
Reinforcement Learning Based Generation of

Highlighted Map for Mobile Robot Localization and

Its Generalization to Particle Filter Design

Ryota YOSHIMURA

2022

Contents

1 Introduction 1
1.1 Highlighted map . 3
1.2 Robust highlighted map . 7
1.3 Particle filter design . 7
1.4 Summary . 9

2 Preliminaries 11
2.1 Grid map . 11
2.2 Monte Carlo localization . 11
2.3 Measurement model and likelihood field map 13
2.4 Reinforcement learning . 15

3 Highlighted map generation 17
3.1 Problem formulation . 17
3.2 Highlighted map generation based on reinforcement learning 18

3.2.1 Interpretation of highlighted map generation problem into reinforce-
ment learning . 19

3.2.2 Method of generating highlighted map 21
3.2.3 Theoretical analysis . 22

3.3 Numerical simulation . 24
3.3.1 Generation of highlighted map . 25
3.3.2 Performance of highlighted map 27

3.4 Experiment . 30
3.5 Conclusion . 41

4 Robust highlighted map generation 43
4.1 Problem in highlighted map . 43
4.2 Virtual obstacle . 44
4.3 Problem formulation . 45

i

Contents

4.4 Robust highlighted map generation based on adversarial reinforcement learning 47
4.4.1 Optimizing of highlighted map . 47
4.4.2 Learning of the worst-case obstacle behavior 49
4.4.3 Method of generating robust highlighted map 50

4.5 Numerical simulation . 50
4.6 Conclusion . 54

5 Particle filter design 55
5.1 Target system . 55
5.2 Particle filter . 56
5.3 Problem formulation . 56
5.4 Particle filter design based on reinforcement learning 59

5.4.1 Interpretation of particle filter design problem into reinforcement
learning . 59

5.4.2 Particle filter design method . 62
5.4.3 Illustrative example . 65

5.5 Application to mobile robot localization 66
5.5.1 System and measurement models in localization 66
5.5.2 Derivation of characteristic eligibility for applying proposed method 68
5.5.3 Numerical simulation . 68

5.5.3.1 Configuration . 68
5.5.3.2 Result . 70
5.5.3.3 Verification in different environment 73

5.6 Conclusion . 74

6 Conclusion 77
6.1 Summery . 77
6.2 Future work . 78

Appendices 79
A Complement to proof of Theorem 1 . 79
B Complement to proof of Theorem 2 . 83

References 89

Publications 97

Acknowledgments 99

ii

Chapter 1

Introduction

Autonomous navigation technology has been applied to various robots, including automated
guided vehicles and cars. For robots, estimation of their pose, namely mobile robot local-
ization, is essential [1–3].

Monte Carlo localization (MCL) is one of the most popular localization methods [4–6].
It is a particle-filter-based algorithm, which scatters a large number of particles (hypotheses
about the pose estimate) onto the environment map and calculates the likelihood of each par-
ticle (the likelihood of the corresponding pose estimate) to estimate a probability distribution
of the robot pose. Since MCL can handle complex multimodal probability distributions, it
enables highly reliable estimation in various environments. Therefore, it has been widely
studied and used for over two decades; e.g., [7] improved MCL by adding the process of
injecting random particles, and [8] proposed Kullback-Leibler divergence (KLD) sampling,
which dynamically adapts the number of particles. In [9], a pre-caching technique was
applied to MCL to reduce the computational burden and sample particles efficiently. The
method in [10] combined MCL with a laser scan matching algorithm to inherit the stability
of MCL and the high accuracy of the scan matching. A particle initialization method by a
convolutional neural network was proposed in [11]. The major target of MCL is a wheeled
robot [12], but it has also been applied to an underwater robot [13], an uncrewed aerial
vehicle [14], and the field of wireless sensor networks [15].

Although many robots utilize MCL as above, MCL often fails in monotonous environ-
ments, e.g., a long straight corridor, a large vacant room, and a warehouse where the same
shelves are equally spaced.

The details of MCL are described here in order to explain the problem. MCL includes
a measurement model, which gives the likelihood of a pose estimate by matching the map

1

Chapter 1. Introduction

(a) Original map (occupancy grid map)

(b) Likelihood field map

Figure 1.1: Example of likelihood field map

and measurements of the robot’s sensor, such as a light detection and ranging (LIDAR),
ultrasonic sensor, or camera. The measurement model is often built based on a likelihood
field (see, for instance, [16–21]). A likelihood field is a map that considers the sensor’s
measurement noise. Figure 1.1 shows an example. Figure 1.1(a) is the original map, where
the color indicates the probability that the space is occupied by an object. Figure 1.1(b) is
the corresponding likelihood field map, which is generated by blurring the original map by
the magnitude of the measurement noise. The map of Fig. 1.1(b) denotes that the darker
a location is, the more likely it is to be detected by the sensor. Figure 1.2 is an example
demonstrating how the likelihood of a pose estimate is calculated from a likelihood field map
in the case of using a LIDAR sensor. Figure 1.2(a) shows the LIDAR measurement data,
and Fig. 1.2(b) and (c) show the projection of the measurement data onto the likelihood field
map at each pose estimate. The measurement data in Fig. 1.2(c), which are the red points,
overlap the dark locations more than in Fig. 1.2(b); thus, the pose estimate of Fig. 1.2(c) is
judged to be more likely.

The likelihood calculation in MCL does not work well in monotonous environments.
For example, in the case of a long straight corridor shown in Fig. 1.3, the pose estimate
of Fig. 1.3(b) is greatly shifted to the left from the actual robot pose, whereas in the case
of Fig. 1.3(c), it is slightly rotated clockwise from the actual pose. On the other hand, the

2

1.1. Highlighted map

(a) Measurement data

(b) Case of pose estimate whose likelihood is low

(c) Case of pose estimate whose likelihood is high

Figure 1.2: Projection of measurement data onto map

measurement data in Fig. 1.3(b) overlap the dark locations more than in Fig. 1.3(c). This
means that the pose estimate of Fig. 1.3(b) is more deviated but is judged to be more likely
than that of Fig. 1.3(c). If the robot does not have enough computational resources, it will
get lost by this matter.

The most common conventional method for localization in such environments is to use
additional sensors having different characteristics from those of a LIDAR, e.g., use a global
navigation satellite system (GNSS) [22, 23] or a camera [24, 25], and fuse these data. The
sensor fusion method in [26] adopted the fault detection and isolation techniques to exclude
the effects of faulty sensors. Another approach is localization based on a moving horizon
estimation for the environments [27]. Methods that prevent a robot from entering such
monotonous areas were presented in [28, 29].

1.1 Highlighted map

This thesis considers how to make full use of a few uniquely shaped objects in a monotonous
environment (hereinafter referred to as landmarks) to increase the localization accuracy. The

3

Chapter 1. Introduction

(a) Measurement data

(b) Case of pose estimate whose error is large but
likelihood is high

(c) Case of pose estimate whose error is small but
likelihood is low

Figure 1.3: Projection of measurement data onto corridor map

approach in this thesis is to generate a map on which the landmarks are emphasized and use
the map for localization instead of a likelihood field map. For example, if the landmarks are
darkened, the likelihood of the pose estimate increases when the measurement data overlap
the landmarks. As a result, the localization accuracy improves. Figure 1.4 demonstrates the
idea. The measurement data in Fig. 1.4(a) overlap only the light locations, whereas those in
Fig. 1.4(b) also overlap the dark locations. Thus, the pose estimate of Fig. 1.4(b) is judged
to be more likely than that of Fig. 1.4(a).

In this thesis, the map whose shade is modified for making a more accurate localization
is called a highlighted map. The advantage of the highlighted map approach is that it
requires no additional sensors or online computation for localization (only an offline pre-
computation to generate a highlighted map is needed). Therefore, the performance of many
robots, especially low-cost robots, can be improved at no additional cost. In addition, the
highlighted map approach can be easily combined with other existing algorithms based on
MCL.

Now let us consider how to generate a highlighted map. The simplest method is to find

4

1.1. Highlighted map

(a) Case of pose estimate whose error is large and
likelihood is low

(b) Case of pose estimate whose error is small and
likelihood is high

Figure 1.4: Projection of measurement data onto highlighted map

Figure 1.5: Landmarks and non-landmarks

landmarks directly based on the shape of the map and modify their shade. However, it is
difficult to automate the process of finding them because there is no rule regarding the shapes
of the landmarks. For example, there are several protrusions of the same shape in Fig. 1.1,
but, as indicated in Fig. 1.5,

• The protrusion at the center of the north corridor (in a long straight corridor) is a
landmark.

• The protrusion at the northeast (in a corner) is not an important landmark compared
to the above landmark because it is easier to estimate pose in a corner than in a long
straight corridor.

5

Chapter 1. Introduction

• The protrusions in the south corridor are not landmarks, whereas the place without
protrusions is a landmark because the most unique shape in that corridor is the flat
area, not the protrusions.

Note that the upper side of the figure is north in this thesis. Moreover, in such an approach,
it is also difficult to make a map that reflects the sensor characteristics and robot dynamics
and to guarantee the optimality of localization.

This thesis presents the reverse approach, where landmarks are searched for from the
localization results instead of searching for them directly according to the shape of the map.
In this approach, the following two steps are repeated: 1) estimate the pose with the map and
evaluate the accuracy; 2) modify the shade of the map based on the result of Step 1). Here,
consider using reinforcement learning (RL), which has attracted much attention in various
fields including robotics [30,31], to optimize the shade of the map. The idea in this thesis is
to regard the randomness of MCL as the randomness required for RL and to modify MCL
to fit the RL framework. The features of this approach are as follows:

• Landmarks useful for localization can be automatically identified and emphasized.

• The map is optimized using the actual robot data (e.g., control data and measurement
data). Nevertheless, unlike many other RL applications, we only need to drive the
actual robot once.

• Since the optimization uses actual robot data, it is possible to obtain a highlighted map
specialized for situations, such as the type and specifications of the sensor, the robot’s
velocity, the robot’s route, and the MCL setting.

In this thesis, the problem of generating a highlighted map is formulated, and a numerical
optimization method based on RL is proposed for the solution. Furthermore, a theorem that
guarantees the optimization will converge is derived. The numerical simulation and real-
world experiment are performed to show the effectiveness of a highlighted map.

Note that this study is different from simultaneous localization and mapping (SLAM).
SLAM is the problem of associating the measurement data at each position to construct a
map of the environment [4]. The constructed map is generally used for path planning as well
as localization. Various SLAM methods, such as EKF-SLAM [32, 33], particle-filter-based
SLAM [34, 35], and graph-based SLAM [36, 37], have been studied, and their main topic
has been loop closure, which is the technology used to create a consistent map by adjusting
the positional relationships of these measurement data when the robot revisits a known area.

6

1.2. Robust highlighted map

On the other hand, this thesis considers modifying the shade of each location in the map
based on the existing map (e.g., a map created by SLAM) for the purpose of improving
localization. Therefore, the construction of a highlighted map is a process performed after
SLAM.

1.2 Robust highlighted map

After the basic method of generating a highlighted map is proposed, the robustification of a
highlighted map is considered. Since the proposed method generates a highlighted map by
utilizing a limited number of the sensor measurement data, the generated highlighted map is
vulnerable to unexpected sensor measurement noise.

In recent years, adversarial learning has received considerable attention in the machine
learning community (e.g., generative adversarial networks [38]), and it has also been used
in RL to acquire robust policies. The method proposed in [39], robust adversarial reinforce-
ment learning (RARL), trains both the original system (protagonist) and extra disturbances
(adversary) simultaneously in the framework of a two-player game. By the training, the
protagonist becomes robust to the environmental changes and modeling errors. This method
has shown good results in various problems [40, 41], and it is often applied to autonomous
vehicle control [42, 43]. In related studies, [44] proposed a Q-learning-based RL algorithm
for a two-player game, and [45] presented an actor-critic-based RL algorithm that learns a
robust policy in a framework similar to adversarial learning.

This thesis also proposes a method of generating a robust highlighted map, which is a
highlighted map that is robust against noise, by using adversarial RL. This method introduces
a virtual obstacle causing measurement noise and learns both the worst-case obstacle behavior
and the optimal highlighted map simultaneously. The numerical simulation is performed to
verify the robustness of the map.

1.3 Particle filter design

Next, consider generalizing the proposed method of generating a highlighted map to the
design of a particle filter (PF). A PF is a popular method for estimating the state of a
dynamical system [46, 47]. Owing to its high versatility in handling nonlinear systems with
non-Gaussian noise and ease of implementation, it has a wide range of applications. For
example, it has been used for object tracking in computer vision [48] and for predicting

7

Chapter 1. Introduction

remaining useful life of lithium-ion batteries [49] in addition to mobile robot localization.

The PF algorithm is outlined below. The PF approximates the probability distribution of
the estimated state by using a set of many particles, which represent hypotheses about the
state. This probability distribution is estimated by repeating the following steps: 1) predict
the current particles based on the system model; 2) calculate the weight (likelihood) of
each particle based on the measurement model; 3) resample the particles according to their
weights. Here, the system and measurement models must be designed by the user for each
target system. The design of these models is an important problem because the performance
of a PF depends on it.

Therefore, several methods for estimating appropriate models, or the parameters that
determine them, have been studied. For example, the Bayesian estimation method in [50]
incorporates the parameters into the state vector and estimates both the state and parameters
simultaneously using the PF algorithm. Another Bayesian approach in [51] uses Markov
chain Monte Carlo methods. In [52], a PF was used to approximate the gradient and Hessian
of the log-likelihood of the parameters, which enabled a gradient ascent for maximum
likelihood estimation (MLE). These methods aim to provide plausible models but do not
directly consider the performance of the PF (e.g., estimation accuracy).

Several methods directly optimize the estimation accuracy of a PF. The method in [53]
uses particle swarm optimization (PSO) to optimize it. However, PSO cannot be expected
to optimize high-dimensional parameters successfully. Another method to optimize the
estimation accuracy implements the system and measurement models as neural networks
to make the PF algorithm differentiable [54], so it lacks versatility in the structure of the
models. Furthermore, the convergence of the optimization is not considered in [53, 54].

The proposed method of generating a highlighted map optimizes the estimation accuracy
of MCL, whose algorithm is equivalent to a PF. In addition, it is proven that the optimization
converges. This method regards every pixel of the map as parameters that determine the
measurement model of the PF and optimizes them by using RL. As described here, this
method considers only a specific PF application and lacks generality; e.g., the system model
is not designed, and only the estimation accuracy can be optimized. Thus, this method needs
to be extended.

In this thesis, a new PF design method is proposed. The advantage of the proposed
method is that it is possible to optimize various objective functions, e.g., the likelihood of the
parameters, the estimation accuracy of the PF, and the regularization term of the parameters.
Moreover, the convergence of the optimization is guaranteed.

8

1.4. Summary

After presenting the proposed PF design method, it is applied to mobile robot localization,
and the numerical simulation is performed, where more than 30,000-dimensional parameters
are optimized simultaneously.

1.4 Summary

In summary, the main contributions of this thesis are as follows:

• This thesis newly proposed the idea of modifying the shade of a map that evaluates
the likelihood of a pose estimate to improve the localization accuracy. The modified
map is called a highlighted map. The map can improve the accuracy of the MCL
algorithm without additional sensors or online computation. Moreover, the idea can
be combined with various versions of MCL.

• The method of generating a highlighted map based on RL is proposed.

• By applying the framework of the adversarial RL, the above method is extended to
generate a highlighted map that is robust against noise.

• The above method is generalized to a PF design method. This method can design
not only the measurement model but also the system model and accommodate various
objective functions.

This thesis is organized as follows. First, Chapter 2 explains the MCL and RL algorithm.
Next, Chapter 3, Chapter 4, and Chapter 5 propose the method of generating a highlighted
map, the method of generating a robust highlighted map, and the method of designing a PF,
respectively. Chapter 6 is the conclusion.

Notation: Let R, R+, N, C, ∅, and Pn
0+ denote the real number field, the set of positive

real numbers, the set of natural numbers, the set of complex numbers, the empty set, and the
set of the n × n positive semidefinite matrices, respectively. For N data x(1), x(2), . . . , x(N),
the notation

{
x(i)

}N
i=1 denotes the set of them, i.e.,

{
x(i)

}N
i=1 :=

{
x(1), x(2), . . . , x(N)

}
. For

time-varying data xt , xt1:t2 denotes sequences of data from time t1 to time t2, i.e., xt1:t2 :=(
xt1, xt1+1, xt1+2, . . . , xt2

)
. For a vector v and matrix M , ‖v‖ and ‖M ‖F represent the Euclidean

norm of v and the Frobenius norm of M , respectively. For a vector v, scalar function f , and
vector function g, ∇v f , ∇2

v f , and ∇v g denote the gradient of f , the Hessian matrix of f ,
and the Jacobian matrix of g, respectively.

9

Chapter 2

Preliminaries

This chapter describes the MCL algorithm and its components, the map and the measurement
model. In addition, RL, which is utilized to solve the problems in the following chapters, is
outlined.

2.1 Grid map

A grid map is a grid array that discretizes the environment with a certain resolution. Each
grid cell has a value. Let the map be denoted by m :=

[
m(1),m(2), . . . ,m(M)

]>, where M ∈ N
and m(µ) ∈ R are the number of grid cells and the value of the µ-th cell, respectively. Figure
2.1 is an example of the grid map.

Several kinds of maps can be represented as such a grid by setting the cell values m(µ) in
an appropriate manner. In the case of Fig. 1.1(a), which is called an occupancy grid map [4],
m(µ) indicates the probability that the µ-th cell is occupied by an object. In the case of
Fig. 1.1(b), which is called a likelihood field map, m(µ) denotes the probability that the µ-th
cell is detected by a sensor. Although Fig. 1.1 is the case of a two-dimensional (2D) map, a
three-dimensional (3D) map can also be expressed in the same form by regarding m(µ) as a
voxel value.

2.2 Monte Carlo localization

Although the highlighted map can be applied to various localization algorithms related to
MCL, this thesis considers the combination with the most basic MCL for simplicity. This
section describes the MCL algorithm.

11

Chapter 2. Preliminaries

Figure 2.1: Grid map (size 100 × 50)

Let xt ∈ Rn denote the true pose of the robot at time t ∈ {0} ∪ N. In the case of a robot
moving on a plane, xt is given by

xt := [xt,yt, θt]> (2.1)

where (xt,yt) ∈ R2 is the position, and θt ∈ R is the orientation.

MCL is a PF-based algorithm for estimating xt , which corresponds to Table 8.2 in [4].
Algorithm 1 illustrates MCL, where x̂(i)t ∈ Rn is the state of the i-th particle, N ∈ N is the

number of particles, and χt :=
{
x̂(i)t

}N

i=1
is the particle set. Each particle x̂(i)t represents a

candidate for the pose estimate, and the set χt approximates the probability distribution of
the pose. The purpose of Algorithm 1 is to update χt at each time.

Algorithm 1 has four inputs χt−1, ut , zt , and m, where ut ∈ Rnu are control data such as

velocity commands or wheel odometry, zt :=
{
z(ℓ)t

}L

ℓ=1
are data measured by a sensor (e.g.,

LIDAR), and m ∈ RM is a map. The measurement data zt is a point cloud consisting of
L ∈ N points z(ℓ)t ∈ Rnz , which is an nz-dimensional vector of an object’s position detected
by the sensor in the sensor coordinates.

Algorithm 1 contains two functions, f and g. The function f : Rnu × Rn → Rn updates
the state of each particle by applying control data ut . The output x̂(i)t |t−1 ∈ R

n is the state
of the particle after the update. The function g : Rnz×L × Rn × RM → R+ corresponds to
the measurement model, which provides the likelihood of a pose estimate by matching the
measurement data zt to the map m. The output w(i)t ∈ R+ is the likelihood of the i-th particle.
Note that g is different from an output equation in control theory which outputs measurement
data.

