Random Dynamical Systems of Regular Polynomial Maps on \mathbb{C}^2

Hiroki Sumi

Graduate School of Human and Environmental Studies Kyoto University Japan

E-mail: sumi@math.h.kyoto-u.ac.jp http://www.math.h.kyoto-u.ac.jp/~sumi/index.html March 31, 2022

Abstract

We introduce the notion of mean stability in i.i.d. random (holomorphic) 2-dimensional dynamical systems. We can see that a **generic** random dynamical system of regular polynomial maps on \mathbb{P}^2 (the complex 2-dimensional projective space) having an attractor in the line at infinity, is **mean stable**. If a random holomorphic dynamical system on \mathbb{P}^2 is mean stable then for each $z \in \mathbb{P}^2$, for a.e. orbit starting with z, the Lyapunov exponent is negative. If a random holomorphic dynamical system on \mathbb{P}^2 is mean stable, then for any $z \in \mathbb{P}^2$, the orbit of the Dirac measure at z under the iterations of the dual map of the transition operator converges to a periodic cycle of probability measures. Note that the above statements cannot hold for deterministic dynamics of a single regular polynomial map f with $\deg(f) \geq 2$.

We see many **randomness-induced phenomena** (phenomena in random dynamical systems which cannot hold for iteration dynamics of single maps). In this talk, we have seen **randomness-induced order**. Motivation.

- Nature has a lot of random (noise) terms. Thus it is natural and important to consider **random dynamical systems**.
- Holomorphic dynamical systems have been deeply investigated. The study of them helps us to investigate real dynamical systems.
- Combining the above two ideas, we consider random holomorphic dynamical systems.
- We want to find new phenomena (so called **randomness-induced phenomena**) in random dynamical systems which **cannot hold in deterministic iteration dynamical systems of single maps**.
- Other motivations: Random relaxed Newton's method (in which we can find roots of polynomials more easily than the deterministic methods, see S, [S21]). The action of holomorphic automorphisms on complex manifolds. The action of mapping class groups of the Riemann surfaces on the character varieties, etc.

Definition 1.

(1) Let \mathbb{C}^2 be the 2-dimensional complex Euclidean space. Let $f : \mathbb{C}^2 \to \mathbb{C}^2$ be a polynomial map, i.e., if we write f(x,y) = (g(x,y), h(x,y)), then g(x,y) and h(x,y) are polynomials of (x,y).

We say that f is a regular polynomial map on \mathbb{C}^2 if f extends to a holomorphic map on \mathbb{P}^2 (the complex 2-dimensional projective space), i.e.,

$$\mathbb{P}^{2} = \{ [u:v:w] \mid (u,v,w) \in \mathbb{C}^{3} \setminus \{ (0,0,0) \} \}$$

Note that we regard \mathbb{C}^2 as a subset of \mathbb{P}^2 via the following canonical identification and inclusion:

$$\mathbb{C}^2 \cong \{ [u:v:1] \in \mathbb{P}^2 \mid (u,v) \in \mathbb{C}^2 \} \subset \mathbb{P}^2.$$

Remark: Let $f : \mathbb{C}^2 \to \mathbb{C}^2$ be a polynomial map.

Then f is a regular polynomial map if and only if the following (*) holds.

(*) Let f(x, y) = (g(x, y), h(x, y)). Let $g_1(x, y)$ be the highest degree term of g(x, y) and let $h_1(x, y)$ be the highest degree term of h(x, y). Then $\deg(g_1) = \deg(h_1)$ and

$$g_1(x,y) = h_1(x,y) = 0 \Leftrightarrow (x,y) = (0,0).$$

Example: Let f(x, y) = $(a_1x^2 + a_2xy + a_3y^2 + b_1x + b_2y + b_3, c_1y^2 + c_2x + c_3y + c_4),$ where $a_1, c_1 \in \mathbb{C} \setminus \{0\}, a_2, a_3, b_1, b_2, b_3, c_2, c_3, c_4 \in \mathbb{C}.$ Then f is a regular polynomial map on \mathbb{C}^2 .

