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Abstract

Arrays of interacting neutral atoms trapped in individually controllable optical tweezers are versatile
platform for quantum simulation and quantum computing. Use of two–electron atoms, in contrast
to the alkali atoms, offers abundant internal state structures beneficial for control and measurement
of quantum state of atoms.

We present an experimental system for Rydberg tweezer arrays with ytterbium (Yb) atoms
featuring internal state manipulation between the ground 1S0 and the metastable 3P2 states, and
single-photon excitation from the 3P2 to Rydberg states. In the experiments, single Yb atoms are
trapped in two-dimensional arrays of optical tweezers and are detected by fluorescence imaging
with the intercombination 1S0 ↔ 3P1 transition, and the defect-free single atom arrays are prepared
by the rearrangement with the feedaback. We successfully perform high-resolution 1S0 ↔ 3P2 state
spectroscopy for the single atoms, demonstrating the utilities of this ultranarrow transition. We
further perform single-photon excitation from the 3P2 to Rydberg states for the single atoms, which
is a key for the efficient Rydberg excitation. We also perform a systematic measurement of a complex
energy structure of a series of D states including newly observed 3D3 states. The developed system
shows feasibility of future experiments towards quantum simulations and computations using single
Yb atoms.

For such detections of single atoms as we performed, considerable heatings occur which might
cause the change of internal state as well as losses from traps, which is especially problematic for
atoms in an optical lattice. We here propose two schemes for detection of single atoms in an optical
trap without change of internal state. The first one uses the magic condition of optical trap for
the probe transition, which preserve the vibrational state of atoms, and the second one adopts the
dispersive Faraday detection with combination of a squeezed vacuum state, which can realize the
detection of atoms without photon absorption, which is considered as a nondestructive detection of
the number of atoms. This work open the possibility for non-destructive observation of quantum
dynamics of quantum many-body system, especially in an optical lattice.
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CHAPTER 1
Introduction

1.1 Rydberg atom tweezer array

Since the first realization of single-site resolved imaging of atoms in an optical lattice in Hubbard
regime [1], known as quantum gas microscopy (QGM) [2–17], single atoms as a tool for quantum
many-body physics is attracting much attentions [18]. An array of atoms in optical tweezers (OTs)
is another approach to exploit single atoms [19]. Though trappping and detection of single atom in
a single OT were achieved much earlier [20], site-resolved imaging and preparation of a defect-free
atom array were accomplished later than the QGM [21, 22]. The technique is, however, developing
remarkably rapidly since then. Atom tweezer array offers arbitrarily flexible geometry of atoms in
contrast to an optical lattice, but with a difficulty of introducing tunnelings between adjacent sites.
The interaction between other sites is mostly generated by an excitation to Rydberg states, in which
the outermost electron is in a highly excited orbit with a principal quantum number typically larger
than 10. The dynamics is described as a spin-model such as Ising model [23], in contrast to optilcal
lattice system in which the dynamics is described well as a Hubbard model by on-site interactions
and tunnelings [24]. Let us see the hamiltonian of interacting Rydberg atoms with interactions 𝑉𝑖 𝑗
between 𝑖-th and 𝑗-th atoms, coupled to the ground state by a laser with the rabi frequency Ω and
the detuning Δ. The Hamiltonian is given by

ℋ/ℏ =
Ω

2

∑︂
𝑖

(︁
|𝑔𝑖⟩ ⟨𝑟𝑖 | + h.c.

)︁
− Δ

∑︂
𝑖

|𝑟𝑖⟩ ⟨𝑟𝑖 | +
∑︂
𝑖 𝑗

(𝑉𝑖 𝑗/ℎ) |𝑟𝑖𝑟 𝑗⟩ ⟨𝑟𝑖𝑟 𝑗 | , (1.1)

where |𝑔𝑖⟩ and |𝑟𝑖⟩ denotes the ground and the excited state of the 𝑖-th atom, respectively. One can
find an analogy between Eq. (1.1) and the transverse-field Ising model, by regarding the first, the
second, and the third term as the transverse-field, the longitudinal-field, and the spin-spin inter-
action term, respectively. |𝑔⟩ and |𝑟⟩ corresponds to spin up |↑⟩ and down |↓⟩. The difference lies
in the interaction term. While the interaction in Ising model depends on whether the interacting
spins are parallel or antiparallel, in Eq. (1.1) the interaction depends on whether atoms are simulta-
neously excited (spin up) or not. Quantum simulation of the dynamics under Eq. (1.1) is important
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12 CHAPTER 1. INTRODUCTION

for condensed matter physics. Quantum phase transitions has been studied using hundreds of
atoms [25,26].

An atom array is also considered as a promising quantum computing platform [27, 28]. As we
describe in section 3.2.4, strong interactions between Rydberg atoms allow us to perform two-qubit
gate operations. We summarize previous experiments of the atom tweezer array based quantum
computing platforms in Table 1.1. For alkali atoms, single-qubit and two-qubit gate operations on
hyperfine clock states (|𝐹, 𝑚𝐹 = 0⟩ ↔ |𝐹′, 𝑚𝐹′ = 0⟩) or on the ground and Rydberg states, such as
Toffoli gates [29,30] or generation of Bell or cat states [31–33], based on Rydberg interactions have been
demonstrated. Comparing with other physical systems such as trapped ions or superconducting
circuits, the most important advantage of neutral atoms is its scalability. Many atoms can be
trapped with the spacing of typically 1𝜇m to 5𝜇m without affecting each others, unless we generate
interactions between them. In fact, several hundreds or a thousand of atoms can be prepared in an
OT array [25,26]. The number of trapped atoms is limited by some factors such as the field of view of
the optical system or the power of the OT beams, which limit the number of OTs. Another difficulty
unique to neutral atoms is the vulnerability to collisions with background-gas atoms, which causes
escapes of atoms from the trap. Collisions occur once every 100 s typically for a standard room-
temperature vacuum chamber [34]. This is one of the dominant limiting factor, since the lower loss
rate is required as the size of atom array becomes larger. A natural way to reduce the collisions is
to use a cryogenic chamber, which enables trapping of atoms for tens of minutes. Lifetimes up to
6000 s is demonstrated using a 4 K environment recently [35].

In addition to above mentioned achievements, use of alkaline-earth (like) atoms (AE(L)As) rather
than alkali atoms offers a fundamentally advantageous physical platform for quantum computing
and simulation, as we describe in the next section.
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Table 1.1: List of notable atom tweezer array based quantum computing platforms ever realized.

Group Atomic species Qubit state Clifford fidelity Bell state fidelity Ref.

M. Lukin

(Harvard University)
87Rb

|5S1/2 , 𝐹 = 2, 𝑚𝐹 = −2⟩
|70S, 𝐽 = 1/2, 𝑚𝐽 = −1/2⟩

≥ 0.97(3) [36]

M. Saffman

(University of Wisconsin–Madison)

(ColdQuanta)

Cs
|6S1/2 , 𝐹 = 3, 𝑚𝐹 = 0⟩
|6S1/2 , 𝐹 = 4, 𝑚𝐹 = 0⟩

0.9961(4) 0.955† [32, 37]

M. Endres

(Caltech)
88Sr

|(5s)(5p)3P0⟩
|(5s)(61s)3S1 , 𝑚𝐽 = 0⟩

0.9967(9)† ≤ 0.991(4)† [38]

Atom Computing 87Sr
|(5s2)1S0 , 𝐹 = 9/2, 𝑚𝐹 = −9/2⟩
|(5s2)1S0 , 𝐹 = 9/2, 𝑚𝐹 = −7/2⟩

[39]

A. M. Kaufman

(JILA)

88Sr |(5s)2 1S0⟩, |(5s)(5p) 3P0⟩ 0.928(20) [40]
171Yb |(6s2)1S0 , 𝐹 = 1/2, 𝑚𝐹 = ±1/2⟩ 0.9948(5) [41]

J. D. Thompson

(Princeton University)
171Yb |(6s2)1S0 , 𝐹 = 1/2, 𝑚𝐹 = ±1/2⟩ 0.99959(6) 0.83(2) [42]

† SPAM corrected



14 CHAPTER 1. INTRODUCTION

1.2 Alkali atoms vs. Alkaline-earth (like) atoms

Alkaline-earth (like) atoms which possesses two valence electrons, such as strontium (Sr) and yt-
terbium (Yb), have many intriguing and useful properties for quantum simulation, quantum com-
puting, and also quantum metrology. The most well known application should be an optical lattice
clock [43] using the ultra-narrow 1S0↔3P0 transition for the frequency standard, which reached the
level that enables the observation of gravitational redshift across millimeter scale atomic samples
recently [44]. The utilization of AE(L)A to the OT array system as well as the optical lattice system is
a hot topic since the first realizations for Sr [45,46] and Yb [47]. The clock based on an OT array has
also been demonstrated [48–50]. This can be regarded as a hybrid of an optical lattice clock and an
ion clock. The tunable and large separation of atoms offer less interatomic collisions, while allowing
simultaneous interrogations to multiple atoms repeatedly without dead time by loading of atoms
to the array. In particular, an ensemble of 150 Sr atoms has been used for a clock in a cut-of-edge
experiment [50].

The ultra-narrow transition is also considered as a good resource for quantum computing.
Quantum gate operations in an OT array system using the clock 3P0 state have been demonstrated [38,
40], achieving 99.67% SPAM-corrected fidelity for single-atom 𝜋-rotation and 99.1(3)% for the Bell
state fidelity. Despite these investigations using the 3P0 state, experiments utilizing the 3P2 state
has not been performed so far, in spite of its comparable lifetime and linewidth to those of the 3P0

state. There are also several unique features of the 3P2 state compared to 3P0 [51, 52]: First, the
polarizability of the 3P2 state can be widely tuned by changing the magnetic field orientation with
respect to the trapping light. Thus, the magic-like condition can be achieved without choosing
any special wavelengths. Second, the Zeeman shift of the 𝐽 = 2 electronic spin enables individual
addressing of the atoms in different tweezer sites with a modest strength of the magnetic field
gradient, as demonstrated for the atoms in an optical lattice [53]. Third, the 𝑚𝐽 = 0 state of the
bosonic isotopes is expected to be less sensitive to the magnetic field fluctuations than the 3P0 state
as the second-order Zeeman coefficients for the 3P0 and 3P2 states are caluclated to be −6.0 Hz/G2

and 1.2 Hz/G2, respectively [54]. This implies that the 1S0–3P2 (𝑚𝐽 = 0) system of the bosonic
isotopes can be a promising qubit as well as a good resource for precision measurements.

The metastable states also enables a possibility of single-photon Rydberg excitation which offers
a lossless excitation and an ideal controlled phase gate. Rydberg state excitation of alkali atoms is
usually performed by a two-photon process with an intermediate state with a short lifetime mainly
because of the difficulty of generating sufficient power at ultra-violet wavelengths for a single-photon
excitation from the ground state. The protocol of two-qubit gate such as a controlled-𝑍 gate based
on this three-level system suffers from severe requirements of phase shift for exquisite adjustment
of parameters to recover an ideal gate [55], as well as decoherence arising from the short lifetime of
the intermediate state. Use of a metastable state of two-electron atoms, on the other hand, enables
driving to Rydberg states within a two-level system free from such phase shifts and decoherence.
Coherent driving between the 3P0 and a Rydberg state was indeed demonstrated with 88Sr [38].

Another important feature of AE(L)As is the absence of the electron spins in the 1S0 and 3P0
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electronic states, which makes it possible to realize nuclear spin qubits with fermionic isotopes
robust against environmental magnetic field fluctuations [56]. The advantage of the use of the nuclear
spin degrees of freedom of 171Yb, in particular, in quantum information processing was discussed
in [51, 57, 58]. Coherent nuclear spin control between two out of ten spin components in 87Sr [39]
and between the two spin components in 171Yb [41, 42] in optical tweezers were experimentally
demonstrated recently. Furthermore, the nuclear spins of 1S0 and the 3P0 state is considered as a
powerful tool for the quantum simulation of the SU(𝒩) Hubbard model [59, 60].

There are also significant differences between the Rydberg states of alkali atoms and AE(L)As,
which originates from the remaining inner valence electron. The Rydberg electron’s orbit is so large
that it is justified to treat the Rydberg electron and the inner core separately. In the case of alkali
atoms, the electron configuration of the atomic core part is the same as that of noble gas atoms,
which is stable and scarcely interact with photons. In the case of AE(L)A, however, the core part
is equivalent to a monovalent ion, which has strong optical transitions. The resonant transition
leads to doubly excited Rydberg states, (6p)(𝑛𝑙) for the case of Yb atoms, followed by evolving into
ionized state, referred to as auto-ionization [61]. High-fidelity detection of Rydberg states [38] with
the aid of auto-ionization process and control of energy shift of Rydberg states [62, 63] have been
demonstrated for single atoms in an OT array.

The most important consequence of this ionic-core transition is the optical dipole trap of Rydberg
states. Because the energy shift of free electrons by laser fields, known as ponderomotive shift, is
always repulsive, Rydberg states of alkali atoms cannot be trapped directly by an optical dipole
force. On the other hand, in the case of AE(L)A, the polarizability of Rydberg states can be negative
thanks to the contributions from ionic-core transitions. In fact, the trapping of Yb Rydberg atoms in
an OT array has been demonstrated [64].

Thanks to these technical improvements, the performance of a neutral atom as a qubit is well
competing with others. We summarize the performance of neutral atoms, superconducting circuits,
and trapped ions for quantum computing in Table 1.2.

1.3 Nondestructive detection of atoms

For the site-resolved imaging of atoms, fluorescence of atoms by irradiating a resonant light is
used generally. This causes a considerable heating and losses from the trap. Atoms in an optical
lattice, especially, requires additional elaborate cooling procedures in a deep optical lattice during
the imaging to prevent hoppings and losses of atoms. Even with the cooling of the atoms in an
optical lattice site, the imaging fidelity is not perfect [3, 5, 6].

If one can measure the number of atoms without of the change of internal states except projections
to the measurement basis, one can study the subsequent quantum many-body dynamics starting
from the product state of the fixed numbers of atoms as a result of the atom-number projective
measurement. An example of interesting quantum many-body dynamics is the quantum critical
behavior of the Bose-Hubbard systems influenced by measurement backaction [71] and the creation
of a strong correlation with feedback control [72].
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Table 1.2: Comparisons of physical system: neutral atoms, superconduciting circuits, and trapped
ions.

Neutral atoms Superconducting circuits Trapped ions

Single-qubit gate fidelity 99.7% [38] >99% [65] 99.99% [66]
Two-qubit gate fidelity 99.1% [38] 99.7% [67] 99.94% [68]

Operation time ∼1𝜇s 10–50 ns 3–50𝜇s
𝑇1 60 s [39] 2 ms [69] 5500 s [70]
𝑇2 42 s [39] 1 ms [69] 4200 s [70]

Number of physical qubits 256 [26] 127 (IBM) 32 (Ion Q)

From a technical viewpoint, realization of the nondestructive limit of the imaging of single atoms
relaxes the crucial requirement of incorporating an elaborate cooling scheme for an extremely deep
potential. We note that nondestructive monitoring of quantum dynamics of cold atoms in a cavity
quantum electrodynamics setup using a scanning microscope is recently proposed [73,74].

One may expect that the dispersive method using off-resonant probe light such as a Faraday
effect can detect atoms without photon absorption by taking a sufficiently large detuning. However,
it has been discussed that both measurements using resonant and off-resonant light have the same
sensitivity for an optically thin sample for a given extent of absorption [75–77]. This is because of the
existence of the shot noise in the probe light in the interferometric measurement of the dispersive
method. Thus far, there is no quantitative discussion regarding the detection limit of a single atom
under the condition of quantum gas microscopy in which the light can be efficiently collected by an
objective lens with a high numerical aperture (NA).

1.4 This work

In the first part of this work, we focus on Yb atoms and its long-lived metastable 3P2 state toward the
high-fidelity quantum computing in an OT array. In this thesis, we present an experimental system
for Yb Rydberg atom arrays featuring internal state manipulation between the ground 1S0 and the
3P2 states, and single-photon excitation from the 3P2 to Rydberg states.

We trap single 174Yb atoms in arrays of optical tweezers generated by a pair of acousto-optic
deflectors (AODs). High-sensitive imaging of trapped single atoms is performed using the narrow-
line 1S0 ↔ 3P1 transition, yielding 95% of imaging fidelity. The trapped single atoms in one
dimension (1D) and two dimension (2D) are dynamically rearranged to defect-free single atom
arrays with a fast feedback system. Using this system, we succeed in high-resolution 1S0 ↔ 3P2

laser spectroscopy for single Yb atoms. We also successfully demonstrate single-photon excitation
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to a Rydberg state from the metastable 3P2 state for single atoms in optical tweezers. In addition,
we perform a systematic laser spectroscopy for Rydberg states using evaporatively cooled atoms,
in which we newly observe a series of (6s)(𝑛d)3D3 states ranging 𝑛 = 65–80. This work offers an
important step towards the realization of scalable systems for versatile quantum simulation and
computation applications using Yb atom tweezer arrays.

In the second part, we also propose novel schemes that enables nondestructive atom detection,
thus evading higher-band excitation and change of the internal degrees of freedom. We first discuss
the limitation of detection of single atoms by a dispersive Faraday effect. We show that the photon
absorption of the probe beam cannot be ignored to obtain a signal-to-noise ratio greater than unity
even under an ideal condition with an unity NA, which is reminiscent of the result for an optically
thin sample [75–77].

To overcome this limitation, we propose two schemes. The first is to utilize the magic-wavelength
condition of the optical lattice for the transition of probing. The tight confinement in a Lamb-
Dicke regime provides optical transitions mostly between states with the same vibrational quantum
number in the optical lattice sites, thus satisfying the “nondestructive” condition. This is only
applicable for atoms in the ground state without any spin degrees of freedom, such as a bosonic
isotope of two-electron atoms. The second is a scanning-type quantum gas microscope with a
confocal configuration with the use of a broadband squeezed vacuum [78–81]. Squeezed light has
been used to reduce the shot noise [78]. It has been considered to be incorporated into a gravitational
wave detector to beat the standard quantum limit [82]. It has also been shown to be an important
resource of spectroscopy [81], biological measurement [83], magnetometry [79,80], and continuous-
variable quantum information processing [84]. Utilizing the squeezed vacuum and heterodyne
detection of scattered light from the atoms during the Faraday process, we achieve a signal-to-noise
ratio greater than one while suppressing the light absorption and associated higher-band excitations.
A scanning microscope with a confocal configuration is necessary to avoid effective losses on the
squeezed state due to the branching of the spatial distribution of the light and mode-mismatch
between the squeezed light and a local oscillator (LO) in the heterodyne detection. We discuss a
system of two-electron atoms in metastable states as a realistic example of the application of the
proposed scheme, enabling spin-sensitive nondestructive observation of a SU(𝒩) Fermi-Hubbard
model. This work opens the possibility for non-destructive observation of quantum dynamics of
quantum many-body system, especially in an optical lattice.

1.5 Outline

This thesis is structured as follows:
In chapter 2, several fundamental theories of atomic transitions are described. We derive the

multipole expansion of the laser-atom interactions and selection rules including M2 transitions such
as the 1S0 ↔3P2 transition of bosonic isotopes of AE(L)A. Transfers of the center-of-mass motion by
optical transitions and its applications to cooling of atoms are also discussed.

In chapter 3, properties of Yb atoms and Rydberg states are summarized. We describe basic
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aspects of Yb atoms and its energy levels regarding our experiments. We also describe basics of
Rydberg states: scaling laws, a response to static electric fields, interactions between Rydberg states,
unique features of Rydberg states of AE(L)As, and a brief introduction to the quantum defect theory.

In chapter 4, we explain the experimental apparatuses and techniques used in our work. We
datail our vacuum chamber system integrating electrodes and a microchannel plate (MCP), an
optical tweezer array generation system, and laser sources. We explain principles of absorption and
fluorescence imaging, ionization detection, and trapping of single atoms.

Chapter 5 is devoted to the description of trapping and imaging of single atoms in an OT array.
Optical setups, initial alignment, and procedure for getting images of single atoms are first present.
We then show the result of single atom trapping and imaging in optical tweezer arrays, as well as
cooling of atoms and OT array rearrangement by a feedback program.

In chapter 6, we present our results of spectroscopy of 1S0↔3P2 and 3P2 ↔ (6s)(𝑛𝑙) Rydberg
states. We perform sideband-resolved spectroscopy of 1S0 ↔ 3P2 𝑚𝐽 = 0 for single atoms which
could lead to cooling of atoms to their motional ground state. Single-photon excitation of single
atoms to Rydberg states is also demonstrated. We further report our observation of complex spectra
of D-series Rydberg states, including newly observed 3D3 state.

In chapter 7, our proposal of two schemes for realization of nondestructive detection of single
atoms, especially in an optical lattice, is present. We formulate the relation between the signal-to-
noise ratio and photon absorption of Faraday imaging, and show that the detection of atoms without
photon absorption is possible with the aid of a squeezed vacuum state. The other scheme which does
not excite atoms to higher band using a magic wavelength optical trap for the imaging transition is
also present. We finally discuss the feasibility of our scheme using Yb atoms.

In the final chapter of this thesis, we summarize our results and outlooks for the future experi-
ments toward high-fidelity, scalable, and universal quantum computing.



CHAPTER 2
Atomic transitions

2.1 Multipole transitions

In this section, we derive the multipole expansion of the laser–atom interaction and the selection
rule of atomic transitions. The discussion in this section is based on references [85–87].

