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Abstract 

Imitervirales, an order of giant viruses of the phylum Nucleocytoviricota, are abundant in 

the ocean. In recent studies Imitervirales were further shown to be diverse and able to influence 

biogeochemical cycles. These findings highlight that Imitervirales are an important part of the 

microbial communities of the ocean and that it is necessary to study their community dynamics to 

understand the complex interaction of oceanic microorganisms. Yet, studies targeting their 

community dynamics and interactions with other microbial communities are still rare. 

A recent study established a holistic metabarcoding approach named MEGAPRIMER to 

analyze Imitervirales communities in several oceanic areas in Japan. However, this method 

employed 82 degenerate primer pairs targeting a conserved gene, and thus necessitated 82 

separate polymerase chain reaction (PCR) amplifications per sample. Therefore, its applicability 

was limited to studies with a small number of samples. 

To overcome this limitation, I tried mixing MEGAPRIMER to “primer–pair–cocktails” in the 

first part of my thesis. I also investigated the possible bias of MEGAPRIMER with real time 

polymerase chain reaction (i.e., qPCR). I found that “primer–pair–cocktails” were an alternative to 

using primers separately. This new Imitervirales metabarcoding workflow reduced the amount of 

necessary sample DNA and preparation time while reproducing previous results. 

In the second part of this thesis, I employed metabarcoding of different microbes (i.e., 

eukaryotes, prokaryotes, and Imitervirales) to study their diversity and community dynamics in a 

coastal area in Shikoku, Japan, based on a set of 43 samples collected during 20 months. The 

analysis resulted in three major discoveries. I showed that (1) all three microbial groups displayed 

similar seasonal cycles in their community dynamics. While the seasonality of eukaryotic and 

prokaryotic microbes was known, the seasonality of Imitervirales community has not been 

observed before. (2) The taxonomic units represented by amplicon sequence variants (ASVs) 
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exhibited systematic differences in their persistence and recurrence among microbial communities 

when compared weeks, months, or one year apart. (3) Abiotic factors (e.g., temperature, 

nutrients, or salinity) had low explanatory power over the community compositions of eukaryotes 

and Imitervirales. 

From these observations I concluded that how quickly communities changed their 

members varies for different communities. Imitervirales showed the highest turnover rate of any 

microbial community. This may be due to the high selective pressure on viruses to adapt to the 

also rapidly changing host community. The differences in community dynamics observed here 

were interpreted by formulating the “community memory” hypothesis. This hypothesis states that 

current communities influence the formation of future communities, however this influence 

diminishes over time. How long a previous community can impact the composition of a future 

community is different for different microbes.  
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1 Chapter 1: Introduction 

1.1 Marine microbial ecosystem 

The importance of marine ecosystems can hardly be overstated. For example, microbial 

photosynthetic production of O2 in the ocean started roughly 3 billion years ago and has 

continuously provided the partial pressure of O2 in the atmosphere ever since (Lyons et al., 2014). 

This enabled the emergence of multicellular life as we know it. Nowadays primary producers in the 

ocean, which are mostly unicellular algae, contribute roughly half (45%) of the total O2 production 

(Field et al., 1998). Unicellular algae are also heavily involved in the cycling of other elements 

found in the ocean like nitrogen, phosphorus, and iron (Falkowski, 2001; Henley et al., 2020) and 

by removing CO2 from the atmosphere (Hain et al., 2014). 

Despite these important contributions to biogeochemical cycling of several elements, 

primary producers in marine environments make up only 1% of the photosynthetic biomass of the 

Earth (Falkowski and Raven, 2007). This is in contrast to terrestrial multicellular primary producers, 

that contribute roughly 80% of the global biomass (Bar-On et al., 2018). This unequal biomass 

distribution is rooted in the difference of the primary producer’s adaption to their respective 

habitats (i.e., aquatic or terrestrial) (Bar-On and Milo, 2019; Falkowski, 2001). 

It follows that the structure of interaction networks like the food web in marine 

environments is fundamentally different from that of terrestrial ecosystems (Bar-On and Milo, 

2019). Photosynthetic cellular microbes are the basis of the food web in the ocean (Trombetta et 

al., 2020). The primary producers (photoautotrophs or mixotrophs) are directly or indirectly 

consumed by heterotrophs (including animals) or mixotrophs (Henley et al., 2020; Tynan, 1998) 

and thus their community exerts a bottom–up control on consumers (Menge, 2000). Paradoxically, 

consumers make up four times as much biomass (i.e., organic carbon) as their primary source of 

nutrition (Bar-On and Milo, 2019). This minority of primary producers can sustain the majority of 
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consumers due to their different community dynamics, specifically the high turnover rate of the 

unicellular primary producers (Bar-On and Milo, 2019). 

This demonstrates that marine microbial communities, particularly cellular phytoplankton 

(Falkowski, 2001) and viruses (Brum et al., 2015), are important drivers of marine ecosystems and 

influence geochemical cycles (Falkowski, 1994). Characterizing the structure and dynamics of 

marine microbial communities is therefore an important task to better understand the 

mechanisms that govern marine ecosystems, the functional consequences of their dynamics, and 

the interactions of microbial communities with their environment. 

The evolutionary origin of cellular photosynthesis and therefore primary production were 

prokaryotes, more precisely bacteria (Blankenship, 2010). They are the most abundant cellular 

microbes in the ocean and it has been estimated that the ocean contains a total of 1029 bacterial 

cells (Whitman et al., 1998). Prokaryotes are also heavily involved in carbon cycling (Ogawa et al., 

2001) and cyanobacteria are ubiquitously present and the most abundant photosynthetic 

organisms in the ocean (Sukenik et al., 2009). 

While prokaryotic phytoplankton outnumbers unicellular eukaryotic phytoplankton, the 

biomass and primary production of unicellular cellular eukaryotic phytoplankton in the ocean is 

larger (Bar-On et al., 2018; Li, 1995; Worden et al., 2004). The most abundant photosynthetic 

micro–eukaryotes in the size range of 0.8µm – 5µm in the ocean are Alveolata, Stramenopiles, and 

Rhizaria according to a metagenomics based study (Vargas et al., 2015). They are often grouped 

together as the SAR super–group (Adl et al., 2012). Previous studies used chlorophyll a and 

carotenoids to estimate the biomass of eukaryotic plankton and found that microbial communities 

of oligotrophic mid–ocean environments are mostly populated by green picoplankton (e.g., 

chlorophytes) (Falkowski and Knoll, 2007; Hirata et al., 2011) and haptophytes (Hirata et al., 2011; 

Liu et al., 2009). 
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The abundances of these different eukaryotic lineages also vary according to examined 

region of the ocean (Liu et al., 2009; Vargas et al., 2015). Haptophytes are diverse mixotrophic 

eukaryotic microalgae (Moon-van der Staay et al., 2001) that are present throughout the sunlit 

oligotrophic ocean (Hirata et al., 2011; Liu et al., 2009). They are especially abundant in tropical 

Atlantic and Pacific sites where they contribute from 20% to 50% of the standing stock of 

chlorophyll a (Liu et al., 2009). In nutrient rich coastal areas, the primary production of 

phototrophic eukaryotic phytoplankton is especially important, because eukaryotic single cellular 

algae together with cyanobacteria form the basis of the food web (Caron et al., 2012). The most 

prominent primary producers of the shelf–sea are Alveolata (mostly dinoflagellates), diatoms, as 

well as haptophytes (Falkowski and Knoll, 2007; Liu et al., 2009). 

1.2 Viruses in marine microbial ecosystem 

The third major microbial group of the ocean, besides prokaryotes and eukaryotes, are 

viruses. Marine prokaryote infecting viruses are 15 times more abundant than prokaryotes 

themselves (Proctor and Fuhrman, 1990; Suttle, 2007). Bacterial communities in a variety of 

environments were found to contain 0.4% to 8% of infected cells (Fuhrman, 1999). Heterotrophic 

bacteria show higher average infection rates with estimates of up to 20% of cells being infected at 

any given point in time (Suttle, 1994). Viral lysis contributes from 8% up to 43% of bacterial 

mortality (Fuhrman, 1999). The bacterial community is thus in part controlled by infection and 

subsequent lysis (Suttle, 2007). 

Phages aid genetic diversification by transferring genes between members of the 

community (Arnold et al., 2021; Gregory et al., 2016) and through top–down regulation of the 

community (Koskella and Brockhurst, 2014). Top–down regulation includes the infection of 

exceedingly active or abundant members of the community, which is a common survival strategy 

of viruses (Winter et al., 2010). This strategy was named “killing the winner” (Winter et al., 2010). 
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Phages thereby moderate the community composition of prokaryotes by killing the winner 

(Koskella and Brockhurst, 2014). Aside from influencing community composition, bacterial viruses 

were shown to manipulate the metabolism of their hosts (Poranen et al., 2006) and to influence 

the geochemical cycles of carbon (Guidi et al., 2016), nitrogen, phosphorus, and other nutrients 

(Brussaard et al., 2008; Yoshida et al., 2018). 

A major lineage of eukaryotic viruses of the ocean belongs to the phylum 

Nucleocytoviricota (Hingamp et al., 2013). Nucleocytoviricota were previously called NCLDV an 

abbreviation of the descriptive name “nucleocytoplasmic large DNA viruses” (Iyer et al., 2001). The 

phylum is monophyletic and includes several families, which all share a set of core genes (Iyer et 

al., 2001; Koonin et al., 2019). Two lineages of Nucleocytoviricota are especially important, namely 

the family Phycodnaviridae (of the order Algavirales) and the order Imitervirales, since they are 

abundantly present in the ocean (Hingamp et al., 2013). Phycodnaviridae are known as algae 

infecting viruses, hence the prefix “phyco” which means algae (Maruyama and Ueki, 2016; 

Nagasaki and Yamaguchi, 1997). My study focuses on Imitervirales, which have been discovered 

more recently and were not considered algal viruses at first (Hingamp et al., 2013; La Scola et al., 

2003). 

Nucleocytoviricota infecting bloom forming species like E. huxleyi were found to be as 

abundant as 107 viruses in a single milliliter of seawater after a bloom (Schroeder et al., 2003). The 

Nucleocytoviricota genome concentrations of the open ocean were estimated between 103 to 105 

genomes per mL for samples from photic zones (5m depth) to deep chlorophyll maximum zones 

(ranging from 20m to 200m). Another study confirmed the presence of Nucleocytoviricota by 

showing that nearly 30,000 Nucleocytoviricota genes were transcribed in the ocean (Carradec et 

al., 2018). In coastal areas 145 Nucleocytoviricota genomes (nearly exclusively consisting of 

genomes of the order Imitervirales and the family Phycodnaviridae) were found to be 
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transcriptionally active, with the authors estimating that many viruses were missed due to their 

strict criteria for detection (Ha et al., 2021). 

Recent studies addressed the influence of viruses on cellular microbes through host 

reprogramming. By extension viruses may impact geochemical cycling and cause heightened 

primary production. This hypothesis is supported by the fact that viral community composition can 

predict carbon export efficiency (Kaneko et al., 2020). Recently discovered Nucleocytoviricota in 

the order Imitervirales were also shown to encode a pathway potentially enabling 

photoheterotrophic capabilities (Needham et al., 2019) which may influence their host’s metabolic 

activity (Schulz et al., 2020). Such metabolic reprogramming was previously discussed for phage–

bacteria interactions (Dammeyer et al., 2008), Ostreococcus tauri and its viruses (Monier et al., 

2017), and for viruses in the epipelagic ocean that transcribe auxiliary genes for sulfur and 

nitrogen cycling (Roux et al., 2016). 

Suspected host reprogramming by Imitervirales occurred mostly for pathways of light 

dependent proton pumps, carbon fixation, photosynthesis, several substrate transport processes 

(Schulz et al., 2020), and metabolic pathways (Blanc-Mathieu et al., 2021). Imitervirales were also 

shown to exchange genes between each other (Kijima et al., 2021). Horizontal gene transfer from 

and to eukaryotes is also common (Cunha et al., 2020; Schulz et al., 2020). Thereby 

Nucleocytoviricota were found to be important players in the ocean’s ecosystems (Schulz et al., 

2020). Yet, the ecological roles of Nucleocytoviricota and especially Imitervirales have not been 

studied very extensively (Endo et al., 2020). 

1.3 Imitervirales 

1.3.1 Discovery of Mimivirus 

The first discovered member of the Imitervirales was the Acanthamoeba infecting 

Mimivirus (APMV) which was isolated in 1992 and first described in 1997 as a gram–positive 
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bacterium due to its size. It was not recognized as a virus until 2003 (Raoult et al., 2007; La Scola et 

al., 2003). The reason for the long time it took to officially recognize APMV as a virus might 

originate from how little it fit the definition of “virus”. The definition of viruses in 2003 focused on 

the size of the virion and other traits, like having a protein coat and existing outside its host cell 

(Forterre, 2013; Jacob and Wollman, 1961). Even now common dictionaries define virus based on 

particle size (merriam-webster.com/dictionary/virus, 

dictionary.cambridge.org/dictionary/english/virus, accessed 16.3.2021). Mimivirus was gram 

positive, had hair like filaments, was observable with a light microscope, and had a genome larger 

than that of several bacteria (Birtles et al., 1997; La Scola et al., 2003), thus it was not a typical 

virus and not immediately recognized as a virus. Any doubt was removed when tunneling electron 

microscopy images were made available (La Scola et al., 2003). 

Further research continued to isolate new Imitervirales and it became clear that not only 

the size of Imitervirales was atypical for viruses, but also the content of their genome. These new 

studies showed how much Imitervirales deviated from the traits usually associated with viruses. 

Viruses were meant to be completely dependent on the translational machinery of their host, yet 

Imitervirales were found to encode part of their own translational machinery (Abergel et al., 2007; 

Abrahão et al., 2018). Viruses were known to have genomes smaller than cellular microbes, yet 

several Imitervirales were found to have genomes over 1 million basepairs, larger than that of 

some bacteria (Abrahão et al., 2018; Aherfi et al., 2016; Blanc-Mathieu et al., 2021; Wilhelm et al., 

2017). These incongruences prompted a discussion about redefining viruses (Raoult and Forterre, 

2008), or at least distinguishing viruses and virocells. The concept of a virocells was established by 

Forterre (Forterre, 2012, 2013). Forterre suggested that the virus is considered a living entity 

during its life cycle inside its host cell and called a virocells. Virocells produce virions instead of the 

usual reproductive cycle of the host cell (e.g., mitosis). Virions are considered an inactive particle 
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that need a host to become “living” virocells (Forterre, 2012, 2013). Some authors even suggested 

that Imitervirales might be a fourth domain of life aside bacteria, archaea, and eukaryotes (Boyer 

et al., 2010; Colson et al., 2018; Legendre et al., 2012). This hypothesis about a fourth domain of 

life seems unlikely to me and is indeed refuted by several authors (Forterre et al., 2014; Moreira 

and López-García, 2015). 

The discovery of Imitervirales highlighted how little we still know about viruses. Their 

genome and phenotype (i.e., giant size) raised many questions and the discovery of new species 

keep adding to the uniqueness of Imitervirales through their virion shape (Abrahão et al., 2018), 

their genome size (Blanc-Mathieu et al., 2021), and by encoding genes that were thought to be 

exclusive to cellular microbes. This includes recently discovered Imitervirales genomes that contain 

myosin encoding genes (Kijima et al., 2021), eukaryotic actin homologues called “viractins” (Cunha 

et al., 2020), tRNA encoding genes (Schulz et al., 2017), metabolic genes (Blanc-Mathieu et al., 

2021), fermentation genes (Schvarcz and Steward, 2018), and genes coding for a rhodopsin 

photosystem (Needham et al., 2019). 

1.3.2 Biogeography and ecological roles of Imitervirales 

It has been known that viruses are abundant in the ocean (Bergh et al., 1989; Torrella and 

Morita, 1979) and it was shown that viruses outnumber all other oceanic microbes (Suttle, 2007). 

However, it was not until metagenomic analysis became possible that large DNA viruses were also 

found to be abundant in the ocean, specifically Nucleocytoviricota were found to be more 

abundant than eukaryotes (Hingamp et al., 2013). An early ocean metagenomics study first 

showed that Phycodnaviridae are the most abundant and Imitervirales the second most abundant 

viruses of the phylum Nucleocytoviricota (Hingamp et al., 2013). Recent studies however also 

emphasized the abundance of Imitervirales and even suggested them to be the most abundant in 
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certain areas and the most diverse oceanic Nucleocytoviricota (Carradec et al., 2018; Endo et al., 

2020; Kaneko et al., 2020). 

It is likely that interactions between Imitervirales and single cellular eukaryotes occur 

frequently, since active Imitervirales infections were observed by transcriptomics in the whole 

ocean (Carradec et al., 2018) as well as coastal areas (Ha et al., 2021). This high transcriptional 

activity and the recently reported long latent period of certain haptophyte infecting Imitervirales 

(Blanc-Mathieu et al., 2021) may mean that eukaryotic communities contain Imitervirales-infected 

members at any given moment. That virocells are part of a cellular community was recently 

discovered for a chlorophyte population of Ostreococcus spp, in which up to 60% of the population 

was infected (Castillo et al., 2021). 

Imitervirales and other giant viruses were shown to infect a wide range of hosts, exchange 

genes with them and possibly reprogram them after infection (Schulz et al., 2020). It is therefore 

not surprising that the composition of the Imitervirales community correlates with the 

composition in specific host groups (Endo et al., 2020). Even though these studies suggest a high 

impact of Imitervirales and other Nucleocytoviricota on the eukaryotic community or even the 

biogeochemical processes, studies specifically targeting Imitervirales and their communities are 

few and far between. 