(3) If f is a regular polynomial map on C², then we regard f as a holomorphic map on P². We call such a holomorphic map f on P²

" a regular polynomial map on $\mathbb{P}^{2"}$.

- (4) Let X be the space of all regular polynomial maps on \mathbb{P}^2 of degree two or more, endowed with the distance η which is defined as $\eta(f,g) = \sup_{z \in \mathbb{P}^2} d(f(z), g(z))$, where d denotes the distance on \mathbb{P}^2 induced by the Fubini-Study metric on \mathbb{P}^2 .
- (5) We denote by $\mathfrak{M}_1(X)$ the space of all Borel probability measures on X. Also, we set $\mathfrak{M}_{1,c}(X) := \{ \tau \in \mathfrak{M}_1(X) \mid \text{ supp } \tau \text{ is a compact subset of } X \}$. We endow $\mathfrak{M}_{1,c}(X)$ with a topology \mathcal{O} which satisfies that $\tau_n \to \tau \text{ as } n \to \infty$ if and only if
 - (a) for each bounded continuous function $\varphi : X \to \mathbb{C}$, we have $\int \varphi \, d\tau_n \to \int \varphi \, d\tau$ as $n \to \infty$, and
 - (b) $\operatorname{supp} \tau_n \to \operatorname{supp} \tau$ as $n \to \infty$ with respect to the Hausdorff metric in the space of all non-empty compact subsets of X.

For each $\tau \in \mathfrak{M}_{1,c}(X)$, we consider i.i.d. random dynamical system on \mathbb{P}^2 such that at every step we choose a map $f \in X$ according to τ . This defines a Markov process whose state space is \mathbb{P}^2 and whose transition probability p(z, A) from a point $z \in \mathbb{P}^2$ to a Borel subset Aof \mathbb{P}^2 satisfies $p(z, A) = \tau(\{h \in X \mid h(z) \in A\})$.

- (6) For $\forall \tau \in \mathfrak{M}_{1,c}(X)$, let $G_{\tau} := \{\gamma_n \circ \cdots \circ \gamma_1 \mid n \in \mathbb{N}, \gamma_j \in \operatorname{supp} \tau(\forall j)\}$. This is a **semigroup** with the semigroup operation being the functional composition. (It is important to study the dynamics of G_{τ} .)
- (7) We say that an element $\tau \in \mathfrak{M}_{1,c}(X)$ is mean stable if there exist an $n \in \mathbb{N}$, an $m \in \mathbb{N}$, non-empty open subsets U_1, \ldots, U_m of \mathbb{P}^2 , a non-empty compact subset K of $\bigcup_{j=1}^m U_j$, and a constant c with 0 < c < 1 such that the following (a) and (b) hold.
 - (a) For each $(\gamma_1, \ldots, \gamma_n) \in (\operatorname{supp} \tau)^n$, we have

$$\gamma_n \circ \cdots \circ \gamma_1(\cup_{j=1}^m U_j) \subset K.$$

Moreover, for each j = 1, ..., m, for all $x, y \in U_j$ and for each $(\gamma_1, ..., \gamma_n) \in (\operatorname{supp} \tau)^n$, we have

$$d(\gamma_n \circ \cdots \circ \gamma_1(x), \gamma_n \circ \cdots \circ \gamma_1(y)) \le cd(x, y).$$

(b) For each $z \in \mathbb{P}^2$, there exists an element $h_z \in G_\tau$ such that $h_z(z) \in U$.

Remark 2. Let $\mathcal{MS} := \{ \tau \in \mathfrak{M}_{1,c}(X) \mid \tau \text{ is mean stable} \}.$ Then \mathcal{MS} is **non-empty and open** in $(\mathfrak{M}_{1,c}(X), \mathcal{O}).$

Example. Let $f_1, f_2 \in X$ be elements defined by

$$f_1(x,y) = (x^2, y^2), \ f_2(x,y) = (\frac{1}{4}x^2, \frac{1}{2}y^2), (x,y) \in \mathbb{C}^2.$$

Let $\tau = \frac{1}{2}\delta_{f_1} + \frac{1}{2}\delta_{f_2} \in \mathfrak{M}_{1,c}(X)$, where δ_{f_i} denotes the Dirac measure concentrated at $f_i \in X$ for each i = 1, 2. Then $\tau \in \mathcal{MS}$.

