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Abstract 

The numerical simulations of localized thunderstorms characterized by diurnal cycles are 

conducted with the Weather Research and Forecasting (WRF) model in an idealized 

framework to investigate predictability and the associated error growth. Identical twin 

experiments are performed with different topography and flow conditions to assess the impacts 

of these conditions. The differences between the control and perturbed simulations in each 

twin experiment are regarded as the errors, measured by a metric referred to as convective 

moist difference total energy (CMDTE) proposed in this study. The results show that mountain 

topography restrains the error growth during the convection initiation, while this effect is 

sensitive to the mountain geometry and the background wind. Specifically, topographic effects 

are more evident with a higher and narrower mountain and less apparent without background 

wind. Nevertheless, the restraining effect of topography on error growth becomes unclear 

when moist convection matures and triggers rapid error growth through diabatic heating from 

latent release. This rapid error growth destroys the predictability of thunderstorms. 

Consequently, the predictability limit of thermally induced thunderstorms is determined by the 

time of the maximum convective activity at which mountain topography affects little. In 

comparison, environmental flows affect the time of losing predictability because of the 

changes in the maximum convective activity time. The predictability limit assessed by the 

hourly rainfall patterns also suggests less impact from topography than environmental flows. 

Conversely, topography notably impacts the prediction of several-hours accumulated rainfall 

due to its restraint on the error of moisture field and the rainfall distribution at the domain 

scale. 
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Chapter 1 Introduction 

The atmosphere is a dynamical system that contains various weather phenomena. In the 

troposphere, water vapor plays an important role in the variation of the weather. The phase 

transition of water vapor results in the formation of clouds. The convective circulation with 

moist processes related to the phase transition of water, which is usually referred to as moist 

convection, forms cumulus. When moist convection is deep enough in the vertical direction, 

it results in precipitating convective clouds, or cumulonimbus. Thunderstorms are vigorous 

cumulonimbus resulting from deep moist convection that brings heavy rainfall or hail together 

with thunder and lightning, usually accompanying with strong wind. Thunderstorms are 

highly-impact weather phenomena that influence people’s daily lives and commercial 

activities, sometimes even leading to the loss of property and human life (Changnon 2001). 

People use day-to-day weather forecasts to make their decisions of daily activity and prevent 

disasters. Nowadays, a great part of weather forecasts relies on the dynamical prediction 

provided by numerical weather prediction (NWP) models. Thus, it is important to improve the 

ability of NWP models and provide more accurate predictions, especially for severe weather 

such as thunderstorms. 

This study investigates the predictability of thunderstorms, aiming to provide new insight 

into the application of NWP models on high impact weather phenomena at convective scales. 

We especially focus on the thermally induced thunderstorms in the solar radiative diurnal 

cycles, which have short time scales of one to a few hours and localized spatial scales at O(10 

km). In this chapter, the thermally induced thunderstorms in diurnal cycles are introduced first, 

and then a brief literature review of atmospheric predictability is provided. Finally, the 

predictability of thunderstorms and the purpose of this study are further described. 
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1.1 Thermally induced thunderstorms in diurnal cycles 

Thermally induced thunderstorms during the daytime, usually in the afternoon, are 

common phenomena on fair weather days in warm seasons over the world (e.g., Wallace 1975; 

Kerns et al. 2010; Nomura and Takemi 2011). On fair-weather days with a weak synoptic 

forcing condition in warm seasons, solar radiation heats the land surface and low-level 

atmosphere in the daytime, leading to the development of convective boundary conditions that 

are favorited by convection initiation (Grimsdell and Angevine 2002). These conditions 

promote thunderstorms to occur during the daytime and dissipate at night, resulting in clearer 

rainfall diurnal cycles than those in other seasons (Chen et al. 1999). 

For moist convection developing under solar radiative heating, environmental conditions 

such as humidity and atmospheric instability are crucial for its initiation and development (e.g., 

Crook 2001; Nomura and Takemi 2011). For example, Takemi (2014) indicated the 

importance of middle-level moisture for the afternoon rainfall caused by thunderstorms over 

Nobi Plain, Japan, and its surrounding mountains by examining the environmental conditions 

from operational meteorological data.  

Topography, which greatly decides the distribution of atmospheric fields like wind and 

moisture, is then an important factor that participates in the generation of thermally induced 

thunderstorms. Generally, mountain topography affects the development of moist convection 

and accompanying precipitation in various ways, such as mountain waves or blocking effects 

on precipitation (Roe 2005; Houze 2012; Kirshbaum et al. 2018). Previous studies have 

indicated the impact of topography on the intensity and distribution of thunderstorms and 

precipitation by investigating observation data (Chen and Chen 2003; Kovacs and Kirshbaum 

2016; Cheng and Yu 2019) or results from numerical models (Fu and Guo 2012; Flesch and 

Reuter 2012; White et al. 2021).  
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Topography also impacts the diurnal cycle of moist convection and rainfall (Wallace 

1975; Nesbitt et al. 2008; Romatschke and Houze 2010; Jury 2020). In warm seasons, the 

largest day-night differences are usually observed over mountain areas (Kerns et al. 2010; 

Levizzani et al. 2010; Li et al. 2017). During the diurnal cycle of solar radiation, topography 

results in different heating and cooling between elevated mountains and the surrounding valley 

or plain, driving diurnally varying circulation (Vergeiner and Dreiseitl 1987; Whiteman 1990; 

Demko et al. 2009; Schmidli 2013). The heated mountain and the corresponding thermally 

driven circulation then further affect the development and structure of the daytime boundary 

layer which is important for convection development (Banta 1984; Gopalakrishnan et al. 2000; 

Serafin et al. 2018). In this way, topography plays an important role in the generation and 

development of thermally induced thunderstorms in diurnal cycles as well as the 

accompanying rainfall (Fig. 1.1).  

 

Figure 1.1 Schematic of the mechanisms for convective initiation over mountains in a solar 

radiation cycle from Houze (2012, their Fig. 3). Copyright 2012 by the American 

Geophysical Union. 

 

In addition, the existence of prevailing winds adds to the complexity of how topography 

affects the development of thunderstorms. Previous studies have indicated the importance of 

environmental wind conditions on the organization of convective clouds (Fu and Guo 2012; 

Muller 2013). It also has been reported that topography can affect the formation of clouds by 

changing the flow distribution under a prevailing wind (Smolarkiewicz et al. 1988; Akaeda et 
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al. 1995; Kirshbaum and Durran 2005; Johnston et al. 2018). Banta and Schaaf (1987) 

investigated the observation data over Rocky Mountain and showed that the “genesis zones” 

of thunderstorms are relevant to the prevailing wind. They proposed four different patterns of 

the interaction between the background wind and mountain terrain that trigger deep convection 

(Fig. 1.2), highlighting the roles of environmental wind and topography on the generation of 

thunderstorms. 

 

Figure 1.2 Schematic of the mechanisms which lead to moist convection near mountains 

from Banta and Schaaf (1987, their Fig. 1). Published 1987 by the American Meteorological 

Society. 

 

On fair weather days in warm seasons, background prevailing winds can further interact 

with the thermally driven circulation over mountain topography and then induce the 

occurrence of thunderstorms (Carbone et al. 1995; Chen and Lin 1997). For example, deep 

moist convection could be initiated by the convergence of prevailing wind and the upslope 

wind on the lee side of mountains (Fig 1.2c). The environment for the thermally induced 

thunderstorms over mountainous areas under the presence of background wind would be more 

complicated because the direction, speed, and vertical shear of the prevailing wind could 

(a)

(c)

(b)

(d)
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further affect where the thunderstorm will occur around the mountains (Chen et al. 2002; 

Hagen et al. 2011). Thus, the occurrence, movement, and organization of thermally induced 

thunderstorms are complicatedly impacted by both the topography and flow conditions at the 

same time (Kuo and Wu 2019; Miao and Yang 2020). 

Overall, predicting thermally induced thunderstorms over mountainous areas is 

challenging because such thunderstorms result from multiple processes in the atmosphere, 

including radiation heating, the building of convective boundary layer, the thermally driven 

flow, and the interaction of prevailing winds and topography. To accurately predict thermally 

induced thunderstorms, numerical models have to correctly capture crucial processes that 

would impact the initiation and development of moist deep convection, which is still a 

challenging task for current operational models. Meanwhile, some of these processes, such as 

the turbulence in the boundary layer around mountains or the microphysical processes in 

convective clouds, have relatively small characteristic scales and high nonlinearity, which 

implies an intrinsic predictability limit even with the use of a model simulating these processes 

perfectly. In the following, the general atmospheric predictability is briefly introduced in 

Section 1.2 first; then, an introduction of the predictability of thunderstorms is presented in 

Section 1.3. 

1.2 Atmospheric predictability 

The atmosphere is a chaotic system with limited predictability, i.e., the time length of 

capable numerical predictions is finite. Specifically, because of the chaotic nature of the 

atmosphere, the predictable time range of an instantaneous dynamical prediction from an NWP 

system cannot be extended infinitely by continuously reducing the errors in the initial 

conditions (Palmer et al. 2014). Because the error in the model initial condition is inevitable, 

the limit of atmospheric predictability is an unavoidable issue when using NWP models, and 
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has been noticed and extensively discussed since the early days of the development of NWP. 

This section introduces the background and current understanding of atmospheric 

predictability. The introduction of the predictability of thunderstorms will be presented in the 

next section. 

1.2.1 Background and literature review 

The concept of NWP can be traced back to the early 20th century (Bjerknes 1904; 

Richardson 1922), while NWP did not actually come true before the achievement of sufficient 

computing power in the 1950s (Charney et al. 1950). After the 1950s, the capability of NWP 

models was gradually recognized. More and more operational centers started to use numerical 

models for weather prediction at this time (Persson 2005).  

In the meantime, the unstable dynamical natures of the atmosphere in which a small 

perturbation would amplify and contaminate predictions were also indicated by studies that 

developed mathematical models of atmospheric flows (Charney 1947; Thompson 1953). It 

was natural to ask how far ahead the weather can be predicted by numerical models. Early in 

1949, the growth of small disturbances and the ultimate predictable limit were discussed with 

the use of a relatively simple baroclinic wave model (Eady 1949). Thompson (1957) 

investigated the maximum range beyond which detailed forecasts will lose economic value. 

He concluded that beyond a certain time range, the rapid error growth nature will destroy the 

benefits of doubling the density of weather stations; this basic framework of predictability is 

still valid today. 

Later, Lorenz (1963) proposed a simple three-variable model derived from the equations 

of thermal convection. The model, which is now well known as the Lorenz-63 model, provides 

non-periodic solutions with nonlinear dynamics. With this model, Lorenz indicated the 

dependence of forecast error on the initial states for a nonlinear and non-periodic dynamical 
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system; i.e., a small initial difference between two solutions will grow with time and become 

as large as the difference between two randomly selected states. Lorenz (1963) put forth a 

fundamental theory of the chaotic system, inspired many later studies, and have motivated 

scientists to understand the nonlinear dynamics. Lorenz (1963) anticipated that it is impossible 

to predict the weather in the distant future unless the current situation is known accurately. 

The inherent finite range of predictability was further investigated in Lorenz’s later seminal 

paper in 1969. 

Lorenz (1969) used a simple mathematical model based on the equations of two-

dimensional vorticity flows, which describes a multi-scale deterministic fluid system with a 

one-dimensional cascade of error energy in a wide range of wavenumbers. Besides the error 

growth with time, Lorenz (1969) showed that errors at smaller scales grow more rapidly. He 

indicated that once the initial error has been refined to a certain point, the finite range of 

predictability cannot be noticeably extended by further improving the initial condition through 

resolving finer scales because the more rapid error growth at finer scales would nearly offset 

the expected gain of predictability. Meanwhile, due to more rapid error growth and smaller 

background energy at smaller scales, Lorenz expected that the saturation of the error at small 

scales would happen more quickly, resulting in lower predictability of phenomena at smaller 

scales (Fig. 1.3). In other words, atmospheric predictability is scale dependent. 

After Lorenz (1969), many follow-up studies in the late 20th century have increasingly 

paid attention to predictability problems. The limit of predicting multi-scale chaotic flows like 

the atmosphere was widely recognized. Studies investigated error growth properties at 

different scales and estimated the finite predictability range by using various numerical models, 

such as the models of turbulent flows (Leith and Kraichnan 1972; Métais and Lesieur 1986; 

Boffetta et al. 1997) and baroclinic waves (Daley 1981), and also by using operational NWP 

models to provide more realistic perspectives (Lorenz 1982; Dalcher and Kalnay 1987; Boer 
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1994; Simmons et al. 1995). These early studies laid the foundation for the understanding of 

predictability. For example, Dalcher and Kalnay (1987) used a simple error growth model 

modified from the one in Lorenz (1982) to estimate the error growth rate and the theoretical 

predictability time at different scales, considering both situations of perfect and imperfect 

models (refer to Eq. (1.1)). They defined the limit of predictability at the time when error 

variance reached 95% of the saturation value and showed that predictability decreases 

monotonically with the scale. The estimation method and the error growth model in Dalcher 

and Kalnay (1987) are still valid and being used nowadays (Judt 2018; Zhang et al. 2019). 

 

Figure 1.3 Schematic diagram showing that energy spectra of error saturating first at small 

scales, taken from Lorenz (1969, his Fig. 2). The horizontal axis shows the length scales. 

The thick curve depicts the background energy spectrum; the thin curves represent the error 

at different lead times. Copyright 1969 Blackwell Munksgaard. 

 

At the same time, since the initial error of NWP is inevitable, studies also developed 

ensemble prediction techniques in which a number of slightly different initial conditions are 

incorporated to deal with the uncertainty of weather predictions (Tracton and Kalnay 1993; 
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Toth and Kalnay 1993). Toth and Kalnay (1993), proposing the procedure to produce 

appropriate ensemble initial conditions, illustrated different modes of error growth dynamics 

at synoptic and convective scales (Fig. 1.4). The faster error growth mode at convective scales 

was considered irrelevant to the instability embedded in baroclinic modes corresponding to 

synoptic-scale weather. Therefore, Toth and Kalnay (1993) suggested that the perturbations 

resulting in such convective-scale growth modes should be avoided when producing initial 

conditions of an ensemble prediction system for synoptic-scale weather. 

 

Figure 1.4 Schematic diagram showing that error growth mode at convective scales is more 

rapid and has smaller saturation level and earlier saturation time than that at synoptic scales. 

From Toth and Kalnay (1993, their Fig. 6). ©  American Meteorological Society. Used with 

permission. 

 

In the 21st century, atmospheric predictability is investigated by numerous studies. The 

theoretical understanding of chaotic dynamics and predictability has been achieved by using 

relatively simplified models, like turbulence models (e.g., Morss et al. 2009; Ngan et al. 2009; 

Durran and Gingrich 2014; Boffetta and Musacchio 2017). Such studies benefited from 

simplified models without complicated physical parameterizations for their better flexibility 
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in conducting numerical experiments and easier interpretation of the results. Those studies 

have deepened theoretical understandings that would help to interpret results from more 

complex models. For example, by revisiting and generalizing the turbulence model in Lorenz 

(1969), Rotunno and Snyder (2008) confirmed the hypothesis of Lorenz (1969) about the 

relationship of predictability and the slope of a flow’s kinetic energy spectrum. They 

demonstrated that in the model based on the two-dimensional vorticity equation (with a “−3” 

spectrum slope), the predictability is unlimited; and in the model applied to the surface quasi-

geostrophic equations (with a “−5/3” spectrum slope), the predictability is limited. Nowadays, 

studies using relatively simplified models continue advancing the understanding of 

predictability (Leung et al. 2019; Clark et al. 2021). Recently, Sun and Zhang (2020) proposed 

a theoretical framework based on the hybrid energy spectrum with slopes equal to −3 and −

5/3 by revisiting the model described in Rotunno and Snyder (2008), further connecting the 

idealized behavior of flows and the real atmosphere. 

However, we still need to keep in mind that the real atmosphere is more complicated than 

idealized turbulence models. The findings from relatively simplified models might not well 

explain the behavior of the real atmosphere. Thus, more realistic models that simulate the 

behaviors of the atmospheric flows with parameterized physical processes, such as NWP 

models, are also extensively used to explore atmospheric predictability. Using NWP models, 

studies can be performed with either global or limited-area models. With global models, the 

error growth and the predictability of the atmospheric flows can be estimated at wide scales 

(Harlim et al. 2005; Mapes et al. 2008; Ngan and Eperon 2011; Buizza and Leutbecher 2015). 

Since global models play an important role in weather forecasting, these studies have been 

helping researchers and forecasters to improve NWP models and interpret model results for 

synoptic weather forecasts. Recently, because of the improvement in computing power, 

scientists are able to use convection-permitting global models and further advance our 



Chapter 1 Introduction 11 

Pin-Ying Wu 

understanding of the predictability limit resulting from the error growth associated with both 

convective activity and synoptic weather systems at various scales (Judt 2018; Zhang et al. 

2019; Judt 2020). 

Meanwhile, higher-resolution simulations can be applied with limited-area models to 

investigate the error growth dynamics at finer scales (Leoncini et al. 2010; Weyn and Durran 

2018). Limited-area models consume less computing resource than global models for the same 

resolution. Thus, numerous studies are performed with various limited-area models to 

investigate atmospheric predictability, especially with regard to the behaviors of moist 

convection and precipitation (Bei and Zhang 2007; Leoncini et al. 2010; Selz and Craig 2015; 

Zhang et al. 2016; Weyn and Durran 2017; Potvin et al. 2017). Limited-area models have been 

used to study the predictability of specific phenomena at different scales, such as typhoons 

(Judt et al. 2016), Mei-yu front (Zhuang et al. 2020), Madden-Julian Oscillation (Ying and 

Zhang 2017), and baroclinic waves (Zhang et al. 2007; Bei and Zhang 2014). Many sensitivity 

tests for understanding predictability at different conditions are also performed with idealized 

frameworks of limited-area models by changing model configuration such as grid-spacing 

(Potvin et al. 2017; Weyn and Durran 2018), background wind conditions (Zhang and Tao 

2013; Weyn and Durran 2017), and other parameters that may affect predictability such as 

Rossby number (Bierdel et al. 2018). 

Atmospheric predictability has been extensively investigated since the days of Lorenz. 

Sometimes, the term “predictability” could be referred to as slightly dispersed definitions and 

descriptions in various literature. In a broad sense, the contents of studies investigating 

“predictability” could vary from the investigation of error growth dynamics and the estimation 

of the predictability limit (Zhang et al. 2007; Hohenegger and Schär 2007b; Buizza and 

Leutbecher 2015; Zhuang et al. 2020) to the evaluation of forecast skill and the ability of NWP 

models to reproduce particular weather events (Surcel et al. 2015; Fang et al. 2011; Kotsuki et 
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al. 2019; Cheng et al. 2020). In the context of assessing the limit of NWP, some literatures 

separated the concept of predictability into two perspectives: intrinsic and practical 

(Melhauser and Zhang 2012; Sun and Zhang 2016; Ying and Zhang 2017; Wu et al. 2020). 

