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1. INTRODUCTION 

We start with the definition of random dynamical system (abbr. RDS). Let (M,.4,叫
be a Lebesgue space and (S，ダ） acountably generated measurable space. The former will 

be called the state space of RDS and the latter the parameter space of RDS in this article. 

Consider a family { Ts}sES of m-nonsingular transformations on (M,.4, m) indexed by S 

such that the map S x M ぅ(s,x)f-t冗xE Mis（ダx.4)/.4-measurable. Let (n，§,P) 

be a Lebesgue space and a-: n→n a ?-preserving transformation which is assumed to 

be ergodic for the sake of simplicity. The measure-preserving dynamical system（び，P)will 

be called the noise transformation or noise system. Take an S-valued random variable~ 
on (n,ff, P) and define an S-valued strictly stationary process｛品｝デ＝。 by~n = ~ oザ

(n：：：： 0). For each n the S-valued random variable品 willbe called the (random) choice 

at time n. The family充＝ ｛ふ｝ ofrandomly composed maps Xn : M →Mis called 

the random dynamical system given by ({ T8} sES, a-, ~) if the maps in充 aredefined by 

Xo(w)x = x, Xn+1(w)x = TEn(w)ふ (w)xfor (x, w) EM  x n, (n：：：：〇）．

The main interest of this article is the common statistical behavior of random maps 

X心） withrespect to the reference measure m for a great majority of samples w E n. 
It is well known that if｛品｝戸0is independent, the random sequence { X訊｝n拉 becomes

a Markov chain starting at x and the so-called random ergodic theorem is discussed in 

Kakutani [6]. Following Kakutani [6], we introduce the skew product transformation 

Tx-= T1 : M x n→M X n associated to虎 by

T1(x,w) =（ふ(w)x，叩） for(x,w) EM  x D. 

Clearly, 

rn+k(x,w) = (Xn+k(w)x,a-n+kw) =（ふ（心）Xk(w)x，びn+kw)

holds for n, k：：：：゚． Inaddition, it is easy to see that T1 ism x ?-nonsingular since each冗

is m-nonsingular. So one may expect that the study of asymptotic behavior of the RDS 

疫 withrespect to m is reduced to that of the single transformation T1 with respect to 

mxP. 
Recall the study of a single m-nonsingular transformation (T, m) as a prototype. We 

usually proceed as follows: We first verify whether an m-absolutely continuous invariant 

measure (abbr. a.c.i.m.) μ exists or not. Unless otherwise stated invariant measures are 

assumed to be normalized in this article. If it exists, then next we consider the ergodic 
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properties of the measure-preserving dynamical system (T,μ) (ergodicity, weak-mixing, 
strong-mixing, exactness in noninvertible case, Kolmogorov property in invertible case 

etc.). Moreover, if strong ergodic properties e.g. mixing, exactness etc. are established, 

we may try to show the central limit theorem and the other limit theorems. Therefore 

the study of statistical properties of the single transformation T1 via the product measure 

m x P may give some clues to our problems. But the following fact makes us recognize 

that it is not enough when we consider a sort of sample-wise (i.e. w-wise) properties of 

the system. Let <p : M x Q →!J ; (x,w)→w be the natural projection. Then the 

commutative diagram 

MxD  ~ MxD  

｀
 

9. 
9. 

'
 

Q)  Q 
〇-

yields that the noise system (u, P) should be a factor of the skew product system (T1, m x 

P). Thus one can not expect (T1, m x P) having ergodic properties stronger than (u, P). 

Keeping the above situation in mind, we introduce the notion of (direct) product of a 

RDS虎 givenby ({ T8}sES, u, t) as the RDS given by ({ T8 X T8}sES, u, t) and we denote it 

by虎 x洗， ormore simply !Z文 Clearly,the corresponding skew product transformation 

T2:M2xn→M2 X Q can be defined by 

花(x,y,w)=（ふ（w)x，ふ(w)y,uw) for (x, y, w) E M2 x 0. 

and乃 ism2 x P-nonsingular. On the other hand, in [2] (see also [1]), the sample-wise 
(quenched) central limit theorem is obtained by showing the sample-averaged (annealed) 

central limit theorem for the skew product dynamics T2 corresponding to虎 2for a class of 

RDSs沈 withindependent choices. Inspired by these result the author studies a sample-

wise central limit theorem with deterministic centering for a class of RDSs whose choices 

satisfies the strong mixing conditions but not necessarily independent. By working on the 

problem above, we get a clue to show that some sample-wise (quenched) ergodic properties 

of RDSs are obtained by investigating sample-averaged (annealed) ergodic behavior of its 

product RDS i.e. ergodic properties of a single transformation T2. In addition we also 

notice that invertibility of noise dynamics plays the important roles in our investigation. 

