 := {t E lI)) : there exists f E g such that J(t) = J'(t) = O}. 

Note that g is a compact subset of the space of holomorphic functions on lI)) endowed 
with the compact open topology. Let n EN. Then we have for any t E U and any 

w,T EI,:;° with Wn =J冗，

DO DO 

冠，t(w)-7rn,t(T)＝区殴＋＋：□;lti-1_ L 瑚t:＿_11)tt-1

i=l i=l 

oo 

= bS':: -b屈＋苔（殴↑:ド-b悶t:＿-11))が―1

1 
oo 

=¾（士1 十苫n (b盟［げ— b悶1:_-11)) が―1) ・ 

Then the function t H 士1＋こ芦n(b盟工?-b闘t:＿＿11))が一1is a holomorphic function 

which belongs to Q. Let G c lDJ¥02 be a compact subset. By Lemma 3.1, there exists 
K = K(Q, G) > 0 such that for any w, TE I;;" with Wn # Tn and any r > 0, 

ら({tEG: l1rn,t(w)-1rn,t(T)l:S:r}) 
00 

＝ら({tEG:I士1+Ln(b位ごこ?-b闘t:_-11))tt-11こ加｝）
i=2 

::::; K(nr)2. 

If we set Cn := K炉 forany n E N, we have 

ら({tE G : l1rn,t(w) -'Trn,t(T)さr})さCn芦

and 1 
1 2 

..:. log Cn =..:. log K +..:. log n→ O 
n n, n, 

as n →00. 

Finally, we use the following theorem. 

Theorem 3.4. [12, Proposition 2.7] A power series of the form 1 + I:;1 a戸， with

aj E [-1, 1], cannot have a non-real double zero of modulus less than 2 x 5-5/8. 

By using the above theorem, we have that U = { t E (C : ltl < 2 x 5-5/s, t tj..股｝ c 
訊6.Hence the family { <I>t}tEU satisfies the transversality condition. 

By the above arguments, we get the following. 

Proposition 3.5. The family仇｝tEUof parametrized systems is a TNCIFS. 

We calculate the lower pressure function凸 for虹 tE U as the following. For any 
sE[O,oo), 
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已（）
1 

s) = liminf-=-
n→DO n 

log L IID如，t|18

1 
= lim inf -=-log 

n→DO n 

wEJn 

L ltlns 
wEJn 

1 
= lim inf -=-1og(2門tins)

n→DO n 

= log2 + slog ltl, 

Hence for each t E U,凸（s)has the zero 

s(t) = 
log 2 

-log ltl 

and the function t,-+ s(t) is continuous on U. Let Jt be the (1st) limit set corre-
sponding to t. Then by Main Theorem, we have 

dim瓜Jt)= min{2, s(t)} = s(t) 

for a.e. t E { t E (C : ltl <::'. 1／⑫，ttj._股｝ and

dim瓜Jt)= min{2, s(t)} = 2 

for a.e. t E {t E (C : 1/¥/'2 <::'. ltl < 2 x 5-5/s, t ¢股｝．

APPENDIX 

In order to prove Lemma 3.1, we give some definition and remark. 

Definition 3.6. Let G be acompact subset of記 Wesaythat afamilyofballs {B（叩ぶ）｝ぐ＝1

in配 ispacking for G if for each i E { 1,…, K}，叩 EG and for each i,j E {1,…,k} with i # j, 
B(xぃ，乃） nB(x戸 j)= 0. 

Remark 3.7. Let G be a compact subset of記 letr > 0 and let {B(x戸）｝t=lbe a family 

of balls in記 If{B(xi,r）｝ぐ＝1is packing for G, then there exists NE  N which depends only 
on G and r such that kさN.

Proof. There exists a finite covering { B(yゎr/2)｝似 forG since G is compact. Here, N 

depends only on G and r. Since Xi E G for each i, there exists ji such that叩 EB(Yj;, r /2). 

Since {B(xi,T)｝t=l is a disjoint family, if i # l E {1,..., k }, then ji # jz. Thus k :::; N. ロ

We give a proof of Lemma 3.1. 

(proof of Lemma 3.1). Since 1l is compact and the set MH is the set of possible double 
zeros, we have that there exists IS =紐，a> 0 such that for any f E礼

If(入)|＜ 6 ⇒ |f’(入)|＞ 6 for入EG.

We assume that r < 8, otherwise (4) holds with K =ら（G）／屈 Let

ふ：＝ ｛入 EG: If （入） I~ r}. 

(5) 
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Let Co(G) be the convex hull of G. We set M =Ma:= sup{lg”(入)|E[O, oo) :入 ECo(G),g E 
叫 SinceCo(G) is compact and 1{ is compact, M く oo.Fix zo E△r・ By Taylor's formula, 
for z E G, 

IJ(z) -J(zo)I = IJ'(zo)(z -zo) + 1: (z―.;)J"(.;)d.;I, 
zo 

where the integration is performed along the straight line path from zo to z. Then IJ'(zo)I > 8 
by (5). Hence 

lf(z) -f(zo)I：：：：： J'(zo)llz -zol -Mlz -zol2 > 8lz -zol -Mlz -zol2. 

Now if we set 

Az0,r := { Z E]]J)*; < lz -zol < ~}, 

then for any z E Az0,r, 

4r 8 
叩— zol -Mlz -zol2 = lz -zol(8 -Mlz -zol) > :;-~ = 2r, 

8 2 

and IJ(z)I：：：：： |J(z) -J(zo)I -IJ(zo)I > r. It follows that the annulus Azo,r does not intersect 

ふ．
Assume that 4r / 8 ::; 8 / 4M, otherwise (4) holds with K＝ら（G)(16M/炉）2.Then the disc 

B(zo, 8/4M) centered at zo with the radius 8/4M covers△n{z: lz-zol < 8/2M}. Then fix 
z1 Eふ＼｛z:lz -zol < 8/2M}. Since the annulus A勾，rdoes not intersect△,B(z1, 8/4M) 
covers（ふ＼｛z:lz-zol < 8/2M})n{z: lz―叫 <8/2M}and B(zo, 8/4M)nB(z1, 8/4M) = 0. 
If we repeat the procedure, we get a finite covering {B(zゎ8/4M)｝に＝0forふ sinceふ is

compact. Then {B(zゎ8/4M)}7=ois packing for G. By Remark 3.7, there exists N E N 
which depends only on 1{ and G such that k ::; N. Since the annulus A叫、 doesnot intersect 

ふ foreach i E {O,…，k }, { B(zi, 4r / 8)}7=o is also a covering for△r・ Hence we have 

ら（ふ）こら(LJ{ B(zi, 4r / 8)}) 
i=O 

=Lら({B(zi, 4r / 8)}) 
z=O 

4r 4 
三NC(-）＝NC(-）兒8, --'8 

where the constant C does not depend on r. If we set K := NC(4/8)叫weget the desired 
ineq叫 ity.
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