1.4 Marine microbial community dynamics 

When microbial ecosystems were first studied the assumption was that the oligotrophic 

ocean would support only a few highly selected species due to the competitive exclusion principle 

(Hardin, 1960), however the opposite was the case and diverse oceanic microbes were observed 

(Hutchinson, 1961). This discovery made it obvious that oceanic environments were more complex 

than anticipated and that in depth analysis of microbial communities in time and space were 

necessary to better understand what drives marine ecosystems. 
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One such driver of marine ecosystems seems to be the change of seasons. Long term 

sampling studies of oligotrophic oceanic communities showed that marine bacterial communities 

possess a strong seasonality (Fuhrman et al., 2015) and are also heavily influenced by temperature 

(Ward et al., 2017). Eukaryotic phytoplankton of the oligotrophic ocean was also shown to change 

with the seasons (Choi et al., 2020), this change was attributed to temperature (Sunagawa et al., 

2015). The viral communities attacking these marine microbes were also observed to show 

seasonal changes. Phages in particular were shown to possess a strong seasonality (Chow and 

Fuhrman, 2012; Ignacio-Espinoza et al., 2020; Sandaa et al., 2018). Studies about the seasonality of 

large eukaryotic viruses in the oligotrophic ocean are few, but two families in the phylum 

Imitervirales were shown to have dissimilar community compositions in colder months (i.e., winter 

and spring) and warmer months (i.e., summer) in the arctic ocean (Sandaa et al., 2018). 

Coastal microbial communities are known to possess a clear seasonality. This has been 

shown for cellular microbes, such as bacteria (Chafee et al., 2018; Ward et al., 2017) and 

eukaryotes in cold (Gran-Stadniczeñko et al., 2019a) and warm climates (Giner et al., 2019). 

Myoviridae communities of a Norwegian fjord were also shown to vary seasonally, (Pagarete et al., 

2013). Interestingly, a monthly sampling study was carried out during two years to analyze the 

community dynamics of large DNA viruses, yet a clear seasonality was not observed (Gran-

Stadniczeñko et al., 2019b). The authors however pointed out that they anticipated the large 

dsDNA virus community to show seasonality, but could not prove it due to methodological 

limitations, namely that their analysis targeted the community not holistically (Gran-Stadniczeñko 

et al., 2019b). 

Aside from another study that was able to show that the 1 of 5 large dsDNA viral 

communities was significantly different to the other 4 communities (Johannessen et al., 2017), I 
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was not able to find any further community composition or dynamics studies that included 

Imitervirales. 

1.5 Current methods for characterization of community structures 

Most microbes of the ocean are currently not 

cultured and may not be possible to keep in culture at all 

(Steen et al., 2019). Therefore, it is necessary to study 

microbial communities in the ocean directly from 

samples of the aquatic environment. Aquatic microbes 

were first observed through a microscope by 

Leeuwenhoek in 1677 (Lane, 2015). Techniques that 

involve DNA sequencing of conserved genes developed 

during the 1980s (Woese et al., 1984). 

The recent advent of high throughput sequencing 

enabled rapid and cheap sequencing of many samples. It 

became common practice in marine microbial ecology to 

study the composition of microbial communities by sequencing a marker gene that is universal to 

cellular life (Olsen et al., 1986; Woese et al., 1984) (targeted metagenomics) or by sequencing 

(Anderson, 1981) all of the available cellular DNA of a seawater sample (Venter et al., 2004) 

(untargeted metagenomics). These methods have different merits and supply different 

information about a community and its members (Figure 1-1). 

1.5.1 Untargeted metagenomics 

Untargeted metagenomics rely on a “shotgun” approach to sequence all available DNA of 

a sample in short fragments and subsequently assembling the DNA to contigs or even genomes. In 

order to distinguish this analysis method to other sequencing methods for ecological analysis, this 

 

Figure 1-1: Different methods of taking a 
"snapshot" of microbial communities. The 
horizontal axis represents the obtained genetic 
information, while the vertical axis is the observed 
depth of the community composition. 
Metagenomics of primer amplified highly variant 
regions of conserved genes (i.e., DNA barcoding or 
metabarcoding) can reveal most of the community 
while the sequencing of digested sample DNA 
shows fewer members of the community, but 
reveals more of their genome. Figure recreated with 
updated terminology from Suenaga, 2012. 
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specific method will be referred to as untargeted metagenomics throughout this thesis, most 

other modern studies simply refer to the same method as metagenomics. 

Untargeted metagenomics comprehensively sample all genes of all organisms found in a 

single sample and thereby enable a variety of analysis, like the study of diversity and abundance of 

a microorganisms in the analyzed sample. This data can also be used in other creative ways. For 

instance, the Tara Oceans metagenes catalogue was curated using untargeted metagenomics on 

oceanic seawater samples and their data was used by Li et al., to design a metabarcoding method 

to study oceanic viruses (Li et al., 2018). The Tara Oceans metagenes catalogue also enabled 

matching virus–host pairs through horizontal genes transfer (Schulz et al., 2020), since whole 

genomes were recovered. 

However, untargeted metagenomics studies that include lowly abundant members of the 

community of coastal or oceanic Imitervirales are expensive to perform. In untargeted 

metagenomics DNA sequences of all the available microbial DNA in a sample are generated 

proportionally to their abundance. Rare species can therefore only be observed by raising the 

sequencing depth, which raises sequencing cost proportionally. Targeted sequencing approaches 

specifically target certain communities (e.g., bacteria or large viruses) and can detect rare species, 

which were shown to disproportionally contribute to community dynamics (Giner et al., 2019; 

Ignacio-Espinoza et al., 2020; Lynch and Neufeld, 2015). Imitervirales are more diverse than 

bacteria (Mihara et al., 2018) but similar in size (Wilhelm et al., 2017) and far less abundant in the 

ocean (Hingamp et al., 2013). 

Untargeted metagenomics studies have gained popularity due to their many advantages. 

However, concerning Imitervirales community analysis, it seems reasonable to first perform a 

highly sensitive, quick, and relatively cheap targeted metagenomics based analysis, and designing 

further studies using untargeted metagenomics on the outcome of the targeted analysis. 
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1.5.2 Targeted metagenomics 

Targeted metagenomics refers to the practice of analyzing only a small part (the targeted 

region) of a genome. This is usually a variable region of a conserved gene and it is analyzed by 

creating multiple copies of the region with specific primers and a polymerase chain reaction (PCR) 

enzyme. The sequence of nucleotides of these short DNA copies is then determined and assigned 

to a more complete sequence by comparing it to entries of a sequence database. The practice of 

matching a short, highly variable region of a gene to a longer sequence to analyze the community 

composition in a sample is referred to as “DNA barcoding”. The first genetic diversity analysis 

methods for cellular microbes based on DNA barcoding were established nearly 40 years ago (Pace 

et al., 1986; Woese et al., 1984). Targeted metagenomics methods have since been further refined 

to “metabarcoding”. This approach can perform several DNA barcoding analyses in parallel with 

strictly evaluated universal primer pairs for both eukaryotic communities (Bradley et al., 2016) as 

well as prokaryotic communities (Takahashi et al., 2014). 

Studying Imitervirales by metabarcoding is more difficult than studying cellular 

communities, because the applicable regions of the few conserved genes of Imitervirales tend to 

show higher variability (Gran-Stadniczeñko et al., 2019b; Johannessen et al., 2017). The first 

primer pairs targeting the DNA polymerase B gene (polB) of oceanic large dsDNA viruses infecting 

phytoplankton were designed in the 1990s (Chen and Suttle, 1995). A DNA barcoding approach 

was necessary, because large dsDNA viruses were not taxonomically distinguishable by electron 

microscopy, despite large genetic differences (Chen and Suttle, 1995). Five distinguished 

operational taxonomy units (OTUs) were identified with manual Sanger sequencing (Chen et al., 

1996). “Taxonomy units” usually refer to genetically similar groups of organisms. In many studies 

they are “operational” since the definition of such a taxonomy unit can vary between different 
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studies. These operational taxonomy units (OTUs) contrast the traditional taxonomic units (e.g., 

“species”) by relying on DNA sequences and gene content instead of grouping by phenotype. 

After pyrosequencing and other modern sequencing approaches became viable options, 

further studies were conducted. They targeted different conserved regions of Imitervirales 

(sometimes including Phycodnaviridae), like the major capsid protein (Gran-Stadniczeñko et al., 

2019b; Johannessen et al., 2017; Larsen et al., 2008; Moniruzzaman et al., 2016), the mismatch 

repair protein (Wilson et al., 2014), or the polB gene (Clerissi et al., 2014; Li et al., 2018). Due to 

their technological advantage these modern studies were able to show a dozen or more OTUs 

(Larsen et al., 2008; Wilson et al., 2014) up to around 150 OTUs (Johannessen et al., 2017; 

Moniruzzaman et al., 2016). A more recent publication was able to discover over 300 OTUs despite 

claiming that they were not able to detect the community holistically (Gran-Stadniczeñko et al., 

2019b). 

A few of these pioneering studies reported that 

their primers may be specific only to a fraction of the 

targeted group of viruses and not show the community 

holistically (Gran-Stadniczeñko et al., 2019b; Larsen et al., 

2008). This problem was most likely caused by a lack of 

sequences to base primer design on as well as the scarcity 

of viral conserved genes (Legendre et al., 2012).Therefore, 

studies investigating the communities of Imitervirales are 

still rare compared to studies about cellular communities 

(Figure 1-2), for which different primer strategies were 

already proposed and validated (Bradley et al., 2016; Case 

et al., 2007; Pace et al., 1986). 

Figure 1-2: Database entries in March 2021 
for prokaryotes, eukaryotes, and large 
viruses. The used search terms for 
prokaryotes and eukaryotes were “16S” and 
“18S”, respectively. Therefore only 
metabarcoding database entries were found. 
The search terms for large DNA viruses were 
“Mimiviridae”, “Megaviridae”, 
“Imitervirales”, and “NCLDV”. This includes 
metabarcoding as well as metagenomics 
based entries. The search was conducted in 
NCBI’s BioProject archive. 
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A recent metabarcoding study tackled this issue by embracing the aforementioned high 

variability of Imitervirales conserved genes (Li et al., 2018). Previous primers were designed by 

relying on specific isolates of the targeted species’ genome and directly based the primer design 

on a chosen gene. Li et al. instead used the 17 known Imitervirales polB genes to perform a 

hidden–Markov–model search in Tara Oceans metagenes to detect a large set of roughly 1,000 

environmental Imitervirales polB sequences (Li et al., 2018). Previous studies repeatedly found 

that a single degenerate primer pair was not able to cover the diversity of Imitervirales holistically 

(Gran-Stadniczeñko et al., 2019b; Larsen et al., 2008). Therefore, Li et al. used these 1,000 

environmental Imitervirales polB sequences to design a set of 82 degenerate primer pairs that was 

theoretically able to amplify all of the polB genes found in the ocean (Li et al., 2018). This set of 82 

primer pairs was named “MEGAPRIMER” and Li et al used it to reveal that up to 6,500 Imitervirales 

OTUs can be found in a single liter of sea water (Li et al., 2018, 2019). 

Using such a holistic method on a time series of samples is a common approach to 

investigate what drives the oceanic communities. The time series of community change can be 

associated to physical factors (Gilbert et al., 2009; Sunagawa et al., 2015), biological factors (Lima-

Mendez et al., 2015; Needham and Fuhrman, 2016), or sub communities within (Lynch and 

Neufeld, 2015; Shade et al., 2014). However, at the time of publication, Li et al.’s “MEGAPRIMER” 

method was not applicable to study community compositions of sets of samples, because the 

laborious protocol restricted the analysis to few samples (Li et al., 2018, 2019). 

1.6 Objectives 

The first objective is to improve the workflow of the MEGAPRMER method by Li et al. to 

allow the application of MEGAPRIMER to time series studies with many samples. Mixing primer 

pairs to cocktails as well as further validating MEGAPRIMER with multiple samples was already 

suggested by Li et al. themselves, however these experiments were not feasible without further 
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improving the sample preparation workflow. Hence, they considered technical improvements of 

the MEGAPRIMER analysis method a necessary extension of their work (Li et al., 2018). These 

suggestions are realized in the second chapter of this work by mixing the degenerate 82 primer 

pairs into “cocktails” and by evaluating the amplification conditions as well as the amplicon 

cleanup. 

The second objective is to better understand the community dynamics of Imitervirales and 

connect them with eukaryotic and prokaryotic communities as well as environmental factors. This 

is achieved in chapter three by examining the seasonality and turnover rate of the Imitervirales 

community by using a set of 43 samples collected from a coastal environment during 20 months. 

The analyses of the community dynamics are based on traditional dissimilarity metrics, as well as 

more sophisticated statistical analysis. Recurrence, persistence and change in dissimilarity of the 

community over time are used as proxy for the actual turnover rate. 

The fourth chapter concisely discusses the results of the second and third chapter. I will 

discuss major findings of this thesis and lay out how this thesis contributed to the field. Finally, I 

will propose further strategies to investigate the Imitervirales community. 
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2 Chapter 2: Imitervirales diversity analysis method optimization 

2.1 Abstract 

Imitervirales is an order (phylum: Nucleocytoviricota) of giant DNA viruses that are 

abundant in the ocean. Recent studies highlighted the ecological relevance of Imitervirales in 

marine environments through frequent discoveries of new Imitervirales and the influence of 

Imitervirales on carbon export. To further study Imitervirales communities several metabarcoding 

methods for ecological profiling have been developed. A metabarcoding approach published in 

2018 implemented 82 degenerate primer pairs targeting the conserved, but highly variant polB 

gene of Imitervirales (i.e., MEGAPRIMER) and showed a hitherto undetected diversity of 

Imitervirales in a coastal seawater sample. The authors also discussed drawbacks of this method. 

Namely, that it required comparatively high amounts of sample DNA. Furthermore, the method 

was not viable for studies with large sample sets (e.g., time series sampling) due to a laborious 

amplicon preparation protocol. In this study, I tested various PCR conditions as well as amplicon 

purification protocols to improve the original method. Primer pair “cocktails” were introduced to 

reduce the amount of sample DNA and preparation time. Finally, quantitative real time PCR (qPCR) 

analysis of several OTUs (operational taxonomy units) was used to validate the new method. Even 

though the qPCR based quantification revealed possible amplification bias, the metabarcoding 

frequency profiles across samples were verified. Through this effort the MEGAPRIMER analysis 

protocol was streamlined by reducing analysis time while reproducing previous results. This new 

method facilitates a high though put analysis workflow for larger sample sets.  
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and wrote the initial manuscript.  
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2.2 Introduction 

Imitervirales are an order of large dsDNA viruses in the phylum Nucleocytoviricota. The 

largest Imitervirales have virion diameters up to 750 nm (AMPV , Tupanvirus) and genome sizes 

ranging from several hundred to well over a thousand kilo base pair (Abrahão et al., 2018; Fischer 

et al., 2010; La Scola et al., 2003). Recently isolated Imitervirales infect mostly unicellular algae in 

the ocean (Blanc-Mathieu et al., 2021; Needham et al., 2019; Schvarcz and Steward, 2018). 

Oceanic Imitervirales feature smaller particles 140 nm to 310 nm (Gallot-Lavallée et al., 2017; 

Johannessen et al., 2015) and most reported genomes are between 370 kb and 560 kb 

(Johannessen et al., 2015; Schvarcz and Steward, 2018). The largest photosynthetic eukaryote 

infecting Imitervirales genome to date is that of PkV RF01 with a size of 1.4 Mbp (Blanc-Mathieu et 

al., 2021). PkV RF01’s genome is more than twice as large as the second largest genome of TetV 

with a size of 668 kbp (Schvarcz and Steward, 2018). 

Imitervirales were associated with harmful algae blooms in coastal areas and shown to 

infect eukaryotes commonly found in the open ocean. AaV (Aureococcus anophagefferens virus) 

was detected alongside a bloom of its host (pelagophytes) during a brown tide (Moniruzzaman et 

al., 2014, 2016). Prymnesium parvum and Haptolina ericina (both bloom forming haptophytes) 

were found to be Imitervirales hosts as well (Gallot-Lavallée et al., 2015; Hansen et al., 1995; 

Sandaa et al., 2001; Wagstaff et al., 2017). Hosts of other taxa are Tetraselmis (a Chlorophyte), the 

heterotrophic protists Cafeteria roenbergensis, and a member of the Choanoflagellates. They are 

infected by Tetraselmis virus (TetV)(Schvarcz and Steward, 2018), Cafeteria-roenbergensis-Virus 

(CroV)(Fischer et al., 2010), and ChoanoVirus (Needham et al., 2019), respectively. 

Recently, the Imitervirales community has become a focus of viral research since they 

infect a broad range of eukaryotic taxa (Schulz et al., 2020) and influence the carbon cycle (Kaneko 

et al., 2020). Furthermore, the Imitervirales community is as diverse as prokaryotes, (Mihara et al., 



26 

2018) as abundant as eukaryotes (Hingamp et al., 2013), and transcriptionally active in the ocean 

(Carradec et al., 2018). 

Ecological analysis of the Imitervirales community has been difficult due to a high 

variability in the few possible regions for diversity analysis (Gran-Stadniczeñko et al., 2019b; Li et 

al., 2018; Wilson et al., 2014). Li et al. proposed a new approach to metabarcoding–primer–design 

based on the polB genes of large DNA viruses found in the Tara Oceans metagenes (Li et al., 2018; 

Sunagawa et al., 2015). In their study, Li et al. combined a set of 82 degenerate primer pairs to 

holistically target the high nucleotide sequence variations of the conserved polB gene (Li et al., 

2018). Thereby, they were able to identify a hitherto undetected richness of 5,595 non singleton 

Imitervirales OTUs (operational taxonomy units at 97% similarity) in a single liter of seawater (Li et 

al., 2018). In a second study, they showed the wide range of environments in which Imitervirales 

are present by analyzing fresh and sea water (i.e., samples from a hot spring, the mangroves, the 

Sea of Japan, and the Osaka Bay) (Li et al., 2019). Their approach was successful for studies with 

few samples, but the authors recommended to further evaluate and possibly improve their 

method (Li et al., 2018). The drawback of using 82 primers is the linear increase in time and 

sample DNA consumption, as well as a high risk of errors (e.g., pipetting mistakes or sample 

swaps) due to many PCR reactions per sample. Additionally, biases may be introduced during 

amplicon generation, since several samples can hardly be processed simultaneously. For instance, 

amplification of one sample with MEGAPRIMER takes up 82 PCR tubes of the 96 PCR tube well 

plate used in most thermal cyclers. 

