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1 Introduction 

This paper concerns a cocycle generated by linear operators, called a linear operator cocycle. Let 

(0，左JP')be a probability space and a : 0→0 be an invertible lP'-preserving ergodic transformation. For 

a measurable space刃， wesay that a measurable map <I> : N。xOx刃→刃 isa random dynamical system 

on I: over the driving system a if 

¢四＝ idE and 心sn+m)＝吟';lwo吟m)

(n) 
for each n,m EN。andw E 0, with the notation 1.p';;,'1 = if>(n,w, •) and uw = u(w), where N。=NU{0}. 

A standard reference for random dynamical systems is the monograph by Arnold [l]. It is easy to check 

that 

ep炉＝ cp。n-lw0知 n-2wO • • • 0匹 (1.1) 

with the notation r.pw = <I>(l, w, ・). Conversely, for each measurable map r.p: S1 x ~•~: (w,x)→四(x),

the measurable map (n,w,x) >-+ r.p炉(x)given by (1.1) is a random dynamical system. We call it a 

random dynamical system induced by r.p over a, and simply denote it by (r.p,a). When~ is a Banach 

space (with its Borel measurable sets from its strong norm) and r.pw : ~→~ is lP'-almost surely linear, 

(r.p, a) is called a linear opemtor cocycle. 

As a one of interesting class of the linear operator cocycle, we introduce a Markov opemtor cocycle 

defined as follows. Let (X, A, m) be a probability space andじ(X,m) the space of all m-integrable 

functions on X endowed with the usual £1-norm II ・|い(X)・ Let D(X,m) be the set of all density 

functions, i.e., a subset of L1(X,m) defined by 

D(X,m) = {! E L1(X,m): f 2". 0 m-almost everywhere, II!|い(X)= 1}. 
We say that P: L1(X,m)→じ(X,m)is a Markov operator if P(D(X,m)) c D(X,m) holds. One 

of the most important examples of Markov operators is the Perron-Probenius opemtor induced by a 

measurable and non-singular transformation T : X →X (that is, the probability measure mo T-1 is 

absolutely continuous with respect to叫 ThePerron-Frobenius operator £r: L1(X,m)→じ(X,m)of 

T is defined by 

JXら fgdm= L f g O Tdm for f E L1(X, m) and g E L00(X, m). (1.2) 

We say that a linear operator cocycle (P，a) induced by a measurable map P: S1 x L1(X, m)→L1(X,m) 

over a is called a Markov opemtor cocycle if Pw = P(w, •) : L1(X, m)→L1(X,m) is a Markov operator 

for lP'-almost every w E fl. 
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Markov operators naturally appear in the study of dynamical systems as Perron-Frobenius operators, 

Markov processes as integral operators with stochastic kernels of the processes, and annealed type random 

dynamical systems as integrations of Perron-Frobenius operators over environmental parameters (see [5, 7] 

for details). A Markov operator cocycle is given by compositions of potentially different Markov operators 

which are provided with the environment｛研（叫｝n<'.Odriven by a measure-preserving transformation u 

on a probability space (!1, F, JP'), 

N x !1 x L1(X,m)→L1(X,m): (n,w,f)→Pun-l(w) 0 Pun-2(w) 0 ・ ・ ・ 0 Pwf. 

Then, it essentially possesses two kinds of randomness: 

(i) The evolution of densities at each time are dominated by Markov operators P,切

(ii) The selection of each Markov operators is driven by the base dynamics u. 

Thus, by considering Markov operator cocycles, we expect to understand more complicated phenomena in 

multi-stochastic systems. The study of Markov operator cocycles follows measurable random dynamical 

systems in the sense of [l]. We also refer to [8]. 

Now we recall the definition of invariant densities for linear operator cocycles (P, u), called random 

invariant densities. 

Definition 1.1. A measurable map h : !1→L1(X,m) with h(w)＝加 iscalled a random invariant 

density if hw E D(X, m) and Pw加＝に holdfor lP'-almost every w E !1. 