2.1.1 Multipole expansion of atom–laser interaction

A hamiltonian of the internal state of an atom interacting with an electromagnetic field which is
given by a vector potential A is given by

ℋ =
1

2𝑚 (p − 𝑒A)2 +𝑉(r) (2.1)

=
p2

2𝑚 +𝑉(r)
→ℋA

+ (𝑒A)2
2𝑚
→ℋF

− 𝑒

2𝑚 (p ·A +A · p)
→ℋAF

, (2.2)

where 𝑚, 𝑒, r, p is the mass, charge, the position operator and the momentum operator of the
electron, respectively. 𝑉 denotes the potential which the valence electron feels from the nuclear.
Here we consider the case the atom is interacting with the laser which have the wavenumber k and
the polarization unit vector ê𝜆. A is then written as

A = 𝐴0ê𝜆 exp(−ik · r). (2.3)

The hamiltonian of the atom–field interaction thus becomes

ℋAF = − 𝑒

2𝑚 (p ·A +A · p) (2.4)

= − 𝑒

2𝑚 (−ℏ(k ·A) + 2A · p) (2.5)

= − 𝑒

𝑚
A · p. (2.6)

Here we used the relation k · ê𝜆 = 0. In the following discussion, we omit the sign −1 in Eq. (2.6)
for the sake of simplicity without loss of generality. Using spherical harmonics 𝑌𝑚

𝑙
(n̂) = ⟨n̂|𝑙𝑚⟩,
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exp(−ik · r) is expanded as

exp(−ik · r) = 4𝜋
∞∑︂
𝑙=0

𝑙∑︂
𝑚=−𝑙

(−i)𝑙 𝑔𝑙(𝑘𝑟)𝑌𝑚∗
𝑙

(r̂)𝑌𝑚
𝑙
(k̂), (2.7)

where r̂, k̂ denotes unit vectors parallel to r, k, respectively. 𝑔𝑙(𝑥) denotes the spherical bessel
function which is equivalent to

𝑔𝑙(𝑥) = (−𝑥)𝑙
(︃

1
𝑥

d
d𝑥

)︃ 𝑙 sin 𝑥
𝑥

. (2.8)

Here let us introduce several formulae of spherical tensors. We denote a rank-𝑘 spherical tensor
as T𝑘 and its 𝑚-th component as T 𝑚

𝑘
. A product of two spherical tensors𝑈𝑙 , 𝑉𝑙′ is given by

{U𝑙 ⊗ V𝑙′}𝑀𝑗 =

∑︂
𝑚,𝑚′

⟨𝑙 𝑚 ; 𝑙′ 𝑚′ | 𝑗 𝑀⟩U𝑚
𝑙
V 𝑚′

𝑙′ . (2.9)

⟨𝑙 𝑚 ; 𝑙′ 𝑚′ | 𝑗 𝑀⟩ is the Clebsch–Gordan coefficient (CG coefficient). The CG coefficients satisfy the
following orthogonality and symmetry relations:

∑︂
𝑚𝑚′

⟨ 𝑗 𝑀 | 𝑙 𝑚 ; 𝑙′ 𝑚′⟩ ⟨𝑙 𝑚 ; 𝑙′ 𝑚′ | 𝑗′ 𝑀′⟩ = 𝛿 𝑗 𝑗′𝛿𝑀𝑀′ . (2.10)

⟨𝑙 𝑚 ; 𝑙′ 𝑚′ | 𝑗′ 𝑀′⟩ = (−1)𝑙+𝑙′−𝑗 ⟨𝑙′ 𝑚′ ; 𝑙 𝑚 | 𝑗′ 𝑀′⟩ (2.11)

= (−1)𝑙+𝑙′−𝑗 ⟨𝑙 − 𝑚 ; 𝑙′ − 𝑚′ | 𝑗′ −𝑀′⟩ (2.12)

= ⟨𝑙′ − 𝑚′ ; 𝑙 − 𝑚 ; | 𝑗′ −𝑀′⟩ (2.13)

Note that all the CG coefficients takes real values. Using Eq. (2.10), the inverse relation of Eq. (2.9)
is derived such that

U𝑚
𝑙
V 𝑚′

𝑙′ =

∑︂
𝑗𝑀

⟨ 𝑙 𝑚 ; 𝑙′ 𝑚′ | 𝑗 𝑀⟩ {U𝑙 ⊗ V𝑙′}𝑀𝑗 . (2.14)

From the above relations and the conjugation relation of the sphecical harmonics 𝑌𝑚∗
𝑙

= (−1)𝑚𝑌−𝑚
𝑙

,
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the interaction hamiltonian Eq. (2.6) becomes, using the spherical bases ê𝑞 1,

ℋAF / 4𝜋 𝑒

𝑚
𝐴0 =

1∑︂
𝑞=−1

∑︂
𝑙𝑚

(−i)𝑙(−1)𝑚+𝑞 𝑔𝑙(𝑘𝑟)𝑌−𝑚
𝑙

(r̂)𝑌𝑚
𝑙
(k̂)𝑝𝑞(ê𝜆)−𝑞 (2.16)

=

∑︂
𝑞𝑙𝑚

∑︂
𝑗𝑀

(−i)𝑙(−1)𝑚+𝑞 𝑔𝑙(𝑘𝑟) ⟨𝑙 − 𝑚 ; 1 𝑞 | 𝑗 𝑀⟩𝑌𝑚
𝑙
(k̂){𝑌𝑙(r̂) ⊗ p}𝑀𝑗 (ê𝜆)−𝑞 (2.17)

=

∑︂
𝑞𝑙𝑚

∑︂
𝑗𝑀

(−1)𝑚+𝑞 ⟨𝑙 𝑚 ; 1 − 𝑞 | 𝑗 −𝑀⟩ T𝑀
𝑗,𝑙
(r)𝑌𝑚

𝑙
(k̂)(ê𝜆)−𝑞 (2.18)

=

∑︂
𝑞𝑙𝑚

∑︂
𝑗𝑀

(−1)𝑚+𝑞T𝑀
𝑗,𝑙
(r) ⟨𝑙 − 𝑚 ; 1 − 𝑞 | 𝑗 −𝑀⟩𝑌−𝑚

𝑙
(r̂)(ê𝜆)−𝑞 (2.19)

(2.20)

Here we defined a rank-𝑗 tensor T𝑗 ,𝑙(r) as following:

T𝑗 ,𝑙(r) = (−i)𝑙
{︁
(−1)𝑙+1−𝑗 𝑔𝑙(𝑘𝑟)𝑌𝑙(r̂) ⊗ p

}︁
𝑗

(2.21)

=
1
2 (−i)𝑙

(︂{︁
(−1)𝑙+1−𝑗 𝑔𝑙(𝑘𝑟)𝑌𝑙(r̂) ⊗ p

}︁
𝑗
+

{︁
p ⊗ 𝑔𝑙(𝑘𝑟)𝑌𝑙(r̂)

}︁
𝑗

)︂
(2.22)

The second equation can be derived by using Eq. (2.4) instead of Eq. (2.6). The irreducible tensors
can also be expressed in terms of the spherical harmonic vectors

Y 𝑀
𝑗,𝑙

(r̂) =
∑︂
𝑚1 ,𝑚2

⟨𝑙 𝑚1 ; 1 𝑚2 | 𝑗 𝑀⟩𝑌𝑀𝑗 (r̂)ê𝑚1 , (2.23)

of which the spherical basis component is(︂
Y 𝑀
𝑗,𝑙

(r̂)
)︂
𝑞
= ê𝑞 · Y 𝑀

𝑗,𝑙
(r̂) =

∑︂
𝑚1

(−1)𝑞 ⟨𝑙 𝑚1 ; 1 − 𝑞 | 𝑗 𝑀⟩𝑌𝑀𝑗 (r̂), (2.24)

which is useful in the discussion of the angular momentum transitions [88]. Taking into account
the triangular condition and the conservation rule of the angular momentum, CG coefficients in
Eq. (2.19) vanishes unless 𝐿 = 𝑙 , 𝑙 ± 1 and 𝑚 + 𝑞 = 𝑀. Equation (2.19) thus becomes

∑︂
𝑞,𝑀

∞∑︂
𝑗=0

𝑗+1∑︂
𝑙=𝑗−1

(−1)𝑞(−1)𝑀(−1)𝑙+1−𝑗T𝑀
𝑗,𝑙
(Y −𝑀

𝑗,𝑙
(k̂))𝑞(ê𝜆)−𝑞 (2.25)

=

∞∑︂
𝑗=0

𝑗+1∑︂
𝑙=𝑗−1

(−1)𝑙+1−𝑗T𝑗 ,𝑙 ·
(︂
ê𝜆 · Y𝑗 ,𝑙(k̂)

)︂
. (2.26)

(2.27)

1The inner product of two vectors a and b in the spherical basis is given as

a · b =

∑︂
𝑞

(−1)𝑞 𝑎𝑞𝑏−𝑞 . (2.15)



22 CHAPTER 2. ATOMIC TRANSITIONS

We define spherical vectors Y (𝐸)
𝑗

and Y
(𝑀)
𝑗

as

Y
(𝐸)
𝑗

(k̂) =

√︄
𝑗 + 1

2𝑗 + 1Y
𝑚
𝑗,𝑗−1(k̂) +

√︄
𝑗

2𝑗 + 1 + Y 𝑚
𝑗,𝑗+1(k̂) (2.28)

Y
(𝑀)
𝑗

= Y𝑗 , 𝑗(k̂) (2.29)

which corresponds to electric and magnetic transitions. With the aid of the relation:

k̂𝑌𝑗(k̂) =

√︄
𝑗

2𝑗 + 1Y𝑗 , 𝑗−1(k̂) −

√︄
𝑗

2𝑗 + 1Y𝑙 , 𝑗+1(k̂) (2.30)

and Eq. (2.28), we find

Y𝑗 , 𝑗−1(k̂) =

√︄
𝑗 + 1

2𝑗 + 1Y
(𝐸)
𝑗

(k̂) +

√︄
𝑗

2𝑗 + 1 k̂Y𝑗(k̂) (2.31)

Y𝑗 , 𝑗+1(k̂) =

√︄
𝑗

2𝑗 + 1Y
(𝐸)
𝑗

(k̂) −

√︄
𝑗 + 1

2𝑗 + 1 k̂Y𝑗(k̂). (2.32)

Using this, ℋAF can be decomposed to two parts corresponding to electric and magnetic transitions:

ℋAF / 4𝜋 𝑒

𝑚
𝐴0 =

∞∑︂
𝑗=0

(︄√︄
𝑗 + 1

2𝑗 + 1T𝑗 , 𝑗−1 +

√︄
𝑗

2𝑗 + 1T𝑗 , 𝑗+1

)︄
· (ê𝜆 · Y (𝐸)

𝑗
(k̂))

→ℋ (𝐸)
𝑗

(2.33)

+
∞∑︂
𝑗=0

(︂
−T𝑗 , 𝑗 · (ê𝜆 · Y (𝑀)

𝑗
(k))

)︂
→ℋ (𝑀)

𝑗

. (2.34)

2.1.2 Electric and magnetic multipole operators

Let us confirm that the tensor operator in Eqs. (2.33) and (2.34) correspond to the electric and
magnetic 2𝑗-pole operators respectively, under the long-wave approximation: 𝑘𝑟 ≪ 1. Using the
expansion of 𝑔𝑙(𝑥)

𝑔𝑙(𝑥) =
𝑥 𝑙

(2𝑙 + 1)!! + 𝒪(𝑥 𝑙+1), (2.35)

and a rank-𝑙 tensor obtained by the “power” of r [89]:

{r}𝑙 ≡ {· · · {{r ⊗ r}2 ⊗ r}3 · · · }𝑙 =
√︃

4𝜋𝑙!
(2𝑙 + 1)!! 𝑟

𝑙Y𝑙(r̂), (2.36)

and by taking the lowest order with respect to 𝑟, the tensor operators in Eq. (2.33) become√︄
𝑗 + 1

2𝑗 + 1T𝑗 , 𝑗−1 +

√︄
𝑗

2𝑗 + 1T𝑗 , 𝑗+1 (2.37)

≃ (−i𝑘)𝑗−1

2

√︄
𝑗 + 1

2𝑗 + 1

√︄
(2𝑗 − 1)!!
4𝜋(𝑗 − 1)!

1
(2𝑗 − 1)!!

(︂{︁
p ⊗ {r} 𝑗−1

}︁
𝑗
+

{︁
{r} 𝑗−1 ⊗ p

}︁
𝑗

)︂
, (2.38)
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using Eq. 2.22. The transition matrix element between the initial state 𝑖 and the final state 𝑓 can be
calculated as following (ignoring the constant factor temporarily)

⟨ 𝑓 |
(︂{︁
p ⊗ {r} 𝑗−1

}︁
𝑗
+

{︁
{r} 𝑗−1 ⊗ p

}︁
𝑗

)︂
|𝑖⟩ (2.39)

=
𝑚

iℏ ⟨ 𝑓 |
(︂
{[r,ℋA] ⊗ {r} 𝑗−1} 𝑗 + {{r} 𝑗−1 ⊗ [r,ℋA]} 𝑗

)︂
|𝑖⟩ (2.40)

= −𝑚iℏ ⟨ 𝑓 |
(︂
{(ℋAr) ⊗ {r} 𝑗−1} 𝑗 − {{r} 𝑗−1 ⊗ (rℋA)} 𝑗

)︂
|𝑖⟩ (2.41)

+ 𝑚

iℏ ⟨ 𝑓 |
(︂
{(rℋA) ⊗ {r} 𝑗−1} 𝑗 − {{r} 𝑗−1 ⊗ (ℋAr)} 𝑗

)︂
|𝑖⟩ (2.42)

= −𝑚iℏ ⟨ 𝑓 |
(︁
𝐸 𝑓 {r ⊗ {r} 𝑗−1} 𝑗 − 𝐸𝑖{{r} 𝑗−1 ⊗ r} 𝑗

)︁
|𝑖⟩ (2.43)

= i𝑚𝜔 ⟨ 𝑓 | {r} 𝑗 |𝑖⟩ (2.44)

Here we used a relation

p =
𝑚

iℏ [r,ℋA] . (2.45)

We used that | 𝑓 ⟩ , |𝑖⟩ are eigenstates of ℋA with the eigenvalues 𝐸 𝑓 , 𝐸𝑖 . We also used p2{r}𝑀
𝑗

∝

Δ

(︂
𝑟 𝑗𝑌𝑀

𝑗
(r̂)

)︂
= 0 to eliminate Eq. (2.42). 𝜔 = (𝐸 𝑓 − 𝐸𝑖)/ℏ is the energy gap between the state 𝑖 and 𝑓 .

Equation (2.38) become

−(−i)𝑗
2

𝑐𝑚𝑘 𝑗

(2𝑗 + 1)!!

√︂
𝑗(𝑗 + 1)𝑟 𝑗𝑌𝑗(r̂) (2.46)

=
−(−i)𝑗

2
𝑐𝑚𝑘 𝑗

(2𝑗 − 1)!!

√︄
𝑗(𝑗 + 1)

4𝜋(2𝑗 + 1)Q
(𝐸)
𝑗
, (2.47)

where

Q
(𝐸)
𝑗

≡
√︄

4𝜋
2𝑗 + 1 𝑟

𝑗Y𝑗 (2.48)

is the electric 2𝑗-pole operator. We thus obtain

⟨ 𝑓 | ℋ (𝐸)
𝑗

|𝑖⟩ = −(−i𝑘)𝑗𝑐𝑒𝐴0
2(2𝑗 − 1)!!

√︄
𝑗(𝑗 + 1)

4𝜋(2𝑗 + 1)
(︂
ê𝜆 · Y (𝐸)

𝑗
(k̂)

)︂
· ⟨ 𝑓 |Q(𝐸)

𝑗
|𝑖⟩ . (2.49)

For magnetic part, the lowest order of tensor operator is

T𝑗 , 𝑗 = − (−i𝑘)𝑗
(2𝑗 + 1)!! {𝑟

𝑗𝑌𝑗(r̂) ⊗ p} 𝑗 (2.50)

= − (−i𝑘)𝑗
(2𝑗 + 1)!! 𝑟

𝑗Y
(𝑀)
𝑗

· p. (2.51)

By using a formula

Y
(𝑀)
𝑗

=
1√︁

𝑗(𝑗 + 1)
r × ∇𝑌𝑗 , (2.52)
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we obtain

𝑇𝑗 , 𝑗 = − (−i𝑘)𝑗
(2𝑗 + 1)!! 𝑟

𝑗Y
(𝑀)
𝑗

· p (2.53)

= − (−i𝑘)𝑗
(2𝑗 + 1)!!

𝑟 𝑗√︁
𝑗(𝑗 + 1)

(︁
r × ∇𝑌𝑗

)︁
· p (2.54)

=
(−i𝑘)𝑗

(2𝑗 + 1)!!
r × p√︁
𝑗(𝑗 + 1)

· ∇(𝑟 𝑗𝑌𝑗) (2.55)

=
(−i𝑘)𝑗

(2𝑗 − 1)!!

√︄
𝑗 + 1

4𝜋𝑗(2𝑗 + 1)Q
(𝑀)
𝑗
, (2.56)

where

Q
(𝑀)
𝑗

≡ 1
𝑗 + 1

√︄
4𝜋

2𝑗 + 1r × p · ∇(𝑟 𝑗𝑌𝑗) (2.57)

is the magnetic 2𝑗-pole moment. The transition matrix element become

⟨ 𝑓 | ℋ (𝑀)
𝑗

|𝑖⟩ = (−i𝑘)𝑗
(2𝑗 − 1)!!

√︄
𝑗 + 1

4𝜋𝑗(2𝑗 + 1)
(︂
ê𝜆 · Y (𝑀)

𝑗
(k̂)

)︂
· ⟨ 𝑓 |Q(𝑀)

𝑗
|𝑖⟩ . (2.58)

The terms ê𝜆 · Y (𝐸)
𝑗

(k̂) and ê𝜆 · Y (𝑀)
𝑗

(k̂) in Eqs. (2.49) and (2.58) determines the selection rule of the
transition which change the magnetic sublevel by 𝑀.

2.2 Optical Bloch equation

Let us consider two-level system composed of the ground state |𝑔⟩ and the excited state |𝑒⟩ with the
energy gap ℏ𝜔0. When the system is interacting with the laser oscillating as ei𝜔𝐿𝑡 , the interaction
couples the two states as following

⟨𝑒 | ℋAF |𝑔⟩ = ei𝜔𝐿𝑡ℏΩ/2 (2.59)

⟨𝑔 | ℋAF |𝑒⟩ = e−i𝜔𝐿𝑡ℏΩ/2. (2.60)

Ω is the coupling strength between the ground and the excited state, called rabi frequency. We note
that we can choose Ω to be real by choosing appropriate relative phase between |𝑔⟩ and |𝑒⟩. The
Schrödinger equation of the system is

i 𝜕
𝜕𝑡

|𝜓⟩ =
(︄

0 ei𝜔𝐿𝑡Ω/2
e−i𝜔𝐿𝑡Ω/2 𝜔0

)︄
|𝜓⟩ (2.61)

Equation (2.61) in the rotating frame with 𝜔𝐿 is more convenient:

i 𝜕
𝜕𝑡

|𝜓⟩ =
(︄

0 Ω/2
Ω/2 −Δ

)︄
|𝜓⟩ , (2.62)
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where we defined the detuning of the laser Δ ≡ 𝜔𝐿−𝜔0. In such a two-level system, the bloch sphere
representation is useful. We express the density operator in terms of pauli matrices 𝜎𝑖 as

𝜌 = |𝜓⟩ ⟨𝜓 | =
𝐼 +∑︁

𝑖=𝑥,𝑦,𝑧 ⟨𝜎𝑖⟩𝜎𝑖
2 . (2.63)

From Eq. (2.62), we can get the time evolution equation of ⟨𝜎𝑖⟩:

𝑖
d
d𝑡

⎛⎜⎜⎝
⟨𝜎𝑥⟩
⟨𝜎𝑦⟩
⟨𝜎𝑧⟩

⎞⎟⎟⎠ =
⎛⎜⎜⎝

0 Δ 0
−Δ 0 −Ω
0 Ω 0

⎞⎟⎟⎠
⎛⎜⎜⎝
⟨𝜎𝑥⟩
⟨𝜎𝑦⟩
⟨𝜎𝑧⟩

⎞⎟⎟⎠ (2.64)

=
⎛⎜⎜⎝
Ω

0
−Δ

⎞⎟⎟⎠ ×
⎛⎜⎜⎝
⟨𝜎𝑥⟩
⟨𝜎𝑦⟩
⟨𝜎𝑧⟩

⎞⎟⎟⎠ , (2.65)

meaning the rotation along the axis Ω𝜎𝑥 − Δ𝜎𝑧 without any damping. The modulation frequency
and depth is given by Ωeff =

√
Δ2 +Ω2 and Ω2/Ω2

eff = 1/
(︁
1 + Δ2/Ω2)︁ , respectively. In the more real

picture, the non-unitary evolution due to the spontaneous emission from |𝑒⟩ to |𝑔⟩ should be taken
into account. This damping term can be included in Eq. (2.65) as is shown in the following:

𝑖
d
d𝑡

⎛⎜⎜⎝
⟨𝜎𝑥⟩
⟨𝜎𝑦⟩
⟨𝜎𝑧⟩

⎞⎟⎟⎠ =
⎛⎜⎜⎝
Ω

0
−Δ

⎞⎟⎟⎠ ×
⎛⎜⎜⎝
⟨𝜎𝑥⟩
⟨𝜎𝑦⟩
⟨𝜎𝑧⟩

⎞⎟⎟⎠ −
⎛⎜⎜⎝
𝛾

𝛾

Γ

⎞⎟⎟⎠ ·
⎛⎜⎜⎝

⟨𝜎𝑥⟩
⟨𝜎𝑦⟩

⟨𝜎𝑧⟩ + 1

⎞⎟⎟⎠ , (2.66)

where 𝛾 = Γ/2 and Γ is the transverse decay rate and the longitudinal decay rate, respectively. Γ

corresponds to the usual decay rate of spontaneous emission, namely the inverse of the lifetime of
the excited state. In this thesis we omit the detailed derivation of the damping term2. Equation (2.66)
is called the Optical Bloch Equation (OBE).

The OBE relaxes to a steady state for 𝑡 ≫ 1/Γ. Usually we are interested in the population of the
excited state 𝜌𝑒𝑒 in the steady state, which is given by

𝜌𝑒𝑒(𝑡 → ∞) = 1
2

Ω2/Γ2

1 + (2Δ/Γ)2 + 2Ω2/Γ2 (2.67)

=
1
2

𝐼/𝐼sat

1 + (2Δ/Γ)2 + 𝐼/𝐼sat
, (2.68)

where we used the relation between the saturation intensity 𝐼sat and the intensity of the applied laser
𝐼: 𝐼/𝐼sat = 2Ω2/Γ2. The photon scattering rate is obtained from Eq. (2.68) as

𝑅sc = Γ𝜌𝑒𝑒(𝑡 → ∞) = Γ

2
𝐼/𝐼sat

1 + (2Δ/Γ)2 + 𝐼/𝐼sat
(2.69)
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v

atom

Figure 2.1: Molasses cooling configuration of an atom: Two counter-propagating lasers are irradi-
ated to atom moving in one-dimensional free space.

2.3 Center-of-mass motion associated with optical transitions

2.3.1 Free atoms — Doppler cooling limit

Let us consider an two-level atom moving in free one-dimensional space with a momentum 𝑝.
When two counter propagating lasers with detuning Δ and intensity 𝐼 are irradiated (Fig. 2.1), the
absorption of this light gives momentum to the atom in time d𝑡

(d𝑝)abs = ℏ𝑘 (𝑅sc(𝑣) − 𝑅sc(−𝑣))d𝑡 , (2.70)

where 𝑘 is a wavenumber of the photon, 𝑣 = 𝑝/𝑚 is the velocity of the atom, and

𝑅sc(𝑣) =
Γ

2
𝐼/𝐼sat

1 + (2(Δ − 𝑘𝑣)/Γ)2 + 𝐼/𝐼sat
(2.71)

is the photon scattering rate considering the doppler shift. When the dopple shift is small enough
(𝑘𝑣 ≪ Δ), 𝑅sc can be expanded up to the first order of 𝑣 as

𝑅sc(𝑣) = 𝑅sc(0) + 𝑅′
sc(0)𝑣 (2.72)

𝑅′
sc =

4(Δ/Γ)𝐼/𝐼sat

(1 + (2Δ/Γ)2 + 𝐼/𝐼sat)2
(2.73)

From Eq. (2.70), we obtain the equation for kinetic energy of the atom 𝐸 = 𝑝2/2𝑚 as

(d𝐸)abs =

(︁
d𝑝2)︁

abs
2𝑚 =

𝑝

𝑚

(︁
d𝑝

)︁
abs =

32(Δ/Γ)𝐼/𝐼sat

(1 + (2Δ/Γ)2 + 𝐼/𝐼sat)2
𝐸𝑟

ℏ
𝐸d𝑡. (2.74)

𝐸𝑟 denotes recoil energy by a photon: 𝐸𝑟 ≡ (ℏ𝑘)2/2𝑚.
On the other hand, excited atoms spontaneously emit photons for random direction, resulting in

heating of atom given by

(d𝐸)em = 2𝐸𝑟(𝑅sc(𝑣) + 𝑅sc(−𝑣))d𝑡 (2.75)

= 4𝐸𝑟
Γ

2
𝐼/𝐼sat

1 + (2Δ/Γ)2 + 𝐼/𝐼sat
d𝑡. (2.76)

Adding Eq. (2.73) and Eq. (2.76), we obtain the formula for the time evolution of the energy:

d𝐸
d𝑡 = 2𝐸𝑟

𝐼/𝐼sat

1 + (2Δ/Γ)2 + 𝐼/𝐼sat
×

(︂
Γ + 16(Δ/Γ)(𝐸/ℎ)

1 + (2Δ/Γ)2 + 𝐼/𝐼sat

)︂
. (2.77)

2See [90] for the detailed derivation.
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In steady state the energy become

𝐸 = − ℏΓ

16(Δ/Γ)
(︁
1 + (2Δ/Γ)2 + 𝐼/𝐼sat

)︁
, (2.78)

which takes the minimum value

𝐸 =
ℏΓ

4 (2.79)

when Δ = −Γ/2 and 𝐼/𝐼sat → 0. The corresponding temperature

𝑇𝐷 =
ℏΓ

2𝑘𝐵
(2.80)

is called the Doppler cooling limit. We used the relation between the energy and temperature of
one-dimensional monatomic gas: 𝐸 = 𝑘𝐵𝑇/2. The same discussion holds for higher dimensions.