Here I aim to improve the original MEGAPRIMER protocol by introducing primer pair 

“cocktails”. Instead of using each primer pair separately, several primer pairs were mixed together 

before performing the polB gene amplification. This strategy was tested on four seawater samples 

of different coastal environments and different seasons. As Li et al suggested in their original study 



27 

(Li et al., 2018), I further evaluated possible amplification biases by quantifying several OTUs using 

qPCR. Finally, I analyzed the eukaryotic host community of Imitervirales with an 18S rRNA gene 

metabarcoding analysis. 

2.3 Methods 

2.3.1 Seawater sampling and DNA extraction 

Four seawater samples were analyzed, including the seawater sample of the original 

MEGAPRIMER study (Li et al., 2018) and 3 samples from the Uranouchi Inlet, Kochi Prefecture, 

Japan. The seawater sample (4L) of Li et al. were sampled by my collaborators from Kyoto 

university at a 5m depth at the entrance of the Osaka Bay, Japan (34°19′28”N, 135°7′15”E) on 30 

October 2015 (Li et al., 2018). The Uranouchi Inlet samples were taken by my collaborators from 

Kochi University. They sampled 10L seawater of the Uranouchi Inlet at a 5m depth at 3 different 

locations and dates: Uranouchi station F (33°26′33.6”N 133°24′41.8”E) on 21 June 2017, Uranouchi 

station J (33°25′43.2”N 133°22′49.5”E) on 06 July 2017, Uranouchi station M (33°25′60.0”N 

133°24′38.3”E) on 10 November 2017. 

The Osaka Bay sample was filtered through a 3.0µm–pore polycarbonate membrane filter 

(diameter 142 mm, polycarbonate; Merck, Darmstadt, Germany) and 1L of the filtrate was further 

filtered with a 0.22µm–pore filtration unit (Durapore Membrane Filters, PVDF, Merck). The 

Uranouchi Inlet samples were filtered thrice. First with a 3.0µm–pore filter, the collected filtrated 

was further filtered with a 0.8µm–pore polycarbonate membrane filter (diameter 142 mm, 

polycarbonate; Merck). Finally 1L of the 0.8µm filtrate was filtered with a 0.22µm filtration unit 

(Sterivex, polycarbonate, Merck). The filters were stored at -80 °C until DNA extraction. I extracted 

DNA following the “Proteinase–K method” for the 0.22µm filtration units (Frias-Lopez et al., 2008) 

and the xanthogenate–sodium dodecyl sulfate method for the 0.8µm and 3µm filters (Yoshida et 

al., 2003). I stored the extracted DNA in solution at -20 °C. 
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2.3.2 PolB gene amplification, purification, and sequencing 

MEGAPRIMER consists of 82 degenerate primers. The primer pairs were mixed to primer 

pair cocktails (mixtures of 5, 10, or 20 primer pairs) to reduce the number of PCR amplifications 

per sample. Which primers were mixed into cocktails is shown in tables 3-1 to 3-4. Primer pairs 

were also used separately. If primer pairs are used separately, 82 PCR reactions are necessary. If 5 

primer pairs are mixed, 17 PCR amplifications are necessary (i.e., 1 amplification by PCR for each 

cocktail in Table 2-1) to generate amplicons from 1 sample. Mixtures of 10 primer pairs or 20 

primer pairs, resulted in 9 (MP10.v1, Table 2-2), 8 (MP10.v2, Table 2-3) or 5 (MP20, Table 2-4) PCR 

amplifications per sample, respectively. Primers were mixed according to prevalence (i.e., 

frequency of presence in samples based on in silico PCR in Tara Oceans metagenes), except for 

MP10.v2 (Table 2-3), in which primer pairs were mixed to generate a similar average annealing 

temperature of around 47 °C in each cocktail. 
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Table 2-1: Five primer pair cocktails (i.e., MP5). Mixing table for cocktails with 5 primer pairs each. MP5 consists of 17 
primer cocktails, each cocktail contains 3 to 5 primer pairs. 

MP5 
cocktail 

1 
cocktail 

2 
cocktail 

3 
cocktail 

4 
cocktail 

5 
cocktail 

6 
cocktail 

7 
cocktail 

8 
cocktail 

9 

primer1 PP28 PP57 PP16 PP41 PP53 PP1 PP66 PP20 PP27 

primer2 PP25 PP83 PP15 PP2 PP39 PP21 PP10 PP7 PP54 

primer3 PP70 PP18 PP26 PP55 PP42 PP44 PP12 PP40 PP49 

primer4 PP47 PP34 PP14 PP45 PP38 PP32 PP22 PP64 PP36 

primer5 PP61 PP11 PP24 PP43 PP37 PP9 PP29 PP46 PP19 

          
MP5 
(cont.) 

cocktail 
10 

cocktail 
11 

cocktail 
12 

cocktail 
13 

cocktail 
14 

cocktail 
15 

cocktail 
16 

cocktail 
17  

primer1 PP17 PP4 PP56 PP67 PP77 PP13 PP75 PP82  
primer2 PP50 PP58 PP23 PP3 PP59 PP76 PP6 PP80  
primer3 PP69 PP8 PP35 PP71 PP78 PP81 PP33 PP30  
primer4 PP60 PP74 PP31 PP48 PP63 PP79 PP51   
primer5  PP65 PP52 PP73 PP72 PP68 PP5   

 

Table 2-2: Ten primer pair cocktails (i.e., MP10.v1). MP10 version 1 consists of 9 primer cocktails, each cocktail contains 
either 2 or 10 primer pairs. 

MP10.v1 
cocktail 

1 
cocktail 

2 
cocktail 

3 
cocktail 

4 
cocktail 

5 
cocktail 

6 
cocktail 

7 
cocktail 

8 
cocktail 

9 

primer1 PP28 PP16 PP53 PP66 PP27 PP58 PP3 PP76 PP80 

primer2 PP25 PP15 PP39 PP10 PP54 PP8 PP71 PP81 PP30 

primer3 PP70 PP26 PP42 PP12 PP49 PP74 PP48 PP79  
primer4 PP47 PP14 PP38 PP22 PP36 PP65 PP73 PP68  
primer5 PP61 PP24 PP37 PP29 PP19 PP56 PP77 PP75  
primer6 PP57 PP41 PP1 PP20 PP17 PP23 PP59 PP6  
primer7 PP83 PP2 PP21 PP7 PP50 PP35 PP78 PP33  
primer8 PP18 PP55 PP44 PP40 PP69 PP31 PP63 PP51  
primer9 PP34 PP45 PP32 PP64 PP60 PP52 PP72 PP5  
primer10 PP11 PP43 PP9 PP46 PP4 PP67 PP13 PP82  
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Table 2-3: Second 10 primer pair cocktail mixing table (i.e., MP10.v2). MP10 version 2 consists of 8 primer cocktails, each 
cocktail contains either 10 or 11 primer pairs. 

MP10.v2 
cocktail 

1 
cocktail 

2 
cocktail 

3 
cocktail 

4 
cocktail 

5 
cocktail 

6 
cocktail 

7 
cocktail 

8 

primer1 PP45 PP28 PP83 PP25 PP11 PP55 PP38 PP41 

primer2 PP43 PP37 PP18 PP70 PP16 PP53 PP01 PP02 

primer3 PP42 PP21 PP34 PP47 PP15 PP66 PP09 PP39 

primer4 PP40 PP12 PP44 PP61 PP26 PP10 PP22 PP29 

primer5 PP27 PP64 PP32 PP57 PP14 PP20 PP07 PP46 

primer6 PP49 PP54 PP69 PP65 PP24 PP08 PP58 PP17 

primer7 PP36 PP23 PP31 PP56 PP35 PP52 PP74 PP50 

primer8 PP19 PP67 PP71 PP48 PP73 PP03 PP77 PP60 

primer9 PP04 PP59 PP63 PP13 PP76 PP68 PP78 PP81 

primer10 PP75 PP06 PP33 PP79 PP51 PP80 PP72 PP82 

primer11 PP05 PP30       
 

Table 2-4: Twenty primer pair cocktails (i.e., MP20). MP20 consists of 5 primer cocktails, each cocktail contains either 2 
or 20 primer pairs. 

MP20 
cocktail 

1 
cocktail 

2 
cocktail 

3 
cocktail 

4 
cocktail 

5 

primer1 PP28 PP53 PP27 PP3 PP80 

primer2 PP25 PP39 PP54 PP71 PP30 

primer3 PP70 PP42 PP49 PP48  
primer4 PP47 PP38 PP36 PP73  
primer5 PP61 PP37 PP19 PP77  
primer6 PP57 PP1 PP17 PP59  
primer7 PP83 PP21 PP50 PP78  
primer8 PP18 PP44 PP69 PP63  
primer9 PP34 PP32 PP60 PP72  
primer10 PP11 PP9 PP4 PP13  
primer11 PP16 PP66 PP58 PP76  
primer12 PP15 PP10 PP8 PP81  
primer13 PP26 PP12 PP74 PP79  
primer14 PP14 PP22 PP65 PP68  
primer15 PP24 PP29 PP56 PP75  
primer16 PP41 PP20 PP23 PP6  
primer17 PP2 PP7 PP35 PP33  
primer18 PP55 PP40 PP31 PP51  
primer19 PP45 PP64 PP52 PP5  
primer20 PP43 PP46 PP67 PP82  
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I performed 8 sequencing runs, 7 of which were deep sequencing (i.e., only 1 sample for 

each sequencing run) and 1 shallow depth sequencing run (Table 2-5). In the shallow depth 

sequencing run MEGAPRIMER amplicons and cellular marker gene amplicons were sequenced 

together. The amount of barcoded amplicons in the final library was close to the highest possible 

number of simultaneously analyzable samples. 

Table 2-5: Overview of the generated datasets, sequencing runs, and amplification protocols. Amplicon generation and 
purification was performed with several protocols and on several samples. The difference among protocols are detailed 
in table 3-6. 

Dataset 
Sequencing 
run number 

Sampling 
location 

Sampling 
date 

Primer 
cocktail 

Protocol 
number 

D-OB-MP5-1 1 OB 2015.10.30 MP5 1 
D-OB-MP10-1 2 OB 2015.10.30 MP10.v1 1 
D-OB-MP20-1 3 OB 2015.10.30 MP20 1 

D-OB-MP1-2 4 OB 2015.10.30 
MP1 

(no mix) 
2 

D-OB-MP5-2 5 OB 2015.10.30 MP5 1 
D-OB-MP10-2 6 OB 2015.10.30 MP10.v1 1 
D-OB-MP20-2 7 OB 2015.10.30 MP20 1 
S-OB-MP10-1 8 OB 2015.10.30 MP10.v2 3 
S-OB-MP10-2 8 OB 2015.10.30 MP10.v1 1 
S-OB-MP10-3 8 OB 2015.10.30 MP10.v2 4 
S-OB-MP10-4 8 OB 2015.10.30 MP10.v1 5 
S-UF-MP10 8 UF 2017.6.21 MP10.v2 3 

S-UJ-MP1 8 UJ 2017.7.6 
MP1 

(no mix) 
3 

S-UJ-MP10 8 UJ 2017.7.6 MP10.v2 3 
S-UM-MP10 8 UM 2017.11.10 MP10.v2 3 

 

I tested several different protocols for amplicon generation on different samples and 

generated 15 different datasets, listed in Table 2-5. The dataset names, shown in the “Dataset” 

column of Table 2-5, contain information about the metabarcoding workflow protocol used to 

generate the data. The names contain the sequencing depth (i.e., Deep or Shallow), the sampling 

location (e.g., OB for Osaka Bay), the primer cocktail method (e.g., MP1, MP5), and the replicate 

number (i.e., 1 to 4) separated by a hyphen. All replicates are number starting from 1, only D-OB-

MP1-2 does not have a replicate number 1, instead Li et al.’s Osaka Bay dataset of the 2018 study 
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is considered a technical replicate. Li et al.’s 2018 dataset will henceforth be referred to as D-OB-

MP1-0. The 8 shallow depth sequencing datasets were generated with mostly MP10 cocktail 

methods, except 1 experiment with no primer mixing (i.e., S-UJ-MP1). I tested different PCR 

conditions with the 7 shallow depth MP10 experiments. I varied the template and primer 

concentrations, MP10 mixtures, and cleanup protocols (Table 2-5 and Table 2-6). The amplicon 

cleanup step was performed with either Agencourt AMPure XP beads (Beckman Coulter, Inc., 

Brea, CA) according to the protocol recommended by Illumina or ethanol precipitation with 

subsequent gel extraction (2% agarose gel in TAE buffer, extraction kit by Wizard SV, Promega, 

Madison, WI), because MEGAPRIMER amplification produced many unspecific amplicons with a 

length of >100 bp alongside the desired amplicons (Figure 2-1). The gel extraction cleanup was 

unique to protocol number 3 (Table 2-6), all other protocols included magnetic beads cleanup. 

Cleanup success was sporadically tested with a lab–on–a–chip electrophoresis system (2100 

Bioanalyzer, Agilent Technologies, Santa Clara, CA) or agarose gel electrophoresis and subsequent 

gel staining (GelRed or GelGreen, Biotium, Hayward, CA). 

 

 

Figure 2-1: Amplification of the UJ sample with different MEGAPRIMER methods. The high concentration of unspecific 
amplification products of over >100 bp made sequencing impossible. (Left) The gel image shows a gel band during 
sample preparation with MP10v2 protocol 3 before a cleanup was performed. MEGAPRIMER produced unspecific 
amplifications. (Right) A chip based electrophoresis device shows the amplification product of the indexing PCR with 
MP10v1 and protocol 1. Both polB amplicons and unspecific, short amplicons remained after the cleanup with magnetic 
beads (internal standards of the electrophoresis device: 35 bp and 10.4 kbp). 
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Table 2-6: Overview of different PCR and sample cleanup protocols. All values in final concentrations. I varied the primer 
concentration, sample DNA concentration and tested different methods to remove unspecific amplifications. 

protocol 
number 

primer 
concentration 

[µmol.L-1] 

sample DNA 
concentration 

[ng.µL-1] amplicon cleanup 

1 8 0.025 AMPure XP 

2 8 0.04 AMPure XP 

3 6 0.2 gel extraction 

4 6 0.025 AMPure XP 

5 6 0.2 AMPure XP 

 

Aside from the variations shown in Table 2-6, the PCR conditions (e.g., PCR thermal 

cycling) were kept identical for all conducted experiments. I used 50% KAPA Hifi Hotstart 

ReadyMix (Roche, Basel, Switzerland) for all MEGAPRIMER based amplifications. The thermal cycle 

started with 3 min of 95 °C. The 3 step cycle was repeated 32 times with 30s per step. The steps 

were 94 °C for melting, 54 °C for annealing, and 72 °C for elongation. The last elongation step was 

72 °C for 4 min. 

After amplicon purification with either of the different cleanup protocols, the indexing PCR 

step was performed to attach the dual indices according to Illumina’s library preparation protocol. 

Another magnetic bead purification step was performed and the indexed amplicons were mixed in 

equal volumes for the final library preparation. The final library concentration was 10 pmol L−1. An 

internal standard was added, 25% PhiX for run 1-7, 50% PhiX for run 8 (Table 2-5). 

 

2.3.3 Raw read filtering with Megaviridae Amplicon Processing System (MAPS) 

Alongside the MEGAPRIMER method, Li et al. published an Imitervirales polB read 

processing pipeline. The pipeline works in consecutively performed steps. It removes low quality 

reads, trims primers, merges the forward and reverse reads, removes chimeric sequences, groups 

all identical reads, translates the reads for a subsequent steps, filters none Imitervirales reads 
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(with a similarity search of the translated polB gene and phylogenetic placement in a reference 

tree), and finally MAPS trims the amplicons at a common coding region of the polB gene. 

After MAPS removed low quality and non Imitervirales reads, I clustered the sequences at 

97% similarity for OTU generation with cd-hit (v 4.6.8) (Li and Godzik, 2006). The resulting OTU 

table was read with R (v 3.4.2) (www.r-project.org, accessed 23.3.2021) to generate figures and 

perform statistical analysis. The vegan package (2.5-6) (Oksanen et al., 2012) was used for read 

rarefication and Jaccard Dissimilarity calculation. The non–metric multidimensional scaling (NMDS) 

and hierarchical clustering was performed with the cmdscale function and vegan’s hclust function, 

respectively. Plots were generated with ggplot2 (Wickham, 2016) or iNEXT (Hsieh et al., 2016). I 

created a phylogenetic tree using default Mafft (Katoh and Standley, 2013) and default FastTree 

(Price et al., 2010). Anvi′o was used to visualize the phylogenetic tree (Eren et al., 2015). 