In this note, we summarize the mean ergodic theorem for a linear operator cocycle on a general Banach 

space (Theorem 1), which guarantees the existence of random invariant density under certain conditions. 

The conventional mean ergodic theorem provides that the average of the sequence { P汀｝nconverges 

in strong, and the limit point becomes an invariant density. The classical mean ergodic theorem for a 

single linear operator by von Neumann deals only with a reflexive Banach space, and after that, Yosida 

and Kakutani [10] generalized the theorem to the case of a general Banach space under the assumption 

of weak precompactness of Cesaro average of time evolution. As known in [2], the theorem for a linear 

operator cocycle is fulfilled if the Banach space is reflexive. Then, giving an appropriate definition of 

weak precompactness for the cocycle, we succeeded to obtain a general result for mean ergodic theorem of 

linear operator cocycles, that guarantees the existence of invariant measures for linear operator cocycles. 

See [9] for more precise descriptions including the proofs. 

2 The lift operator and weak precompactness 

In this section, we introduce our key tools: the lift operator少 ofa linear operator cocycle (P, a) 

and weak precompactness of functions in fiberwise and global sense in order to construct a random 

invariant density for the linear operator cocycle. We first prepare the Banach space of Bochner integrable 

functions over a Banach space笈 (withnorm 11・1豆denotedbyが (!1,X),based on [3,6]. Then, we define 

the lift operator少 over£1 (!1，王） associatedwith the linear operator cocycle and relate it with a random 

invariant density. 

Let us define 

ダ 1(9X) ＝ ｛f: 0 →X, strongly measurable and integrable}, 

JV={f:!1→疋， stronglymeasurable and llcp(w)llx = 0, JP-a.e.w E叶
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where f: n→疋 iscalled strnngly measumble provided that there exists a sequence of simple functions 
N 

fn =区t=1圧Vifor some N = N(n) EN, {Fi= Fi(n) : i = 1,...,N} E § and {vi =叫） ：i = 

1,...,N} C疋suchthat limn→oo llf(w) -fn(w)llx = 0 for lP'-almost every w En. Then we define 

が（0，疋） ：＝ダ1(0，疋）／JV.

Note that if疋＝ L1(X,m) then £1 (n, L1(X, m)) is isometric to £1(0 x X,lP'x m) (see Lemma 4.1). The 

spaceが（戸） isequipped with the usual norm 111・1111 given by 

|| f|||1 :＝ J ||fふ dlP'(w) for f E £1(0，笈）．
Q 

The lift operator of a give linear operator cocycle is defined as follows. 

Definition 2.1. For a linear operator cocycle (P, a) over a Banach space疋wherePw:疋→ Xisbounded 

uniformly in w, the lift opemtor-f!lJ :じ(n,x)→£1(0,:t)is defined by 

（クf)(w):= P17-1wf戸 w

for f E £1 (0, :t) and lP'-almost every w E n so that for each n E N we have 

（かf)(w) = P;"_)n』/w

for lP'-almost every w En. 

Remark 2.1. (I) The above lift operator is a well-defined bounded linear operator over L刊0，王）． Indeed,

if f: n→Xis strongly measurable then f is approximated by fn = I:~=1 lF,v。and
n 

町 n＝区 1oFip戸 w坊

i=l 

leads to strong measurability of少f.Moreover if j,J E £1 (!1,X) and J-J E JV, then we have 

ク (!-J)(w)llx = IIPa-lw (!a―1w -fa-1w) llx 

:'::'.Mllfa―1W―fa-,wllx = 0 

for IP'-almost every w E !1 where M is the supremum of the operator norm of Pw and町＝ flJ]IP'-almost

everwhere. We also have 

|町||11=illP"―1ふ l』|xd!P'(w) ~ L M II!"―1』|xd!P'(w) = Mlll/1111, 
fl Jfl 

which implies that flJ is a bounded operator. In particular, if IIF:』|~ 1 for IP'-almost every w E !1 then 

少 isa contraction operator over L尺Q文）．

(II) We note that h E L1 (!1,L1(X,m)) is a random invariant density if and only if少h= h (see 

Proposition 4.2 (2) more precisely)．ロ

Recall that a subsetク CL1(X, m) is called weak precompact if for any sequence {fふ cff there is 

a further subsequence {fnふ whichconverges weakly inが(X,m). Now we define weak prccompactncss 

in L叩応） intwo senses. 