The purpose of this article is to announce the results obtained in the research above and 

give some idea to show them. Roughly speaking, we shall pull out some quenched ergodic 

properties of a RDS虎 fromappropriate annealed ergodic properties of the product RDS 

疫乞 Inorder to carry out the study of annealed ergodic properties of the product RDS 

免叫 wemay investigate the ergodic behaviors of the skew product transformation T2 with 

respect to the reference measure m2 x P following the preceding works [9] and [11] (see 

also [10] and [14]). 
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2. PRELIMINARIES 

First of all, let us recall the definition of the Perron-Frobenius operators and their basic 

properties on this occasion. Let (M,.4, m, T) be an m-nonsingular dynamical system. As 

usual it is often denoted by (T, m) if there is no fear of confusion. The Perron-Frobenius 

operator for T with respect to m (abbr. PF operator) is defined to be the positive bounded 

linear operator on £1 (m) satisfying 

L(joT)gdm= Lf（名，mg)dm for J E L00(m) and g E L1(m). 

We summarize the basic facts of the Perron-Frobenius operators in the below. 

PROPOSITION 2.1. Let (T, m) be an m nonsingular dynamical system. Then we have the 

following: 

(1) For h E L1(m), hm is T-invariant if and only if名，mh= h holds, where hm 

denotes the m-absolutely continuous measure with density h. 

(2) Letμ be an m-absolutely continuous T-invariant probability measure. Consider the 

measure-preserving dynamical system (T, μ). Then we have: 

(2-1) (T, μ) is ergodic if and only if the eigenspace of名，μ ： L1(μ)→L1 (μ) belonging 

to the eigenvalue l is one-dimensional subspace of L1 (m) consisting of constant functions. 

(2-2) (T, μ) is weak-mixing if and only if it is ergodic and l is the only eigenvalue of 

modulus l for名，μ ： L1(μ)→じ(μ).

(2-3) (T,μ) is strong-mixing if and only if 

J f（名~µ,g) dμ →Lf  dμ Lgdμ (n→oo) 
M JM JM 

holds for any f E £00(μ) and g E L尺μ).

(2-4) (T,μ) is exact, i.e. n~=OT—n.4 is trivial μ-a.e. if and only if 

！四グ贔g-L gdμIII,μ = O 

holds for any g E L1 (μ). 

Let勿 bea RDS given by(｛叫sESぶ~) and沈-2its direct product. T1 and T2 denote 

the skew product transformations associated to勿 and炉， respectively.Our first task 

is to find a reasonable sufficient condition for the existence of an m x P-a.c.i.m for T1 

and an m2 x P-a.c.i.m. for T2. It is easy to see that if H2 E L2(m2 x P) is a density of 

而 xP-a.c.i.m. for T2, then H1 E L1(m x P) defined by 

H1(x,w) = 1叫 x,y,w)m(dy) ((x,w)EMx切
M 

becomes a density of m x P-a.c.i.m for T1. Furthermore if the noise transformation r, is 

invertible, we obtain: 
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PROPOSITION 2.2. Suppose that the noise system (a-, P) is invertible. Then T1 has an 

m x P-a.c.i.m. if and only if T2 has an m2 x P-a.c.i.m. 

Sketch of Proof. By virtue of the remark above, it suffices to show the'only if'part. 

Let H1 E L1(m x P) is an invariant density for T1 with respect to m x P. Since the 

invertibility of a-guarantees that the formula 

幻，mxP<P(x,w)＝2'x1(u―1w),mゆ（・，ぴ―1w))(x) P-a.e.(x,w) 

is valid for <P E L1(m x P), it is not hard to see that H2 E L1(m2 x P) given by 

H2(x,y,w)＝凡(x,w)H1(y,w)for (x,y,w) E M2 x Dis an invariant density for T2 with 

respect to m2 x P. ロ

Note that the commutative diagram 

M2xD ~ M2xD 

ゆ〉 ） 切

MX  Q)Mx Q  
T1 

holds, where心isthe natural projection given by心(x,y,w)= (x,w) for (x,y,w) E M2xD. 

This implies the following. 

PROPOSITION 2.3. Let Q2 be an m2 x P-a.c.i.m. for T2 and Q1 the push-forward of Q2 

by the natural projection心． ThenQ1 is an m x P-a.c.i.m. for T1 and the following hold. 

(1) If (T2,仙） isergodic, then so is (T1, Qリ・

(2) If (T2,仙） isweak-mixing, then so is (T1, Qサ

(3) If (T2, Q2) is strong-mixing, then so is (TぃQ1),

(4) If (T2, Qりisexact, then so is (T1, Q1). 

3. EXISTENCE OF A.C.I.M. 

We use the same notation as in the previous section. We consider the following condi-
tions: 

(UI) {2ふ，ml}n::::o is uniformly integrable with respect to m x P. 

ふ XXn，研 n：：：：0is uniformly integrable with respect to m 2 (UI砂｛ダ 1} ・ X P. 

In the aboveダふ(w),m: L1(m)→じ(m)andダ心(w)XXn(w),m2: L尺州） → U（厨） are

the Perron-Frobenius operatorers forふ (w):M →Mandふ (w)X Xn(w) : M2→ M2 

with respect tom and m汽respectively.