2.3.4 Imitervirales OTU quantification with qPCR 

I selected the 10 most abundant OTUs from the 15 datasets. These OTUs overlapped since 

the 15 datasets were generated from only 4 seawater samples. In total 58 OTUs were chosen as 

the “most abundant OTUs” based on high relative read percentages. Each of these OTUs consisted 

of several different genotypes (i.e., slightly different variants of the DNA sequence of the polB 

amplicon). Only 43 OTUs showed a clear dominant genotype (i.e., a polB DNA sequence that 

generated at least half of all reads for that OTU) to target with qPCR. Primers for these 43 OTUs 

were designed with Primer3 (Koressaar and Remm, 2007; Untergasser et al., 2012). The optimal 

primer size was set to 20 bp and the product size range was set from 50 bp to 250 bp. Primer3 was 

able to generate 4 different sets of qPCR primers for 23 of the 43 OTUs. I tested these primers in 

silico by performing a BLAST search against RefSeq, which returned no hits (E-value < 10−4). The 

primers were further tested by searching their sequence against all generated Imitervirales reads 

of this study. All primers that were able to target OTUs other than their intended target were 
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removed. After in silico specificity testing only 8 qPCR primer pairs, targeting 8 different OTUs, 

remained. I ordered these primer and target sequences from a vendor. The specificity of the 8 

qPCR primer pairs was tested by amplifying the target region, 2 of the 8 primer pairs showed 

unspecific binding (multiple dissociation curves) and were discarded. The quantification of 6 

Imitervirales OTUs was conducted using qPCR. I mixed 6.25 µL of TB Green Premix Ex Taq™ II 

(Takara Bio Inc., Shiga, Japan), 1 µL of 20µm reverse and forward primer (final concentration 1.6 

µmol L-1), and 1 µL of 1 ng µL−1 sample DNA (final concentration 0.08 ng µL−1). The quantification 

was performed with 50 cycles with 95 °C, 55 °C, and 72 °C with 20s each. Fluorescence was 

recorded during the last step. The limit of quantification (LoQ) was determined according to 

Forootan et al.’s method (Forootan et al., 2017). The coefficient of variation (CV = 100.SD.mean−1) 

is used to determine parameters for the results of the qPCR experiments (Forootan et al., 2017). 

The standard serial dilution (10–107 molecules) was used to calculate the CV. I conducted at least 3 

measurements for every dilution. The limit of quantification (LoQ) was defined as either the 

concentration of standards where the CV is at least 50% of the measured molecules or 10 or less 

copies of DNA. The limit of detection (LoD) was defined as less than 1 copy of DNA on average of 

at least 3 measurements. 

2.3.5 Metabarcoding analysis of eukaryotes and subsequent raw read processing 

The DNA extract of the 3µm pore size filter was used for a eukaryotic community analysis 

with a commonly used marker gene amplification. The targeted region was the V8/V9 region of 

the 18S ribosomal RNA gene using a forward and reverse primer pair called “V8 F” and “1510”, 

respectively (forward: MiSeq adapter + ATAACAGGTCTGTGATGCCCT and reverse: MiSeq adapter + 

CCTTCYGCAGGTTCACCTAC) (Bradley et al., 2016). The PCR was performed on a mixture of 5 µL (1 

µmol L−1) of each primer, 2.5 µL DNA (0.25 ng µL−1) sample, and 12.5 µL 2× KAPA HiFi HotStart 

ReadyMix. The thermal cycle started at 98°C (3 min) followed by 25 cycles of 98°C (20s), 65°C 



36 

(15s), 72°C (15s), and ending on 72°C for 10 min. Purification was performed with magnetic beads 

and amplification success was confirmed with agarose gel electrophoresis and subsequent 

staining. The dual indices necessary for metabarcoding were attached with another PCR reaction 

according to the manufacturer’s protocol and a library with a concentration of 2 nmol L−1 was 

prepared for sequencing (2 × 300 nucleotides) according to the manufacturer’s protocol. The final 

concentration was 10 pM and a 25% phiX spike–in was added. 

The subsequent bioinformatics analysis was performed with QIIME 2 (version 2018.11.10) 

(Bokulich et al., 2018; Caporaso et al., 2010) and visualization was performed with R’s ggplot2 and 

python scripts. The raw files were parsed in QIIME 2, primers were removed using Cutadapt 

(Martin, 2011). Vsearch was used to merge reads (35 bp minimum overlap, 5 allowed mismatches) 

(Rognes et al., 2016), and after removing reads with a PHRED score below 10, dereplicated and 

chimera check (against SILVA 132) them. Eukaryotic OTUs were clustered at 99% nucleotide 

identity, singletons were removed. Taxonomic annotation was performed with QIIME 2’s feature-

classifier (Bokulich et al., 2018) with 99% identity against SILVA 132 majority database. Unassigned 

OTUs were removed. The resulting OTU table was exported from QIIME and processed in R for 

subsampling and NMDS generation in the same way the Imitervirales OTU tables were processed. 

The raw reads were uploaded to the DDBJ. The levels 4-6 of the SILVA annotation were used to 

classify the eukaryotic reads taxonomically into “lineages” to summarize and visualize the 

community compositions of eukaryotes of the 4 seawater samples. 
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2.4 Results 

2.4.1 Different Primer Cocktail methods produced similar Imitervirales Community 

Profiles 

In total, 36.8 million raw paired–end polB reads were generated across 15 datasets 

analyzing four samples taken at different locations and times. MAPS verified 5.7 million as 

Imitervirales reads. The proportion of Imitervirales reads among raw reads was 26% on average, 

but ranged from 8% to 57%. These reads were clustered into 6,045 none singleton Imitervirales 

OTUs (Table 2-7 and Figure 2-2). 

Table 2-7: Raw and Imitervirales reads of this study. 

Dataset 
Number of 
raw reads 

Imitervirales 
reads 

Proportion of 
Imitervirales 
reads 

Number 
of 
OTUs 

Primer 
cocktail 

Protocol 
number 

D-OB-MP1-0 
(Li et al., 2018) 

16,677,495 8,432,837 51% 5,595 

MP1 
(58/82 
primer 
pairs) 

- 

D-OB-MP5-1 5,078,212 992,088 20% 3,018 MP5 1 

D-OB-MP10-1 5,995,548 1,916,193 32% 3,396 MP10.v1 1 

D-OB-MP20-1 10,720,091 1,019,645 10% 3,110 MP20 1 

D-OB-MP1-2 2,205,016 497,356 23% 2,608 MP1 2 

D-OB-MP5-2 2,992,984 273,153 9% 2,426 MP5 1 

D-OB-MP10-2 4,521,841 340,129 8% 2,912 MP10.v1 1 

D-OB-MP20-2 4,752,035 452,365 10% 2,755 MP20 1 

S-OB-MP10-1 60,348 5,258 9% 744 MP10.v2 3 

S-OB-MP10-2 78,067 37,638 48% 1,487 MP10.v1 1 

S-OB-MP10-3 34,860 11,942 34% 1,243 MP10.v2 4 

S-OB-MP10-4 38,477 21,965 57% 1,388 MP10.v1 5 

S-UF-MP10 96,149 29,275 30% 601 MP10.v2 3 

S-UJ-MP1 67,990 19,151 28% 470 MP1 3 

S-UJ-MP10 68,168 31,276 46% 539 MP10.v2 3 

S-UM-MP10 82,516 18,911 23% 595 MP10.v2 3 

 

The deep sequencing runs (run 1–7) generated 36.3 million reads (2.2 million to 10.7 

million reads per dataset), 5.5 million of which were bone fine Imitervirales reads (0.27 million to 

2.2 million reads per dataset), which clustered into 2,426 to 3,396 Imitervirales OTUs. The deep 
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sequencing accounted for 97% of validated reads of this study. The eight shallow sequencing 

datasets of a single sequencing run (run 8) generated 0.53 million raw reads, 175,416 of which 

were assigned to Imitervirales. The reads of the shallow depth sequencing datasets (run 8) were 

classified into 470 - 1,487 Imitervirales OTUs. As expected, the deep sequencing generated more 

reads (and thereby detected more OTUs) than the shallow depth sequencing. 

 
Figure 2-2: Rare faction curves of all conducted experiments. The different sequencing depth resulted in a different 
number of OTUs discovered. (A) The deep sequencing run’s rare faction curves reached saturation. (B) The low depth 
sequencing run resulted in less reads and OTUs detected. (C) When subsampled at 5,000 reads, the deep sequencing and 
shallow depth sequencing run show similar rare faction curves. Figure taken from (Prodinger et al., 2020) in accordance 
with CC BY 4.0. 

While the number of discovered OTUs is dependent on the sequencing depth, the datasets 

can still be compared through either subsampling at a common sequencing depth (Figure 2-2C) or 

normalization of reads (Figure 2-3). Even though different cocktails methods were used (i.e., MP1, 

MP5, MP10.v1, MP10.v2, and MP20) and the sample preparation varied (i.e., primer concertation, 

DNA template concentration, and cleanup protocol), the OTU profile was similar for replicates of 

the same sample (i.e., 11 replicates of the OB sample, 2 replicates of the UJ sample) (Figure 2-3). 

Furthermore, after subsampling the number of discovered OTUs was comparable between low 

depth experiments and deep sequencing experiments (Figure 2-2C). 
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Figure 2-3: Relative frequencies of Imitervirales OTUs across samples and replicates. The 44 most abundant OTUs are 
displayed, all of them accumulated a relative reads frequency of at least 2% in at least one dataset. The remaining OTUs 
are grouped together in “others”. Figure taken from (Prodinger et al., 2020) in accordance with CC BY 4.0. 

The previously generated dataset D-OB-MP1-0 used 58 of the 82 MEGARIMER primer pairs 

(Li et al., 2018). When the experiment was repeated and all 82 amplicons were used for 

sequencing, many primers were found to have produced bone fide Imitervirales reads (Figure 2-4). 

On the other hand, several primers that were manually selected previously, did not yield 

Imitervirales reads in D-OB-MP1-2 (Figure 2-4). The sample depth normalized D-OB-MP1-0 dataset 

showed a similar rare faction curve than other OB experiments (Figure 2-2) and clustered with the 

other OB sample datasets (Figure 2-5). Datasets generated from the same samples generally 

clustered close together (Figure 2-5). 
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Figure 2-4: Comparison of MP1 results between the previous and present studies. The numbers in the plot refer to 
individual primer pairs. In the previous study (D−OB−MP1−0) the 24 primer pairs (red) were removed, nine of which 
produced Imitervirales reads in the present study. The six primer pairs shown in orange did not produce reads in the MP1 
experiment of this study (D−OB−MP1−2). Axes are in logarithmic scale. Figure taken from (Prodinger et al., 2020) in 
accordance with CC BY 4.0. 

 

 

 

Figure 2-5: Jaccard Dissimilarity of the technical replicates of several samples. (A) The hierarchical clustering analysis of 
all Imitervirales libraries shows that the Imitervirales from OB is distinct from the UJ communities. (B) The same 
information visualized by non–metric multidimensional scaling (NMDS) ordination of all generated datasets. Figure taken 
from (Prodinger et al., 2020) in accordance with CC BY 4.0.  
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I tested three different primer cocktails methods (i.e., MP5, MP10, and MP20) and a 

method in which every primer pair was used separately for amplification (i.e., MP1). The amount 

of generated reads varied, but the number of detected OTUs was similar between all methods 

(Table 2-7 and Figure 2-2), with MP10 resulting in slightly more reads and OTUs. The major 

differences of the cocktail methods stemmed from the necessary amount of sample DNA and the 

ratio of Imitervirales reads (i.e., reads after MAPS analysis) to raw reads (Figure 2-6). 

 
Figure 2-6: The radar chart shows the merits and disadvantages of different primer cocktail methods. The mean outcome 
of the deep sequencing runs of the Osaka Bay sample (i.e., runs 1–7) were used to create the plot. The five qualities I use 
to assess the methods were total richness, subsampled richness, amount of Imitervirales reads, proportion of 
Imitervirales reads to raw reads, and the inverse of the total amount of template DNA needed for one analysis. Figure 
taken from (Prodinger et al., 2020) in accordance with CC BY 4.0. 

Several different combinations of amplification protocols, cleanup protocols, and two 

different versions of MP10 were tested on the Osaka Bay sample and analyzed with shallow depth 

sequencing. The relative abundance of Imitervirales OTUs and the community composition in the 

each of the replicates of the Osaka Bay data sets were similar (Figure 2-3 and Figure 2-5). 

However, the amount of generated Imitervirales reads (5,528 – 37,638) and ratio of Imitervirales 

reads to raw reads (9% - 57%, Table 2-7) varied. S-OB-MP10-2 generated the most Imitervirales 
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reads and had a high ratio of Imitervirales reads (48%). The method I used to generate S-OB-

MP10-2 was MP10 version 1 with protocol 1. However, when I employed the same method on the 

UJ sample, I was repeatedly unable to produce amplicons without impurities (e.g., unspecific 

amplifications or remaining primers, Figure 2-1). I applied an amplification method based on 

MP10.v2 and gel extraction (protocol 3) and I was able to generate datasets for the Osaka Bay 

sample (S-OB-MP10-1) and all of the Uranouchi Inlet samples (i.e., S-UF-MP10, S-UJ-MP10, and S-

UM-MP10). The OTU richness of the Osaka Bay sample was higher than Uranouchi Inlet. The Osaka 

Bay dataset’s richness was 788 OTUs on average after subsampling and the dataset that detected 

the fewest OTUs in the Osaka Bay found 651 OTUs. The richness of the Uranouchi Inlet 

communities was 334 OTUs on average (UJ: 303 OTUs, UF: 330 OTUs, UM: 370 OTUs). 

2.4.2 Comparison of relative metabarcoding profiles against absolute quantification of 

OTUs 

I selected six Imitervirales OTUs (i.e., OTU1610, OTU231, OTU5844, OTU1788, OTU323, 

and OTU1458) that were found using metabarcoding. As suggested by a previous study (Li et al., 

2018), the relative read frequencies were not reliable for assessing the polB gene copy numbers. 

For example, OTU1610 had a relative read frequency of 1.4 ±1 % in the Osaka Bay sample, the 

qPCR inferred quantification showed that the OTU had a concentration of 756 ± 271 molecules 

mL–1 in the Osaka Bay sample. In contrast, OTU323 had a higher relative read frequency (4.9 ± 

1.4%), but the concentration in the same sample was lower with 33 ± 7 molecules mL–1 (Figure 2-

7). 



43 

 
Figure 2-7: Similar OTU abundance profiles of MEGAPRIMER and qPCR. The relative read frequency of OTUs of the Osaka 
Bay sample were calculated by averging all realtive reads. Error bars show one standard deviation. The Uranouchi Inlet 
sample names are abbreviated: S-UF-MP10 (UF), S-UJ-MP10 (UJ), and S-UM-MP10 (UM). Figure taken from (Prodinger et 
al., 2020) in accordance with CC BY 4.0. 

Even though the relative read frequencies did not reliably indicate individual OTU 

concentration, the OTU abundance profiled obtained through both methods were similar (Figure 

2-7). Furthermore, OTUs that showed higher concentrations (>1,000 molecules mL−1) also had the 

highest relative read percentages 5.7% and 15.3% (10.5% on average). The seven OTUs that had a 

quantifiable concentration produced relative read counts between 0.49% and 4.9% (2.0% on 

average). Three OTUs were below LoD with qPCR and, if at all detected with MEGAPRIMER, 

showed low relative read percentages (<0.01%). A positive correlation between relative read 

percentages and qPCR inferred molecular concentrations was found (Pearson’s r = 0.85, excluding 

LoD OTUs, p <10-3). 
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2.4.3 Eukaryotic community composition 

Table 2-8: 18S Number of reads and OTUs of the 18S amplicon sequencing. 

Sampling location Number of raw reads Taxonomically annotated reads Number of OTUs 

OB 67,028 44,727 439 
UF 95,352 63,833 325 
UJ 81,281 67,479 285 

UM 80,237 54,845 528 
Total 323,898 230,884 1,156 

 

The Imitervirales community of the Osaka Bay had a higher richness than the Uranouchi 

Inlet communities (Figure 2-2) and was generally more dissimilar to the Uranouchi Inlet 

communities than they were to each other (Figure 2-5). I investigated if these differences in 

richness and community dissimilarities were also found in the eukaryotic communities. I analyzed 

the samples by 18S rRNA amplicons sequencing, which resulted in 323,898 raw paired–end reads 

after removing low quality, unmerged or not assigned reads, 230,884 eukaryotic reads were 

clustered into 1,156 non singleton OTUs (99% identity, Table 2-8). The richness of each of the four 

seawater samples ranged from 285 to 528 OTUs (Table 2-8 and Figure 2-8A) and while the most 

dominant lineages overlapped (Figure 2-8C), the Uranouchi Inlet samples were more similar to 

each other than to the Osaka Bay sample (Figure 2-8B). 
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Figure 2-8: Details of the 18S amplicon sequencing. (A) The Uranouchi station M and the Osaka Bay dataset showed the 
higher richness. (B) The OB eukaryote community was more dissimilar than the Uranouchi Inlet communities were to 
each other. (C) Distribution of reads between the dominant linages was different for the all samples, but Metazoa, 
Diatoms, and Dinoflagelattes were abundantly present in each sample. Figure A and C taken from (Prodinger et al., 2020) 
in accordance with CC BY 4.0. 

The most abundant members of the Osaka Bay community were a Metazoa OTU 

(Siphonophorae, 15.8%), a green algae OTU (Coccomyxa sp., 9.1%), a Dinophyceae OTU (7.1%), 

and a Minutocellus OTU (centric Diatom, 5.8%). Out of these 4 OTUs only the Minutocellus OTU 

was observed in the Uranouchi Inlet with relatively high read counts (UF sample: 9.5%). Several 

abundant OTUs were found in two or more Uranouchi Inlet samples. Thalassiosira OTUs (also a 

centric Diatom) were found in all Uranouchi Inlet samples with high relative abundance (UF: 

44.7%; UJ: 12.9%, and UM: 7.2%). Other OTUs were found in two Uranouchi Inlet samples, namely 

a Cyclotella choctawhatcheeana OTU (UF: 12.0% and UM: 7.7%) and an OTU assigned to the 

bloom forming K. Mikimotoi (UJ: 16.3% and UM: 20.2%). The bloom forming Raphidophyte 

Chattonella sp. contributed over one fourth of the reads in UJ (29.6%) but was not present in the 

other samples (Figure 2-9). 
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Figure 2-9: OTU composition of the eukaryotic communities of four samples. The eukaryotic OTUs with relative read 
frequency was >2% in any sample are plotted in color. OTUs with fewer reads were merged to others. Figure taken from 
(Prodinger et al., 2020) in accordance with CC BY 4.0. 