Intrinsic predictability refers to an upper bound of the length of capable predictions that cannot 

be broken even if the model and initial conditions are nearly perfect (Lorenz 1969). Intrinsic 

predictability is an inherent property of chaotic dynamic systems, varying with time and space 

in the case of atmospheric predictability. Identical twin experiments under a perfect model 

assumption are the approach usually utilized to investigate intrinsic predictability (e.g., Zhang 

et al. 2016; Judt 2018; Zhang et al. 2019). On the other hand, practical predictability is more 

like the ability to make skillful predictions using given realistic uncertainties in the current 

best‐known NWP procedure (Lorenz 1982; Froude et al. 2013; Magnusson and Källén 2013; 

Zhang et al. 2015; Surcel et al. 2015; Buizza and Leutbecher 2015; Nielsen and Schumacher 

2016). In addition to the limit because of the chaotic nature of dynamic systems, practical 

predictability is limited by the deficiencies in the current procedures of NWP, including 

observations, data assimilation, initial and boundary conditions, and numerical models. 

From both perspectives, previous studies have largely clarified the nature of error growth 

and predictability and specified the model components that need improvement. In this study, 

we focus on the limit of predicting thunderstorms by using identical twin experiments which 

estimate the departures of two initially close model states using the same model configuration. 

The investigation will be focused on the predictability of thunderstorms limited by the growth 

of the initial uncertainty. The introduction of the atmospheric predictability limit and the error 

growth dynamic are provided in the following. 

1.2.2 Current understanding of the atmospheric predictability limit 

The limit of atmospheric predictability is a widely accepted concept nowadays. In 

previous studies, the error growth rate is usually used to imply the degree of predictability 
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(Kalnay 2002; Mu et al. 2017). Rapid error growth implies low predictability and vice versa. 

The evolution of initial errors in chaotic systems whose solution exists in a bounded space 

shares some common properties: the error growth develops exponentially at first, but will 

finally slow down and reach a certain saturate level. The level of saturation is determined by 

the average distance between two randomly selected states in the system. This error growth 

properties can be described by a simple error growth model (Dalcher and Kalnay 1987; Kalnay 

2002): 

𝑑𝜀

𝑑𝑡
= (𝛼𝜀 + 𝛽)(1 − 𝜀).                         (1.1) 

In the above equation, t represents time, and 𝜀 is the normalized error which makes 𝜀 

approximately equal to 1 at a long time; 𝛼 represents the error growth rate, and 𝛽 is an 

external error source, normally referred to as the contribution from model deficiencies 

(Dalcher and Kalnay 1987; Reynolds et al. 1994; Magnusson and Källén 2013). Figure 1.5 

shows the error growth illustration plotted according to Eq. (1.1). The time when the error 

becomes close to the saturation level is usually seen as the time of predictability limit (Dalcher 

and Kalnay 1987; Zhang et al. 2019). 

In the case of the real atmosphere, the nature of error growth rate, and so does the 

predictability, varies in time and space, depending on the underlying dynamics and instabilities. 

For synoptic-scale weather in the extratropical regions, the predictability limit was estimated 

to be around two to three weeks by using global models (Lorenz 1982; Simmons and 

Hollingsworth 2002; Froude et al. 2013; Buizza and Leutbecher 2015; Zhang et al. 2019). 

In comparison with the midlatitudes, some studies expected greater potential 

predictability at synoptic scales in the tropics (Kalnay 2002; Straus and Paolino 2008). 

Recently, Judt (2020) indicated that equatorial waves play a role in the higher predictability of 

the tropics. Meanwhile, other studies showed that the predictability in the tropics could vary 
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from several days at small scales to around two weeks at scales larger than 1000 km (Ying and 

Zhang 2017; Mapes et al. 2008). Since it was not until recently that NWP models became able 

to better represent the activity of convection, which dominates the weather in the tropic, more 

studies are still needed to explore the predictability in the tropics. 

 

Figure 1.5 Schematic diagram illustrating the error growth properties in chaotic systems. 

Starting with the 𝜀  having amplitude smaller than one, two, and three orders of the 

saturation level, the light- and dark-blue curves are plotted according to Eq. (1.1) using α =

0.51 and β = 0 and 0.0054, respectively, with reference to the values of the summer case 

in Dalcher and Kalnay (1987; their table 2). The orange curves illustrate the possible 

situation of the error growth at smaller scales, imitating the one shown in Fig. 1.4. 

 

Similarly, at meso- and convective scales, the attention was not widely paid until recent 

two decades after we had enough computing resources to simulate the development of 

convection explicitly. It has been expected that the predictability of phenomena at convective 

scales is low because of the more rapid error growth at smaller scales. However, different 

specific weather phenomena, such as tropical cyclones, Mei-yu front, and mesoscale 
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convective systems, have their own nature of error growth dynamics and predictability. The 

underlying dynamics, such as environmental flows (Zhang and Tao 2013; Weyn and Durran 

2017; Wu et al. 2020) or synoptic-scale weather conditions (Walser et al. 2004; Johnson et al. 

2014; Weyn and Durran 2019; Zhuang et al. 2020), could also affect the convection 

development and the following error growth dynamics and predictability. Therefore, the 

predictability at meso- and convective scales is highly flow-dependent and varies from case to 

case (Done et al. 2012; Johnson et al. 2014; Nielsen and Schumacher 2016; Walser et al. 2004; 

Weyn and Durran 2019), making it difficult to have a universal convincing estimation of 

predictability. While increasing attention is being paid recently, studies on meso- and 

convective-scale predictability are underway. Further introduction to the predictability of 

thunderstorms is provided in the next section. 

Besides investigating the finite range of predictability, studies have been trying to explain 

the factors that determine the error growth that eventually limits predictability. From the 

relationship between atmospheric dynamics and predictability, the nature of the spectral 

energy cascade of atmospheric flows is usually considered when investigating atmospheric 

predictability. Nowadays, the energy spectra of the real atmosphere have been shown to have 

near −3 and −5/3 slope at synoptic-scale and mesoscale, respectively, by both observation 

data (Nastrom and Gage 1985) and numerical model outputs (Skamarock et al. 2014). Judt 

(2018) used a convective-permitting global model and showed that error growth resembles the 

case of turbulent flow with a −5/3 spectrum slope at mesoscale and mirrored the case of 

turbulent flow with a −3 slope at synoptic scales. 

Based on the theoretical understanding (Lorenz 1969; Rotunno and Snyder 2008), the 

weather at synoptic scales whose energy spectra show a −3 slope is expected to have infinite 

predictability, i.e., forecasts can be continuously improved by reducing the initial error. 

Nevertheless, recent studies have shown explicit evidence of the intrinsic predictability limit 
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of the atmosphere (Judt 2018; Zhang et al. 2019). For example, Zhang et al. (2019) used 

identical twin experiments performed with convection-permitting global models and indicated 

that the predictability of synoptic weather in midlatitudes is intrinsically limited. Their results 

showed that even in a perfect model assumption, the error growth fits Eq. (1.1) well with non-

zero 𝛽 values. Zhang et al. (2019) attributed the non-zero 𝛽 term to the errors growing 

upscale from smaller scales, which eventually contaminate the prediction at synoptic scales. 

Since the atmosphere is a multiple-scale flow, the error growth due to the processes at 

smaller scales having energy spectra with a −5/3 slope is considered to be the major cause of 

the predictability limit at synoptic scales. Thus, the error growth behavior among different 

scales is a key factor in understanding atmospheric predictability and has been investigated by 

numerous studies. While most previous studies agreed with the existence of an atmospheric 

predictability limit, consensus on how errors grow at different scales and limit the 

predictability has not been well established. Studies have been using initial errors at large and 

small scales to assess how error grows and limits predictability (e.g., Tribbia and Baumhefner 

2004; Johnson et al. 2014; Durran and Weyn 2016). Two types of error growth dynamics, up-

scale and up-magnitude growth, have been pointed out by different studies. As the 

representative studies that suggested the up-scale error growth, Zhang et al. (2007) and Judt 

(2018) showed that errors first grew through moist convection and other mesoscale processes 

and quickly saturated at the convective scales; the errors then grew with the background 

baroclinic instability at larger scales. On the other hand, other studies showed that errors could 

grow at all scales at the same time (i.e., up-magnitude growth) before reaching to a saturation 

level at smaller scales (Simmons and Hollingsworth 2002; Tribbia and Baumhefner 2004; 

Mapes et al. 2008; Ngan et al. 2009; Durran and Gingrich 2014). 

Both types of error growth aspects cannot completely explain the behavior of the 

complicated real atmosphere (Nielsen and Schumacher 2016). However, no matter how error 
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grows at different scales, most studies investigating the error growth associated with different 

weather phenomena in the atmosphere agree that error grows mainly with the development of 

moist convection and the accompanying precipitation (Hohenegger et al. 2006; Selz and Craig 

2015; Judt 2018; Zhuang et al. 2020). For example, Zhang et al. (2003) performed simulations 

with a mesoscale model at 3.3 km grid-spacing and showed that the error growth is more rapid 

in simulations with moist processes included than in dry simulations (Fig. 1.6). 

 

Figure 1.6 Evolution of errors from different initial magnitudes (i.e., 0.001, 0.01, 0.1, 0.5, 1 

K) in the experiments with (dotted) and without moist processes (solid) from Zhang et al. 

(2003, their Fig. 7). ©  American Meteorological Society. Used with permission. 

 

Moist convective processes, such as buoyancy forcing and latent heating generated by 

moist dynamical and thermodynamical processes, have been shown to play an important role 

in building the −5/3 slope of energy spectrum at the mesoscale (Takemi and Rotunno 2003; 

Bryan et al. 2003; Sun et al. 2017). Sun and Zhang (2016) used the simulation of idealized 

baroclinic waves and showed that the predicting errors in the dry experiment decrease 
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continuously by reducing the initial error, implying infinite predictability. In contrast, under 

the moist environment with strong convective instability, the rapid error growth due to moist 

convection is less sensitive to the reduction of initial error, which means that the predictable 

time range cannot be increased by continuously reducing the initial error, implying the intrinsic 

limit of predictability. In other words, moist processes play a vital role in error growth and 

thus limit atmospheric predictability. 

In summary, the atmospheric predictability is limited, even for the flows at the scales 

with a −3 slope energy spectrum. This limit is attributed to the error growth associated with 

moist convection and mesoscale phenomena. Nevertheless, as described above, the 

atmosphere is a complicated system in which different phenomena could have different 

predictability limits. Meanwhile, none of our models can perfectly describe the behavior of 

the real atmosphere. The error growth could differ depending on model configurations such as 

grid spacing and physics parameterizations (Weny and Durran 2018; Selz 2019). The estimate 

of the predictability limit may also vary depending on how errors are quantified (Weny and 

Durran 2019). Our understanding of predictability is limited by both the model and the 

measurements used to investigate the predictability. Therefore, further studies are still needed, 

especially for weather phenomena at scales smaller than a synoptic-scale and not directly 

affected by midlatitude weather systems. 

1.3 The predictability of thunderstorms and the purpose of this 

study 

Whether thunderstorms are predictable with NWP models was asked more than 30 years 

ago (Lilly et al. 1990). Based on the findings of previous studies, thunderstorms are expected 

to have low predictability because of the natures of faster error saturation at their small 

characteristic scales (Figs. 1.3 and 1.4) and the more rapid error growth associated with moist 
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processes (Fig. 1.6). 

Besides the difficulty due to the inherent low predictability of thunderstorms, NWP 

models may also suffer from the insufficient capability to accurately predict the generation 

and development of convection that results in thunderstorms. For example, in the case of 

thermally induced thunderstorms over mountainous areas, inadequate resolution of the model 

can lead to a failure in representing the turbulent motion and thermally driven circulation over 

mountains (Barthlott et al. 2006; Schmidli et al. 2018). Models could also fail in simulating 

the exact time of the diurnal cycle of thunderstorms and accompanying rainfall (Janowiak et 

al. 2007; Dai and Trenberth 2004; Langhans et al. 2013). It was reported that predicting rainfall 

could be particularly challenging in warm seasons because NWP models cannot accurately 

represent the processes of deep moist convection (Fritsch and Carbone 2004). 

Fortunately, the capability of NWP models is continuously improving with the benefit of 

the great improvement in computing power. Convection-permitting models (CPMs) have 

become widely used over the past two decades, improving rainfall predictions (Clark et al. 

2016). Meanwhile, CPMs promote various studies to investigate the predictability and error 

growth associated with moist convection and rainfall (Hohenegger and Schär 2007a, b; 

Leoncini et al. 2010; Durran and Weyn 2016; Miglietta et al. 2016; Zhuang et al. 2020). Studies 

focusing on thunderstorms with localized spatial scales have assessed the capability of NWP 

models for simulating convection and clarified the factors that are important for the successful 

prediction of thunderstorms (Hanley et al. 2011; Cintineo and Stensrud 2013; Zhang et al. 

2015). For example, Hanley et al. (2011) investigated the predictability of an isolated mountain 

thunderstorm over the Black Forest with ensemble simulations. They showed that the 

deficiency of the soil and atmospheric moisture represented in the model is responsible for the 

failure in simulating deep convection. In this way, studies provided insights into improving 

NWP models to predict thunderstorms better. Despite the increasing attention to the 
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predictability of thunderstorms in the past decade or so, further investigations are still needed. 

The followings are some remaining issues. 

First, most previous studies on the predictability of thunderstorms focused on the 

practical perspective. Relatively little was known about the intrinsic limit of predicting 

thunderstorms. Recent increasing computing power and the improvement of NWP models 

enable us to conduct further investigations of the predictability at convective scales. The strong 

flow-dependent predictability at convective scales is a complex problem and deserves more 

attention to complement the knowledge of atmospheric predictability. 

Second, relatively little has been known about the predictability of thermally induced 

thunderstorms in diurnal cycles. Although some recent studies have investigated the 

predictability limit of supercell thunderstorms (Lawson 2019; Markowski 2020), most of these 

studies focused on simulations within three hours or less. Less attention has been devoted to 

the predictability of thunderstorms during a diurnal cycle. In warm seasons, thermally induced 

thunderstorms are very common phenomena that impact people’s daily lives and are difficult 

to be predicted with NWP models in operational weather centers. Providing more informative 

forecasts of thermally induced thunderstorms is challenging but essential for the day-to-day 

weather forecast in warm seasons. When we try to improve the forecast of thermally induced 

thunderstorms, understanding where the prediction limits are is also important for developing 

better strategies for improving NWP. For example, if the benefit of reducing initial errors is 

limited in deterministic prediction, we need to put more efforts on developing better ensemble 

perdition systems to tackle the uncertainty of predicting thunderstorms than on improving the 

accuracy of initial conditions. 

Finally, in the previous studies of predictability, only a limited number of previous studies 

addressed the impact of topography. Recently, Bachmann et al. (2019, 2020) investigated the 

impact of topography on the predictability of moist convection from a practical perspective. 



Chapter 1 Introduction 21 

Pin-Ying Wu 

They evaluated the forecast skill of rainfall with scores at different scales and showed that 

topography could better the rainfall prediction at a finer scale. However, compared to the 

importance of topography on affecting convection development that has been reported by 

numerous studies (refer to the references in Section 1.1), the impacts of topography on 

predictability remain less understood, especially in the context of error growth dynamics and 

intrinsic predictability. For example, the mountain shape such as the height and width of a 

mountain is shown to impact the development of moist convection as well as the amount and 

distribution of rainfall (Flesch and Reuter 2012; Hassanzadeh et al. 2016; Imamovic et al. 

2019; Mulholland et al. 2020). It is required to further examine how such topographic impact 

on convection development appears in the context of the predictability of thunderstorms. 

To address the above concerns, this study investigates the predictability and error growth 

associated with thermally induced thunderstorms based on a perfect model context. The 

questions we focus on here are: if an NWP model is initialized in the morning before the 

convection initiation, how will the initial error grow and destroy the predictability; and how 

long is the limit of predicting thermally induced thunderstorms and the accompanying rainfall? 

Special attention is paid to the impact of topography. In addition, since previous studies 

showed that environmental conditions could impact the predictability of typhoons (Zhang and 

Tao 2013), mesoscale convective systems (Weyn and Durran 2017), and tornadic supercells 

(Lawson 2019), we also investigate the impact of different environmental flows on the 

predictability of thermally induced thunderstorms. 

To achieve the above purposes, first we investigate the error growth dynamics associated 

with thermally induced localized thunderstorms in Chapter 3. A particular focus is paid to the 

impact of topography. A number of the experimental parameters, such as mountain geometry 

and background winds, are considered to examine the sensitivity of topographic effects. 

Understanding error growth dynamics is the first step to investigate the predictability limit. 
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By analyzing the error growth and topographic effect, we assess the factors that affect the 

sensitivity of predicting thunderstorms, especially in an earlier time period during convection 

initiation. The results are also expected to provide some insights into the design of ensemble 

prediction systems that tackle the uncertainty in NWP. 

The nature of error growth dynamics in chaotic systems results in limited predictability. 

Next, we examine the predictability limit of thermally induced thunderstorms and the 

accompanying rainfall in Chapter 4. Both the impacts of topography and environmental flow 

are examined. Here, we aim to address the factors that determine the predictability limit of the 

localized thunderstorms in a diurnal cycle, which is not well elaborated in previous studies. At 

the same time, the predictability limit of rainfall is also estimated from the viewpoint of 

providing better day-to-day weather forecasts that are useful to society. 

The structure of the rest of this thesis is as follows. The model configuration and 

experimental settings are provided in Chapter 2. Chapter 3 presents the results of the simulated 

thunderstorms and the associated error growth dynamics and discusses the impact of 

topography. The predictability of thermally induced thunderstorms is shown and discussed in 

Chapter 4. Chapter 5 concludes the finding of this study.
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Chapter 2 Methodology 

2.1 Model description 

The model used in this study is the Weather Research and Forecasting (WRF) model, 

which is a mesoscale numerical weather prediction system designed for both atmospheric 

research and operational forecasting applications. The development of the WRF model began 

in the latter 1990s by a collaborative partnership of the National Center for Atmospheric 

Research (NCAR), the National Oceanic and Atmospheric Administration (NOAA), the U.S. 

Air Force, the Naval Research Laboratory, the University of Oklahoma, and the Federal 

Aviation Administration (FAA). 