The flow of Algorithm 1 is as follows: 1) calculate the weighted particle set χ̄t :=

12

2.3. Measurement model and likelihood field map

Algorithm 1 MCL
1: function MCL(χt−1,ut, zt,m)
2: χ̄t = χt = ∅
3: for i = 1 to N do
4: x̂(i)t |t−1 = f

(
ut, x̂

(i)
t−1

)
5: w

(i)
t = g

(
zt, x̂

(i)
t |t−1,m

)
6: χ̄t ← χ̄t ∪

{(
x̂(i)t |t−1,w

(i)
t

)}
7: end for
8: for i = 1 to N do

9: x̂(i)t =



x̂(1)t |t−1 with probability w
(1)
t∑N

j=1 w
(j)
t

x̂(2)t |t−1 with probability w
(2)
t∑N

j=1 w
(j)
t

...
...

x̂(N)t |t−1 with probability w
(N)
t∑N

j=1 w
(j)
t

10: χt ← χt ∪
{
x̂(i)t

}
11: end for
12: return χt , χ̄t
13: end function

{(
x̂(i)t |t−1,w

(i)
t

)}N

i=1
(lines 3–7); 2) sample the particles randomly based on the ratio of the

likelihood w
(i)
t to compose the particle set at time t, χt (lines 8–11); 3) return χt and χ̄t .

The sampling process in Step 2) is called resampling. Note that the algorithm in [4] returns
χt only, whereas Algorithm 1 also returns χ̄t . This is because χ̄t is used for generating a
highlighted map, as described later.

2.3 Measurement model and likelihood field map

The measurement model simulates the probability distribution p
(
zt

�� xt,m
)
. The function g

in Algorithm 1 calculates the likelihood of a pose estimate based on the measurement model.
There are several kinds of measurement models, e.g., the beam model and the likelihood

field model [4]. The likelihood field model is often used, not only for 2D maps [16–19]
but also for 3D maps [20, 21], because it tends to produce smoother distributions even in
cluttered areas, and it is computationally efficient.

Here, the details of the likelihood field model are described. An example of the calculation
based on it is presented in Table 6.3 in [4] as algorithm likelihood_field_range_finder_model.

13

Chapter 2. Preliminaries

This algorithm includes a costly operation of searching for the nearest object on the map
for each measurement data. Therefore, it is useful to pre-compute a lookup table that
implements a likelihood field map so that most parts of the likelihood calculation can be
skipped by referring it [4, 21].

In the case of a 2D map, the likelihood field map mlf ∈ RM is generated from an
occupancy grid map mocc ∈ RM by

m(µ)lf = κ1 N (D (xµ, yµ,mocc) ,σ) (2.2)

where κ1 ∈ R+ is a constant, (xµ, yµ) ∈ R2 is the map coordinates of the µ-th cell, and
D : R × R × RM → {0} ∪ R+ is the distance to the nearest object on the map, i.e.,

D(x, y,m) := min
x′,y′

{√
(x − x′)2 + (y − y′)2

���� (x′, y′) occupied in m
}
. (2.3)

The function N : R × R+ → R+ denotes a zero-centered normal distribution, and the value
N(x,σ2) is the probability density at x ∈ R with standard deviation σ ∈ R+. Note that the
likelihood field model assumes that the sensor measurement noise is Gaussian.

The likelihood field map implemented by the lookup table simplifies the calculation in the
likelihood field model. In the case of using algorithm likelihood_field_range_finder_model
in [4] as the function g; g includes only the following operation:

g(zt, xt,m) :=
L∏
ℓ=1

q
(
z(ℓ)t , xt,m

)
(2.4)

where

q
(
z(ℓ)t , xt,m

)
:=


1 if ℓ−th sensor does not detect object(
κ2M

(
z(ℓ)t , xt,m

)
+ κ3

)
otherwise,

(2.5)

m is the likelihood field map, and κ2, κ3 ∈ R+ are the model parameters. Also, M :
Rnz × Rn × RM → R is a function, andM

(
z(ℓ)t , xt,m

)
is the cell value m(µ) of the likelihood

field map containing the measurement data z̃(ℓ)t , where z̃(ℓ)t is the position obtained by
converting z(ℓ)t (the measurement data in the sensor coordinates) into the map coordinates
based on the robot pose xt . For example, in Fig. 2.2, the measurement data are located on

14

2.4. Reinforcement learning

Figure 2.2: Projection of measurement data onto likelihood field map and the corresponding
cell values

the 14th, 20th, and 23rd cells; thus, the likelihood of the pose estimate is

w
(i)
t =

(
κ2 m(14) + κ3

) (
κ2 m(20) + κ3

)2 (
κ2 m(23) + κ3

)
. (2.6)

2.4 Reinforcement learning

This section outlines RL, which is an approach for finding the optimal policy through trial
and error [55].

RL deals with the system in Fig. 2.3, composed of an agent and an environment. They
repeat the following behaviors: 1) the agent observes a state of the environment st ; 2) the
agent selects and executes an action at according to st and the policy π; 3) the environment
outputs a reward rt according to st and at ; 4) the environment st transitions to st+1 by referring
to at . For this system, the purpose of RL is to determine the optimal policy π that gives the
highest cumulative reward.

RL mainly consists of two types of methods: value iteration methods, e.g., Q learning [56]
and deep Q-network (DQN) [57], and policy gradient methods, e.g., REINFORCE [58] and
stochastic hill climbing [59]. This thesis mostly uses the policy gradient method and also
uses the value iteration method in Chapter 4.

The policy gradient methods directly optimize the parameter Θ that defines the policy.
For optimizing Θ, many policy gradient methods use the characteristic eligibility [58–61].
It is given by

et := ∇Θ ln {π̃(at, st,Θ)} (2.7)

15

Chapter 2. Preliminaries

Figure 2.3: RL framework

where
π̃(at, st,Θ) := p

(
at

�� st,Θ
)

(2.8)

is the probability density function corresponding to π. The characteristic eligibility et

represents the value of the executed action evaluated from information theory, and if the
action is less frequent and is more sensitive to Θ, et becomes larger.

The value iteration methods learn the value of each pair of states and actions. For example,
Q learning updates the state-action value function Q(st,at) by the following equation:

Q(st,at) ← Q(st,at) + η
{
rt + λmax

a
Q(st+1,a) −Q(st,at)

}
, (2.9)

where η ∈ R+ is a learning rate, and λ ∈ R+ is a discount factor [56]. The optimal policy
π∗(st) is obtained indirectly from the value function, e.g.,

π∗(st) = arg max
a

Q(st,a). (2.10)

16

Chapter 3

Highlighted map generation

This chapter presents the generation method of a highlighted map. First, the problem of
generating a highlighted map is formulated, and the solution for it is proposed. Next, the
numerical simulation and experiment show the effectiveness of using a highlighted map.

3.1 Problem formulation

Consider modifying a map m described in Chapter 2, which consists of M values
m(1),m(2), . . . ,m(M). If we obtain a suitably modified map m, using it in MCL in Sec-
tion 2.2 may improve the localization accuracy. In this thesis, the modified map is called a
highlighted map.

The objective function for constructing a highlighted map m is defined as follows:

J(m) :=
T∑

t=1
ρ (xt, χt) (3.1)

where T ∈ N is the operating time, and ρ : Rn × Rn×N → R evaluates the localization
accuracy at each time from the true pose xt and the particle set (probability distribution of
the pose estimate) χt in Section 2.2. For example, ρ can be defined as the error between xt

and the average of χt

ρ (xt, χt) := exp
{
− (xt − h (χt))> A (xt − h (χt))

}
, (3.2)

17

Chapter 3. Highlighted map generation

or the variance of χt

ρ (xt, χt) := exp

{
−

N∑
i=1

(
x̂(i)t − h (χt)

)>
A

(
x̂(i)t − h (χt)

)}
, (3.3)

where h : Rn×N → Rn is the average of the state of the particles, i.e.,

h (χt) :=
1
N

N∑
i=1

x̂(i)t , (3.4)

and A ∈ Pn
0+ is a weight coefficient matrix. Note that (3.3) does not use the true pose xt .

The problem is formulated as follows.

Problem 1. For Algorithm 1, assume that the number N of particles, functions f , g, and ρ,
an initial particle set χ0, control data u1:T , measurement data z1:T , and true poses x1:T are
given. Then, find the optimal highlighted map

arg max
m

J̄(m) (3.5)

where J̄ : RM → R is the expected value of (3.1), i.e.,

J̄(m) := E [J(m)] . (3.6)

Note that the solution (3.5) is optimal just for the past data u1:T , z1:T , and x1:T . Optimality
is not guaranteed for the future data but it is assumed that the map provides the same
performance when the robot moves on a trajectory similar to the one the robot followed
when the data u1:T , z1:T , and x1:T were measured. In fact, a simulation and experiment
verified that it is effective for future data (see Sections 3.3 and 3.4).

3.2 Highlighted map generation based on reinforcement
learning

This section presents the solution to Problem 1 based on RL.

18

3.2. Highlighted map generation based on reinforcement learning

3.2.1 Interpretation of highlighted map generation problem into rein-
forcement learning

Let us associate MCL with RL described in Section 2.4. RL is characterized by a mechanism
to search for the optimal policy using a probabilistic policy that selects an action at random.
MCL is the algorithm that estimates the pose by resampling particles at random. Therefore,
by regarding the resampling process of MCL as a policy π and the resampling result as an
action at in RL, the highlighted map, which is the design parameter used in MCL, can be
optimized in the RL framework.

This chapter uses the method in [59], a kind of policy gradient method, which directly
optimizes the parameters of the policy.

First, MCL is converted into the RL framework by the following assignment:

• Policy π: Function g and resampling process of MCL. The highlighted map m is a
parameter that determines the behavior of these processes.

• State st =
((

x̂(1)t |t−1, x̂
(2)
t |t−1, . . . , x̂

(N)
t |t−1

)
, ct

)
: States of all particles of MCL

x̂(1)t |t−1, x̂
(2)
t |t−1, . . . , x̂

(N)
t |t−1 and current time ct := t.

• Action at =
[
γ
(1)
t , γ

(2)
t , . . . , γ

(N)
t

]>
: Resampling result of MCL, where γ(i)t ∈ N is the

index j of the state x̂(j)t |t−1 to which the i-th particle is resampled in line 9 of Algorithm 1.

• Reward rt : Output of the function ρ in (3.1).

Figure 3.1 shows the relationship between MCL and RL in this case. In Fig. 3.1, D outputs
at =

[
γ
(1)
t , γ

(2)
t , . . . , γ

(N)
t

]>
as follows:

γ
(i)
t =



1 with probability w
(1)
t∑N

j=1 w
(j)
t

2 with probability w
(2)
t∑N

j=1 w
(j)
t

...
...

N with probability w
(N)
t∑N

j=1 w
(j)
t

(i = 1,2, . . . ,N) (3.7)

which generates N random numbers from the probability distribution represented by
w
(1)
t ,w

(2)
t , . . . ,w

(N)
t . In addition, A in Fig. 3.1 is the process to compose χt , where the

19

Chapter 3. Highlighted map generation

Figure 3.1: Relationship between MCL and RL

state of the i-th particle in χt is set to x̂(γ
(i)
t)

t |t−1 (i = 1,2, . . . ,N). Then,

p
(
st+1

�� s1:t,a1:t, π
)
= p

(
st+1

�� st,at
)
, (3.8)

p
(
at

�� s1:t,a1:t−1, π
)
= p

(
at

�� st,m
)
, (3.9)

E
[
rt

�� s1:t,a1:t, π
]
= E

[
rt

�� st,at
]

(3.10)

are satisfied, and the whole system can be regarded as a Markov decision process (MDP),
which is the target system for many RL algorithms [55, 59].

Next, the characteristic eligibility (2.7) is derived. The probability density function (2.8)
is derived as follows:

π̃(at, st,m) =
N∏

i=1

w
(γ(i)t)
t∑N

j=1 w
(j)
t

. (3.11)

From (2.7) and (3.11), the characteristic eligibility is derived as follows:

et := ∇m ln {π̃(at, st,m)}

=

N∑
i=1

©­«Γ(i)t −
Nw
(i)
t∑N

j=1 w
(j)
t

ª®¬∇m ln
{
g

(
zt, x̂

(i)
t |t−1,m

)}
(3.12)

20

3.2. Highlighted map generation based on reinforcement learning

where
Γ
(i)
t :=

���{ j
�� γ(j)t = i, j = 1,2, . . . ,N

}��� (3.13)

is the number of particles resampled to the state x̂(i)t |t−1. The values of Γ(i)t and w
(i)
t in (3.12)

are obtained from χt and χ̄t , and ∇m ln g can be calculated from χ̄t , zt , and m. For example,
if g is given by (2.4), ∇m ln g is

∂

∂m(µ)
ln

{
g

(
zt, x̂

(i)
t |t−1,m

)}
=

κ2 β
(i,µ)

κ2 m(µ) + κ3
(3.14)

where β(i,µ) ∈ {0} ∪N is the order of the factor
(
κ2 m(µ) + κ3

)
in the function g in (2.4), and

it corresponds to the number of measurement data z(ℓ)t projected onto the µ-th cell. In the
case of Fig. 2.2 and (2.6), β(i,µ) takes the following values:

β(i,µ) =


1 if µ = 14
2 if µ = 20
1 if µ = 23
0 otherwise.

(3.15)

3.2.2 Method of generating highlighted map

This chapter proposes Algorithm 2 for generating a highlighted map based on RL. Note that
m(k) ∈ RM is the highlighted map at iteration k ∈ {0} ∪ N, kmax ∈ N is the maximum
iteration number, b ∈ R is a reinforcement baseline [58], and η(k) ∈ R+ is a learning rate for
updating the map.

To execute Algorithm 2, it is necessary to drive the robot to record control data u1:T ,
measurement data z1:T , and true poses x1:T . The true poses x1:T can be obtained, e.g., by
temporarily adding a sensor that can measure the robot pose directly, such as a GNSS or
indoor positioning system [62], to the robot. Alternatively, x1:T are approximately obtained
by executing a more complex localization algorithm than usual (e.g., MCL with a larger
number of particles, at a higher frequency) after recording u1:T and z1:T . Note that real-time
processing is not required for this computation.

In this algorithm, the following calculation is performed kmax times. At each time from
t = 1 to T , MCL is executed first; then, the evaluation value of the estimation rt and the
characteristic eligibility et are computed. Next, the cumulative sum of et denoted by Ut ∈ RM

and the cumulative sum of (rt − b)Ut denoted by Vt ∈ RM are updated. After the calculation

21

Chapter 3. Highlighted map generation

Algorithm 2 Highlighted map generation
1: function HighlightedMapGen(χ0,u1:T, z1:T, x1:T,m(0))
2: for k = 0 to kmax − 1 do
3: U0 = V0 = 0
4: for t = 1 to T do
5: χt, χ̄t = MCL (χt−1,ut, zt,m(k))
6: rt = ρ (xt, χt)
7: calculate et according to (3.12) from χt , χ̄t , zt , and m(k)
8: Ut = Ut−1 + et
9: Vt = Vt−1 + (rt − b)Ut

10: end for
11: m(k + 1) = m(k) + η(k)VT
12: end for
13: return m(kmax)
14: end function

at time T , the map m(k) is modified by adding η(k)VT .

3.2.3 Theoretical analysis

The following theorem shows the optimality of the proposed method.

Theorem 1. For Algorithm 2, assume that the following conditions hold:

(C1) There exists a bounded setX ⊂ Rn such that for all (k, t, i) ∈ ({0} ∪ N)×{1,2, . . . ,T}×
{1,2, . . . ,N}, x̂(i)t |t−1 ∈ X with probability 1.

(C2) There exist δ1, δ2 ∈ R such that for all k ∈ {0} ∪ N, m(k) ∈ M where M :={
m

�� δ1 ≤ m(µ) ≤ δ2, µ = 1,2, . . . ,M
}
.

(C3) There exists a δ3 ∈ R+ such that for all (t, x̂,m) ∈ {1,2, . . . ,T} ×X×M, |g (zt, x̂,m)| ≥
δ3.

(C4) For all (t, x̂,m) ∈ {1,2, . . . ,T} × X ×M, ∇m g (zt, x̂,m) exists, ‖∇m g (zt, x̂,m)‖ < ∞,
and ∇m g (zt, x̂,m) is continuous in m.

(C5) For all (t, χ) ∈ {1,2, . . . ,T} × XN , |ρ (xt, χ)| < ∞.

(C6) The learning rate η(k) ∈ R+ satisfies
∑∞

k=0 η(k) = ∞ and
∑∞

k=0 η(k)2 < ∞.

(C7) For variables t ∈ R and ν ∈ RM , the differential equation

dν(t)
dt
= ∇ν J̄ (ν(t)) (3.16)

22

3.2. Highlighted map generation based on reinforcement learning

has an asymptotically stable equilibrium ν = m∗ ∈ M.

(C8) There exists a compact set B1 ⊆ B(m∗) such that
��{k

�� m(k) ∈ B1, k = 0,1,2, . . .
}�� =

∞, where B(m∗) :=
{
ν0

�� limt→∞ ν(t|ν0) = m∗
}
, and ν(t|ν0) ∈ RM is the solution of

(3.16) for an initial value ν0 ∈ RM .

Then,
lim

k→∞
m(k) = m∗, with probability 1. (3.17)

Proof. The equation in line 11 of Algorithm 2 can be rewritten as

m(k + 1) = m(k) + η(k)∇m J̄ (m(k)) + η(k)φ(k) (3.18)

where
φ(k) := VT − ∇m J̄ (m(k)) . (3.19)

Then, if (C2), (C6)–(C8), and the following conditions are satisfied, (3.17) holds by Theorem
2.3.1 in [63].

(D1) For all k ∈ {0} ∪ N, E [VT] = ∇m J̄ (m(k)).

(D2) The function ∇m J̄(m) is continuous at all m ∈ M.

(D3) For all ϵ ∈ R+, limk→∞ P
(
supK≥k

∑K
k ′=k η(k′)φ(k′)

 ≥ ϵ) = 0.

Conditions (D1)–(D3) hold if (C1)–(C6) are satisfied. Appendix A gives the proofs.

Since Algorithm 2 is based on the RL method of [59], (D1) holds. Furthermore, (D1)
implies that Algorithm 2 is also equivalent to the stochastic approximation method [63,64],
which updates the parameter according to the gradient of the objective function. The theorem
in [63] allows us to prove Theorem 1.

Theorem 1 reveals that if (C1)–(C8) are satisfied, the proposed method converges to
a local optimum, which means that the method can provide an approximate solution to
Problem 1.

Finally, a supplementary explanation of the conditions in the theorems is provided.
Conditions (C1), (C3), and (C4) are about the setting of MCL. The satisfaction of (C1)
depends on the structure of f and the boundedness of χ0 and u1:T . Conditions (C3) and
(C4) hold if, e.g., g is given by (2.4), and (C2) holds with δ1 > −κ3/κ2. Conditions
(C2) and (C5)–(C8) are for RL and stochastic approximation. For example, the function

23

Chapter 3. Highlighted map generation

Figure 3.2: Simulation environment

ρ given by (3.2) or (3.3) satisfies (C5). Condition (C6) holds by setting the learning rate
η(k) appropriately. Conditions (C2), (C7), and (C8) are generally assumed in stochastic
approximation methods [63, 64]. Condition (C2) can be omitted by using the optimization
algorithm proposed in [64], which explicitly keeps the solution in the constraint set.