 

2.5 Discussion 

The goal of this study was to streamline a MEGAPRIMER analysis protocol using primer 

pair cocktails instead of individual primers and to evaluate a possible primer bias, which was 

hypothesized in the original MEGAPRIMER publication (Li et al., 2018). Optimization of the new 

method was achieved by testing different primer cocktail methods (i.e., MP5, MP10.v1, MP10.v2, 

MP20), various amplification PCR conditions (Table 2-5 and Table 2-6), and sequencing depths 

(Table 2-7 and Figure 2-2) on the sample that was previously analyzed by Li et al. (Li et al., 2018). 

The new methods of this study reproduced the previously published Imitervirales community 

composition (Li et al., 2018) (Figure 2-5B), while requiring less resources (Figure 2-6). Additional 

analysis of three samples taken in the Uranouchi Inlet further showed distinct OTU profiles and 

the analysis of the UJ sample with both MP10 and MP1 showed similar OTU profiles. 

Methods based on the utilization of “primer–pair–cocktails” were introduce in this study. 

Most of these methods (i.e., MP1, MP10, and MP20) showed specific merits and disadvantages. 

MP1 produced the highest ratio of Imitervirales reads to raw reads, but required the most sample 

DNA (>80 ng) and preparation time. In contrast, MP20 required the smallest amount of sample 

DNA (<4 ng) and sample preparation, but produced many unusable reads. MP10 produced the 
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highest numbers of Imitervirales reads (Figure 2-6 and Table 2-7), but required more sample DNA 

than MP20 (roughly 8ng for MP10), and had a lower Imitervirales read to raw read ratio than MP1. 

Despite this MP10 was judged as the most suitable method, for its balance between preparation 

complexity, sample DNA usage, and overall performance (Figure 2-6). In order to compare MP10 

to the MP1 method, both were applied on two seawater samples (i.e., the Osaka Bay and the 

Uranouchi station J sample). In both cases, the primer cocktail method yielded similar results to 

the single primer analysis protocols (Figure 2-3 and Figure 2-5). Furthermore, I applied the new 

MP10–MEGAPRIMER–method on another three coastal seawater samples, revealing the unique 

OTU profiles of each sample. 

The primer pair cocktail strategy improved the MEGAPRIMER analysis workflow, but it was 

not the only critical factor of successful amplicon generation. Even though the Osaka Bay sample 

could be analyzed with different amplification protocols (i.e., protocol 1 to 5 of Table 2-6), the 

MEGAPRIMER amplicons of Uranouchi station J were repeatedly found to be unfit for sequencing. 

These failed experiments revealed the cleanup step to be critical for sequencing success. The 

sequencing failure was caused by high concentration of >100 bp oligonucleotides, an unwanted 

byproduct of MEGAPRIMER based polB amplification (Figure 2-1). The oligonucleotides were not 

removable with magnetic bead cleanup, since magnetic beads were specifically designed to 

remove oligonucleotides of <100 bp (www.beckmancoulter.com, accessed 23.3.2021). The 

influence of different factors on the oligonucleotides was tested by analyzing three coastal 

seawater samples of the Uranouchi Inlet alongside the Osaka Bay sweater sample with MP10, but 

with variating PCR conditions, cocktail mixtures, and cleanup protocols. Gel extraction was found 

to be an alternative to magnetic beads clean up, because gel extraction was able to remove 

unspecific amplification products of all sizes. This lead to a more consistent sequencing success. 

MP10.v2 in combination with protocol 3 (the only protocol with a gel extraction cleanup step) was 
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the only tested method that could generate amplicon sequencing data for all four seawater 

samples. In conclusion MP10v2 with protocol 3 facilitated Imitervirales community analysis for all 

tested samples, while being less laborious and using less sample DNA than the previously 

published methods. 

In the original MEGAPRIMER study Li et al. already provided a solution for reducing 

unspecific short amplicons by checking each amplification separately by gel electrophoresis and 

removing the amplicons of primer pairs that did not show a clear amplicon band (Li et al., 2018). 

This approach was successful and resulted in a high Imitervirales to raw read ratio (51%) and a 

high richness (5,595 OTUs, Table 2-7). I repeated this experiment without removing unsuccessful 

primer pairs. Not only did I generate fewer Imitervirales reads and lower richness (2,607 OTUs), 

the read Imitervirales to raw read ratio was lower as well (23%, Table 2-7). Despite these 

differences in sample preparation and sequencing success, the community composition was 

similar in both experiments (Figure 2-5). 

I quantified 6 OTUs with high relative read frequencies of the MEGAPRIMER barcoding 

data of this study in each of the four seawater samples by qPCR. The observed Imitervirales polB 

concentration ranged from 0.7 × 103 to 2.6 × 103 molecules mL–1. A previous study found between 

4 ×103 and 1.7 × 105 Nucleocytoviricota genomes for 1 mL of the >0.2µm size fraction of photic 

zone samples (Hingamp et al., 2013). Roughly 36% of these Nucleocytoviricota were assigned to 

Imitervirales (Hingamp et al., 2013), hence Hingamp et al. found between 1.4 × 103 and 6.1 × 104 

Imitervirales genomes in 1 mL. The quantification results of my study are therefore consistent with 

previous Imitervirales abundance estimates (Hingamp et al., 2013). 

The relative read percentages of Mimviridae OTUs based on MEGAPRIMER analysis was 

compared to the concentration of OTUs (i.e., qPCR analysis of polB genes per mL). As hypothesized 

in the original MEGAPRIMER study (Li et al., 2018), a sequencing bias was observed in the 



49 

MEGAPRIMER data (Figure 2-7). The reason for this bias may be that some OTUs can be amplified 

by up to 38 primers (Li et al., 2018). Therefore, comparing the relative read frequency of OTUs 

cannot be used to estimate which OTUs shows a higher absolute abundance. 

However, the observed relative frequency profiles of OTUs was correlated to the marker 

gene concentrations, despite the previously described amplification bias. Therefore, the relative 

frequency of Imitervirales OTUs are not random and contain information about the relative 

abundance of an OTU in the Imitervirales community. Furthermore, the relative read frequency 

profile of OTUs that were found in at least two samples was similar to the qPCR inferred 

abundance profile (Figure 2-7). The comparison of relative read percentages of a single OTU in 

multiple samples (i.e., not between different OTUs in one sample) may still be used to estimate 

the relative abundance of this OTU in the different Imitervirales communities. 

The Imitervirales richness of the Osaka Bay sample was higher than the richness of any 

Uranouchi Inlet sample (Figure 2-2). A previous study also found that the coastal seawater of the 

Osaka Bay had a higher Imitervirales richness than other environments like brackish water 

(mangrove), freshwater (of a hot spring) or the open ocean (Japanese sea) (Li et al., 2019). The 

hosts of oceanic Imitervirales are mostly eukaryotic algae. Therefore, I hypothesized that a high 

richness of the Imitervirales community might be explained by a high richness of eukaryotic algae. 

The eukaryotic community of the Osaka Bay showed a higher richness than two of the Uranouchi 

Inlet samples, but was less rich than the Uranouchi station M sample (Figure 2-8A). Most of the 

eukaryotic reads were assigned to six lineages, out of which only chlorophytes contain 

Imitervirales hosts (Figure 2-8C), other Imitervirales hosts were not abundantly present in any 

sample. The slightly higher relative abundance of chlorophytes in the Osaka Bay and the 

Uranouchi station M might contribute to a higher richness in Imitervirales. Aside from this 
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observation I was not able to explain the high richness of Imitervirales in the Osaka Bay sample 

with the eukaryotic community. 

In terms of Jaccard similarity of the different communities, both the Imitervirales and 

eukaryotic communities showed a high similarity among the Uranouchi Inlet samples and a low 

similarity between any of the Uranouchi Inlet samples and the Osaka Bay sample (Figure 2-8B). 

The similarity of the eukaryotic communities was also reflected in the overlap of abundant 

eukaryotic OTUs (i.e., OTUs with high relative read frequencies). Three of the five most abundant 

OTUs found in the Uranouchi Inlet samples overlapped (i.e., OTUs assigned to Thalassiosira, 

Karenia sp., and Cyclotella choctawhatcheeana, Figure 2-9), while the most abundant eukaryotic 

OTUs of the Osaka Bay were not abundantly present in any Uranouchi Inlet sample (except for 

Minutocellus in Uranouchi station F sample, Figure 2-9). 

This study provides a reasonable and robust MEGAPRIMER cocktail method by showing 

the merits and disadvantages of PCR amplification protocols and cleanup methods, and by 

evaluating the primer bias of MEGAPRIMER. In conclusion, the new method (i.e., MP10.v1 or v2 

with protocol 3) necessitated less sample DNA, was less time consuming and reproduced two 

different analysis that used single primer pair (MP1) amplification. Thereby, the necessary amount 

of DNA and analysis time was sharply reduced. This evaluation of MEGAPRIMER and the new 

cocktail based amplicon preparation method provides a basis for future ecological analysis of 

Imitervirales. By employing these new methods the MEGAPRIMER analysis can be performed on a 

larger sample set, enabling more in depth studies Imitervirales ecology. 
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3 Chapter 3: Year-round amplicon sequence variant community 

dynamics of eukaryotes, Imitervirales, and prokaryotes and their 

differences 

3.1 Abstract 

Diverse microbial communities inhabit coastal seawater. These communities show 

repeating seasonal patterns, which are caused by abiotic factors like temperature and nutrient 

availability and by biotic factors like competition for nutrients and other interactions between 

communities. Here, I studied the community dynamics of eukaryotes, a monophyletic clade of 

large DNA viruses in the order Imitervirales, and prokaryotes by metabarcoding analysis of 43 

samples taken during 20 months in the Uranouchi Inlet, Kochi, Japan. I analyzed the different 

microbial communities at the amplicon sequence variant (ASV) level to better understand the 

seasonal dynamics of coastal microbial communities. I found that the ASV communities of 

eukaryotes, prokaryotes, and Imitervirales changed in a similar seasonal cycle. Further analysis 

revealed that certain features of the community dynamics differed. For instance, the proportion of 

ASVs that were recovered after a year differed for each microbial community. These different 

community dynamics were explained in part by differences in the recurrence and persistence of 

individual community members of the cellular (i.e., prokaryotic, eukaryotic) and the viral 

community. Members of the prokaryotic community showed the highest persistency, while 

eukaryotic and Imitervirales ASVs were less persistent. In this study I show that the basis of this 

differences in community dynamics among eukaryotes, their viruses, and prokaryotes lies in the 

niche breadth of their respective community members as well as the specificity of their 

interactions with one another (virus–eukaryote–interactions vs. prokaryote–eukaryote–

interactions).  
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3.2 Introduction 

The microbial communities of the ocean can be separated into three main groups: 

eukaryotes, prokaryotes, and viruses. These microbes contribute substantially to biogeochemistry 

by cycling different elements (Brum and Sullivan, 2015; Falkowski et al., 2008; Not et al., 2012). 

The composition of these microbial communities changes due to factors that are either abiotic 

(e.g., temperature or nutrient concentrations) (Gilbert et al., 2012; Sunagawa et al., 2015) or biotic 

factors (e.g., predation or infection) (Lima-Mendez et al., 2015; Nagasaki et al., 1994). Marine 

ecosystems are complex because the members of the aforementioned microbial communities are 

constantly interacting with each other and thereby change their environment. This means that in 

order to understand socioeconomically important processes like carbon export and elemental 

cycling we need to study the change in microbial communities. 

High throughput sequencing based studies have previously described the dynamics of 

eukaryotic (Chen et al., 2017; Giner et al., 2019; Gran-Stadniczeñko et al., 2019b), prokaryotic 

(Chafee et al., 2018; Fuhrman et al., 2015; Gilbert et al., 2012; Milici et al., 2016; Sakami et al., 

2016; Teeling et al., 2016; Ward et al., 2017), both eukaryotic as well as prokaryotic communities 

(Bock et al., 2018), and viral communities (Ignacio-Espinoza et al., 2020). Other studies have 

investigated the relationships between cellular communities (Martin-Platero et al., 2018; 

Needham and Fuhrman, 2016; Santi et al., 2019) or cellular and viral communities (Arkhipova et 

al., 2018; Chow and Fuhrman, 2012; Gran-Stadniczeñko et al., 2019b; Johannessen et al., 2017; 

Needham et al., 2013; Pagarete et al., 2013; Sandaa et al., 2018). The seasonality of these different 

communities was also explored using time series sampling over several years for prokaryotes 

(Fuhrman et al., 2015; Gilbert et al., 2012), eukaryotes (Giner et al., 2019), and small viruses 

(Ignacio-Espinoza et al., 2020). 
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The least well understood of the three aforementioned microbe groups are viruses. Large 

double–stranded DNA viruses are considered important top down regulators of eukaryotic 

communities in the ocean (Endo et al., 2020). In coastal areas these viruses were associated with 

algal bloom events with metagenomics (Moniruzzaman et al., 2016) or microscopy (Nagasaki et al., 

2003; Tarutani et al., 2000; Tomaru et al., 2004). This suggests that Imitervirales and other 

Nucleocytoviricota infect bloom forming unicellular algae and contribute or even cause bloom 

collapse (Lehahn et al., 2014; Moniruzzaman et al., 2016; Tomaru et al., 2004). Another 

metabarcoding study linked members of the Imitervirales community and the eukaryotic 

community of South Norway (Gran-Stadniczeñko et al., 2019b). A recent study showed horizontal 

genes transfer between eukaryotes and Imitervirales (Schulz et al., 2020). A transcriptomic 

analysis of a high frequency sampling spanning three days (Ha et al., 2021) and a 

metatranscriptomics analysis of a global set of samples (Carradec et al., 2018) also showed that 

Imitervirales are ubiquitously present and active in the ocean. 

To contribute to the research of oceanic microbes I am the first to study the microbial 

communities of the Uranouchi Inlet, which is located at the south eastern side of Shikoku Island. 

The climate of this area is subtropical with distinct seasons, typically hot summers and mild 

winters. During spring, summer, and fall algal blooms or red tides of Heterosigma akashiwo 

(Raphidophyceae), Karenia mikimotoi (Dinophyceae), and Chattonella spp. (Raphidophyceae) 

occur in Uranouchi Inlet. These blooms can damage local fisheries and aquaculture and are 

therefore considered harmful algae blooms (HABs). 

The Imitervirales and eukaryotic community, as well as the prokaryotic community of the 

Uranouchi Inlet were analyzed using previously established highly sensitive metabarcoding 

methods. I analyzed seawater from Uranouchi Inlet that was sampled 43 times during 20 months 

from January 2017 to September 2018. The communities of these seawater samples were 
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characterized at an exact amplicon sequence level which distinguishes sequences with even a 

single nucleotide difference. Imitervirales and cellular microbial community dynamics were then 

compared to better understand their interactions. The host community of Imitervirales (i.e., 

eukaryotes) was analyzed, as well as the prokaryotic community, which can only be indirectly 

influenced by Imitervirales. I found striking similarities in the seasonality of the communities, but 

also differences in their specific community dynamics. 

3.3 Methods 

3.3.1 Seawater sampling and DNA extraction 

Seawater sampling was performed by my collaborators at 4 distinct sampling locations in 

the Uranouchi Inlet, Kochi Prefecture, Japan during 20 months starting from 05th January 2017 

until 25th September 2018 with an average sampling interval of 15 days. The sampling stations 

were station “j”: 33°25'43.2"N 133°22'49.5"E, station “m”: 33°25'60.0"N 133°24'38.3"E, station 

“f”: 33°26'33.6"N 133°24'41.8"E, and station “u”: 33°25'49.7"N 133°24'01.4"E. My collaborators 

sampled in total 43 samples. The samples were named in a “yymmdd-station” format, for instance 

the first sample taken at station “j” on 5th January 2017 was called 170105-j. 

Sampling was performed by pumping 10L seawater from a depth of 5m into a bottle 

(polycarbonate). The seawater was transported to the laboratory for sequential filtering. Samples 

were filtered through a 3.0µm membrane filter (diameter 142 mm, polycarbonate, Merck), the 

filtrate was collected and then sequentially filtered through a 0.8µm membrane filter (diameter 

142 mm, polycarbonate, Merck). The filtrate (1L) of the 0.8µm membrane filter step was then 

filtered through a 0.22µm filtration unit (Sterivex, polycarbonate, Merck). Each seawater sample 

yielded 3 filters, of which the residue was intended for metabarcoding analysis. The filters were 

stored at −80°C. DNA extraction was performed with either Proteinase–K method (Frias-Lopez et 
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al., 2008) for the 0.22µm filtration units or the xanthogenate–sodium dodecyl sulfate method 

(Yoshida et al., 2003) for the larger size fractions (3µm and 0.8µm). 