Since its first release in 2000, WRF has become one of the most widely used NWP models 

in the world and has grown to provide a variety of options and capabilities for a wide range of 

applications (Powers et al. 2017). WRF provides a flexible and computationally efficient 

platform for operational forecasting, and at the same time reflects the latest developments in 

physics, numerical values, and data assimilation from the broad research community. It is 

allowed to generate simulations based on either the real atmospheric data (i.e., observation 

and analysis data) or idealized conditions. The model serves a wide range of meteorological 

applications from the large-eddy to global scales and has been proven to perform well in 

simulating atmospheric convection (Skamarock 2004; Vincent and Lane 2016). It has made 

meaningful contributions to not only weather forecasting and sciences research but also 

education and commercial works worldwide. 

The WRF system contains two types of dynamic solver, NMM (Non-hydrostatic 

Mesoscale Model) and Advanced Research WRF (ARW) cores. This study uses version 4.1.2 
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of the ARW model (Skamarock et al. 2019). ARW offers an extensive menu of options for 

physical process schemes, such as microphysics, radiative process, boundary layer, and land 

surface models, for different uses of focus scales and area. It also encompasses 

numeric/dynamic options, initialization routines, and a data assimilation package (WRFDA) 

with a variety of data assimilation approaches. 

The governing equations adopted in ARW is a set of fully compressible, Eulerian non-

hydrostatic solver that conserves dry air mass and scalar mass. The vertical coordinates are 𝜂 

coordinates that follow the terrain; the horizontal grids are Arakawa C-grid staggered grids 

(Arakawa and Lamb 1977). The time integration uses the second-order or third-order Runge-

Kutta method. The prognostic variables in the ARW version 4 include three-dimensional (3D) 

velocity (u, v, w), perturbation moist potential temperature, perturbation geopotential, and 

perturbation dry-air surface pressure. Other scalars such as turbulent kinetic energy, mixing 

ratios of water vapor/hydrometeors, and chemical species are optional forecast variables. For 

a further introduction of science and algorithmic approaches such as dynamical solver and 

physics options in the ARW Version 4, please refer to Skamarock et al. (2019). 

2.2 Model configuration 

This study uses an idealized framework of the ARW model with full physics packages. 

The computational domain covers a horizontal area of 300 km by 300 km with the depth of 25 

km resolved at 1-km horizontal grid spacing and with 50 vertical levels. The lateral boundary 

condition is doubly periodic (Fig. 2.1). The physics parameterizations used in this study 

include the WRF Single-moment 6-class (WSM6) scheme (Hong and Lim 2006) for 

microphysics, Rapid Radiative Transfer Model for General Circulation Models (RRTMG) 

scheme (Iacono et al. 2008) for long- and short-wave radiation, Mellor-Yamada-Janjic (MYJ) 

scheme (Janjić 1994) for the planetary boundary layer (PBL) mixing, and Noah Land Surface 
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Model scheme (Tewari et al. 2004) for the land-surface processes. The 3D Smagorinsky 

scheme (Lilly 1962; Smagorinsky 1963) is used for turbulent diffusion, and an implicit 

gravity-wave damping layer is imposed in the upper-5-km layer to avoid wave reflections at 

the upper boundary. Both planetary boundary layer parameterization and 3D turbulent 

diffusion are used here to let the PBL scheme cover the solution on the sub-grid scale vertical 

transport besides the solution from the Smagorinsky scheme (Tompkins and Semie 2017) 

because the grid spacing of 1 km may not be fine enough to use only the 3D Smagorinsky 

solution. The cloud and precipitation particles parameterized in the microphysics scheme 

include cloud water, rain, cloud ice, snow, and graupel. The land use is set to wooden wetland 

homogeneously. 

 

Figure 2.1 The schematic diagram of the domain settings for all experiments and the terrain 

(color shaded) in experiment TOPO. Note that the length scale of 3-dimensional direction 

and the terrain height is not shown in realistic ratio for better illustrating. 

 

The diurnal cycle of precipitation over the Kii Peninsula in summer is pronounced 

(Takemi and Tsuchida 2014), and therefore is considered to be a suitable choice to determine 

the mountain and environmental conditions in the present numerical experiments. For the 
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initial vertical profile, a sounding observation at the Shionomisaki station, located at the Kii 

Peninsula, Wakayama, Japan, at 0900 Japan Standard Time (JST or UTC+9) on 19 August 

2019 (Fig. 2.2) is homogeneously extended horizontally. The Coriolis parameter is set constant 

with a value of 7.9958 × 10−5 s−1 which corresponds to the value at the latitude of the 

Shionomisaki station (33.35°N). The vertical sounding observation to initialize simulations is 

chosen arbitrarily from a summer day, on which afternoon rainfall is observed at Shionomisaki 

(Fig. 2.3). The vertical profile provides a relatively less stable condition with almost zero 

convective inhibition (CIN) and convective available potential energy (CAPE) about 1617 

J kg−1; the height of lifted condensation level (LCL) is almost the same as the level of free 

convection (LFC; refer to the black dashed curve in Fig. 2.2). Thus, the development of deep 

convection is relatively easy as long as there is an updraft triggered by other factors. The wind 

is northeasterly with a speed of around 3 m s−1 near the surface and turns to southwesterly 

above 850-hPa height (Fig. 2.2, also refer to Fig. 2.5a), resulting in strong wind shear (see Fig. 

2.5c) in wind direction over the boundary layer. 
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Figure 2.2 The Skew-T Log-P Diagram of the sounding data from the station at 

Shionomisaki, Wakayama, Japan at 0900 JST (0000 UCT) on 19 August 2019. The blue 

and red curves show the profile of temperature and dew point temperature, respectively. The 

wind barbs on the right show the profile of wind direction and speed (each short barb 

represents 5 knots). The dashed black curve depicts the route for a parcel adiabatic 

ascending from the surface. 

 

 

 

 

 

CAPE=1617 J kg-1
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Figure 2.3 The rainfall (left) and temperature (right) observation at Shionomisaki station on 

19 August 2019. Modified from the figures retrieved from the website of Japan 

Meteorological Agency: 

https://www.data.jma.go.jp/obd/stats/etrn/view/hourly_s1.php?prec_no=65&block_no=47

778&year=2019&month=08&day=19&view=g_pre for the left panel, and  

https://www.data.jma.go.jp/obd/stats/etrn/view/hourly_s1.php?prec_no=65&block_no=47

778&year=2019&month=08&day=19&view=g_tem for the right panel. 

2.3 Simulation strategy and experimental settings 

To investigate error growth dynamics, we conducted identical twin experiments similar 

to the approaches used in previous studies such as Zhang et al. (2003) and Judt (2018). Each 

identical twin experiment contains two simulations, control and perturbed, whose differences 

are regarded as errors and used for examining the error growth dynamics as well as 

predictability. For each experiment, the control simulation is initialized at 0000 local time 

(hereafter denoted as LT) 22 June, the summer solstice, by adding white noise of the potential 

temperature (θ) below 2 km with an amplitude of 0.01 K to the horizontally homogeneous 

initial condition given by the vertical profile of the sounding data. At 0600 LT 23 June, after 

30-h spin-up, the perturbed simulation in each experiment is produced by adding random 

perturbations from a Gaussian distribution with zero-mean and standard deviation equal to 

0.01 g kg−1 to the water vapor mixing ratio of the control simulation at every grid. This start 

time of perturbed simulations is set to before the initiation of thermally induced moist 

https://www.data.jma.go.jp/obd/stats/etrn/view/hourly_s1.php?prec_no=65&block_no=47778&year=2019&month=08&day=19&view=g_pre
https://www.data.jma.go.jp/obd/stats/etrn/view/hourly_s1.php?prec_no=65&block_no=47778&year=2019&month=08&day=19&view=g_pre
https://www.data.jma.go.jp/obd/stats/etrn/view/hourly_s1.php?prec_no=65&block_no=47778&year=2019&month=08&day=19&view=g_tem
https://www.data.jma.go.jp/obd/stats/etrn/view/hourly_s1.php?prec_no=65&block_no=47778&year=2019&month=08&day=19&view=g_tem
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convection in the morning to imitate the situation of predicting thunderstorms before their 

generation. For some experiments, additional sensitivity tests are also performed with different 

start times and initial perturbation amplitude of the perturbed simulations, and the results are 

discussed in Chapter 4 (see also the last column of Table 2.1). 

To assess the impact of topography and environmental flow conditions on error growth 

and predictability, a number of experiments with different topography settings or background 

winds are performed (Table 2.1). A group of experiments is performed with the original wind 

profile of the sounding data. It contains an experiment without topography (hereafter referred 

to as FLAT) and several experiments with mountain topography of different geometry (see 

Table 2.1). Among the experiments with mountain topography, in the one that mainly used to 

compare with FLAT, a Gaussian-shaped mountain with a peak height near 1000 m (exactly 

993.1268 m) and about 50-km width is embedded to the southwestern quadrant of the domain 

(centered at x=75 and y=100; refer to Fig. 2.1 and grey-dashed contours in Fig. 3.2). This 

experiment is hereafter referred to as TOPO.  

The choice of the mountain size and height is based on the actual topography size in the 

real world. For example, the Kii Peninsula has an O(100 km) size and the overall elevation of 

around 1000 m. For an example of mountains outside Japan, Mount Datun in northern Taiwan, 

which was indicated to play an important role in the development of afternoon thunderstorms 

and the accompanying rainfall amount (Fig. 2.4; Kuo and Wu 2019), has a size and height of 

around 25 km and 1000 m, respectively. Other experiments with different mountain geometry 

were also conducted (Table 2.1). The experiment with the halved mountain height compared 

to the one in TOPO is hereafter called H500. The experiments having the halved- and doubled-

volume of the mountain compared to TOPO are referred to as V05 and V20, respectively. 

Previous studies have shown the impact of mountain geometry on moist convection 

development and accompanying rainfall (Imamovic et al. 2019; Mulholland et al. 2020). Here 
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we will further investigate its impact on error growth and predictability. Please refer to Table 

2.1 for the settings of other experiments. 

Besides, other groups of experiments were conducted by replacing the vertical wind 

profile in the initial condition with idealized wind profiles with different wind speeds and 

vertical wind shear (Fig. 2.5) to investigate the impact of environmental flow. Among them, 

U00 represents the experiments initialized with zero wind for examining the conditions of no 

background wind; NS5 are the experiments with the westerly wind whose speed is 5 m s−1 

uniformly in the vertical direction, representing the condition of no vertical wind shear; U25 

are the experiments also using westerly wind with strong vertical wind speed shear and weak 

near-surface wind. The U25 wind profile is generated by Eq. (4) in Weisman and Klemp (1982) 

by using the same 𝑧𝑠 equal to 3 km as in Weisman and Klemp (1982) and 𝑈𝑠 equal to 25 

m s−1. For each group of different background wind, experiments with and without mountain 

topography are also conducted (see Table 2.1 for the details). The mountains in these 

experiments are located within the western part of the domain (centered at x=50 and y=150; 

refer to grey-dashed contours in Figs. 3.4d–f) for adapting the westerly wind, differing from 

those experiments with the original sounding wind profile which have mountains located in 

the southwest quadrant of the domain. For each experiment, its control simulation is initialized 

from the temperature profile of the sounding data and their own wind profiles with their own 

topography settings, and the perturbed simulation is conducted by adding small perturbations 

to this control simulation as described previously. A brief view of the simulated thunderstorms 

in these experiments is presented in Chapter 3. 
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Table 2.1 The list of all experiments in this study and their background wind and topography 

settings. The last column shows the sensitivity tests that were conducted with the conditions 

of topography and flows of that experiment. 

 

Wind profile  

(see Fig. 2.5) 

Experiment 

name 

Mountain 

height 

Mountain 

Volume 
Sensitivity tests 

Sounding data 

FLAT None 
noMP (Fig. 3.15); THM (Fig. 3.16); 

P01, P10, 08LT, 10LT (Figs. 4.1&4.2) 

V05 

1000 m 

0.5  

TOPO 1 
noMP (Fig. 3.15); THM (Fig. 3.16); 

P01, P10, 08LT, 10LT (Figs. 4.1&4.2) 

V20 2  

H500_V05 

500 m 

0.5  

H500 1 
noMP (Fig. 3.15); THM (Fig. 3.16); 

P01 (Fig. 4.2) 

H500_V20 2  

H750_V05 

750 m 

0.5  

H750 1  

H750_V20 2  

H2000_V05 

2000 m 

0.5  

H2000 1  

H2000_V20 2  

U00: no background 

wind 

U00_FLAT None P01 (Fig. 4.2) 

U00_V05 

1000 m 

0.5  

U00_TOPO 1  

U00_V20 2  

NS5: Constant wind 

= 5 m s−1 

NS5_FLAT None  

NS5_V05 

1000 m 

0.5  

NS5_TOPO 1  

NS5_V20 2  

U25: Westerly wind 

from 0 over the 

surface to 25  m s−1 

over mid-troposphere 

U25_FLAT None P01 (Fig. 4.2) 

U25_V05 

1000 m 

0.5  

U25_TOPO 1  

U25_V20 2  
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Figure 2.4 The results from Miao and Yang (2020), showing that the existence of Mount 

Datun (indicated by the red circle) affects the amount of afternoon rainfall over Taipei Basin 

from the maximum of 121 mm in the control simulation (left) to 76 mm in the simulation 

removing Mount Datun (right). Modified from Miao and Yang (2020, their Figs. 17a, d). 

Copyright 2020 Meteorological Society of Japan. 

 

 

Figure 2.5 The vertical profile of (a) wind direction, (b) wind speed, and (c) vertical wind 

shear from the sounding observation data and the idealized ones (NS5, U00, and U25) used 

in this study. The U00 one has zero wind throughout all levels, so it is not shown in (a). 
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2.4 Analysis metrics 

2.4.1 Convective moist different total energy (CMDTE) 

To estimate the differences between the control and perturbed simulations, this study 

proposes a metric similar to the difference total energy (DTE) used in previous studies (e.g., 

Zhang et al. 2003; Selz and Craig 2015), but incorporating differences in water vapor and 

vertical velocity. We refer it to as convective moist difference total energy (CMDTE), which 

is calculated following the equation of moist total energy norm in Ehrendorfer et al. (1999) 

but including the differences in the vertical velocity as follows: 

CMDTE =
1

2
[𝑢′2

+ 𝑣′2
+ 𝑤′2

+
𝑐𝑝

𝑇𝑟
𝑇′2

+
𝐿𝑣

2

𝑐𝑝𝑇𝑟
𝑞𝑣′2 + 𝑅𝑇𝑟 (

𝑝𝑠
′

𝑃𝑟
)

2

].       (2.1) 

The difference in the vertical wind is involved to better estimate the difference of the moist 

convective cores between the two simulations since vertical motion is one of the main 

characteristics of strong non-hydrostatic phenomena like moist convection. Here, 𝑢′, 𝑣′, 𝑤′, 

𝑇′ , and 𝑞𝑣
′  are the differences of east-west wind, south-north wind, vertical velocity, 

temperature, and water vapor mixing ratio, respectively, between the two simulations at 3-

dimensional grids; 𝑝𝑠
′  is the difference of surface pressure between the two simulations. 𝑇𝑟 

and 𝑃𝑟 are the reference temperature (270 K) and reference pressure (1000 hPa), respectively, 

following the value used in Ehrendorfer et al. (1999); 𝑐𝑝, 𝐿𝑣, and 𝑅 are the specific heat 

capacity at constant pressure (1004.9 J kg−1K−1), the latent heat of condensation (2.4359 ×

106 J kg−1), and the specific gas constant of dry air (287.04 J kg−1K−1), respectively. 

Besides CMDTE, the terms in Eq. (2.1) of the difference in the 3D wind (𝑢′, 𝑣′, and 

𝑤′), temperature (𝑇′), and moisture (𝑞𝑣
′) are also calculated separately, denoted by DiKE, 

DiSH, and DiLH, respectively. They are used to assess the error growth in the context of 

kinetic energy, sensible heat, and latent heat, respectively. In Eq. (2.1), the differences in 
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surface pressure are two to three orders smaller than the other three terms, thus it is neglected 

and not examined separately here. 

To investigate the error growth dynamics from different aspects, CMDTE is compared in 

terms of several forms, such as the horizontal distribution or power spectra. For the horizontal 

distribution, we take the vertical mass-weighted average of CMDTE following Eq. (2) in 

Nielsen and Schumacher (2016).  

For the horizontal wavenumber spectra of CMDTE, a procedure similar to the kinetic 

energy spectra used in Weyn and Durran (2017) is adopted. First, the two-dimensional discrete 

Fourier transform of 𝑢′, 𝑣′, 𝑤′, 𝑇′ 𝑞𝑣
′, and 𝑝𝑠

′ are calculated for each model level at a 

given time. For a given time and a model level, the two-dimensional discrete Fourier transform 

of 𝑢′ and its complex conjugate will be denoted as 𝑢′̂ and 𝑢′̂∗
, respectively; and so do other 

variables. Then the two-dimensional spectra of CMDTE are calculated by 

𝐶𝑀𝐷𝑇𝐸𝑙𝑒𝑣
̂ (𝑘𝑥, 𝑘𝑦) = [𝑢′̂𝑢′̂∗

+ 𝑣 ′̂𝑣 ′̂∗
+ 𝑤 ′̂𝑤 ′̂∗

+
𝑐𝑝

𝑇𝑟
𝑇 ′̂𝑇 ′̂∗

+
𝐿𝑣

2

𝑐𝑝𝑇𝑟
𝑞𝑣

′̂𝑞𝑣
′̂∗

+
𝑅𝑇𝑟

𝑃𝑟
2 𝑝𝑠

′̂𝑝𝑠
′̂∗

] /𝑛𝑥𝑛𝑦. (2.2) 

Here, 𝐶𝑀𝐷𝑇𝐸𝑙𝑒𝑣
̂ (𝑘𝑥 , 𝑘𝑦)  is the two-dimensional spectra of CMDTE at a model level 

denoted by lev; 𝑘𝑥 and 𝑘𝑦 are the wavenumbers, and 𝑛𝑥 and 𝑛𝑦 are the number of grid 

points in the x- and y-direction, respectively. Then the vertical mean of 𝐶𝑀𝐷𝑇𝐸𝑙𝑒𝑣
̂ (𝑘𝑥, 𝑘𝑦) 

below level 33 (~10 km) is taken, denoted by 𝐶𝑀𝐷𝑇𝐸̂ (𝑘𝑥, 𝑘𝑦). Finally, the one-dimensional 

spectra 𝐶𝑀𝐷𝑇𝐸̂ (𝑘ℎ) is computed by adding C𝑀𝐷𝑇𝐸̂(𝑘𝑥, 𝑘𝑦), whose wavenumber meets 

the condition that 𝑘ℎ −
1

2
<  √𝑘𝑥

2 + 𝑘𝑦
2 ≤ 𝑘ℎ +

1

2
, to the bin of 𝐶𝑀𝐷𝑇𝐸̂ (𝑘ℎ). Here, 𝑘ℎ is 

the one-dimensional wavenumber that will be depicted in the bottom x-axis of the figures 

presenting the results in the spectra space (Figs. 3.7 and 3.12). 