2.3.2 Strongly bound atoms

When an atom is bound to an trap, the center-of-mass (COM) motion is quantized. For the sake of
simplicity, we consider an atom in one-dimensional harmonic trap with a trapping frequency 𝜈. The
hamiltonian for the COM motion is

𝑉 =
𝑝2

2𝑚 + 𝑚𝜈
2 𝑥2 (2.81)

= 𝑎†𝑎 + 1
2 , (2.82)

where we have defined the lowering and the raising operator 𝑎, 𝑎† according to

𝑥 =
1√

2𝑚𝜈
(𝑎 + 𝑎†) ≡ 𝑥0(𝑎 + 𝑎†), (2.83)

𝑝 = i
√︃
𝑚𝜈
2 (𝑎 − 𝑎†) ≡ 𝑝0(𝑎 − 𝑎†). (2.84)

The transition matrix element between |𝑔, 𝑛𝑔⟩ and |𝑒 , 𝑛𝑒⟩ is given by

⟨𝑒 , 𝑛𝑒 | ℋAF |𝑔, 𝑛𝑔⟩ = Ω0 ⟨𝑛𝑔 | ei𝑘𝑥 |𝑛𝑒⟩ (2.85)

= Ω0 ⟨𝑛𝑔 | ei𝑘𝑥0(𝑎+𝑎†) |𝑛𝑒⟩ . (2.86)

Ω0 is the rabi frequency of the career transitions (𝑛𝑒 = 𝑛𝑔). The constant factor in exponential
𝜂 ≡ 𝑘𝑥0 =

√︁
𝐸𝑟/ℏ𝜈 is called the Lamb-Dicke factor. When 𝜂 ≪ 1 is satisfied, by taking up to the first

order of 𝜂 of Eq. (2.86), we obtain

Ω0 ⟨𝑛𝑔 | ei𝑘𝑥0(𝑎+𝑎†) |𝑛𝑒⟩ ≃ Ω0 ⟨𝑛𝑔 |
(︂
1 + i𝜂(𝑎 + 𝑎†)

)︂
|𝑛𝑒⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ω0 (𝑛𝑒 = 𝑛𝑔)
i
√
𝑛𝑒𝜂Ω0 (𝑛𝑒 = 𝑛𝑔 + 1)

i√𝑛𝑔𝜂Ω0 (𝑛𝑒 = 𝑛𝑔 − 1)
0 (otherwise)

, (2.87)
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which means the transition to add or remove only one phonon is allowed except the career transition,
and their strength is scaled by the Lamb–Dicke factor to the career transition. We call this regime
the Lamb–Dicke regime. Without approximation, exact form of the transition matrix is described
as [91]

⟨𝑛𝑔 | ei𝜂(𝑎+𝑎†) |𝑛𝑒⟩ = e−𝜂2/2𝜂Δ𝑛
√︃
𝑛<!
𝑛>!𝐿

Δ𝑛
𝑛<
(𝜂2), (2.88)

where we defined 𝑛< = min(𝑛𝑔 , 𝑛𝑒), 𝑛> = max(𝑛𝑔 , 𝑛𝑒), and Δ𝑛 = |𝑛𝑒 − 𝑛𝑔 |. 𝐿𝛼𝑛(𝑥) denotesLaguerre
polynomial

𝐿𝛼𝑛(𝑥) =
𝑛∑︂

𝑚=0
(−1)𝑚

(︃
𝑛 + 𝛼
𝑛 − 𝛼

)︃
𝑥𝑚

𝑚! . (2.89)

Note that we have assumed the trap potential does not depend on atom’s internal state in the above
calculation, but this assumption is not always true in case of optical trapping.

When the linewidth Γ of the transition between |𝑔⟩ and |𝑒⟩ is narrow enough to resolve the
trapping frequency, the cycle of the transition can cool atoms to below the Doppler cooling limit.
The cooling rate 𝐴− and the heating rate 𝐴+ can be derived as

𝐴± = 𝜂2 (𝑊(Δ) +𝑊(∓Δ)) , (2.90)

using the scattering rate𝑊(Δ) at laser detuningΔ [92]. 𝑊(Δ) for the two-level system is given by Γ𝜌𝑒𝑒 ,
where 𝜌𝑒𝑒 is deduced in Eq. (2.68). Here we assumed that atoms are precooled to 𝜂2𝑛̄ ≤ 1 region,
where 𝑛̄ denotes the mean occupation number of the motional states. Equation for time-evolution
of 𝑛̄ is expressed as

d
d𝑡 𝑛̄ = −(𝐴− − 𝐴+)𝑛̄ + 𝐴+. (2.91)

In the cooling situation (𝐴− − 𝐴+) > 0, 𝑛̄ approaches to the steady state given by

𝑛̄ 𝑓 =
𝐴+

𝐴− − 𝐴+
=

𝑊(Δ) +𝑊(Δ − 𝜈)
𝑊(Δ + 𝜈) −𝑊(Δ − 𝜈) . (2.92)

For sideband resolved cooling situation Γ ≪ 𝜈, this results in the sub-Doppler cooling 𝑛̄ 𝑓 ≪ 1, while
it recovers the Doppler cooling limit 𝑛̄ 𝑓 𝜈 ≃ Γ/2 for Γ ≳ 𝜈.



CHAPTER 3
Ytterbium and Rydberg states

3.1 Ytterbium

3.1.1 Basic properties of Ytterbium

Ytterbium is one of the lanthanoide atoms with the atomic number 𝑍 = 70. Its electron configuration
consists of complete internal shells and two valence electrons, written as [Xe]4f146s2 (Figure 3.1). The
existence of two valence electrons makes the nature of Yb quite different from that of alkali atoms
as well as alkaline-earth atoms, positively for applications to quantum computing, as is described in
section 1.2.
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Figure 3.1: (Left) Periodic table of elements. Ytterbium in the lanthanoid series is highlighted by a
red square. This periodic table is downloaded from https://www.periodictable.co.za. (Right)
Electron configuration of ytterbium.

Naturally occurring Yb has seven stable isotopes with mass number 168, 170, 171, 173, 174 and
176. Because even/odd mass number corresponds to boson/fermion, Yb has five bosonic isotopes
and two fermionic isotopes. Regarding to nuclear spin, even isotopes has even number protons

29
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and neutrons, and therefore the nuclear becomes spinless (𝐼 = 0), while the odd isotopes have half
integer nuclear spins. Especially, 171Yb has 1/2 nuclear spin, which is why this isotope is thought to
be desirable for the realization of nuclear spin qubit because it spans minimum qubit manifold, no
need to isolate them from other spin components.

Mass number Natural abundance (%) Nuclear spin Statistics

168 0.13 0 Boson
170 3.05 0 Boson
171 14.3 1/2 Fermion
172 21.9 0 Boson
173 16.12 5/2 Fermion
174 31.8 0 Boson
176 12.7 0 Boson

3.1.2 Energy structure and transitions

The energy levels of Yb is shown in Fig. 3.2. In the case of heavy atoms such as Yb, the spin–orbit
coupling becomes not negligible that perturbs and mixes pure 𝐿𝑆-coupling eigenstates, which is
why Yb has intercombination transition (Δ𝑆 = 1) which is strictly forbidden in the 𝐿𝑆-coupling
picture, in addition to dipole-allowed transitions such as 1S0–1P1. As a consequence Yb has rich
availability of optical transitions compared with alkali atoms. In this section properties of optical
transitions used in our experiments are summarised.

3.1.2.1 (6s)2 1S0 ↔(6s)(6p)1P1

An electric dipole-allowed transition (E1 transition) with the wavelength 𝜆 = 398.9 nm and the
natural linewidth 𝛾 = 2𝜋×29 MHz [95]. Thanks to its broad linewidth and resulting strong radiative
pressure, this transition is useful for initial cooling of hot atomic beams, absorption imaging, and
fluorescence imaging. This 1P1 state slightly1 decays to (5d)(6s) 3D1 and (5d)(6s) 3D2, which makes
the transition not completely cyclic.

In our experiments, this transition is used for the Zeeman slowing and the absorption imaging.

3.1.2.2 (6s)2 1S0 ↔(6s)(6p) 3P1

The transition is essentially a closed transition and have the wavelength𝜆 = 555.8 nm and the natulal
linewidth 𝛾 = 2𝜋 × 182.4 kHz [97]. The presence of the spin-orbit coupling makes the state mixed
of pure 𝐿𝑆-coupling eigenstates denoted as |1P0

1⟩ and |3P0
1⟩, namely

|1P1⟩ = 𝛼 |1P0
1⟩ + 𝛽 |3P0

1⟩ , (3.1)

|3P1⟩ = 𝛼 |3P0
1⟩ − 𝛽 |1P0

1⟩ , (3.2)

1The branching ratio is roughly 10−7 [96].



3.1. YTTERBIUM 31

Ionization limit: 50443.2 cm-1
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...n = 10

...

Figure 3.2: Energy levels of the Ytterbium atom is shown. The natural linewidth of the transition 𝛾

is given for a well closed transitions. For those transitions which have multiple states to decay, the
inverse of the lifetime Γ is written. The energy of each levels is cited from [93], except (6s)(𝑛s) 1S0,
(6s)(𝑛d) 1D2, (6s)(𝑛d) 3D2 (𝑛 = 7-80) [94], and (6s)(𝑛s) 3S1 (𝑛 = 28-97) [64].
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thus enabling the coupling of the 3P1 and 1S0. The value of 𝛼 and 𝛽 can be obtained from the lifetime
of each state by the following equation, considering that the |3P0

1⟩ doesn’t couple with the ground
state,

|𝛼 |2
|𝛽 |2 =

𝜏(3P1)𝐸(3P1)3
𝜏(1P1)𝐸(1P1)3

, (3.3)

where 𝜏(·) and 𝐸(·) represents the lifetime and the energy of a state, respectively. From this we can
derive |𝛼 |2 = 0.9834 and |𝛽 |2 = 0.0166.

Compared with 1S0–1P1 transition, the MOT with this intercombination line is desirable because
it is free from the loss of atoms by the branching. In addition to it, the narrow linewidth realizes much
lower Doppler-limited temperature 𝑇𝐷 = ℎΓ/2𝑘𝐵 = 4.4𝜇K compared with alkali-atoms. Meanwhile
this linewidth creates enough radiation pressure to perform the Magneto-Optical Trap (MOT) with-
out other transitions, which is why we adopt the transition for the MOT. Except MOT, the transition
is used for light-assisted collisions and fluorescence imaging, mainly because of compatibility with
the high-NA imaging system as described in section 5.1.

Table 3.1: Frequently used parameters for 1S0↔1P1, 1S0↔3P1, and 3P2↔3S1 transitions are summa-
rized.

Parameter 1S0↔1P1
1S0↔3P1

3P2↔3S1 Unit
Wavelength 𝜆 398.9 555.8 770.2 nm
Lifetime 𝜏 5.5 873 13 ns
Natural linewidth Γ/2𝜋 = 1/2𝜋𝜏 29 182 MHz
Saturation intensity 𝐼sat 59 0.139 1.7 mW/cm2

Recoil energy 𝐸𝑅/𝑘B 344 178 93 nK

3.1.2.3 (6s)2 1S0 ↔(6s)(6p) 3P2

Doubly forbidden as E1 transition (Δ𝑆 ≠ 0, Δ𝐽 ≠ ±1). This transition is allowed as magnetic
quadrupole (M2) transition or, in the case of fermionic isotopes, as a hyperfine mixing induced E1
(HFM-E1) transition.

• Bosonic isotopes — M2 transition

As derived in Eq. (2.34), the selection rule of the magnetic sublevels of the M2 transition is
given by

⟨ 𝑓 | ℋ (𝑀)
𝐿=2 |𝑖⟩ ∝ ê𝜆 · Y (𝑀)

2 (k̂), (3.4)
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where the explicit form of the spherical harmonic vector is expressed as

Y
(𝑀)
±2 (k̂) =

√︃
5

16𝜋e±i𝜙𝑘 sin𝜃𝑘
(︂√

2 cos𝜃𝑘 ê±1 ± sin𝜃𝑘e±i𝜙𝑘e0̂

)︂
(3.5)

Y
(𝑀)
±1 (k̂) = ∓1

4

√︃
5

6𝜋

(︂
(3 cos2 𝜃𝑘 − 1)ê± ±

√
6 cos𝜃𝑘 sin𝜃𝑘e±i𝜙𝑘 ê0 −

√
3 sin2 𝜃𝑘e±2i𝜙𝑘 ê∓

)︂
(3.6)

Y
(𝑀)

0 (k̂) = −1
4

√︃
15
𝜋

cos𝜃𝑘 sin𝜃𝑘(e−i𝜙𝑘 ê+ + ei𝜙𝑘 ê−) (3.7)

We show examples of selection rules in several situations in Fig. 3.3. Here 𝑧 axis corresponds
to the quantization axis.

(i) (ii)

(v)

(iii)

(iv)

Figure 3.3: Five configurations of the laser direction k̂ and the polarization ê𝜆 (i)𝜃𝑘 = 0, ê𝜆 = x̂,
(ii)𝜃𝑘 = 45◦ , ê𝜆 = (x̂ + ẑ)/

√
2, (iii)𝜃𝑘 = 45◦ , ê𝜆 = ŷ, (iv)𝜃𝑘 = 90◦ , ê𝜆 = ẑ, (v)𝜃𝑘 = 90◦ , ê𝜆 = ŷ and

the allowed change of the magnetic sublevels Δ𝑚 in each cases is shown. 𝑧 axis is set to be the
quantization axis.

• Fermionic isotopes — Hyperfine mixing induced E1 transition

In the case of fermionic isotopes, hyperfine interaction — the interaction between electron’s
angular momentum and the nuclear spin — mixes the pure 𝐿𝑆-coupling eigenstates. Perturbed
state up to the first order is

|3P2; 𝐹, 𝑚𝐹⟩ =
∑︂
𝛼

⟨3P0
2; 𝐹, 𝑚𝐹 | ℋHF |𝛼⟩
𝐸(𝛼) − 𝐸(3P0

2)
|𝛼⟩ , (3.8)
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where ℋHF denotes the hyperfine interaction. The dipole coupling between the 3P2 and the
1S0 thus become ∑︂

𝛼

⟨3P0
2; 𝐹, 𝑚𝐹 | ℋHF |𝛼⟩
𝐸(𝛼) − 𝐸(3P0

2)
⟨𝛼 | 𝑑 |1S0; 𝐹′, 𝑚𝐹′⟩ . (3.9)

This takes a non-zero value via an intermediate state |𝛼⟩ E1-coupled with the ground state,
such as (6s)(6p) 3P1.

Table 3.2: Frequently used parameters of 1S0↔3P2 transition. Because hyperfine structure changes
the strength of the transition, each parameters for bosonic isotopes, 171Yb, and 173Yb are listed.

Parameter Boson 173Yb 171Yb Unit
Wavelength 𝜆 507.35 nm
Lifetime 𝜏 15 6.3 7.2 s
Natural linewidth Γ/2𝜋 = 1/2𝜋𝜏 10.6 25 22 mHz
Saturation intensity 𝐼sat 1.1 × 10−8 2.5 × 10−8 2.2 × 10−8 mW/cm2

Recoil energy 𝐸𝑅/𝑘B 214 nK

3.1.2.4 (6s)(6p) 3P2 ↔(6s)(7s) 3S1

3P2 state has long lifetime and therefore it requires repumping light to back to the ground state. We
use 3P2 ↔ 3S1 for this purpose. This is E1-allowed transition with a wavelength of 770 nm. The 3S1

state atom decays to not only 3P2 but also 3P0 and 3P1 which means this is not closed transition. The
branching ratio to 3P0, 3P1, and 3P2 state is 13%, 37%, and 50%, respectively [98].

3.2 Rydberg states

3.2.1 General properties of Rydberg atoms

The outermost electron of a Rydberg atom is in the large and weakly bound orbit with the principal
quantum number 𝑛 typically larger than several tens, which makes properties of Rydberg atoms
exaggerated compared to those of lower energy states in which the outermost electron resides the
orbit with the comparable 𝑛 with the ground state [99]. In general, despite the complexity of
electron’s wavefunctions of non-hydrogenic atoms, the properties of a Rydberg atom obey simple
scaling laws of 𝑛, or more precisely effective principal quantum number 𝑛∗, as well as a hydrogen
atom, which can be understood as a consequence of the small overlap between the wavefunctions
of core and outemost electrons for large 𝑛. The Schrödinger equation of a hydrogen atom — the
simplest and the only analytically solvable atom — for the radial part of wavefunction rescaled by 𝑟
is given by (︃

− d2

d2𝑟
+ 𝑙(𝑙 + 1)

𝑟2 − 2
𝑟

)︃
𝑢𝑛𝑙(𝑟) = 2𝐸𝑛𝑢𝑙(𝑟), (3.10)
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in (Hartree) atomic unit. Note we use the atomic unit throughout this chapter. 𝑙 is the orbital angular
momentum of the electron. This is equivalent to the one-dimensional Schrödinger equation in an
effective potential

𝑉eff(𝑟) =
𝑙(𝑙 + 1)
𝑟2 − 2

𝑟
. (3.11)

The eigenenergy and the eigenfunction of Eq. (3.10) is

𝐸𝑛 = − 1
2𝑛2 , (3.12)

𝑢𝑛𝑙(𝑟) = 𝐶𝑛𝑙(2𝑟/𝑛)𝑙−1𝐿2𝐿+1
𝑛+𝑙 (2𝑟/𝑛)e

−𝑟/𝑛 , (3.13)

of which derivation can be seen in plenty of textbooks (See [100], for example). Here 𝐿𝑚𝑛 (𝑥) and 𝐶𝑛𝑙
denotes associated Laguerre polynomial and a normalizing constant, respectively. Explicit form of
the normalizing coefficient is

𝐶𝑛𝑙 =

√︄(︃
2
𝑛

)︃3 (𝑛 − 𝑙 − 1)!
2𝑛(𝑛 + 𝑙)! . (3.14)

Exaggerated properties of Rydberg atoms mainly originate from their huge orbit. In the semi-
classical approach, the classically allowed region ( i.e., { 𝑟 | 𝑉eff(𝑟) < −1/(2𝑛2) }), where dominate
the wavefunction, spans from 𝑟in ∝ 𝑙(𝑙 + 1) to 𝑟out ∝ 𝑛2. Because the expectation value of 𝑟 primarily
depends on large-𝑟 part of the wavefunction, we can infer the scaling law of 𝑟 as ⟨𝑟⟩ ∼ 𝑟out ∼ 𝑛2.
One can confirm this is true by applying the exact solution Eq. (3.13) to ⟨𝑟⟩𝑛𝑙 =

∫ ∞
0 d𝑟𝑢∗

𝑛𝑙
(𝑟)𝑟𝑢𝑛𝑙(𝑟) 2.

From this we immediately obtain the scaling law of the dipole moment of Rydberg atoms:

⟨𝑑⟩𝑛𝑙 = ⟨𝑛𝑙 | (𝑒𝑟) |𝑛𝑙⟩ ∝ 𝑛2 (3.16)

Another important feature of the Rydberg atoms is its long radiative lifetime which scales as 𝑛3.
The lifetime of the state is given as the inverse of the summation of the Einstein 𝐴 coefficient for all
possible spontaneous emission channels. The lifetime of a Rydberg state with a principal quantum
number 𝑛 and angular momentum 𝑙: 𝜏𝑛𝑙 is given by

1/𝜏𝑛𝑙 =
∑︂
𝑛′𝑙′

𝐴𝑛𝑙,𝑛′𝑙′ (3.17)

∝
∑︂
𝑛′,𝑙′

|𝐸𝑛𝑙 − 𝐸𝑛′𝑙′ |3 | ⟨𝑛𝑙 | (𝑒𝑟) |𝑛′𝑙′⟩ |2 (3.18)

The scaling of transition dipole matrix element changes depending on whether the transition is
between Rydberg states (𝑛′ ≃ 𝑛, Microwave transitions) or with low-lying energy states (𝑛′ ≪ 𝑛,

2The exact expectation value of the radius is given by

⟨𝑟⟩𝑛𝑙 = 𝑛2
(︃
1 + 1

2

(︃
1 − 𝑙(𝑙 + 1)

𝑛2

)︃)︃
. (3.15)
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Optical transitions):

⟨𝑛𝑙 | (𝑒𝑟) |𝑛′𝑙′⟩ ∼
⎧⎪⎪⎨⎪⎪⎩
𝑛−3/2 (𝑛′ ≪ 𝑛)
𝑛2 (𝑛′ ≃ 𝑛).

(3.19)

The term of energy difference in Eq. (3.18) scales as 𝑛−3 for microwave transitions and 𝑛−2 for optical
transitions. Therefore we find the dominant channel to determine the lifetime comes from optical
transitions and result in the scaling as 𝜏𝑛𝑙 ∼ 𝑛3.

Scaling laws of several physical quantities and its typical values of Rb atom for 𝑛 = 50 and 𝑙 = p
as an example is summarized in Table 3.3.

Table 3.3: Scaling laws of physical characters and actual values of Rubidium Rydberg atoms in the
case of 𝑛 = 50 and 𝑙 = p is summarized.

Property 𝑛 scaling Rb (50p)

Binding energy 𝑛−2 6.2 meV = ℎ × 1.5 THz
Energy between adjacent states 𝑛−3 0.22 meV = ℎ × 53 GHz
Radiative lifetime 𝑛3 106𝜇s
Orbital radius 𝑛2 3200 𝑎0 = 170 nm
Scalar polarizability 𝑛7 ∼GHz · cm2/V2

van der Waals interaction 𝐶6 𝑛11 ∼10 GHz · 𝜇m6

3.2.2 Response to static electric fields

Despite the discussion in the previous section assuming the similarity between Rydberg states of
non-hydrogenic atoms and hydrogen atom, we should remark this is not always true. DC Stark shift
— the shift of energy by an applied static electric field — is a good example. The stark shift comes
from the interaction between the dipole d of the atom and an electric field E:

ℋStark = −d ·E. (3.20)

Since the parity of ℋStark is odd and energy levels of a hydrogen atom is degenerate with respect to 𝑙,
the first order of perturbation doesn’t vanish, resulting in linear response to electric fields. In cases
of non-degenerate atoms, however, the first order perturbation vanishes due to the parity difference
and the second order perturbation becomes the dominant term. We can thus derive the Stark shift
as

Δ𝐸Stark = −𝛼𝑛𝑗
𝐸2

2 , (3.21)

where 𝛼 is the scalar static polarizability and 𝑗 denotes all quantum numbers other than 𝑛. 𝛼𝑛𝑗 scales
as

𝛼𝑛𝑗 = −2
∑︂

𝑛′ 𝑗′≠𝑛𝑗

| ⟨𝑛′ 𝑗′ | d |𝑛𝑗⟩ |2
|𝐸𝑛′, 𝑗′ − 𝐸𝑛𝑗 |2

∼ 𝑛4

𝑛−3 ∼ 𝑛7. (3.22)
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We note the dominant contribution comes from dipole transition matrix elements between neigh-
boring Rydberg states, different from the radiative lifetime. The dependency of the polarizability on
total angular momentum 𝐽 and magnetic sublevel 𝑀 can be derived by separating ℋStark into scalar
and tensor part [101] (we don’t describe the derivation here):

Δ𝐸Stark = −1
2𝛼0(𝐽)𝐸2 − 1

4𝛼2(𝐽)
3𝑀2 − 𝐽(𝐽 + 1)

2(2𝐽 − 1) (3𝐸2
𝑧 − 𝐸2), (3.23)

where 𝐸𝑧 is the component of the electric field along the quantization axis.

3.2.3 Interactions between Rydberg atoms

Interactions between Rydberg atoms are the most important feature for applications to quantum
information processings. The interaction originates from dipole–dipole interaction given by

𝑉dd =
d1 · d2 − 3(d1 ·R/𝑅)(d2 ·R/𝑅)

𝑅3 , (3.24)

where d1 , d2, and R denotes the dipole moment of atom 1, 2 and the interatomic distance, respec-
tively. Let us consider the interaction between a pair of atoms both in |𝑛𝑗⟩ state. 𝑗 denotes all

+

-

+

-

n j n j

n1 j1

n2 j2

atom 1 atom 2

ΔEE

Figure 3.4: (Left) The geometry of two atoms with dipole moments d1 and d2 aligned along the
electric field E, and relative position vector R. 𝜃 is an angle between R and d1, d2. (Right) Relevant
energy levels of unperturbed states appears in the second order perturbation.

quantum numbers except 𝑛 as well as in the previous section. When there are no degeneracies, that
is to say, when unperturbed energy of all pairs of atom’s states is not equal to that of |𝑛𝑗; 𝑛𝑗⟩ state,
the perturbed energy up to the second order is

𝐸
(2)
dd = ⟨𝑛𝑗; 𝑛𝑗 |𝑉dd |𝑛𝑗; 𝑛𝑗⟩

→ 0
+

∑︂
𝑛1 𝑗1;𝑛2 , 𝑗2

| ⟨𝑛𝑗; 𝑛𝑗 |𝑉dd |𝑛1 𝑗1; 𝑛2 𝑗2⟩ |2
Δ𝐸

, (3.25)

Δ𝐸 ≡ 2𝐸𝑛𝑗 − (𝐸𝑛1 𝑗1 + 𝐸𝑛2 𝑗2), (3.26)

where all braket vectors and 𝐸𝑛𝑙 denote unperturbed states and energy, respectively. The first order
perturbation vanishes because the parity of 𝑉dd is odd likewise in the previous section. One can



38 CHAPTER 3. YTTERBIUM AND RYDBERG STATES

find the scaling law of this interaction as

𝐸
(2)
dd =

𝐶6
𝑅6 ∼ 1

𝑅6
(𝑛2 · 𝑛2)2
𝑛−3 =

𝑛11

𝑅6 ≡ 𝐸vdW , (3.27)

which is referred as van der Waals interactions.
The assumption of non-degeneracy, however, sometimes breaks. In other words, there may exist

a pair of states satisfies resonant conditionΔ𝐸 = 0, or more precisely, Δ𝐸 ≪ | ⟨𝑛𝑗; 𝑛𝑗 |𝑉dd |𝑛1 𝑗1; 𝑛2 𝑗2⟩ |.
In this case the first order perturbation does not vanish and it becomes

𝐸
(1)
dd =

𝐶3
𝑅3 ∼ 𝑛4

𝑅3 , (3.28)

and this is called the resonant dipole–dipole interaction or Förster resonance. While this condition
is rarely satisfied for bare atoms, DC-stark shifts can tune pair states into degeneracy. We call such
technique Stark-tuned Förster resonance.