3.3 Numerical simulation

To clarify the effectiveness of the highlighted map, this section compares it with a con-
ventional likelihood field map based on several MCL-based algorithms first. Furthermore,
comparisons with other existing MCL algorithms are performed. These comparisons are
carried out under harsh conditions, i.e., low computational resources and a low-performance
sensor, because the proposed method is especially effective for a low-cost robot.

In this section, the proposed method is evaluated in the 3D dynamic simulator Gazebo
[65]. The simulation environment is shown in Fig. 3.2. Cargo lines some of the corri-
dors. The robot moves on a plane, so its pose is expressed as (2.1). The robot has a 2D
LIDAR and can obtain wheel odometry data ut and LIDAR measurement data zt . The
specification of the LIDAR is as follows: possible maximum detection range is 5 m, scan-
ning angle is 360 degrees, and the number of data is L := 18 data/rev. The MCL setting
is as follows: the number of the particles is N := 100, frequency is 5 Hz, the function f

is algorithm sample_motion_model_odometry in Table 5.6 in [4] with sampling algorithm
sample_normal_distribution in Table 5.4 in [4], and g is given by (2.4) where κ2 := 0.6 and
κ3 := 0.4. These specifications were chosen assuming a low-cost robot.

24

3.3. Numerical simulation

Figure 3.3: Initial map m(0) (conventional likelihood field map) in simulation

3.3.1 Generation of highlighted map

The (local) optimal highlighted map m∗ was generated under the settings described below.
The initial map m(0) is shown in Fig. 3.3, which is the same map as in Fig. 1.1(b), except
that it is represented on a color scale. This is a likelihood field map generated by (2.2) with
κ1 := 0.1, σ := 0.15, and an occupancy grid map mocc in Fig. 1.1(a). The map size (number
of cells) is M := 240 × 140, and the grid scale is 0.1 m/cell. The training data used for
generating the map u1:T , z1:T , and x1:T (denoted by utrain

1:T , ztrain
1:T , and xtrain

1:T) were obtained by
the following procedure:

• The control data utrain
1:T and measurement data ztrain

1:T were measured while the robot
followed the route in Fig. 3.2 at 1 m/s.

• The true poses xtrain
1:T were approximately obtained as follows: perform MCL with

N := 10,000 particles (a larger number than usual for this robot) by using utrain
1:T , ztrain

1:T ,
and m(0); then, regard the following maximum likelihood pose as xtrain

t ,

xtrain
t := x̂(i

∗)
t |t−1 s.t. i∗ = arg max

i
w
(i)
t . (3.20)

Note that the true poses could be obtained from the simulator, however, it was not used
for generating the map in order to simulate a realistic situation.

The initial particle set is given by χ0 :=
{

x̂ini, x̂ini, . . . , x̂ini} where x̂ini ∈ R3 is the initial true
pose. The function ρ in (3.1) is set as

ρ (xt, χt) := exp

− (xt − h (χt))>

10 0 0
0 10 0
0 0 0

 (xt − h (χt))

 (3.21)

25

Chapter 3. Highlighted map generation

Figure 3.4: Highlighted map m∗ in simulation

where h is defined as (3.4). In Algorithm 2, the learning rate η(k) is

η(k) :=
1

k + 3 × 106 , (3.22)

maximum iteration number is kmax := 4× 106, and reinforcement baseline is b := 0.85. The
reinforcement baseline is set to reduce the estimated variance of the equation in (D1).

Conditions (C1) and (C3)–(C6) hold under these settings, and it was numerically con-
firmed that (C2), (C7), and (C8) held.

The highlighted map m∗ generated by Algorithm 2 is shown in Fig. 3.4. In the north
corridor, the cargo at the center is highlighted most strongly (red spot). In contrast, the
cargo at the northeast in the corridor is highlighted only weakly. This is because it is more
difficult to estimate pose in a long straight corridor than in a corner, and therefore, the central
cargo (in the long straight corridor) is more important as a landmark. In the south corridor,
conversely, the location without cargo is highlighted (purple spot). Note that the red spot
indicates that the corresponding object is an important landmark, and the purple spot denotes
that the absence of an object is such a landmark. It can be seen that the way of highlighting
differs depending on the surrounding environment even for the same-shaped objects, which
implies that landmarks useful for localization are properly identified and emphasized.

The change in the objective function is illustrated in Fig. 3.5. The thin blue line is the
value of J (m(k)) at each iteration k, and the thick red line is its moving average. The data
are thinned out to 1/1000, i.e., only the data at k = 0,1000,2000, . . . are displayed. Figure
3.5 indicates that convergence is achieved.

Note that a similar highlighted map will be generated if ρ is given by (3.3) instead of
(3.21). In this case, the process of obtaining true poses x1:T can be omitted because (3.3)
does not require xt .

26

3.3. Numerical simulation

Figure 3.5: Change in objective function in simulation

3.3.2 Performance of highlighted map

Next, the generated highlighted map m∗ was verified. The test data for the verification u1:T ,
z1:T , and x1:T (denoted by utest

1:T , ztest
1:T , and xtest

1:T) were obtained as follows:

• The control data utest
1:T and measurement data ztest

1:T were measured while the robot
followed the same route at the same velocity as Section 3.3.1. Note that these values
are different from utrain

1:T and ztrain
1:T because the robot was operated manually and traced

a route slightly different from that of Section 3.3.1.

• The true poses xtest
1:T were obtained from the simulator.

The performance of the map was evaluated by

• The objective function J with (3.21),

• Estimation error:

∆t :=

√√√√√√√√√(
xtest

t − h (χt)
)> 

1 0 0
0 1 0
0 0 0


(
xtest

t − h (χt)
)

(3.23)

with (3.4),

• Computation time for one estimation cycle Υt ∈ R+.

The values of J and∆t were calculated with xtest
1:T and χ1:T . Also, χ1:T were computed by MCL

with utest
1:T and ztest

1:T . The computation time was measured by using a Broadcom BCM2837

27

Chapter 3. Highlighted map generation

system on a chip (SoC) with a 1.2 GHz 64-bit quad-core ARM Cortex-A53 processor. Since
MCL contains randomness and the estimation result changes every iteration, the map was
tested 20 times using the same utest

1:T , ztest
1:T , and xtest

1:T .
The following two comparisons were carried out. Firstly, the highlighted map was com-

pared with the conventional map in several MCL algorithms to verify the effectiveness of the
highlighted map and the validity of combining the highlighted map with various MCL-based
algorithms. Secondly, the combination of the basic MCL and the highlighted map was com-
pared with that of the improved MCL-based algorithms and the conventional map to verify
the significance of the improvement by the highlighted map. As the improved algorithms,
this section chose KLD-sampling-based MCL (KLD-MCL) [4, 8] and the algorithm intro-
duced in [10], which this section calls scan-matching-based MCL (SM-MCL). KLD-MCL
is the most widely used MCL-based algorithm and has been actively studied in recent years,
and SM-MCL is one of the state-of-the-art methods.

For the above two comparisons, this section performed six simulations denoted by S1–S6,
whose configurations and results are shown in Table 3.1. Table 3.1 summarizes the values
of the objective function J, the mean and maximum values of the estimation error ∆t , and
the mean and maximum values of the computation time Υt . All these values are the averages
over 20 tests. To show how the highlighted map improved the performance, the estimation
errors ∆t of 20 tests in the case of S1 and S2 are shown in Figs. 3.6 and 3.7, respectively.
Furthermore, the statistical significance of the improvement was evaluated by box plots
presented in Fig. 3.8 and t-tests. The mean and maximum values of ∆t of S2, S4, and S6
had statistically significant differences from those of S1, S3, and S5, respectively (t-test,
p < 0.001). The highlighted map (optimized for use in MCL) improved KLD-MCL and
SM-MCL as well as MCL because of the similarity between these improved MCL algorithms
and MCL algorithm. These results confirmed the effectiveness of the highlighted map and
the validity of combing the highlighted map with other MCL-based algorithms. In addition,
by comparing the mean and maximum values of ∆t of S2 with those of S3 and S5, we find
that the significance of the improvement by the highlighted map was comparable or greater
than the other existing algorithms even though the highlighted map approach required less
computation time.

28

3.3. Numerical simulation

Ta
bl

e
3.

1:
Lo

ca
liz

at
io

n
ac

cu
ra

cy
an

d
co

m
pu

ta
tio

n
tim

e
fo

re
ac

h
co

nfi
gu

ra
tio

n
in

si
m

ul
at

io
n

C
on

fig
ur

at
io

n
O

bj
ec

tiv
e

fu
nc

tio
n

J

Es
tim

at
io

n
er

ro
r∆

t
(m

)
C

om
pu

ta
tio

n
tim

e
Υ

t
(m

s/
cy

cl
e)

In
de

x
A

lg
or

ith
m

M
ap

1 T
∑ T t=

1
∆

t
m

ax
t
∆

t
1 T
∑ T t=

1
Υ

t
m

ax
t
Υ

t

S1
M

C
L

C
on

ve
nt

io
na

lm
ap

(F
ig

.3
.3

)
16

6.
4

0.
22

0.
83

6.
11

6.
75

S2
M

C
L

H
ig

hl
ig

ht
ed

m
ap

(F
ig

.3
.4

)
20

9.
1

0.
12

0.
42

6.
06

6.
59

S3
K

LD
-M

C
L

C
on

ve
nt

io
na

lm
ap

(F
ig

.3
.3

)
17

1.
1

0.
20

0.
61

49
.4

7
97

.8
9

S4
K

LD
-M

C
L

H
ig

hl
ig

ht
ed

m
ap

(F
ig

.3
.4

)
21

7.
1

0.
11

0.
29

40
.8

7
73

.1
4

S5
SM

-M
C

L
C

on
ve

nt
io

na
lm

ap
(F

ig
.3

.3
)

17
9.

4
0.

18
0.

51
41

.7
2

73
.0

0
S6

SM
-M

C
L

H
ig

hl
ig

ht
ed

m
ap

(F
ig

.3
.4

)
21

8.
9

0.
11

0.
25

37
.6

9
66

.7
9

29

Chapter 3. Highlighted map generation

(a) Error at each time

(b) Error at each position

Figure 3.6: Estimation errors with combination of MCL and conventional likelihood field
map m(0) in simulation

Note that a highlighted map was generated from the actual robot data utrain
1:T , ztrain

1:T , and
xtrain

1:T ; thus, the generated highlighted map should be specialized for situations such as sensor
characteristics and robot dynamics. For example, since utrain

1:T , ztrain
1:T , and xtrain

1:T were measured
when the robot followed a clockwise route, the generated highlighted map was especially
effective for clockwise driving as shown in this section. On the other hand, by using the data
recorded when the robot traced a counterclockwise route, we would obtain a highlighted
map specialized for counterclockwise driving, which is slightly different from m∗ in Fig. 3.4.
As described here, the proposed method can generate various highlighted maps adapted to
each situation.

3.4 Experiment

To verify the performance of the highlighted map in a practical situation, this section performs
the real-world experiment in two environments: the corridor shown in Fig. 3.9 and the
laboratory shown in Fig. 3.10. Each picture in these figures is a landscape from the viewpoint

30

3.4. Experiment

(a) Error at each time

(b) Error at each position

Figure 3.7: Estimation errors with combination of MCL and highlighted map m∗ in simula-
tion

(a) Mean error
(

1
T
∑T

t=1 ∆t

)
(b) Maximum error (maxt ∆t)

Figure 3.8: Box plots of mean and maximum of estimation errors in simulation

of the arrow. Figure 3.11 shows the robot system. A 2D LIDAR mounted on the robot was
RPLIDAR (SLAMTEC), whose possible maximum detection range, scanning angle, and the

31

Chapter 3. Highlighted map generation

Figure 3.9: Experimental environment (corridor)

Figure 3.10: Experimental environment (laboratory)

number of data were 12 m, 360 degrees, and 360 data/rev, respectively. However, this section
used only 1/20 of the data (18 data/rev) and excluded data that were more than 5 m in order
to simulate a low-cost sensor.

32

3.4. Experiment

Figure 3.11: Experimental robot system

First, the highlighted maps m∗ were generated. The initial maps m(0) in the corridor
and laboratory experiments are illustrated in Figs. 3.12 and 3.13, which are likelihood field
maps generated by (2.2) with κ1 := 0.1, σ := 0.15, and the occupancy grid maps mocc in
Figs. 3.9 and 3.10, respectively. The data for generating the maps utrain

1:T , ztrain
1:T , and xtrain

1:T
were measured in the same way as in Section 3.3.1, where the routes followed by the robot
when collecting utrain

1:T and ztrain
1:T are shown in Figs. 3.9 and 3.10. The map sizes M and

reinforcement baselines b were 240×200 and 0.85 in the corridor experiment, 220×180 and
0.9 in the laboratory experiment, respectively. All other parameters and functions were the
same as in Section 3.3.1. The generated highlighted maps and the changes in the objective
function in the corridor and laboratory experiments are shown in Figs. 3.14, 3.15, 3.16, and
3.17, respectively. In Fig. 3.14, objects in the middle of the corridors, where localization is
difficult, are highlighted. Also, in Fig. 3.15, important landmarks are highlighted, e.g., the
object in the south corridor (indicated by a circle below) and the place without walls in the
north corridor (indicated by a circle above). The meanings of the lines in Figs. 3.16 and 3.17
are the same as in Fig. 3.5. As in Section 3.3.1, it can be seen that the landmarks useful for
localization are highlighted, and convergence is achieved in both environments.

Next, the generated highlighted maps m∗ was evaluated. The measurement procedure
of utest

1:T and ztest
1:T , and the evaluation method were the same as in Section 3.3.2. The true

poses xtest
1:T were approximately calculated from utest

1:T , m(0), and the complete data obtained
from RPLIDAR (possible maximum detection range was 12 m, and the number of data was
360 data/rev) instead of ztest

1:T (possible maximum detection range was 5 m, and the number
of data was 18 data/rev). The results of the corridor experiment are shown in Table 3.2,
Figs. 3.18, 3.19, and 3.20. Table 3.2 summarizes the values of J, ∆t , and Υt for each
configuration denoted by C1–C6. All these values are the averages over 20 tests. Figures
3.18 and 3.19 show the errors (3.23) of 20 tests in the case of C1 and C2, respectively. Figure
3.20 illustrates box plots of the errors. Similarly, the results of the laboratory experiment,
denoted by L1–L6, are presented in Table 3.3, Figs. 3.21, 3.22, and 3.23. The mean

33

Chapter 3. Highlighted map generation

Figure 3.12: Initial map m(0) (conventional likelihood field map) in corridor experiment

Figure 3.13: Initial map m(0) (conventional likelihood field map) in laboratory experiment

and maximum values of ∆t of C2, C4, C6, L2, L4, and L6 had statistically significant
differences from those of C1, C3, C5, L1, L3, and L5, respectively (t-test, p < 0.001). As
in Section 3.3.2, it was confirmed that the highlighted maps improved those localization
algorithms by replacing the conventional maps. By comparing C2 with C3 and C5, and L2
with L3 and L5, respectively, we find that the accuracy of the highlighted map approach

34

3.4. Experiment

Figure 3.14: Highlighted map m∗ in corridor experiment

Figure 3.15: Highlighted map m∗ in laboratory experiment

was comparable or better than the other existing algorithms, regardless of the fact that the
proposed approach took less computation time. These results show the effectiveness of the
highlighted map in a practical situation. Note that the reason why the degree of improvement
differs for each experiment is mainly due to the difference in the shape of the environments.

35

Chapter 3. Highlighted map generation

Figure 3.16: Change in objective function in corridor experiment

Figure 3.17: Change in objective function in laboratory experiment

36

3.4. Experiment

Ta
bl

e
3.

2:
Lo

ca
liz

at
io

n
ac

cu
ra

cy
an

d
co

m
pu

ta
tio

n
tim

e
fo

re
ac

h
co

nfi
gu

ra
tio

n
in

co
rr

id
or

ex
pe

rim
en

t

C
on

fig
ur

at
io

n
O

bj
ec

tiv
e

fu
nc

tio
n

J

Es
tim

at
io

n
er

ro
r∆

t
(m

)
C

om
pu

ta
tio

n
tim

e
Υ

t
(m

s/
cy

cl
e)

In
de

x
A

lg
or

ith
m

M
ap

1 T
∑ T t=

1
∆

t
m

ax
t
∆

t
1 T
∑ T t=

1
Υ

t
m

ax
t
Υ

t

C
1

M
C

L
C

on
ve

nt
io

na
lm

ap
(F

ig
.3

.1
2)

14
3.

6
0.

11
0.

58
6.

00
6.

57
C

2
M

C
L

H
ig

hl
ig

ht
ed

m
ap

(F
ig

.3
.1

4)
15

5.
7

0.
07

0.
36

6.
00

6.
54

C
3

K
LD

-M
C

L
C

on
ve

nt
io

na
lm

ap
(F

ig
.3

.1
2)

15
3.

9
0.

08
0.

41
43

.4
7

68
.6

7
C

4
K

LD
-M

C
L

H
ig

hl
ig

ht
ed

m
ap

(F
ig

.3
.1

4)
16

0.
7

0.
06

0.
24

39
.5

8
64

.5
6

C
5

SM
-M

C
L

C
on

ve
nt

io
na

lm
ap

(F
ig

.3
.1

2)
15

4.
8

0.
07

0.
40

39
.2

5
58

.3
4

C
6

SM
-M

C
L

H
ig

hl
ig

ht
ed

m
ap

(F
ig

.3
.1

4)
16

1.
7

0.
05

0.
28

37
.0

0
58

.5
2

37

Chapter 3. Highlighted map generation

(a) Error at each time

(b) Error at each position

Figure 3.18: Estimation errors with combination of MCL and conventional likelihood field
map m(0) in corridor experiment

38

3.4. Experiment

(a) Error at each time

(b) Error at each position

Figure 3.19: Estimation errors with combination of MCL and highlighted map m∗ in corridor
experiment

(a) Mean error
(

1
T
∑T

t=1 ∆t

)
(b) Maximum error (maxt ∆t)

Figure 3.20: Box plots of mean and maximum of estimation errors in corridor experiment

39

Chapter 3. Highlighted map generation

Ta
bl

e
3.

3:
Lo

ca
liz

at
io

n
ac

cu
ra

cy
an

d
co

m
pu

ta
tio

n
tim

e
fo

re
ac

h
co

nfi
gu

ra
tio

n
in

la
bo

ra
to

ry
ex

pe
rim

en
t

C
on

fig
ur

at
io

n
O

bj
ec

tiv
e

fu
nc

tio
n

J

Es
tim

at
io

n
er

ro
r∆

t
(m

)
C

om
pu

ta
tio

n
tim

e
Υ

t
(m

s/
cy

cl
e)

In
de

x
A

lg
or

ith
m

M
ap

1 T
∑ T t=

1
∆

t
m

ax
t
∆

t
1 T
∑ T t=

1
Υ

t
m

ax
t
Υ

t

L1
M

C
L

C
on

ve
nt

io
na

lm
ap

(F
ig

.3
.1

3)
21

3.
3

0.
12

0.
58

6.
08

6.
71

L2
M

C
L

H
ig

hl
ig

ht
ed

m
ap

(F
ig

.3
.1

5)
23

7.
7

0.
07

0.
31

6.
05

6.
62

L3
K

LD
-M

C
L

C
on

ve
nt

io
na

lm
ap

(F
ig

.3
.1

3)
22

3.
5

0.
10

0.
45

48
.3

5
94

.6
9

L4
K

LD
-M

C
L

H
ig

hl
ig

ht
ed

m
ap

(F
ig

.3
.1

5)
24

4.
6

0.
05

0.
20

42
.4

8
79

.6
3

L5
SM

-M
C

L
C

on
ve

nt
io

na
lm

ap
(F

ig
.3

.1
3)

22
1.