For calculating the spectra of the different terms in the CMDTE (Fig. 3.12), the above 

procedure is taken separately for different terms in Eq. (2.1), representing the error of different 
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variables. The power spectra of the control simulation (solid dark red curve in Fig. 3.7) are 

also calculated by the same procedure but replacing the differences between the two 

simulations (e.g., 𝑢′ , 𝑣′ , 𝑤′ , etc.) with the model variables themselves from the control 

simulation. 

In Chapter 4, the error growth rate 𝜆 is also defined by the growth in the magnitude of 

domain-averaged CMDTE in a 30-minute interval, which is represented by the exponent of 

natural logarithm e as: 

𝐶𝑀𝐷𝑇𝐸𝑡+30 = 𝑒𝜆𝐶𝑀𝐷𝑇𝐸𝑡    (2.3a) 

or, 𝜆 = 𝑙𝑛 (
𝐶𝑀𝐷𝑇𝐸𝑡+30

𝐶𝑀𝐷𝑇𝐸𝑡
).    (2.3b) 

Here, subscript t represents the time. If 𝜆 = 1, it means the error become e times after 30 

minutes; when 𝜆 = 0, it means the error remains the same after 30 minutes. 

2.4.2 Spatial correlation coefficient (SCC) 

In Chapter 4, the predictability limit of rainfall distribution is estimated by the spatial 

correlation coefficient (SCC) of the rainfall between control and perturbed simulation, which 

is calculated by 

SCC =
∑ (𝐶𝑛𝑡𝑙𝑖−𝐶𝑛𝑡𝑙̅̅ ̅̅ ̅̅ )(𝑃𝑒𝑟𝑡𝑖−𝑃𝑒𝑟𝑡̅̅ ̅̅ ̅̅ ̅)𝑁

𝑖=1

√∑ (𝐶𝑛𝑡𝑙𝑖−𝐶𝑛𝑡𝑙̅̅ ̅̅ ̅̅ )2𝑁
𝑖=1 ∑ (𝑃𝑒𝑟𝑡𝑖−𝑃𝑒𝑟𝑡̅̅ ̅̅ ̅̅ ̅)2𝑁

𝑖=1

                 (2.4). 

Here, N is the grid number of the whole domain; Cntl and Pert represent the rainfall value of 

control and perturbed simulations, respectively; i is the index of model grids; the overbar 

means the domain average. The higher SCC value indicates that the rainfall distribution 

between the two simulations is more similar. 

For estimating the accuracy of rainfall prediction at different scales, the SCC is also 

calculated for the rainfall distribution whose small-scale characteristics are filtered. Here, a 
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low-pass filter, which filters the variation of spatial characteristic with wavelength lower than 

a specific value, is performed to the rainfall in both the control and perturbed simulations. In 

more detail, the two-dimensional discrete Fourier transform of rainfall is calculated. Then the 

results with wavenumbers larger than a specific threshold are replaced by zero in the 

wavenumber space to discard the small-scale pattern. At last, the inverse discrete Fourier 

transform is calculated again to get the results back to horizontal spatial space. After applying 

the low-pass filter, the SCC is calculated with the filtered rainfall distribution, i.e., the results 

from the low-pass filter are used for cntl and pert in Eq. (2.4). By calculating the SCC of 

rainfall after applying a low-pass filter at 100 km, for example, the similarity of the rainfall 

pattern between the control and perturbed simulation at the scale of 100 km can be compared. 

2.4.3 Definition of cloud grid 

Because the evolution of moist convection among the experiments is different (see 

Section 3.1 for detail) and the error growth is highly dominated by the convection development 

(see Section 3.2), a term that helps represent the degree of moist convection development is 

defined and used as a reference when comparing the error in different experiments. Here, we 

identify the cloud grid over a horizontal plane to represent the existence of convective clouds 

in a vertical column in numerical simulations. The cloud grid is defined as the grids having 

vertically integrated hydrometeor contents larger than 0.7 kg m−2 in the control simulation 

of each experiment. This threshold corresponds to the rain rate of about 0.1 mm h−1 , 

representing the grids with deep moist convection able to produce rainfall. The continuous 

cloud grids is then regarded as the area possessed by one convective cloud and used for 

comparing the error growth associated with moist convection. In addition, the cloud grid ratio 

(CGR) is further defined by the ratio of the number of identified cloud grids to all grids in a 

certain domain in the control simulation, representing the coverage of convective clouds, and 

is used to quantify the degree of convective activity. 
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2.4.4 Simulated reflectivity 

In Section 3.1, the simulated vertical maximum reflectivity is presented to show the 

development of convective clouds. The simulated reflectivity (𝑍𝑑𝐵) is calculated at each model 

grid based on the method described in Dowell et al. (2011). First, following the Eq. (A.4)-

(A.7) in the Appendix of Dowell et al. (2011) and using the intercept parameter of the 

exponential drop size distribution in the WSM6 microphysics scheme, the equivalent 

reflectivity factor (𝑍𝑒) is calculated at each model grid as follows: 

𝑍𝑒 = 3.63 × 109(𝜌𝑎𝑞𝑟)1.75 + 1.18 × 109(𝜌𝑎𝑞𝑔)1.75 + 1.33 × 109(𝜌𝑎𝑞𝑠)1.75,  

when T ≤ 0℃;      (2.5a) 

𝑍𝑒 = 3.63 × 109(𝜌𝑎𝑞𝑟)1.75 + 1.18 × 109(𝜌𝑎𝑞𝑔)1.75 + 5.77 × 1011(𝜌𝑎𝑞𝑠)1.75,  

when T > 0℃.       (2.5b) 

Here, 𝑞𝑟, 𝑞𝑔, and 𝑞𝑠 are the mixing ratios of rainwater, graupel, and snow, respectively; 𝜌𝑎 

and T are the air density (𝑘𝑔 𝑚−3) and temperature, respectively. The reflectivity 𝑍𝑑𝐵 at 

each grid is then computed by 𝑍𝑑𝐵 ≡ 10𝑙𝑜𝑔10(𝑍𝑒) as described by Eq. (A.8) in Dowell et al. 

(2011). Finally, the vertical maximum reflectivity, showing the horizontal distribution of 

convective clouds, is generated by finding the vertically maximum value of 𝑍𝑑𝐵  at each 

column of model grids. 
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Chapter 3 Topographic effects on the error growth 

dynamics and convection initiation 

In this chapter, we focus on the error growth dynamics associated with thermally induced 

localized thunderstorms, including how initial errors grow with the development of moist 

convection, and how mountain topography affects this error growth. Section 3.1 first provides 

a brief view of simulated thunderstorms with different topography and background winds. 

Then, the error growth dynamics associated with moist convection is investigated using the 

convective moist difference total energy (CMDTE; see Section 2.4.1), based on the results of 

FLAT and TOPO. Next, in Section 3.2, we examine the topographic effects on the rapid error 

growth triggered by the initiation of moist convection by using different mountain geometry. 

Section 3.3 first presents the sensitivity of the topographic effects to different background 

winds. Then we further examine the sensitivity by (1) turning off the microphysics scheme 

and (2) adding initial errors on potential temperature. The former assesses the error growth 

and topographic effects under the situation without moist processes; the latter evaluates the 

sensitivity to the initial uncertainty on different model state variables. In Section 3.4, we 

discuss the possible reason for the sensitivity of topographic effects to mountain geometry and 

background winds. The summary of this chapter is presented in Section 3.5. 

3.1 Simulated thunderstorms and the associated error growth 

dynamics 
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3.1.1 Simulated thunderstorms in diurnal cycles 

Figure 3.1 shows the time series of domain averaged surface-air temperature and hourly 

rainfall of control simulations in the experiments with different topography and background 

winds. Clear diurnal cycles are produced in all experiments regardless of the topography and 

flow conditions. For surface-air temperature among the experiments with different background 

winds, the time of the peak values is slightly different on the second day (23 June), while those 

among the experiments with different topography are less different (c.f. Figs. 3.1a, b). For the 

rainfall among the experiments with mountain topography (Figs. 3.1c, d), there is a little shock 

during 0300–0900 LT on the first day (22 June) after the simulations are initialized from the 

random perturbation added to horizontally homogenous fields. To avoid this spin-up issue, the 

twin experiments are conducted from the second day. On the second day, all experiments 

produced a diurnal cycle of the rainfall, while the start time in the morning, peak values at 

noon, and the rainfall intensity in the afternoon are slightly different among the experiments. 

To look at the development of simulated thunderstorms in more detail, Fig. 3.2 depicts 

the simulated vertical maximum reflectivity (Dowell et al. 2011; see also Section 2.4.4) on the 

second day of the control and perturbed simulations in FLAT and TOPO, representing the 

development of convective clouds without and with mountain topography, respectively. The 

diurnal cycle is also seen in the development of moist convection: the convective clouds are 

more vigorous at noon and dissipate in the evening. This diurnal cycle of convection 

development is shown in both FLAT and TOPO. Nevertheless, the spatial distribution and the 

start time of moist convection are different. The convective clouds in TOPO first appear 

around the mountain in the morning and organize to a larger size at noon (Figs. 3.2g-i). In 

comparison, the convective clouds in FLAT occur later and develop everywhere equally over 

the whole domain (Figs. 3.2b-d). The different spatial evolution of convective clouds results 

in different distributions of rainfall in FLAT and TOPO (Fig. 3.3). In FLAT, the rainfall 
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distributes equally over the whole domain no matter in the morning or afternoon (Figs. 3.3b, 

c). In comparison, the rainfall in TOPO concentrates near the mountain in the morning while 

distributing dispersedly outside the mountain area in the afternoon (Figs. 3.3e, f). A wide 

continuous area of rainfall larger than 20 mm (6h)−1 is shown near the mountain. Other 

experiments that have different mountain geometry (H500, V05, and V20) also produced 

convective clouds and rainfall near the mountain similarly to TOPO, while the initiation time 

or sizes of the clouds are varied among the experiments (refer to Figs. 3.8 and 4.4). 

 

 

Figure 3.1 The domain averaged (a), (b) surface-air (2-m height) temperature and (c), (d) 

hourly rainfall from 22 to 24 June of the control simulation in the experiments with (a), (c) 

different topography and (b), (d) different background winds. 

 

(a) (b)

(c) (d)

6/22 6/23 6/24

6/22 6/23 6/24

6/22 6/23 6/24

6/22 6/23 6/24
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For the experiments with replaced initial wind profiles, the characteristic of convective 

clouds is different among the experiments with different background winds (Fig. 3.4). For the 

experiments without mountain topography, U00_FLAT and NS5_FLAT have less organized 

convective clouds than U25_FLAT; for the experiments with mountain topography, 

U00_TOPO and NS5_TOPO possess organized convective clouds in the morning over and 

downstream of the mountain, respectively (upper panel of Figs. 3.4d, e), while U25_TOPO 

has large, organized clouds over the northern part of the domain, and smaller ones downstream 

of the mountain. 

In general, all experiments successfully simulated thermally induced localized 

thunderstorms characterized by diurnal cycles despite the various spatial distribution and the 

different times of convection initiation among the experiments with different topography and 

background winds. In the following, we use the CMDTE between the control and perturbed 

simulations of FLAT and TOPO to present the error growth dynamics associated with moist 

convection development. The topographic effects on the error growth will be examined in 

Section 3.2. 
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Figure 3.2 The vertical maximum reflectivity calculated from the control simulation (color 

shaded) and the perturbed simulation (black contour; 20 dBZ) of (a)-(f) FLAT and (g)-(l) 

TOPO on 23 June. The gray dashed contours in (g)-(l) represent the topography height equal 

to 100, 500, and 900 m, respectively, from the outside to the inside. 
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Figure 3.3 The accumulated rainfall during 0700-1900 LT (left), 0700-1300 LT (middle), 

and 1300-1900 LT (right) in the control simulation (color shaded) and the perturbed 

simulation (black contours; 10 mm) in (a) FLAT and (b) TOPO on 23 June. 

 

 

 

 

 

 

 

(a) FLAT

(b) TOPO

a1. 07-19 LT (12h) a2. 07-13 LT (6h) a3. 13-19 LT (6h) 

b1. 07-19 LT (12h) b2. 07-13 LT (6h) b3. 13-19 LT (6h) 
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Figure 3.4 The vertical maximum reflectivity calculated from the control simulation (color 

shaded) and the perturbed simulation (black contour; 20 dBZ) of (a) NS5_FLAT, (b) 

U00_FLAT, (c) U25_FLAT, (d) NS5_TOPO, (e) U00_TOPO, and (f) U25_TOPO at 1040 

and 1240 LT. 

(b) U00_FLAT(a) NS5_FLAT (c) U25_FLAT

(e) U00_TOPO(d) NS5_TOPO (f) U25_TOPO

1040 LT

1240 LT

1040 LT

1240 LT

1040 LT

1240 LT

1040 LT

1240 LT

1040 LT

1240 LT
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3.1.2 Error growth dynamics associated with moist convection 

Figure 3.5 provides the horizontal distribution of errors in FLAT and TOPO, depicted by 

the vertically mass-weighted averaged CMDTE. The vertically integrated hydrometeor 

contents are also depicted to show the distribution of convective clouds. The error magnitude 

generally increases with time as convection develops. In particular, for both experiments, the 

horizontal distribution of the error roughly coincides with the position of convective clouds at 

different times, indicating that the error growth is highly related to the moist convective 

processes, which is also indicated in previous studies (e.g., Zhang et al. 2003). 

 

Figure 3.5 The vertical mass-weighted averaged CMDTE (color shaded) of (a)-(c) FLAT 

and (d)-(e) TOPO. The black contours depict the vertically integrated hydrometeor contents 

in the control simulation (0.7 kg m−2, i.e., the defined cloud grids). The dashed-line and 

dotted-line boxes in (d) show the range of mountain and plain area, respectively, used for 

computing sub-domain average in Fig. 3.6. The red boxes in (a) and (d) illustrate the 

detected cloud areas used for producing Fig. 3.9. 

 

(a) 1120 LT

(e) 1020 LT

(b) 1150 LT (c) 1220 LT

(f) 1050 LT(d) 0950 LT
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The domination of moist convection on the error growth is also shown in the time series 

of CMDTE. Figure 3.6 shows the temporal evolution of the CMDTE in FLAT and TOPO over 

the whole domain and two sub-domains with the same size over the mountain and plain areas 

(depicted in Fig. 3.5d). The domain-averaged cloud grid ratio (CGR) is also presented in Fig. 

3.6 to show the evolution of convective activity. The mountain area is chosen to cover the 

convection developing over the mountain (Figs. 3.2g-i), and the plain area represents an area 

away from the mountain. The whole-domain averaged errors after 1200 LT are similar FLAT 

and TOPO, suggesting that the two experiments result in similar total error over the whole 

computational domain in the afternoon. The difference in the whole-domain-averaged error 

evolution between TOPO and FLAT is shown from 0900 to 1200 LT because of different 

convection development caused by mountain topography. This is clearly seen in the error 

evolution over the two sub-domains. 

In FLAT, the error growth is similar between the two sub-domains and the whole domain 

because the convective clouds have a fair chance to develop anywhere in the whole domain 

without the forcing of topography. The even distribution of the convection in FLAT can be 

seen from the very similar CGR evolutions among the three calculating domains (blue curves 

in the upper panel of Fig. 3.6). In contrast, the errors in TOPO are very different over the two 

sub-domains. For the mountain area, because the convective clouds in TOPO developed here 

first (Figs. 3.2g-i), the exponential error growth also starts early, corresponding to the start 

time of convective clouds depicted by the CGR (dashed-orange curve in the upper panel of 

Fig. 3.6). For the plain area in TOPO (dotted-orange curves in Fig. 3.6), the error starts the 

exponential growth at a later time, reflecting the late onset of the convection development over 

this area (Figs. 3.2h, i); the onset of rapid error growth also coincides with the CGR. The 

results of TOPO in Fig. 3.6 suggest that the mountain causes the various temporal and spatial 

evolutions of convective clouds, further resulting in the different error evolutions between the 
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mountain and plain areas in TOPO or between FLAT and TOPO. Similar to Fig. 3.5, Fig 3.6 

again demonstrates that the error growth dynamics is closely related to the development of 

moist convection. 

 

Figure 3.6 Time evolution of the CMDTE (bottom) and the CGR in the control simulation 

(upper) averaged over the whole domain (solid curves), the mountain area (dashed curves), 

and the plain area (dotted curves) for FLAT (blue) and TOPO (orange). The ranges of the 

mountain and plain areas are indicated in Fig. 3.5d. 

 

To examine the initial error growth at different horizontal scales, we further compute 

power spectra of CMDTE in wavenumber space (Fig. 3.7). The power spectra of the control 

simulation at 1300 LT when the growth of the error slowdown in both FLAT and TOPO are 

also plotted as a reference of the background energy spectrum. During the first 3 h, both the 

errors in FLAT and TOPO grow at the domain scale (~100 km). From 0900 LT, the error 

spectra start to behave differently. In TOPO, the power spectra start to grow at about 2-km 
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scale before 0900 LT and continue to grow at scales below 50 km, pronounced at the O(10 

km) scale. The spectra then spread to larger scales after 1040 LT, indicating a peak at about 20 

km at 1100 LT. In FLAT, on the other hand, the spectra start the growth at a late time after 

0940 LT, and instead of propagating throughout the scales below 50 km, they amplify at scales 

below 10 km and have peaks at a scale corresponding to individual convective cells (~5km) 

at 1100 LT. In this way, the characteristic of the error spectra again shows the properties related 

to different temporal and spatial features of the convection development in FLAT and TOPO. 

Specifically, the power spectra of TOPO start to pronouncedly amplify earlier at a larger scale 

than those of FLAT, corresponding to the early development and larger horizontal scale of the 

convective clouds due to the existence of the mountain. 

 

Figure 3.7 CMDTE power spectra averaged below 10-km height (color dashed curve) in (a) 

FLAT and (b) TOPO. The dark red solid curve shows the power spectrum of the control 

simulation at 1300 LT on 23 June. The black-dashed line shows the reference of a -5/3 

spectrum slope. 

 

Besides FLAT and TOPO, other experiments also show error growth corresponding to 

the development of moist convection. Figure 3.8 depicts the horizontal distribution of the 

CMDTE at the time right after convection initiation for the experiments with different 
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mountain topography and background winds. The distribution of convective clouds is depicted 

by the defined cloud grids to show the convection development within several hours after the 

convection initiation. To better show the detail of the distribution of errors and convective 

clouds, only a portion of the domain with 150×150 km range is depicted. For the experiments 

with mountain topography, the plots show the sub-domain around the mountains; for the 

experiments without mountain topography, the plots show an arbitrarily selected sub-domain 

containing convective clouds during convection initiation time. Consistent with the results of 

FLAT and TOPO, Fig. 3.8 also shows that the distribution of large errors coincides with the 

location of convective clouds. 