Lastly we discuss the angular dependency of the interaction strength. 𝑉dd is decomposed by
spherical basis as following [102]:

𝑉dd =
1
𝑅3

(︂
𝐴0(𝜃)

(︁
𝑑1(1)𝑑2(−1) + 𝑑1(−1)𝑑2(1) + 2𝑑1(0)𝑑2(0)

)︁
(3.29)

+ 𝐴1(𝜃)
(︁
𝑑1(1)𝑑2(0) − 𝑑1(−1)𝑑2(0) + 𝑑1(0)𝑑2(1) − 𝑑1(0)𝑑2(−1)

)︁
(3.30)

− 𝐴2(𝜃)
(︁
𝑑1(1)𝑑2(1) + 𝑑1(−1)𝑑2(−1)

)︁ )︂
. (3.31)

Here 𝑑𝑖(𝑞) ≡ 𝑑𝑖𝑌
𝑞

1 (𝜃, 𝜙) and

𝐴0(𝜃) =
1 − 3 cos2 𝜃

2 , 𝐴1(𝜃) =
3 sin𝜃 cos𝜃√

2
, 𝐴2(𝜃) =

3 sin2 𝜃
2 . (3.32)

The term containing 𝐴0 , 𝐴1 , 𝐴2 (Eq. (3.29), Eq. (3.30), Eq. (3.31)) correspond to the coupling of pair
states of which difference of the total magnetic quantum number Δ𝑀 is 0,±1,±2, respectively.
When Δ𝑀 = 0, the angular dependence of the interaction become equivalent to that between the
permanent dipole moment : ∝ (1 − 3 cos2 𝜃)/2. This is actually demonstrated and exploited using a
Förster resonance

|59D3/2 , 𝑚 = 3/2⟩ ⊗ |59D3/2 , 𝑚 = 3/2⟩ ↔ |61P1/2 , 𝑚 = 1/2⟩ ⊗ |57F5/2 , 𝑚 = 5/2⟩ (3.33)

of Rb atoms by Institut d’ Optique [103]. As just described, the calculation of angular dependence of
the resonant dipole–dipole interaction is straightforward and simple. On the other hand, for van der
Waals interaction, we need to sum up all the possible channels and it makes the calculation difficult.
In general, however, the interaction become nearly isotropic by averaging each channel’s angular
dependencies unless close to Förster resonance which only one channel dominate the interaction.

3.2.4 Entanglement between Rydberg atoms

The strength of interactions between Rydberg atoms few 𝜇m apart are typically in the order of
ℎ × 100 MHz. This enables generation of entanglement of atoms. The simplest example is a CNOT
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gate operation on qubits defined by the Rydberg state |0⟩ ≡ |𝑟⟩ and the ground state |1⟩ ≡ |𝑔⟩. Here
we assume that we can excite an atom to a Rydberg state individually (though this is challenging,
actually). 𝑋 gate on a single qubit corresponds to applying a 𝜋-pulse: |0⟩ → |1⟩ , |1⟩ → |0⟩. When
the control qubit is in the ground state, the situation is the same as that of non-interacting system.
When the control atom is in the Rydberg state, however, this 𝜋-pulse does not change the qubit state
anymore, due to the resonance shift by the strong interaction (Fig. 3.5). This is exactly the CNOT gate

Control Target Control Target

Figure 3.5: Illustration of a scheme to implement CNOT gate using interactions between Rydberg
state. The strong interaction shifts the energy of Rydberg states and suppress 𝜋-pulse between |𝑔⟩
and |𝑟⟩.

operation. The suppression of simultaneous excitation by the strong interaction described above
is called Rydberg blockade, the core phenomenon for applications of Rydberg states to quantum
computation and quantum simulation.

Let us discuss this blockade effect more quantitatively. The hamiltonian of two atoms under
exposure to a laser resonant to the bare |𝑔⟩ ↔ |𝑟⟩ transition (Left side of Fig. 3.6) is

ℋ =
Ω

2
(︁
|𝑟⟩ ⟨𝑔 | ⊗ 1 + 1 ⊗ |𝑟⟩ ⟨𝑔 | + h.c.

)︁
+𝑉 |𝑟𝑟⟩ ⟨𝑟𝑟 | (3.34)

=

√
2Ω
2

(︂ |𝑔𝑟⟩ + |𝑟𝑔⟩
√

2
⟨𝑔𝑔 | + |𝑟𝑟⟩

⟨𝑔𝑟 | + ⟨𝑟𝑔 |
√

2
+ h.c.

)︂
+𝑉 |𝑟𝑟⟩ ⟨𝑟𝑟 | , (3.35)

where 𝑉 is the interaction between Rydberg states. One finds this is equivalent with ladder three-
level system consists of |𝑔𝑔⟩ , |𝑟𝑟⟩, and |𝜓⟩ ≡ (|𝑔𝑟⟩ + |𝑟𝑔⟩)/

√
2, where the rabi frequency for both

transitions is
√

2Ω and the detuning is zero for the lower transition and 𝑉 for the upper transition
(Right side of Fig. 3.6). Note this equivalence holds only when the laser detuning is zero. Remember
that the modulation depth of the two-level system with the rabi frequency Ω and the detuning Δ is
given by 1/(1 +Δ2/Ω2), 𝑉 ≷ Ω should be a criteria whether the blockade occur. From Eq. (3.27), we
obtain a boundary distance for the blockade effect to occur:

𝑅𝑏 =

(︃
𝐶6
ℏΩ

)︃1/6

, (3.36)
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V
atom 1 atom 2 V

Figure 3.6: The system of two atoms and laser resonant to bare Rydberg transition is equivalent
to three-level system composed of |𝑔𝑔⟩ , |𝑟𝑟⟩, and |𝜓⟩. The rabi frequency of both transitions is
enhanced to

√
2Ω and the detuning of upper transition corresponds to interaction 𝑉 .

which is called blockade radius. This discussion can also be extended to interacting𝑁-atom system.
Let the interaction between 𝑖-th atom and 𝑗-th atom be 𝑉𝑖 𝑗 . The hamiltonian is described as

ℋ =
Ω

2

𝑁∑︂
𝑖=1

(︂
11 ⊗ · · · ⊗ (𝜎𝑖 + 𝜎†

𝑖 ) ⊗ · · · ⊗ 1𝑁

)︂
+

∑︂
∀|𝜙⟩

∑︂
𝑖≠𝑗

𝑉𝑖 𝑗 ⟨𝜙 | 𝜎†
𝑖 𝜎𝑖𝜎

†
𝑗 𝜎𝑗 |𝜙⟩ |𝜙⟩ ⟨𝜙 | (3.37)

=
√
𝑁
Ω

2
(︁
|𝜓𝑁⟩ ⟨𝐺 | + |𝐺⟩ ⟨𝜓𝑁 |

)︁
(3.38)

+ 1
2

∑︂
∀𝑖 ,∀|𝜙⟩

|𝜙⟩,𝜎𝑖 |𝜙⟩≠|𝐺⟩

(︂
Ω

(︁
𝜎𝑖 |𝜙⟩ ⟨𝜙 | + h.c.

)︁
+

∑︂
𝑗

𝑉𝑖 𝑗 ⟨𝜙 | 𝜎†
𝑖 𝜎𝑖𝜎

†
𝑗 𝜎𝑗 |𝜙⟩ 𝜎𝑖 |𝜙⟩ ⟨𝜙 | 𝜎

†
𝑖

)︂
, (3.39)

where we have defined

|𝜓𝑁⟩ ≡
1√
𝑁

𝑁∑︂
𝑖=1

|𝑔1 · · · 𝑟𝑖 · · · 𝑔𝑁⟩ , (3.40)

|𝐺⟩ ≡ |𝑔1𝑔2 · · · 𝑔𝑛⟩ , (3.41)

𝜎𝑖 ≡ |𝑔𝑖⟩ ⟨𝑟𝑖 | . (3.42)

The first and the second term of Eq. (3.39) corresponds to the resonant rabi oscillation between
|𝐺⟩ and |𝜓𝑁⟩, and the summation of detuned rabi oscillations between |𝜙⟩ and 𝜎𝑖 |𝜙⟩ by Δ =∑︁
𝑗 𝑉𝑖 𝑗 ⟨𝜙 | 𝜎†

𝑖
𝜎𝑖𝜎†

𝑗
𝜎𝑗 |𝜙⟩, respectively. The second term is suppressed by strong interactions 𝑉𝑖 𝑗 and

only the first term appears. The rabi frequency of the first term is enhanced to
√
𝑁Ω by entanglement

and this is (sometimes) called the blockade-enhanced rabi frequency.

3.2.5 Two-electron Rydberg atoms

Two-electron Rydberg atoms have desirable properties for quantum computing and quantum simu-
lation arising from the inner velance electron, as we note in section 1.2. In this section, we give short
introductions to two of them: Auto-ionization (AI) and optical dipole trap of Rydberg states, taking
Yb atom as an example.
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3.2.5.1 Auto-ionization
E

ne
rg

y

Continuum
ContinuumAI AI

Core excitation
(369.5 nm)

Figure 3.7: Core excitation of a (6s)(𝑛𝑙) Rydberg state to a doubly excited state (6p1/2)(𝑛𝑙) results in
decays into continua (6s)(𝜖p) and (5d3/2)(𝜖p).

Singly excited Rydberg states (6s)(𝑛𝑙) of Yb atoms have an transition to a doubly excited Rydberg
(6p1/2)(𝑛′𝑙′) state likewise the (6s)↔(6p) transition of Yb+ ions. This doubly excited state evolves
into a continuum state |𝜖⟩ (Fig. 3.7) in the time-dependent picture with a rate

ΓAI =
∑︂
𝜖

| ⟨𝜖 |𝑉ee |(6p1/2)(𝑛′𝑙′)⟩ |2 (3.43)

from the Fermi’s golden rule. 𝑉ee is the interaction hamiltonian between the Rydberg and the inner
electron. The summation is taken over all continuum states coupled with (6p1/2)(𝑛′𝑙′): (6s)(𝜖p)
and (5d3/2)(𝜖p). Though this doubly excited state seems to be a bound state, because the total
energy exceeds the binding energy (first ionization limit), the spectrum of photon absorption of this
transition is continuous but “lumpy” with several peaks corresponding to the eigenenergies for the
(6p) channel potential (Feshbach resonances) [61, 104]. This auto-ionization process has been used
for high-fidelity detection of Rydberg states of Sr atoms [38]. The core excitation transition of Yb
atoms has been used to induce energy shifts to Rydberg state [62, 63].

3.2.5.2 Optical trapping of Rydberg state

A energy of a free electron in the presence of an oscillating electromagnetic field with 𝜔 and the
amplitude 𝐸 shifts by 𝐸2/(4𝜔2) (in atomic units), which is always positive and called ponderomotive
shift. The light shift of alkali Rydberg states, therefore, is repulsive and it cannot be trapped directly.

For the case of AE(L)As, however, the contribution from the ionic core transition can make the
dipole force attractive. Because the typical radius of the Rydberg electron is comparable with the op-
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tical wavelengths, we should take into account the spatial distribution of the electron’s wavefunction
𝜓𝑛𝑙(r) and the laser intensity 𝐼(r) for sub-micron optical traps. The resulting potential at position R

is given by

𝑉(R) = −𝛼ion
4 𝐼(R) + 1

𝜔2

∫
|𝜓𝑛𝑙 |2(r)𝐼(r +R)dr3 , (3.44)

where 𝐼0 and 𝛼ion is the laser intensity at the atomic core and the ionic polarizability, respectively.

3.2.6 Quantum Defect Theory

The basic idea of quantum defect theory is to characterize the wavefunction of non-hydrogenic
atoms by how "defective" it is from hydrogen atom to simplify the problem. The difference between
a hydrogen atom and a non-hydrogenic atom is interactions (𝑉ee) between the outermost electron
and core electrons. As is experimentally observed by pulse laser spectroscopy [105], this interaction
arises when the outermost electron get closer to the atomic core. When the outermost electron is
far enough from the core, it is justified to treat the electron similarly as the hydrogen atom. Let
this boundary distance be 𝑟0. The space can be divided into two regions (i) 𝑟 ≤ 𝑟0: interacting
region and (ii) 𝑟 > 𝑟0: hydrogenic region. The quantum defect theory does NOT try to calculate the
wavefunction in interacting region. It extracts parameters from boundary conditions at 𝑟 = 𝑟0 and
𝑟 → 0 which simplifies the experimentally obtained data or ab initio calculations. For the detailed
discussion, see [104,106,107].

3.2.6.1 One electron atoms — Single channel

Alkali atoms has only a single internal state (single channel) of core electrons. We just consider
boundary conditions at 𝑟 = 𝑟0 and 𝑟 → ∞ of that channel.

In the hydrogenic part, the wavefunction of the outermost electron (𝑢𝐸,𝑙(𝑟)) is given as a linear
combination of two independent solutions of Eq. (3.10). It is convenient to choose regular and
irregular coulomb wavefunctions 𝑓 and 𝑔 which behaves as

𝑓𝐸,𝑙(𝑟) →
⎧⎪⎪⎨⎪⎪⎩
𝑟 𝑙+1 (𝑟 → 0),√︁
𝑛∗/𝜋

(︁
sin 𝛽𝐷−1𝑟−𝑛

∗e𝑟/𝑛∗ − cos 𝛽𝐷𝑟𝑛∗e−𝑟/𝑛∗
)︁

(𝑟 → ∞),
(3.45)

𝑔𝐸,𝑙(𝑟) →
⎧⎪⎪⎨⎪⎪⎩
𝑟−𝑙 (𝑟 → 0),
−
√︁
𝑛∗/𝜋

(︁
cos 𝛽𝐷−1𝑟−𝑛

∗e𝑟/𝑛∗ + sin 𝛽𝐷𝑟𝑛
∗e−𝑟/𝑛∗

)︁
(𝑟 → ∞),

(3.46)

where we have defined 𝛽 = 𝜋(𝑛∗ − 𝑙). The energy 𝐸 and the effective principal quantum number
𝑛∗ are related as 𝐸 = −1/2𝑛∗2. 𝐷 is a constant dependent on 𝐸 and 𝑙. We impose two boundary
conditions to the wavefunction 𝑢𝐸,𝑙(𝑟):⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑊( 𝑓 , 𝑢𝐸,𝑙)
𝑊(𝑔, 𝑢𝐸,𝑙)

= tan𝜋𝛿𝑙 (𝑟 = 𝑟0)

𝑢𝐸,𝑙(𝑟) → 0 (𝑟 → ∞).
(3.47)
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Here𝑊 denotes the Wronskian

𝑊(𝑦1 , 𝑦2) ≡
|︁|︁|︁|︁|︁𝑦1 𝑦2

𝑦′1 𝑦′2

|︁|︁|︁|︁|︁ . (3.48)

The second boundary condition comes from the physical requirement to be bound state (𝐸 < 0). The
first requirement, which seems arbitrary at first glance, is just a expression that the wavefunction
𝑢𝐸,𝑙(𝑟) is given as

𝑢𝐸,𝑙(𝑟) ∝ cos𝜋𝛿𝑙 𝑓𝐸,𝑙(𝑟) + sin𝜋𝛿𝑙 𝑔𝐸,𝑙(𝑟) (𝑟 > 𝑟0). (3.49)

Note that the ratio of Wronskians Eq. (3.47) is a constant value for 𝑟 > 𝑟0. Eq. (3.49) means that the
radial phase is shifted from the hydrongen’s wavefunction. By substituting Eq. (3.49), we obtain

sin(𝛽 + 𝜋𝛿𝑙) = 0 (3.50)

⇔𝑛∗ + 𝛿𝑙 = 𝑛 (𝑛 = 0, 1, 2, . . .) (3.51)

The 𝑛-th eigenenergy is

𝐸𝑛 = − 1
2𝑛∗2

= − 1
2(𝑛 − 𝛿𝑙)2

. (3.52)

𝑛∗ and 𝛿𝑙 is called effective principal quantum number and quantum defect, respectively. Because
the change of eigenenergy 𝐸𝑛+1−𝐸𝑛 ∼ 0.01 eV is quite small compared with electron’s kinetic energy
∼ 10 eV, the radial phase shift is almost independent on 𝐸 and 𝑛. We therefore obtain a single
parameter to characterize the spectrum of Rydberg series.

3.2.6.2 Two electron atoms — Multi channel

In the case of two electron atoms, we need to consider multiple channels as the effective potential
of Rydberg electrons depends on the internal state of ionic core. For each channel the similar
discussions as in alkali atoms can be applied. We consider only hydrogenic region of Rydberg
electron. The wavefunction of the atom |𝜓⟩ is given as a summation of all channel wavefunctions

|𝜓𝛼⟩ =
∑︂
𝑖

|Φ𝑖⟩ |𝑢𝑖𝛼⟩ . (3.53)

The subscript 𝛼 distinguishes linearly independent degenerate eigenstates in energy. 𝑖 denotes the
channel. |Φ𝑖⟩ is the wavefunction “orthogonal” to the radial coordinate of Rydberg electron, namely
eigenstates of the inner electron hamiltonian and angular momentum operator of Rydberg electron.
𝑢𝑖𝛼 is a radial wavefunction rescaled by 𝑟. Wavefunction 𝑢𝑖𝛼 is a summation of regular and irregular
coulomb wavefunction

𝑢𝑖𝛼(𝑟) = 𝑓𝐸𝑖 ,𝑙𝑖 𝐼𝑖𝛼 − 𝑔𝐸𝑖 ,𝑙𝑖 𝐽𝑖𝛼 , (3.54)

where 𝐸𝑖 is a asymptotic kinetic energy of Rydberg electron in the 𝑖-th channel: 𝐸𝑖 = 𝐸 − 𝐼𝑖 , where 𝐼𝑖
is the ionization limit for 𝑖-th channel. We define 𝐾 matrix as

𝐾 = 𝐼𝐽−1 , (3.55)
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which can be diagonalized by an unitary matrix𝑈

𝐾 = 𝑈diag(tan𝜋𝛿1 , tan𝜋𝛿2 , . . .)𝑈†. (3.56)

This can be regarded as a boundary condition at 𝑟0, counterpart of Eq. (3.47). 𝜇𝛼 indicates phase
shift of the 𝑖-th channel. From the boundary condition at 𝑟 → 0, we obtain

|𝐾 + diag(tan𝜋𝑛∗1 , tan𝜋𝑛∗2 , . . .)| = 0, (3.57)

where principal quantum number for 𝑖-th channel 𝑛∗
𝑖

is defined similarly as in Eq. (3.52):

𝐸𝑖 = − 1
2𝑛∗2

𝑖

⇐⇒ 𝐸 = 𝐼𝑖 −
1

2𝑛∗2
𝑖

(3.58)

The aim of MQDT model is to solve 𝐾 matrix which satisfies Eq. (3.57) and Eq. (3.58) simultane-
ously, and agrees additional information obtained by ab initio calculations or experimental data.



CHAPTER 4
Apparatuses and techniques of the experiments

4.1 Experimental Apparatuses

4.1.1 Vacuum chamber

Figure 4.1: View of whole vacuum chamber system. The vacuum chamber is consist of four
sections: pumping chamber (Green), science chamber (gray), Zeeman slower pipe (blue), and the
oven chamber (red). The whole length is about 1.5 m.

Our vacuum chamber system is based on a rather standard system for producing Yb quantum
gases, and it comprises four sections: oven chamber, Zeeman slower pipe, science chamber, and

45
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pumping chamber, as depicted in Fig. 4.1. In particular, the science chamber is specially designed
for experiments of the Rydberg atom detection and optical tweezer arrays, based on a commercial
chamber (Kimball Physics, MCF800-ExtOct-G2C8A16) with two ICF203, eight ICF70 and sixteen
ICF34 flanges. Two reentrant viewports are mounted on the ICF203 flanges on top and bottom,
hosting high-NA objective lenses for high-resolution imaging, optical tweezer arrays, and site-
resolved manipulation (Section 4.1.3). Electrical feedthroughs and a MCP (Hamamatsu photonics
F4655-11) for Rydberg state detection are attached to the chamber (Section 4.1.4). Many viewports
allow optical access for laser cooling, internal state excitation, absorption and fluorescence imaging,
and further optical trapping.

The science chamber is maintained at ultra-high vacuum as 3.5 × 10−11 Torr by two ion pumps
and two Ti:sublimation pumps. The pressure at the pumping chamber and the oven chamber is
measured by an ion gauge.

4.1.2 Magnetic field

For generation of magnetic field, one pair of anti-helmholtz coils for MOT, three coils for Zeeman
slower, and three pairs of helmholtz coils for magnetic compensation is installed. The design value
of the magnetic field at the center of the chamber is summarized in Table 4.1. The direction of
current for compensation coils is switchable by an H-bridge circuit.

Table 4.1: Design values of magnetic coils used for experiments are summarized. Number of turns
indicates that of one side coil. The row for MOT coil includes values for both anti-helmholtz and
helmholtz configurations.

Number of turns Configuration Magnetic field

𝑥𝑦 compensation 70 Helmholtz 0.5 G/A×𝐼
𝑧 compensation 40 Helmholtz 3.4 G/A×𝐼

MOT coil 42 × 14 Anti-helmholtz 11.6 (G/cm)/A×𝐼
Helmholtz 42.7 G/A×𝐼

4.1.3 Objective lens

For the collection of fluorescence photons and focusing of the trap beam, an objective lens from
Special Optics is held below the science chamber. This lens is designed to achieve diffraction limited
performance for 532 nm and 556 nm light. The numerical aperture (NA) and working distance (WD)
is 0.60 and 20.25 mm, respectively. The drawing provided by Special Optics is shown in the upper
left of Fig. 4.2. Because the high-NA lens needs subtle adjustment of alignment, we mounted it on
an assembly of two stages, one for pitch and yaw adjustment (Newport 9082-V-M), and the other for
3 axis translation (Suruga B71-80-C), as depicted in the left of Fig. 4.2.

We assess the performance of the lens in prior to the installation using a pinhole with the
radius 500 nm. We illuminate back side of the pinhole by 532 nm laser and collect and focus the
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Figure 4.2: (Left) Illustation of the objective lens mounted on stages for adjustment. Five-axis stage
for adjustment of angular direction and three-axis stage is assembled. (Right) The upper panel
shows the drawing of the objective lens. This drawing is offered from Special Optics. The lower
panel shows the the image of light scattered from a pinhole with a radius 500 nm. The inset shows
the radial dependence of the PSF and fitted curve by the airy disk function.

scattered light onto a CCD camera (FLIR Chameleon3). We use a 𝑓 = 500 nm lens for focusing. The
magnification of the imaging system is 25. We fit the obtained point spread function (PSF) by the
airy disk function (Eq. (4.21)) and get the estimation value of NA 0.51. Though this value is not as
high as the specification value, it is still enough high for our situation of imaging 1 ∼ 10𝜇m apart
atoms.

4.1.4 Electrodes and Micro-channel plate

Eight electrodes are equipped inside the chamber in order to control electric fields (Fig. 4.3). They
compensate for stray electric fields at the position of the atoms as well as ionize Rydberg atoms,
enabling high sensitive detection of Rydberg states by the MCP (Hamamatsu Photonics, F4655–11).
The center of the chamber is shielded from electric fields created by the MCP and the feedthroughs
with a grounded mesh on the MCP side and an aluminum plate on the feedthrough side. The
eletrodes are connected to a digital–analog converter through the feedthroughs (Access I/O, USB-
AO16-8E-10B). We adjust each voltages to compensate or apply weak electric fields. For ionization
of Rydberg atoms, we use another high-voltage supply which is switchable with DAC output by
a TTL, using an analog switch (Analog Devices, MAX319). We apply −15 V to four electrodes
in MCP side and 30 V to left four in the other side, which creates about 18 V/cm electric fields
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Figure 4.3: (a) CAD graphic of inside of the chamber. Eight electrodes, two grounded meshes,
MCP, and feedthroughs are equipped to the science chamber. (b) Corresponding photograph taken
before the installation to the chamber. (c) Electric potential map in 𝑥𝑦-plane when the voltages for
each electrodes are adjusted to ionization settings: −15 V for four electrodes in MCP side and 30 V
for four in the other side.

toward MCP direction at the atom position. Fig. 4.3.(c) shows the electric potential map in 𝑥𝑦-plane
calculated by SIMION®. The relation between the applied voltages and strength of electric fields is
also simulated. Figure 4.4 shows the electric field dependence on each 𝑥, 𝑦, 𝑧 direction when ±1 V
voltages are applied to oppositing four electrodes along that direction. The computed electric fields
at the atom position is 𝐸𝑥 = 79.7 mV/mm, 𝐸𝑦 = 58.1 mV/mm and 𝐸𝑧 = 44.7 mV/mm. As is already
discussed in section 3.2.2, Rydberg atoms are highly sensitive to electric fields. In our setups, the
dielectric window is close to the atom and it may cause fluctuation of electric fields by charging
effects. In order to prevent this, both windows on top and bottom side of the chamber is processed
with Indium-Tin-Oxide (ITO) coating. The inside surface of windows and the metal chamber is
electrically connected by aluminum foils before the installation.