REMARK 3.1. (1) Recall that a family Gin L1(m) is uniformly integrable if 

』應霊igl：：：：a)lgl dm = 0. 
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In general a family in L1 (m) is uniformly integrable if and only if it is sequentially, weak-

compact inじ(m)(cf. [5] Chapter IV 8-9, 8-11, and 13-54). 

(2).!L'xn(w),ml(x,w) is given by 

ダふ(w),ml(x,w)＝名宝1(w),m名い(w),m.....名知<wJ,ml(x,w). 

The conditions (UI) and (UI2) imply that｛勾，mxPl}n?:O and｛写，叩xPl}n?:O are 

uniformly integrable with respect tom x P and m2 x P, respectively. Therefore, by virtue 

of Kakutani-Yosida Ergodic Theorem [16], the conditions (UI) and (UI』aresufficient to 

the existence of an m x P-a.c.i.m. for T1 and an m2 x P-a.c.i.m. for T2, respectively. 

Moreover, we can show the following. 

PROPOSITION 3.2. The conditions (UI) and (UI2) are equivalent. 

If T2 has an m2 x P-a.c.i.m. Q2, then its push-forward Q1 =か仙 isthought as a 

natural m x P-a.c.i.m. for T1 corresponding to T2. Then it is natural to ask the converse 

problem that given an m x P-a.c.i.m. Q1 for T1, are there any natural m2 x P-a.c.i.m. 

Q2 for T2 satisfying Q1 =叫Q2.In the case when the noise system a-is invertible, the 

answer is obviously true by Proposition 2.2. In the sequel of this section we consider the 

methods constructing a natural invariant density for乃 withrespect to m2 x P starting 

from a given invariant density for T1 with respect to m x P. 

First we introduce the method of natural extension for our later convenience. Let 
(D,ク， P,び） bea measure-preserving system on a Lebesgue space. Then there exists an in-

vertible measure-preserving system (D, ff, P, a 9 ，び） callcdthc natural cxtcnsion of (D，ff, P, a-) 
satisfying the following (i) and (ii), which is unique up to isomorphism. 

(i) The commutative diagram 

holds. 

(!1，彦，P)~ (fl，彦，P)

7f』 [7f

(Q,§, P) ----+ (D,§,P) 

(ii) 彦 isgenerated by初戸§ (n E Z). 

REMARK 3.3. (1)｛尻＝け叶ー1ff} is a nondecreasing family of u fields generates尻．

(2) Let勿 bea RDS given(｛冗｝sESぶ f)and (D，ク，P,a) the natural extension of the 

system (0, ff, P，u). Define (: D→S by 

如）＝く（詞）．

Then we obtain a RDS必 givenby ({ T8}8竺8,a,[). Denote by T and T'the associated 

skew product transformations to究 and広 respectively.Since TE(w) = Tf(1rw), for each 
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nonnegative integer n we have 

ふ(w)＝ふ（叩）．

THEOREM 3.4. Suppose the condition (UI) is fulfilled. Let H E  L1(m x P) be a density 

of m x P-a. c. i. m. for T1. Then there exists a unique月 EL1(m x P) such that it is a 

density of m x P-a.c.i.m. for T1 and satisfies 

H(x, 1rw) = EmxP[fI I.4 X尻](x，w) (m x P)-a.e.(x, w), 

where EmxP[fl I.,It X尻]is the conditional e叩 ectationof fl given.,It x尻 withrespect 

tom x P. 

Sketch of Proof. (Existence) For n 2 0 define几 by

”n(x ， w)= ダ~(H(·, 1r・))(x，w) = 2xn(頑 -nw)(H(・,1ra―nw)(x), 

where we write asダT=グ-T,mxp,ダふ(1r<fー四） ＝ダふ（冠—nw),m for convenience. Then we 

can show that{（月n,vヽ x尻）｝ isan L1-bounded martingale. Further, the condition (UI) 

yields the uniform integrability of｛几｝． Thereforeby Doob Convergence Theorem for 

uniformly integrable martingale, it converges m x P-a.e. and in L1(m x P). The limit fl 

is the desired element in L1(m x P). 

(Uniqueness) Let fl and K be elements in (m x P) satisfying the conditions in the theorem. 

Then for any f E L1(m), cp E L00(P) and n 2 0, we can verify 

Lxri f(x)cp（祠―n叩）月（x,砂）d(mX P) = Lxri J(x)cp（祠―nw)K(x,w) d(m X P) 

by the usual manner. Since { a-叶ー1ff} generates豆 itfollows that fl = K m x戸

.a.e. ロ

Now by Proposition 2.2,月2E L1(m2 x P) defined by凡(x,y，w)=如 x，⑭）凡(y,w)

for (x, Y, w) E M2 X [! is an invariant density of m2 X P-a.c.i.m. for the skew product 

transformation 7'2. Consider the conditional expectation of月2given.,1/2 x尻＝ “,2X 

戸§.Then there exists H2 E L1(m2 x P) such that 

E叩 xP[凡 |4が x尻l（w)=H化・，四）．

We see that凡(m2x P) is an invariant measure for T2 such that its push-forward by'I/; 

is H1(m x P). 