In general, by comparing the convection development and the error growth dynamics, the 

results in this section showed the ability of moist convection to trigger the rapid error growth. 

Thus, the spatial, temporal, and spectral evolution and distribution of errors reflect the 

characteristic of convection development. To further address the impact of mountain 

topography on this error growth, in the following we will compare the errors based on the 

degree of convection development, such as the size of convective clouds or the CGR. For 

example, in Fig. 3.8, the error magnitude between TOPO and H500, or between TOPO and 

U00_TOPO is apparently different when the convective clouds in them have similar horizontal 

sizes. This point will be examined in more detail in the next section. The question here is that 

for moist convection at a similar development stage, whether the one developing under the 

influence of mountain topography triggers different error growth from that without the forcing 

of topography? Also, if there are differences, does this topographic effect behave differently 

under different mountain geometry? 
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Figure 3.8 The CMDTE at the time of CGR equal to 0.1 % (color shaded) and the 

distribution of defined cloud grids at the times of CGR equal to 0.1, 1, and 5 % (black, gray, 

and light gray contours, respectively) for (a) FLAT, (b) H500, (c) V05, (d) TOPO, (e) V20, 

(f) NS5_FLAT, (g) NS5_TOPO, (h) U00_FLAT, (i) U00_TOPO, (j) U25_FLAT, and (k) 

U25_TOPO. The times of the contours are depicted by the numbers with the same color in 

the upper right of each panel. The green dashed contours depict the terrain height equal to 

100, 500, 900 m. The red dotted lines show the location of the cross section depicted in Figs. 

3.17-3.19 and 3.21. In (k), only the cloud grids between y=75~225 are counted to calculate 

CGR as the threshold of the plotting time to show the convective clouds downstream of the 

mountain. Note that only a portion of the whole computation domain is depicted here. 
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3.2 Topographic effects on error growth 

In the previous section, we have shown the development of the simulated thunderstorms 

and the associated error growth dynamics. The experiments with and without topography show 

different features of error growth because convective clouds develop differently in them, 

highlighting the impact of topography on convection development. However, it is still difficult 

to conclude whether topography affects the error growth trigged by moist convection when 

the features of error shown in Figs. 3.5–3.7 greatly reflect the characteristic of convection 

development. For example, while the slope of the whole domain averaged error growth 

between 0900 to 1200 LT seems to be slightly shallower in TOPO than in FLAT (Fig. 3.6), it 

may only be because the error is smaller over the plain area due to the lack of moist convection, 

and not directly suggest that topography affects the error growth triggered by the moist 

convection itself. 

Therefore, analysis based on the degree of convection development is desired to show 

the topographic effect on the error growth when the moist convection is occurring, regardless 

of the temporal or spatial difference in convective clouds. One idea here is to collect the results 

from different times and compare the error associated with each convective cloud of similar 

size. To do that, we detect individual cloud areas at different times and calculate CMDTE over 

each cloud area. The cloud areas are detected by finding the horizontal continuous regions of 

the cloud grids (identified in the control simulation; see Section 2.4.3) having 10 grids or larger. 

The detection of cloud area is illustrated by the red boxes in Figs. 3.5a and 3.5d; the area 

enclosed by a black contour in a red box represents an exact detected cloud area which is used 

to produce the following analysis.  

Figure 3.9 depicts the scatterplots of the area size against the error for each detected cloud 

area in FLAT and TOPO. Here, the size of a cloud area is represented by the diameter of circles 
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with the same area size as the detected cloud area. The error is depicted in terms of the mean 

of the first 10 maximum values of vertical mass-weighted averaged CMDTE over the detected 

cloud areas, which represents the maximum magnitude that the error associated with a 

convective cloud could reach. The idea here is, assuming that rapid error growth is mainly 

triggered by moist convective processes, the convective clouds at a similar stage are expected 

to result in similar error magnitude when there is no external forcing like topography. Thus, 

comparing the errors among convective clouds of a similar size helps us address the 

topographic effects on the error growth. 

 

Figure 3.9 Scatterplots of the cloud size (x-axis) against the magnitude of CMDTE (y-axis) 

for cloud areas detected from (a) FLAT and (b) TOPO. Each point represents the results 

from a detected cloud area at a time represented by the color. 

 

Comparing the results of FLAT and TOPO in Fig. 3.9, the scatterplots of TOPO after 

1050 LT have similar distribution with those in FLAT (c.f. the points with cold color in Figs. 

3.9a, b). However, some convective clouds in TOPO before 1050 LT result in scatterplots 

showing smaller errors than other clouds of similar sizes (c.f. the points with warm and cold 

color in Fig. 3.9). In TOPO, for example, there are three points of cloud area of about 15-km 

sizes having the error magnitude around O(1) (Fig. 3.9b), while in FLAT, the results with 

similar cloud area sizes could have an error magnitude large to O(10). The warm color points 

(a)FLAT (b)TOPO
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in Fig. 3.9b correspond to the convective clouds that develop over the mountain area in the 

morning. For example, the three yellow points of 0950 LT in Fig. 3.9b are exactly the results 

of the cloud areas illustrated in Fig. 3.5d. The difference between Figs. 3.9a and 3.9b suggests 

that for convective clouds with similar size, those developed over the mountain have smaller 

errors at the early stage of development, implying the topographic effects on decreasing the 

error growth triggered by moist convection. 

The topographic effect shown in Fig. 3.9 by comparing the results of FLAT and TOPO is 

further examined with different mountain geometry. Figure 3.10 shows the scatterplots of the 

errors against the size of cloud areas, just similar to Fig. 3.9 but depicting several experiments 

together in a diagram. The color scale here is then designed differently to distinguish Fig. 3.10 

from Fig. 3.9. For the experiments with topography, only results of convective clouds before 

1040 LT are shown here, because after this time convective clouds develop everywhere over 

the whole domain just like those in FLAT, and their results cover almost the same area as those 

in FLAT in the scatterplots (c.f. Figs. 3.9a, b); the results from FLAT are depicted completely 

just like Fig. 3.9a. In Fig. 3.10, the results from FLAT represent the relationship of the error 

magnitude with convective cloud size in the absence of the topographic effects. The impact of 

the mountain is then assessed by how the results of the experiments with topography depart 

from the area possessed by the square points (illustrated by the dashed triangle in Fig. 3.10a). 

Figure 3.10 shows the topographic effect on mitigating error growth when the mountain 

is higher than 750 m. Specifically, many scatterplots of the experiments with topography in 

Figs. 3.10b-d locate outside the triangle area of FLAT, while most of them in Fig 3.10a are 

located within the area or at its edge. In other words, more convective clouds in the 

experiments with mountains higher than 750 m result in smaller errors than those clouds of 

similar sizes in FLAT. In contrast, the convective clouds in the experiments with 500-m 

mountain height show a similar magnitude of errors as those in FLAT. The mountain width, 
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although not as clearly as the mountain height, also shows different effects on the error growth. 

For example, Fig. 3.10b shows that some convective clouds with a size around 5 km in 

H750_V20 have slightly larger errors than those in H750_V05. Similarly, the results in Fig. 

3.10c also show some convective clouds in V20 having larger errors than those in V05. 

 

Figure 3.10 Similar to Fig. 3.9 but for results from FLAT depicted together with results from 

the experiment with (a) 500-m, (b) 750-m, (c) 1000-m, and (d) 2000-m height mountains 

(see Table 2.1 for the setting in each experiment). The square points of results from FLAT 

are the same in all panels; the dashed-line triangle in (a) illustrates the area possessed by 

them. Note that the color scale is different from Fig. 3.9 for distinguishing the plotting of 

several experiments in one diagram from the one with only one experiment. 

 

Besides the comparison based on the horizontal sizes of convective clouds, we further 

compare the convection development and the error growth in the vertical direction. Figure 

3.11 shows the time-height cross section of horizontally averaged CMDTE and the maximum 

(d) H2000(c) H1000

(a) H500 (b) H750
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hydrometeors of the control simulation over a sub-domain. The range of the sub-domain is 

exactly the portion depicted in Fig. 3.8 for each experiment. The hydrometeors represent the 

development of moist convection in the vertical direction over time; the CMDTE shows the 

corresponding error growth. In FLAT, moist convection develops upward quickly from 1020 

LT, and the error also grows rapidly, by an order of magnitude or greater, as soon as the 

convective clouds develop up to a specific height (Fig. 3.11a). It demonstrates that the error 

growth in the vertical direction is also highly related to the development of moist convection. 

The topographic effects on the error growth are also shown in the vertical direction. In 

TOPO, the vertical development of moist convection starts at 0820 LT (Fig. 3.11b), earlier 

than that in FLAT because of the presence of the mountain. After the convection development 

started, the error in TOPO grows much more slowly than that in FLAT, suggesting that the 

topography has an effect of restraining the error growth. For example, after the convective 

cloud develops up to 5-km height in TOPO, it takes over one hour for the error at the same 

height to grow from below 0.001 to over 0.1 J kg−1, while it only takes around 30 minutes in 

FLAT.  

The sensitivity of topographic effects to the mountain height and volume is also shown 

in the time-height cross section by comparing the results of TOPO, H500, and V20 (Figs. 3.11 

b-d). In H500, different from TOPO, the error grows an order of magnitude or greater rapidly, 

similar to the one in FLAT (c.f. Figs. 3.11a-c). For example, at 5-km height, the error in H500 

grows from 0.001 to over 0.1 J kg−1 within only 20 min. Although not as apparent as the 

sensitivity to the mountain height, different mountain width also lead to different topographic 

effect on mitigating error growth. In V05, for instance, while the vertical development of 

convective clouds seems to be similar to that in TOPO, the error grows less rapidly than in 

TOPO at the early stage of convection development (c.f. Figs. 3.11b, d). For example, at the 

5-km height, the error in V05 stays below 0.001 J kg−1 for 20 minutes after the convection 
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develops up to that height at 0850 LT, while the one in TOPO grows an order of magnitude to 

0.01 J kg−1 after 20 minutes of the formation of the clouds. 

 

Figure 3.11 The time-height cross section of the horizontally averaged CMDTE (color 

shaded), and the horizontally maximum of hydrometeors (black dashed contours; 0.1 and 7 

g kg−1), upward wind (red dashed contours; 1.5 and 15 m s−1), and θ anomaly (yellow 

dashed contours; 1 and 4 K) in the control simulations of (a) FLAT, (b) TOPO, (c) H500, 

and (d) V05. The results are calculated over a sub-domain whose range for each experiment 

is exactly the portion depicted in each panel of Fig. 3.8. 

 

To further examine the topographic effects on different model state variables, the growth 

of different terms in the CMDTE (DiKE, DiSH, and DiLH; see also Section 2.4.1) is compared 

by the ratio of error in wavenumber space relative to the saturation error (Fig. 3.12). The 

saturation error is defined as the error at the time when the error growth rate λ (see Section 

2.4.1) becomes smaller than 0.01 (refer to the black dashed-dotted line in Fig. 4.3). Figure 

3.12 depicts the relative error spectra with the curves colored by the CGR, which represents 

the convection development. The time of the CGR starting to have non-zero values is seen as 

the time of convection initiation (CI). The results in Fig. 3.12 are plotted every 30 minutes for 

(b) TOPO

(c) H500

(a) FLAT

(d) V05
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8 hours, including the times of, before, and after CI. A larger space in the y-direction between 

curves means the more rapid error growth at that scale. 

The different terms of the errors have different properties. In FLAT, before CI, DiKE and 

DiSH grow little while DiLH starts the growth throughout all scales. Regardless, all three 

terms of errors in FLAT have sudden rapid growth at scales below 20 km at the time of CI. In 

comparison, both TOPO and H500 have slower DiLH growth than FLAT, especially at scales 

smaller than 10 km at the time of CI. For example, 30 minutes before the CI, the relative error 

of DiLH in FLAT already has a magnitude of 1 % at the 2-km scale, while those in TOPO and 

H500 are around 0.1 %. For DiKE and DiSH in TOPO and H500, they also grow little before 

the CI. However, H500 shows sudden growth of DiKE and DiSH especially at the scales below 

100 km after the time of CI while those in TOPO grow more gradually even after CI. Figure 

3.12 suggests the different properties of error growth as well as different topographic effects 

on different model state variables. Particularly, DiKE and DiSH grow little before the CI in all 

experiments, while they have sudden growth around the time of CI in FLAT and H500, but 

not in TOPO. In comparison, DiLH starts the growth before CI in all experiments, while those 

in TOPO and H500 grow less rapidly than that in FLAT. 
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Figure 3.12 The relative error spectra of DiLH (left), DiKE (middle), and DiSH (right) in 

(a) FLAT (upper), (b) TOPO (middle), and (c) H500 (bottom). The curve color depicts the 

CGR over the whole domain of each experiment. The time interval between each curve is 

30 minutes; the time of the first curve is depicted on the right bottom of each panel. 

 

 

 

 

 

DiLH DiKE DiSH

(a)FLAT

(b)TOPO
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Figure 3.13 The value of DiSH (yellow), DiLH (purple), and DiKE (blue) at the time when 

the CGR over the whole domain reaches over 0.125% in each experiment (x-axis). 

 

Figure 3.13 further presents the value of DiKE, DiSH, and DiLH when the CGR over the 

whole domain becomes larger than 0.125 % in each experiment using the original sounding 

wind profile (see Table 2.1). This threshold (0.125 %) is chosen for depicting the results at an 

early stage of moist convection development. The CGR equal to 0.125 % means that there are 

about 113 cloud grids over the whole domain. If these grids are one convective cloud, they 

can be converted to a cloud area with a size equal to 12 km depicted in Figs. 3.9 and 3.10. The 

CGR of 0.125 % is also within the dark green colored interval in Fig. 3.12.  

At the time of this early stage of convection development, Fig. 3.13 compares the absolute 

values of different error terms among the experiments. In FLAT, the total error of DiKE, DiSH, 

and DiLH is the largest among the experiments; meanwhile, among three terms of the error in 

FLAT, DiLH is the largest one. In comparison, all experiments with mountain topography 
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show smaller total errors than FLAT at the early stage of convection development. The 

experiments with higher and narrower mountains tend to have smaller total errors, similar to 

the sensitivity shown in Figs. 3.10 and 3.11. Notably, the reduction of errors is mainly shown 

in DiLH. All experiments with mountain topography have much smaller DiLH than FLAT. 

Among the experiments with mountain topography, the differences are mainly shown in the 

term of DiKE. H500 and H500_V20 even have larger DiKE than FLAT at this early stage of 

convection development. 

The comparison of different terms in CMDTE (Figs. 3.12 and 3.13) shows that the 

mountain topography has more impacts on the error of water vapor regardless of the mountain 

height or width, while the impacts on the errors of wind and temperature are less clear with 

lower and wider mountains. In H500, for example, the rapid growth of the error on the wind 

field may consequently result in a comparable CMDTE magnitude as FLAT, as the results 

shown in Figs. 3.10 and 3.11. This sensitivity of the topographic effects on the error growth 

of the different variables to the mountain geometry is considered to come from different 

mechanisms of CI. Further discussion is provided in Section 3.4. 

3.3 Sensitivity experiments for the topographic effects on 

error growth 

In the previous section, we demonstrated the impact of mountain topography on the error 

growth triggered by moist convection, which shows the sensitivity to the mountain geometry 

on different terms of the error. In this section, we further examine the sensitivity of this 

topographic effect to environmental flows and two other potential affecting factors: the 

absence of moist processes and the initial uncertainty on different model state variables. The 

former is examined by the experiments without microphysics parameterization; the latter is 

assessed by conducting twin experiments with initial differences added to potential 
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temperature (θ). 

3.3.1 Different environmental flow conditions 

The experiments without and with mountain topography under different background 

winds (Table 2.1) are compared to see if the topographic effects on mitigating the error growth 

are also found under different environmental flows. Figure 3.14, similar to Fig. 3.10 but for 

experiments with different wind conditions, shows the scatterplots of convective cloud sizes 

against the error magnitude. Here, the results of the experiments with topography are shown 

only before 1000 LT for the same purpose as that for Fig. 3.10 in which only the results before 

1040 LT are depicted. The results in the experiments without topography are shown completely. 

Moreover, in Fig. 3.14, some results from the experiments with topography are plotted 

with thick black edges, and some are not. The different edges distinguish the cloud areas near 

or downstream of the mountain (with thicker edges) and those not (without thicker edges). In 

the experiments with the U25 wind profile, many detected cloud areas are not located around 

the mountain, shown by the scatterplots without thick edges in Fig. 3.14d. In these experiments, 

some convective clouds did not disappear at night and kept their large size (~100 km) moving 

eastward over northern or southern parts of the domain until the morning (refer to Fig. 3.4f). 

These clouds are probably caused by the periodic lateral boundary condition making the 

southern and northern parts of the domain become the area between the two mountains because 

the terrain is virtually repeated under the periodic boundary condition. Thus, there may be 

suitable conditions, such as a convergence zone, over northern or southern parts of the domain 

that maintain the clouds not to dissipate. These clouds are not initiated by solar heating in the 

morning and thus are not our focus. Therefore, the comparison here will be focused on the 

results with thicker edges in Fig. 3.14, i.e., the convective clouds near or downstream of the 

mountain. 



Chapter 3 Topographic effects on the error growth dynamics and convection initiation 62 

Pin-Ying Wu 

 

 

Figure 3.14 Similar to Fig. 3.10, but for the experiments with different background winds 

of (a) the original sounding data, (b) NS5, (c) U00, and (d) U25. Panel (a) has the same 

results as that shown in panel (c) in Fig. 3.10. The thicker edges of the points indicate the 

results from the detected cloud areas whose center is located in the area depicted by the 

green-dashed box in Fig. 3.4f for (b)-(d) and in the areas shown by Figs. 3.8c-e themselves 

for (a). 

 

Similar to Fig. 3.10, the square scatterplots in Fig. 3.14 represent the error evolution with 

time and convection development when there is no topographic forcing. Again, if the results 

from the experiments with topography are located away from the area of the square scatterplots, 

it implies the impact of the mountain topography on error growth. Compared to the cases with 

the original background winds (Fig. 3.14a), the topographic effects are comparable in the 

experiments with constant background wind (NS5, Fig. 3.14b) but less clear in the experiments 

(c) U00 (d) U25

(a) sounding (b) NS5
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without background wind (U00, Fig. 3.14c). For the experiments with the U25 wind profile 

(Fig. 3.14d), if we only focus on the results near and downstream of the mountain (i.e., the 

scatterplots with thicker edges), it is shown that the error magnitudes for these convective 

clouds are similar to those in FLAT, implying fewer topographic effects on the error growth 

associated with thermally induced moist convection. In this way, Figure 3.14 demonstrates the 

sensitivity of topographic effects on the error growth to environmental flows. Possible reasons 

for these sensitivities will be further discussed in Section 3.4. 