6
0.

10
0.

40
42

.1
3

74
.4

4
L6

SM
-M

C
L

H
ig

hl
ig

ht
ed

m
ap

(F
ig

.3
.1

5)
24

5.
8

0.
05

0.
19

38
.5

8
67

.4
3

40

3.5. Conclusion

(a) Error at each time

(b) Error at each position

Figure 3.21: Estimation errors with combination of MCL and conventional likelihood field
map m(0) in laboratory experiment

3.5 Conclusion

This chapter proposed a highlighted map for mobile robot localization and a method for
generating such a map. The highlighted map can improve the localization accuracy without
any need for updating their sensors or online computation, and moreover, it can be applied
to various versions of MCL. Although this chapter only generated 2D highlighted maps, the
proposed method can also create 3D highlighted maps.

41

Chapter 3. Highlighted map generation

(a) Error at each time

(b) Error at each position

Figure 3.22: Estimation errors with combination of MCL and highlighted map m∗ in labo-
ratory experiment

(a) Mean error
(

1
T
∑T

t=1 ∆t

)
(b) Maximum error (maxt ∆t)

Figure 3.23: Box plots of mean and maximum of estimation errors in laboratory experiment

42

Chapter 4

Robust highlighted map generation

In this chapter, a method of generating a robust highlighted map based on adversarial RL is
proposed. First, a virtual obstacle (e.g., assuming a pedestrian) that generates measurement
noise to interfere with the localization is considered. Next, this chapter proposes an algorithm
that simultaneously learns the worst-case obstacle behavior and the optimal highlighted map
in a competitive manner to output a robust highlighted map. Finally, it is confirmed by
performing a numerical simulation that the proposed robust highlighted map gives highly
accurate estimation even in the presence of measurement noise.

As in Chapter 3, this chapter also treats MCL described in Section 2.2 as a localization
algorithm.

4.1 Problem in highlighted map

The highlighted map proposed in Chapter 3 is a grid map where landmarks useful for
localization are highlighted. The example of the map is shown in Fig. 4.1. Figure 4.1(a) is
the original map (occupancy grid map), where the color indicates the probability that the
space is occupied by an object. Figure 4.1(b) is the likelihood field map, which is generated
by blurring the original map by the magnitude of measurement noise. Figure 4.1(c) is the
highlighted map. The environment in the map is a corridor with a large pillar at the north
center and several small square objects. Outside the vicinity of the pillar, localization with
Fig. 4.1(b) tends to fail since there are only small landmarks. In Fig. 4.1(c), the objects at the
southwest and the northeast, which are useful landmarks, are highlighted in red. By using
the highlighted map as m in MCL, the pose estimates (particles) where the measurement
data zt overlaps these landmarks will be evaluated more in line 5 of Algorithm 1, and as a

43

Chapter 4. Robust highlighted map generation

(a) Original map (occupancy grid map)

(b) Likelihood field map

(c) Highlighted map

Figure 4.1: Example of highlighted map

result, the localization accuracy will improve.
Chapter 3 also proposed the method of generating a highlighted map. This is an RL-

based method that performs the following two steps repeatedly: 1) replay the control and
measurement data recorded by the actual robot and perform (offline) localization; 2) modify
the shade of the map gradually according to the localization results. This method can
automatically detect and highlight landmarks useful for localization.

However, the method in Chapter 3 does not take into account any measurement noise
caused by dynamic obstacles that are not drawn on the map. If highlighted landmarks in the
highlighted map are occluded by dynamic obstacles during localization, the map may not be
able to perform well.

4.2 Virtual obstacle

In order to solve this problem, this chapter consider introducing a virtual obstacle, which
simulates, e.g., a pedestrian wandering around the robot. If the highlighted map is generated

44

4.3. Problem formulation

by RL where localization is performed under the influence of noise caused by the virtual
obstacle, the generated highlighted map should be robust against the same kind of actual
noise.

The dynamics of the virtual obstacle is defined by the following state equation:{
ξt = f o (ξt−1, dt)
z̃t = go (zt, ξt)

(4.1)

where ξt ∈ Rnξ and dt ∈ Rnd are the state and input of the virtual obstacle, respectively, and
z̃t ∈ Rnz×L is the measurement data affected by the obstacle. The function f o : Rnξ ×Rnd →
Rnξ represents the state transition, and go : Rnz×L ×Rnξ → Rnz×L inserts the noise caused by
the obstacle into zt , which is the raw measurement data. Figure 4.2 shows an example, where
the shape of the obstacle is a simple circle. In Fig. 4.2(b), ξt :=

[
ro

t , θ
o
t
]> ∈ R2 corresponds

to the position of the obstacle in the sensor coordinates (polar coordinate representation),
and dt := [∆ro,∆θo]> ∈ R2 means the amount of movement of the obstacle. Then, f o is
given by

f o (ξt−1, dt) := ξt−1 + dt . (4.2)

The function go converts zt in Fig. 4.2(c) into z̃t in Fig. 4.2(d) based on ξt .

4.3 Problem formulation

LetD ⊂ Rnd be the set of values of the obstacle input dt , and consider generating a highlighted
map m that best improves the localization accuracy when dt takes the worst-case value for
localization at each time.

This section defines the objective function for generating a robust highlighted map in the
same way as in Section 3.1, i.e.,

J(m, d1:T) :=
T∑

t=1
ρ (xt, χt) . (4.3)

Here, the particle set χt is calculated by Algorithm 1 whose inputs are χt−1, ut , z̃t , and
highlighted map m, i.e., χt = MCL (χt−1,ut, z̃t,m).

Then, the problem in this chapter is formulated as follows.

Problem 2. For Algorithm 1, assume that the number N of particles, functions f , g, f o, go,
and ρ, an initial particle set χ0, an initial obstacle state ξ0, control data u1:T , measurement

45

Chapter 4. Robust highlighted map generation

(a) Situation (b) State ξt of virtual obstacle
and its transition

(c) Original measurement data zt (d) Measurement data z̃t affected by vir-
tual obstacle

Figure 4.2: Relationship between virtual obstacle and measurement data

data z1:T , true poses x1:T , and a set D of the obstacle input are given. Then, find the optimal
highlighted map

arg max
m

min
d1,d2,...,dT ∈D

J̄(m, d1:T) (4.4)

where J̄ : RM × Rnd×T → R is the expected value of (4.3), i.e.,

J̄(m, d1:T) := E [J(m, d1:T)] . (4.5)

46

4.4. Robust highlighted map generation based on adversarial reinforcement learning

4.4 Robust highlighted map generation based on adversar-
ial reinforcement learning

This section derives the solution to Problem 2. Problem 2 has the difficulty that as the map
m is optimized, the worst-case obstacle inputs d1:T also changes. Therefore, this section uses
the framework of the adversarial RL such as RARL [39] to learn the optimal highlighted
map and the worst-case obstacle behavior simultaneously in a competitive manner. The
worst-case obstacle behavior is learned by a value iteration method outlined in Section 2.4,
and the highlighted map is optimized by the method proposed in Chapter 3, which is based
on the policy gradient method in [59].

The state of the whole system is uniquely determined from the state of all particles χt

(or χ̄t), the state of the virtual obstacle ξt , and current time ct := t. Thus, the input of the
obstacle should be selected from these values, i.e.,

dt = π̃
o (χt−1, ξt−1, ct) (4.6)

where π̃o : Rn×N × Rnξ × N→ Rnd is a function that selects the value of dt from the set D.

4.4.1 Optimizing of highlighted map

First, focus on how to optimize the highlighted map m. The target system in this chapter
is different from Chapter 3 because it includes a virtual obstacle. However, the map can
actually be optimized in the similar way as in Chapter 3.

This section interprets MCL into the RL framework in Section 2.4 by the following
assignment:

• Policy πm: Functions g and go, and resampling process of MCL. The highlighted map
m is a parameter that determines the behavior of these processes.

• State sm
t =

((
x̂(1)t |t−1, x̂

(2)
t |t−1, . . . , x̂

(N)
t |t−1

)
, ξt, ct

)
: States of all particles of MCL

x̂(1)t |t−1, x̂
(2)
t |t−1, . . . , x̂

(N)
t |t−1, state of virtual obstacle ξt , and current time ct := t.

• Action am
t =

[
γ
(1)
t , γ

(2)
t , . . . , γ

(N)
t

]>
: Resampling result of MCL, where γ(i)t ∈ N is the

index j of the state x̂(j)t |t−1 to which the i-th particle is resampled in line 9 of Algorithm 1.

• Reward rm
t : Output of the function ρ in (4.3).

47

Chapter 4. Robust highlighted map generation

Figure 4.3: Relationship between MCL and RL in case of optimizing highlighted map

Figure 4.3 shows the relationship between MCL and RL in this case. In Fig. 4.3, D and A
compose the resampling process as in Section 3.2.1. Then, the whole system can be regarded
as an MDP.

Next, the characteristic eligibility (2.7) is derived. From Section 3.2.1, π̃m :=
p
(
am

t

�� sm
t ,Θ

)
and et := ∇m ln

{
π̃(am

t , s
m
t ,m)

}
are derived as follows:

π̃m(am
t , s

m
t ,m) =

N∏
i=1

w
(γ(i)t)
t∑N

j=1 w
(j)
t

, (4.7)

et =

N∑
i=1

©­«Γ(i)t −
Nw
(i)
t∑N

j=1 w
(j)
t

ª®¬∇m ln
{
g

(
zt, x̂

(i)
t |t−1,m

)}
. (4.8)

By using et , we can optimize m based on the policy-gradient-based algorithm corresponding
to Algorithm 2.

48

4.4. Robust highlighted map generation based on adversarial reinforcement learning

Figure 4.4: Relationship between MCL and RL in case of learning the worst-case obstacle
behavior

4.4.2 Learning of the worst-case obstacle behavior

Next, let us consider learning the worst-case inputs d1:T of the virtual obstacle. From (4.6),
the RL assignment for learning the worst-case d1:T is as follows:

• Policy πo: Function (4.6) which selects the obstacle input dt from D.

• State so
t = (χt−1, ξt−1, ct): States of all particles of MCL χt−1, state of virtual obstacle

ξt−1, and current time ct := t.

• Action ao
t = dt : Input of virtual obstacle dt .

• Reward ro
t = −rm

t : Output of the function ρ in (4.3).

The relationship in this case is shown in Fig. 4.4. The policy πo can be optimized by a value
iteration method such as the classical Q learning [56] or DQN [57].

Here, an example implementation of the obstacle learning based on Q learning is pre-
sented. Q learning requires a table of Q values in the space of the state so

t and action ao
t .

49

Chapter 4. Robust highlighted map generation

To satisfy this condition, it is assumed that the set of obstacle’s inputs consists of a finite
number of elements. In the case of the obstacle in Fig. 4.2(b), an example of the set is

D =

{[
0
0

]
,

[
∆ro

0

]
,

[
−∆ro

0

]
,

[
0
∆θo

]
,

[
0
−∆θo

]}
(4.9)

where ∆ro ∈ R and ∆θo ∈ R are constants. Since the particle set χt , which is included
in the state so

t , has a large dimension (n × N dimension) for Q learning, its dimension
is reduced to n + 1 dimensions, i.e., average estimation error (xt − h (χt)) and variance

(
∑N

i=1

x̂(i)t − h (χt)

2

).

4.4.3 Method of generating robust highlighted map

The proposed method of generating a robust highlighted map is shown in Algorithm 3, which
is an extension of Algorithm 2.

Algorithm 3 repeats the following processes kmax times. Firstly, the obstacle behavior
is learned in lines 3–10. At each time from t = 1 to T , dt and ξt are calculated to
obtain measurement data including noise, z̃t , and then MCL is executed by using z̃t . After
calculating rt , πo is updated by, e.g., Q learning. Secondly, the highlighted map is updated
in lines 11–22. At each time from t = 1 to T , as in the first half of the algorithm, dt , ξt , and
z̃t are computed, MCL is executed, and rt is calculated. Next, et , the cumulative sum Ut of
et , and the cumulative sum Vt of (rt − b)Ut are computed. After the calculation at time T , the
map m(k) is updated by adding η(k)VT .

Since the expected value of VT is equal to the gradient of (4.5), i.e.,

E [VT] = ∇m J̄(m, d1:T), (4.10)

the equation in line 22 can be regarded as a stochastic approximation method [63,64], similiar
to Algorithm 2. Therefore, this algorithm gives an approximate solution to Problem 2.

4.5 Numerical simulation

The effectiveness of the robust highlighted map is demonstrated in the 3D dynamic simulator
Gazebo. The experimental environment is the corridor shown in Fig. 4.5, whose maps are
equivalent to Fig. 4.1. There is a large pillar at the center and several small objects in the

50

4.5. Numerical simulation

Algorithm 3 Robust highlighted map generation
1: function RobustHighlightedMapGen(χ0, ξ0,u1:T, z1:T, x1:T,m(0))
2: for k = 0 to kmax − 1 do
3: for t = 1 to T do
4: dt = π̃

o (χt−1, ξt−1, ct)
5: ξt = f o (ξt−1, dt)
6: z̃t = go (zt, ξt)
7: χt, χ̄t = MCL (χt−1,ut, z̃t,m(k))
8: rt = ρ (xt, χt)
9: update πo from so

t = (χt−1, ξt−1, ct), so
t+1 = (χt, ξt, ct+1), and rt

10: end for
11: U0 = V0 = 0
12: for t = 1 to T do
13: dt = π̃

o (χt−1, ξt−1, ct)
14: ξt = f o (ξt−1, dt)
15: z̃t = go (zt, ξt)
16: χt, χ̄t = MCL (χt−1,ut, z̃t,m(k))
17: rt = ρ (xt, χt)
18: calculate et according to (4.8) from χt , χ̄t , z̃t , and m(k)
19: Ut = Ut−1 + et
20: Vt = Vt−1 + (rt − b)Ut
21: end for
22: m(k + 1) = m(k) + η(k)VT
23: end for
24: return m(kmax)
25: end function

Figure 4.5: Simulation environment

corridor. The robot pose is expressed as (2.1). The specification of the LIDAR is as follows:
possible maximum detection range is 3 m, scanning angle is 360 degrees, and the number
of data is L := 36 data/rev. The MCL setting is as follows: the number of the particles is

51

Chapter 4. Robust highlighted map generation

Figure 4.6: Robust highlighted map m∗

N := 100, frequency is 5 Hz, and functions f and g are the same as in Section 3.3.

The robust highlighted map was generated by the proposed method under the following
settings. The initial map m(0) is the likelihood field map shown in Fig. 4.1(b). The map
size (number of cells) is M := 240 × 60, and the grid scale is 0.1 m/cell. The training data
utrain

1:T , ztrain
1:T , and xtrain

1:T were obtained as follows: 1) record utrain
t and ztrain

t while the robot
follows the route in Fig. 4.5 at 2 m/s; 2) calculate xtrain

t approximately by executing MCL
with N := 10,000 particles (a larger number than usual for this robot). The function ρ in
(4.3) is set as (3.21). The virtual obstacle is the one in Fig. 4.2, where the shape of the
obstacle is a circle with a diameter of 0.5 m. The set of dt is

D :=

{[
0
0

]
,

[
0.2
0

]
,

[
−0.2

0

]
,

[
0

30◦

]
,

[
0
−30◦

]}
, (4.11)

and the obstacle wanders 360 degrees around the robot, keeping the distance to the robot
between 1 m and 3 m (ro

t ∈ {1,1.2,1.4, . . . ,3}, θo
t ∈ {0◦,30◦,60◦, . . . ,330◦}). For learning

the the worst-case obstacle behavior, Q learning in Section 4.4.2 was used. In Algorithm 2,
the learning rate, maximum iteration number, and reinforcement baseline are

η(k) :=
3

k + 3 × 106 , (4.12)

kmax := 4 × 106, and b := 0.9, respectively.

The robust highlighted map generated by the proposed method is shown in Fig. 4.6.
Compared to the conventional highlighted map (Fig. 4.1(c)), more objects, i.e., the objects at
the northwest, south center, and southeast, are highlighted (red spots) in addition to the one
at the northeast. From the fact, even if some objects are occluded by the obstacle, MCL can
estimate the robot pose by observing other highlighted objects. On the other hand, the object
at the southwest is no longer highlighted. This is because this object was often confused with
the obstacle and interfered with the estimation. Based on these observations, it seems that
the differences from the conventional highlighted map are reasonable ones that contribute to

52

4.5. Numerical simulation

Figure 4.7: Change in objective function while policy of virtual obstacle is trained

the robustness of MCL.

To confirm this robustness, the performance of the generated robust highlighted map are
evaluated as follows. The test data for the evaluation utest

1:T , ztest
1:T , and xtest

1:T were collected in the
similar way as in Section 3.3.2. Firstly, only the virtual obstacle πo was trained (while the
map remained fixed) in the case of using the likelihood field map in Fig. 4.1(b), conventional
highlighted map in Fig. 4.1(c), and robust highlighted map in Fig. 4.6 (denoted by LF, CH,
and RH, respectively). The change in the objective function J is plotted in Fig. 4.7, where
each line shows a moving average of J. It can be seen that the performance of the robust
highlighted map hardly deteriorates even if the training of the virtual obstacle is advanced.
Secondly, the estimation errors in the presence of the trained (worst-case) obstacle were
measured. Each map was tested 100 times by using the corresponding trained obstacle. If
the error exceeded 4 m along the way, it was judged that the robot got lost, and the test was
terminated as a failure. In the case of LF, CH, and RH, the percentages of times the robot
got lost is 6/100, 3/100, 0/100, respectively. The three failures when using CH all resulted
from the confusion between the highlighted object at the southwest and the obstacle. In the
case of RH, the robot did not get lost due to the confusion since the object at the southwest
were not highlighted. Figure 4.8 shows box plots of the maximum estimation errors for each
of the 100 tests, except for the failed tests. The maximum estimation errors when using CH
were mainly caused by the fact that the highlighted object at the northeast was occluded by
the obstacle. In the case of RH, the object at the southeast were also highlighted; thus, even if
one side was occluded by the obstacle, the robot could estimate accurately by observing the
other side. These results suggest that the robust highlighted map has the highest robustness
against the obstacle.

53

Chapter 4. Robust highlighted map generation

Figure 4.8: Box plots of maximum estimation errors in presence of the worst-case obstacle

4.6 Conclusion

This chapter proposed the method of generating a robust highlighted map. Whereas it needs
complex computation such as Q learning and the policy gradient method during generating
the map, it only requires ordinary MCL computation after the map generation. Although
the classical Q learning was used for learning the obstacle behavior, it is possible to learn
more sophisticated behavior by using deep RL such as DQN. In future work, it is necessary
to devise a robustification method that can consider not only measurement noise but also
system noise.

54

Chapter 5

Particle filter design

This chapter proposes a new PF design method by extending the method in Chapter 3. Similar
to Chapter 3, it is an RL-based method, where the parameters of the PF are optimized in the
RL framework by assigning the two randomnesses in the PF to the randomness required for
RL. Specifically, this method performs the following two steps repeatedly: 1) estimate by
the PF; 2) update the parameters based on the estimation results. This method can design
both the system and measurement models and accommodate various objective functions.

First, the PF design method based on RL is proposed. Next, it is applied to the mobile
robot localization problem. The numerical simulation confirms that the proposed method
makes the localization even more accurate than the method in Chapter 3, where only the
measurement model is designed.