4.1.5 Acousto-Optic Deflectors

We use an acousto-optic deflector (AOD, A&A DTSX-400-532) to generate a tweezer array. AOD
diffracts an input beam by angle 𝜃 linearly dependent on the applied frequency: 𝜃 = (d𝜃/d 𝑓 ) 𝑓 .
The linear coefficient is measured to be 0.8 mrad/MHz, which agrees with specification data from
the company. When the RF contains multiple frequency components, the beam branches to corre-
sponding angles, as depicted in Fig. (4.5). This multitone RF is generated by an arbitrary waveform
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Figure 4.4: Electric field strength dependence on position when ±1 V voltages are applied to op-
positing electrodes along each axis.
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Figure 4.5: Shematic illustration of principle of generation of tweezer array by AOD. Input beam is
diffracted by an angle linearly dependent on a frequency of the applied RF.

generator (AWG, Spectrum M4i.6622-x8) directly connected to a computer’s motherboard through a
PCIe slot. The AWG outputs voltage with sampling rate 625 MHz and 16-bit resolution. The output
voltage can be written as

𝑉(𝑡) =
𝑁∑︂
𝑘=1

𝐴𝑘 cos(2𝜋 𝑓𝑘𝑡 + 𝜙𝑘) (4.1)

𝐴𝑖 and 𝑓𝑖 determine the power and the position of the tweezer array, respectively. Though the tweezer
beams are not explicitly related to the relative phase 𝜙𝑘 , we must take care because it can change
the efficiency of the diffraction. The limitation on maximum voltage by AWG or AOD requires
low peak-to-average power ratio (PAPR) defined as max(𝑉2)/⟨𝑉2⟩. For example, if amplitudes and
phases for all the freuquencies are chosen to be constant (𝐴𝑘 = 𝐴, 𝜙𝑘 = 0), the peak voltage is 𝐴𝑁
and thus the amplitudes and power for each frequencies decays as 1/𝑁 and 1/𝑁2 respectively. This
results in decay of total diffraction efficiency as 𝑁 × 1/𝑁2 = 1/𝑁 .

Several algorithms to reduce the PAPR for equally separated frequencies and constant amplitudes
( 𝑓𝑘 = 𝑓0 + 𝑘𝛿 𝑓 , 𝐴𝑘 = 𝐴) are known whilst algorithms to achieve analytically minimum value for
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(a)

(b) (c)

Figure 4.6: (a)Calculated voltage amplitudes for 𝑁 = 16, 𝑓0 = 80 MHz, 𝛿 𝑓 = 1 MHz and (red)
constant phases 𝜙𝑘 = 0 or (blue) Kitayoshi algorithm 𝜙𝑘 = 𝜋𝑘(𝑘 + 1)/𝑁 . (b) and (c) shows the
measured diffraction efficiency against the number of spots of lights for constant phases and kitayoshi
algorithm, respectively.

general cases are not known. For the calculation we use complex representation of the amplitude

𝑉(𝑡) = 𝐴

𝑁∑︂
𝑘=1

exp(2𝜋i( 𝑓0 + 𝛿 𝑓 𝑘)𝑡 + i𝜙𝑘). (4.2)

We note Eq. (4.1) and Eq. (4.2) should be distinguished, while we ignore the difference for the sake
of simplicity. PAPR is given by

max
𝑡

(︄
1 + 2

𝑁

∑︂
𝑙>𝑘

cos
(︁
2𝜋(𝑙 − 𝑘)𝛿 𝑓 𝑡 + 𝜙𝑙 − 𝜙𝑘

)︁)︄
. (4.3)

The basic idea is to make the summation from 𝑙 = 𝑘 + 1 terms in Eq. (4.3)

𝑁−1∑︂
𝑘=1

cos(2𝜋𝛿 𝑓 𝑡 + 𝜙𝑘+1 − 𝜙𝑘) (4.4)
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minimum by making the phase term 𝜙𝑘+1 − 𝜙𝑘 equally separated in [0, 2𝜋 ):

(𝜙𝑘+1 − 𝜙𝑘) − (𝜙𝑘 − 𝜙𝑘−1) =
2𝜋
𝑁
. (4.5)

This leads to the choice of initial phases

𝜙𝑘 =
𝜋
𝑁
𝑘(𝑘 + 1), (4.6)

which is known as Kitayoshi algorithm [108]. Figure 4.6(a) shows the calculated 𝑉(𝑡) for 𝑁 =

16, 𝑓0 = 80 MHz, 𝛿 𝑓 = 1 MHz for constant phases (red) and the Kitayoshi algorithm (blue). In our
experiments this algorithm is adopted to acquire a higher efficiency of diffractions. Figure 4.6(b)
and (c) shows the measured diffraction efficiency of AOD for constant phases and the Kitayoshi
algorithm, respectively. One can see significant improvements of diffraction efficiency by Kitayoshi
algorithm which keeps almost 48% while it decays as 1/𝑁 in the case of constant phases as discussed
above.

4.2 Laser sources

4.2.1 398.9 nm (1S0 ↔ 1P1)

Zeeman slower

The 398.9 nm laser for Zeeman slowing beam is obtained by second harmonic generation (SHG) of
797.8 nm from Toptica TA-Pro. A bow-tie ring cavity with a LiB3O5 (LBO) crystal is used for the
SHG (Fig. 4.7). The calculated finnese of the cavity ℱcalc is

ℱcalc =
𝜋
√
𝑅

1 − 𝑅 = 368, (4.7)

𝑅 = 𝑅1𝑅2𝑅3𝑅4𝑇LBO , (4.8)

where 𝑅𝑖 is the reflectance of the M𝑖 mirror and 𝑇LBO is the transmittance of the LBO crystal.
The specification of 𝑅𝑖 and 𝑇LBO is 𝑅1 = 99%, 𝑅2 = 𝑅3 = 𝑅4 = 99.85%, and 𝑇LBO = 0.1%. The
distance between M1 and M2 (𝐿1), M2 and M3 (𝐿2), and M3 and M4 (𝑑) is 237 mm, 177 mm, and
114 nm, respectively. The free spectrum range (FSR) of the cavity is calculated to be 420 MHz.
Beam radius at the center of the LBO is 36𝜇m. The finesse of the cavity is also estimated from the
transimission signal of the cavity: ℱexp = 375 ± 25. The cavity length is locked to the resonance by
piezo controlled M2 mirror using Hänsch–Couillaud technique. The relation between the power of
the input fundamental laser 𝑃in and obtained second harmonic laser power 𝑃SHG is given by

𝑃SHG = 𝐸nl𝑃
2
ic (4.9)

𝑃ic =
𝑇1𝜂𝑃in(︂

1 −
√︁
(1 − 𝑇1)(1 − 𝑙cav)(1 − 𝐸nl𝑃ic)

)︂2 , (4.10)
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Figure 4.7: Optical system for generation of 399 nm laser from 798 nm laser output from Toptica
TA-Pro. LBO crystal is placed at the center of the bow-tie ring cavity to generate second-harmonic
wave.

where𝑃ic, 𝑙cav, 𝜂, 𝐸nl,𝑇1 is the intra-cavity power of the fundamental laser, the loss caused from except
M1, the cavity coupling efficiency, the nonlinear coupling efficiency of the crystal, and transmittance
of M1, respectively. 𝜂 is 79 ± 5 %. The cavity is contained inside a box evacuated by a scroll pump, in
order to prevent aging of the crystal by a chemical reaction with dust particles fostered by UV light.

The input and the output power just after the initial installation were 𝑃in = 1.8 W and 𝑃SHG =

500 mW. We note the performance of SHG get worse gradually day by day and typical values for
experiments in this thesis are 𝑃in = 1.5 W and 𝑃SHG = 250 mW.

The frequency of the laser is stabilized with a commercial wavemeter (High-Finesse, WS-8) by
piezo actuator of the grating of seed laser.

Probe beam

The 1S0↔1P1 transition is also used for the probe of absorption imaging, two-photon excitation to
Rydberg states, and removal of the 1S0 atoms. We use SHG of home-made external-cavity diode laser
(ECLD) and tapered-amplifier (TA) system for these purposes. Commercial waveguided Periodically
Polarized Lithium Niobate (PPLN) crystal (NTT electronics) is used for the SHG. The frequency is
stabilized with a wavemeter, as well as the Zeeman slowing beam.
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4.2.2 555.8 nm (1S0 ↔ 3P1)

The 555.8 nm laser for 1S0 ↔ 3P1 transition is derived by a SHG of tapered-amplified diode laser
(Toptica TA-Pro). A waveguided PPLN crystal is used for the SHG. This laser is used for the MOT
and fluorescence imaging. The frequency of the fundamental laser with a tunable offset by a fiber
Electro-Optic Modulator (EOM) is stabilized to a Ultra-low expansion (ULE) glass cavity by a Pound–
Drever–Hall (PDH) technique. The measured finesse of the cavity for 1112 nm by cavity-ring-down
method is 19,000. The FSR of this cavity is 1.5 GHz. A simplified optical setup before the fiber to
the science chamber is shown in Fig. 4.8. The MOT laser for the horizontal directions (𝑥𝑦-axis) and
the vertical direction (𝑧-axis) is separated before the fiber by a polarized-beam splitter (PBS) and
controlled individually by two Acousto-Optic Modulators (AOMs). For the AOM for probe laser,
double-pass configuration is adopted to widely tune the frequency.

4.2.3 507 nm (1S0 ↔ 3P2)

The excitation laser from 1S0 to 3P2 state with wavelength 507 nm is derived by SHG (waveguided
PPLN crystal) of tapered-amplified home-made ECLD. The frequency of the laser is stabilized to a
high-finesse ULE cavity to achieve ultranarrow linewidth of the transition. This cavity is the same
as the one for 1112 nm. The finesse for 1014 nm calculated from the reflectance of mirrors is 500,000,
which well agrees with measurement by cavity-ring-down method. The error signal generated by
PDH technique is feedbacked to current and piezo voltage controller of seed laser from Vescent
Photonics. The laser couples to the cavity is modulated by two EOMs. One is a fiber EOM to add
an offset frequency and the other is a bulk EOM for generation of PDH error signal (QuBIG). The
bulk EOM is used to avoid residual amplitude modulation (RAM) which can cause fluctuation of
frequency set point. The linewidth is estiamted to be 200 Hz from the PDH error signal at 1014 nm.

4.2.4 325 nm (3P2 to Rydberg states)

For the excitation from 3P2 atoms to Rydberg states, an Ultra-Violet laser with a wavelength of
325 nm is used. This laser is derived by SHG of tapered-amplified ECDL. We use interference filter
for tuning of lasing wavelength. We call such a diode laser Interference Filter type external cavity
Diode Laser (IFDL). The seed laser is pre-amplified before the TA by an injection locking to about
25 mW as shown in Fig. 4.9. The second-harmonic wave is generated by a bow-tie ring cavity and
a non-linear crystal similarly as the Zeeman slowing beam. In this case Ba2B2O4 (BBO) crystal is
used1. The calculated and measured Finesse of the cavity is ℱcalc = 447 and ℱexp = 431.

4.2.5 770 nm (3P2 ↔ 3S1)

770 nm laser for repumping of 3P2 atoms to the ground state is emitted by a commercial IFDL
(OptoQuest). The frequency of the laser is stabilized with a wavemeter.

1We tried LBO crystal first, but we could not get enough conversion efficiency.



54 CHAPTER 4. APPARATUSES AND TECHNIQUES OF THE EXPERIMENTS

ECLD

TA

EOM

PPLN

SHG

A
O

M

Monitor
PD

PDH
PD

PDH
PD

Monitor
PD

Toptica TA-Pro
PPLN

SHG

AOM
A

O
M

ULE cavity

A
O

M

MOT XY

MOT Z

Probe
to Wavemeter

to ULE
1112nm 
Seed

to ULE

1112 nm

1014 nm

DCM

DCM

to Wavemeter

to ULE

to science chamber

Fiber EOM

40 MHz

80 MHz

Isolator
60 dB

Isolator
38 dB

80 MHz

110 MHz

PBS

Lens

Fiber coupler

1112 nm & 556 nm laser system

1014 nm & 507 nm laser system

ULE cavity in VIC

Fiber EOM

Isolator
40 dB

Figure 4.8: Simplified optical setups for the 1112 nm–555.8 nm laser system and 1014 nm–507.4 nm
laser system, both of which is locked to the same ULE cavity. The frequencies of the AOM for 556 nm
laser in the figure shows the typical values for the loading of MOT.
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Figure 4.9: Simplified optical setups for the 650 nm–325 nm laser system. The 325 nm laser is
obtained as the second harmonic of 650 nm laser. 650 nm light from home–made IFDL is amplified
by injection lockng and TA. FR in the figure denotes Faraday rotator.

4.2.6 394 nm (1P1 to Rydberg states)

394 nm laser is used for two-photon excitation to the Rydberg states via 1P1 state. This UV laser is
derived from an ECDL directly. The frequency is stabilized with a wavemeter.

4.3 Optical tweezer array

4.3.1 Optical dipole traps

An oscillating external laser field ei𝜔𝑡E induces the dipole moment of atom as d = 𝛼(𝜔)E where
𝛼(𝜔) is the polarizability of the atom. The atom feels the potential from the interaction between the
dipole and the field which is given by

𝑉dip = −
𝜂0

2 Re (𝛼(𝜔)) 𝐼(r). (4.11)
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𝜂0 ≡ 1/𝜖0𝑐 ≃ 377 Ω and 𝐼(r) are vacuum wave impedance and intensity of the laser, respectively [90].
The gaussian beam therefore gives the potential such as

𝑉(𝑟, 𝑧) = 𝑉0
1 + (𝑧/𝑧𝑟)2

exp(−𝑟2/2𝑤2
0) (4.12)

where 𝑤0 and 𝑧𝑟 = 𝜋𝑤2
0/𝜆 is the beam radius at the focus and the rayleigh length, respectively. The

beam radius 𝑤0 and the NA of the focusing lens is related as 𝑤0 = 𝜆/𝜋NA in the difraction-limited
condition, which becomes comparable to the wavelength 𝜆 for high-NA lenses. By expanding 𝑉 by
𝑟 and 𝑧 up to the second order, we are able to define radial and axial trapping frequency 𝜈𝑟 and 𝜈𝑧 as

𝑉(𝑟, 𝑧) = 𝑉0 +
𝑚𝜈2

𝑟

2 𝑟2 + 𝑚𝜈2
𝑧

2 𝑧2 + 𝒪(𝑟2)𝒪(𝑧2), (4.13)

𝜈𝑟 =

√︄
4𝑉0

𝑚𝑤2
0
, 𝜈𝑧 =

√︄
2𝑉0

𝑚𝑧2
𝑟

, (4.14)

where 𝑚 is the mass of the atom.

4.3.2 Light-assisted collision

Collision beam
N: odd N: even

Figure 4.10: Illustration of the principle of light assisted collision to prepare a single atom. Two-body
losses makes the the number of atoms 0 or 1 reflecting the initial parity.

To prepare a single atom in an optical trap, inelastic collisions between S state and P state are
caused by red-detuned light which removes pair of atoms, so called collisional blockade effect. The
rate for this event to occur is given by 𝛽𝑁2 where 𝑁 denotes the number of atoms inside a trap.
𝛽 is a collisional loss coefficient. It is known that 𝛽 is proportional to inverse of the trap volume:
𝛽 ∝ 1/𝑉 [109]. If the trap volume is small enough like the case in wavelength-scaled optical tweezers,
this collisions become the dominant loss mechanics. This pairwise losses lead to a resultant zero or
single atoms reflecting the parity of the initial number of atoms (Fig. 4.10) [110].
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Figure 4.11: 4 𝑓 -setup of absorption imaging optical system used in our experiments. Absorption of
resonant light by atoms is imaged on the conjugate plane (camera plane).

4.4 Detection of atoms

4.4.1 Absorption imaging

Absorption imaging technique is widely used in cold atom experiments to acquire the information
of spatial distribution of density of atomic clouds. Though our target of studies is single atoms in a
tweezer array, we frequently use absorption imaging of atomic clouds for adjustment or preliminary
spectroscopies. In our experiments, we use 4 𝑓 -configuration optical setup for imaging as depicted
in Fig. 4.11. The intensity distribution 𝐼0(𝑥, 𝑦) of the probe laser with the wavelength 𝜆 changes to
𝐼(𝑥, 𝑦) by absorption by atoms, which is given by

𝐼(𝑥, 𝑦) = 𝐼0(𝑥, 𝑦) exp
(︃
−𝜎0

∫
𝑛(r)d𝑧

)︃
, (4.15)

where 𝜎0 = 3𝜆2/2𝜋 is the absorption cross section for a resonant light and 𝑛(r) is the density of atom
at a point r. The camera at the image plane observe the same distribution of the probe intensity
except a magnification of 𝐴 ≡ 𝑓2/ 𝑓1:

𝐼cam(𝑥, 𝑦) = 1
𝐴2 𝐼(

𝑥

𝐴
,
𝑦

𝐴
). (4.16)

The density distribution integrated along 𝑧 axis (probe laser axis) is derived by dividing two images
taken with (trans image) and without (flat image) atoms as∫

𝑛( 𝑥
𝐴
,
𝑦

𝐴
)d𝑧 = − 1

𝜎0
ln

(︄
𝐼wcam(𝑥, 𝑦)
𝐼

w/o
cam (𝑥, 𝑦)

)︄
. (4.17)

As a experimental protocol, we get discretized data of 𝐼wcam and 𝐼
w/o
cam by taking background image

of the camera without probe light (dark image) in addition to trans and flat images. Let us denote
the counts of the trans, flat, and dark images at the (𝑖 , 𝑗)-th pixel as 𝑇𝑖 , 𝑗 , 𝐹𝑖 , 𝑗 , and 𝐷𝑖 , 𝑗 . The density
distribution corresponding to the (𝑖 , 𝑗)-th pixel is given by∫

𝑛(𝑥𝑖
𝐴
,
𝑦 𝑗

𝐴
)d𝑧 = − 1

𝜎0
ln

(︃
𝑇𝑖 , 𝑗 − 𝐷𝑖 , 𝑗

𝐹𝑖 , 𝑗 − 𝐷𝑖 , 𝑗

)︃
. (4.18)
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𝑥𝑖 , 𝑦𝑗 indicates the physical coordinate of (𝑖 , 𝑗)-th pixel. The total number of atoms 𝑁 is calculated
by summing up all the density distribution of each pixels:

𝑁 =

∫
𝑛(r)dr3 (4.19)

= −Δ𝑠

𝐴2 𝜎0
∑︂
𝑖 , 𝑗

ln
(︃
𝑇𝑖 , 𝑗 − 𝐷𝑖 , 𝑗

𝐹𝑖 , 𝑗 − 𝐷𝑖 , 𝑗

)︃
, (4.20)

where Δ𝑠 is the area of a pixel.

4.4.2 Fluorescence imaging

4 𝑓 -optical setup depicted in Fig. 4.11 is also used for the fluorescence imaging. The shadow in this
case corresponds to the fluorescence from atoms. Arising from the diffraction of lights, the light
emitted from an ideal point light source is broadened by to a function with a finite width, which is
called a Point Spread Function (PSF). The obtained image on the camera becomes the convolution
between the ideal image and the PSF. In other words, PSF is a green function of the propagation of
light through an imaging system. The intensity of PSF under a paraxial approximation sin𝜃 ∼ 𝜃

and cos𝜃 ∼ 1 and assumption that the dipole is oriented perpendicular to the objective lens is

const. × 𝐽1(𝑟/𝑟0)2
(𝑟/𝑟0)2

, (4.21)

𝑟0 =
𝑀𝜆

2𝜋NA (4.22)

where 𝜃 and 𝐽1(·) denotes the the maximal half-angle of the cone of light that can enter the lens and
first-order Bessel function, respectively [111]. Equation (4.21) is known as the airy disk function.

The finite width of the PSF set the lowest limit of a distance between two point light sources that
can be distinguished. There are several criteria whether two images are distinguishable or not. One
of the most frequently addressed one is the Rayleigh’s criterion, in which the first minimal point
of the PSF is the resolvable minimum distance. Consequently, assuming incoherence of two light
sources, the resolution of the imaging system is given by

0.61 𝜆
NA . (4.23)

Here we used that the first minimal point of the airy disk function (𝐽1(𝑥)/𝑥)2 is 𝑥 = 3.83.

4.4.3 Ionization detection of Rydberg atoms

For the detection of Rydberg states, a strong electric field 𝐸 = 17 V/cm, or 𝐸 = 3.3 × 10−9 in atomic
units, is applied to atoms along the 𝑥-drection. The potential of the Rydberg electron is given by

𝑉 = −1
𝑟
− 𝐸𝑥, (4.24)

which create a saddle point of the potential with a height −2
√
𝐸.
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Roughly speaking, if the energy of the electron exceeds this peak, the electron escapes and the
atom is ionized. Assuming a hydrogenic atom and neglecting the Stark shift, the 𝑛-th eigenenergy
of the electron is 𝐸𝑛 = −1/(2𝑛2), and thus we obtain the field-ionization condition:

−2
√
𝐸 < − 1

2𝑛2 ⇒ 𝐸 >
1

16𝑛4 . (4.25)

For 𝐸 = 17 V/cm, the minimum 𝑛 satisfies Eq. (4.25) is 66. In practice, interactions between the
Rydberg electron and the inner electrons, the electric field (Stark shift), and ions (Penning ioniza-
tion [112]) should be also taken into account, but we don’t here. In fact, we observed ionization of
𝑛 = 50 Yb Rydberg states for atomic ensembles by the 𝐸 = 17 V/cm electric field.

We apply−2 kV to the MCP to detect ions, supplied from Stanford Reseach Systems PS325/2500V-
25W. This −2 kV is also divided to 1/5 and applied to between the anode and the MCP. We apply
a voltage lower than the specification value −2.5 kV, with which the gain of the MCP is 5 × 107, to
avoid the aging of the MCP. The output from the MCP is amplified by a differential amplifier (NF
electronics 5307) by 50 times. The amplified signal is acquired by a field programmable gated array
(NI PXI-6733) and sent to a computer. Figure 4.12 shows the electrical setup of the MCP.

When the gain of the MCP is 5 × 107, the number of detected ions 𝑁ion and the amplified signal
voltage 𝑉MCP are related as

(5 × 105) × 50 × 𝑒𝑁ion =

∫
𝑉MCP
𝑅

d𝑡 , (4.26)

⇒ 𝑁ion = 𝛼𝑆 (4.27)

where𝑅 = 50Ω and 𝑒 is the impedance of the system and the charge of an electron (1.602 176 634 × 10−19 C).
𝑆 ≡

∫
𝑉MCPd𝑡 is the ionization signal. The conversion coefficient 𝛼 is calculated to be

𝛼 = 49.93 (V · 𝜇s)−1 (4.28)
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Figure 4.12: An electrical configuration around the MCP. −2 kV and 0.4 kV supplied from Stanford
Reseach Systems PS325/2500V-25W is applied to MCP in and anode. The output from the MCP is
amplified by a differential amplifier (NF 5307) and acquired by a DAC (NI PXI-6733).



CHAPTER 5
Trapping and imaging of single atoms

5.1 Optical setups for trapping and imaging

We describe the optical setup regarding the trapping and imaging of single atoms. The OT with
a wavelength of 532 nm is derived from a diode-pumped solid-state laser (Coherent, Verdi V-10).
The laser passes through a single-mode fiber in order to filter the spatial mode and stabilize the
pointing. An AOM is placed before the fiber for the purpose of switching and controlling the overall
power of OTs. After the fiber, two AODs are placed horizontally (AOD(H)) and vertically (AOD(V))
at the imaging plane of the standard 4 𝑓 configuration, consisting of lens pairs with a focal length of
100 mm and 150 mm, and 150 mm and 1000 mm. The deflection angle of the AOD is 0.8 mrad/MHz,
resulting in 2.4𝜇m/MHz at the position of the atoms. The mirror after the 𝑓 = 1000 lens is mounted
on a finely adjustable mount (Agilis, M100-L). The next mirror transmits tiny fraction of the light
and it is used for a monitor of the pointing and power homogeneities of the array. The beam is
then launched toward the objective lens passing through a dichroic mirror, and focused down to
a sub-micron waist. OTs pass through a PBS for the cleaning of the polarization, which transmits
the polarization along the Zeeman slower direction. The mirror for launching and the previous
mirror is mounted on an assembly of two translation stages (stage(L) and stage(S)) for orthogonal
directions, which allows the lateral shift of OT beams. The optical elements for OT beams are placed
on the ground vibration isolation table, which we call 1F for convenience.