Next, we introduce the method via Kakutani-Yosida Ergodic Theorem, As mentioned in 

the remark above, if the RDS satisfies the condition (UI), we can apply Kakutani-Yosida 

Ergodic Theorem to the Perron-Frobenius operator玲 1,mxPfor T1 with respect tom x P. 
n-1 

Therefore the sequence (1/n)とゲT,,mxP 1 converges in L1(m x P). We denote the limit 
k=O 

by H1. From the basic properties of the Perron-Frobenius operator, H1 is an invariant 
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probability density of m x P-a.c.i.m. for T1. Note that any m x P-a.c.i.m. for T1 is 

absolutely continuous with respect to the measure Q1 = H1 (m x P). In the sequel of this 

section we construct a natural invariant measure仙＝几(m2x P) whose push-forward 

by心isQ1. To this end we consider the element几E£1(m2 x P) defined by 

凡(x,y,w)＝凡(x,w)H1(y,w) (x,y,w) E M2 x n. 

By Theorem 3.2 we can apply Kakutani-Yosida Ergodic Theorem to“五叩xP・ Therefore 

there exists H2 Eじ(m2x P) such that 

1 
n-1 

lim - - ＝ 0. 
n→0011n 

こ写，叩xPfil- H2 
k=O Ill，記xP

We can show that H紅， W）＝ J凡 (x,y, w) m(dy) (m x P)-a.e.(x, w). Moreover, the 
M 

invariant measure仙 ismaximal in the following sense. 

THEOREM 3.5. Assume that the condition (UI) is fulfilled. Let Q1 = H1(m x P) with 

H1 E L1(m x P) be an m x P-a.c.i.m. T1. Consider the m2 x ?-absolutely continuous 

measure Q1 with density月1given by加x,y,w)＝凡(x,w)H1(y,w)for (x,y,w) E M2 x 
n-1 

T2,m牧 pH1converges in L1(m2 x P). If the limit is denoted by H2, St. Then (l/n)とダ
k=O 

Q2 = H2(m2 x P) is an m2 x P-a.c.i.m. for T2 such that its push-froward byゆisQ1 and 

any Q1 -a.c.i.m. for T2 is absolutely continuous with respect to Q2. 

4. WEAK-MIXING 

The notion of weak-mixing plays very important roles in the study of a single measure-

preserving transformation. In this section we consider some analogous properties of RDS. 

In what follows，究 isa RDS given by ({ Ts}sESぶも） and虎・2is its product RDS defined 

as RDS given by ({ T8 x Ts}sES, 17, ~'). T1, and T2 are the skew product transformations 

corresponding to勿 and炉， respectively.We assume the uniform integrability condition 

(UI). Given an m x P-a.c.i.m. for T1 Q1 = H1(m x P), Q2＝凡（m2x P) denotes the 

m2 x P-a.c.i.m. for T2 constructed in Theorem 3.5. 

For a measure-preserving system (T, m), it is well known that (T, m) is weak-mixing if 

and only if its product system (T x T, m x m) is ergodic. As a trial we compare the ergodic 

properties of (T1, Q1) with that of (T2,仙） althoughthe latter is not the direct product 

of the former. Let us temporary introduce the notion of conditional weak-mixing. The 

skew product (T1, (み） saidto be conditionally weak-mixing if any F E L⑩ )with 

JM F(x,w)H(x,w)m(dx) = 0 
M 
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satisfies 

n-1 

lim ~ 
n→oon とLxn(F o Tf)F dQ1 I = 0. 

k=O Mxn 

Note that JM F(x, w)H(x, w) m(dx) is expressed as E叫FIproj;-1 §](w) P-a.e. w by using 
M 

the conditional expectation. Then we can show the following. 

THEOREM 4.1. Unde'f" the condition (UI), if (T2,仙） isET"godic, then (T心） iscondi-

tionally weak-mixing. 

Sketch of Prnof. Suppose that (T2, Q砂isergodic and FE L00(Qリsatisfies

JM F(x, w)H(x, w) m(dx) = 0. 
M 

First we see that 

喜Lxn(F o Tf)F dQ112 

賃〗~ IL (F O Tf)FH1 dmr dP 

n-1 

＝：とfofM2F(X心）x，入）F（ふ(w)y,a-知）・

• F(x,w)F(y,w)H1(x,w)凡(y,w)dm2dP 

→JM2xn F(x, w)Ffii:w)H2(x, y, w) d(m2 x P)・ 
M国

・ L JM2 F(x)F0)H1(x, w)几 (y,w)dm2dP 
!1 JM2 

:of砂 0F(x,W)F(y,W)H2(x,y,W)d(m2X P)J。JMF(x,W)Hl(x,W)dm2 dP 

In the above, we need the maximality of the measure仙 inTheorem 3.5 to justify the 
convergence in the fifth line. For instance, we divide the argument into two parts according 

as (x,y,w) E (H2 > 0) or (x,y,w) E（几＞ 0)¥ (H2 > 0). It is not so hard but slightly 
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n-l 
1 

long. So we omit it. Now noticing that for { aふ：：：：o,囲!; L ak = 0 if and only if 
k=O 

n-l 
1 

limー La%= 0, the argument above leads us to the desired result. ロ
n→=n 

k=O 

Theorem 4.1 has the following corollaries. 