3.3.2 PCR amplification and sequencing 

Eukaryotic community diversity analysis was performed on the DNA extract of the 0.8µm – 

3µm and >3µm size fractions with 18S rRNA gene primers targeting the V8/V9 region. The primers 

were called “V8f” (forward primer, ATAACAGGTCTGTGATGCCCT) and “1510r” (reverse primer, 

CCTTCYGCAGGTTCACCTAC) (Bradley et al., 2016). Five µL of both primers (1 µmol·L-1), 2.5 µL 

template DNA (0.25 ng·µL-1), and 12.5 µL 2× KAPA HiFi HotStart ReadyMix were mixed and the 

reaction was carried out with a thermal cycler (Thermal Cycler Dice Touch, Takara Bio Inc., Shiga, 

Japan) programmed to heat to 98°C (3 min), followed by 25 cycles of 98°C (20s), 65°C (15s), and 

72°C (15s), the cycles were concluded with a final elongation step at 72°C (10 min). Amplicon 

cleanup was performed using magnetic beads according to the protocol of the manufacturer. 

Prokaryotic community diversity was analyzed with a 16S rRNA gene amplification 

protocol performed on the DNA extract of the 0.22µm – 0.8µm size fraction. The primer pairs 

were called “Pro-16S NGS” (forward primer, CCTACGGGNBGCASCAG) and “Pro-16S NGS” (reverse 

primer, GACTACNVGGGTATCTAATCC) (Takahashi et al., 2014). I mixed 5 µL of both primers (1 

µmol L-1) with 2 µl of the DNA template (1 ng·µL-1) and 12 µL 2× KAPA HiFi HotStart ReadyMix. The 

thermal cycler was programmed as follows, 95°C (3 min), then 25 cycles of a 3 step (30s each) 

cycle of 95°C, 55°C, and 72°C, a final extension with 72°C (5 min). Amplicon cleanup was 

performed using magnetic beads according to the manufacturer’s protocol. 

Imitervirales community composition was analyzed with MP10.v2 (Table 2-3) in 

combination with protocol 3 (Table 2-6) detailed in chapter two. MEGAPRIMER were mixed in 

cocktails of 10 or 11 primers (Table 2-3) and the DNA extracted from the 0.22µm – 0.8µm size 

fraction was used as template. I performed 8 PCR amplifications per sample using 7.5 µL primer 



57 

cocktail (20 µmol L-1), 5 µL template DNA (1 ng µL-1) and 12.5 µL KAPA HiFi HotStart ReadyMix. The 

thermal program started with 95°C (3 min), followed by 32 cycles of a 3 step (30s each) cycle of 

95°C, 54°C, and 72°C, a final extension with 72°C (5 min). The 8 generated amplicons of each 

sample were merged, resulting in 1 amplicon mixture per sample with a volume of 200 µL. Ethanol 

precipitation was performed on each sample’s merged amplicon and the resulting DNA pellet was 

resuspended in 25 µL of ultrapure water. Agarose gel (2%) electrophoresis was performed. The gel 

was stained (Gel Green, Takara Bio Inc., Shiga, Japan), the amplicon band between 400 bp and 600 

bp was cut out and DNA was extracted using a spin down column extraction kit (Promega Wizard 

SV, Promega, Madison, WI). 

Henceforth the different microbial amplicons (i.e., 16S, 18S and MEGAPRIMER 

amplification products) were processed nearly identically. Indexing PCR was performed according 

to Illumina’s library preparation protocol. The indexed cellular amplicons were purified using 

magnetic beads, also according to Illumina’s sample preparation guide. The indexed Imitervirales 

polB amplicons were purified using agarose gel extraction. The final library concentration was 10 

pM (30% PhiX spike) and sequencing was performed on the MiSeq platform (2 × 300 nucleotides, 

paired–end reads). 

3.3.3 Eukaryote and prokaryote data analysis 

Both the 18S amplicon as well as the 16S amplicon reads were analyzed using a QIIME 2 

(version 2020.2.0) (Bolyen et al., 2018) based pipeline, if not specified otherwise default settings 

were used. An analysis pipeline for each 18S and 16S amplicon data were written, however they 

were very similar in function. First, the raw reads were imported to QIIME 2 and further processed 

with the dada2 extension. Low quality reads were removed, primers were cut according to their 

length. High quality reads were truncated (at 240 bp for eukaryotic reads and 250 bp for 

prokaryotic reads), corrected, merged, and Chimeras were removed. All these steps were 
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automatically performed by dada2 (Callahan et al., 2016). Taxonomic annotation was performed 

using the SILVA 132 majority database and Qiime 2’s “feature-classifier classify-consensus-

vsearch” command with a 90% identity threshold accepting only the top hit. Singleton and 

unassigned ASVs were removed and an ASV table was exported for further analysis. 

3.3.4 Imitervirales amplicon processing system based on dada2 (MAPS2) 

An R script (R 3.6.3) (www.R-project.org, accessed 23.3.2021) was used to load dada2 and 

import, filter, trim, correct, dereplicated and merge raw sequences to ASV (Callahan et al., 2016). 

Unless further specified default settings were used. The script loaded the sequences using the 

“filterAndTrim” command, removing primers according to maximum length of MEGAPRIMER and 

truncating reads at 240 bp. Low quality regions were truncated as well and up to 2 reading errors 

were accepted. The sequencing error rates were learned using “learnErrors” on both forward and 

reverse reads. Reads were dereplicated using “derepFastq” and “dada” was called on the 

dereplicated reads, using the learned error rates to correct reads. Reads were merged with the 

“mergePairs” command with a minimum overlap of 12 and accepting no errors. Chimeras were 

removed with “removeBimeraDenovo”. An ASV table and fasta file containing the amplicon 

sequences was exported. BLASTx (2.9.0)(Altschul et al., 1990) was used to search the amplicon 

sequences against a custom PolB amino acid sequence database (Li et al., 2018) with an e-value of 

10-5 and ASVs with none viral hits were removed. A custom output format of the BLASTx search 

was used to save the translated nucleotide sequences and create a fasta file with amplicon PolB 

amino acid sequences. ASVs that matched viral sequences were processed further by adding their 

PolB amino acid sequence to a previously published PolB reference tree (Endo et al., 2020) using 

pplacer (1.1.alpha19) (Matsen et al., 2010). ASVs placed on the monophyletic Imitervirales branch 

were split into 14 clades, ASVs that were not inside the Imitervirales branch were removed. In the 

last step all ASV were trimmed in a common region and a final ASV table was exported. 
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3.3.5 Ecological analysis: Diversity and Dissimilarity metrics 

The ASV tables of either eukaryotes (the 18S amplicon sequencing data), prokaryotes (the 

16S amplicon sequencing data), or Imitervirales (the MEGAPRIMER sequencing data) were parsed 

with R. The “vegan” (2.5-6) (Oksanen et al., 2012) and “ggplot2” (3.2.1) 

(https://ggplot2.tidyverse.org, accessed 7.4.2021) packages were used for analysis and 

visualization. Datasets with fewer than 8,000 reads were removed, all other data sets were 

normalized (for community composition analysis) or subsampled at 8,000 reads (for dissimilarity 

and diversity analysis). Whether or not an ASV was present in a dataset was determined by it 

yielding more than 0.1% of reads after subsampling (i.e., 8 reads in the subsampled dataset). The 

dissimilarity of communities was calculated with the Sørensen-Dice method (i.e., vegan’s “vegdist” 

function with the default Bray Curtis method and binary set to true). Thereby the dissimilarity of 2 

communities is defined as follows: 

𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑆𝐷 =  
2|𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝐴 ∩ 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝐵|

|𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝐴| + |𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝐵|
 

 

“cmdscale” and “sammon” (MASS package) were used to create non–metric dot plots to 

visualize dissimilarities. The similarities of communities among the same and opposite seasons was 

calculated by binning months into seasons: spring (March to May), summer (June to August), fall 

(September to November), and winter (December to February). I calculated the p value with either 

R’s “t.test”, or if more than 100 samples were compared and Benjamini–Hochberg correction was 

necessary with “pairwise.t.test”. 

3.3.6 Cell counts and environmental data (biotic and abiotic) 

I received data about the temperature, salinity, phytoplankton cell counts, and 

concentrations of nutrients, organic and inorganic forms of nitrogen and phosphorus, dissolved 

oxygen, and chlorophyll a from my collaborator Etsunori Taniguchi (Kochi Prefectural Fisheries 
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Research Institute, https://www.pref.kochi.lg.jp/soshiki/040409, accessed 30.3.2021) with 

appropriate ethics approval. This data is henceforth called environmental data. The environmental 

data was investigated from 2013 to 2019 to monitor the severity of harmful algal blooms (HAB) in 

the Uranouchi Inlet. Therefore only HAB species’ cell count data was available. In this study I used 

the maximum daily cell count of each station, day and sampling depth (mostly 0m, 2m, and 5m). 

Different HAB species are considered blooming at different cellular concentrations 

(https://www.pref.kochi.lg.jp/soshiki/040409, accessed 30.3.2021), depending on fish mortality 

rates. Chattonella spp. cellular concentrations as low as 10 to 100 cells mL-1 can cause fish to die. 

K. mikimotoi (an unarmored, solitary dinoflagellate, 24µm – 40µm long, 20µm –32µm wide 

(Omura et al., 2012)) can kill fish with cellular concentrations of several 100 to 1,000 cells·mL-1. H. 

akashiwo (kidney shaped, motile dinoflagellate, 8µm – 25µm long (Omura et al., 2012)) 

concentrations over 10,000 cells·mL-1 can be deadly for fish. 

3.3.7 Co-occurrence analysis and correspondence analysis 

The co-occurrence of all microbial ASVs was analyzed using the “FlashWeave” package in 

Julia (julialang.org, accessed 28 October 2021). FlashWeave is an machine–learning based 

algorithm that can detect microbial associations (Tackmann et al., 2018). Co-occurrence networks 

of major eukaryotic and Imitervirales ASVs were generated using only ASVs with a relative read 

abundance ≥ 1% in at least 1 dataset. The networks analysis of major ASVs of viruses and 

eukaryotes used either the PicoNano dataset or the NanoPlus dataset with the Imitervirales 

dataset, resulting in two separate networks. The number of edges of inter and intra–community 

networks were analyzed with subsampled (8,000 reads) ASVs tables of all communities. ASVs that 

contributed less than 0.1% in any dataset were removed. After normalizing ASV tables, they were 

merged and a pseudo read count was added. The network was generated using Julia (v1.0.3) 

(Bezanson et al., 2017) with FlashWeave’s “learn_network” command. I used sensitive and 
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heterogeneous modes, set make_sparse and normalize to false, set alpha to 0.01, and removed 

ASVs that were observed fewer than 3 times (Tackmann et al., 2018). R’s “mantel“ command (5 

million permutations) was used to calculate the spearman correlation of dissimilarity matrixes 

(i.e., Mantel test). NMDS analysis was done by using the “cmdscale” command on a dissimilarity 

matrix. Stress of the NMDS was calculated with the “sammon” command (MASS package) 

(Venables and Ripley, 2002). An RDA (redundancy analysis or correspondence analysis) was 

performed on the community compositions of the different microbes using the abiotic data (i.e., 

temperature, salinity, and concentrations of dissolved oxygen, phosphor (total), and nitrogen 

(total)) as constraining matrix. The RDA was done by calling the “rda” command with default 

settings. The “forward.sel” command (adespatial package) was used to determine the predictive 

power of the abiotic factors on the microbial; communities. The dissimilarity of the microbial 

communities in different seasons was calculated by binning samples by month according to their 

season. Winter includes samples taken in December, January, and February, spring includes 

March, April, and May, summer includes June, July, and August, and fall includes the remaining 

months (September, October, and November). The statistical significance of analysis was 

confirmed by calculating the p value with the “t.test” command, if applicable p values were 

Benjamini–Hochberg corrected. The “niche.width” (spaa package) command was called on the 

ASV tables to calculate Levins’ niche breadth (Levins, 1968) of single ASVs. 

3.4 Results 

3.4.1 Seasonality of abiotic factors and harmful algal bloom forming species 

The environmental data recorded during six years shows an expected seasonal variation of 

temperature and salinity. The other biotic and abiotic factors show a less well pronounced 

seasonality, but the differences between seasons are still visible (Figure 3-1 and Figure 3-2). The 

HABs were monitored over cell count, which revealed that each of the HAB forming species has a 
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preferred month in which to bloom in. K. mikimotoi bloomed in June or the early summer, while 

Chattonella spp. bloomed later in summer around July. H. akashiwo bloomed mostly around April, 

however in three years a second bloom occurred later in summer (Figure 3-1 and Figure 3-2). 
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Figure 3-1: Environmental data was collected during six years (2013 to 2019) . Blue dotted lines indicate sampling period 
during which amplicon sequencing was performed. Figure taken from (Prodinger et al., 2021).   



64 

 

Figure 3-2: Monthly and seasonally bins of environmental data. (A–L) Boxplots show the monthly and seasonally 
summarized environmental data. (M) The sum of daily cell counts show a typical season for each bloom to occur. Figure 
taken from (Prodinger et al., 2021).  
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3.4.2 Generated sequencing data 

The amplicons of each microbial group (prokaryotes, small and large eukaryotes, and 

Imitervirales) of each of the 43 different seawater samples were sequenced. This resulted in 172 

data sets, some of which yielded no meaningful data or insufficient numbers of reads for analysis. 

The 4 different microbial groups are NanoPlus (large eukaryotes), PicoNano (small eukaryotes), 

prokaryotes and Imitervirales. NanoPlus (41 data sets) and PicoNano (38 data sets) refer to the 

eukaryotic communities of two different size fraction, respectively (i.e., >3µm and 0.8µm – 3µm). 

Prokaryotes (36 data sets) describes the prokaryotic community of the 0.22µm – 0.8µm fraction. 

Imitervirales (41 data sets) is the Imitervirales community also of the 0.22µm – 0.8µm fraction. The 

sum of all communities’ reads before read depth normalization contained several thousand ASV 

(Table 3-1), after read depth normalization NanoPlus had the lowest richness (1,486 ASVs), 

PicoNano (2,184 ASVs) and prokaryotes (2,383 ASVs) were similar in richness and Imitervirales 

showed the highest richness (3,693 ASVs). 

 

Table 3-1: Overview of the generated datasets for each microbial group. Read numbers and richness of all data sets with 
more than 8,000 reads are shown. Table taken from (Prodinger et al., 2021). 

 Raw reads Reads 
Richness 
all reads 

Richness 
per samples 
subsampled 

Average 
richness 

subsampled 

NanoPlus 3,613,399 3,001,267 3,356 52 – 253 120 ± 51 

PicoNano 2,692,119 2,180,138 4,559 115 – 410 278 ± 68 

Prokaryotes 4,044,427 3,427,158 4,478 141 – 415 275 ± 57 

Imitervirales 45,106,746 5,712,580 6,261 108 – 394 246 ± 72 

 

3.4.3 Community composition of different microbes 

Most eukaryotic ASV belonged to one of 12 groups excluding “others”, the taxonomic 

annotation levels of these groups were between phylum level and genus level. In the NanoPlus 

dataset these 12 groups contributed to 98.7% of total reads and the most abundant groups are 

Metazoa (28.6%), Diatomea (25.1%) and Dinoflagellata (including Dinophyceae: 22.5%). All other 
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groups contributed less than 7% of total reads. In the PicoNano these 12 groups contributed 88.8% 

of total reads and the most abundant groups were “other Alveolata” (Alveolata other than 

Dinoflagellata; 17.5%), Metazoa (17.2%), and “other Stramenopiles” (Stramenopiles excluding 

both Diatomea and Raphidophyceae, 12.4%). The other 9 groups produced less than 8% of total 

reads each. 

ASV assigned to HAB species were grouped in their family or genus as Kareniaceae, 

Chattonella, and Heterosigma in Figure 3-3 and were detected in both size fractions. Even though 

several ASVs per HAB species were present (i.e., Karenia sp.: 24 ASVs, Chattonella sp.: 29 ASVs, 

and H. akashiwo: 4 ASVs), one ASV dominated each species with at least 88% of reads in both the 

NanoPlus and the PicoNano datasets. In total the HAB species contributed less than 6% of the 

NanoPlus and less than 8% of the PicoNano datasets, however during blooms the HAB species 

produced up to 80.2% (Kareniaceae), 30.6% (Chattonella) and 16.6% (Heterosigma) in either size 

fraction. 

Nearly all prokaryotic reads (98.4%) belonged to one of six phyla, however the three most 

dominant phyla contributed 89.3% of total reads. These three phyla were Proteobacteria, 

Bacteroidetes, and Cyanobacteria (excluding chloroplasts). Proteobacteria was the most abundant 

phylum (53.6% of total reads), with Alphaproteobacteria being the most abundant class (72.1 % of 

Proteobacteria reads). Bacteroidetes contributed 20.4% of total reads most of which belonged to 

the classes Bacteroidia (91.4%). Cyanobacteria (15.3% of total reads) were nearly exclusively 

Oxyphotobacteria (99.9% of Cyanobacteria reads). The three less abundant phyla (i.e., 

Verrucomicrobiae, Actinobacteria, and Planctomycetes) contributed less than 5% of total reads 

each. 

Most Imitervirales ASV (91.1% of ASVs, 96.0% of Imitervirales reads) belonged to 1 of 14 

clades. The clades with the most total reads assigned were clade 6 (24.0%), clade 3 (20.7%), and 
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clade 5 (17.2%). The other clades contributed less than 9% each. Half of all clades (7 of 14 clades) 

contained known Imitervirales that have been isolated or of which the whole genome was 

previously described. The most abundant of these clades were clade 3 (including the Organic lake 

phycodnavirus 1 and 2 (Zhang et al., 2015)), clade 1 (7.8% of total reads, including several 

Imitervirales infecting haptophytes (Gallot-Lavallée et al., 2015; Johannessen et al., 2015; Santini 

et al., 2013)), and clade 10 (2.4% of total reads, including the recently isolated ChoanoV1 

(Needham et al., 2019)). The other clades including known Imitervirales (clade 8, clade 9, clade 13, 

and clade 14) contributed less than 2% of total Imitervirales reads. 
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Figure 3-3: Community compositions of different microbes. A, B) The eukaryotic community of two size fractions is similar 
in terms of detected eukaryotic groups, but the most abundant eukaryotic groups are distinct. C) The cell count shows 
bloom periods. D) The prokaryotic community was dominated by the same phyla over the sampled period. E) Different 
abundant Imitervirales clades were dominant in the sampled period. Figure taken from (Prodinger et al., 2021).  
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3.4.4 The seasonal change of microbial ASV communities 

The nonmetric multidimensional scaling (NMDS) of the dissimilarity between samples 

showed a clear seasonal cycle of the communities. Most samples of the same month clustered 

together with themselves or samples of the preceding or following month in every community 

(Figure 3-4). This seasonal change of community composition showed statistically significant 

correlation between any two microbe groups (Mantel test > 0.74, p < 10-4). 