The fluorescence from the atoms is collected by the objective lens and reflected by the dichroic
mirror. After that, half of the photons are reflected by a non-polarizing beam splitter (NPBS) and
focused on the EMCCD camera by a lens with a focal length of 400 mm. The focal length of the
objective lens is 20 mm, and therefore the magnification of the imaging system is 20. The NPBS
combines the vertical axis of the MOT beam. This MOT beam is focused on the principal plane of
the objective lens to collimate the beam on the atom position. The beam waist is about 1 mm. These
systems are constructed on a custom breadboard which we call 2F breadboard.

Figure. 5.1 shows an illustration of the whole optical setups on 1F and 2F and cut-view of the
vertical plane.
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Figure 5.1: Optical paths for the OT beam, fluorescence from the atoms, and the vertical axis of the
MOT beam. The OT beam mainly runs on the vibration isolation table (1F), and finally it is launched
toward the objective lens passing through a dichroic mirror. The fluorescence from the atoms are
reflected by the dichroic mirror and focused on the EMCCD camera on the custom bread board (2F).
The path of the tweezer beams and the fluorescence on the vertical plane is also presented here.
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5.2 Initial alignemnt

5.2.1 Alignment of OT beam

Figure 5.2: An assembly of the objective lens and its holders. A mirror and an iris is incorporated
for the alignment of OT beams temporarily before the installation, which is highlighted by purple
squares.

The high-NA objective lens is quite sensitive to misalignment of the input beam. The axis of
the objective lens and the OT beam should be the same and perpendicular to the window of the
chamber. As an initial alignment, we used a mirror and an iris temporarily and aligned the path
according to following procedures:

1. Before installing the 2F breadboard, we checked the angle of the window using a guiding
beam. We launched the beam to the window and adjusted the angle so that the reflection from
the window and the incident beam become overlap. We used an incoherent light source at
532 nm (Thorlabs, CPS32) for this purpose. The whole optical system of the guiding beam is
constructed on a small breadboard, allowing us to move it keeping the angle of the beam.

2. We adjusted the angle of the objective lens on the 2F breadboard to be perpendicular to the
guiding beam. We used a mirror incorporated to the assembly of the objective lens and
holders (Fig. 5.2) to check the reflection. The center of the objective lens and the guiding beam
is matched by checking the iris. The guiding beam is expected be the same as the axis of the
objective lens by this process. We placed two additional irises on the 2F breadboard to save
the axis of the objective lens. This process of the alignment was done before the installation of
the 2F breadboard.

3. The mirror and the iris attached to the objective lens were removed. We installed the 2F
breadboard below the science chamber.

4. The OT beam is aligned so that it passes through the two irises.

We note the relative position between the objective lens and the science chamber is not taken care
much.



64 CHAPTER 5. TRAPPING AND IMAGING OF SINGLE ATOMS

5.2.2 Fluorescence imaging of MOT

Figure 5.3: The obtained fluorescence images of atoms in MOT and an ODT. The left and middle
panel shows the image of MOT taken with 5 and 20 magnification. The right panel shows the image
of atoms in the ODT with 20 magnification. A crosshair in the left panel shows the position of the
guiding beam, corresponds to OT beam position on the camera.

We tried to take a image of MOT by its fluorescence first. Within our setup, however, the reflection
of the MOT vertical light also enters the EMCCD camera, as shown in Fig. 5.1. We turn off only
the vertical axis of MOT beams and took an image. We tried lower magnification first by using a
focusing lens with 𝑓 = 100 mm (𝑀 = 5). We used the guiding beam again which overlaps the OT
beam but propagates downward so that small fraction of light enters the camera. We moved the
position of the MOT to the guiding beam on the camera by changing the current of coils. We then
changed the lens to 𝑓 = 400 mm. In order to more finely adjust the focus position of the objective
lens, we also tried imaging of atoms trapped in optical dipole trap (ODT) with a beam waist of 30𝜇m
and the wavelength 1070 nm. The taken images are shown in Fig. 5.3.

5.3 Background light

To shield the camera from environmental light, we cover the imaging light path and mount two
band-pass filters for 556 nm and one notch filter for 532 nm to the camera. We use different two
band-pass filters: one is for 532 nm-556 nm (Semrock, FF01-544/24-25) and the other is for 554 nm-
568 nm (Semrock, FF01-561/14-25). This combination enables narrow range of transmission 554 nm-
556 nm. The majority of background light comes from OT beams. We confirmed this by comparing
the background in the presence and the absence of them. We also confirmed that they include 556 nm
wavelength, using notch filters for 532 nm and 556 nm. J. D. Thompson’s group also observed the
same fluorescence and they claims that it comes from the housing of the objective lens [47], which
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is made of polyetherimide, so is ours. 1

5.4 Single atom imaging

(a) (b)

(c)

8 μm 8 μm

Figure 5.4: (a) Single-shot and (b) 400-average image of atoms in a 5 × 5 tweezer array with the
spacing 4.8𝜇m (60 ms exposure time). (c) Histogram of photons detected by the CCD camera in
each 3 × 3 pixel2 region around the atom positions. The dashed line represents the fitted curve by a
double gaussian distribution. The dark count is set to be zero for clarity.

We aligned the OT beam further and finally observed single atoms fluorescence. Atoms are
loaded into a MOT from a Zeeman-slowed atomic beam for 500 ms. The atoms collected in the MOT
are then compressed by increasing the magnetic field gradient and further cooled by decreasing
the detuning and the power of the MOT beams. Typical temperature and the number of atoms at
this stage are ∼ 20𝜇K and 105, respectively. Some of the atoms are trapped in the optical tweezers
after turning off the MOT beams. We apply a red-detuned 556 nm light to induce losses of pairs
of atoms by light-assisted collisions (Section 4.3.2). Single atoms are detected with fluorescence
imaging with the 1S0 ↔ 3P1 transition. The imaging light is tilted by 16° from the horizontal plane

1We asked an engineer of Special Optics about this. They are not sure but they think it is possible that 556 nm
fluorescence come from the housing. The glass material of the lens (Fused silica) and its coating are unlikely to cause
such fluorescence from their experience.
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and horizontally polarized. Photons emitted from the atoms are collected for 60 ms on a charge-
coupled device camera through the objective lens (Fig. 5.1). 150 photons per single atom are typically
detected. Single shot and 400-averaged images of a 5 × 5 tweezer array with a 4.8𝜇m spacing are
shown in Fig. 5.4(a) and (b), respectively. We evaluated the NA of the imaging system by fitting the
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Figure 5.5: The extracted PSF from the obtained images of atoms, fitted by the airy disk function.
We evaluated the NA to be 0.31.

obtained image of the atoms to the airy disk function (Eq. (4.21)). The extracted PSF and the fitted
curve are shown in Fig. 5.5. The resultant NA is 0.31, much less than the specification value. This
implies imperfections of our imaging optical system.

A binarized behavior of the detected photon counts is clearly observed in the histogram as shown
in Fig. 5.4(c). The photon count 𝑁ph is converted from the CCD count 𝑁CCD by a relation:

𝑁ph = 𝑁CCD × (Q.E.) × (Gain)/(Sensitivity). (5.1)

(Q.E.) is a quantum efficiency of the sensor. The specification value of our camera for 556 nm
wavelength is about 60%. We evaluated it actually using a testing system and deduced it to be
25%. This value is unexpectedly much worse than the specification. We attribute it to aging of the
camera. Gain and sensitivity in our experiments are 1000 and 0.9, respectively. We determine the
count threshold to distinguish between filled and empty sites by a double Gaussian fit:∑︂

𝑖=0,1

𝑁𝑖√
2𝜋𝜎𝑖

exp

(︄
−
(𝑥 − 𝜇𝑖)2

2𝜎2
𝑖

)︄
(5.2)

≡
(︁
𝑁0𝑝0(𝑥) + 𝑁1𝑝1(𝑥)

)︁
, (5.3)

where 𝑖 = 0 or 1 indicates empty or filled sites, respectively. 𝑝0(1)(𝑥) corresponds to the probability
to detect 𝑥 photons when the site is empty (filled). We distinguish whether the site is empty or
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filled when we detect 𝑥 photons by comparing 𝑝0(𝑥) and 𝑝1(𝑥): 𝑝0(𝑥) > 𝑝1(𝑥) → (empty) and
𝑝1(𝑥) > 𝑝0(𝑥) → (filled). In other words, we determine the threshold photon counts 𝑥th as which
satisfies 𝑝0(𝑥th) = 𝑝1(𝑥th) and regard a site as empty (filled) when 𝑥 < 𝑥th (𝑥 > 𝑥th). A false
undetection and a false detection error probability is calculated as∫ ∞

𝑥th

𝑝0(𝑥)d𝑥 = 0.21% (False undetection), (5.4)∫ 𝑥th

−∞
𝑝1(𝑥)d𝑥 = 0.13% (False detection). (5.5)

The loading probability is deduced from this double-Gaussian distribution as 𝑁1/(𝑁0 + 𝑁1) =
58.4 %. We also take a second image and compared with the first one to evaluate the loss probability
caused by the probe light. The obtained loss probability 𝑞 over 400-shots is 5%.

5.5 Parametric loss spectroscopy

Figure 5.6: The obtained spectrum of loss by parametric heating is shown. The vertical axis shows
the mean fluorescence from the atoms. The blue and red data are taken with different parame-
ters: 𝑉mod/𝑉0 = 6%, 𝑇mod = 500 ms (blue) and 𝑉mod/𝑉0 = 3%, 𝑇mod = 50 ms (red), of which dips
corresponds to axial and radial trapping frequency, respectively.

The trapping frequency of the atoms is measured by a parametric loss spectroscopy. We modu-
lated the potential depth for a duration 𝑇mod with a frequency 𝑓mod:

𝑉(𝑡) = 𝑉DC +𝑉mod sin(2𝜋 𝑓mod𝑡). (5.6)

The heating by this modulation become maximum when 𝑓mod is equal to twice the trapping fre-
quency [113]. We deduced the axial and radial trapping frequency 𝜈𝑧 , 𝜈𝑟 from the obtained spectrum
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(Fig. 5.6) as

𝜈𝑟/(2𝜋) = 102 kHz, 𝜈𝑧/(2𝜋) = 10 kHz. (5.7)

We note𝑉mod/𝑉DC and 𝑇mod for 𝑓mod < 50 kHz (blue) and 𝑓mod > 50 kHz (red) is adjusted separately
to observe dips by axial and radial trapping frequencies clearly. Using Eq. (4.14), the wait 𝑤0 and
the rayleigh length 𝑧𝑟 of the OT beam is calculated as

𝑤0 = 1.0𝜇m, 𝑧𝑟 = 5.9𝜇m. (5.8)

The obtained 𝑤0 and 𝑧𝑟 agrees the relation 𝑧𝑟 = 𝜋𝑤2
0/𝜆 (𝜆 = 532 nm).

5.6 Cooling of atoms
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Figure 5.7: Recapture probability as a function of the release time 𝑡 with (blue) and without (red) the
cooling process. The error bars show the standard error of 16 repetitions. The shaded area indicates
a 95% confidential interval from 100 trials of the Monte-Carlo simulation at the best fit temperature
𝑇 = 19.5𝜇K (blue) and 𝑇 = 59.1𝜇K (red).

Atoms heated by the probe light are cooled after the first image using the 1S0 ↔ 3P1 MOT lights
in three directions for 10 ms, which is red-detuned by 1.9 times the natural linewidth. The cooling
effect is verified by the release-and-recapture technique [114]. We first take an image of an atom
array followed by the cooling. We then turn off the trap for a release time 𝑡 and take the second
image. We repeat this procedure 16 times for each 𝑡 and obtain the probability of recapturing atoms
as a function of 𝑡 with and without the cooling as shown in Fig. 5.7. We fit the experimental data to
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a Monte-Carlo simulated trajectories by the weighted least-square method 100 times and we deduce
the temperature to be 19.5 ± 2.1𝜇K for the data with the cooling and 59.1 ± 5.4𝜇K for without the
cooling, from the mean and the standard deviation of the fit results. The temperature with the
cooling is close to that in the MOT. We note that the obtained temperature corresponds to that in the
radial direction since the radial expansion is critical for the atoms to remain in the highly anisotropic
recapture region.

5.7 Rearrangement of atoms

To obtain defect-free atom arrays, we demonstrate a rearrangement protocol in 1D and 2D arrays.
We first prepare a sample randomly loaded in a 1D array of 25 sites and take an image. At this
stage, we identify the filled and empty sites. We then turn off the RF components applied to the
AODs corresponding to the empty trap sites, and move the remaining sites to the left by dynamically
changing the multi-tone RF in 0.64 ms. To confirm the successful rearrangement, we finally take the
second image. Figure 5.8(a) shows typical images before and after the rearrangement.

Figure 5.8(b) shows the probability to find an atom in each site obtained by 200 experimental
runs before (blue circles) and after (red squares) the rearrangement. The probability to find an atom
in the 𝑖-th site from the left edge after the rearrangement is given by

𝑃𝑖 = (1 − 𝑞) ×
∑︂
𝑗

𝑖≤ 𝑗≤𝑁

(︃
𝑁

𝑗

)︃
𝑝 𝑗 (1 − 𝑝)𝑁−𝑗 . (5.9)

Here 𝑁 is the number of total trap sites before the rearrangement, 𝑝 is the loading probability, and
𝑞 is the loss probability between the two images. The fit of Eq. (5.9) gives 𝑝 = 0.61 and 𝑞 = 0.07. The
obtained value of 𝑝 and 1 − 𝑞 are close to the fully random case of 1/2, and the survival probability
of 0.95, which indicates the rearrangement process is performed with negligibly small error.

This rearrangement method using AODs is not limited to 1D arrays. Figure 5.8(c) shows an
example for a 2D array. By only collecting defectless vertical lines of sites in a 3 × 8 array, we
successfully prepare a defect-free 3 × 5 array of single atoms. As far as we know, this is the first
demonstration of creating a defect-free 2D array only by AODs.

5.8 Conclusion

We succeeded in trapping of single atoms with a loading probability roughly 60% and detection
with 0.3% error for 5 × 5 OT array. The loss caused by this imaging is about 5%. We cooled
heated atoms by the imaging process and confirmed the cooling effect using a release-and-recapture
technique. The cooling during the imaging are supposed to decrease the loss from the trap, though
we were not able to do that due to our optical setups of MOT beams and imaging paths. We also
performed the rearrangement of randomly loaded atom array to a defect-free array by a fast feedback
program, for 25 sites 1D array and 3×8 sites 2D array. The result implies negligible losses during the
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(a)
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Figure 5.8: (a) Fluorescence images before (upper) and after (lower) the rearrangement of atoms for
one-dimensional 25 tweezer array. (b) The occupation probability of each site before (blue circles)
and after (red squares) the rearrangement averaged for 200-shots. (c) Fluorescence images before
(left) and after (right) the rearrangement of the atoms for a two-dimensional 3 × 8 tweezer array.
Only defectless columns are left and shifted to form a defect-free array.

rearrangement. These achievements are important foundations toward the large-scale atom array
for the quantum computing.

For the future experiments, we are to use 1S0 ↔ 1P1 transition instead of 1S0 ↔ 3P1 transition.
Though 1S0 ↔ 3P1 transition is convenient since it allows us to perform both trapping and imaging
with only one objective lens, it’s narrow linewidth requires fine tuning of polarization and magnetic
field to reduce the potential shift between the ground and the excited state to ensure the high-
performance of the imaging, which is expected to be difficult for fermionic isotopes with 532 nm
wavelength [42]. On the other hand, broad-linewidth 1S0↔1P1 is insensitive to such energy differ-
ences. This also allows us to perform the cooling for three axis simultaneously during the imaging.
In addition, we expect less background noises thanks to large difference of wavelengths between
trapping and imaging light and fast cycle of transitions, resulting in short exposure time. We already
installed another objective lens for UV light above the science chamber and succeeded in getting
images of single atoms in an OT array at the time of writing this thesis.



CHAPTER 6
High-resolution spectroscopy and single-photon Ry-
dberg excitation

6.1 High-resolution 1S0 ↔ 3P2 spectroscopy

6.1.1 Spectroscopy for atomic clouds

Figure 6.1: The obtained spectrum between 1S0↔3P2. The loss of 1S0 atoms corresponds to the
excitation to the 3P2 state.

We first tried to find the resonance of 1S0↔3P2 transition using atomic clouds in an optical dipole
trap (ODT) formed with a wavelength of 1070 nm. Atoms loaded in a MOT for 10 s are transferred
into the ODT and evaporatively cooled. Finally we obtain 105 atoms with a temperatrue of 5𝜇K. We
irradiated 507 nm laser to atom for 500 ms. The excitation to 3P2 is detected as a loss of the number
of 1S0 atoms. To remove the long-term fluctuation of the number of atoms, we take two successive
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absorption images with and without the irradiation, and we measured the ratio of the number of
atoms between them. Figure 6.1 shows the obtained spectrum, indicating clear five splittings by
Zeeman energy shifts. We unexpectedly observe small peaks in between |𝑚𝐽 | = 2 and |𝑚𝐽 | = 1
resonances, which we attribute to the laser frequency noise.

6.1.2 Sideband-resolved spectroscopy for single atoms

(b)(a)

Push out 1S0

10 ms

20 ms

690 μK

69 μK

20 ms

3P2 Excitation
4 ms

Repump
5 ms

1st 
Image

Cooling
10 ms

2nd 
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Figure 6.2: (a) Pulse sequence for 3P2 state spectroscopy. (b) A 3P2 (𝑚𝐽 = 0) spectrum for single
atoms in the 5 × 5 tweezer array. The dotted line is a fit by three Lorentzian functions. The peak
height ratio of the red to the blue sidebands yields the temperature 1.90 ± 1.02𝜇K and the mean
vibrational number occupation 𝑛 = 1.46 ± 1.01.

We perform spectroscopy of the 𝑚𝐽 = 0 state of single atoms in a 5 × 5 array. The experimental
sequence proceeds as shown in Fig. 6.2(a). We first take an image of single atoms randomly loaded
in a 5 × 5 array followed by the cooling as described in section 4.4.2. The potential depth at this
stage is 690𝜇K. The tweezer potential is adiabatically ramped down to 1/10 to further reduce
inhomogeneous broadening of the 1S0 ↔ 3P2 resonance. We apply a 507 nm laser pulse for 4 ms
followed by a 556 nm laser pulse for 10 ms to remove the remaining atoms in the ground state
from the array. After the 507 nm excitation, we ramp the tweezer potential back to the initial value
and apply a 770 nm light for 5 ms. We note that the 3S1 state spontaneously decays into all the
3P𝐽 (𝐽 = 0, 1, 2) with the branching ratio 𝑎𝐽 , where 𝑎0 = 13%, 𝑎1 = 37%, 𝑎2 = 50% (Section 3.1.2.4).
3P2 atoms return to the 1S0 state through the 3S1 state, with the probability calculated as

𝑎1 + 𝑎2 × 𝑎1 + 𝑎2
2 × 𝑎1 · · · = 𝑎1

∞∑︂
𝑛=0

𝑎𝑛2 =
𝑎1

1 − 𝑎2
= 73.5%. (6.1)

Nearly 3/4 of 3P2 atoms, therefore, return to the 1S0 state without the other repumper of 3P0 atoms.
Finally, we take the second fluorescence image and obtain the return fraction by comparing with the
first image.

Figure 6.2(b) shows a typical spectrum. The carrier resonance and the blue and red sidebands
are well resolved, promising for the sideband cooling to the vibrational ground state in the optical
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tweezers. The radial trap frequency 𝜈𝑟/(2𝜋) deduced from the sidebands is 20.7 ± 0.3 kHz, from
which we evaluate the waist of the tweezer beams to be 0.89𝜇m. The ratio of the peak heights
of the red sideband 𝐴R to the blue 𝐴B gives the temperature 𝑇 and the mean vibrational number
occupation 𝑛̄ by a relation 𝐴R/𝐴B = exp (−ℏ𝜈𝑟/(𝑘B𝑇)) = 𝑛̄/(1 + 𝑛̄), and we find 𝑇 = 1.90 ± 1.02𝜇K
and 𝑛̄ = 1.46 ± 1.01. The obtained value of 𝑛̄ is in agreement with the theoretical expectation that
𝑛̄ is reduced to 1.05 at most by the cooling process taking into account the sideband transitions,
using Eq. (2.92). The assumption of the same distribution of the occupation for trap depth before the
ramping down of the potential suggests the temperature of 6.01 ± 3.24𝜇K. We attribute the difference
between the value obtained with the release-and-recapture method in the previous section to the
assumption of isotropic temperatures in the Monte-Carlo simulation. Note that the saturation effect
would contribute to reduction of the peak height of the carrier resonance.

6.2 Rydberg excitation

6.2.1 Two-photon Rydberg excitation via 1P1 state

(a) (b)

Figure 6.3: (a) Typical signal detected by the MCP. The shaded area corresponds to the number of
ions detected. (b) Obtained two-dimensional spectrum of two-photon excitation to (6s)(78d)1D2 as
1P1 an intermediate state. Relative frequencies of 399 nm (Δ399) and 394 nm (Δ394) laser are scanned.

As a preliminary experiment, we first tried two-photon Rydberg excitation using 1P1 as an
intermediate state and ionization detection of them. We irradiate 399 nm and 394 nm lasers simul-
taneously for 1 ms to atoms in MOT, and then apply an electric field. Figure 6.3(a) shows a typical
averaged MCP signal. We chose (6s)(78d) 1D2 as a target state, of which resonance is reported by
a laser and microwave spectroscopy [94]. We scanned both laser frequencies Δ399 and Δ394, and
observed a resonance where the total energy of two photons coincides the energy gap between
the ground and the Rydberg state: Δ399 + Δ394 = const. (Fig. 6.3(b)). Δ399 = 0 corresponds to the
resonance of the 1S0↔1P1 transition. We confirmed our MCP and electrodes work fine by this
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experiments.

6.2.2 Rydberg spectroscopy from the 3P2 state for atomic clouds

6.2.2.1 3S1 series

(a) (b)

3P2 excitation Ionization

250 μs 1 ms

20 ms

Rydberg 
excitation

( (× 10

Figure 6.4: (a) Pulse sequence for the Rydberg state ionization spectroscopy. (b) A spectral data
between the 3P2 (𝑚𝐽 = 2) and (6s)(80s)3S1 state. The dashed line shows the fitted curve by a Gaussian
function.

We then tried to observe a spectrum of single-photon excitation to Rydberg 3S1 states from
the 3P2 state. We first apply a 507 nm pulse resonant to the 1S0 ↔ 3P2 (𝑚𝐽 = 2) transition for
18.75 ms followed by a 325 nm pulse for 250𝜇s. Immediately after the 325 nm pulse we ramp up
the electric field to 17 V/cm to detect the Rydberg states on the MCP by the field ionization method.
This excitation and ionization process is repeated for 10 times and the MCP signals are averaged.
Figure 6.4(a) and (b) show the pulse sequence and a spectrum for (6s)(80s)3S1, respectively. The
dashed line shows a fitted curve by a Gaussian function. We note a Lorentzian function does note
fit the data well. The full-width half maximum (FWHM) of the resonance is 6.0 MHz, comparable
to the uncertainty of the wavemeter: 10 MHz. The frequency of the 325 nm photon at the resonance
is 1 511 669 013 MHz, corresponds to 50 423.850 67 cm−1 using the measured transition frequency
between the 1S0 and the 3P2 𝑚𝐽 = 0 state: 590 902 342 562 ± 3 ± 60kHz [52]. This value well agrees
with the reported value of the resonant frequency using a two-photon excitation via the 3P1 state:
50 423.8507 cm−1 = 1 511 669 014 MHz.

We also observed a response of the resonant energy to an electric field. A weak electric field
is applied during the excitation along the 𝑥-direction in Fig 4.3. Quadratic DC stark shifts and a
splitting to two peaks corresponds to |𝑚𝐽 | = 0, 1 are observed and shown in Fig. 6.5. We deduce the
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(a) (b)

Figure 6.5: (a)Obtained spectra with a weak electric field applied during the excitation. (b)DC stark
shifts by an electric field and fitted curves are shown for each splittings corresponding to |𝑚𝐽 | = 0, 1.

polarizability for |𝑚𝐽 | = 0 and 1 as

𝛼0/ℎ = −7.12 kHz/(mV/cm)2 , (6.2)

𝛼1/ℎ = −8.80 kHz/(mV/cm)2 , (6.3)

from the obtained data (Eq. (3.21)).

6.2.2.2 3D series

D-series Rydberg states also have dipole-allowed transitions from the 3P2 state: 3D1 and 3D3. The
value of energy of the 3D1 and the 3D2 states are reported using two-photon laser and microwave
spectroscopy, as well as 1D2 states [94]. We scanned the frequency of 325 nm laser around the
resonance of 3D1 and the 3D2 states and observed complex spectra ranging from 𝑛 = 65 to 80. The
pulse sequence is the same as that for 3S1. Note we used 3P2 𝑚𝐽 = 2 in this case.