COROLLARY 4.2. Assume the condition (UI) is fulfilled. Let p denote the probability 

measure on M with density 1凡(・,w) dP with respect tom. If (T2,仙） isergodic, then 
Q 

for any J Eび(p),we have 

」四J,［］苫 JM(f（ふ（w)x)-L f(y)H1(Y，心）dm)

(!(x)-Lf(y)H1(y,w)dm)凡 (x,w)dmn dP = 0 
M 

COROLLARY 4.3. Assume that mis T((w)-invariant for P-a.e.w. If (T2, m2 x P) is ergodic, 

then for any f E L2(m) we have 

l既f,［虚JM(.f（ふ（w)x)-L f(y) dm) 

(f(x) -L f(y) dm) drrf] dP = 0 

REMARK 4.4. Corollary 4.2 and Corollary 4.3 may be regarded as quenched results on 

random mapsふ (w)in the very weak sense. We might say that an annealed condition on 

the product !J:"2 (ergodicity of (T2,仙） inthis case) yields a sort of quenched weak-mixing 

property (not P-a.e. but in the sense ofび(P)-convergence).

5. STRONG-MIXING 

In this section究，究汽 T1,and T2 are the same as the previous section. Our present 

concern is the case when there exists a unique m x P-a.c.i.m. Q1 and the system (T1, Q1) 

is mixing. We first introduce the notion of weak-asymptotic stability. Let (T, m) be an 

m-nonsingular system. Leth E L1(m) be a probability density. The PF operator名，m for 

T with respect to m is called w-asymptotically stable at h Eい(m)if for any g E L1(m) 

」既グ贔g=lgdm・h weaklyinL1(m) 

holds. 
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Let Q1 = H1(m x P) and仙＝比(m2x P) be invariant measures for T1 and T:あ
respectively. In addition Q1 and Q2 satisfy叫伍＝ Q1.Now we consider the following 
conditions. 

(MX) 幻，mxPis w-asymptotically stable at H1 E L1(m x P). 

(MX2) 坊乃，m2xPis w-asymptotically stable at H2 E L1(m2 x P). 

One can easily see that the condition (MX2) yields the condition (MX). 

We have the following proposition which illustrates that the condition (MX) implies a 

weak version of quenched mixing property of the RDS. 

PROPOSITION 5.1. Assume that 2r1,mxP satisfies (MX). Then, for any f E L00(m) and 

g E L1(m) we have 

J f（ふ（w)x)g(x)dm→JM f dp JM g dm weakly inじ(P),
M JM JM 

where p is a probability measure on M with density h(・) = 1凡 (・,w)P(dw) with 
M 

respect to m. 

Therefore, we obtain a quenched mixing result of the RDS in the weak £1 sense if the 

Perron-Frobenius operator for T1 is w-asymptotically stable. But the next theorem tells 
us that except for the trivial case, we can hardly expect the corresponding result in the 

strong £1 sense even if the Perron-Frobenius operator for T2 is w-asymptotically stable. 

THEOREM 5.2. Let p = hm be the same as in Proposition 5.1. Under the condition 

(MX2) the conditions (1), (2), (3) below are equivalent. 

(1) The probability measure p on M is L1-asymptotically invariant in the following 
sense. 

For any f E L00(m) we have 

E JMf（ふ（•）x) p(dx) -L f(x) p(dx)→0. 

(2) The RDS究 ismixing in mean in the following sense. 

For any f E L00(m) and g E L1(m) we have 

E JMf（ふ（）x)g(x)m(dx) -L f(x) p(dx) L g(x) dm→ O 
M 

(3) H2, H1, and h satisfy the following. 

H2(x,y,w) -H1(x,w)h(y) -H1(y,w)h(x) + h(x)h(y) = 0 (m2 x P)-a.e.(x,y,w). 

In the c邸 ewhen the sequence of choices { tn}n：：：゚ isindependent, Theorem 5.2 h邸 the

following corollary. 
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CoR叫 ARY5.3. In addition to the assumptions in Theorem 5.2, we assume the choice 
｛品｝n:2'.0of the RDS is independent. Then the condition (3) in Theorem 5.2 is replaced by 

the condition (3)* below. As a consequence each of (l), (2), and (3) in Theorem 5.2 is 

equivalent to (4) below. 

(3)＊凡(x,w)= h(x) (m x P)-a.e.(x,w), and 

比(x,y,w)= h(x)h(y) (m2 x P)-a.e.(x,y,w). 

(4) For any f E L00(m) we have 

JMf（ふ（w)x)p(dx) = L f(x) p(dx) P-a.e.w. 