5.1 Target system

The target system in this chapter is the general stochastic state-space model denoted by{
xt+1 = F(xt,ut, vt)
zt = G(xt,ωt)

(5.1)

where xt ∈ Rn is the state, ut ∈ Rnu is the input, zt ∈ Rnz is the output or measurement
data, vt ∈ Rnv is the system noise, and ωt ∈ Rnω is the measurement noise. The functions
F : Rn × Rnu × Rnv → Rn and G : Rn × Rnω → Rnz are possibly nonlinear.

55

Chapter 5. Particle filter design

5.2 Particle filter

Consider estimating the probability distribution of xt from ut and zt by the PF shown in
Algorithm 4. This algorithm is a generalization of MCL in Section 2.2. In the algorithm,

x̂(i)t ∈ Rn is the state of the i-th particle, N ∈ N is the number of particles, and χt :=
{
x̂(i)t

}N

i=1
is the particle set. Each particle x̂(i)t is a hypothesis about the true state xt , and the set χt

represents the probability distribution of xt approximately. The algorithm has inputs ut , zt ,
and Θ in addition to χt−1, where ut and zt are the input and measurement data of the target
system (5.1), respectively, and Θ ∈ RnΘ is the parameter vector that characterizes the system
model and the measurement model in the algorithm. Line 4 in the algorithm predicts the state
of each particle based on the system model p

(
xt

�� xt−1,ut,Θ
)
, which expresses the function

F. The state of the i-th particle after the prediction step is denoted by x̂(i)t |t−1 ∈ R
n. Line 5

calculates the weight (likelihood) of each particle from the measurement model p
(
zt

�� xt,Θ
)
,

which corresponds to the function G. The output w(i)t ∈ R+ is the weight of the particle
x̂(i)t |t−1. The system and measurement models, which are both probability density functions
formed by the parameter vector Θ, are hereinafter referred to as

f pf (xt, xt−1,ut,Θ) := p
(
xt

�� xt−1,ut,Θ
)
, (5.2)

gpf (zt, xt,Θ) := p
(
zt

�� xt,Θ
)
. (5.3)

This algorithm performs the following processes. After calculating the weighted particle

set χ̄t :=
{(

x̂(i)t |t−1,w
(i)
t

)}N

i=1
, the particles are randomly sampled based on the ratio of the

weight w(i)t to compose χt . This sampling process is called resampling. Finally, χt is
returned. In addition, the algorithm returns the weighted particle set before resampling, χ̄t ,
which is used for designing the PF.

5.3 Problem formulation

For the purpose of optimizing the parameter vector Θ in the PF, the objective function is
defined as follows:

J(Θ) :=
T∑

t=1
ρ (xt, χt, χ̄t,Θ) (5.4)

where T ∈ N is the operating time, and ρ : Rn × Rn×N × (Rn × R+)N × RnΘ → R evaluates
the estimation result at each time from the true state xt , the particle sets χt and χ̄t , and the

56

5.3. Problem formulation

Algorithm 4 Particle filter
1: function PF(χt−1,ut, zt,Θ)
2: χ̄t = χt = ∅
3: for i = 1 to N do
4: sample x̂(i)t |t−1 ∼ p

(
xt

�� x̂(i)t−1,ut,Θ
)

5: w
(i)
t = p

(
zt

�� x̂(i)t |t−1,Θ
)

6: χ̄t ← χ̄t ∪
{(

x̂(i)t |t−1,w
(i)
t

)}
7: end for
8: for i = 1 to N do

9: x̂(i)t =



x̂(1)t |t−1 with probability w
(1)
t∑N

j=1 w
(j)
t

x̂(2)t |t−1 with probability w
(2)
t∑N

j=1 w
(j)
t

...
...

x̂(N)t |t−1 with probability w
(N)
t∑N

j=1 w
(j)
t

10: χt ← χt ∪
{
x̂(i)t

}
11: end for
12: return χt , χ̄t
13: end function

parameter vector Θ. Note that ρ has more inputs than that in the previous chapters, i.e., χ̄t

and Θ in addition to xt and χt . This allows us to set up a variety of objective functions.
The PF design problem is formulated as follows.

Problem 3. For Algorithm 4, assume that the number N of particles, functions f pf , gpf , and
ρ, an initial particle set χ0, input data u1:T , measurement data z1:T , and true states x1:T are
given. Then, find the optimal parameter vector

arg max
Θ

J̄(Θ) (5.5)

where J̄ : RnΘ → R is the expected value of (5.4), i.e.,

J̄(Θ) := E [J(Θ)] . (5.6)

Note the following two facts: First, as with the previous problems, the solution (5.5) is
optimal only for the past data (u1:T , z1:T , and x1:T) and may not be optimal for future data.

57

Chapter 5. Particle filter design

However, it is expected that the same performance is obtained when the state changes in a
trajectory similar to the one in which the training data (u1:T , z1:T , and x1:T) were collected.
The simulation in Section 5.5 confirmed that it was also effective for future data. Second,
this study focuses on time-invariant systems for simplicity, but its contributions can be easily
extended to time-varying systems. In other words, if the functions in the target system (5.1),
PF, and objective function (5.4) are time-varying (Ft , Gt , f pf

t , gpf
t , and ρt), all the results

described below can be applied in the same way.
In Problem 3, various optimal PFs can be obtained by appropriately assigning ρ. For

example, ρ can be given as one or a combination of the following.

Example 1 (Estimation Error). Assume that the weighted average of the particles

h̄ (χ̄t) :=

∑N
i=1 w

(i)
t x̂(i)t |t−1∑N

i=1 w
(i)
t

(5.7)

is a representative state estimate at each time. Then, maximizing the sum of

ρ1 (xt, χt, χ̄t,Θ) := −
(
xt − h̄ (χ̄t)

)> A
(
xt − h̄ (χ̄t)

)
(5.8)

gives the PF that minimizes the error between the true state and the estimate, where A ∈ Pn
0+

is a weight coefficient matrix.

Example 2 (Particle Dispersion). Roy and Thrun presented the mobile robot motion planning
that minimized the uncertainty of pose estimation along the way [28]. They used a Bayes
filter and represented the uncertainty as the entropy of the probability distribution of the
pose estimate. In the case of the PF, the variance of the particles

ρ2 (xt, χt, χ̄t,Θ) := −
N∑

i=1

(
x̂(i)t − h (χt)

)>
A

(
x̂(i)t − h (χt)

)
(5.9)

can represent the uncertainty of estimation, where h is the average of the state of the particles,
defined as (3.4).

Example 3 (Likelihood). As the log-likelihood of the parameters ln
{
p
(
z1:T

��Θ)}
can be

approximated by the sum of

ρ3 (xt, χt, χ̄t,Θ) := ln

(
1
N

N∑
i=1

w
(i)
t

)
, (5.10)

58

5.4. Particle filter design based on reinforcement learning

the MLE of Θ can be performed by maximizing them [47].

Example 4 (Regularization). By adding the regularization term

ρ4 (xt, χt, χ̄t,Θ) := κ ‖Θ‖2 (5.11)

to functions such as the above ρ1–ρ3, the parameters will not be extremely large, and
overfitting can be avoided [66], where κ ∈ R+ is a weight coefficient for the term.

5.4 Particle filter design based on reinforcement learning

This section gives the solution to Problem 3 based on RL.

5.4.1 Interpretation of particle filter design problem into reinforcement
learning

Consider associating PF with RL. Many RL algorithms, such as in [59], optimizes the
parameters included in the policy by using a probabilistic policy that selects an action at
random. On the other hand, a PF has two random processes; the prediction of the state from
the system model f pf and the resampling based on the ratio of w(i)t . Therefore, by assigning
these random processes of PF to the policy π of RL, the PF parameters Θ can be optimized
based on such RL algorithms. Thus, this section interprets PF into the RL framework in
Section 2.4 by the following assignment:

• Policy π: Prediction process based on the system model f pf and resampling process
including the weight calculation based on the measurement model gpf . The parameter
vector Θ determines the behavior of these processes.

• State st = (χt−1, ct): Particle set χt−1 and current time ct := t.

• Action at =
(
ap

t ,a
r
t
)
: Prediction result ap

t :=
(
x̂(1)t |t−1, x̂

(2)
t |t−1, . . . , x̂

(N)
t |t−1

)
and resampling

result ar
t :=

[
γ
(1)
t , γ

(2)
t , . . . , γ

(N)
t

]>
, where γ(i)t ∈ N is the index j of the state x̂(j)t |t−1 to

which the i-th particle is resampled in line 9 of Algorithm 4.

• Reward rt : Output of the function ρ in (5.4).

59

Chapter 5. Particle filter design

Figure 5.1: Relationship between PF and RL

Note that this chapter differs from Chapter 3 mainly in the following aspects: not only the
resampling but also the prediction process are regarded as the policy, and the reward depends
on χ̄t and Θ in addition to xt and χt .

The relationship between PF and RL is shown in Fig. 5.1, where the systems D and A
are the same as in Section 3.2.1.

Then, the equations

p
(
st+1

�� s1:t,a1:t, π
)
= p

(
st+1

�� st,at
)
, (5.12)

p
(
at

�� s1:t,a1:t−1, π
)
= p

(
at

�� st,Θ
)
, (5.13)

E
[
rt

�� s1:t,a1:t, π
]
= E

[
rt

�� st,at,Θ
]

(5.14)

are satisfied, and the entire system can be treated in a similar way as an MDP. Note that in
a general MDP, the reward does not depend on the policy parameters Θ; however, some RL
methods [67, 68] consider the parameter-dependent reward (5.14).

To apply the policy gradient method in [59], the characteristic eligibility (2.7) is derived.
In the case of this system, π̃ in (2.8) is derived as:

π̃(at, st,Θ) = p
(
ap

t

�� st,Θ
)

p
(
ar

t

�� st,a
p
t ,Θ

)
(5.15)

60

5.4. Particle filter design based on reinforcement learning

where

p
(
ap

t

�� st,Θ
)
=

N∏
i=1

f pf
(
x̂(i)t |t−1, x̂

(i)
t−1,ut,Θ

)
, (5.16)

p
(
ar

t

�� st,a
p
t ,Θ

)
=

N∏
i=1

w
(γ(i)t)
t∑N

j=1 w
(j)
t

. (5.17)

Equations (5.16) and (5.17) are the probability distributions corresponding to the prediction
from f pf and resampling based on w

(i)
t , respectively. From (5.15)–(5.17), et is derived as:

et =

N∑
i=1

 ∇Θ ln
{

f pf
(
x̂(i)t |t−1, x̂

(i)
t−1,ut,Θ

)}

+
©­­«Γ
(i)
t −

Ngpf
(
zt, x̂

(i)
t |t−1,Θ

)
∑N

j=1 g
pf

(
zt, x̂

(j)
t |t−1,Θ

) ª®®¬∇Θ ln
{
gpf

(
zt, x̂

(i)
t |t−1,Θ

)}  (5.18)

where Γ(i)t is defined as (3.13).

In addition, for the conciseness in discussing the parameter-dependent reward (5.14), the
gradient of the reward function is denoted by

ζt := ∇Θ ρ̃ (st,at,Θ) , (5.19)

where ρ̃ : (st,at,Θ) 7→ ρ (xt(st), χt(at), χ̄t(st,at,Θ),Θ) is a rewriting of the function ρ in (5.4)
with RL variables. This can be transformed into

ζt =

N∑
i=1

∂ρ

∂w
(i)
t

(xt, χt, χ̄t,Θ) · ∇Θ w(i)t + ∇Θ ρ (xt, χt, χ̄t,Θ)

=

N∑
i=1

∂ρ

∂w
(i)
t

(xt, χt, χ̄t,Θ) · ∇Θ gpf
(
zt, x̂

(i)
t |t−1,Θ

)
+ ∇Θ ρ (xt, χt, χ̄t,Θ) . (5.20)

It should be noted that w(i)t is included in χ̄t

(
χ̄t :=

{(
x̂(i)t |t−1,w

(i)
t

)}N

i=1

)
. For example, if ρ is

61

Chapter 5. Particle filter design

given by (5.8),

ζt =
2∑N

i=1 w
(i)
t

{
N∑

i=1

(
xt − h̄ (χ̄t)

)> Ax̂(i)t |t−1∇Θ g
pf

(
zt, x̂

(i)
t |t−1,Θ

)
−

(
xt − h̄ (χ̄t)

)> Ah̄ (χ̄t)
N∑

i=1
∇Θ gpf

(
zt, x̂

(i)
t |t−1,Θ

) }
. (5.21)

Also, in the case of (5.10),

ζt =
1∑N

i=1 w
(i)
t

N∑
i=1
∇Θ gpf

(
zt, x̂

(i)
t |t−1,Θ

)
. (5.22)

By using the values et and ζt , the parameter vector Θ can be optimized based on the
RL-based algorithm described in the next section.

5.4.2 Particle filter design method

The PF design method proposed in this chapter is shown in Algorithm 5, where Θ(k) ∈ RnΘ

is the parameter vector at the iteration k. This algorithm is a generalization of Algorithm 2.
In Algorithm 5, the following process is repeated kmax times. First, at each time from

t = 1 to T , the PF is executed, rt , et , and ζt are calculated, and then the cumulative sum Ut

of et and the cumulative sum Vt of (rt − b)Ut + ζt are updated. Second, the parameters are
modified by adding η(k)VT .

Before executing Algorithm 5, it is necessary to operate the system and record its inputs
u1:T , measurement data z1:T , and true states x1:T . The true states x1:T can be acquired, e.g., by
temporarily adding a high-performance sensor that can observe the true state to the system.
In [53], which optimized the estimation accuracy of a PF for estimating a robot pose, the
true poses were measured by a camera mounted in the environment. Alternatively, x1:T

can be estimated after recording u1:T and z1:T using a more complex estimation algorithm
than usual (e.g., PF with a larger number of particles), or a smoothing algorithm [69] which
utilizes future measurement data to improve past estimates. Although x1:T estimated by these
methods will naturally contain some errors, the simulation in Section 5.5.3 confirms that this
x1:T is sufficient to design a practical PF. Note that it is not necessary to obtain x1:T if the
objective function consists of (5.9)–(5.11).

Another example of the procedure for preparing u1:T , z1:T , and x1:T as follows: 1) record
u1:T and z1:T and estimate x1:T from these data; 2) add the extra noise to u1:T and z1:T

62

5.4. Particle filter design based on reinforcement learning

Algorithm 5 Particle filter design
1: function PFDesign(Θ(0), χ0,u1:T, z1:T, x1:T)
2: for k = 0 to kmax − 1 do
3: U0 = V0 = 0
4: for t = 1 to T do
5: χt , χ̄t = PF(χt−1,ut, zt,Θ(k))
6: rt = ρ (xt, χt, χ̄t,Θ(k))
7: calculate et according to (5.18) from χt , χ̄t , ut , zt , and Θ(k)
8: calculate ζt according to (5.20) from χt , χ̄t , zt , xt , and Θ(k)
9: Ut = Ut−1 + et

10: Vt = Vt−1 + (rt − b)Ut + ζt
11: end for
12: Θ(k + 1) = Θ(k) + η(k)VT
13: end for
14: return Θ(kmax)
15: end function

intentionally and input these and x1:T to Algorithm 5. This procedure is expected to design
the PF that is robust to noise.

For the algorithm, the following theorem holds.

Theorem 2. For Algorithm 5, assume that the following conditions hold:

(C9) There exists a bounded convex set P ⊂ RnΘ such that for all k ∈ {0} ∪ N, Θ(k) ∈ P.

(C10) For all (t, x̂, x̂′, χt, χ̄t,Θ) ∈ {1,2, . . . ,T} × Rn × Rn × Rn×N × (Rn × R+)N × P,
∇2
Θ

f pf (x̂, x̂′,ut,Θ), ∇2
Θ
gpf (zt, x̂,Θ), ∇2

wt
ρ (xt, χt, χ̄t,Θ), and ∇2

Θ
ρ (xt, χt, χ̄t,Θ) exists,

where wt :=
[
w
(1)
t ,w

(2)
t , . . . ,w

(N)
t

]>
.

(C11) For all (t, τ,Θ) ∈ {1,2, . . . ,T} × {1,2, . . . , t} × P, E [|rt |] < ∞, E
[
‖et ‖2

]
< ∞,

E
[
‖rteτ‖2

]
< ∞, E [‖rt∇Θ eτ‖F] < ∞, E

[
‖ζt ‖2

]
< ∞, and E [‖∇Θ ζt ‖F] < ∞.

(C12) The learning rate η(k) ∈ R+ satisfies
∑∞

k=0 η(k) = ∞ and
∑∞

k=0 η(k)2 < ∞.

(C13) For variables t ∈ R and ν ∈ RnΘ , the differential equation

dν(t)
dt
= ∇ν J̄ (ν(t)) (5.23)

has an asymptotically stable equilibrium ν = Θ∗ ∈ P.

63

Chapter 5. Particle filter design

(C14) There exists a compact setB1 ⊆ B(Θ∗) such that
��{k

��Θ(k) ∈ B1, k = 0,1,2, . . .
}�� = ∞,

whereB(Θ∗) :=
{
ν0

�� limt→∞ ν(t|ν0) = Θ∗
}
, and ν(t|ν0) ∈ RnΘ is the solution of (5.23)

for an initial value ν0 ∈ RnΘ .

Then,
lim

k→∞
Θ(k) = Θ∗, with probability 1. (5.24)

Proof. By defining φ(k) := VT − ∇Θ J̄ (Θ(k)), line 12 in Algorithm 5 can be rewritten as
follows:

Θ(k + 1) = Θ(k) + η(k)∇Θ J̄ (Θ(k)) + η(k)φ(k). (5.25)

This equation corresponds to the stochastic approximation method [63, 64], and Theorem
2.3.1 in [63] reveals that (5.24) holds if (C9), (C12)–(C14), and the following conditions are
satisfied.

(D4) For all k ∈ {0} ∪ N, E [VT] = ∇Θ J̄ (Θ(k)).

(D5) The function ∇Θ J̄(Θ) is continuous at all Θ ∈ P.

(D6) For all ϵ ∈ R+, limk→∞ P
(
supK≥k

∑K
k ′=k η(k′)φ(k′)

 ≥ ϵ) = 0.

Conditions (D4)–(D6) hold if (C9)–(C12) are satisfied (see Appendix B).

Theorem 2 clarifies that the proposed method gives a local optimum Θ∗, i.e., an approx-
imate solution to Problem 3.

Finally, here are some comments on the conditions in Theorem 2. Conditions (C9),
(C13), and (C14) pertain to the boundedness, convergence value, and trajectory of the
parameters, respectively. These conditions are generally assumed in stochastic approximation
methods [63, 64], and (C9) can be omitted using the method in [64]. Condition (C10) is
about the differentiability of the functions f pf , gpf , and ρ, and (C11) means the boundedness
of the expected values. Although the expected values in (C11) are difficult to calculate, the
corresponding samples (e.g., |rt |, ‖et ‖2, and ‖ζt ‖2) are easily available. Therefore, (C11)
can be roughly assessed by running Algorithm 5 several times to obtain the samples and
confirming that each sample does not diverge. If it is difficult to obtain the samples of
‖rt∇Θ eτ‖F and ‖∇Θ ζt ‖F , the inequalities should be decomposed as follows:

E [‖rt∇Θ eτ‖F] < ∞

⇔ E
[

rt∇2

Θ
ln

{
f pf

(
x̂(i)
τ |τ−1, x̂

(i)
τ−1,uτ,Θ

)}

F

]
< ∞

and E
[

rt∇2

Θ
ln

{
gpf

(
zτ, x̂

(i)
τ |τ−1,Θ

)}

F

]
< ∞, (5.26)

64

5.4. Particle filter design based on reinforcement learning

E [‖∇Θ ζt ‖F] < ∞

⇔ E
[

∇Θ (

∇wt ρ (xt, χt, χ̄t,Θ)
)

F ·

∇Θ gpf

(
zt, x̂

(i)
t |t−1,Θ

)

] < ∞,
E

[

∇2
wt
ρ (xt, χt, χ̄t,Θ)

F ·

∇Θ gpf
(
zt, x̂

(i)
t |t−1,Θ

)

2
]
< ∞,

E
[

∇wt ρ (xt, χt, χ̄t,Θ)

 ·

∇2
Θ
gpf

(
zt, x̂

(i)
t |t−1,Θ

)

F

]
< ∞,

and E
[

∇2
Θ
ρ (xt, χt, χ̄t,Θ)

F

]
< ∞. (5.27)

Condition (C12) is used for designing the learning rate η(k).