3.3.2 Simulations without moist processes 

The experiments without microphysics parameterization are conducted to assess the error 

growth dynamics and the sensitivity of topographic effects without moist processes. Here, the 

same initial condition at 0600 LT 23 June (i.e., the start time of twin experiments) of control 

and perturbed simulation in FLAT, TOPO, and H500 are used, and additional integrations are 

performed for both control and perturbed simulations after turned off the microphysics 

parameterization. These no-microphysics experiments are denoted as FLATnoMP, 

TOPOnoMP, and H500noMP, corresponding to the experiments with microphysics 

parameterization and the same topography, i.e., FLAT, TOPO, and H500, respectively. 

Figure 3.15 shows the error evolutions of these experiments. For no-microphysics 

experiments, there is almost no error growth before 1100 LT regardless of the topography 

settings, suggesting a much lower nonlinearity in the simulated dynamical system without 

moist processes being parameterized. After 1100 LT, the rapid error growth found in the no-

microphysics experiments is considered to be triggered by the dry convection induced by the 

solar heating. In the afternoon, the errors are much smaller in the experiments without moist 

processes than in those with moist processes. In addition, although the errors in the no-

microphysics experiments reduced once in the afternoon, they continue growing after around 

1500 LT without a sign of error saturation, implying a much less nonlinearity, because error 
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saturation is a characteristic of nonlinear dynamical systems.  

In the no-microphysics experiments, while the errors averaged over the whole domain 

grow similarly among the experiments with different topography, those averaged over the 

mountain area show different evolutions. In TOPOnoMP, the error over the mountain area 

grows much slower than FLATnoMP and H500noMP during 1100-1300 LT. The slower error 

growth in TOPOnoMP suggests that topography has similar effects on error growth in the 

cases with and without moist processes being simulated. Specifically, topography decreases 

error growth, but this effect is sensitive to mountain height.  

 

Figure 3.15 Time evolution of the CMDTE averaged over the whole domain (solid curves) 

and the mountain area (dashed curves) in the experiments indicated by the legend on the 

right. The range of the mountain area is indicated by the dashed-line box in Fig. 3.5d. 

 

The sensitivity tests without moist processes demonstrate that the moist processes play a 

vital role in contributing to the nonlinearity of the atmospheric motion and weather phenomena. 

Nevertheless, regardless of whether moist processes are involved or not, the topographic 

effects on error growth have a similar sensitivity to mountain height, implying that this 

sensitivity is less relevant to the moist processes. Consistent with the comparison of DiKE and 
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(mount)

(whole)
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(whole)

(mount)

(whole)

(mount)

(whole)

(mount)

(whole)

(mount)



Chapter 3 Topographic effects on the error growth dynamics and convection initiation 65 

Pin-Ying Wu 

DiLH in Fig. 3.12, the sensitivity tests here further suggest that the different topographic 

effects on error growth in TOPO and H500 can be attributed to the difference of flow dynamics 

but not of the moist processes like condensation or evaporation. This will be further discussed 

in Section 3.4. 

3.3.3 Initial error on potential temperature 

To assess the sensitivity of error growth and the topographic effects to the initial 

uncertainty in different model state variables, we performed a number of twin experiments 

with the initial error added to potential temperature (θ). Specifically, additional perturbed 

simulations are conducted by adding random perturbations with an amplitude of 0.25 K to the 

θ of the same control simulations used previously. The amplitude of θ perturbation used here 

yields the same initial magnitude of CMDTE as that of the water vapor mixing ratio used 

previously. The experiments using the same control simulation as FLAT, TOPO, and H500 but 

have perturbed simulations with initial errors on θ are denoted as FLAT_THM, TOPO_THM, 

and H500_THM, respectively. For convenience, the experiments with initial errors on 

moisture field (FLAT, TOPO, and H500) and temperature field (FLAT_THM, TOPO_THM, 

and H500_THM) are collectively called “the QV experiments” and “the THM experiments”, 

respectively. 

Here, both the CMDTE and its individual terms, DiKE, DiSH, and DiLH, are examined 

(Fig. 3.16). Irrespective of the terms of the error, the differences among the experiments shown 

in Fig. 3.16 become very minor after 1200 LT. Different properties of error growth are shown 

for the periods before the moist convection develops (0600-0900 LT) and at the initial stage 

during the convection development (0900-1200 LT). Before the moist convection develops, 

the errors grow more slowly in the THM experiments than in the QV experiments. For DiSH 

in the THM experiments, they even distinctly decrease before the CI (indicated by the CGR) 

even though the initial error is added to the temperature field. The slower error growth implies 
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that before the moist convection develops, the processes in the atmosphere are less sensitive 

to the initial uncertainty in the temperature field. 

Around the time of CI, all errors in both QV and THM experiments start to grow rapidly. 

After the rapid growth starts, the errors in the THM and QV experiments with the same 

topography become identical quickly in two hours or less. During this period (around 0930 to 

1100 LT), the errors in the THM experiments grow more rapidly than those in the QV 

experiments. Nevertheless, the topographic effects shown in TOPO on the error growth at the 

early stage of convection development is also shown in TOPO_THM. Specifically, all the error 

terms in TOPO_THM generally stay at a similar level after convection initiates at around 0820 

LT. On the other hand, FLAT_THM has exponential error growth even before its convection 

start to develop at 1030 LT.  

The sensitivity of the topographic effect to the mountain height is also seen similarly in 

the THM experiments as in the QV experiments. In H500_THM, the DiKE and DiSH show 

sudden growth as soon as the CI, while the DiLH has similar growth as that in TOPO_THM. 

The results in Fig. 3.16 suggest that the sensitivity of topographic effect on DiLH is less 

sensitive to mountain height than that on DiKE and DiSH, consistent with that suggested by 

Fig. 3.12. The error growth during 0930 to 1100 LT demonstrates that the topographic effect 

on error growth acts similarly when the initial uncertainty is in the temperature field. 

After 1100 LT, all the terms of the errors shown in Fig. 3.16 grow similarly regardless of 

the topography and initial error types. At this time, the convective activities (represented by 

CGR) become similar among the experiments with different topography. It is considered that 

this vigorous convective activity triggers the error growing to a similar magnitude in all 

experiments, despite the different error growth properties before 1100 LT. As a result, the 

different initial error types lead to little difference in the error growth after the mature stage of 

convection development, highlighting the nature of moist convection on triggering error 



Chapter 3 Topographic effects on the error growth dynamics and convection initiation 67 

Pin-Ying Wu 

growth at a mature stage. 

In summary, the sensitivity tests of adding the initial error to the temperature field imply 

the followings. First, the atmospheric processes are less sensitive to the initial uncertainty in 

the temperature than in the moisture field when no moist convection develops in the morning. 

Second, the topographic effects work similarly regardless of the initial error added to moisture 

or temperature fields. Last, the moist convection at mature stages can trigger errors growing 

to a similar level, despite the difference of the error growth at initial stages. 

 

 

Figure 3.16 Time evolution of the (a) CMDTE, (b) DiLH, (c) DiSH, and (d) DiKE averaged 

over the whole domain in the QV (FLAT, TOPO, and H500) and THM experiments 

(FLAT_THM, TOPO_THM, and H500_THM). The colored lines at the bottom of each 

panel depict the CGR in the control simulation of FLAT, TOPO, and H500 from the bottom 

to top, respectively; they are the same in each panel. The THM experiments share the same 

control simulations as the QV experiment, so the CGR depicted here is also the one in the 

THM experiments. 
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3.4 Mechanisms for the topographic effects on error growth 

In this section, we discuss the possible reason for the topographic effect on the error 

growth triggered by moist convection and its sensitivity to mountain geometry and background 

winds. The discussion is focused on the mechanisms and properties of convection initiation 

and development to figure out what kind of moist convective processes could be the reasons 

for different error growth. 

First, the sensitivity of the topographic effects to the mountain height is investigated with 

the results of TOPO and H500. Here, we examine the cross section of θ anomaly and wind of 

the control simulation for these two experiments at the time when the clouds formed (Fig. 

3.17). In both TOPO and H500, there is a positive θ anomaly on the lee side (i.e., west) of the 

mountain due to the downward motion and mixing across the isentropic, which occurred at 

midnight and continued throughout the nighttime. At the same time, the wind on the lee side 

is weak at night because of the mountain blockage; the weak wind area is clearer in TOPO 

than in H500 (figure not shown). After the sun rises, the solar heating on the surface of the 

mountain slope leads to the difference in temperature between the air near the mountain slope 

surface and the air away from the mountain at the same altitude, which generates positive 

buoyancy over the mountain slope and drives upslope wind. In TOPO, compared to H500, the 

higher mountain leads to a larger buoyancy force accompanied by a condition of weaker wind 

on the lee (i.e., west) side, resulting in the westerly upslope wind near the surface on the lee 

side of the mountain (see x=50~70 in Fig. 3.17a). The encounter of this thermally driven 

upslope wind and the background wind results in a convergence on the lee side of the mountain, 

triggering upward motion (see x=65 in Fig. 3.17a). Owing to this stronger upward motion, the 

cloud on the lee side keeps developing to a larger convective cloud, like the one depicted in 

Fig. 3.2h or 3.8d. On the other hand, the cloud generated by the mechanical upward forcing of 

the mountain on the windward (i.e., east) side (see x=80 in Fig. 3.17a) does not develop into 
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a deep convective cloud. In other words, the convective clouds in TOPO over the mountain in 

the morning are mainly initiated by the convergence of thermally driven upslope wind and the 

background wind on the lee side of the mountain. The similar CI mechanism on the lee side 

of mountains has also been indicated by previous studies (Banta and Schaaf 1987; Akaeda et 

al. 1995; Chen et al. 2002; Hagen et al. 2011; Hassanzadeh 2016). 

 

Figure 3.17 Vertical cross section in x-direction at y=102 (see red-dotted lines in Figs. 3.8b, 

d) of θ anomaly (color shaded), wind (arrows), and hydrometeors (blue contour; 0.1 g kg−1) 

in the control simulation of (a) TOPO at 0810 LT and (b) H500 at 0840 LT. The purple and 

green curves represent the height of LFC and the thickness of the absolute instability layer, 

respectively. 

 

In contrast, the above CI mechanism is absent in the experiments with a lower mountain. 

In H500, the mountain height is not enough to trigger the upslope wind on the lee (i.e., west) 

side in the morning (Fig. 3.17b). The mountain height in H500 is lower than LFC (see the 

purple curve in Fig. 3.17b), so on the windward (i.e., east) side, clouds also do not form due 

to the upslope winds caused by the mechanical forcing of the mountain. Consequently, deep 

convection was not initiated until the solar heating resulted in a thick enough absolute 

instability layer (see the green curve in Fig. 3.17b) in which the θ decreases with height. Over 

the area with a thick enough absolute instability layer, a small amount of upward displacement 

(a) TOPO (b) H500
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triggered by a positive θ anomaly can easily reach LFC and induce further upward motion 

anywhere. This process of CI over a heated mountain is considered to result in higher 

uncertainty of upward wind than that in TOPO, leading to more rapid error growth. 

Figure 3.17 suggests that the sensitivity of the topographic effect to the mountain height 

might be attributed to the different CI mechanisms in TOPO and H500. This possible reason 

for the sensitivity of the topographic effect is supported by the sensitivity experiments without 

moist processes. In Section 3.3.2, we have shown that the error growth of TOPOnoMP is 

slower over the mountain area than that of H500noMP. In TOPOnoMP, similar to the case in 

TOPO (Fig. 3.17a), upward motion on the lee (i.e., west) side occurs due to the convergence 

of the westerly thermally driven upslope wind and the easterly background wind (figure not 

shown). Similarly, H500noMP has a similar westerly flow as H500 (Fig. 3.17b) without an 

upslope wind on the lee side (figure not shown). There is no cloud formation in H500noMP 

and TOPOnoMP without the microphysics parameterization. Thus, the different properties of 

the dynamical flow are the most likely reason for the different error growth in these two 

experiments. In other words, the sensitivity of the topographic effect to mountain height can 

be attributed to the different dynamical processes of forming convective motion. In TOPO and 

TOPOnoMP, convective motion occurs in a specific area of the convergence between the 

background wind and thermally driven upslope wind. In comparison, in H500 and H500noMP, 

without the thermally driven upslope wind on the lee side, the processes of convective motion 

might have more uncertainty or nonlinearity than in TOPO and TOPOnoMP. Therefore, the 

errors, especially those of the wind field, grow more rapidly in H500 (H500noMP) than in 

TOPO (TOPOnoMP). The possible reason for the sensitivity of topographic effects suggested 

by Fig. 3.17 is also consistent with Fig. 3.12, which showed that the topographic effect on the 

error of wind is more sensitive to the mountain height than that on the error of moisture. 
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Figure 3.18 Similar to Fig. 3.17, but for (a) V05 at y=100, (b) V20 at y=102; and for the 

vertical cross section at y-direction of x=50 in (c) V05 and (d) V20. For the location of the 

cross section, please refer to red-dotted lines in Figs. 3.8c and 3.8e. 

 

Similarly, it is considered that the sensitivity of topographic effects on error growth to the 

mountain width (Figs. 3.10, 3.11, and 3.13) is also caused by the different properties of the 

convection initiation. Here we again use the cross section of θ anomaly to compare the CI 

mechanisms with different mountain widths (Fig. 3.18). To clearly illustrate the difference, 

V05 and V20 are compared here. In both V05 and V20, similar to TOPO, deep moist 

convection is initiated by the convergence of the westerly thermally driven upslope wind and 

the easterly background wind on the west (i.e., lee) side of the mountain along the x-direction 

(Figs. 18a, b). The difference between V05 and V20 can be seen more clearly in the cross 

section along the y-direction (Figs. 3.18c, d). In V20 which has a wider mountain, the area of 

positive θ anomaly is broader than that in V05, and the convergence area of the upslope winds 

(a) V05 x-direction  0820 LT (b) V20 x-direction 0810 LT

(c) V05 y-direction 0820 LT (d) V20 y-direction 0810 LT
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in the y-direction seems to be also wider. Consequently, low-level air parcels have more 

chances to rise within this wider convergence area, which implies more uncertainty about the 

location of CI. The more uncertain condition results in more difference in an upward motion 

or the formation of the clouds, and thus, there is more error growth because of this uncertainty 

in V20. In comparison, the narrower convergence area of V05 could result in lower uncertainty 

of updraft within this concentrated area, further resulting in a smaller error at the early stage 

of convection development as in Fig. 3.11d. 

The findings of the different CI mechanisms and their impact on the error growth lead us 

to further investigate the processes during convection development in the experiments with 

different background winds (Fig. 3.19). In U00_TOPO, the convection is triggered by the 

thermally driven upslope winds from all directions of the mountain and develops over the 

mountain top. This convective cloud almost stays at the same location and keeps developing 

vertically (Fig. 3.19b). With the convective cloud developing at the same place, the latent heat 

release from the condensation of water vapor keeps heating the air, resulting in a large positive 

θ anomaly. Positive θ anomaly means the warmer air than the horizontally surrounding air, 

indicating positive buoyancy. The positive buoyancy could further enhance upward motion, 

leading to stronger convection, which triggers more error growth. Therefore, a small initial 

difference in the location of upward motion and cloud formation could rapidly grow during 

the convection development. In this way, the diabatic heating from the moist convective 

processes plays a critical role in providing positive feedback on the error growth. This positive 

feedback of the moist convective process is considered to lead to rapid error growth in 

U00_TOPO. Thus, the errors are comparable in U00_TOPO and U00_FLAT (Fig. 3.14c), 

indicating less apparent topographic effects, even though the convective motion in U00_TOPO 

may also have less uncertainty than that in U00_FLAT at first because it is triggered by the 

convergence of upslope winds. 
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Figure 3.19 Similar to Fig. 3.17 but for (a) NS5_TOPO (y=156) and (b) U00_TOPO (y 

=144), respectively, from 0730 to 0900 LT in every 30 minutes interval. For the location of 

the cross section, please refer to red-dotted lines in Figs. 3.8g and 3.8i. 
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In comparison, a large positive θ anomaly is not observed in NS5_TOPO (Fig. 3.19a). In 

NS5_TOPO, clouds are induced by the rise of air mechanically forced by the mountain on the 

windward (i.e., west) side at an earlier time around 0600 LT (figure not shown) and keep 

developing until a later time (e.g., the one at around x=35 in Fig. 3.19a1). The clouds occurring 

on the windward side keep moving downstream, and hence the latent heating occurs at wider 

places, resulting in a weaker positive θ anomaly than in the case of U00_TOPO (c.f. Fig. 3.19a, 

b). The weaker positive θ anomaly means less warm air and weaker buoyancy forcing, which 

leads to less positive feedback on error growth. Meanwhile, similar to the case of TOPO, the 

convergence of the thermally driven upslope wind and the background winds is also observed 

in NS5_TOPO on the mountain lee side (i.e., east side, at around x=70 in Fig. 3.19a2). With 

this similar CI mechanism and without the strong positive feedback of diabatic heating like 

the one in U00_TOPO, NS5_TOPO consequently results in comparable topographic effects 

as TOPO (Figs. 3.14 a, b). 

The different properties of convection development in U00_TOPO and NS5_TOPO 

suggest that diabatic heating plays and important role in the error growth associated with moist 

convection. The time-height cross section of the error and convective clouds further supports 

this point by showing the corresponding relationship between diabatic heating and the rapid 

error growth in NS5_TOPO and U00_TOPO (Fig. 3.20). In U00_TOPO, the amount of cloud 

increases rapidly and the maximum upward wind reaches 15 m s−1, indicating stronger moist 

convection, only after 1 hour when the cloud formed. At the same time, the positive θ anomaly 

also reaches 4 K and the error grows with orders of magnitude, from 0.001 to over 0.01 J kg−1 

(Fig. 3.20b). In NS5_TOPO, on the other hand, the cloud amount, upward wind, and positive 

θ anomaly do not reach the same level as in U00_TOPO until 0900 LT, and the error also 

grows slowly before that time (Fig. 3.20a). It is considered that the positive θ anomaly 

resulting from latent heating provides further buoyancy force and contributes to both the 
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positive feedback of convection development and the error growth. Previous studies also have 

indicated similar processes of rapid error growth associated with latent heating in moist 

convection (e.g., Hohenegger et al. 2006; Zhang et al. 2016).  

