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Abstract

We introduce the notion of mean stability in i.i.d. random (holo-
morphic) 2-dimensional dynamical systems. We can see that a generic
random dynamical system of regular polynomial maps on P? (the com-
plex 2-dimensional projective space) having an attractor in the line at
infinity, is mean stable. If a random holomorphic dynamical system
on P? is mean stable then for each z € P2, for a.e. orbit starting with
z, the Lyapunov exponent is negative. If a random holomorphic
dynamical system on P? is mean stable, then for any z € P2, the orbit
of the Dirac measure at z under the iterations of the dual map of the
transition operator converges to a periodic cycle of probability
measures. Note that the above statements cannot hold for deter-
ministic dynamics of a single regular polynomial map f with
deg(f) = 2.

We see many randomness-induced phenomena (phenomena in
random dynamical systems which cannot hold for iteration dynamics
of single maps). In this talk, we have seen randomness-induced
order.
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Motivation.

Nature has a lot of random (noise) terms. Thus it is natural and
important to consider random dynamical systems.

Holomorphic dynamical systems have been deeply investigated.
The study of them helps us to investigate real dynamical systems.

Combining the above two ideas,
we consider random holomorphic dynamical systems.

We want to find new phenomena (so called randomness-induced
phenomena) in random dynamical systems which cannot hold in
deterministic iteration dynamical systems of single maps.

Other motivations: Random relaxed Newton’s method (in which
we can find roots of polynomials more easily than the determin-
istic methods, see S, [S21]). The action of holomorphic auto-
morphisms on complex manifolds. The action of mapping class
groups of the Riemann surfaces on the character varieties, etc.

Definition 1.

Let C? be the 2-dimensional complex Euclidean space.
Let f : C* — C? be a polynomial map, i.e., if we write f(z,y) =
(9(x,y), h(z,y)), then g(x,y) and h(z,y) are polynomials of (x,y).

We say that f is a regular polynomial map on C? if f extends to a
holomorphic map on P? (the complex 2-dimensional projective space),
ie.,

P? = {[u:v:w] | (u,0,w) € C*\{(0,0,0)}}.

Note that we regard C? as a subset of P? via the following canonical
identification and inclusion:

C*2{[u:v:1] €P?| (u,v) € C*} C P2



Remark: Let f: C> — C? be a polynomial map.
Then f is a regular polynomial map if and only if the following (x)
holds.

(x) Let f(z,y) = (9(z,y), h(z,y)). Let gi(x,y) be the highest de-
gree term of g(x,y) and let hy(x,y) be the highest degree term of
h(z,y). Then deg(g;) = deg(h1) and

g1(9;‘,y) = hl(x7y) =0 (LL',y) = (070)

Example: Let f(z,y) =

(a12% + aszy + azy? + bix + boy + bs, 1y + o + c3y + ¢4),
where ay,c; € C\ {0}, as, as, by, by, b, ca,c3,¢4 € C.

Then f is a regular polynomial map on C2.

If f is a regular polynomial map on C?
then we regard f as a holomorphic map on P?.
We call such a holomorphic map f on P?

“ a regular polynomial map on P?”.

Let X be the space of all regular polynomial maps on P? of degree two
or more, endowed with the distance n which is defined as n(f,g) =
sup,epe d(f(2),9(2)), where d denotes the distance on P? induced by
the Fubini-Study metric on P2

We denote by 9t (X)) the space of all Borel probabiliy measures on X.

Also, we set My (X)) := {7 € M;(X) | supp is a compact subset of X}.

We endow 0 .(X) with a topology O which satisfies that

Tn, — T as n — oo if and only if

(a) for each bounded continuous function ¢ : X — C, we have [ ¢dr, —

[ ¢dr as n — oo, and

(b) supp 7, — supp 7 as n — oo with respect to the Hausdorff metric
in the space of all non-empty compact subsets of X.
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For each 7 € 9% (X)), we consider i.i.d. random dynamical system
on P? such that at every step we choose a map f € X according to
7. This defines a Markov process whose state space is P? and whose
transition probability p(z, A) from a point z € P? to a Borel subset A
of P? satisfies p(z, A) = 7({h € X | h(z) € A}).

(6) For V7 € My (X)), let G, :={y0---0om | n €N, € supp7(Vj)}.
This is a semigroup with the semigroup operation being the functional
composition. (It is important to study the dynamics of G,.)

(7) We say that an element 7 € 9t (X)) is mean stable if there exist
an n € N, an m € N, non-empty open subsets Uy, ..., U, of P?,
a non-empty compact subset K of U™, Uj, and a constant ¢ with 0 <
¢ < 1 such that the following (a) and (b) hold.

(a) For each (71,...,7,) € (supp7)”, we have
Yoo o (UL, Uj) C K.