 

Figure 3-4: Two dimensional visualization of community dissimilarities. Each community showed a seasonal cycle. The 
stress of the dissimilarity nonmetric multidimensional scaling (NMDS) was below 0.12 for each plot. Figure taken from 
(Prodinger et al., 2021). 
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The average dissimilarity of the different microbe communities of the same season ranged 

from 0.58 to 0.78 and was lower (p <10-16) than for opposite seasons, which ranged from 0.77 to 

0.94. Opposite seasons are either spring and fall or summer and winter. The dissimilarity between 

communities of summer and winter was not higher than dissimilarities between spring and fall 

communities (Figure 3-5), in fact the prokaryotic spring and fall communities were more dissimilar 

than the summer and winter communities (p <10-6). 

 

Figure 3-5: Dissimilarities of microbial communities of the same and opposite seasons. Figure taken from (Prodinger et 
al., 2021). 

 



71 

3.4.5 Distinct seasonal patterns of microbial ASV communities 

Aside from communities from opposite seasons being more dissimilar than communities 

of the same season, I found that communities that are 30 days apart (i.e., one month) or 365 days 

apart (i.e., one year) were less dissimilar than communities that were 182 days (i.e., six months) 

apart. The dissimilarity at these time ranges (30, 182, and 365 days) will henceforth be called D30, 

D182 and D365, respectively. This yearly dissimilarity curve was similar for each community 

(Figure 3-6 A-D), however the level of dissimilarity was different among the four microbial 

communities (Figure 3-6 E-G, p <10-6), only D30 and D365 of the Imitervirales and NanoPlus 

communities were not statistically significantly different (p >0.2). The D30, D182 and D365 of the 

prokaryotic community was lower than for the other communities. The D30, D182 and D365 of 

both the Imitervirales and NanoPlus community was higher compared to the prokaryotic 

community and the PicoNano community. 
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Figure 3-6: The dissimilarity between different microbial communities is highest for communities that are six months 
apart. The dissimilarity of communitis sampled 6 months apart is different for eukryotes, prokaryotes and viruses. Figure 
taken from (Prodinger et al., 2021). 

3.4.6 Differences in ASV recurrence and persistence 

To better understand the changes in community dissimilarity, the temporal patterns of 

abundant ASVs were also analyzed. The most abundant ASV of each microbe group showed 

different maximum relative abundances (Figure 3-7). The prokaryotic ASVs reached a 

comparatively low maximum relative abundance of 31%, while the eukaryotic and Imitervirales 

ASV reached up to 70%. In short, the different microbial communities’ most abundant ASVs’ 

relative abundance profiles were different. Imitervirales ASVs reached high relative read 
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frequencies, but they were found in few samples. The most abundant eukaryotic ASVs also 

reached high relative abundances similar to Imitervirales ASVs. The most abundant prokaryotic 

ASVs were present in many samples but did not reach high relative abundances (Figure 3-7). 

 

Figure 3-7: The four most abundant ASVs of each microbe group. The taxonomic asignment of the different ASVs is 
shown. Eukaryotic ASVs that were one of the most abundant ASVs in both size fractions were a Karenia–ASV and an O. 
Davisae–ASV. Imitervirales ASV tended to be not present in many samples, but if found they had high relative read 
counts. Figure taken from (Prodinger et al., 2021). 

Another difference between the eukaryotic, Imitervirales and prokaryotic communities is 

the ASV recurrence (i.e., how frequently an ASV was found). Even though Imitervirales had more 

ASVs with high relative abundance, most Imitervirales ASVs (94.6%) were found in fewer than 20 

samples. The recurrence was different between the microbe groups (Figure 3-8A and B). 

Imitervirales showed low recurrence. Eukaryotic ASV recurred more often than Imitervirales and 

had a similar recurrence in both size fractions. The prokaryotic ASVs generally reoccurred 

frequently. This higher recurrence and persistence was also reflected in the Levins’ niche breadth 

of ASVs in the communities. In this study, ASVs with a high Levins’ niche breadth (>6) are 
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considered “generalists”, while ASVs with a low Levins’ niche breadth (<2) are considered 

“specialists”. Each community contained generalists and specialists, however the ratio of specialist 

ASV to generalist ASV was different. Nearly half (45%) of the prokaryotic community were ASVs 

with a Levins’ niche breadth >6, the other communities contained >20% generalists (PicoNano 

eukaryotes: 18%, NanoPlus eukaryotes: 16%, and Imitervirales: 5%) (Figure 3-8C). The Imitervirales 

community consisted mostly of specialists (51%), while cellular communities contained >40% 

generalist ASVs (NanoPlus eukaryotes: 38%, PicoNano eukaryotes: 32%, and prokaryotes: 18%) 

(Figure 3-8C). 

 

Figure 3-8: The recurrence of the most abundant ASVs of each microbe group and Levins’ niche breadth analysis results. 
(A) The percentage of abundant ASV that reoccurred was highest for Prokaryotes and lowest for Imitervirales. (B)The plot 
of absolute numbers of recurring ASVs shows that Imitervirales ASV tend to be present in only few samples. (C) The 
prokaryotic community included many ASVs with larger Levin’s niche breadth values, while eukaryotic and viral ASVs 
tended to produce lower Levin’s niche breadth values. All ASV producing over 1% relative abundance in at least one 
sample were used for this analysis. Figure taken from (Prodinger et al., 2021). 
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3.4.7 ASV co-occurrence among the different communities and correspondence analysis 

 

Figure 3-9: Strong connectivity of the microbial communities. (A) The Mantel test showed that the changes within the 
different communities are strongly correlated with one another. (B) The network analysis also showed that edges 
between communities were as frequent as edges inside a community. (C) Several major Imitervirales and major 
eukaryotic ASV co-occurred with HAB species. Triangles show relative abundance over 0.1% (i.e.: whether the ASV was 
considered present or not). HAB forming ASVs are shown in blue, Imitervirales ASVs in purple and eukaryotic ASVs in 
green. Figure taken from (Prodinger et al., 2021). 

The Mantel test found a, strong correlation between the different microbial communities 

of at least 0.75 (p <10−4, Figure 3-9A). A co-occurrence network that included ASVs of both of the 

eukaryotic communities (NanoPlus: 699 ASVs, PicoNano: 1,285 ASVs), the prokaryotic community 

(958 ASVs) and the Imitervirales community (1,771 ASVs) showed high intra–community (edges 

inside a given community) and inter–community (edges between members of different 

communities) connectivity (Figure 3-9B). Additionally, a co-occurrence network was created using 

the ASV tables of abundant eukaryotic ASVs (159 ASVs from the PicoNano data, or 110 ASVs from 

the NanoPlus data) and abundant Imitervirales ASVs (264 ASVs) to detect co-occurrence (Figure 3-

9C). An ASV assigned to Karenia sp. had two neighbors in the NanoPlus network and two 

neighbors in the PicoNano network. All of the neighbors were Imitervirales ASV and one of the ASV 



76 

was the same in both networks. The Chattonella sp. ASV had three neighbors in the PicoNano 

network, they were two Imitervirales ASV and one eukaryotic ASV assigned to Pelagostrobilidium 

spp. (Alveolata, a genus containing nine species of mixotrophic Ciliates (Agatha et al., 2005)). The 

neighbors of the Chattonella sp. ASV in the NanoPlus network were three Imitervirales ASVs, one 

of which was also a neighbor in the PicoNano network. An ASV assigned to H. akashiwo had two 

neighbors in the NanoPlus network (an ASV assigned to the order Phyllodocida (Bilateria, a marine 

worm) and an ASV assigned to the class Peronosporomycetes (Stramenopiles, order: 

Peronosporales , fungi like plant parasites (Phillips et al., 2008)) and a single neighbor assigned to 

Amoebophrya (Synidiales, a parasite of dinoflagellates (Kim et al., 2008)) in the PicoNano network. 

The correspondence analysis of the microbial communities as response variable and 

abiotic factors as explanatory variable showed that the abiotic factors had poor explanatory power 

over most communities (Table 3-2). Temperature (cellular communities) and total Nitrogen 

(viruses) were found to be the most important parameters. The abiotic factors explained <15% of 

the viral (4%) and both eukaryotic communities (NanoPlus: 12% and PicoNano: 9%). The 

prokaryotic community was explained better by abiotic factors (42%). 
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Table 3-2: The cumulative adjusted R2 of abiotic parameters and the microbial communities. The table shows 
different abiotic parameters, ranked by their cumulative adjusted R2 (left number) for each microbial community. The p-
value is shown on the right. The highest possible cumulative adjusted R2 is printed bold. When statistically insignificant 
abiotic parameters are used to predict the microbial community, the cumulative adjusted R2 is decreased (lower rows of 
the table). Table taken from (Prodinger et al., 2021). 

Rank by 
influence 

Eukaryotes 
NanoPlus 

Eukaryotes 
PicoNano Imitervirales Prokaryotes 

1 

Temperature 
(0.10; 0.004) 

Temperature 
(0.05; 0.017) 

Total Nitrogen 
(0.02; 0.092) 

Temperature 
(0.35; 0.001) 

2 

Total Phosphor 
(0.12; 0.14) 

Total Nitrogen 
(0.08; 0.048) 

Temperature 
(0.035; 0.10) 

Salinity 
(0.41; 0.004) 

3 

Dissolved Oxygen 
(0.12; 0.4) 

Dissolved Oxygen 
(0.09; 0.3) 

Salinity 
(0.04; 0.3) 

Total Nitrogen 
(0.42; 0.4) 

4 

Salinity 
(0.10; 0.9) 

Total Phosphor 
(0.07; 0.6) 

Total Phosphor 
(0.04; 0.5) 

Total Phosphor 
(0.41; 0.6) 

5 

Total Nitrogen 
(0.07; 0.9) 

Salinity 
(0.06; 0.7) 

Dissolved Oxygen 
(0.02; 0.6) 

Dissolved Oxygen 
(0.40; 0.7) 

 

 

3.5 Discussion 

The eukaryotic communities consisted mostly of Metazoa, Alveolata, and Stramenopiles, 

which are all typically associated with coastal areas (Chen et al., 2017; Gran-Stadniczeñko et al., 

2019b; Martin-Platero et al., 2018). However, The microbial eukaryote communities of Uranouchi 

Inlet were different at lower taxonomic ranks from those in other coastal areas of Northeast 

America (Martin-Platero et al., 2018), Southeast China (Chen et al., 2017), and Southern Norway 

(Gran-Stadniczeñko et al., 2019a). A unique aspect of the Uranouchi Inlet are the frequent and 

consistently occurring algal blooms of different species that have been observed through cell 

counting as well as metabarcoding (Figure 3-3). These HAB species are known to form blooms in 

different coastal areas across Asia (Sakamoto et al., 2020). The prokaryotic community consisted 

of phyla that are also found in other coastal areas such as the Massachusetts Bay and the 

Mediterranean (Martin-Platero et al., 2018; Sakami et al., 2016; Santi et al., 2019). Especially the 

most abundant prokaryotic clade which belonged to the Alphaproteobacteria group “SAR 11 Ia” is 

a typical coastal prokaryote. SAR 11 itself is known for high relative abundance in the eutrophic 
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ocean (Chow et al., 2013; Eiler et al., 2009) and the “Ia” subclade is a coastal ecotype of the SAR 11 

clade (Stingl et al., 2007). The Imitervirales community showed comparable richness (>6000 ASVs) 

to previously published Imitervirales community studies of Imitervirales found in different coastal, 

freshwater, and brackish water environments (Li et al., 2019) and in the open ocean (Mihara et al., 

2018). 

All of the studied microbial communities showed a pronounced seasonal cycle, including 

the Imitervirales community (Figure 3-4). Similar observations have been reported for eukaryotes 

(Giner et al., 2019; Gran-Stadniczeñko et al., 2019b) and bacteria (Chafee et al., 2018; Ward et al., 

2017). Reports about the seasonality of Imitervirales are fewer. A bimonthly sampling study 

reported approximate seasonal clustering of large DNA virus communities in the Arctic Ocean 

(Sandaa et al., 2018). However, a monthly sampling study reported a lack of seasonality of the 

Imitervirales community in a coastal region of Norway (Gran-Stadniczeñko et al., 2019b). The 

pronounced seasonality of Imitervirales reported here is however not unexpected, given that 

smaller viruses also show seasonality (Chow and Fuhrman, 2012; Ignacio-Espinoza et al., 2020; 

Pagarete et al., 2013). 

I found that spring vs. fall communities were as different as summer vs. winter 

communities when I compared the different communities formed during their seasonal cycle. 

Previous studies also conducted a comparison of microbial communities sampled several months 

apart. They showed that eukaryotes (Giner et al., 2019), prokaryotes (Fuhrman et al., 2015), and 

small viruses (Ignacio-Espinoza et al., 2020) were most dissimilar if communities that were 

sampled six months apart were compared. Community dissimilarities between spring vs. fall and 

summer vs. winter were not reported in these studies. A previous study reported the importance 

of water temperature on community composition (Sunagawa et al., 2015). The forward selection 

analysis conducted here also showed that temperature had the most influence out of all abiotic 
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parameters on the different cellular communities and that temperature was the second most 

influential abiotic parameter for the Imitervirales community. Water temperature was comparable 

between fall and spring in the Uranouchi Inlet. Furthermore, samples taken in May and November 

showed similar environmental conditions like water temperature and nutrient concentrations. 

However, the communities in these two months were as dissimilar as communities sampled 

during winter and summer. This high dissimilarity between spring and fall communities should not 

be surprising considering that spring is preceded by a winter (the coldest season) and fall is 

preceded by summer (the warmest season). 

These observations underscore the importance of the order of the changes in 

environmental conditions on the sequential changes of microbial communities. The data collected 

in Uranouchi Inlet suggests that the dynamics of microbial communities are not determined 

exclusively by abiotic factors at a given period. Instead, they are driven by a Markovian process 

whereby the current biotic state in combination with the current abiotic conditions substantially 

influence future biotic states. This pattern is clearly seen in macro-ecosystems; for example, a 

forest looks different in spring and fall even on days with similar weather conditions. Microbial 

communities with a much higher turnover rate (one to several days) (Martin-Platero et al., 2018) 

are no exception to this rule. A previous study on oceanic microbial communities suggested that 

biotic factors (such as subsets of communities) are better predictors of microbial community 

composition than abiotic factors (Lima-Mendez et al., 2015). This is reminiscent of the classical 

notion that the sum of biotic and abiotic factors forms the environment that affects the dynamics 

of individual microbial populations. I suggest that the microbial communities at a given time point 

strongly influence the formation of the next generation of communities in the Uranouchi Inlet as 

well as many other environments. A Similar idea has been previously proposed (Needham and 

Fuhrman, 2016; Nelson et al., 2008). Such a Markovian process suggests that microbial 
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communities leave a historical trace, like a “memory” of the original community structure. This 

“memory” influences the structures of successive communities and its influence may last for a 

week up to months. 

The dissimilarity of samples that were taken approximate one year apart was on average 

higher than 0.5, which meant that around half of the community that was present one year prior, 

was not detected. Previous studies that observed eukaryotic communities (Giner et al., 2019), 

prokaryotic communities (Chow et al., 2013; Cram et al., 2015; Fuhrman et al., 2015) and viral 

(Ignacio-Espinoza et al., 2020) communities also described a similar trend that continued for 

several years. These previous studies’ time series sampling continued for a long time (5-10 years) 

and some found that fewer and fewer OTUs continuously returned each year for 4-5 years (Chow 

et al., 2013; Fuhrman et al., 2015; Ignacio-Espinoza et al., 2020). According to these observations, 

it seems that the marine microbial community structure never perfectly recovers over time. I 

visualized this concept schematically in Figure 3-10A. This irreversible progression of microbial 

communities implies a significant role of the “invisible” rare biosphere in the formation of a new 

community structure through their capacity to produce new abundant microbes over time (Giner 

et al., 2019; Ignacio-Espinoza et al., 2020). The rare biosphere is undetectable, even with the state-

of-the-art metabarcoding approach that was used in this study. This limitation comes from 

sequencing depth, as well as the heterogeneity in time and space of community compositions 

around sampling locations. Size fractionation can also affect the detection of microbes, especially 

if their sizes change depending on their life stages or growth conditions. These technical 

limitations in uncovering the rare biosphere combined with the capacity of microbes to replace 

abundant populations over time may explain why microbes cannot completely recover their 

community structures. In addition to the rare biosphere, migration (Yoshida et al., 2018) and 

evolution may also have an effect on the emergence of new ASVs. Interestingly, previous studies 
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on bacterial communities found that their dissimilarity increased during the first four years of 

analysis, after which its basal level remained constant (overlaid with a seasonal sinusoidal pattern) 

(Fuhrman et al., 2015). This observation suggest that the influence of the “memory” may last for 

over a year (Figure 3-10A). 

 
Figure 3-10: Visual representation of the community memory model. (A) Several studies reported a rapid loss of 
community members in the first year, followed by a gradual loss, and finally plateauing in constant sinusoidal community 
dissimilarity curve. (B) A schematic representation of the differences in ASV turnover, maximum dissimilarity, and ASV 
recurrence of the different communities observed in this study. Figure taken from (Prodinger et al., 2021). 