Problem 3. (Open Problem.) Is \mathcal{MS} dense in $(\mathfrak{M}_{1,c}(X), \mathcal{O})$? (Remark: This kind of statement is **true for random dynamical systems** of 1-dimensional complex polynomial maps on $\mathbb{P}^1 \cong \hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ (the Riemann sphere) of degree two or more. S., 2013 ([S13], Adv. Math.), [SW21] (Takayuki Watanabe's presentation).)

Definition 4. Let

$$\mathbb{P}^{1}_{\infty} := \{ [u:v:0] \in \mathbb{P}^{2} \mid (u,v) \in \mathbb{C}^{2} \setminus \{(0,0)\} \}.$$

This is called the line at infinity.

Remark: Let $f \in X$. Then $f(\mathbb{P}^1_{\infty}) = \mathbb{P}^1_{\infty}$, $f^{-1}(\mathbb{P}^1_{\infty}) = \mathbb{P}^1_{\infty}$, and for each neighborhood B of \mathbb{P}^1_{∞} , there exists an open neighborhood C of \mathbb{P}^1_{∞} with $C \subset B$ such that $\overline{f(C)} \subset C$.

Definition 5. Let Ψ be the set of all $\tau \in \mathfrak{M}_{1,c}(X)$ satisfying the following condition. There exist two non-empty open subsets U, V of \mathbb{P}^1_{∞} and an $n \in \mathbb{N}$ such that all of the following (i)(ii)(iii) hold.

- (i) $\sharp(\mathbb{P}^1_{\infty} \setminus U) \ge 3.$
- (ii) $\overline{V} \subset U$, where \overline{V} denotes the closure of V in \mathbb{P}^1_{∞} .
- (iii) For each $(\gamma_1, \ldots, \gamma_n) \in (\operatorname{supp} \tau)^n$, we have $\gamma_n \circ \cdots \circ \gamma_1(U) \subset V$.

Remark 6. Ψ is a **non-empty open** subset of $(\mathfrak{M}_{1,c}(X), \mathcal{O})$.

Example: Let $Y \ (\subset X)$ be the set of all regular polynomial maps $f : \mathbb{P}^2 \to \mathbb{P}^2$ of the form

$$f(x,y) = (a_1x^2 + a_2xy + a_3y^2 + b_1x + b_2y + b_3, \ c_1y^2 + c_2x + c_3y + c_4), (x,y) \in \mathbb{C}^2,$$

where $a_1, c_1 \in \mathbb{C} \setminus \{0\}, a_2, a_3, b_1, b_2, b_3, c_2, c_3, c_4 \in \mathbb{C}$. Note that $Y \cong (\mathbb{C} \setminus \{0\})^2 \times \mathbb{C}^8$.

Let τ be a Borel probability measure on Y with compact support.

Then

$$\tau \in \Psi$$
.

In fact, for any $f \in Y$ of the above form, via the identification

$$\mathbb{P}^1_{\infty} \cong \mathbb{\tilde{C}} = \mathbb{C} \cup \{\infty\}, \quad [z:1:0] \leftrightarrow z \ (z \in \mathbb{C}), \quad [1:0:0] \leftrightarrow \infty,$$

 $f|_{\mathbb{P}^1_{\infty}}: \mathbb{P}^1_{\infty} \to \mathbb{P}^1_{\infty}$ is equal to the map $z \mapsto \frac{1}{c_1}(a_1z^2 + a_2z + a_3)(z \in \mathbb{C})$ on $\hat{\mathbb{C}}$, and so $[1:0:0] \in \mathbb{P}^1_{\infty}$ is a common attracting fixed point of any $f \in Y$. **Theorem 7.** Let $\mathcal{A} := \Psi \cap \mathcal{MS} = \{\tau \in \Psi \mid \tau \text{ is mean stable}\}.$

Then \mathcal{A} is open and dense in Ψ .

Moreover, for each mean stable $\tau \in \mathfrak{M}_{1,c}(X)$ (in particular, for each $\tau \in \mathcal{A}$), we have all of the following (1)–(7).