Moreover, for each j =1,...,m, for all z,y € U; and
for each (y1,...,7.) € (supp7)”, we have

d(“/n ©0---0 ’71(33)7/\/71 ©---0 ’\/l(y» < Cd($a y)'

(b) For each z € P?, there exists an element h, € G, such that h.(z) €
U.

Remark 2. Let MS := {7 € M, .(X) | 7 is mean stable}.
Then MS is non-empty and open in (M, .(X), O).

Example. Let f1, fo € X be elements defined by

fiww) = (%92, faliw) = (3% 507, (w.0) € €.

Let 7 = %5f1 + %5f2 € My (X), where dy, denotes the Dirac measure concen-
trated at f; € X for each i = 1,2. Then 7 € MS.
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Problem 3. (Open Problem.) Is MS dense in (9 .(X),O)?

(Remark: This kind of statement is true for random dynamical systems
of 1-dimensional complex polynomial maps on P! = C := C U {0}
(the Riemann sphere) of degree two or more. S., 2013 ([S13], Adv.
Math.), [SW21] (Takayuki Watanabe’s presentation).)

Definition 4. Let

Pl = {[u:v:0] € P*| (u,v) € C*\ {(0,0)}}.
This is called the line at infinity.

Remark: Let f € X. Then f(PL) =PL, f*(PL)=P., and for each neigh-
borhood B of P!, there exists an open neighborhood C of P!, with C' C B
such that f(C) c C.

Definition 5. Let ¥ be the set of all 7 € 9 .(X) satisfying the following
condition. There exist two non-empty open subsets U, V of P, and an n € N
such that all of the following (i)(ii)(iii) hold.

(1) tPL\U) > 3.
(ii) V C U, where V denotes the closure of V in PL_.

(iii) For each (y1,...,7vn) € (supp 7)™, we have v, 0---0y (U) C V.
Remark 6. U is a non-empty open subset of (M1 .(X), O).
Example: Let Y (C X) be the set of all regular polynomial maps f : P? — P?
of the form

flz,y) = (a1:1:2+a2xy+a3y2+b1x+b2y+b3, 0192+02$+C3y+04)a (z,y) € c?,

where ay, Cq € C \ {0}, ag, s, bl, bg, b3, Co,C3,Cy S C.
Note that Y = (C\ {0})% x C&.
Let 7 be a Borel probability measure on Y with compact support.

Then
Te W,

In fact, for any f € Y of the above form, via the identification
PL.2C=CU{c0}, [z:1:0]<2(z€C), [1:0:0] ¢ oo,

fley, : PL, — PL is equal to the map 2 — _-(a12” + asz + az)(z € C) on C,
and so [1:0: 0] € PL is a common attracting fixed point of any f € Y.
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Theorem 7. Let A:= VY NMS = {7 € V¥ |7 is mean stable}.
Then A is open and dense in .
Moreover, for each mean stable T € My (X)) (in particular, for each T € A),

we have all of the following (1)—(7).

(1) There ezists a constant ¢, with ¢, < 0 such that the following holds.

— For each z € P? there exists a Borel subset B, of XN with
(@2°47)(B;.) = 1 such that for each (y1,%...,) € B, ., we have

1
limsup = log [ D(3 0+ 0 ).l < ¢ < 0.
n

n—oo

Here, for each f € X and each z € P2, we denote by ||Df.| the
norm of the differential of f at z with respect to the Fubiny-Study
metric in P2

(2) Foreach z € P2, there exists a Borel subset C.. , of X™ with (25°,7)(C,,) =
1 such that for each v = (1,72, ..., ) € Cr 2,
there exists a number r = r(7,z,7) > 0 satifying that

diam(y, 0oy (B(z,7))) = 0 as n — oo

exponentially fast, where B(z,r) denotes the ball with center z and ra-
dius r with respect to the distance d induced by the Fubini-Study metric
on P2, and for each subset A of P?, we set diamA = Sup, yea d(T, ).

(3) Let Min(7) be the set of all minimal sets of T. Then,
1 < gMin(7)< oo.

Here, we say that a non-empty compact subset L of P? is a
minimal set of T if for each z € L, we have L = J,c {h(2)}.

(4) Foreach z € P2, there exists a Borel subset D, , of X with (2°,7)(D,.,) =
1 such that for each (vy1,7v2,...) € D, .,

d(ﬁ/n -0 ﬁ/l(z)v ULEI\/Iin(T)L) —0 asn — oo

exponentially fast.



(5) Let C(P?) be the Banach space of all continuous complex-valued func-
tions on P? endowed with the supremum norm.
Let M, : C(P?) — C(P?) be the linear operator defined by

M, (¢)(2) = /X o(h(2)) dr(h), for p € C(P?), z € P°.

Then there exists a finite dimensional subspace W, # {0} of C(P?) with
M, (W,) = W, such that for each ¢ € C(P?),

{M*(p)}2, tends to W, as n — oc.

Also, the map v — W, is continuous on MS w.r.t. the topology O.