5.4.3 Illustrative example

To demonstrate how to use the proposed method, this section designs a PF for estimating the
state xt ∈ R of the Weiner process: {

xt+1 = xt + vt

zt = xt + ωt
(5.28)

where the system noise vt ∈ R and measurement noise ωt ∈ R are zero-mean Gaussian noise
with standard deviations σv ∈ R+ and σω ∈ R+, respectively. Consider finding the parameter
vector Θ := [σv,σω]> optimal with respect to the objective function consisting of (5.10)
(MLE). The system and measurement models are described as

f pf (xt, xt−1,ut,Θ) = N
(
xt − xt−1, σ

2
v

)
, (5.29)

gpf (zt, xt,Θ) = N
(
zt − xt, σ

2
ω

)
, (5.30)

where the function N is a zero-centered normal distribution, as in (2.2). From (5.18) and
(5.22), the characteristic eligibility and gradient of the reward are derived as follows:

et =



1
σ3
v

N∑
i=1

(
x̂(i)t |t−1 − x̂(i)t−1

)2
− N
σv

1
σ3
ω

N∑
i=1

©­«Γ(i)t −
Nw
(i)
t∑N

j=1 w
(j)
t

ª®¬
(
zt − x̂(i)t |t−1

)2


, (5.31)

ζt =

[
0,

1
σ3
ω

∑N
i=1 w

(i)
t

N∑
i=1

w
(i)
t

(
zt − x̂(i)t |t−1

)
− 1
σω

]>
. (5.32)

65

Chapter 5. Particle filter design

By executing Algorithm 5 with (5.31) and (5.32), we can obtain the (local) maximum
likelihood estimate of the parameters.

To confirm this, simulations were performed to record the training data z1:T (x1:T are not
required for (5.10)) from the system (5.28) with σv = 3 and σω = 6 (unknown parameters),
and then the parameters Θ were designed. The initial parameters, the number of particles,
learning rate, and maximum iteration number were Θ(0) := [4,4]>, N := 100,

η(k) :=
1

k + 1 × 105 , (5.33)

and kmax := 1 × 105, respectively. The reinforcement baseline, which reduces the estimated
variance of the equation in (D4), was b := −3.4. By performing the simulations 10 times,
10 sets of training data were collected, and Θ were designed for each set (the designed
parameters for the i-th set are denoted by Θ∗i). The results obtained were as follows: the
mean Θ̄∗ :=

∑10
i=1Θ

∗
i /10 = [3.00,6.03]> and the variance σ2

Θ
:=

∑10
i=1

(
Θ∗i − Θ̄∗

)2 /10 =[
0.3252,0.3202]>.

5.5 Application to mobile robot localization

This section applies the proposed PF design method to MCL, whose algorithm corresponds
to the PF, to show that the proposed method can be applied to practical-scale problems.

This section considers a wheeled robot equipped with a 2D LIDAR. The state xt of
the robot is represented by (2.1). The robot uses wheel odometry data as ut and LIDAR
measurement data as zt to estimate the state.

5.5.1 System and measurement models in localization

As typical examples of a system model f pf and measurement model gpf , this section uses mo-
tion_model_odometry and likelihood_field_range_finder_model in [4]. Each model involves
parameters α and m, respectively; therefore, Θ :=

[
α>,m>

]>.

The system model motion_model_odometry calculates the probability density of the

66

5.5. Application to mobile robot localization

Figure 5.2: Odometry data in system model

current pose xt from the previous pose xt−1 and odometry data ut as follows [4]:

f pf (xt, xt−1,ut,Θ) = N
(
ϕt − ϕ̂t, α

(1)ϕ2
t + α

(2)δ2
t

)
×N

(
δt − δ̂t, α

(3)δ2
t + α

(4)ϕ2
t + α

(4)ψ2
t

)
×N

(
ψt − ψ̂t, α

(1)ψ2
t + α

(2)δ2
t

)
, (5.34)

where ut := [ϕt, δt,ψt]> represents the odometry data at each time in three steps: rotation
(ϕt), translation (δt), and rotation (ψt), as shown in Fig. 5.2. In addition, ϕ̂t , δ̂t , and ψ̂t are
computed from xt and xt−1 as follows:

ϕ̂t = Arg ((xt − xt−1) + i (yt − yt−1)) − θt−1, (5.35)

δ̂t =

√
(xt−1 − xt)2 + (yt−1 − yt)2, (5.36)

ψ̂t = θt − θt−1 − ϕ̂t (5.37)

where i is the imaginary unit, and Arg : C→ R is the argument of the input complex number.
In (5.34), zero-centered normal distributions N are used to model odometry errors, such
as wheel slippage. The parameter vector α :=

[
α(1), α(2), α(3), α(4)

]> ∈ R4
+ represents the

relationship between the amount of movements and variance of odometry errors.

The measurement model likelihood_field_range_finder_model

gpf(zt, xt,Θ) =
L∏
ℓ=1

q
(
z(ℓ)t , xt,m

)
(5.38)

uses LIDAR measurement data zt and the environment map m ∈ Rnm to calculate the
likelihood of a pose estimate xt as described in Section 2.3. In the previous chapters, the cell
values of m were optimized to improve the estimation accuracy, and this chapter also treats
them as the parameters of the measurement model. Note that the measurement model (2.4)
has parameters κ2 and κ3 in addition to m, but in this chapter, these values are fixed as κ2 = 1

67

Chapter 5. Particle filter design

and κ3 = 0 for simplicity.

5.5.2 Derivation of characteristic eligibility for applying proposed
method

To design Θ :=
[
α>,m>

]> using the proposed method, the characteristic eligibility (5.18) is
derived for the models in Section 5.5.1. From (5.34), the log-derivative of f pf in (5.18) is

∇Θ ln
{

f pf
(
x̂(i)t |t−1, x̂

(i)
t−1,ut,Θ

)}
= ∇α ln

{
N

(
ϕt − ϕ̂(i)t , α

(1)ϕ2
t + α

(2)δ2
t

)}
+∇α ln

{
N

(
δt − δ̂(i)t , α

(3)δ2
t + α

(4)ϕ2
t + α

(4)ψ2
t

)}
+∇α ln

{
N

(
ψt − ψ̂(i)t , α

(1)ψ2
t + α

(2)δ2
t

)}
(5.39)

where ϕ̂(i)t , δ̂(i)t , and ψ̂(i)t denote the amount of movements (5.35)–(5.37) for the i-th particle,
and each term in (5.39) can be calculated, e.g., as follows:

∂

∂α(1)
ln

{
N

(
ϕt − ϕ̂(i)t , α

(1)ϕ2
t + α

(2)δ2
t

)}
=

{(
ϕt − ϕ̂(i)t

)2 − α(1)ϕ2
t − α(2)δ2

t

}
ϕ2

t

2
(
α(1)ϕ2

t + α
(2)δ2

t
)2 . (5.40)

The log-derivative of gpf in (5.18) is derived as:

∂

∂m(µ)
ln

{
gpf

(
zt, x̂

(i)
t |t−1,Θ

)}
=
β(i,µ)

m(µ)
(5.41)

where β(i,µ) ∈ {0} ∪N is the order of the factor m(µ) in (5.38), or the number of measurement
data z(ℓ)t projected onto the µ-th cell as described in Section 3.2.1. By substituting (5.39)
and (5.41) into (5.18), the characteristic eligibility is calculated.

5.5.3 Numerical simulation

5.5.3.1 Configuration

This section verifies the effectiveness of the proposed method using the 3D dynamic simulator
Gazebo. Figure 5.3 shows the environment and robot. The measurement data zt are
obtained from the LIDAR whose possible maximum detection range is 5 m, scanning angle
is 360 degrees, and the number of data is L := 18 data/rev. In the PF, the number of particles

68

5.5. Application to mobile robot localization

Figure 5.3: Simulation environment

is N := 100, and the frequency is 5 Hz. The system model f pf and measurement model gpf

are given by (5.34) and (5.38), respectively.

The parameter vector Θ =
[
α>,m>

]> of the PF was optimized under the following
settings. The initial parameter vector of the system model is α(0) := [0.5,0.5,0.5,0.5]>,
and that of the measurement model m(0) is shown in Fig. 5.4, where the map size (number
of cells) is nm := 240 × 140, and the grid scale is 0.1 m/cell. The training data utrain

1:T , ztrain
1:T ,

and xtrain
1:T were collected as follows. First, the robot followed the route in Fig. 5.3 at 2 m/s

to obtain utrain
1:T and ztrain

1:T . Second, the PF was performed with N := 10,000 particles (a
larger number than usual for this robot) by using α(0), m(0), utrain

1:T , and ztrain
1:T , and xtrain

1:T were
approximately computed as the following maximum likelihood pose:

xtrain
t := x̂(i

∗)
t |t−1 s.t. i∗ = arg max

i
w
(i)
t . (5.42)

Note that the true poses, which could be obtained from the simulator, was not used in
the design of the PF to simulate a realistic scenario. The initial particle set is χ0 :={

x̂ini, x̂ini, . . . , x̂ini} where x̂ini ∈ R3 is the initial true state. The function ρ in (5.4) is set as
follows, using the estimation error (5.8),

ρ (xt, χt, χ̄t,Θ) := exp

−
(
xt − h̄ (χ̄t)

)> 
10 0 0
0 10 0
0 0 0


(
xt − h̄ (χ̄t)

) , (5.43)

where the exponential function is used to prevent the magnitude of the value from becoming
too large. The gradient ζt of ρ can be calculated similar to (5.21). The learning rate,

69

Chapter 5. Particle filter design

Figure 5.4: Initial map m(0)

maximum iteration number, and reinforcement baseline are

η(k) :=
0.4

k + 4 × 106 , (5.44)

kmax := 4 × 106, and b := 0.8, respectively. As the parameters α in f pf are positive
numbers close to zero and change sensitively during optimization, this section optimized
α′ :=

[
lnα(1), lnα(2), lnα(3), lnα(4)

]> ∈ R4 instead of α to keep α positive.

5.5.3.2 Result

The result of optimizing the parameters under this configuration is as follows. The change
in the objective function is shown in Fig. 5.5, where the thin blue line is the value of
J (Θ(k)) (only the data at k = 0,1000,2000, . . . are displayed), and the thick red line is
its moving average. It can be seen that the parameters converged to the (local) optimum
Θ∗ :=

[
α∗ >,m∗ >

]>. The parameter vector α changed as shown in Fig. 5.6, and the final
value was α∗ = [0.490,0.079,0.339,0.505]>. The final value m∗ of m is shown in Fig. 5.7,
where uniquely shaped objects in the map are emphasized (red or purple spots). By using
m∗, the robot can use these spots more effectively as clues for localization.

Next, the performance of the designed PF was evaluated. The test data utest
1:T , ztest

1:T , and xtest
1:T

were obtained as follows. The odometry data utest
1:T and measurement data ztest

1:T were measured
while the robot followed the similar trajectory as Section 5.5.3.1, and the true poses xtest

1:T
were obtained from the simulator. The PF estimation was performed 20 times using these

70

5.5. Application to mobile robot localization

Figure 5.5: Change in objective function

Figure 5.6: Change in odometry parameters α

Figure 5.7: Optimized map m∗

test data to calculate the objective function J consisting of (5.43) and the estimation error

∆t :=

√√√√√√√√√(
xtest

t − h̄ (χ̄t)
)> 

1 0 0
0 1 0
0 0 0


(
xtest

t − h̄ (χ̄t)
)
. (5.45)

71

Chapter 5. Particle filter design

Table 5.1: Performance of each PF

PF Mean of J Mean of 1
T
∑T

t=1 ∆t (m)
Initial parameters 22.2 0.816
Only α was optimized 45.3 0.407
Only m was optimized 72.5 0.263
Both α and m were optimized 84.0 0.212

Figure 5.8: Estimation error with PF equivalent to Chapter 3

Figure 5.9: Estimation error with PF designed by proposed method

Table 5.1 shows the mean of J and the mean of the mean absolute error 1
T
∑T

t=1 ∆t over 20
estimations. In addition to the designed PF where both α and m were optimized, the results
of the PF with the initial parameters Θ(0), PF where only α was optimized, and PF where
only m was optimized (equivalent to the method in Chapter 3) are presented for comparison.
In addition, Figs. 5.8 and 5.9 illustrate the errors ∆t of 20 estimations for the PF equivalent
to Chapter 3 (only m was optimized) and the designed PF (both α and m were optimized),
respectively. These results suggest that the proposed method further reduces estimation
errors compared to the conventional method.

Note that there were no objects that were difficult to detect by the LIDAR (e.g., glass),

72

5.5. Application to mobile robot localization

Figure 5.10: Simulation environment in additional experiment

so the color differences in Fig. 5.7 were not caused by the ease of detection by the LIDAR.
Therefore, Fig. 5.4 is a more accurate representation of the environment; whereas Fig. 5.7
provides the PF better estimation accuracy. This is because the estimation accuracy (5.43)
was optimized; therefore, Fig. 5.7 cannot be obtained by the conventional method that
optimizes the likelihood of the parameters, such as [50–52].

5.5.3.3 Verification in different environment

To show the robustness of the proposed method, an additional experiment in a different
environment was performed. The environment and the initial map m(0) are shown in
Figs. 5.10 and 5.11, respectively. The map size is nm := 220 × 220, and the grid scale is
0.1 m/cell. Other settings are the same as in Section 5.5.3.1.

The convergence of the optimization was achieved as shown in Fig. 5.12, which illustrates
the change in the objective function. The odometry parameters α changed as shown in
Fig. 5.13, and the final values were α∗ = [0.445,0.059,0.292,0.490]>. Figure 5.14 shows
the optimized map m∗.

The performance of the designed PF was evaluated in the same way as in Section 5.5.3.2,
and the results are shown in Table 5.2, Figs. 5.15, and 5.16. Table 5.2 lists the values of J

and ∆t for four PFs. Figures 5.15 and 5.16 demonstrate the transition of ∆t in the case of
the PF equivalent to Chapter 3 and the PF designed by the proposed method, respectively.
These results confirm that the proposed method produced a high-performance PF as in the

73

Chapter 5. Particle filter design

Figure 5.11: Initial map m(0) in additional experiment

Figure 5.12: Change in objective function in additional experiment

first experiment. Even though the proposed method designed the PFs with almost the same
settings, it showed good performance in both environments; thus, the proposed method is
considered to be robust to changes in an environment.

5.6 Conclusion

This chapter proposed a method of designing the system and measurement models for
a PF. As the proposed method can optimize various objective functions, it has multiple

74

5.6. Conclusion

Figure 5.13: Change in odometry parameters α in additional experiment

Figure 5.14: Optimized map m∗ in additional experiment

applications, such as nonlinear system identification and improvement of the performance
of a PF. The conditions to guarantee the convergence of the optimization were derived.
Furthermore, the method was applied to mobile robot localization to confirm that it provided
better performance than the method proposed in the previous chapter. Although this study
considered the most basic PF for simplicity, there are many variations of PF, such as auxiliary
PF [70], Rao-Blackwellized PF [71,72], and cluster PF [73,74]. The future work is to develop
design methods for these.

75

Chapter 5. Particle filter design

Table 5.2: Performance of each PF in additional experiment

PF Mean of J Mean of 1
T
∑T

t=1 ∆t (m)
Initial parameters 8.7 1.325
Only α was optimized 22.5 0.512
Only m was optimized 76.6 0.267
Both α and m were optimized 83.9 0.232

Figure 5.15: Estimation error with PF equivalent to Chapter 3 in additional experiment

Figure 5.16: Estimation error with PF designed by proposed method in additional experiment

76

Chapter 6

Conclusion

6.1 Summery

This thesis proposed a new kind of map for mobile robot localization, a highlighted map,
and its generation method. Furthermore, the method was generalized to PF design problem.

In Chapter 3, the concept of the highlighted map was introduced. By using this map,
the localization performance can be improved without having to update robot’s sensors or
online computation. Furthermore, this map can be easily combined with many other existing
MCL-based algorithms. This chapter formulated the problem of generating a highlighted
map and proposed a numerical optimization method based on RL as a solution. This
method automatically identifies and emphasizes the important landmarks on the map. The
generated highlighted map is adapted to situations such as the sensor characteristics and
robot dynamics because this method uses the actual sensor measurement data. It was proven
that the optimization converges under certain technical assumptions.

Chapter 4 constructed the robustification method of a highlighted map. This method
introduces a virtual obstacle causing measurement noise and learns both the worst-case
obstacle behavior and the optimal highlighted map simultaneously based on RARL. The
highlighted map generated by this method improves the localization performance even in the
presence of measurement noise.

Chapter 5 presented a novel method to design the system and measurement models in
a PF. First, the particle filter design problem was formulated, and a solution was proposed.
This is a numerical optimization method, which is a generalization of the method in Chap-
ter 3. Compared to other PF design methods, the advantage of the method is that it can
accommodate various objective functions, such as the estimation accuracy of the PF, the

77

Chapter 6. Conclusion

variance of the particles, the likelihood of the parameters that determine both models, and
the regularization term of the parameters. Moreover, the conditions to guarantee that the
optimization converges with probability 1 were derived. Next, the PF for mobile robot
localization was designed by this method to show that this PF design method can be applied
to practical-scale problems. It should be noted that the robustification method in Chapter 4
can be applied to this PF design method if an effective virtual obstacle for the target system
is introduced.

6.2 Future work

To propose the first highlighted map generation method and a novel PF design method,
this thesis simplified these problems as much as possible. Hence, several issues should be
considered to make the proposed methods more general and practical. For example, the
estimators designed by the proposed methods (MCL with the generated highlighted map
or the designed PF) are specific to a certain situation because they are designed from a
single training data set. Therefore, the estimators are not guaranteed to be effective for all
situations. Also, the proposed methods need to measure the true states as training data in
order to minimize the estimation errors. Several procedures for acquiring true states are
presented in Chapter 3 and 5, but these procedures are sometimes difficult to use.

To design an estimator effective for various possible situations, the following approaches
could be used. The first is to prepare a large number of training data and use all of them
by turns to learn. This is expected to extract common patterns for each data set and yield a
highly versatile estimator. Another approach designs an optimal estimator for each training
data set, and then switches between these designed estimators according to the situation.

It is also necessary to devise a method of designing an estimator that minimizes the
estimation errors without using true states as training data. In [75], RL was used to learn
a policy for estimating hidden states and parameters of nonlinear dynamical systems. They
defined the accumulated errors of observable states as the objective function to search for an
estimation policy that reduces the estimation errors; so their method uses only measurement
data and does not need true states. By applying the strategy of the method, it is expected
that we can obtain an estimator design method that minimizes estimation errors without
measuring true states.

Solving these issues and deriving a more general and practical method of designing
estimators is an important task for the future.

78

Appendices

A Complement to proof of Theorem 1

This appendix provides lemmas about conditions (D1)–(D3) in the proof of Theorem 1.

Lemma 1. For Algorithm 2, if (C1)–(C5) are satisfied, then (D1) holds.