Definition 2.2. A setク CL刊Q，X)is called fibe加 iseweakly precompact if for every sequence {fふ c

ff, there exists h Eじ(!1，疋） suchthat for IP'-almost every w E !1, there exists a subsequence {nkh = 

{nk(w)h C N such that {(fれk)(w)hconverges weakly to h(w). 

A set ff C L1(!1，X) is called globally weakly precompact if for every sequence Un}n C ff, there is a 

further subsequence｛凡｝kwhich converges weakly in L尺Q応）．
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Remark 2.2. Several sufficient conditions for weak precompactness are known as follows (IV.8, [4]). It 

reads that { P,二lx},,is weakly precompact if one of the following three conditions holds: 

(i) There exists 9w E Lt(X,m) := {f Eじ(X,m):f ::>: O} such that for any n ::>: 1 

P9しlx(x)I~恥(x) m-almost everyx EX; 

(ii) There exists Mw > 0 and Pw > 1 such that 

p;nし1x < Mw; 
L匹 (X,m)

(iii)｛乃乳』x}n is uniformly integrable, namely, for any E > 0 there exists 8 > 0 such that 
n 

m(A) < 8 implies 1乃”しlxdm< E for all n 2 1. 
A 

3 Mean ergodic theorem for linear operator cocycles 

Let疋bea weakly sequential complete Banach space and P : n x疋→疋 alinear operator cocycle which 

is almost surely contraction. Let (0, F, IP') be a probability space andび bean invertible lP'-preserving 

ergodic (i.e.，戸E = E (mod IP') implies E = 0 or n (mod IP')) transformation on n. We define the 

operator dn meaning the average of少”by

n-l.  n-l 
1 

（幻f)(w)：＝一区（ぴf)（W)＝-
1 

n n 
区Pい』び―加

k=O k=O 

for f Eじ(0,X) and lP'-almost every w E n. Recall that a sequence{（幻!)}n is fiberwise weakly 

precompact for f E L1 (0, X) if there exists h E L1 (0，王） suchthat for lP'-almost every w E n, there exists 

a subsequence｛料｝kC N, nk =料（w,!), such that(“可）（w)converges weakly to h(w) for lP'-almost 

every w E 0. 

Theorem 1. Let疋 bea weakly sequential complete Banach space, u an invertible lP'-preserving ergodic 

tmnsformation over the probability space (0, F, JP'), and Pw a linear opemtor which maps X into itself. 

Assume that IIPw II ~ 1 for lP'-almost eve内 wE n and {.91n /}n is fiberwise weakly precompact for any 

f E L尺Q，疋）． Thenthere exists h E L1(0, X) such that 

n]既 ll(PlnJ)(w) -h(w)は＝ 0,

and P』知＝ hr,wfor lP'-almost every w En. 

4 Skew product for the case疋＝ L1(X)

In this section, we introduce some useful facts for the case l: = L刊X).We first show the following 

isometric isomorphism between L叩，L1(X, m)) and L1(fl xX,IPxm), that identifies a random invariant 

density h E £1 (fl,L1(X,m)) as a function in L1(fl x X,IP x m). 

Proposition 4.1. £1 (fl, L1(X, m)）竺じ(flx X,IP x m) holds. 