(6) There exists a number 0 < a < 1 such that the following (a)(b)(c) hold.

(a) The space Wy in (3) is included in the Banach space C®(P?) of
all a-Hélder continuous functions on P? endowed with a-Hélder
norm.

(b) For each ¢ € C(P?), {M"(p)}>, tends to W, exponentially

fast. (Thus M, : C%(P?) — C®(PP?) has the “spectral gap prop-
erty”.)

(c) For each L € Min(r), let Tp, : P2 — [0,1] be the function of
probability of tending to L. That is,

TLJ—(Z)

= (@2 7){(r.72,..) € XN [ d(y 0 0m(2), L) = 0 as n — oo})

for each z € P2. Then,
Ty, € W, C C*(P?).
Moreover, for each z € P?, we have

ZLGl\lin(T)TL,T(Z) =1L
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(7)

Let F(G,) :={z € P* | 3U : nbd of z s.t. G, is equicontinuous on U}.
(This is called the Fatou set of semigroup G .)

Then, for each L € Min(7) and for each connected component U of
F(G.), there exists a constant ¢y € [0, 1] such that

TL.T|U = Cy on U.

Thus Ty, » is a continuous function on P* which varies only on J(G,) :=
P2\ F(G,) (this J(G,) is called the Julia set of G ).

Remark 8.

(1)

None of statements (1)-(6) in Theorem 7 can hold for de-
terministic dynamics of a single f € X. In fact, in the Julia
set J(flpr) of flpr, we have a chaotic phenomenon. See Mané’s
paper (1988)[Ma88] etc. Therefore, the statements (1)—(6) describe
randomness-induced phenonena (phenomena in random dynami-
cal systems which cannot hold for iteration dynamics of single maps).
In this presentation, we have seen randomness-induced order.

Even if a system induced by an element 7 € U is mean stable and we
have randomness-induced order in the system, the system still may
have a kind of complexity. In fact, if 7 has multiple minimal sets,
and if it satisfies some conditions, then there exists a minimal set L of
7 and a number B € (0,1) such that T}, does not belong to C#(P?).
It implies that M, : C?(P?) — CP(P?) does not have spectral gap
property anymore, and there exists an element ¢ € C#(IP?) such that
| MZ(¢)||g — 00 as n — oo (see [S11, S13]).

Thus, in this case, there exists a number o, € (0, 1) such that (i) for
each a € (0, a;), the operator M, : C*(P?) — C*(P?) has the spectral
gap property and for each ¢ € C®(P?), {M" ()}, tends to the finite
dimensional subspace W, of C*(P?), but, (i) for each a € (ap,1),
the operator M, : C%(P?) — C%(P?) does not have the spectral gap
property anymore (and M, might not behave well on C*(P?), e.g., there
exists a p € C%(P?) such that [|[M" ()|l — o0 as n — o0). As we have
seen above, even if we have randomness-induced order, we have to check
the gradation between chaos and order. The above quantitiy o,
seems to be a kind of quantity which describes the gradation between
chaos and order.



Rough idea of the proofs of Theorem 7

To show the density of A in W, let 7 € W. Let L be a minimal set of
7, i.e., L is a non-empty compact subset of P? such that for each z € L, we
have L = Upeq, {h(2)}.

o If L is “attracting” for 7, then even if we enlarge the support of 7
a little bit and we obtain a new v € WU, there exists a minimal set L,
of v which is close to L and is still attracting for v.

e If L is not attracting for 7, then if we enlarge the support of 7 a little
bit and we obtain a new v € ¥, then L is broken (there is no minimal
set of v around L).

Thus, if we enlarge the support of 7 a little bit and obtain a new v € ¥,
then every minimal set L of v is attracting for v. Then it is easy to
see that v is mean stable.

Hence the set of all mean stable v € U is open and dense in W.
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Summary

(1)

(2)

We introduce the notion of mean stability in i.i.d. random (holomor-
phic) 2-dimensional dynamical systems.

We can see that a generic random dynamical system of regular poly-
nomial maps on P? having an attractor in the line at infinity, is mean
stable.

If a random holomorphic dynamical system on P? is mean stable then
for each z € P2, for a.e. orbit starting with 2, the Lyapunov expo-
nent is negative.

If a random holomorphic dynamical system on P? is mean stable, then
for any z € P2, the orbit of the Dirac measure at z under the iterations
of the dual map of the transition operator converges to a periodic
cycle of probability measures.

Note that the statements of (3) and (4) cannot hold for deter-
ministic dynamics of a single regular polynomial map f with
deg(f) = 2.

We see many randomness-induced phenomena (phenomena in ran-
dom dynamical systems which cannot hold for iteration dynamics of
single maps). In this presentation, we have seen randomness-induced
order.

Many kinds of maps in one random dynamical sytstem automatically
cooperate together to make the chaoticity weaker. We call such phe-
nomena

Cooperation Principle.
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