The results in Figs. 3.19 and 3.20 of NS5_TOPO and U00_TOPO imply that as the 

convection develops to a mature stage, more rapid error growth would be triggered by the 

positive feedback from diabatic heating that enhances the convective activity. Therefore, the 

topographic effects on error growth could become unclear after a particular stage when more 

vigorous moist convection is induced by latent heating. This can also be seen in the 

experiments with the original wind profile of the sounding data (Fig. 3.11). For example, in 

Fig. 3.11, the errors in all experiments with topography grow to a similar magnitude of 0.1 

J kg−1 around the time when the upward wind and positive θ anomaly reach 15 m s−1 and 4 

K, respectively.  

 

Figure 3.20 Similar to Fig. 3.11, but for (a) NS5_TOPO and (b) U00_TOPO. 

 

For experiments with the U25 wind profile, the less clear topographic effects for 

thermally induced moist convection over the mountain area (Fig. 3.14d) may be attributed to 

the strong low-level wind shear that leads to more turbulent flows. In Fig 3.21a, which shows 

the time-height cross section of the error and convective clouds in U25_TOPO, the error grows 

(a) NS5_TOPO (b) U00_TOPO
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rapidly before the θ anomaly reaches a larger level (e.g., 4 K), implying that diabatic heating 

may not be the main reason for the initial error growth in U25_TOPO. Instead, the error growth 

in U25_TOPO may be triggered by the turbulent flow due to the strong wind speed shear near 

the surface. The strong wind speed shear results in eddies over the x-z cross section on the lee 

(i.e., east) side of the mountain. For example, at around x=75 below 1-km height in Fig. 3.21b, 

the wind vectors show the pattern of a clockwise rotation. Similar eddies patterns at around 

x=70~100 over the mountain area are also seen at other times during the CI in U25_TOPO 

(figure not shown). These eddies may play a role in mixing the low-level air with the 

environment and make the environment of convection development greatly different from 

other experiments in which similar eddies are absent (c.f. Figs. 3.17-3.19). In U25_TOPO, the 

error grows more rapidly before the convection development than the errors in other 

experiments. For example, the error in Fig. 3.21a at around 5-km height grows to over 0.001 

J kg−1 almost one hour before the convective cloud grows to the same height; the error even 

grows by an order of magnitude to 0.01 J kg−1 at the time before the convective cloud reaches 

the same height at 0930 LT. This feature is distinct from the error growth dynamics in other 

experiments (c.f. Figs. 3.11, 3.20, and 3.21a). The results of U25_TOPO further suggest that 

error growth could be affected by multiple factors besides the mechanisms of triggering 

upward motion, increasing the complexity and difficulty of predicting thunderstorms by 

numerical models. 
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Figure 3.21 The results of U25_TOPO. (a) Similar to Fig. 3.20 but for U25_TOPO. (b) 

Similar to Fig. 3.17 but for U25_TOPO at y=150 (red-dotted lines in Fig. 3.8k) and 0910 

LT. 

3.5 Summary 

In this chapter, we first confirmed the successful simulations of thunderstorms in diurnal 

cycles for experiments with different topography or background winds. Then the convective 

moist difference total energy (CMDTE) between the control and perturbed simulations in 

identical twin experiments is calculated to assess the error growth dynamics associated with 

the simulated thunderstorms. It is shown that the spatial, temporal, and spectral evolutions of 

the error are highly related to the development of moist convection for both experiments with 

and without topography. 

To examine whether mountain topography affects the error growth triggered by moist 

convection at a similar life stage, the error is compared based on the degree of convection 

development. Both the comparison based on the horizontal sizes and evolution in the vertical 

direction of convective clouds suggests the topographic effects on mitigating the error growth 

triggered by thermally induced moist convection. Specifically, the errors are smaller associated 

with the convective clouds over the mountain than over flat areas at their early developing 

stage. 

(a) (b)
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The experiments with different topography settings further reveal the sensitivity of this 

topographic effect to the mountain geometry. The experiments with the mountain higher than 

750 m show the impact of topography on the error growth, while the experiments with 500-m 

height tend to have a similar level of the error as FLAT; and for mountains with the same 

height, the topographic effect of a narrower mountain tends to be clearer. This sensitivity to 

mountain geometry is further investigated by separately comparing the different terms in the 

CMDTE which represent the errors in moisture (DiLH), wind (DiKE), and temperature 

(DiSH) fields. The results show that mountain topography affects the growth of moisture error 

at the early stage of convection development regardless of the mountain height or width. The 

sensitivity of topographic effects on error growth to mountain geometry is mainly shown in 

the errors of wind and temperature.  

Further analysis shows that this sensitivity to mountain geometry might result from 

different dynamical uncertainty in convection initiation (CI) mechanisms over mountains with 

different geometry. Specifically, for a higher mountain that can trigger upslope wind on the 

lee side of the background flow, the deep convection could be initiated by the convergence of 

the thermally driven upslope wind and background winds on the lee side (e.g., on the west side 

of the mountain in the experiments using the wind profile of the sounding data). It is 

considered that this process of forming deep moist convection has less uncertainty and is less 

sensitive to initial differences, resulting in a slower error growth at the early stage of 

convection development. In contrast, this CI mechanism is absent with a lower mountain; thus, 

the lower mountain impacts less on the error growth associated with moist convection. 

Similarly, the sensitivity of topographic effects to mountain width may also come from the 

dynamical processes. The narrower mountain builds narrower convergence and updraft area, 

resulting in less uncertainty for developing deep convection and thus less error growth when 

the convection is initiated. 
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The sensitivity tests turning off the microphysics parameterization support this 

hypothesis of the different dynamical uncertainty of CI over the mountains with different 

heights. When there is no moist process, a lower mountain still shows fewer decreasing effects 

on error growth than the higher one. In other words, the topographic effects on decreasing 

error growth may be less related to the microphysical processes in deep moist convection. 

Instead, the topographic effects are attributed to the impact of topography on the dynamical 

processes of CI.  

The results also indicate the sensitivity of topographic effects to different flow conditions. 

For experiments with different background wind, the similar restraining effect of the 

topography on error growth is also shown in the experiments using a vertically uniform wind 

profile without vertical shear (NS5), while the effect is less clear in the experiments with zero 

background wind (U00) and vertically strong wind speed shear (U25). 

The comparison of the potential temperature (θ) anomaly during the convection 

development in the experiments with different background winds reveals that the diabatic 

heating due to latent heat release may be a key component that triggers rapid error growth. For 

the experiments with mountain topography and zero background (U00_TOPO), the convective 

clouds stay at the same place in absence of the background wind to push them and keep heating 

the air at the same place. The diabatic heating in clouds results in the positive anomaly of 

temperature that provides further buoyancy forcing and facilitates the development of 

convective clouds and the following error growth. The differences in convection development 

(i.e., error) lead to more different diabatic heating and thus more differences in the continuous 

development of convection, resulting in positive feedback of latent heating on error growth. 

This positive feedback is considered to make the topographic effects on error growth unclear 

in the experiments without background wind. 

The processes of the diabatic heating are also considered to be the reason that causes the 
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error to grow so rapidly after the convection continues developing that the topographic effects 

are only shown at the early stage of convection development. The point that diabatic heating 

triggers more error growth is supported by the time-height cross section of the error and θ 

anomaly. The analysis of the time-height cross section shows that when the θ anomaly 

increases to a higher level, the errors will grow more rapidly to a certain magnitude regardless 

of the topography settings. The twin experiments with the initial error added to potential 

temperature also highlight the ability of moist convection at a mature stage on triggering error 

growth. In these experiments, errors grow rapidly during the convection development 

regardless of its slower growth at the first. 

In summary, the error growth triggered by thermally induced moist convection could be 

reduced when the intertwining of the topography and environmental flows leads to a smaller 

uncertainty of CI. In today’s numerical models, the location and intensity of updrafts are still 

hard to be predicted accurately during the CI stage (Zhang et al. 2016). The results in this 

chapter imply that when the topography is sufficient to affect the circulation conditions and 

change the mechanisms of CI to a less uncertain situation, there is a chance to predict CI more 

accurately. However, this topographic effect could also be sensitive to other factors, such as 

the vertical shear of the background wind. At the same time, when convection continues 

growing, the error will also grow more rapidly, and the errors among experiments with 

different topography could become almost the same magnitude within one hour after the rapid 

growth start. 
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Chapter 4 The predictability limit of localized 

thunderstorms and the accompanying 

rainfall 

The error growth properties in chaotic systems (Fig. 1.5) limit the predictability of the 

system. In other words, there exists an upper bound on the length of time for meaningful 

predictions; the bound cannot be broken by further reducing the errors in initial conditions 

(Lorenz 1969). In Chapter 3, we thoroughly investigated the impacts of mountain topography 

on error growth, mainly focusing on the early stage of convection development. We showed 

that topography could reduce the error growth trigged by moist convection because of the 

change in the convection initiation mechanism; this impact is sensitive to the mountain height 

and background wind. However, it is still not evident if there is a limit to predicting thermally 

induced thunderstorms and how topography and environmental flow impact the predictability 

limit. In this chapter, we investigate the predictability limit of thermally induced thunderstorms 

and the error growth dynamics that limit the predictability. Both the impacts of topography 

and background winds are investigated. Two metrics, convective moist difference total energy 

(CMDTE; see Section 2.4.1) and spatial correlation coefficient (SCC; see Section 2.4.2), are 

used to estimate the limit of predicting convective clouds and the accompanying rainfall, 

respectively, from different aspects. The former provides the limit of dynamically predicting 

instantaneous states of thunderstorms themselves at the model grid scale. The latter examines 

the limit of rainfall prediction from the point of view of improving the critical information on 

day-to-day weather forecasts. 
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4.1 The limit of predicting convective clouds 

In this section, we examine if there is a limit to predicting the evolution of thermally 

induced thunderstorms and, if so, investigate possible factors that determine the limit time. 

The predictability limit is examined by conducting additional simulations having different 

amplitudes of the initial errors. The initial errors are also added at later times to assess the 

flow-dependent predictability. The time when initial errors reach a saturation level is usually 

used to indicate the loss of predictability (Dalcher and Kalnay 1987; Selz and Craig 2015; 

Weyn and Durran 2017; Judt et al. 2018; Zhang et al. 2019). The additional simulations are 

designed to examine if using a smaller initial error or initializing the simulation at a later time 

can extend the error saturation time, i.e., the predictability limit or the time of losing the 

capacity to improve predictions. 

First, the comparison between FLAT and TOPO is performed. The control simulations in 

FLAT and TOPO are again used. The additional perturbed simulations are initialized by adding 

random perturbations of water vapor mixing ratio with the amplitudes 0.1 and ten times the 

original one of 0.01 g kg−1 ; i.e., 0.001 (denoted as P01) and 0.1 g kg−1  (as P10), 

respectively. Additional perturbed simulations are also initialized at 0800 (denoted as 08LT) 

and 1000 LT (as 10LT) with the same amplitude as the original one. 

Figure 4.1 provides the evolution of domain-averaged CMDTE between the control 

simulation and these additional perturbed simulations. For all the perturbed simulations, the 

errors grow exponentially first and then reach saturation at a similar level. The time of reaching 

the saturation level is around 1300 LT, regardless of the start time of the simulation, the initial 

error amplitude, and the existence of the mountain or not, indicating the existence of a 

predictability limit. In other words, Fig. 4.1 suggests that reducing the initial error or starting 

the simulation at a later time brings little benefit to the prediction of convective clouds after 
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1300 LT. Meanwhile, topography also impacts little on this predictability limit. 

 

 

Figure 4.1 Time evolution of the domain averaged CMDTE calculated for the perturbed 

simulations with initial error amplitude equal to 0.1 (FLAT_P10 and TOPO_P10), 0.01 

(FLAT and TOPO; the original ones), and 0.001 (FLAT_P01 and TOPO_P01) g kg−1 

started at 0600 LT, and equal to 0.01 g kg−1  but started at 0800 LT (FLAT_08LT and 

TOPO_08LT) and 1000 LT (FLAT_10LT and TOPO_10LT). The results denoted by the 

legend started from “FLAT” (“TOPO”) shared the same control simulation in FLAT (TOPO). 

 

In general, Fig. 4.1 shows typical features of the error growth in a chaotic system with 

limited predictability, i.e., exponential growth and error saturation. The property that smaller 

initial errors lead to more rapid growth is consistent with previous studies (e.g., Zhang et al. 

2003). However, it is worth noting that the results also show a strongly flow-dependent error 

growth rate which varies dramatically within only several hours, different from the typical 

error growth properties at synoptic scales. For instance, Zhang et al. (2019) showed that the 

simple error growth model of Eq. (1.1) with the constant error growth rate is well applicable 
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to describe the error growth at synoptic scales within two weeks. The time scale of the changes 

in the error growth rate at synoptic scales is generally seasonal, i.e., α is different for different 

seasons but can be regarded as a constant within several weeks. In contrast, the results in Fig. 

4.1 show rapid changes in the error growth rate in only several hours. Therefore, although the 

same error amplitude leads to the same error growth rate at synoptic scales according to Eq. 

(1.1) with the constant α, this is not the case at convective scales. The underlying dynamics 

at convective scales is different from that at synoptic scales and is variable quickly in time, 

and therefore the simple error growth model with constant α  may not be used for the 

convective-scale phenomena. As a result, the same error amplitude at different times does not 

necessarily lead to the same error growth. The growth of the error in FLAT_P01, for example, 

is more rapid than that in TOPO_P01 when they reach the same amplitude of, e.g., 10−2. 

Compared with TOPO_P01, the error in FLAT_P01 reaches 10−2 at a later time when the 

underlying dynamics might become more unstable with more vigorous convective activity; 

thus, the error grows more rapidly. 

Figure 4.1 demonstrates the limit of better predicting thermally induced thunderstorms 

before their initiation. The simulations started at later times also have error saturating at 1300 

LT, resulting in an even shorter time range in which predictions could be improved. The only 

exception to the error saturation time is the result of TOPO_10LT. The error of TOPO_10LT 

is smaller than all others in Fig. 4.1 until around 1500 LT, suggesting a later saturation time. 

Quantitatively speaking, at 1300 LT, for example, the absolute magnitude of the domain-

averaged CMDTE in TOPO_10LT is around 80 % of the error in TOPO_P01, which is 

initialized at an earlier time (0600 LT) but with only 10 % of the initial error amplitude 

compared with TOPO_10LT. The later error saturation time in TOPO_10LT might be related 

to the already initiated convective clouds in TOPO at 1000 LT (see Figs. 3.2g-l). It is implied 

that the predictability of thunderstorms might be longer when starting the prediction after 
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convection initiation, highlighting the difficulty of predicting thunderstorms before they occur. 

 

 

Figure 4.2 Similar to Fig. 4.1 but for the perturbed simulations with initial error amplitude 

of the original ones and equal to 0.001 g kg−1 (denoted by “_P01”) for the experiments 

with (a) different topography and (b) different background winds. 

 

After confirming the existence of the predictability limit of thermally induced localized 

thunderstorms, we further assess the impact of mountain geometry and background wind on 

this predictability limit. The experiments with lower mountain height (H500) and different 

background winds (U00 and U25) are used, and the additional perturbed simulations initialized 

with 0.1 times the error magnitude (P01) are conducted. In the experiments with the original 

wind profile from the sounding data (Fig. 4.2a), errors growing from different initial 

amplitudes saturate at a similar time regardless of the topography settings. On the other hand, 

for the experiments with different background winds and no mountain topography (Fig. 4.2b), 

the error saturation time is characterized by the conditions of background winds. Specifically, 

the time when the initial errors of different amplitudes reach the same level implies the loss of 

predictability, i.e., reducing initial error cannot improve the prediction accuracy after that time. 

This time of predictability limit varies among the experiments with different background 

winds. In U25_FLAT, the saturation time is later than that in U00_FLAT, implying a longer 
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predictable range during which there is potential to improve the prediction. The result of 

U25_FLAT is roughly consistent with Weyn and Durran (2017), who showed that the 

mesoscale convective systems under stronger vertical wind shear could be more predictable 

than those in environments with weaker shear. Overall, Fig. 4.2 suggests that topography 

impacts little on the timing of losing predictability for thermally induced thunderstorms. In 

contrast, the predictability limit of thunderstorms differs under different environmental flows. 

To further assess the processes that result in the different sensitivity of predictability to 

topography and environmental flow shown in Fig. 4.2, we examine the evolution of convective 

activity, represented by the cloud grid ratio (CGR), together with the error growth and the error 

growth rate λ  (see Section 2.4.1). Since we already confirmed the existence of the 

predictability limit by using different perturbed simulations in Figs. 4.1 and 4.2, here we only 

compare the errors from the perturbed simulations started at 0600 LT with the initial error 

amplitude of 0.01 g kg−1 (i.e., the original one used in Chapter 3).  

Figure 4.3 links the time of predictability limit with the convective activity. For 

experiments with the original wind profile but different topography (Fig. 4.3a), the convective 

activity reaches a maximum level at a similar time; the error growth of these experiments also 

slows down and reaches saturation at the same time. The error growth rate (λ) converges to a 

similar value at around 1300 LT for all experiments in Fig. 4.3a despite their differences before 

1200 LT. In comparison, Fig. 4.3b shows that the convective activities in the experiments with 

different background winds reach the maximum at different times. These different times of the 

maximum convective activity are considered to indicate the time of the predictability limit. 

The evolution of convective activity in Fig. 4.3, represented by the domain-averaged 

CGR, is determined by the overall convective activity over the computational domain. Figure 

4.3a suggests that the mountain topography used here, which only partially occupies the 

domain, affects little on this overall convective activity after 1100 LT. Consequently, the 
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experiments with different topography in Fig. 4.3a have a similar time of the maximum 

convective activity. The similar time of maximum convective activity then leads to a similar 

time of predictability limit. For the same reason, because environmental flows could largely 

impact convection development (Muller 2013; Fu and Guo 2012), the experiments with 

different background winds show various maximum convective activity times, resulting in 

different times of predictability limit (Fig. 4.3b). In addition, the experiment with and without 

topography in Fig. 4.3b show much less difference for both the times of maximum convective 

activity and the predictability limit compared with the differences among the experiments with 

different background winds, further emphasizing the impact of environmental flows on the 

predictability limit is more distinguished than that of topography. 

 

 

Figure 4.3 Time evolution of the CGR in the control simulation (upper), the CMDTE (solid 

curves in the bottom panel, left axis), and the error growth rate (dotted curves in the bottom 

panel, right axis) of the experiments with different (a) topography and (b) background winds. 

The TOPO and FLAT in (a) and (b) are exactly the same. 
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Overall, Fig. 4.3 suggests that the time of the maximum convective activity determines 

the time of losing predictability. Because environmental flows have greater effects on 

convection development, they impact the predictability limit time more than the mountain 

topography does. Figure 4.3 also highlights the feature of the strongly flow-dependent 

predictability at convective scales. In the case of thermally induced thunderstorms, the error 

growth rate (see dotted curves in Fig. 4.3) could change quickly with time as the convective 

activity becomes more vigorous in a few hours. As a result, errors grow even more rapidly 

towards the noon time and reach to saturation levels at the same time after the convective 

activity becomes the maximum. This error growth properties limit the space for improving the 

prediction afternoon even with a smaller initial error or starting the simulations at later times 

(Fig. 4.1). 