Proof. Several variables have to be defined first. From (2.8) and (3.8)–(3.10), the state
transition probability and the expected reward under π are derived as

Pst+1
st := p

(
st+1

�� st, π
)
=

∑
a∈A

π̃(a, st,m) p
(
st+1

�� st,a
)
, (A.1)

Rst := E
[
rt

�� st, π
]
=

∑
a∈A

π̃(a, st,m) E
[
rt

�� st,a
]
, (A.2)

where A ⊂ {0} ∪ NN is the action set. The probability distribution of the initial state is
defined as

Ps1
χ0,u1 := p

(
s1

�� χ0,u1
)
. (A.3)

Then, from (3.1) and (3.6), the gradient of J̄ is represented by (A.1)–(A.3), as follows:

∇m J̄ (m) = ∇m E

[
T∑

t=1
rt

]
=

T∑
t=1
∇m E [rt]

=

T∑
t=1
∇m

(∫
St

Ps1
χ0,u1 Ps2

s1 · · · P
st
st−1 Rst ds1:t

)
, (A.4)

where S := XN is the space of all possible states at each time. For the integrand of (A.4),
this appendix defines

Et (s1:t,m) := Ps1
χ0,u1 Ps2

s1 · · · P
st
st−1 Rst . (A.5)

79

Appendices

From (C1)–(C5), the following properties hold:

• The function Et is integrable, i.e.,
∫
St
|Et (s1:t,m)| ds1:t < ∞, for all m ∈ M because S

is the bounded set, and |Et (s1:t,m)| is bounded.

• The function Et is differentiable with respect to m, and there exists an integrable
function Ẽ (s1:t) such that ‖∇m Et (s1:t,m)‖ ≤ Ẽ (s1:t) for all (s1:t,m) ∈ St ×M. This is
because there exists a δ4 ∈ R+ such that ‖∇m Et (s1:t,m)‖ ≤ δ4 for all (s1:t,m) ∈ St×M,
and δ4 is integrable, i.e.,

∫
St
|δ4 | ds1:t < ∞.

Thus, the order of differentiation and integration can be interchanged by Proposition 5.9
in [76]. As a result,

∇m

(∫
St

Ps1
χ0,u1 Ps2

s1 · · · P
st
st−1 Rst ds1:t

)
=

∫
St
∇m

(
Ps1
χ0,u1 Ps2

s1 · · · P
st
st−1 Rst

)
ds1:t

=

∫
St

Ps1
χ0,u1

(
∇m Ps2

s1

)
· · · Pst

st−1 Rst ds1:t

+ · · ·

+

∫
St

Ps1
χ0,u1 Ps2

s1 · · ·
(
∇m Pst

st−1

)
Rst ds1:t

+

∫
St

Ps1
χ0,u1 Ps2

s1 · · · P
st
st−1

(
∇m Rst

)
ds1:t . (A.6)

On the other hand, the expected value of (rt − b)Ut in Algorithm 2 is represented as
follows:

E [(rt − b)Ut] = E

[
(rt − b)

t∑
τ=1

eτ

]
=

t∑
τ=1

E [rteτ] − b
t∑

τ=1
E [eτ] . (A.7)

The expected value of rteτ in the case of τ < t is given by

E [rteτ] =
∫
St

Ps1
χ0,u1 Ps2

s1 · · · P
sτ
sτ−1

(
Psτ+1

sτ · eτ
)

Psτ+2
sτ+1 · · · P

st
st−1 Rst ds1:t

=

∫
St

Ps1
χ0,u1 Ps2

s1 · · · P
sτ
sτ−1

{∑
a∈A

π̃(a, sτ,m) p
(
sτ+1

�� sτ,a
)
· ∇m ln {π̃(a, sτ,m)}

}
×Psτ+2

sτ+1 · · · P
st
st−1 Rst ds1:t

=

∫
St

Ps1
χ0,u1 Ps2

s1 · · · P
sτ
sτ−1

{∑
a∈A
∇m π̃(a, sτ,m) p

(
sτ+1

�� sτ,a
)}

Psτ+2
sτ+1 · · · P

st
st−1 Rst ds1:t

=

∫
St

Ps1
χ0,u1 Ps2

s1 · · · P
sτ
sτ−1

(
∇m Psτ+1

sτ
)

Psτ+2
sτ+1 · · · P

st
st−1 Rst ds1:t, (A.8)

80

A. Complement to proof of Theorem 1

and similarly,

E [rtet] =
∫
St

Ps1
χ0,u1 Ps2

s1 · · · P
st
st−1

(
∇m Rst

)
ds1:t, (A.9)

E [eτ] =
∫
St

Ps1
χ0,u1 Ps2

s1 · · · P
sτ
sτ−1

{∑
a∈A

π̃(a, sτ,m) · ∇m ln {π̃(a, sτ,m)}
}

ds1:τ

=

∫
St

Ps1
χ0,u1 Ps2

s1 · · · P
sτ
sτ−1

{
∇m

∑
a∈A

π̃(a, sτ,m)
}

ds1:τ

= 0. (A.10)

From (A.6)–(A.10),

∇m

(∫
St

Ps1
χ0,u1 Ps2

s1 · · · P
st
st−1 Rst ds1:t

)
= E [(rt − b)Ut] . (A.11)

Then, from (A.4) and the fact that VT =
∑T

t=1(rt − b)Ut , (D1) holds.

Lemma 2. For Algorithm 2, if (C1)–(C5) are satisfied, then (D2) holds.

Proof. From (C3) and (C4), the derivative of (A.5) is continuous in m for all s1:t ∈ St , which
means that for all (m′, ϵ) ∈ M × R+, there exists a δ5 ∈ R+ such that for all m ∈ M,

‖m − m′‖ < δ5 ⇒ max
s1:t
‖∇m Et(s1:t,m) − ∇m Et(s1:t,m′)‖ < ϵ. (A.12)

Then, for Ft(m) := ∇m

(∫
St
Et(s1:t,m) ds1:t

)
,

‖Ft(m) − Ft(m′)‖ ≤
∫
St
‖∇m Et(s1:t,m) − ∇m Et(s1:t,m′)‖ ds1:t < δ6 ϵ (A.13)

where δ6 ∈ R+ is some constant. Note that the order of differentiation and integration can be
interchanged from (C1)–(C5), as explained in Lemma 1. Therefore, Ft(m) is also continuous.
From this fact and (A.4), ∇m J̄(m) is continuous.

Lemma 3. For Algorithm 2, if (C3)–(C6) are satisfied, then (D3) holds.

Proof. The following equation holds for the random variable ΞK :=
∑K

k ′=k η(k′)φ(k′),

E
[
ΞK

��Ξk:K−1
]
= E

[
ΞK−1 + η(K)φ(K)

��Ξk:K−1
]

= ΞK−1 + η(K) E
[
φ(K)

��Ξk:K−1
]

= ΞK−1. (A.14)

81

Appendices

Therefore, the stochastic process ΞK (K = k, k + 1, k + 2, . . .) is a martingale, and we obtain
the martingale inequality of Doob [63]

P

(
sup
K≥k

 K∑
k ′=k

η(k′)φ(k′)

 ≥ ϵ

)
≤ 1
ϵ2 E



 ∞∑

k ′=k

η(k′)φ(k′)

2 . (A.15)

Since E
[
φ(k1)>φ(k2)

]
= 0 if k1 , k2, the right side of (A.15) can be transformed as follows:

1
ϵ2 E



 ∞∑

k ′=k

η(k′)φ(k′)

2 =

1
ϵ2

∞∑
k ′=k

η(k′)2E
[
‖φ(k′)‖2

]
. (A.16)

In addition,

E
[
‖φ(k′)‖2

]
= E

[

VT − ∇m J̄(m(k′))

2

]
= E

[
‖VT ‖2

]
−

∇m J̄(m(k′))

2

≤ E
[
‖VT ‖2

]
= E



 T∑

t=1
(rt − b)

t∑
τ=1

eτ

2
≤ E


(

T∑
t=1
|rt − b|

t∑
τ=1
‖eτ‖

)2 . (A.17)

Here, (C5) gives |rt | < ∞, and we have ‖eτ‖ < ∞ from (3.12) and (C3), (C4). Thus, there
exists a δ7 ∈ R+ such that

T∑
t=1
|rt − b|

t∑
τ=1
‖eτ‖ < δ7. (A.18)

From (A.15)–(A.18),

P

(
sup
K≥k

 K∑
k ′=k

η(k′)φ(k′)

 ≥ ϵ

)
<
δ2

7
ϵ2

∞∑
k ′=k

η(k′)2. (A.19)

Equation (A.19) and (C6) indicate that (D3) holds.

82

B. Complement to proof of Theorem 2

B Complement to proof of Theorem 2

This appendix gives the three lemmas to prove Theorem 2.

Lemma 4. For Algorithm 5, if (C9)–(C11) are satisfied, then (D4) holds.

Proof. The particle set χt−1, which composes the RL state st = (χt−1, ct), can be denoted as
χ(at−1) since it is uniquely determined from at−1. Therefore,

π̃(at, st,Θ) = π̃ (at, (χ(at−1), ct) ,Θ) , (B.1)

ρ̃ (st,at,Θ) = ρ̃ ((χ(at−1), ct) ,at,Θ) . (B.2)

With the notation, the following functions are defined:

Pat
t,at−1

:= p
(
at

�� t,at−1, π
)
= π̃ (at, (χ(at−1), ct) ,Θ) , (B.3)

Rt,at−1:t := E
[
rt

�� t,at−1,at, π
]
= ρ̃ ((χ(at−1), ct) ,at,Θ) , (B.4)

where in the case of t = 1,

Pa1
1,a0

:= p
(
a1

�� χ0, π
)
= π̃ (a1, (χ0,1) ,Θ) , (B.5)

R1,a0:1 := E
[
r1

�� a1, π
]
= ρ̃ ((χ0,1) ,a1,Θ) . (B.6)

Then, the gradient of J̄ is represented as:

∇Θ J̄ (Θ) = ∇Θ E

[
T∑

t=1
rt

]
=

T∑
t=1
∇Θ E [rt]

=

T∑
t=1
∇Θ

©­«
∑

ar
1:t∈(Ar)t

∫
(Ap)t
Gt (a1:t,Θ) dap

1:t
ª®¬ (B.7)

where Ap ⊆ Rn×N and Ar ⊂ NN are the sets of ap
t and ar

t , respectively, and

Gt (a1:t,Θ) := Pa1
1,a0

Pa2
2,a1
· · · Pat

t,at−1
Rt,at−1:t . (B.8)

From (C10) and (C11), the following properties hold for (B.8):

83

Appendices

• The function Gt is integrable for allΘ ∈ P because
∫
(Ap)t |Gt (a1:t,Θ)| dap

1:t = E [|rt |] <
∞.

• The function Gt is differentiable with respect to Θ, and there exists an integrable
function G̃ (a1:t) such that ‖∇Θ Gt (a1:t,Θ)‖ ≤ G̃ (a1:t) for all (a1:t,Θ) ∈ (Ap × Ar)t×P.
This is because for the functions

P(τ)t (a1:t,Θ) := Pa1
1,a0
· · ·

(
∇Θ Paτ

τ,aτ−1

)
· · · Pat

t,at−1
Rt,at−1:t , (B.9)

Rt (a1:t,Θ) := Pa1
1,a0
· · · Pat

t,at−1

(
∇Θ Rt,at−1:t

)
, (B.10)

the following inequalities hold:

‖∇Θ Gt (a1:t,Θ)‖ ≤
t∑

τ=1

P(τ)t (a1:t,Θ)

 + ‖Rt (a1:t,Θ)‖ , (B.11)

∫
(Ap)t

P(τ)t (a1:t,Θ)

 dap

1:t = E [‖rteτ‖] < ∞, (B.12)∫
(Ap)t
‖Rt (a1:t,Θ)‖ dap

1:t = E [‖ζt ‖] < ∞, (B.13)

where the equality in (B.12) results from

∇Θ Paτ
τ,aτ−1 = Paτ

τ,aτ−1 × ∇Θ ln Paτ
τ,aτ−1 = Paτ

τ,aτ−1 × eτ . (B.14)

From these properties, the order of differentiation and integration can be interchanged by
Proposition 5.9 in [76], and thus,

∇Θ
©­«

∑
ar

1:t∈(Ar)t

∫
(Ap)t
Gt (a1:t,Θ) dap

1:t
ª®¬ =

∑
ar

1:t∈(Ar)t

∫
(Ap)t
∇Θ Gt (a1:t,Θ) dap

1:t . (B.15)

On the other hand, the expected value of (rt −b)Ut + ζt in Algorithm 5 can be transformed
as follows:

E [(rt − b)Ut + ζt] =
t∑

τ=1
E [rteτ] − b

t∑
τ=1

E [eτ] + E [ζt] . (B.16)

84

B. Complement to proof of Theorem 2

Each term in the right side of (B.16) is calculated similar to (B.12), as follows:

E [rteτ] =
∑

ar
1:t∈(Ar)t

∫
(Ap)t
P(τ)t (a1:t,Θ) dap

1:t, (B.17)

E [eτ] = 0, (B.18)

E [ζt] =
∑

ar
1:t∈(Ar)t

∫
(Ap)t
Rt (a1:t,Θ) dap

1:t . (B.19)

Therefore,
E [(rt − b)Ut + ζt] =

∑
ar

1:t∈(Ar)t

∫
(Ap)t
∇Θ Gt (a1:t,Θ) dap

1:t . (B.20)

From (B.7), (B.15), (B.20), and the fact that VT =
∑T

t=1 ((rt − b)Ut + ζt), (D4) holds.

Lemma 5. For Algorithm 5, if (C9)–(C11) are satisfied, then (D5) holds.

Proof. From (B.7), it is sufficient to prove that the function

Ht(Θ) := ∇Θ
(∫
(Ap)t
Gt (a1:t,Θ) dap

1:t

)
(B.21)

is continuous. Since the order of differentiation and integration can be interchanged as
explained in Lemma 4, for all (Θ′,Θ) ∈ P2, the following inequality holds:

‖Ht(Θ′) − Ht(Θ)‖ ≤
∫
(Ap)t
‖∇Θ Gt (a1:t,Θ

′) − ∇Θ Gt (a1:t,Θ)‖ dap
1:t

≤
t∑

τ=1

∫
(Ap)t

P(τ)t (a1:t,Θ
′) − P(τ)t (a1:t,Θ)

 dap
1:t

+

∫
(Ap)t
‖Rt (a1:t,Θ

′) − Rt (a1:t,Θ)‖ dap
1:t . (B.22)

First, it is proven that there exists a δ8 ∈ R+ such that∫
(Ap)t

P(τ)t (a1:t,Θ
′) − P(τ)t (a1:t,Θ)

 dap
1:t ≤ δ8 ‖Θ′ − Θ‖ . (B.23)

From (C10) and Taylor’s theorem, there exists a λ ∈ (0,1) such that

P(τ,i)t (a1:t,Θ
′) − P(τ,i)t (a1:t,Θ)

=

nΘ∑
j=1

(
Θ
′(j) − Θ(j)

) ∂P(τ,i)t

∂Θ(j)
(a1:t,Θ + λ (Θ′ − Θ)) (B.24)

85

Appendices

where P(τ,i)t is the i-th component of P(τ)t , and Θ(j) is the j-th component of Θ. Therefore,∫
(Ap)t

���P(τ,i)t (a1:t,Θ
′) − P(τ,i)t (a1:t,Θ)

��� dap
1:t

≤
nΘ∑
j=1

���Θ′(j) − Θ(j)��� ∫
(Ap)t

�����∂P(τ,i)t

∂Θ(j)
(a1:t,Θ + λ (Θ′ − Θ))

����� dap
1:t . (B.25)

Also, ∫
(Ap)t

�����∂P(τ,i)t

∂Θ(j)
(a1:t,Θ)

����� dap
1:t ≤

t∑
τ′=1

∫
(Ap)t

���V(τ,i,τ′,j)t (a1:t,Θ)
��� dap

1:t

+

∫
(Ap)t

���W(τ,i,j)
t (a1:t,Θ)

��� dap
1:t (B.26)

where

V(τ,i,τ
′,j)

t (a1:t,Θ) := Pa1
1,a0
· · ·

∂Paτ
τ,aτ−1

∂Θ(i)
· · ·

∂Paτ′
τ′,aτ′−1

∂Θ(j)
· · · Pat

t,at−1
Rt,at−1:t , (B.27)

W(τ,i,j)
t (a1:t,Θ) := Pa1

1,a0
· · ·

∂Paτ
τ,aτ−1

∂Θ(i)
· · · Pat

t,at−1

∂Rt,at−1:t

∂Θ(j)
. (B.28)

Each term in the right side of (B.26) is calculated as:

∫
(Ap)t

���V(τ,i,τ′,j)t (a1:t,Θ)
��� dap

1:t =


E

[�����rt

(
∂e(i)τ
∂Θ(j)

+ e(i)τ e(j)τ

)�����
]

if τ = τ′

E
[���rt e(i)τ e(j)τ′

���] otherwise,
(B.29)

∫
(Ap)t

���W(τ,i,j)
t (a1:t,Θ)

��� dap
1:t = E

[���e(i)τ ζ
(j)
t

���] , (B.30)

where (B.29) is derived from the fact that

∂e(i)τ
∂Θ(j)

=
∂

∂Θ(j)
∂ ln Paτ

τ,aτ−1

∂Θ(i)

=
1

Paτ
τ,aτ−1

∂2Paτ
τ,aτ−1

∂Θ(j)∂Θ(i)
−
∂ ln Paτ

τ,aτ−1

∂Θ(i)
∂ ln Paτ

τ,aτ−1

∂Θ(j)
. (B.31)

Hence, we have
∫
(Ap)t

���� ∂P(τ,i)t

∂Θ(j)
(a1:t,Θ)

���� dap
1:t < ∞ because (C11) results in E [‖rt∇Θ eτ‖F] <

∞, E [‖rteτ‖ · ‖eτ′‖] < ∞, and E [‖eτ‖ · ‖ζt ‖] < ∞. Note that for any two random variables

86

B. Complement to proof of Theorem 2

(X,Y) ∈ R2, we have

E
[
X2] < ∞ and E

[
Y2] < ∞⇒ E [XY] < ∞ (B.32)

from the Cauchy-Schwarz inequality |E [XY]|2 ≤ E
[
X2] E

[
Y2] . Thus, from (B.25), (B.23)

holds.
Similarly, from (C11), there exists a δ9 ∈ R+ such that∫

(Ap)t
‖Rt (a1:t,Θ

′) − Rt (a1:t,Θ)‖ dap
1:t ≤ δ9 ‖Θ′ − Θ‖ . (B.33)

From (B.22), (B.23), and (B.33),

lim
Θ′→Θ

‖Ht(Θ′) − Ht(Θ)‖ = 0, (B.34)

which means thatHt(Θ) is continuous.

Lemma 6. For Algorithm 5, if (C9)–(C12) are satisfied, then (D6) holds.