Sketch of Proof. We just give the idea of proving the equivalence of (3) and (3)* under 

the condition that｛品｝n:2'.0is independent. In such a case the deterministic version lemma 

in [11] implies that H1 and H2 have deterministic versions, i.e. versions free from w. Thus 

H1(x,w) = h(x) mxP-a.e. (x,w). Therefore, (3) yields (3)*. The converse is obvious. ロ

The assumption of independence can be removed if the condition of uniform integra-
bility is fulfilled. 

THEOREM 5.4. In addition to (MX2), we assume (UI). Then the conditions (1), (2), (3), 

(3)*, and (4) in TheoTem 5.2 and CornllaTy 5.3 aTe equivalent. 

Sketch of Prnof. We restrict ourselves just explain about how to get (3)* form (3). 

We make use of the natural extension（a-, P) of the noise system（び，P).Let内 and

1'2 be the skew product transformations on Af X !1 and M2 X !1 associated to RDSs 

究 and虎 2 ave invariant measures , respectively. By virtue of Theorem 3.4 T1 and T2 have i 

Q1 = H1(m x P) and Q2 =几（m2x P) such that 

(5.1) 
H1(x，証） ＝EmxP[几 |.4x尻](x,w) (m x P)-a.e.(x,w) 

H2(x,y，詞） ＝ E叩 xP[fl2I -42 X尻](x,y,w) (m、2x P)-a.e.(x, y, w), 

where 1r : 0→0 is the natural projection. Combining the condition (MX2) with the 

fact that尻＝別1r-1§ (n ?': 0) generates彦， wecan show that (3) holds if one replaces 

H2 and H1 with月2and月1.Since凡(x,y,w)=凡（x，面）凡(y，w)而 xP-a.e. (x,y,w) 

holds in this case, (3) yields 

月1(x，⑭）月1(y,w)-fl1(x,w)h(y)一月1(y,w)h(x)+ h(x)h(y) = 0 (m2 x P)-a.e.(x,y，w). 

Therefore we have凡(x，w)= h(x) (m x P)-a.e.(x, w). Thus by (5.1) we arrive at (3)＊．ロ

6. CENTRAL LIMIT THEOREM 

In this section兜炉， Ti,T2, 2:ヶ1＝ダr1,mxP,,!£T2= _2?, T2,m舷 Pare the same as in 

the previous section. 
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We need notions and results in [13]. First we recall the asymptotic stability of the 

PF operator. Let (M,.,ft, m, T) beam-nonsingular dynamical system. The PF operator 

名，m for T is called to be asymptotically stable at h E L1 (m) if there exists a probability 

density h E L1(m) such that for any g E L1(m) 

l四 JMグ品g-(Lg dm) h I dm = 0 

holds (see [8] Chapter 5). We consider the following conditions on幻 and咋・

(AS) The PF operator for T1 with respect tom x Pis asymptotically stable at H1・

(AS2) The PF operator for乃 withrespect to m2 x Pis asymptotically stable at H2. 

REMARK 6.1. (1) Clearly, the condition (AS2) yields the condition (AS). 

(2) If the condition (AS) is satisfied, the measure-preserving system (T1, Qリwith

Q1=凡（mx P) is exact. Therefore, so is the noise system (u, P). Consequently, it is 

noninvertible. 

Before going to the body of this section, we prepare some notation. Let (M,.4, m, T) 
be an m-nonsingular dynamical system, fa function on M, and n a nonnegative integer. 
Put 

n-l 

品(T)f＝こfOTK. 
k=O 

Now if the condition (AS) is fulfilled, for any <JJ E L1(m x P) we obtain 

」四JMXQ勾¥<P-(Lxfl <Pd(m x P)）凡 d(mx P) = 0. 

From this fact it follows that for P-a.e.w and any observable f E L00(m) on M, we see 

that 

(6.1) 
n-l 

1 1 
；品(T1)f(x,w)＝心f（ふ(w)x)→Lfdp m-a.e.x 

holds, where p is a probability measure on M with density 

h(・) = 1 H1(・, w) P(dw). 
Q 

Therefore we may say that quenched (i.e. sample-wise) strong law of large numbers is 

valid for the RDS免． Foran observable f E L00(m) we consider the following condition 

(DC) L f dp (= L f h dm) = 0 
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and say that the observable f satisfies the deterministic centering condition or non random 
centering condition. As we just have obtained a sort of sample-wise law of large numbers 

(6.1), we are now in a position to consider the central limit theorem for (1／りり品(T1)f

under the condition (DC). For the annealed case we have the following. 

THEOREM 6.2. Assume that the PF operator.cr1 for the skew product transformation T1 

associated to虎 satisfiesthe condition (AS). Let vミ0and f E L00(m) an observable 

satisfying the condition (DC). Then (1) ~ (6) below are equivalent. 

(1) There exists an m x ?-absolutely continuous probability measure Q such that the 

distribution of品(Tりf/fawith respect to Q converges in distribution to the normal 

distribution N(O, v). 

(2) For any m x ?-absolutely continuous probability measure Q, the distribution of 

品(T1)f/ fa with respect to Q converges in distribution to the normal distribution N(O, v). 