We observe up to eight resonances in the range of ∼ 1 GHz as shown in Fig. 6.6. The resonances
indexed as 2 and 7 are newly observed in this work, while the rest have been observed in the previous
works and 3, 5 and 8 were assigned to be 3D1, 3D2 and 1D2 states, respectively [94]. The peaks of 1,
4, and 6 were also observed in [115], but not assigned. We consider the strongest resonance 7 to be
the 3D3 state because of the selection rule of the dipole transition. This assignment is supported by
the fact that the resonance splits into four corresponding to |𝑚𝐽 | = 0, 1, 2, 3 manifolds by applying
electric fields along the 𝑥-direction due to the electric-field-induced quadruple splitting (Fig. 6.8.
Assignment and references which observed the resonances are summarized in Table 6.1.

We deduce the quantum defect of each resonance and plot them against the principal quantum
number in Fig. 6.7. Here the quantum defect 𝛿 is defined similarly as Eq. (3.52) by the following
relation

𝐸 = 𝐼 − 𝑅Yb
(𝑛 − 𝛿)2 , (6.4)
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Figure 6.6: Spectra around the 3P2 (𝑚𝐽 = 2) ↔ 3D transition for 𝑛 = 65–80. We label the resonances
by numbers from lower to higher energies in the 𝑛 = 80 spectrum. The horizontal axis is relative
freuqency from the strongest resonance 7. The resonances 3, 5 and 8 correspond to 3D1, 3D2 and 1D2

states, respectively. The peaks 2 and 7 are the new observations, and 7 is assigned as (6s)(𝑛d)3D3.
Note that the peaks of 1, 4, and 6 were also observed in [115] but not assigned.
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Table 6.1: Assignment of resonances and references which reports the corresponding resonance is
summarized.

1 2 3 4 5 6 7 8

Assigned state 3P? 3P? 3D1
3D2? 3D2

3P? 3D3
1D2

Ref. [115] [64] [94] [94] [115] [94]

66 68 70 72 74 76 78 80
n

2.71

2.72

2.73

2.74

2.75

2.76

δ

1

2

3

4

5

6

7

8

Figure 6.7: The quantum defect 𝛿 of the resonances against the principal quantum number.

where 𝐼 = 50 443.070 41 cm−1 and 𝑅Yb = 10 973.696 959 cm−1 are the energy of the first ionization
limit and the Rydberg constant of 174Yb, respectively [94]. The quantum defects for the low-lying
3D3 state of 𝑛 = 10 and 12–15 were deduced in [116]. We confirm that the deduced quantum defects
for the high-lying 3D3 Rydberg states are in good agreement with the values for the low-lying ones.
Table 6.2 summarizes the energies and the quantum defects obtained by our measurement.
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Table 6.2: Energy and quantum defect values of the observed resonances for 𝑛 = 65–80. Index numbers
indicate the number assigned to each peak in Fig.6.6. Typical uncertainty of the resonance frequency
is about 10 MHz coming from the uncertainty of the wavemeter.

𝑛 index 𝛿 𝐸/ℎ (MHz) 𝑛 index 𝛿 𝐸/ℎ (MHz)

65 3 2.753 118 00 1 511 396 147 74 6 2.732 881 65 1 511 597 475
4 2.749 201 30 1 511 396 253 7 2.728 919 37 1 511 597 547
7 2.728 954 75 1 511 396 805 8 2.713 498 12 1 511 597 827

66 3 2.753 233 55 1 511 422 780 75 1 2.757 558 00 1 511 614 846
4 2.749 123 37 1 511 422 887 3 2.754 396 71 1 511 614 902
7 2.729 019 84 1 511 423 410 4 2.751 617 38 1 511 614 950

67 3 2.752 989 91 1 511 448 189 5 2.749 453 21 1 511 614 988
4 2.749 030 83 1 511 448 288 6 2.734 156 93 1 511 615 255
6 2.710 514 77 1 511 449 242 7 2.728 839 26 1 511 615 347
7 2.728 676 00 1 511 448 792 8 2.713 478 24 1 511 615 615
8 2.713 271 53 1 511 449 174 76 1 2.758 686 17 1 511 631 923

68 3 2.753 556 14 1 511 472 419 2 2.756 319 39 1 511 631 963
4 2.749 545 81 1 511 472 514 3 2.754 128 63 1 511 631 999
7 2.729 072 10 1 511 472 999 4 2.751 338 22 1 511 632 046
8 2.713 037 07 1 511 473 378 5 2.748 931 06 1 511 632 086

69 3 2.753 751 90 1 511 495 570 6 2.734 955 80 1 511 632 320
4 2.750 236 53 1 511 495 649 7 2.728 140 55 1 511 632 434
5 2.749 379 75 1 511 495 669 8 2.713 174 28 1 511 632 685
6 2.719 565 11 1 511 496 343 77 1 2.760 353 76 1 511 648 306
7 2.729 107 78 1 511 496 127 2 2.758 213 71 1 511 648 341
8 2.713 083 52 1 511 496 489 3 2.754 547 05 1 511 648 400

70 3 2.753 698 45 1 511 517 700 4 2.751 787 62 1 511 648 444
4 2.750 364 04 1 511 517 772 5 2.749 265 15 1 511 648 485
5 2.749 266 63 1 511 517 796 6 2.736 433 65 1 511 648 691
6 2.722 625 17 1 511 518 372 7 2.728 692 66 1 511 648 815
7 2.728 931 74 1 511 518 236 8 2.713 606 30 1 511 649 057
8 2.713 374 54 1 511 518 572 78 1 2.762 192 34 1 511 664 039

71 3 2.753 606 97 1 511 538 866 2 2.760 144 54 1 511 664 071
4 2.750 438 77 1 511 538 932 3 2.754 872 56 1 511 664 152
5 2.749 153 25 1 511 538 958 4 2.751 981 88 1 511 664 197
6 2.725 552 12 1 511 539 446 5 2.749 430 08 1 511 664 236
7 2.728 750 50 1 511 539 380 6 2.737 113 54 1 511 664 426
8 2.712 551 98 1 511 539 715 7 2.728 904 26 1 511 664 553

72 3 2.753 973 35 1 511 559 112 8 2.713 498 64 1 511 664 791
4 2.750 944 03 1 511 559 172 79 1 2.764 389 69 1 511 679 153
5 2.749 409 48 1 511 559 203 3 2.755 316 70 1 511 679 287
6 2.728 897 38 1 511 559 609 4 2.752 270 80 1 511 679 333
7 2.728 880 20 1 511 559 609 5 2.749 658 77 1 511 679 371
8 2.713 575 35 1 511 559 912 6 2.737 673 32 1 511 679 549

73 3 2.754 176 31 1 511 578 503 7 2.728 778 71 1 511 679 681
4 2.751 246 56 1 511 578 559 8 2.714 288 47 1 511 679 896
5 2.749 532 47 1 511 578 592 80 1 2.766 103 81 1 511 693 691
6 2.730 954 96 1 511 578 944 2 2.763 960 40 1 511 693 722
7 2.729 037 71 1 511 578 980 3 2.755 277 19 1 511 693 846
8 2.713 052 18 1 511 579 283 4 2.752 128 81 1 511 693 891

74 1 2.756 543 85 1 511 597 045 5 2.749 345 23 1 511 693 930
3 2.754 300 03 1 511 597 085 6 2.737 524 41 1 511 694 099
4 2.751 552 23 1 511 597 135 7 2.728 632 77 1 511 694 226
5 2.749 510 64 1 511 597 172 8 2.713 481 34 1 511 694 442
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Figure 6.8: DC-stark shift by an applied electric field for (6s)(78d) Rydberg states are observed.

6.2.3 Single-photon Rydberg excitation of single atoms

We perform single-photon Rydberg state excitation spectroscopy from the 3P2 state in single atom
arrays. The 3P2 state atoms are prepared by applying a 507 nm laser pulse for 20 ms on the carrier
resonance in the shallow trap, yielding the excitation probability of 40%. After ramping back the trap
potential we apply a 325 nm laser pulse for 10 ms followed by ionization. We then take the second
image after a 5 ms pulse of the 770 nm laser (see Fig. 6.9(a)). Successful excitation to a Rydberg state
is observed as a decrease of the return probability as shown in Fig. 6.9(b). The observed resonance
corresponds to the (6s)(78d) 3D3 state. This is the first demonstration of the single-photon Rydberg
excitation of a single Yb atom array.

6.3 Conclusion

We succeeded in observing a sideband-resolved spectrum for single atoms in an OT array, which
enables us to perform a sideband-cooling to the motional ground state with the aid of repumpers [117,
118]: 3P2→3S1 (𝜆 = 770 nm and 3P0→3S1 (𝜆 = 649 nm). The mean occupation quantum number
for the motional eigenstate along the radial direction is deduced from the spectrum as 1.46 ± 1.01,
which agrees with a calculation of the cooling process.

We also performed a spectroscopy of single-photon excitation to Rydberg states from the 3P2
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Figure 6.9: (a) Pulse sequence for the Rydberg spectroscopy from the 3P2 state for single atoms.
(b) A spectrum of the 3P2, 𝑚𝐽 = 0 ↔ (6s)(78d)3D3 transition for single atoms in the 5 × 5 tweezer
array. Rydberg states are ionized by an electric field before the repumping of 3P2 state and observed
as a loss of the 1S0 state.

state, as well as a two-photon spectroscopy with 1P1 as an intermediate state, using atomic clouds
in ODT or MOT. We observed resonances of 3D and 3S1 Rydberg series. Especially, 3D3 states is
newly observed in our work thanks to our choice of the 𝐽 = 2 state as the initial state. It is notable
that the energy of 3D3 and the 8th peak cross at 𝑛 = 72, from which we expect strong interactions
between 3D3 Rydberg state atoms by the Förster resonance. The exploitable states to generate the
strong dipole–dipole interactions are not known for Yb atoms and this opens up new possibilities
for quantum computing and simulations.



CHAPTER 7
Schemes for nondestructive detection of single atoms

7.1 Principle of homodyne Faraday detection

Before going to our proposal schemes for nondestructive imaging, we discuss the limitation of
quantum gas microscopy with a dispersive Faraday interaction. Figure 7.1(a) shows the schematic
setup [119]. We assume the transition 𝐽𝑔 = 0 → 𝐽𝑒 = 1 with a wavelength 𝜆 for probing the atoms
for simplicity, as shown in Fig. 7.1(b). When we set the frequency of the probe beam at the center
of the 𝐽𝑔 = 0 → 𝐽𝑒 = 1, 𝑚𝑒 = ±1 transitions in the presence of a bias magnetic field 𝐵0 applied along
the probe propagation axis, the 𝜎+ and 𝜎− circular polarization components of the linearly polarized
probe beam have different detunings±𝛿𝐵 provided by the magnetic field. This causes different phase
shifts in the two components and therefore induces the rotation of the axis of linear polarization of
the probe beam, termed the Faraday effect. The polarization rotation signal for a single atom can
be understood as an effect of interference between a linearly polarized input probe beam Eprobe(𝑟)
and an elastically scattered electric field coherently induced by a single atom. Based on diffraction
theory [111] and scattering theory [120], the scattered light field Esc(𝑟) is described [119] as

Esc(𝑟) = 𝛼
2𝐽1(𝑟/𝜎)
𝑟/𝜎 𝐸0

(︃
ê+

1 − 𝑖(2𝛿𝐵/Γ)
+ ê−

1 + 𝑖(2𝛿𝐵/Γ)

)︃
, (7.1)

where Γ is the natural linewidth of the excited state. 𝐸0 is the amplitude of the electric field of the
input probe beam, 𝛼 = −

√︁
3𝜂𝐴𝑁/2, where 𝜂 ≡ [1−(1−𝐴𝑁2)1/2(1−𝐴𝑁2/4)]/2 is the photon collection

efficiency of an objective lens, 𝐴𝑁 is the NA of the lens, 𝐽1(𝑥) is the Bessel function of the first kind,
𝜎 ≡ (𝑘𝐴𝑁 )−1 is the diffraction-limited spatial resolution, 𝑘 is the wavenumber of the probe light, and
ê± = (ê𝑥 ± iê𝑦) is the polarization unit vector for 𝜎± circularly polarized light. For large 𝛿𝐵/Γ, the
scattered light polarization is perpendicular to the initial polarization of the probe light and has the
expected 1/𝛿𝐵 dependence.

After passing through the HWP and the PBS, only the component parallel to an appropriate
linear unit vector ê𝜃 = cos𝜃ê𝑥 + sin𝜃ê𝑦 1 arrives the CCD. The resulting intensity of the light at the

1𝜃 corresponds to twice the angle of the fast axis of the HWP from 𝑥 axis.

81
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(b)

CCD
PBS

Probe light

Scattered light

Optical lattice

Objective lens

(a)

HWP

Figure 7.1: (a) Schematics of Faraday imaging of single atoms in an optical lattice [119]. Off-
resonant linearly polarized probe light induces an elastically scattered coherent light field with the
polarization orthogonal to that of the probe beam in the presence of a bias magnetic field 𝐵0. This
results in the rotation of the polarization axis, which is detected at the charge-coupled-device (CCD)
camera after a half-wave-plate (HWP) and a polarizing-beam-splitter (PBS). (b) Relevant energy
level and transition diagram of Faraday imaging. The opposite sign of the detunings ±𝛿𝐵 of the 𝜎±
component of the probe light with respect to the associated 𝐽𝑔 = 0 → 𝐽𝑒 = 1, 𝑚𝑒 = ±1 transitions,
respectively, in the presence of the magnetic field results in the rotation of the axis of the linear
polarization.

CCD is given by

𝐼detect =
𝜖0𝑐

2
|︁|︁ (︁Esc +Eprobe

)︁
· ê𝜃

|︁|︁2 , (7.2)

where 𝜖0 and 𝑐 are the vacuum permeability and speed of light, respectively. The signal of this
detection 𝑆 is the difference of the number of photoelectron of the CCD between in the presence and
the absence of an atom:

𝑆 = 𝜂det
𝜖0𝑐

2
𝜆𝜏
ℎ𝑐

∫
det

d𝐴
(︂|︁|︁(︁Esc +Eprobe

)︁
· ê𝜃

|︁|︁2 − |︁|︁Eprobe · ê𝜃
|︁|︁2)︂ (7.3)

≃ 𝜂det
𝜖0𝑐

2
𝜆𝜏
ℎ𝑐

2
∫

det
d𝐴 (Esc · ê𝜃)

(︁
Eprobe · ê𝜃

)︁
(7.4)

where 𝜂det is the total detection efficiency of the CCD. The parameter 𝜏 represents the temporal width
of the probe pulse. The integral ranges the pixels of interests in this case. Here we assumed that the
amplitude of the probe light is sufficiently larger than that of the scattered light: |Eprobe | ≫ |Esc |.
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Because the probe and the scattered light are both classical, each detection event obeys Poisson
statistics, and thus the deviation of the number of photoelectrons is equal to square root of its mean
value. Considering the error accumulation, the noise 𝑁 is thus given by

𝑁 =

√︄
𝜂det

𝜖0𝑐

2
𝜆𝜏
ℎ𝑐

(︃∫
det

|︁|︁ (︁Esc +Eprobe
)︁
· ê𝜃

|︁|︁2 + ∫
det

|︁|︁ (︁Eprobe
)︁
· ê𝜃

|︁|︁2)︃ d𝐴 (7.5)

≃

√︄
2𝜂det

𝜖0𝑐

2
𝜆𝜏
ℎ𝑐

∫
det

|Eprobe · ê𝜃 |2d𝐴. (7.6)

We note that the noise from the probe with the presence and the absence of the atom is not correlated
(different light), and we should take the root of the sum of squares.

Let us consider the case with 𝜃 = 𝜋/4 and 𝜂det = 1 (perfect detector). We denote Esc · ê𝜋/4 and
Eprobe · ê𝜋/4 as 𝐸sc/

√
2 and 𝐸probe/

√
2, respectively. We can derive the expression for signal-to-noise

ratio 𝑅SN as follows:

𝑅SN =

√︃
𝜖0𝑐

2

∫
det d𝐴𝐸sc𝐸probe√︂∫

det d𝐴|𝐸probe |2

√︃
𝜆𝜏
ℎ𝑐
. (7.7)

For a large 𝛿𝐵/Γ, 𝑅SN becomes

𝑅SN =

√︃
Γ𝜏𝑠𝜂

2 𝐶sc,probe , (7.8)

where

𝐶sc,probe =

∫
det
𝐸sc · 𝐸probed𝐴

/︃√︄∫
|𝐸sc |2d𝐴

√︄∫
det

|𝐸probe |2d𝐴 (7.9)

is the quantity representing the level of the spatial mode-matching between the probe beamEprobe(𝑟)
and the scattered light Esc(𝑟), and

𝑠 =
𝐼0/𝐼sat

1 + (2𝛿𝐵/Γ)2
≃ 𝐼0/𝐼sat

(2𝛿𝐵/Γ)2
(𝛿𝐵 ≫ Γ) (7.10)

is the saturation parameter with a saturation intensity 𝐼sat = 𝜋ℎ𝑐Γ/(3𝜆3) and the probe intensity
𝐼0 = (𝜖0𝑐/2)|𝐸0 |2. The number of photon absorption 𝑁abs is given for a large 𝛿𝐵/Γ as follows:

𝑁abs =
Γ𝜏
2 𝑠. (7.11)

From Eqs. (7.8) and (7.11), we obtain the important following relation:

𝑁abs = 𝑅2
SN/(𝜂𝐶

2
sc,probe). (7.12)

The maximum values of 𝜂 and 𝐶sc,probe are 1/2 for 𝐴𝑁 = 1 and 1 for 𝐸probe(𝑟) = 𝐸sc(𝑟) with
a sufficiently large integration area, respectively. Note that this high level of mode matching is
achieved only for a particular single site. If we consider the probe beam sufficiently broad compared
to the lattice constant, 𝐶sc,probe = 0.85 for the optimal integration area can be derived by a simple
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calculation. From these considerations, we conclude that the number of photon absorptions of the
probe beam is never less than 2 at 𝑅SN = 1. We also remark that, in this detection, the signal appears
as the DC component of the detector output, as a matter of course for imaging with a camera.
However, the DC component suffers from a flicker noise, or 1/ 𝑓 noise, which prevents to achieve to
the imaging condition given in Eq. (7.12).

7.2 Proposed Schemes for nondestructive detections

7.2.1 Magic condition optical traps for the probe transition

Figure 7.2: Vibrational level structure of an atom tightly confined in an optical lattice with a
magic-wavelength condition (𝜈𝑒 = 𝜈𝑔 = 𝜈) for the transition for probing. During the absorption
process, the probe laser beam whose linewidth is much narrower than the trap frequency 𝜈 is tuned
to the well-resolved resonance of the |𝑔, 0⟩ → |𝑒 , 0⟩ transition. During the spontaneous emission
process, the transition predominantly occurs between the vibrational ground states in the electronic
ground |𝑔, 0⟩ and excited |𝑒 , 0⟩ states, and the transition accompanying the change in one vibrational
quantum number |𝑒 , 0⟩ → |𝑔, 1⟩ is suppressed by the square of the Lamb-Dicke factor 𝜁 compared
to the transition |𝑒 , 0⟩ → |𝑔, 0⟩.

We consider the two strategies to overcome the fundamental limitation derived in the previous
section. The first, applicable to an atom that has an electronic ground state without spin degrees
of freedom, is to utilize tight confinement of the atom under a magic-wavelength condition of the
optical lattice for the transition for probing (See Fig. 7.2). In general, vibrational quantum number
can change without any preference during the probe transition. If we irradiate the probe light to the
atom tightly confined in the optical lattice site in three dimensions formed by the magic-wavelength
light of the probe transition, the probe photon absorption and subsequent spontaneous emission
process predominantly occur between the vibrational ground states in the electronic ground and
excited states (carrier), and the transition accompanying the change in one vibrational quantum
number (sideband) is suppressed by the square of the Lamb-Dicke factor 𝜁 =

√︁
𝐸𝑅/(ℎ𝜈) compared
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to the transition between the same vibrational quantum numbers [121]. Here 𝐸𝑅 = ℏ2𝑘2
trap/2𝑚 is the

recoil energy of the trapping light and 𝜈 is the trapping frequency. Here 𝑘trap is the wavenumber
of the trap laser and 𝑚 is the atom mass. For simplicity, we consider the case where the trapping
frequencies are the same for all three directions, and Γ and the linewidth of the probe light Δ𝜔probe

are sufficiently narrow such that the probe laser is solely resonant to the carrier transition, which is
well-resolved from the sideband transitions: Γ,Δ𝜔probe ≪ 𝜈. Then, we can repeat the photon absorp-
tion and subsequent spontaneous emission between the vibrational ground states before 𝑁abs × 3𝜁2

reaches one, and therefore the criterion for “nondestructive” relaxes as 𝑁abs < 1/(3𝜁2). We note this
scheme does not require cooling procedure during the imaging, such as Raman sideband cooling.
While the fidelities of the atom detection with some cooling methods could be now even higher
than those in the first demonstrations [3, 5, 6], in our work, however, we specifically discuss more
stringent probing condition in which the vibrational state of an atom in each lattice site minimally
changes. Regarding Yb atoms, the realization of Lamb-Dicke confinement with 𝜁 = 0.11 in the
“magic-like” lattice for the 1S0↔3P1 transition is already demonstrated using the 532-nm laser light
with an appropriate polarization choice [15].

7.2.2 Scanning heterodyne Faraday detection with a squeezed vacuum

However, in general cases of atoms with spins in the ground state, the situation is not so simple. It
is true that, in a magic-wavelength trap, we can think of a scheme of spin-preserving probing such
as a closed, cyclic transition with appropriate polarization of probe light, or spin-non-preserving
probing of one particular spin-component, say spin-up, and later performing optical pumping to
the original spin-up state with shelving another spin-component, say spin-down, to states irrelevant
for probing, and finally returning the atom to their original spin-down state. However, here we
think of a much simpler scheme where no additional processes that influence the performance
of the nondestructive detection are required other than probing. If the detection without photon
absorption is possible, it is ideal for realizing nondestructive detection. For this purpose, we propose
the second scheme of a scanning-type microscope in the confocal configuration with the use of a
broadband squeezed vacuum and heterodyne detection. In this scheme, we use a coherent local
oscillator beam in addition to the probe light with different frequencies. It enables detection of
scattered light avoiding 1/ 𝑓 noise. An imaging system we consider is shown in Fig. 7.3.

Note that a squeezed vacuum is fragile to branching. Array detectors such as CCD cameras are
not compatible with squeezed light because imaging with array detectors involves light branching
to each detector segment. Therefore, measurement should be completed for each site with a single
balanced detection mode scanning one-by-one as shown in Fig. 7.3. Mode-matching and scanning
with the single site addressing level can be accomplished by a digital micromirror device and a
galvano mirror system, for example.

The target site is selectively illuminated by an off-resonant weak probe laser beam with an angular
frequency 𝜔𝐿 and vertical linear polarization through an objective lens 2 (OBJ2) and a polarizing
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Figure 7.3: Scanning-type quantum gas microscope in the confocal configuration with the use of a
broadband squeezed vacuum. An off-resonant vertically polarized probe laser beam is irradiated to
a single atom through an objective lens OBJ2, inducing the horizontally polarized coherent elastic
scattered light field. This light field is detected via the heterodyne measurement scheme consisting
of the local oscillator beam LO, half-beam splitter HBS, two photo-detectors PD1 and PD2, and
spectrum analyzer. At the same time, the horizontally polarized squeezed vacuum is focused to the
single atom through an objective lens OBJ1 and is fed into the input of the HBS. With the aid of the
squeezed vacuum, the signal for the atom is detected with enhanced sensitivity at a radio-frequency
component of 𝛿/(2𝜋) below the shot noise level. PBS represents a polarizing-beam splitter. The
angular frequency and the polarization of each light field are shown.

beam splitter (PBS). The probe light induces an electric field whose angular frequency 𝜔𝐿 is the same
as that of the probe light [122], and its polarization is horizontal.

This elastically scattered coherent electric field is detected at the photo-detectors (PD1 and PD2)
using the heterodyne method with the LO light with an angular frequency 𝜔𝐿 + 𝛿 with 𝛿 within the
squeezed bandwidth. A squeezed vacuum light beam having spectral components around the same
angular frequency as the LO is focused to the same lattice site through an objective lens 1 (OBJ1).
The 𝜔𝐿 and 𝜔𝐿 + 2𝛿 components of the squeezed vacuum reduce the shot noise in the detection
around the frequency 𝛿 at the spectrum analyzer. Because the noise reduction requires exactly the
same detuning and polarization as that of the signal light, the squeezed vacuum light cannot be
separated from the scattered light and therefore a confocal configuration is inevitable. These three
light beams are split by a half beam splitter (HBS) and then fall on two photo diodes PD1 and PD2
followed by signal subtraction via a differential amplifier.