141

From the proposition, we have 

が(!1,D(X,m))C じ(!1,L1(X,m)）口じ (!1xX,IP'xm)

and we frequently identify h E £1 (!1, D(X, m)) as a function in L叩 xX,IP'x m). We can characterize a 

random invariant density h E L叩，じ (X,m)) as a fixed point of.9 as a function ofじ(!1x X,IP'x m). 

p roposition 4.2. The following statements are true: 

1. The lift operator少 canbe naturally identified with a Markov operator over-が(!1x X,IP'x m) (thzs 

operator is also denoted by the same symbol); 

2. h E £1 (!1, D(X, m)) is a random invariant density if and only if勿 h= h as a function of D(!1 x 

X,IP'xm); 

3. the following diagram commutes: 

L叩，L1(X,m))~ L1(!1,L1(X,m)) 

’↓。↓’
じ(!1x X,IP'x m) ----;;;;-s--£1(!1 x X,IP'x m) 

ク

whereしisthe isometry arises in Proposition 4.1. 

An important example of the lift operator少 ofa Markov operator cocycle is the Perron-Frobenius 

operator of a skew product transformation of a random transformations. 

Proposition 4.3. Let 8 be a IP'x m non-singular skew product transformation over !1 x X given by 

8(w,x) = (uw,Twx) 

where Tw: X→X is a non-singular tmnsf ormation for w E fl andび： 0 →fl is an invertible ergodic 

measure-preserving tmnsformation. Then the lift opemtor associated with the cocyle ofら thePerron-

乃obeniusopemtor of Tw is the Perron-乃obeniusopemtor of 8. 

Example 4.1. Let X and fl be a unit interval [O, 1]. Set/3 ＝ 渥＋1
2 

, that is,炉ー /3-l = 0 holds. 

Consider the transformations T1 and T2 on X defined by 

石(x)＝釦 (mod1), 
厨＝ {>(X - 1) + 1 

佃E[O, 1/ /3)) 

(x E [1/ /3, l]) 
(4.1) 

Next, let u : fl→fl be an irrational rotation with angle 1/ {3, namely, u回＝ w+ 1/{3 (mod 1). 
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Figure 1: Illustrations of the map T1, T2 and(]". 
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Let P; be a Perron-Frobenius operator corresponding to T;, i = l, 2. We define Pw by 

P1 if w E [O, 1 -1/ /3) 

pw = {P2 ifw E [1-1/f3, 1] ・ 
(4.2) 

Then, the Markov operator cocycle given by above setting admits a random invariant density h E 

D(D,L1(X)), that is, Pwhw = haw holds for IP-almost every w En. Moreover, his given by 

加(x)=｛い） ifw E [O, 1/B) 

加（の） ifw E [1/(3, 1) 
(4.3) 

with 
2 1 

h心）＝ l10,1J(x), 加(x)= il10,1//3）(x) ＋ -1[1//3，1]・
/3 /3 

Indeed, putting Ii = [O, 1 -1//3）， 12 = [1-1//3，1//3）and h = [1//3，1], We know that 

a(I1) ＝ I3, a(I2) C I1, 0(I3) C I1 U I2• 

Moreover, we immediately find that P山＝ h2, P心＝ P山＝ h1.Then, we can check the fact through 

the following three cases. 

Case 1: if w E Ii, then we have P,』知＝ Pih1= h2. Moreover, hc,w = h2 since a(w) Eh-

Case 2: if w Eh, then we have P,』知＝ P灼1= h1. Moreover, hびw= h1 since a(w) E Ii・

Case 3: if w E fa, then we have P,』知＝ P2加＝ h1.Moreover, hびw= h1 since a(w) E Ii Uh. 

Therefore, the invariance P,』知＝ hびwis proven for lP'-almost every w E n. 
We finally consider the skew product transformation F : X x n→X x !1 defined by 

F(x,w) = (T;ぃ(x),a(w)), (4.4) 

and let PF be a Perron-Frobenius operator for F. Then the function h E D(X x fl) given by 

2 1 
h(x,w) = l10,1]x[o,1/{3)(x,w) +豆・ l10,1/f3]x[1/{3,1)(x,w)+ (3 ・ l11/{3,1]x[1/{3,1)(x,w) 

satisfies PFh = h because of Figure 2. 

h
 

1//3 

Q 

X 1/{3 

PF
↓
 

＋
 

Figure 2: Illustration of the evolution of density h by PF on X x !1. The numbers in each square denote 

the hight of density. 
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