(3) There exists a probability density g E L1(m) such that for any bounded continuous 

function u on恥， thesequence of random variables JM u(S⑰ )f(x, ・)／vn)g(x) m(dx) 
M 

converges weakly to 1 u(t) N(O, v)(dt) in L1(P). 
賊

(4) For any bounded continuous function u on賊 andfor any probability density g E 

L1(m), the sequence of random variables JM u(S( )f(x,•) / y'n)g(x) m(dx) converges 
M 

weakly to 1 u(t) N(O, v)(dt) in L1(P). 
此

(5) There exists a probability density g E L1(m) such that for any t E股 thesequence of 

random variables JM ev1=It(Sn(Ti)f(x,)/fo)g(x) m(dx) converges weakly toe―v往／2in L1(P). 
M 

(6) For any probability density g E L1(m) and t E恥 thesequence of random variables 

JM ev1=It(Sn(Ti)f(x,)!fo)g(x) m(dx) converges weakly toe―v往／2in L1(P). 
M 

ロ

From Theorem 6.2 we see that for an observable f E L00(m) with the condition (DC) 

the distribution of Sn(Tリf/fawith respect to m x P satisfies the central limit theorem 

if and only if L u(Sn(T1)f(x,•) / y'n)g(x) m(dx) converges weakly to 1 u(t) N(O, v)(dt) 

inじ(P)for any bounded continuous function u on政． Soit is natural to ask when the 

convergence of JM u(Sn(T1)f (x,•) / vn)g(x) m(dx) strong心 ormore. 
M 

In what follows we assume the validity of'annealed'type central limit theorem for 

T1 and proceed to arguments about'quenched'type results. To this end we impose the 
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conditions on T1 and T2 sufficient for that Gordin's theorem holds (for Gordin's theorem, 

consult the book [4]). 

For f E L1(m), F1 and J are members of L1日） definedby 

凡（x,y) = f(x) -f(y), f(x, y) = f(x)f(y) ((x, y) E Mり．

For a.4-measurable function f and.42-measurable function F, we briefly write as 

S』(x,w)＝品(T)f(x,w), SnF(x,y,w) =品（T2)F(x,y,w).

Note that whether f E L00 (m) satisfies the condition (DC), i.e. JM f h dm = 0 for T1 or 
M 

not, F1 satisfies the condition (DC) i.e. 1凡加d記＝ 0for T2, where 
M2 

加(x,y)= 1叫 x,y,w)P(dw).
Q 

Indeed, since H2 is the limit of勾汎 inじ(m2x P), it is symmetric in the variables x, y 

and f記疇d記＝JM2(f(x)-f(y)） (JQ几 (x,y,w)dP)dm' 

holds. 

= /M2xri (f(x) -f(y)）比(x,y,w)d(m2x P) = 0 
M噸

In the sequel, we assume the condition (AS2) i.e．丘 isasymptotically stable at H2. 

As noted above, this yields the condition (AS), i.e．ら isasymptotically stable at H1. We 

need to introduce some quantities and the conditions on them. 

For if> E L1(m x P),, 1Jt E L1(m2 x P) m" x P), and nonnegative integer n, put 

△(T1，if>,n)=,C芹1if>-/Mxrl if>d(m X P) ・ H1, 
MxQ 

△(T2, lJJ', n) =.C厖lJJ'-/M2x!1 lJJ'd(m2 X P) ・ H2. 
M国

For a real-valued observable f E L00(m), consider the autocorrelation coefficient 

C(T1, f, n) = Lxo (f o T{')f H』(mX P) -(Lx!1 f H1 d(m X n)) 2, 
Mx!1 

C(T2, Ft, n) = 1記 xQ(FfoTり疇d(m2x P) -(1記 x!1疇 d(m2x D)r 
and the condition 

00 

（均） 区II△(T2,f H2, n)ll1,m公 p < oo, 
n=O 
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where f H2 stands for the function defined by 

(JH2)(x,y,w) = f(x)H2(x,y,w) ((x,y,w) E M2 x !:1). 

We note that if the condition（均） issatisfied, we can show that 

00 

(~) LIi△(T1, f H1, n) 111,mxPく (X)

n=O 

holds, where f H1 stands for the function defined by 

(JHリ(x,w)=f(x)凡 (x,w) ((x,w) EM  x 0). 

Furthermore, since H2(x,y,w) = H2(y,x,w) holds true, it follows that 

00 

とい(T2,F1H2, n)lli,m門く 00.

n=O 

By virtu of the basic properties of the PF operator, we see that 

II△(Ti, f Hi, n) 111,mxP = IIEQ, [f -E叫f]I T1-n(.,1t X ff)] ll1,Q1 

II△(T2，乃H2,n)lli,m2xP = IIEQ2 [FJ I T2-n(.Aが X ff)] ll1,Q2 

hold, where Q1 = H1(m x P),仙＝比(m2x P). 