Let us derive the 𝑅SN for this scheme. Figure 7.4 shows an simplified illustration for the het-
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Figure 7.4: Simple schematic illustration of the heterodyne configuration.

erodyne detection of scattered light. We denote the annihilation operators for the scattered light,
the local oscillator light, and the squeezed vacuum as 𝑎sc(𝑡) = 𝑎sce−i𝜔𝐿𝑡 , 𝐵(𝑡) = 𝐵e−i(𝜔𝐿+𝛿)𝑡 , and

𝑎sv(𝑡) =
∫

d𝜔′𝑎̃sv(𝜔′)e−i𝜔′𝑡 , respectively. 𝑎̃sv(𝜔) is a frequency component of the annihilation oper-

ator for 𝜔. Using the squeezing parameter for 𝜔: 𝜉(𝜔), 𝑎̃sv(𝜔) is explicitly written as

𝑎̃sv(𝜔) = 𝑆†(𝜉(𝜔))𝑎sv𝑆(𝜉(𝜔)) (7.13)

= 𝑎sv cosh 𝜉 − 𝑎†sv sinh 𝜉, (7.14)

𝑆(𝜉) ≡ exp
(︃
𝜉
2 (𝑎

2
sv − 𝑎† 2

sv )
)︃
, (7.15)

where 𝑎sv is the non-squeezed annihilation operator for the scattered light. We also define the
state vector of each light and the vacuum as |𝛼⟩, |𝛽⟩, and |0⟩. |𝛼⟩ and |𝛽⟩ are the coherent state:
𝑎sc |𝛼⟩ = 𝛼 |𝛼⟩, 𝐵 |𝛽⟩ = 𝛽 |𝛽⟩. The total state vector is |𝜓⟩ ≡ |𝛼⟩ |𝛽⟩ |0⟩. In the Heisenberg picture,
annihilation operators of the light arrives PD1 and PD2 are given by

𝑐± =
1√
2
(𝑎sc(𝑡) + 𝑎sv(𝑡) ± 𝐵(𝑡)) . (7.16)

The heterodyne detection measures the 𝛿-frequency component of 𝑐†+𝑐+ − 𝑐†−𝑐−:

𝑅 =

(︂
𝑎†sv(𝜔𝐿 + 2𝛿)𝐵 + 𝑎sv(𝜔𝐿)𝐵†

)︂
+ 𝑎sc𝐵

†. (7.17)

Remember broadband squeezing and here we assume 𝜉(𝜔 + 2𝛿) = 𝜉(𝜔𝐿) = 𝜉. The signal ⟨𝑅⟩ and
the noise

√︁
⟨𝑅2⟩ − ⟨𝑅⟩2 is derived as

⟨𝑅⟩ = 𝛼𝛽∗ (7.18)√︁
⟨𝑅2⟩ − ⟨𝑅⟩2 = |𝛽 |

√︂(︁
e−2𝜉 cos2 𝜃 + e2𝜉 sin2 𝜃

)︁
, (7.19)

where 𝛽 = |𝛽 |ei𝜃. For 𝜃 = 0, we can “squeeze” the noise. We let 𝜃 = 0 in the following discussion.
We also should take the spatial mode of each field into account. The finite loss caused by

real optical components as well as the imperfect spatial mode-matching between the LO and the
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squeezed vacuum degrade the effective squeezing level. The effective squeezing parameter 𝜉eff, the
transmission of the optical system 𝑇, and the spatial overlap between the squeezed vacuum and the
LO field 𝐶sv,LO are related as [123]

e−2𝜉eff = 1 − (1 − e−2𝜉)𝑇𝐶2
sv,LO , (7.20)

where

𝐶sv,LO =

∫
det

Esv ·ELOd𝐴
/︃√︄∫

|𝐸sv |2d𝐴

√︄∫
|𝐸LO |2d𝐴. (7.21)

We obtain the expression for 𝑅SN:

𝑅SN =

√︃
Γ𝜏
2 𝑠𝜂

𝐶sc,LO√︂
1 − (1 − e−2𝜉)𝑇𝐶2

sv,LO

. (7.22)

Note that in the expression of 𝐶sc,LO, 𝐸probe in Eq. (7.9) is replaced with 𝐸LO. Substituting 𝜉 = 0, this
recovers Eq. (7.8) except a factor

√
2, which arises from the difference between the homodyne and

the heterodyne detection. In the following calculation we assume a Gaussian mode for the squeezed
vacuum. LO’s spatial mode is the only adjustable one.

What is the optimized value of 𝑅SN? The answer of this question can be revealed by a varia-
tional calculation, which immediately implies that the optimized 𝐸LO takes the form of 𝑢𝐸sc + 𝑣𝐸sv,
assuming the area of the detector is sufficiently large. The normalization of fields∫

|𝐸sc |2d𝐴 =

∫
|𝐸sv |2d𝐴 =

∫
|𝐸LO |2d𝐴 = 1 (7.23)

does not change 𝑅SN. Then we obtain the following equations

𝑢2 + 𝑣2 + 2𝑢𝑣𝐶sv,LO = 1, (7.24)

𝐹 ≡ 𝐶sc,LO√︂
1 − (1 − e−2𝜉)𝑇𝐶2

sv,LO

=
𝑢 + 𝑣𝐶sc,sv√︁

1 − (1 − e−2𝜉)𝑇(𝑢𝐶sc,sv + 𝑣)2
. (7.25)

This indicates that the mode-matching dependence of the 𝑅SN is finally characterized by

𝐶sc,sv =

∫
Esv ·Escd𝐴

/︃√︄∫
|𝐸sv |2d𝐴

√︄∫
|𝐸sc |2d𝐴, (7.26)

which represents the level of the spatial overlap between the squeezed vacuum and scattered light
field. The necessary condition for the existence of solutions for Eqs. (7.24) and (7.25) is(︁

1 − (1 − e−2𝜉)𝑇
)︁
(1 − 𝐶2

sc,sv)𝐹2 − (1 − 𝐶2
sc,sv)

(︁
1 − (1 − e−2𝜉)(1 − 𝐶2

sc,sv)𝑇
)︁
≤ 0 (7.27)

⇒𝐹 ≤

√︄
1 + 𝐶2

sc,sv
𝑇(1 − e−2𝜉)

1 − 𝑇(1 − e−2𝜉) . (7.28)
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We thus obtain the following expression of the optimized 𝑅SN

(𝑅SN)opt =
√︁
𝑁abs𝜂

√︄
1 + 𝐶2

sc,sv
𝑇(1 − e−2𝜉)

1 − 𝑇(1 − e−2𝜉) . (7.29)

Note that the optimal spatial mode of the local oscillator changes as the squeezing level changes,
as shown in Fig. 7.5(a). By taking the maximum value of 0.9 for 𝐶sc,sv and setting the (𝑅SN)opt = 1
in Eq. (7.29), we obtain the number of photon absorption events 𝑁abs to maintain the 𝑅SN equal to
1 as a function of the squeezing level. Figure 7.5(b) shows the results with the realistic condition of
𝐴𝑁 = 0.8 and 𝑇 = 0.95. The calculated squeezing level required to achieve nondestructive detection
indicated by the shaded area in the figure (𝑁abs < 1) is 7.7dB, which corresponds to average photon
number of 1.0.

(a) (b)

Figure 7.5: (a)Optimal values of 𝐶sc,LO and 𝐶sv,LO in the maximization of the 𝑅SN via adjusting the
LO field spatial mode. The optimal spatial mode of the local oscillator changes as the squeezing
level changes. (b)Number of photon absorption events 𝑁abs to maintain the 𝑅SN equal to 1 plotted
as a function of squeezing level. Conditions of 𝐴𝑁 = 0.8, 𝑇 = 0.95, and the optimal local oscillator
light spatial mode are assumed.

7.3 Feasibility

The feasibility of the proposed scheme is discussed by considering an example of ultracold two-
electron atoms in a metastable state. While the transition from the ground states of alkali atoms or
two-electron atoms mostly lies in the visible region, a higher level of squeezing has been realized
in the near-infrared region [124]. Notably, the transitions from the metastable states of two-electron
atoms have optical transitions in the near-infrared region; for example, a Yb atom has an electric-
dipole allowed transition between the 3P0 and 3D1 states with a corresponding wavelength of
𝜆 = 1389 nm. The transitions associated with the 3P0 state can be used for probing a SU(𝒩)
symmetric Fermi Hubbard model realized in the metastable 3P0 state for fermionic isotopes of Yb
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atoms. A glass-cell system with an effective numerical aperture 𝐴𝑁 of 0.7 of two objective lenses on
both sides similar to our scheme is commercially available. Assuming 15 dB of squeezing and 95%
transmittance of the optical system (𝑇 = 0.95) with 𝐴𝑁 = 0.8 and 𝐶sc,sv = 0.9, we expect the relation

𝑁abs = 0.39 × 𝑅2
SN , (7.30)

which implies nondestructive detection of a single atom in a single site. As a typical experimental
condition, we consider a probe beam with a pulse width of 𝜏 = 1010𝜇s, intensity of 𝐼0/𝐼sat = 1.03×103,
and detuning of 𝛿𝐵/Γ = 100. With these parameters, the number of absorbed photons can be es-
timated to be 𝑁abs = 0.39 from Eq. (7.11) and the signal-to-noise ratio 𝑅SN = 1.0 from Eq. (7.29),
consistent with Eq. (7.30), thus realizing nondestructive imaging for a single atom in a single site.
The measurement time of 𝜏 = 10𝜇s is sufficiently short to perform repetitive measurements for many
sites in a scanning manner in a relatively shallow lattice. In fact, for example, when we consider
15 atoms in an optical lattice with a depth of 10𝐸𝑅, where the tunneling time 𝜏hop = ℏ/𝐽 is 8 ms
for the lattice constant of 532 nm with 𝐽 being the hopping energy, we can perform 𝑁 = 15 mea-
surements in 15𝜏 = 0.15 ms, during which the number of hopping to adjacent sites for all 15 atoms
𝑁hop = 15× 0.15ms/𝜏hop is 0.28. Note that the excitation of the atoms caused by the 15-dB squeezed
vacuum is negligible because of the weak intensity comparable to 𝐼sat and the squeezed bandwidth
is assumed to be sufficiently broad to cover the heterodyne frequency of 𝛿/(2𝜋) = 1 MHz.

The above-mentioned feasibility of the scheme using a squeezed vacuum is still limited when
we consider the usefulness on the many-body level such as 15 atoms. However, by combining the
two proposed approaches in this work, we can provide the route to a high-fidelity nondestructive
measurement on the many-body level. Namely, we consider the scheme in which we perform a
probing with a squeezed vacuum, described in the second part of the section 3, for atoms without
internal-degrees of freedom in the ground state trapped in an optical lattice with a magic-wavelength
condition for the probe transition, as described in the section 7.2.1. Then the nondestructive con-
dition is relaxed by 4 × 𝜁2 where the additional contribution 𝜁2 comes from the excitation with a
blue sideband in the present off-resonant-excitation scheme, different from the resonant-excitation
scheme considered in the section 3. Since the condition of 𝜁 = 0.11 is already realized [15], we
can improve the performance up to 𝑅SN = 25 with a probability of changing the vibrational state
of 𝑝 = 0.39 for a single atom. In other words, with the condition of 𝑅SN = 1, 𝑝 will be 1.6 × 10−2,
and therefore the change of the vibrational state is negligible. On the many-body level of 15 atoms,
this means that less than one photon is scattered for detecting 15 atoms nondestructively about the
vibrational state.

7.4 Conclusion

In conclusion, we have proposed a quantum gas microscope capable of nondestructive detection of
a single atom enabling a number of fascinating research inquiries. We derive the general relation
between the 𝑅SN and photon absorption of a probe beam for dispersive Faraday quantum gas
microscopy and show that the detection of the atom with the 𝑅SN greater than unity should be



7.4. CONCLUSION 91

accompanied by the absorption of the probe beam by more than one photon. For an atom that
has an electronic ground state without spin degrees of freedom, we find that the magic-wavelength
condition of the optical lattice for the transition for probing enables detection of an atom with
avoidance of excitations to higher-band. We also consider a more general scheme to detect an atom
with an absorption of less than one photon based on a squeezed vacuum in a scanning microscope
configuration. An application to ultracold two-electron atoms is also discussed. The combined
scheme of the proposed two approaches enables a nondestructive measurement on the many-body
level of about 15 atoms.
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CHAPTER 8
Conclusion and outlook

8.1 Conclusion

This thesis presents the realization of an ytterbium tweezer atom array toward the quantum com-
puting featuring their unique properties of two-electron atoms, and schemes for nondestructive
detection of atoms. We briefly review the achievements of our work.

• Trapping and imaging of single atoms in an optical tweezer array (Chapter 5)

We generate a two-dimensional OT array with a wavelength of 532 nm focused by an objective
lens with NA= 0.6. We successfully observe the fluorescence from trapped single atoms with
the loading efficiency roughly 60% as a result of light-assisted collision, deduced from the
clearly binarized photon counts from empty and filled sites. The clear separation offers the
error probability of detection as low as 0.3%. The loss probability by the imaging is 5%. We
cooled atoms heated by the imaging process using 1S0↔3P1 transition, which is verified by a
release-and-recapture technique. We measure the trapping frequency of atoms by a parametric
loss spectroscopy and deduce the waist of tweezers as 1.0𝜇m. The rearrangement of atoms to
obtain a defect-free atom array by a fast feedback to multitone RF is also performed for both
1D and 2D array.

• High-resolution spectroscopy and single-photon Rydberg excitation (Chapter 6)

We observe a sideband-resolved spectrum of the 1S0↔3P2 (𝑚𝐽 = 0) transition for single atoms.
The mean occupation quantum number for the motional eigenstate along the radial direction
is deduced from the spectrum as 1.46 ± 1.01, which agrees with a calculation of the cooling
process.

Spectroscopy of Rydberg states by a single-photon excitation from the 3P2 state is also present,
as well as a two-photon spectroscopy with 1P1 as an intermediate state. 3D and 3S1 series of
Rydberg states are observed, including newly observed 3D3 states thanks to our choice of the
𝐽 = 2 state as the initial state.

93
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Though we performed the above spectroscopy using atomic ensembles in an optical dipole
trap, the single-photon excitation to Rydberg states of single atoms is also demonstrated.

• Schemes for nondestructive detection of single atoms (Chapter 7)

We first derive the relation between the signal-to-noise ratio and the number of photon absorp-
tion of the dispersive homodyne Faraday imaging performed in our group previously [119],
which results in the important consequence that this technique does not allow nondestructive
detection. We then present two schemes: The first one uses a magic wavelength optical traps
for the probe transition which well preserves the motional state of an atom. The second one is
a heterodyne scanning Faraday imaging with the aid of a squeezed vacuum state. We derive
the signal-to-noise ratio for this scheme and we show the detection without photon absorption
is possible using this scheme.

8.2 Outlook

We present directions in our plan toward the large-scale and high-fidelity quantum computing
below.

• Imaging with 1S0 ↔ 1P1 transition

Though we have succeeded in imaging of single atoms using the 1S0 ↔ 3P1 transition, we are
going to switch it to the 1S0 ↔ 1P1 transition for the following three reasons: First, the narrow
linewidth of the 1S0 ↔ 3P1 transition requires small potential differences between the ground
state and excited states to obtain high-performance of the imaging, which is not possible for
171Yb atoms for𝜆 = 532 nm trapping beam due to the interplay between the tensor shift and the
hyperfine structure [42]. Working with the broad linewidth 1S0 ↔ 1P1 transition does not suffer
from this problem. Second, the large difference of the wavelength allows the clear separation
of the MOT beam (𝜆 = 556 nm) and trapping beam (𝜆 = 532 nm) from the fluorescence from
atoms (𝜆 = 399 nm). This also enables the cooling of atoms with the 1S0↔3P1 transition during
the imaging with the 1S0↔1P1.

• Sideband cooling using the 1S0↔3P2 transition

The clearly resolved sideband spectrum of the 1S0↔3P2 transition enables the cooling to
the motional ground state of atoms, with the aid of repumpers: 3P2↔3S1(𝜆 = 770 nm) and
3P0↔3S1(𝜆 = 649 nm). The cooling to the motional ground state is a crucial factor for the
realization of coherent excitation of atoms.

• Arbitrary two-dimensional array generated by a spatial-light-modulator

Though our choice of AOD for generation of OT arrays is reasonable to obtain square and small
size arrays, this does not offer arbitrary geometry of traps. We are going to use a spatial-light-
modulator (SLM) instead of AODs for generation of OT arrays, which enables the arbitrary
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geometry of traps. AODs will be also used to generate tweezers to move and rearrange atoms,
because it is difficult to dynamically change the trap geometry using a SLM.

• Utilization of the 3P0 state

The 3P0 state is another existing metastable state of AE(L)A. We are going to use this state in
addition to the 3P2 state. Because this state doesn’t have the vector and tensor polarizability,
we are able to realize robust magic-wavelength condition of optical trap by tuning to an
appropriate wavelength: 759 nm for the case of Yb atoms, for example. 759 nm wavelength
laser can be obtained from a Ti:Sapphire laser. The objective lens used for the trapping is also
designed to be diffraction limited for 759 nm light.
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APPENDIX A
Light shift and Zeeman shift

The degeneracy of magnetic sublevels 𝑚 lifts by external fields such as a magnetic field (Zeeman
shift) or an AC-stark shift (Light shift). In this appendix, we describe the hamiltonian and the
calculation of its eigenenergies in the presence of Zeeman shift and light shift. Here we consider
bosonic isotopes of Yb which does not have hyperfine structures, but the same discussion holds for
fermionic isotopes.

A.1 Zeeman shift

The hamiltonian for the Zeeman effect by an applied magnetic field B is given by

ℋZS = 𝑔𝐽𝜇𝐵J ·B , (A.1)

where J denotes the total electronic angular momentum, 𝜇𝐵 is the Bohr magneton. 𝑔𝐽 is the 𝑔-factor
of J and is related to the 𝑔-factor of orbital angular momentum L and the spin S as

𝑔𝐽 = 𝑔𝐿 + (𝑔𝑆 − 𝑔𝐿)
𝐽(𝐽 + 1) + 𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1) (A.2)

≃ 3
2 + 𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1) . (A.3)

Here we used 𝑔𝐿 = 3/2 and 𝑔𝑆 ≃ 2.

A.2 Light shift

The light shift induced by a laser with a polarization unit vector u is given by

ℋLS = − ℎ4 𝐼
(︃
𝛼(S)
𝑛𝐽

− i𝛼(V)
𝑛𝐽

(u∗ × u) · J
2𝐽 + 𝛼(T)

𝑛𝐽

3
(︁
(u∗ · J)(u · J) + (u · J)(u∗ · J) − 2J2)︁

2𝐽(2𝐽 − 1)

)︃
, (A.4)

where 𝛼(S)
𝑛𝐽

, 𝛼(V)
𝑛𝐽

and 𝛼(T)
𝑛𝐽

are the scalar, vector and tensor polarizability, respectively [125]. We
consider only linear polarization u∗ = u in which the second term vanishes. For the spinless state
such as 1S0, only the scalar polarizability gives the energy shift.
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98 APPENDIX A. LIGHT SHIFT AND ZEEMAN SHIFT

The scalar and tensor polarizabilities for the 1S0, 3P1, and 3P2 state of 174Yb are measured
experimentally and summarized in Table A.1 [15, 126].

Table A.1: Measured scalar and tensor polarizabilities for the 1S0, 3P1, and 3P2 states of 174Yb.

𝛼(S) 𝛼(T) Unit
1S0 37.9 Hz/(W/cm2)
3P1 22.4 −7.6 Hz/(W/cm2)
3P2 46.0 7.5 Hz/(W/cm2)

A.3 Calculation of eigenenergies

In the presence of both Zeeman shift and light shift, eigenenergies are derived by diagonalizing the
total hamiltonian ℋtot = ℋZS + HLS. Figure A.1 shows the calculated shift of the eigenenergies from
the bare resonance of Zeeman substates of the 3P1 state for the potential depth 0.56 mK and the
magnetic field aligned along the polarization of the trapping beam. The experimentally obtained
spectrum for the same condition is also shown in the right panel. We irradiated 556 nm light before
the imaging scanning the detuning and the strenght of the magnetic field. The resonance appears
as the loss of atoms.

Figure A.1: The calculated and experimentally obtained spectrum of Zeeman substates of the 3P1

state for the potential depth -0.56 mK with the magnetic field aligned along the polarization.
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きました。また博士課程に進学する際には、私の相談に乗って下さり、リドベルグ状態を用

いた量子計算という挑戦的でやりがいのあるプロジェクトのスタートアップを担わせて頂

きました。博士からの再スタートで不安もありましたが、折に触れ時には直接実験室まで来

られて様子を気にかけて頂き、いつも的確なアドバイスを下さったおかげで、この度本論文

の成果を上げることができました。重ねて御礼申し上げます。 

 高須洋介准教授、武井宣幸博士（現・東工大特定准教授）には実験の多岐にわたりご指導

とサポートをして頂きました。高須さんには枝葉末節に至るまで様々なことをお聞きしま

したが、いつも親切に対応して頂いたおかげで、安心して実験に取り組むことができました。

157 での実験を始めるに当たりこれは何ですかあれは何ですかと色々質問しましたが、一見

ガラクタのように見えるものまでスラスラと教えて頂いた際には感動いたしました。武井

さんには２年間にわたり直接の上司としていつも見守っていただきました。武井さんのフ

ランクな人柄と私が失敗をしても笑って済ませて下さる暖かさがなければ、実験をこうし

てコツコツと続けることはできなかったでしょう。グループの雰囲気や私達学生の自主性

をいつも重視してくれていたこと、武井さんが東工大へ異動されてからは一層実感しまし

た。御二方への感謝の念に堪えません。 

 小西秀樹博士には昨年８月から実験に参加して頂き、実験を大きく加速していただきま

した。順序立てて問題を処理していくだけでなく、より良い環境の構築を進めてくださり、

効率的な研究の進め方を学ばせていただきました。実験や論文作成においては的確に私の

間違いを指摘・修正していただき、私も僅かながら成長することができたのではないかと思

います。ありがとうございました。 

 後輩の D1 の中村勇真君、M2 の草野透志君にはいつも精力的に実験を進めていただきま

した。二人とも色々と教えていたのも最初の頃だけで、気づけばこちらが教えてもらうよう

にすらなっていました。怠惰な私ですが、二人の情熱に刺激を受け、気を引き締めることが

できていたと思います。中村くんとは結果的に最も長く一緒に実験をしましたが、時に雑談

に付き合ってもらいつつ、私の見落としの指摘などいつもサポートをしてくれました。草野

くんには光源の開発・最適化などの作業を数多くしていただきました。退屈な作業が多かっ

たのは申し訳なかったと思います。優秀な後輩と共に実験を進めることができて私は幸運

でした。 



 岡山大学の原秀明助教とは D1 の１年間にわたり、断続的にではありますが、一緒に実験

をさせて頂きました。修士の頃に身につけられていなかった知識や技術を原さんに教えて

頂くことができて良かったと思います。環境も今ほど整っていなかったため大変なところ

もありましたが、原さんのおかげで一緒に楽しく実験をすることができました。PA 実験が

途中のままになってしまっていることは残念ですが、最終的には何か成果を残すことがで

きればと思います。 

  I would also thanks to Phillip Lunt, Vikram Ramesh and Abilash Kumar Jha, who joined us 

as an intern. They contributed to our progress much. I wish their experience in Kyoto was 

meaningful for them. 

OB の富田隆文博士（現・分子研）には修士の間同じ QGM グループとして大変お世話に

なりましたが、分子研に着任されてからも同じリドベルグアレイの実験をしていることも

あり、アドバイスを頂いたり合同セミナーを持ちかけてもらったりとまだまだお世話にな

っていることを感じ、頭の上がらない思いです。 

量子光学研究室の他のグループの方々にも多くの場面でお世話になりました。小野滉貴

博士には居室や帰り道でいつも雑談に付き合って頂いた他、学位審査や学振についての事

務的な手続き等についても丁寧に教えていただきました。実験では次々と成果を出されて

いる姿に尊敬の念と奮起の思いを抱きます。また、QGM グループの髙田佳弘君にもよくオ

プティクスを貸していただいたり、雑談に付き合って貰いました。QGM グループを途中で

抜ける形になり髙田くんへの負担が大きくなってしまい申し訳ありませんでした。単一格

子点が見えたときは我が事のように嬉しかったです。今後の SU(N)ダイナミクス観測も応

援しております。 

秘書の寺川さん、安原さんにはいつもご迷惑をおかけしております。情けないことに事務

所類にしょっちゅう不備のある私ですが、いつもにこやかに対応してくださっていること

に、ここで改めて感謝申し上げます。 

ここで名前を挙げなかった研究室の皆様に加え、機器開発室の皆様や事務室の方々、その

他大勢の方々にお世話になりました。ありがとうございました。 

最後に博士課程修了までの長い間私を見守ってくれていた両親に感謝します。 

 

 

令和四年五月 

奥野大地 
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