 

In this study I showed that the degree and speed of changes in the community structure 

are different depending on which microbial community is observed. The D30, D182, and D365 

values were lowest for prokaryotes, which have been observed to show a drift in dissimilarity for 

several years in previous studies (Fuhrman et al., 2015). In contrast Imitervirales showed the 

highest D182. The D30 and D365 were also highest for Imitervirales and NanoPlus eukaryotes. This 

suggests that Imitervirales and eukaryotes (PicoNano and NanoPlus) have a higher ASV turnover 

and shorter community memory than prokaryotes. A high resolution sampling series study also 

reported a higher OTU and species turnover for eukaryotes than for prokaryotes (Martin-Platero 

et al., 2018). 
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It is important to address the known drawbacks of my sampling and amplicon sequencing 

method (e.g., primer bias) and the possible influence of these drawbacks on ASV community 

analysis and the comparison between data generated by different primers. The influence of primer 

bias and duplicate genes was reduced by using a binary matrix (instead of relative abundance 

weighted matrix) for community dissimilarity analysis. Additionally, the commonly used nucleotide 

identity threshold based OTU clustering (e.g., at 97% sequence similarity) was replaced with exact 

amplicon sequence variants, since ASVs were found to be more sensitive than similarity threshold 

set by the user (Callahan et al., 2017). Another possible criticism is that the long persistency and 

lower community dissimilarity of prokaryotes might be a result of a lower resolution. However, 

this is inconsistent with the low relative abundances of even the most abundant prokaryotic ASVs. 

If the prokaryotic marker gene region had a lower resolution, higher relative frequencies and a 

lower richness compared to eukaryotes should be observed. Another possible source of bias is the 

sampling strategy. I specifically targeted certain size fractions with certain primers. This was meant 

to concentrate the DNA of differently sized microbes of several liters of seawater. For instance, I 

analyzed the prokaryotic community of the 0.22µm – 0.8µm fraction, however by separating 

microbes by size I missed out on particle attached and large prokaryotes. The same is true for the 

Imitervirales community. Imitervirales that are attached to or inside cells cannot be detected by 

analyzing the 0.22µm – 0.8µm fraction. However, the results of the analyzed data agrees with 

previous studies on many respects, therefore it is likely that despite these experimental biases, the 

data of this study is able to show differences in the dynamics of the targeted microbial groups. 

The dynamics of dominant ASVs of each of the different microbial communities 

(eukaryotes, prokaryotes, and viruses) were found to differ in recurrence, persistence, and relative 

abundance. For instance, several of the most abundant eukaryotic ASVs that were taxonomically 

assigned to HAB species (i.e., Chattonella spp., K. mikimotoi, and H. akashiwo) showed typical 
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boom-and-bust dynamics. A large proportion of the Imitervirales ASVs showed HAB species-like 

dynamics. This means that many ASVs were not persistently present and if they emerged they 

formed peaks in their relative abundance. Viral ASVs and HAB species ASVs both showed a boom-

and-bust strategy. They became abundant quickly but only if certain conditions were met. These 

ASVs are therefore specialists (or opportunists). This high level of specialization of the viral 

community can be explained by their dependence on the eukaryotic community for survival. The 

viral community has to adapt at least as quickly as the eukaryotic community to not lose the 

evolutionary arms race. Additionally, viruses have to compete among themselves, since it has 

been shown that several Imitervirales compete for the same host (Baudoux and Brussaard, 2005). 

Few Imitervirales ASVs that showed long persistence and reoccurred were found. A recent study 

suggested that Imitervirales infecting certain haptophytes have a long latent period (Blanc-

Mathieu et al., 2021). However, as mentioned above, the sample strategy of this study limited the 

detection of the metabarcoding analysis to free Imitervirales virions. Viruses with long latent 

periods would not be abundantly present in the size fraction I used to study the Imitervirales 

community. 

A co-occurrence analysis was used to investigate whether Imitervirales were associated 

with bloom forming algae (Figure 3-9). The Chattonella sp. ASV co-occurred with several 

Imitervirales ASV of neighboring clades and a single mixotrophic eukaryote ASV (genus 

Pelagostrobilidium) and the Karenia sp. ASV co-occurred exclusively with Imitervirales ASVs (Figure 

3-9). H. akashiwo is known to be predated by Phycodnaviridae (Nagasaki and Yamaguchi, 1997; 

Nagasaki et al., 1994). The reason why the H. akashiwo ASV co-occurred exclusively with other 

mixotrophic or parasitic eukaryotes might be that it simply is not possible to detect the large DNA 

viruses infecting H. akashiwo with MEGAPRIMER. While co-occurrence is not strong evidence for a 
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virus–host pair (Edwards et al., 2016), this co-occurrence analysis may be a starting point for 

further virus–host studies. 

Here I showed the pronounced seasonality of the different microbial communities. While 

this has been observed for cellular microbes, a pronounced seasonality of Imitervirales has not 

been described before. I argued that the seasonality of the different microbial communities do not 

exclusively depend on the current environmental conditions. I found that it is more likely that 

community changes originate from a Markovian like process involving the composition of previous 

communities and also abiotic parameters. This was highlighted the interaction network between 

communities and the strong correlation of changes between the different microbial communities, 

while abiotic factors were poor predictors of the microbial communities’ composition and 

dynamics. Despite striking similarity of the seasonal cycle of all four microbe groups, the 

dissimilarities of the four microbial groups showed significant differences when compared at 

different time intervals (i.e., D30, D182, and D365). These differences were further explored with 

the recurrence of abundant ASVs and their abundance profiles. I also argued that this study and 

previously published findings support a figurative microbe “community memory” that differs in 

length depending on microbe group (Figure 3-10B). The relative abundance profiles were further 

used to assign an opportunistic behavior to Imitervirales ASV and to match co–occurring 

eukaryotes and Imitervirales ASVs. The results of this study provide a first step to understanding 

the complex interactions of different microbe groups in the Uranouchi Inlet and a better 

understanding of the survival strategies of Imitervirales.  
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4 Chapter 4: Conclusions and perspective 

4.1 Summary 

In the first step of this work, I optimized a metabarcoding method for Imitervirales by 

building on the previous work of Li et al. (Li et al., 2018). I found that mixing primer pair cocktails 

in batches of 10 heavily reduced the necessary analysis time and that gel extraction was a more 

reproducible amplicon clean up method than the previously used clean up kit. The Imitervirales 

community analysis method presented in this study offers a robust and inexpensive analysis 

workflow to survey the present Imitervirales in any aquatic sample. Thereby I improved the 

workflow and made MEGAPRIMER a suitable option for community analysis of Imitervirales. 

In the next step of this work, I utilized the new MEGAPRIMER metabarcoding workflow to 

analyze 43 coastal seawater samples, which were taken during 20 months. I employed 

metabarcoding for different microbial communities of different size fractions. The analysis of the 

time series data revealed that Imitervirales like the other microbial communities possess a 

pronounced seasonal cycle. Previous studies already tried to show the seasonality of large viruses 

before (Sandaa et al., 2018) but could not confirm it most likely because the primer set only 

targeted a small fraction of the algal virus community (Gran-Stadniczeñko et al., 2019b). The 

analysis of other microbial communities (i.e., eukaryotes and prokaryotes) showed that all 

communities shared this seasonality and hence their community changes correlated. However 

while this seasonal cycle was similar, the turnover rate, persistence, and recurrence of individual 

community members differed from one community to another. The viral community especially 

showed low persistence and recurrence, indicating a rapid turnover of its members. 

To describe these changes of the different communities I introduced the “community 

memory” hypothesis. It has been shown that community compositions can predict the 

abundances of community members (Lima-Mendez et al., 2015) and even influence the formation 
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of future communities depending on the current composition of a microbial community (Teeling et 

al., 2016). The community memory hypothesis suggests that this influence fades over time 

(Fuhrman et al., 2015) and that the “length” of the community memory varies among different 

microbial communities (i.e., prokaryotes, eukaryotes and large viruses). The community memory 

hypothesis was defined in chapter three and the described differences of the ASV community 

memory is the most important outcome of this work. This hypothesis could also provide an 

explanation for certain traits of the Imitervirales community, like why Imitervirales are more 

diverse than other communities (Mihara et al., 2018) as discussed below. 

4.2 Discussion 

This work found that Imitervirales were more diverse than other microbes. This has been 

reported previously using metagenomics (Hingamp et al., 2013; Mihara et al., 2018), as well as 

deep sequencing of MEGAPRIMER amplicons (Li et al., 2018). Yet, why Imitervirales are so diverse 

is still unknown. The simplest possible answer is that mutations occur frequently during 

replication, in part as a response to the high evolutionary pressure on viruses to adapt to their 

hosts (Sanjuán and Domingo-Calap, 2016). However this may not apply to every viral community 

or population, as viral communities and their genomic repertoire can vary considerably. In 

contrast to other smaller viruses, Imitervirales were shown to encode many functional DNA repair 

genes (Blanc-Mathieu and Ogata, 2016), they are therefore likely less prone to mutations. The high 

turnover rate of Imitervirales is also not shared with small dsDNA viruses, as the 97% OTU based 

community composition of small dsDNA viruses was shown to be stable with high persistence and 

recurrence of its members (Ignacio-Espinoza et al., 2020). 

In the third chapter, I also analyzed two eukaryotic communities namely the PicoNano size 

fraction and the NanoPlus size fraction aside from the Imitervirales communities. The richness and 

turnover rate of the Imitervirales community was either about the same or slightly higher than 
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that of either eukaryotic communities. As hypothesized in a preceding study (Mihara et al., 2018) 

the high richness of Imitervirales may be an adaptation to the already high richness of eukaryotic 

microbes in the ocean, which is currently estimated based on ribosomal sequences to be around 

150,000 OTUs (Vargas et al., 2015). Since several Imitervirales were shown to infect the same host 

the “genetic arms race” is not only carried out between eukaryotes and Imitervirales, but also 

between Imitervirales themselves (Johannessen et al., 2015). The hypothesis that Imitervirales 

diversity and turnover is a response to host diversity and turnover would also explain the 

comparatively low diversity and turnover of bacteriophages (Ignacio-Espinoza et al., 2020), since 

total prokaryotic richness was estimated to be lower than eukaryotic richness at around 40,000 

species (Sunagawa et al., 2015). 

Imitervirales were found to be rich and diverse in coastal and oligotrophic oceanic areas 

(Hingamp et al., 2013; Li et al., 2018; Mihara et al., 2018). Certain Imitervirales OTUs are 

furthermore considered specific to certain regions (Endo et al., 2020). In this study I also found 

that few Imitervirales OTUs were shared between both the Osaka Bay and the Uranouchi Inlet. 

Aside from time (third chapter) and space (second chapter and a previous study (Li et al., 

2019)), Imitervirales communities might also be different depending on which size fraction is 

analyzed. It was previously shown that the communities of eukaryotes of different size fraction 

vary considerably (Vargas et al., 2015). In my studies, I focused on the Imitervirales community of 

the 0.22µm – 0.8µm size fraction. 

It is however likely that a MEGAPRIMER analysis of a larger size fraction (e.g., 0.8µm – 

3µm) may also show Imitervirales ASVs to be present. The persistence of these Imitervirales in 

larger size fraction (<0.8µm) may be higher than that of the studied Imitervirales of the Uranouchi 

Inlet. A recent study showed the persistent infection of certain Imitervirales infecting haptophytes 

(Blanc-Mathieu et al., 2021). It was also suggested that Imitervirales that infect haptophytes 
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evolve to match their hosts’ strategy of a persistent occurrence (Sandaa et al., 2021). This 

hypothesis can be tested with a MEGAPRIMER based metabarcoding study of the Imitervirales 

community of a size fraction that excludes free virions (e.g., 0.8µm – 3µm) of the oligotrophic 

ocean, where haptophytes were observed to be abundantly present (Liu et al., 2009). 

4.3 Outlook 

Our understanding of viral communities and their interactions with host communities is 

still limited. Viruses are able to rapidly change a host community by killing the winner (Winter et 

al., 2010), an example of this are algal bloom termination events (Tarutani et al., 2000). This 

showed how lytic viruses top–down–control their community to ensure the diversity of their 

hosts. However recent studies hinted at more benefits to the eukaryotic community through viral 

infection. For instance one study found that the virus of a non–bloom forming algae showed lower 

virulence and encoded many metabolism regulating genes (Blanc-Mathieu et al., 2021) that are 

available to the host through horizontal gene transfer (Needham et al., 2019). These viral traits 

seem to support the survivability of the host (for self–perseverance) and are not aimed at 

diminishing the host population as rapidly as possible. Such a co–evolution to a more persistent 

infection was previously described for phages (Correa et al., 2021) and might also be a successful 

strategy for large dsDNA viruses (Sandaa et al., 2021). 

The aim of this study was to better understand the dynamics of Imitervirales and 

eukaryotic communities. I found a difference in the ASV community memory of viral and cellular 

communities and described them in this work. Yet, arguing that the hypothesis was proven with a 

sample set taken during 20 months and only analyzing one core gene for each community is hardly 

sufficient to prove the hypothesis. It should rather be considered a starting point for studies that 

further investigate the community memory of Imitervirales and other microbes. 
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The simplest approach, following this work, may simply be a prolonged sampling series in 

the Uranouchi Inlet, similar to Cram et al.’s and Fuhrman et al.’s work in which sampling was 

conducted during 10 years (Cram et al., 2015; Fuhrman et al., 2015). Thereby, it can be estimated 

whether the fading of the community memory continues, as suggested in Figure 3-10A and similar 

previous studies (Fuhrman et al., 2015; Ignacio-Espinoza et al., 2020) and if the community 

memory is actually lost more rapidly for Imitervirales than for cellular microbes and if the same is 

true for phages and bacteria. 

This study exclusively used metabarcoding, but further analysis of the 43 seawater 

samples of this study with untargeted metagenomics are also incentivized to better understand 

major players of the large dsDNA virus community, as suggested in Figure 1-1. Untargeted 

metagenomics include fewer sample preparation steps (that can affect the outcome of the 

analysis) and do not suffer from downsides, like overestimating certain species that have duplicate 

amplicon target genes (Gong and Marchetti, 2019). Therefore verifying the community memory 

hypothesis should involve untargeted metagenomics of the Uranouchi Inlet samples of this study. 

The community dissimilarity analysis of this study can be conducted using different microbial core 

genes to further test the community memory hypothesis. If the hypothesis is true, plotting the 

microbial–community–dissimilarity against time should show a similar curve as observed here and 

a more rapid and higher turnover for the Imitervirales community compared to cellular 

communities. 

If the genomes of the major players of the viral communities are sequenced through 

untargeted metagenomics, virus–host pairs can also be more reliably connected by checking 

horizontal gene transfer (Schulz et al., 2020) instead of co-occurrence like it was performed here. 

Another advantage of untargeted metagenomics is that, unlike with MEGAPRIMER metabarcoding, 

Phycodnaviridae can be detected. This includes Heterosigma akashiwo virus (HaV), which may be a 
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major player in the Uranouchi Inlet since H. akashiwo blooms occur yearly and HaV has previously 

been associated with bloom termination (Tomaru et al., 2004). Studying how the distribution of 

ASVs of the post bloom HaV community changes from one year to another may shed additional 

light on viral community dynamics and their inter–species competition (i.e., Red Queen dynamics) 

which is also an interesting topic (Ignacio-Espinoza et al., 2020). 

While the Imitervirales persistence over time was found to be short here, a previous 

metabarcoding based study also used MEGAPRIMER and found that the Imitervirales communities 

around the world shared many OTUs (Li et al., 2019). Li et al. sampled different aquatic 

environments several hundred kilometers apart, these samples contained many shared OTUs and 

the identified polB gene fragments were also present in metagenes sampled on the opposite site 

of the globe (Li et al., 2019). Such an analysis of the ASVs found in Uranouchi Inlet may be 

conducted to examine whether Imitervirales that are displaced from a local community are 

preserved on a global scale. 

Aside from viruses, other lowly abundant microbes have recently been recognized as 

attractive targets for community analysis. Fungi for instance, have recently been found to be 

important members of marine environments but are lowly abundant (Amend et al., 2019). Li et 

al.’s approach to primer design may be a suitable strategy to study their communities as well. 

MEGAPRIMER has proven to be more sensitive than previous methods and after the optimization 

it was also barely more inconveniencing than any other targeted metagenomics approach. This 

was mostly due to Li et al.’s innovative approach to primer design. Li et al.’s concept (Li et al., 

2018) of searching gene catalogues using hidden–Markov–models to assemble environmental 

genes for degenerate primer design may be employed to study other lowly abundant microbes like 

oceanic fungi. 
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As of yet, the diversity and ecology of Imitervirales and other oceanic microbes are not 

well enough understood. Imitervirales communities were just recently found to be part of the 

ocean's vast assembly of microbes (Hingamp et al., 2013) and their influence on geochemical 

cycling (Kaneko et al., 2020) and cellular communities (Endo et al., 2020; Schulz et al., 2020) has 

just been estimated to be substantial. I hope that this work and the community memory 

hypothesis will be the basis of future studies and help to deepen the understanding of oceanic 

communities. 
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5 Data Availability 
All the sequencing data of chapter two was deposited to DDBJ (Megaprimer amplicon 

data: DRA009129; 18S rRNA amplicon data: DRA009128). The sequencing data of chapter three 

was also deposited to the DDBJ (DRA010976). The MAPS2 analysis pipelines and analysis pipelines 

for cellular communities can be downloaded from a public repository 

(github.com/FlorianProdinger/pipeline_18S, github.com/FlorianProdinger/pipeline_16S, 

github.com/FlorianProdinger/MAPS2, accessed 17 February 2021). 
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