Proof. For the random variable ΞK :=
∑K

k ′=k η(k′)φ(k′), the stochastic process
ΞK (K = k, k + 1, k + 2, . . .) is a martingale (because the equation E

[
ΞK

��Ξk:K−1
]
= ΞK−1

holds from Lemma 4), and then the martingale inequality of Doob holds [63]. Therefore,

P

(
sup
K≥k

 K∑
k ′=k

η(k′)φ(k′)

 ≥ ϵ

)
≤ 1
ϵ2 E



 ∞∑

k ′=k

η(k′)φ(k′)

2

=
1
ϵ2

∞∑
k ′=k

η(k′)2E
[
‖φ(k′)‖2

]
(B.35)

where the equality follows by the fact that E
[
φ(k1)>φ(k2)

]
= 0 if k1 , k2. In addition,

E
[
‖φ(k′)‖2

]
= E

[
‖VT ‖2

]
−

∇Θ J̄(Θ(k′))

2

≤ E
[
‖VT ‖2

]
≤ E


{

T∑
t=1

(
|rt − b|

t∑
τ=1
‖eτ‖ + ‖ζt ‖

)}2
< ∞ (B.36)

where the last inequality follows from (C11), which leads to E [‖eτ‖ · ‖eτ′‖] < ∞,

87

Chapter 6. Conclusion

E [‖ζt ‖ · ‖ζt ′‖] < ∞, E [‖rteτ‖ · ‖rt ′eτ′‖] < ∞, E [‖eτ‖ · ‖ζt ‖] < ∞, E [‖rteτ‖ · ‖eτ′‖] < ∞,
and E [‖rteτ‖ · ‖ζt ′‖] < ∞ from (B.32). From (B.35), (B.36), and (C12), (D6) holds.

88

References

[1] S. M. Malagon-Soldara, M. Toledano-Ayala, G. Soto-Zarazua, R. V. Carrillo-Serrano,
and E. A. Rivas-Araiza, “Mobile robot localization: A review of probabilistic map-
based techniques,” International Journal of Robotics and Automation, vol. 4, no. 1, pp.
73–81, 2015.

[2] G. Nirmala, S. Geetha, and S. Selvakumar, “Mobile robot localization and navigation
in artificial intelligence: Survey,” Computational Methods in Social Sciences, vol. 4,
no. 2, pp. 12–22, 2016.

[3] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and A. Mouzakitis, “A
survey of the state-of-the-art localization techniques and their potentials for autonomous
vehicle applications,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 829–846, 2018.

[4] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge (MA): MIT
Press, 2005.

[5] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo localization for mo-
bile robots,” in Proceedings of the IEEE International Conference on Robotics and
Automation, 1999, pp. 1322–1328.

[6] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo localization for
mobile robots,” Artificial Intelligence, vol. 128, no. 1–2, pp. 99–141, 2001.

[7] J. S. Gutmann and D. Fox, “An experimental comparison of localization methods
continued,” in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2002, pp. 454–459.

[8] D. Fox, “Adapting the sample size in particle filters through KLD-sampling,” Interna-
tional Journal of Robotics Research, vol. 22, no. 12, pp. 985–1003, 2003.

89

References

[9] L. Zhang, R. Zapata, and P. Lépinay, “Self-adaptive Monte Carlo localization for mobile
robots using range finders,” Robotica, vol. 30, no. 2, pp. 229–244, 2012.

[10] G. Peng, W. Zheng, Z. Lu, J. Liao, L. Hu, G. Zhang, and D. He, “An improved AMCL
algorithm based on laser scanning match in a complex and unstructured environment,”
Complexity, vol. Article ID 2327637, 2018.

[11] H. Jo and E. Kim, “New Monte Carlo localization using deep initialization: A three-
dimensional LiDAR and a camera fusion approach,” IEEE Access, vol. 8, pp. 74 485–
74 496, 2020.

[12] N. Akai, T. Hirayama, and H. Murase, “3D Monte Carlo localization with efficient
distance field representation for automated driving in dynamic environments,” in Pro-
ceedings of the IEEE Intelligent Vehicles Symposium (IV), 2020, pp. 1859–1866.

[13] N. Y. Ko, T. G. Kim, and S. W. Noh, “Monte Carlo localization of underwater robot
using internal and external information,” in Proceedings of the 2011 IEEE Asia-Pacific
Services Computing Conference, 2011, pp. 410–415.

[14] F. J. Perez-Grau, F. Caballero, L. Merino, and A. Viguria, “Multi-modal mapping and
localization of unmanned aerial robots based on ultra-wideband and RGB-D sensing,”
in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2017, pp. 3495–3502.

[15] A. Baggio and K. Langendoen, “Monte Carlo localization for mobile wireless sensor
networks,” Ad Hoc Networks, vol. 6, no. 5, pp. 718–733, 2008.

[16] E. B. Olson, “Real-time correlative scan matching,” in Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, 2009, pp. 4387–4393.

[17] J. Röwekämper, C. Sprunk, G. D. Tipaldi, C. Stachniss, P. Pfaff, and W. Burgard, “On
the position accuracy of mobile robot localization based on particle filters combined
with scan matching,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2012, pp. 3158–3164.

[18] S. W. Yang and C. C. Wang, “Feasibility grids for localization and mapping in crowded
urban scenes,” in Proceedings of the IEEE International Conference on Robotics and
Automation, 2011, pp. 2322–2326.

90

References

[19] M. Rapp, M. Hahn, M. Thom, J. Dickmann, and K. Dietmayer, “Semi-Markov process
based localization using radar in dynamic environments,” in Proceedings of the IEEE
18th International Conference on Intelligent Transportation Systems, 2015, pp. 423–
429.

[20] R. Kümmerle, R. Triebel, P. Pfaff, and W. Burgard, “Monte Carlo localization in outdoor
terrains using multilevel surface maps,” Journal of Field Robotics, vol. 25, no. 6–7, pp.
346–359, 2008.

[21] A. Ohsato, Y. Sasaki, and H. Mizoguchi, “Real-time 6DoF localization for a mo-
bile robot using pre-computed 3D laser likelihood field,” in Proceedings of the IEEE
International Conference on Robotics and Biomimetics, 2015, pp. 2359–2364.

[22] T. N. Hossein, L. H. S. Mita, and Q. H. Do, “Multi-sensor data fusion for autonomous
vehicle navigation and localization through precise map,” International Journal of
Automotive Engineering, vol. 3, no. 1, pp. 19–25, 2012.

[23] M. Hentschel, O. Wulf, and B. Wagner, “A GPS and laser-based localization for urban
and non-urban outdoor environments,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2008, pp. 149–154.

[24] Y. J. Lee, B. D. Yim, and J. B. Song, “Mobile robot localization based on effective
combination of vision and range sensors,” International Journal of Control, Automation
and Systems, vol. 7, no. 1, pp. 97–104, 2009.

[25] S. Xu, W. Chou, and H. Dong, “A robust indoor localization system integrating vi-
sual localization aided by CNN-based image retrieval with Monte Carlo localization,”
Sensors, vol. 19, no. 2, p. 249, 2019.

[26] K. Suyama, Y. Funabora, S. Doki, and K. Doki, “Robust localization for mobile
robot by K-L divergence-based sensor data fusion,” in Proceedings of the 41st Annual
Conference of the IEEE Industrial Electronics Society, 2015, pp. 002 638–002 643.

[27] K. Sakaeta, K. Nonaka, and K. Sekiguchi, “Experimental verification of a vehicle local-
ization based on moving horizon estimation integrating LRS and odometry,” Journal
of Physics: Conference Series, vol. 744, p. 012048, 2016.

91

References

[28] N. Roy and S. Thrun, “Coastal navigation with mobile robots,” in Proceedings of the
12th International Conference on Neural Information Processing Systems, 1999, pp.
1043–1049.

[29] M. Koizumi, K. Nonaka, and K. Sekiguchi, “Avoidance of singular localization envi-
ronment using model predictive control for mobile robots,” in Proceedings of the 11th
Asian Control Conference, 2017, pp. 2866–2871.

[30] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,”
International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274, 2013.

[31] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep reinforce-
ment learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp.
26–38, 2017.

[32] R. C. Smith and P. Cheeseman, “On the representation and estimation of spatial uncer-
tainty,” International Journal of Robotics Research, vol. 5, no. 4, pp. 56–68, 1986.

[33] S. Huang and G. Dissanayake, “Convergence and consistency analysis for extended
Kalman filter based SLAM,” IEEE Transactions on Robotics, vol. 23, no. 5, pp. 1036–
1049, 2007.

[34] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A factored solution
to the simultaneous localization and mapping problem,” in Proceedings of the AAAI
National Conference on Artificial Intelligence, 2003, pp. 593–598.

[35] M. Lin, C. Yang, D. Li, and G. Zhou, “Intelligent filter-based SLAM for mobile robots
with improved localization performance,” IEEE Access, vol. 7, pp. 113 284–113 297,
2019.

[36] S. Thrun and M. Montemerlo, “The graph SLAM algorithm with applications to large-
scale mapping of urban structures,” International Journal of Robotics Research, vol. 25,
no. 5–6, pp. 403–429, 2006.

[37] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A versatile and
accurate monocular SLAM system,” IEEE Transactions on Robotics, vol. 31, no. 5, pp.
1147–1163, 2015.

92

References

[38] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proceedings of the
27th International Conference on Neural Information Processing Systems, 2014, pp.
2672–2680.

[39] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adversarial reinforcement
learning,” in Proceedings of the 34th International Conference on Machine Learning,
2017, pp. 2817–2826.

[40] H. Shioya, Y. Iwasawa, and Y. Matsuo, “Extending robust adversarial reinforcement
learning considering adaptation and diversity,” in Proceedings of the International
Conference on Learning Representations, 2018.

[41] K. Zhang, B. Hu, and T. Basar, “On the stability and convergence of robust adversarial
reinforcement learning: A case study on linear quadratic systems,” in Proceedings of
the 33th International Conference on Neural Information Processing Systems, 2020.

[42] X. Ma, K. Driggs-Campbell, and M. J. Kochenderfer, “Improved robustness and safety
for autonomous vehicle control with adversarial reinforcement learning,” in Proceed-
ings of the IEEE Intelligent Vehicles Symposium (IV), 2018, pp. 1665–1671.

[43] X. Pan, D. Seita, Y. Gao, and J. Canny, “Risk averse robust adversarial reinforce-
ment learning,” in Proceedings of the IEEE International Conference on Robotics and
Automation, 2019, pp. 8522–8528.

[44] M. L. Littman, “Markov games as a framework for multi-agent reinforcement learning,”
in Proceedings of the 11th International Conference on Machine Learning, 1994, pp.
157–163.

[45] J. Morimoto and K. Doya, “Robust reinforcement learning,” Neural Computation,
vol. 17, no. 2, pp. 335–359, 2005.

[46] N. J. Gordon, D. J. Salmond, and A. F. M. Smit, “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation,” IEE Proceedings-F, vol. 140, no. 2, pp. 107–113,
1993.

[47] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian nonlinear state space
models,” Journal of Computational and Graphical Statistics, vol. 5, no. 1, pp. 1–25,
1996.

93

References

[48] C. Choi and H. I. Christensen, “RGB-D object tracking: A particle filter approach on
GPU,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2013, pp. 1084–1091.

[49] J. Wei, G. Dong, and Z. Chen, “Remaining useful life prediction and state of health
diagnosis for lithium-ion batteries using particle filter and support vector regression,”
IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5634–5643, 2018.

[50] G. Kitagawa, “A self-organizing state-space model,” Journal of the American Statistical
Association, vol. 93, no. 443, pp. 1203–1215, 1998.

[51] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov chain Monte Carlo meth-
ods,” Journal of the Royal Statistical Society: Series B (Statistical Methodology),
vol. 72, no. 3, pp. 269–342, 2010.

[52] G. Poyiadjis, A. Doucet, and S. S. Singh, “Particle approximations of the score and
observed information matrix in state space models with application to parameter esti-
mation,” Biometrika, vol. 98, no. 1, pp. 65–80, 2011.

[53] A. Burchardt, T. Laue, and T. Röfer, “Optimizing particle filter parameters for self-
localization,” in RoboCup 2010: Robot Soccer World Cup XIV, 2011, pp. 145–156.

[54] R. Jonschkowski, D. Rastogi, and O. Brock, “Differentiable particle filters: End-to-end
learning with algorithmic priors,” in Proceedings of Robotics: Science and Systems,
2018.

[55] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge
(MA): MIT Press, 1998.

[56] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, pp. 279–292,
1992.

[57] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-
level control through deep reinforcement learning,” Nature, vol. 518, pp. 529–533,
2015.

[58] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist re-
inforcement learning,” Machine Learning, vol. 8, pp. 229–256, 1992.

94

References

[59] H. Kimura, M. Yamamura, and S. Kobayashi, “Reinforcement learning by stochastic hill
climbing on discounted reward,” in Proceedings of the 12th International Conference
on Machine Learning, 1995, pp. 295–303.

[60] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods
for reinforcement learning with function approximation,” in Proceedings of the 12th
International Conference on Neural Information Processing Systems, 1999, pp. 1057–
1063.

[61] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, pp.
2219–2225.

[62] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning
techniques and systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), vol. 37, no. 6, pp. 1067–1080, 2007.

[63] H. J. Kushner and D. S. Clark, Stochastic Approximaiton Methods for Constrained and
Unconstrained Systems. New York (NY): Springer, 1978.

[64] H. J. Kushner and G. G. Yin, Stochastic Approximation and Recursive Algorithms and
Applications. New York (NY): Springer, 2003.

[65] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source
multi-robot simulator,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2004, pp. 2149–2154.

[66] C. M. Bishop, Pattern Recognition and Machine Learning. New York (NY): Springer,
2005.

[67] L. Baird and A. Moore, “Gradient descent for general reinforcement learning,” in
Proceedings of the 11th International Conference on Neural Information Processing
Systems, 1998, pp. 968–974.

[68] J. Baxter and P. L. Bartlett, “Infinite-horizon policy-gradient estimation,” Journal of
Artificial Intelligent Research, vol. 15, pp. 319–350, 2001.

[69] P. Fearnhead, D. Wyncoll, and J. Tawn, “A sequential smoothing algorithm with linear
computational cost,” Biometrika, vol. 97, no. 2, pp. 447–464, 2010.

95

References

[70] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle filters,”
Journal of the American Statistical Association, vol. 94, no. 446, pp. 590–599, 1999.

[71] K. Murphy, “Bayesian map learning in dynamic environments,” in Proceedings of the
12th International Conference on Neural Information Processing Systems, 1999, pp.
1015–1021.

[72] A. Doucet, N. de Freitas, K. Murphy, and S. Russell, “Rao-Blackwellised particle
filtering for dynamic bayesian networks,” in Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence, 2000, pp. 176–183.

[73] A. Milstein, J. N. Sánchez, and E. T. Williamson, “Robust global localization using
clustered particle filtering,” in Proceedings of the 18th National Conference on Artificial
Intelligence, 2002, pp. 581–586.

[74] G. Cen, N. Matsuhira, J. Hirokawa, H. Ogawa, and I. Hagiwara, “An improved particle
filter for service robot self-localization,” SICE Journal of Control, Measurement, and
System Integration, vol. 2, no. 1, pp. 056–063, 2009.

[75] J. Morimoto and K. Doya, “Reinforcement learning state estimator,” Neural Computa-
tion, vol. 19, no. 3, pp. 730–756, 2007.

[76] M. Brokate and G. Kersting, Measure and Integral. Basel: Springer, 2015.

96

Publications

This thesis is based on the following publications:

1. R. Yoshimura, I. Maruta, K. Fujimoto, K. Sato, and Y. Kobayashi, “Highlighted map
for mobile robot localization and its generation based on reinforcement learning,” IEEE
Access, vol. 8, pp. 201527–201544, 2020.

2. R. Yoshimura, I. Maruta, K. Fujimoto, K. Sato, and Y. Kobayashi, “Particle filter design
based on reinforcement learning and its application to mobile robot localization,” IEICE
Transactions on Information and Systems, vol. E105-D, no. 5, 2022 (in press).

3. R. Yoshimura, I. Maruta, K. Fujimoto, K. Sato, and Y. Kobayashi, “Adversarial reinforce-
ment learning based robustification of highlighted map for mobile robot localization,”
in Proceedings of the SICE Annual Conference 2021, 2021, pp. 596–602.

4. R. Yoshimura, I. Maruta, K. Fujimoto, K. Sato, and Y. Kobayashi, “Optimization of
maps for autonomous vehicles based on reinforcement learning,” in Proceedings of the
6th Multi-symposium on Control Systems, 2019, 2G1-3 (in Japanese).

5. R. Yoshimura, I. Maruta, K. Fujimoto, K. Sato, and Y. Kobayashi, “Particle filter design
based on reinforcement learning and its application to localization,” in Proceedings of
the 7th Multi-symposium on Control Systems, 2020, 3A2-2 (in Japanese).

97

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my supervisors, Professor
Kenji Fujimoto and Associate Professor Ichiro Maruta. Professor Fujimoto graciously
accepted me as a doctoral student in his laboratory and gave me excellent teachings on
nonlinear control, optimal control, and more. I was very stimulated by discussions on state-
of-the-art control engineering topics in his laboratory meetings. Associate Professor Maruta
kindly guided me at all times and supplied me with a variety of insightful ideas for my
research. In particular, I could not have proved the theorems in this thesis without his help.
Their guidance was the greatest encouragement for me to pursue my research and helped me
grow as a researcher.

I greatly appreciate Professor Kei Senda and Professor Yoshito Ohta for helpful discus-
sions and important suggestions. Their advice allowed me to consider my research in depth
and, as a result, to broaden my research horizons.

I would like to express my sincere gratitude to my mentor, Professor Toshiharu Sugie
of Osaka University, who has always given me kind guidance and encouragement since my
undergraduate days.

I am indebted to the staff in the System & Control Laboratory, Ms. Chihiro Inamoto
and Ms. Rei Maki, for their kind administrative support. I also gratefully acknowledge
interesting discussions with all the students of the laboratory.

This research could not have been carried out without the support and cooperation of the
staff at my workplace, the Tokyo Metropolitan Industrial Technology Research Institute. I
would like to offer my special appreciation to Dr. Kensuke Kawarada for his warm-hearted
guidance and help in advancing to the doctoral program. I am deeply grateful to Dr. Atsushi
Mitsuo, Mr. Masanao Kuramochi, Mr. Ken Sato, and Mr. Yusuke Kobayashi for their fruitful
help and advice on my research. I would like to express my heartfelt acknowledgment to Dr.
Minoru Tanaka, Dr. Yutaka Arakawa, Ms. Misako Yamaguchi, and the members of the Joto
Branch for their continued great support and cooperation.

99

Acknowledgments

Finally, I would like to thank to my wife, Emi, my son, Yuki, and my parents for their
constant support and encouragement.

100

	Introduction
	Highlighted map
	Robust highlighted map
	Particle filter design
	Summary

	Preliminaries
	Grid map
	Monte Carlo localization
	Measurement model and likelihood field map
	Reinforcement learning

	Highlighted map generation
	Problem formulation
	Highlighted map generation based on reinforcement learning
	Interpretation of highlighted map generation problem into reinforcement learning
	Method of generating highlighted map
	Theoretical analysis

	Numerical simulation
	Generation of highlighted map
	Performance of highlighted map

	Experiment
	Conclusion

	Robust highlighted map generation
	Problem in highlighted map
	Virtual obstacle
	Problem formulation
	Robust highlighted map generation based on adversarial reinforcement learning
	Optimizing of highlighted map
	Learning of the worst-case obstacle behavior
	Method of generating robust highlighted map

	Numerical simulation
	Conclusion

	Particle filter design
	Target system
	Particle filter
	Problem formulation
	Particle filter design based on reinforcement learning
	Interpretation of particle filter design problem into reinforcement learning
	Particle filter design method
	Illustrative example

	Application to mobile robot localization
	System and measurement models in localization
	Derivation of characteristic eligibility for applying proposed method
	Numerical simulation
	Configuration
	Result
	Verification in different environment

	Conclusion

	Conclusion
	Summery
	Future work

	Appendices
	Complement to proof of Theorem 1
	Complement to proof of Theorem 2

	References
	Publications
	Acknowledgments