- (1) There exists a constant c_{τ} with $c_{\tau} < 0$ such that the following holds.
 - For each $z \in \mathbb{P}^2$, there exists a Borel subset $B_{\tau,z}$ of $X^{\mathbb{N}}$ with $(\otimes_{n=1}^{\infty} \tau)(B_{\tau,z}) = 1$ such that for each $(\gamma_1, \gamma_2, \ldots,) \in B_{\tau,z}$, we have

$$\limsup_{n \to \infty} \frac{1}{n} \log \|D(\gamma_n \circ \cdots \circ \gamma_1)_z\| \le c_\tau < 0.$$

Here, for each $f \in X$ and each $z \in \mathbb{P}^2$, we denote by $||Df_z||$ the norm of the differential of f at z with respect to the Fubiny-Study metric in \mathbb{P}^2 .

(2) For each $z \in \mathbb{P}^2$, there exists a Borel subset $C_{\tau,z}$ of $X^{\mathbb{N}}$ with $(\otimes_{n=1}^{\infty} \tau)(C_{\tau,z}) = 1$ such that for each $\gamma = (\gamma_1, \gamma_2, \dots,) \in C_{\tau,z}$, there exists a number $r = r(\tau, z, \gamma) > 0$ satisfying that

$$diam(\gamma_n \circ \cdots \circ \gamma_1(B(z,r))) \to 0 \text{ as } n \to \infty$$

exponentially fast, where B(z,r) denotes the ball with center z and radius r with respect to the distance d induced by the Fubini-Study metric on \mathbb{P}^2 , and for each subset A of \mathbb{P}^2 , we set diam $A := \sup_{x,y \in A} d(x,y)$.

(3) Let $Min(\tau)$ be the set of all minimal sets of τ . Then,

$$1 \leq \# \operatorname{Min}(\tau) < \infty.$$

Here, we say that a non-empty compact subset L of \mathbb{P}^2 is a minimal set of τ if for each $z \in L$, we have $L = \bigcup_{h \in G_\tau} \{h(z)\}$.

(4) For each $z \in \mathbb{P}^2$, there exists a Borel subset $D_{\tau,z}$ of $X^{\mathbb{N}}$ with $(\otimes_{n=1}^{\infty} \tau)(D_{\tau,z}) = 1$ such that for each $(\gamma_1, \gamma_2, \ldots) \in D_{\tau,z}$,

 $d(\gamma_n \circ \cdots \circ \gamma_1(z), \bigcup_{L \in \operatorname{Min}(\tau)} L) \to 0 \text{ as } n \to \infty$

exponentially fast.

(5) Let C(P²) be the Banach space of all continuous complex-valued functions on P² endowed with the supremum norm.
Let M_τ : C(P²) → C(P²) be the linear operator defined by

$$M_{\tau}(\varphi)(z) = \int_{X} \varphi(h(z)) \ d\tau(h), \ for \ \varphi \in C(\mathbb{P}^2), z \in \mathbb{P}^2.$$

Then there exists a finite dimensional subspace $W_{\tau} \neq \{0\}$ of $C(\mathbb{P}^2)$ with $M_{\tau}(W_{\tau}) = W_{\tau}$ such that for each $\varphi \in C(\mathbb{P}^2)$, $\{M_{\tau}^n(\varphi)\}_{n=1}^{\infty}$ tends to W_{τ} as $n \to \infty$. Also, the map $\nu \mapsto W_{\nu}$ is continuous on \mathcal{MS} w.r.t. the topology \mathcal{O} .