Therefore we can apply Gordin's theorem to (Sn(T1)f -n 1凰 d(mxP)）／y'nand
MxP 

品(T2)F1！y'nwith respect to Q1 and仙 withlimiting variances 

(X) 

v(f) = v(T1, f) = C(T1, f, 0) + 2 ~ C(Tぃf,n),
n=l 

00 

v(Ft) = v(T2, Ft) = C(T2, Ft, 0) + 2 L C(T2, Ft, n), 
n=l 

respectively. Namely, the annealed type central limit holds. 

In the following theorem for a function if> on M x rl,ふdenotesthe function on M2 x r2 

defined by <l>(x,y,w) = if>(x,w)if>(y,w). 

THEOREM 6.3 ([13], cf. [1]). Assume that the PF operator 2r2 for T2 with respect to 

m2 x P satisfies the condition (AS2) and an observable f E L00(m) satisfies the condition 

(DC). In addition, we assume that the condition（江）． Then(l)~(9) below are equivalent. 

(1) There exists a probability density g E L1(m) such that the distribution of S占／り

with respect to the m2 x ?-absolutely continuous probability with density g converges in 
dist叫butionto the normal distribution N(O, 2v(f)). 
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(2) For any probability density g E L1(m), the distribution of SnFf／y'n with respect 

to the m2 x ?-absolutely continuous probability with density g converges in distribution to 
the normal distribution N(O, 2v(J)). 

(3) There exists probability density g E L1(m) such that for any bounded continuous 

function u on股， thesequence of random variables JM u(S』Ivn)g dm converges strongly 
M 

to 1udN(O,v(J))inじ(P).
股

(4) For any probability density and for any bounded continuous function u on艮， the

~ u(Snf lvn)gdm converges strongly to 1 sequence of random variables JM u(S』j,/n)gdmconverges strongly to 1 udN(O, v(J)) 

inじ(P).

(5) There exists a probability density g E L1(m) such that for any t E股， thesequence 

of random variables Le互（Snf贋）gdm converges strongly to e―v(f)t2 /2 inじ(P).
M 

(6) For any probability density g E L1(m) and t E訊， thesequence of random variables 

J 戸 t(SnfI vn) g dm converges strongly to e―v(f)t2 /2 in LI (P). 
M 

(7) v(F1) = 2v(f). 

JM2xn f(x)f(y)H2 d(m2 x P) 
M国

(8) 00 

心 l2xnf(x)f（ふ（w)y)H2d(m2 x P) = 0. 
M国

(9) 
1 

」應；；；JM国品f(x,w)S』(y,w)H2d(m2x P) = 0. 

From Theorem 6.3, one recognize that although at the first glance the deterministic 

condition (DC) seems natural, it is not appropriate in the quenched situation. So we 

need to consider sample-dependent centering or random centering. 

In the rest of this this section, we impose the uniformly continuity condition (UI) in 

addition to the conditions (AS砂and（立） onour RDS in order to utilize the natural 

extension of the noise system (u.P). The invariant densities H1 and H2 for T1 and T2 

with respect to (m x P) and m2 x Pare extended to the invariant densities fI1 and凡
for f'1 and⑰with respect tom x P and m2 x P, respectively. We extend the distribution 

of品(Tリfwith respect to m x P to that of品（内）fwith respect tom x P, 
For a observable f E L00(m) we consider the random centering (cf. [7], [15]) 

f(x，w) = f(x) -JM J(y)凡(y，叩）m(dy)
M 
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and the sample-wise asymptotic behavior of the distribution of 

n-1 
1 1 
げ品（詞(x，⑭）＝凸 (f(X心）x)-Lf(y)凡（y，心）m(dy))

with respect to m-absolutely continuous probability measures. 

With the notation above, we obtain the following. 

THEOREM 6.4. In addition to the assumptions in Theorem 6.3 we assume that the con-

dition (UI). Then the following condition (10) is equivalent to each of the conditions 

(1)~(9) in Theorem 6.3. 

(10) There exists a (p E L罰） suchthat JM f (x)几(x,w)dm = (p（臨）一戸（w)P-a.e. w. 
M 

Put 

翠）＝ jMf(y)加 y,w)dm.
M 

The conditions (ASりand(I:2)guarantees that the series given by the autocorrelation 

coefficients C(u,三，n)of the stri叫 ystationary random sequence｛三o加｝n2Don (0，彦，P)

is absolutely convergent and the condition (8) in Theorem 6.3 yields 

00 

C(u，三，o)+2LC(u，三，n)= 0 
n=l 

It can be shown that this is equivalent to the fact that there exists a function cp Eび(P)

such that 

三（w)= lfJ（知）一戸（w) P-a.e.豆

Finally, we state a sort of quenched central limit theorem for the extended RDS given 

by the natural extension（a-,P) of(CJ,P). 

THEOREM 6.5. Under the same notation, we assume that (AS2), (~2), and (UI). 
for any t E恥， wehave 

Epl L exp(汀 (S⑰)（f―三）ー
《

）几(x,w)dm-e―vt2/2→ O 
M 

where v = v(T2,凡）／2.

(n→oo), 

Then 

We do not have enough space to give the proofs of our results here. The details will be 

published elsewhere. 
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