- (6) There exists a number $0 < \alpha < 1$ such that the following (a)(b)(c) hold.
 - (a) The space W_{τ} in (3) is included in the Banach space $C^{\alpha}(\mathbb{P}^2)$ of all α -Hölder continuous functions on \mathbb{P}^2 endowed with α -Hölder norm.
 - (b) For each $\varphi \in C^{\alpha}(\mathbb{P}^2)$, $\{M^n_{\tau}(\varphi)\}_{n=1}^{\infty}$ tends to W_{τ} exponentially fast. (Thus $M_{\tau} : C^{\alpha}(\mathbb{P}^2) \to C^{\alpha}(\mathbb{P}^2)$ has the "spectral gap property".)
 - (c) For each $L \in Min(\tau)$, let $T_{L,\tau} : \mathbb{P}^2 \to [0,1]$ be the function of probability of tending to L. That is,

$$T_{L,\tau}(z) = (\otimes_{n=1}^{\infty} \tau)\{(\gamma_1, \gamma_2, \ldots) \in X^{\mathbb{N}} \mid d(\gamma_n \circ \cdots \circ \gamma_1(z), L) \to 0 \text{ as } n \to \infty\})$$

for each $z \in \mathbb{P}^2$. Then,

$$T_{L,\tau} \in W_{\tau} \subset C^{\alpha}(\mathbb{P}^2).$$

Moreover, for each $z \in \mathbb{P}^2$, we have

$$\Sigma_{L \in \operatorname{Min}(\tau)} T_{L,\tau}(z) = 1.$$

(7) Let $F(G_{\tau}) := \{z \in \mathbb{P}^2 \mid \exists U : nbd \text{ of } z \text{ s.t. } G_{\tau} \text{ is equicontinuous on } U\}$. (This is called the Fatou set of semigroup G_{τ} .) Then, for each $L \in Min(\tau)$ and for each connected component U of $F(G_{\tau})$, there exists a **constant** $c_U \in [0, 1]$ such that

$$T_{L,\tau}|_U = c_U \text{ on } U$$

Thus $T_{L,\tau}$ is a continuous function on \mathbb{P}^2 which varies only on $J(G_{\tau}) := \mathbb{P}^2 \setminus F(G_{\tau})$ (this $J(G_{\tau})$ is called the Julia set of G_{τ}).

Remark 8.

- (1) <u>None</u> of statements (1)–(6) in Theorem 7 can hold for deterministic dynamics of a single $f \in X$. In fact, in the Julia set $J(f|_{\mathbb{P}^1_{\infty}})$ of $f|_{\mathbb{P}^1_{\infty}}$, we have a chaotic phenomenon. See Mañé's paper (1988)[Ma88] etc. Therefore, the statements (1)–(6) describe randomness-induced phenonena (phenomena in random dynamical systems which cannot hold for iteration dynamics of single maps). In this presentation, we have seen randomness-induced order.
- (2) Even if a system induced by an element $\tau \in \Psi$ is mean stable and we have randomness-induced order in the system, **the system still may** have a kind of complexity. In fact, if τ has multiple minimal sets, and if it satisfies some conditions, then there exists a minimal set L of τ and a number $\beta \in (0, 1)$ such that $T_{L,\tau}$ does not belong to $C^{\beta}(\mathbb{P}^2)$. It implies that $M_{\tau} : C^{\beta}(\mathbb{P}^2) \to C^{\beta}(\mathbb{P}^2)$ does not have spectral gap property anymore, and there exists an element $\varphi \in C^{\beta}(\mathbb{P}^2)$ such that $||M^n_{\tau}(\varphi)||_{\beta} \to \infty$ as $n \to \infty$ (see [S11, S13]).

Thus, in this case, there exists a number $\alpha_{\tau} \in (0, 1)$ such that (i) for each $\alpha \in (0, \alpha_{\tau})$, the operator $M_{\tau} : C^{\alpha}(\mathbb{P}^2) \to C^{\alpha}(\mathbb{P}^2)$ has the spectral gap property and for each $\varphi \in C^{\alpha}(\mathbb{P}^2)$, $\{M_{\tau}^n(\varphi)\}_{n=1}^{\infty}$ tends to the finite dimensional subspace W_{τ} of $C^{\alpha}(\mathbb{P}^2)$, but, (ii) for each $\alpha \in (\alpha_0, 1)$, the operator $M_{\tau} : C^{\alpha}(\mathbb{P}^2) \to C^{\alpha}(\mathbb{P}^2)$ does not have the spectral gap property anymore (and M_{τ} might not behave well on $C^{\alpha}(\mathbb{P}^2)$, e.g., there exists a $\varphi \in C^{\alpha}(\mathbb{P}^2)$ such that $||M_{\tau}^n(\varphi)||_{\alpha} \to \infty$ as $n \to \infty$). As we have seen above, even if we have randomness-induced order, we have to check the **gradation between chaos and order**. The above quantity α_{τ} seems to be a kind of quantity which describes the gradation between chaos and order. Rough idea of the proofs of Theorem 7

To show the density of \mathcal{A} in Ψ , let $\tau \in \Psi$. Let L be a minimal set of τ , i.e., L is a non-empty compact subset of \mathbb{P}^2 such that for each $z \in L$, we have $L = \bigcup_{h \in G_\tau} \{h(z)\}$.

- If L is "attracting" for τ , then even if we enlarge the support of τ a little bit and we obtain a new $\nu \in \Psi$, there exists a minimal set L_{ν} of ν which is close to L and is still attracting for ν .
- If L is not attracting for τ , then if we enlarge the support of τ a little bit and we obtain a new $\nu \in \Psi$, then L is broken (there is no minimal set of ν around L).

Thus, if we enlarge the support of τ a little bit and obtain a new $\nu \in \Psi$, then every minimal set L of ν is attracting for ν . Then it is easy to see that ν is mean stable.

Hence the set of all mean stable $\nu \in \Psi$ is open and **dense** in Ψ .

Summary

- (1) We introduce the notion of mean stability in i.i.d. random (holomorphic) 2-dimensional dynamical systems.
- (2) We can see that a **generic** random dynamical system of regular polynomial maps on \mathbb{P}^2 having an attractor in the line at infinity, is **mean stable**.
- (3) If a random holomorphic dynamical system on \mathbb{P}^2 is mean stable then for each $z \in \mathbb{P}^2$, for a.e. orbit starting with z, the Lyapunov exponent is negative.
- (4) If a random holomorphic dynamical system on P² is mean stable, then for any z ∈ P², the orbit of the Dirac measure at z under the iterations of the dual map of the transition operator **converges to a periodic cycle** of probability measures.
- (5) Note that the statements of (3) and (4) cannot hold for deterministic dynamics of a single regular polynomial map f with $\deg(f) \geq 2$. We see many randomness-induced phenomena (phenomena in random dynamical systems which cannot hold for iteration dynamics of single maps). In this presentation, we have seen randomness-induced order.

Many kinds of maps in one random dynamical system automatically cooperate together to make the chaoticity weaker. We call such phenomena

Cooperation Principle.

References

- [FS91] J. E. Fornaess and N. Sibony, Random iterations of rational functions, Ergodic Theory Dynam. Systems, 11(1991), 687–708.
- [HM96] A. Hinkkanen and G. J. Martin, The Dynamics of Semigroups of Rational Functions I, Proc. London Math. Soc. (3)73(1996), 358-384.
- [JS17] J. Jaerisch and H. Sumi, Pointwise Hölder exponents of the complex analogues of the Takagi function in random complex dynamics, Adv. Math. 313 (2017) 839–874.
- [Ma88] R. Mañé, The Hausdorff dimension of invariant probabilities of rational maps, Dynamical Systems (Valparaiso, 1986) (Lecture Notes in Mathematics vol 1331) (Berlin: Springer) pp 86-117, 1988.
- [S11] H. Sumi, Random complex dynamics and semigroups of holomorphic maps, Proc. London Math. Soc., (2011), 102 (1), 50–112.
- [S13] H. Sumi, Cooperation principle, stability and bifurcation in random complex dynamics, Adv. Math. 245 (2013) 137–181.
- [S21] H. Sumi, Negativity of Lyapunov Exponents and Convergence of Generic Random Polynomial Dynamical Systems and Random Relaxed Newton's Methods, Comm. Math. Phys. 384, 1513–1583 (2021).
- [SW19] H. Sumi, T. Watanabe, Non-i.i.d. random holomorphic dynamical systems and the probability of tending to infinity, Nonlinearity 32 (2019), 3742–3771.
- [SW21] H. Sumi and T. Watanabe, Non-i.i.d. random holomorphic dynamical systems and the generic dichotomy, Nonlinearity 35 (2022) 1857– 1877. See also https://arxiv.org/abs/2101.08968.