4.2 The predictability limit of spatial rainfall pattern 

Although temperature and wind are important atmospheric variables for evaluating the 

accuracy of NWPs, rainfall information is regarded as a combined result of dynamical and 

microphysical processes in the atmosphere. It is essential to evaluate the rainfall prediction to 

assess the ability of NWP. In addition, rainfall products are crucial to people’s daily lives. Thus, 

from the viewpoint of providing better NWP, evaluating the limit of predicting rainfall is 

necessary. Here we focus on the rainfall patterns by using the spatial correlation coefficient 

(SCC; see Section 2.4.2) between the rainfalls of control and perturbed simulations to examine 

if the predictability of the rainfall brought by thunderstorms is also limited. The impacts of 

topography and environment flows are also assessed. As a reference of the rainfall pattern in 

each experiment, Fig. 4.4 provides the horizontal distribution of 12-h accumulated rainfall in 

the experiments compared in this section. Please also refer to Fig. 3.3 for 6-h accumulated 

rainfall in FLAT and TOPO. 
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Figure 4.4 The 12-h accumulated rainfall (from 0700 LT) of the control (color shaded) and 

perturbed (black contour, 10mm) simulations in (a) FLAT, (b) H500, (c) V05, (d) TOPO, (e) 

V20, (f) NS5_FLAT, (g) NS5_TOPO, (h) U00_FLAT, and (i) U00_TOPO. 

 

First, we compare the results of the experiments with different topography under the 

original wind profile from the sounding data. For the sake of robustness, for each experiment, 

four additional perturbed simulations against the control simulation were conducted by adding 

perturbations with the amplitude of 0.01 g kg−1 at 0600 LT (the same as the original one) 

using different random seeds. Namely, there are five perturbed simulations with the same start 

time and the amplitude of initial error in each experiment. The SCC scores are calculated 

separately between the control simulation and these five perturbed simulations.  

For the hourly rainfall, which is the rainfall during the next one hour of the time depicted 

in Fig. 4.5a, the SCC scores decrease rapidly after 1100 LT, regardless of the topography 

settings. In the afternoon, the SCCs in all the experiments fluctuate around low values between 

0 and 0.4, suggesting that there is no forecasting skill in the afternoon for all the experiments. 
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Figure 4.5a suggests that topography might also have little impact on the predictability limit 

of hourly rainfall. In addition, most experiments have SCC values dropping below 0.4 at 

around 1300 LT, corresponding to the error saturation time of CMDTE, which implies that the 

predictability limit time of hourly rainfall is similar to the limit of predicting convective clouds. 

In other words, it is also difficult to have confident hourly rainfall prediction for thunderstorms 

after the convective activity reaches maximum. 

 

Figure 4.5 The SCCs between control and perturbed simulations of (a), (b) hourly rainfall 

and (c), (d) rainfall accumulated from 0700 LT for experiments with different (a), (c) 

topography and (b), (d) background winds. The SCCs are calculated every ten minutes. In 

(a) and (b), the x-axis shows the start time of the hourly rainfall (i.e., rainfall during 0700-

0800 LT, 0710-0810 LT, etc.). The SCCs depicted at x=7, for example, are the scores of the 

hourly rainfall in 0700-0800 LT. In (c) and (d), the SCCs are depicted for the rainfall during 

0700-0710, 0700-0720, etc. The SCCs at x=1, for example, are the scores of rainfall 

accumulated from 0700 LT for one hour (i.e., 0700-0800 LT). 
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For the experiments with different background winds, no additional perturbed simulation 

is performed, and the SCCs are calculated between the control and the original perturbed 

simulations. In spite of that, the hourly rainfall SCCs of the experiments with different 

background winds (Fig. 4.5b) seem to suggest similar properties of the predictability limit. 

The SCCs decrease rapidly during 1000 to 1300 LT and eventually fluctuate between values 

of 0 and 0.3. Meanwhile, there are more evident differences in the scores among the 

experiments with different background winds than among the experiments with different 

topography settings. For example, TOPO and FLAT have similar SCCs until around 1200 LT, 

while the SCCs between TOPO and NS5_TOPO (or U00_TOPO) quickly depart after 1000 

LT. The results in Fig. 4.5a and 4.5b are consistent with the error growth properties shown by 

CMDTE (Fig. 4.3), indicating that the background wind has a greater impact on the 

predictability limit than topography does. 

On the other hand, results show that topography has a greater impact on the accumulated 

rainfall over several hours. As shown in Fig. 4.5c, FLAT has notably lower SCCs than all the 

experiments with mountain topography for the rainfall accumulated for time periods longer 

than four hours. In the afternoon, the SCCs of the accumulated rainfall differ distinctly among 

different experiments, unlike the SCCs of hourly rainfall (c.f. Figs. 4.5a, b). Among the 

experiments in Fig. 4.5c, V20 shows the highest scores when the accumulation period is longer 

than 6 hours. Even in the lower mountain case, H500, which showed smaller topographic 

effects on the error growth in Chapter 3, the SCC scores are higher than those in FLAT 

throughout the accumulated period. 

Such topographic effects are also examined for the experiments with different 

background winds (Fig. 4.5d). Unlike the comparison in terms of hourly rainfall or CMDTE 

(which suggests that background wind has a greater impact than topography), in Fig. 4.5d, the 

experiments with topography have higher SCC scores than those without topography. 
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Meanwhile, the differences in the SCC scores between U00_FLAT and U00_TOPO seem to 

be smaller than those between FLAT and TOPO or between NS5_FLAT and NS5_TOPO. In 

other words, Fig. 4.5d suggests a clear impact of topography on the several-hour accumulation 

rainfall prediction; at the same time, the degree of this topographic effect is also sensitive to 

environmental flows, similar to the conclusion in Chapter 3. 

Overall, Fig. 4.5 shows the limit of improving hourly rainfall prediction in the afternoon, 

while the accumulated rainfall for several hours might be better predicted with the existence 

of mountain topography. There are two possible reasons for the obvious topographic effect on 

the predictability of the several-hour accumulation rainfall.  

One is because the experiments with topography do have higher rainfall scores at the 

early stage of convection development regardless of the mountain geometry (see 0700-1100 

LT in Fig. 4.5a). The topographic effects on the error growth of moisture are evident regardless 

of the mountain geometry (see Figs. 3.12 and 3.13 and their discussion in Chapter 3), leading 

to fewer errors of rainfall distribution in all the experiments with mountain topography. In the 

morning, convective clouds developed vigorously over the mountain area and generated heavy 

rainfall having a similar spatial pattern between the control and perturbed simulations (see 

Figs. 3.3 and 4.4). Therefore, when accumulating the rainfall until the afternoon, the similar 

spatial pattern of rainfall over the mountain area keeps the SCC scores higher in the 

experiments with topography than without topography. 

The other reason is the constraint of the mountain on the domain-scale rainfall 

distribution. While the exact location and structure of individual convective clouds are almost 

unpredictable in the afternoon, the convective clouds in the experiments with topography 

overall develop only outside the mountain area in the afternoon (Fig. 3.2j). Thus, the large-

scale distribution of rainfall could be restrained by the mountain. In other words, topography 

impacts the predictability of rainfall at the domain scale. The accumulation of rainfall smooths 
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out the smaller-scale patterns; therefore, the impact of topography clearly appears. 

 

 

Figure 4.6 The SCCs of the hourly rainfall at 0900 (circles), 1100 (triangles), 1300 (plus 

sign), and 1500 (stars) LT calculated from the rainfall between control and perturbed 

simulations whose smaller scale characteristic below a specific scale (depicted by x-axis) is 

filtered.  

 

The impact of topography on the domain-scale rainfall prediction can be shown by the 

SCC of low-pass filtered rainfall distribution (Fig. 4.6, see Section 2.4.2 for the detail of the 

calculation). In Fig. 4.6, the SCC scores at the leftmost point on the x-axis (1 km, the model 

grid spacing) are the same as those without filtering (Figs. 4.5a, b). The hourly rainfall scores 

are similar at different scales in the morning. In the afternoon, the rainfall scores at smaller 

scales decrease greatly while those at the larger scales remain exceeding about 0.4. For 

example, at 1500 LT, while all experiments have SCCs lower than 0.4 at the 1-km scale, only 

the experiments with topography have SCCs higher than 0.6 at scales larger than 80 km. The 

results in Fig. 4.6 are similar to those in Bachmann et al. (2019), who indicated the impact of 

topography on the predictability limit of rainfall by using scale-dependent rainfall scores. For 
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example, if the SCC value of 0.8 is assumed to be a reliable prediction threshold, the hourly 

rainfall at this reliable threshold at 1300 LT is seen at a scale of 100 km in FLAT while is found 

at a scale of about 25 km in TOPO, suggesting a better prediction at finer scales in TOPO. 

4.3 Summary and discussion 

In this chapter, we investigated predictability limit by using identical twin experiments 

with different topography and environmental flow conditions. Firstly, the predictability limit 

of thermally induced localized thunderstorms is examined by comparing the convective moist 

difference total energy (CMDTE). Secondly, we assessed the predictability limit of the 

accompanying rainfall distribution by using the spatial correlation coefficient (SCC). 

The CMDTE of perturbed simulations with different initial error amplitude and start time 

are first compared. The results show that there is a clear predictability limit at which reducing 

initial error or starting the simulation later does not extend the time of the error saturation. The 

error growth rate is strongly flow-dependent and changes dramatically with time, which can 

be linked to the activity of moist convection. The error growth becomes more rapid with the 

convection development, and in the end, the errors saturate at the time of maximum convective 

activity. Different from synoptic scales, in the present case of thermally induced thunderstorms, 

the underlying dynamics change so rapidly that slower error growth at first does not 

necessarily result in longer predictability. Thus, because of the little impacts on the maximum 

convective activity, mountain topography has little impact on the predictability limit even if 

the error growth is mitigated at the early stage of convection development. 

On the other hand, the experiments with different background winds show different error 

saturation times, implying the changes in predictability limit. In these experiments, the error 

saturation time also coincides with the maximum convective activity time, which is different 

among the experiments with different background winds. It is considered that the maximum 
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convective activity time determines the limit of predicting thermally induced thunderstorms 

in a diurnal cycle. Thus, the environmental flow, which affects the convection development 

and the time of the maximum convective activity, affects the time of losing predictability. 

Then, the predictability of rainfall is assessed by using SCCs of rainfall distribution. For 

hourly rainfall, the scores dropped rapidly and ended in no forecasting skill in the afternoon 

regardless of topography settings. Similar to the comparison using CMDTE, the 

environmental flow shows a greater impact on the hourly rainfall predictions than the 

topography does. On the other hand, the scores of several-hours accumulation rainfall show 

more substantial effects from the mountain topography. For experiments with original 

sounding wind profile, all the experiments with topography have higher scores of 12-h 

accumulated rainfall than the cases without topography. In addition, for experiments with 

different background winds, the impact of the topography on several-hour accumulated 

rainfall is greater than that of environmental flow. This topographic effect on the accumulated 

rainfall prediction might come from the impact of the mountain on the error of the moisture 

field and the rainfall distribution at the domain scale. 

The score of hourly rainfall and the evolution of CMDTE reveal the difficulty of 

dynamically predicting the instantaneous location and intensity of moist convection after it 

develops to a mature stage. The mountain topography may affect little on this limit. On the 

other hand, the prediction of long-term (3–12 h) accumulated rainfall distribution seems to be 

affected more by mountain topography. The clearer topographic effects on accumulation 

rainfall imply that we may be more confident in predicting accumulated rainfall over the 

mountainous areas. 

Topography was considered to enhance the atmospheric predictability (Vukicevic and 

Errico 1990; Boer 1994; Kalnay 2002). For mesoscale phenomena, Carbone et al. 2002 

pointed out that convective systems tend to have larger characteristic scales under topographic 
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forcing and expected that the rainfall produced by those convective systems might have a 

longer predictable time length. The results of this study imply that the location, intensity, and 

detailed internal structure of convective clouds are still difficult to predict at the 1-km scale 

even if convection organizes to a larger scale and exists for a longer time. Nevertheless, it may 

be easier to predict the rainfall brought by large-organized convective systems over 

mountainous areas at meso-β scales, especially for rainfall accumulated for several hours. 

Meanwhile, we must notice that even with better initial conditions or model configuration, 

the chaotic nature of thunderstorms might limit the space for improving instantaneous 

deterministic dynamical predictions. Instead of further improving deterministic dynamical 

predictions, we can put more efforts into developing ensemble prediction systems that better 

represent the uncertainty of convection development. The efforts could also be put to 

statistically analyze the environmental conditions favored by deep moist convection to guide 

the occurrence of thunderstorms (e.g., Lin et al. 2012; Chen et al. 2016; Chang et al. 2017) or 

even to indicate the flow-dependent predictability of a specific day. Further studies with more 

realistic model configurations would be desired for providing insights into the real world's 

daily weather prediction.
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Chapter 5 Conclusions 

The prediction of high-impact weather phenomena such as thunderstorms is essential and 

affects people’s decisions on their daily lives and commercial activities. While the numerical 

weather prediction (NWP) models are continuously being improved, predicting thermally 

induced localized thunderstorms in warm seasons is still a challenging task today. 

Thunderstorms are considered to have a predictable time length short of a few hours, especially 

for the localized ones whose characteristic scale is relatively small. In addition to improving 

the forecast skills of the NWP models, it is also important to understand the limit of 

predictability to develop more efficient strategies for weather prediction. Although previous 

studies have indicated the low predictability of thunderstorms, relatively less literature has 

focused on the thermally induced thunderstorms characterized by diurnal cycles. The impact 

of topography on predictability is also not well elaborated. Further studies are still needed to 

advance the understanding of predictability at convective scales. 

This study investigated the impact of topography and environmental flow conditions on 

both error growth and predictability limit of thermally induced localized thunderstorms. The 

simulations of thunderstorms were conducted with the Weather Research and Forecast (WRF) 

model in an idealized framework under different conditions of topography and environmental 

flow. Identical twin experiments under a perfect model assumption were performed using the 

simulations of thunderstorms to assess the error growth dynamics and predictability. 

In Chapter 3, the simulations of thunderstorms in all experiments exhibited clear diurnal 

cycles of domain-average rainfall and surface-air temperature. Meanwhile, convective clouds 

still indicate a variety in the distribution, horizontal extents, and orientations in different 

experiments. Then, we used the twin experiments to investigate the properties of the error 



Chapter 5 Conclusions 98 

Pin-Ying Wu 

growth triggered by moist convection. The experiments showed that the error grows rapidly 

with the development of moist convection. Thus, the spatial distribution, temporal evolution, 

and spectral properties of the error reflect the features of the simulated moist convection. This 

is consistent with previous studies (e.g., Zhang et al. 2003; Zhang et al. 2016). 

Previous studies paid little attention to the impact of topography on the error growth 

associated with moist convection. Here we compared the error in the twin experiments with 

and without mountain topography to clarify the topographic effects on error growth for the 

first time. We showed that mountain topography could reduce the error growth triggered by 

moist convection during the convection initiation. This topographic effect is found to be 

sensitive to mountain geometry and background flow conditions. Further analysis revealed 

that the topographic effect on error growth could be attributed to less uncertainty in the 

mechanisms of convection initiation. Specifically, the convergence of the background wind 

and thermally driven upslope wind facilitates upward motion in a fixed area, resulting in less 

uncertainty of forming deep convection. Therefore, the effect of topography on reducing error 

growth only acts under specific conditions when the interaction of the background flow and 

heated mountain leads to the less uncertain situation of convection initiation and development.  

The comparison of the error on different fields of moisture, wind, and temperature also 

revealed that different atmospheric variables respond differently to the topographic effect on 

error growth. For the error on the moisture field, topography showed impacts at the early stage 

of convection development regardless of the mountain geometry or flow conditions. In 

contrast, the growth of the error on wind fields could only be reduced when the mountain 

geometry is sufficient to drive the circulation for the convection initiation. This finding is 

expected to provide a new insight into NWPs when dealing with the error in different terms of 

atmospheric variables over mountainous areas. For example, over mountainous areas, the wind 

fields in models might need to be updated by assimilating observations more frequently than 
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the moisture field. 

The impact of mountain topography on the error growth becomes less clear at a mature 

stage of convection development when the diabatic heating from latent heat release in clouds 

further enhances the convective activity and leads to more error growth. The rapid error growth 

in all experiments reaches saturation after a few hours of the convection development, 

indicating a limit of predictability. The predictability of thunderstorms is further investigated 

in Chapter 4.  

The predictability of thermally induced localized thunderstorms characterized by diurnal 

cycles received less attention in previous studies. Our results revealed that the error reaches 

saturation after the convective activity reaches a maximum, indicating the failure of predicting 

thunderstorms at this saturation time, regardless of initial error amplitude or the start time of 

the simulation. This result also implies that the predictability limit of the thunderstorms in a 

diurnal cycle critically depends on the time of maximum convective activity and cannot be 

extended by using a smaller initial error or starting the prediction at a later time. Because 

relatively little literature has focused on the predictability of thunderstorms in a diurnal cycle, 

our new findings advance the knowledge of predicting thermally induced thunderstorms which 

are commonly seen in warm seasons. In particular, starting the numerical prediction at a later 

time may not be able to improve the deterministic forecast of thermally induced thunderstorms 

beyond the time of its maximum activity. In addition, the result showed that environmental 

flow has greater impacts on this predictability limit determined by the time of maximum 

convective activity than the mountain topography does, because environmental flow affects 

the properties of convection development and thus the maximum convective activity time. 

Then, from the viewpoint of providing critical information on day-to-day forecasts, the 

comparison of spatial rainfall patterns revealed the different impacts of topography on 

predicting hourly rainfall and accumulated rainfall for several hours over mountain areas. The 
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results showed the failure of hourly rainfall prediction quickly in a few hours regardless of the 

topography conditions. On the other hand, the prediction of the rainfall accumulated for 

several hours showed clearer impacts from mountain topography. The several-hour 

accumulated rainfall has higher scores in the experiments with than without mountain 

topography regardless of environmental flows. The higher scores of the accumulated rainfall 

with mountain topography are a result of the constraint from the mountain on the domain scale 

rainfall distribution. The findings here enriched the understanding of the rainfall prediction 

over mountainous areas. Although previous studies indicated that topography could increase 

the predictability of convective rainfall (Bachmann et al. 2019, 2020), our results suggested 

that this advantage may not be able to apply to all aspects of rainfall prediction. The 

predictability of hourly rainfall at model grid-scale (1 km in this study) may not be benefited 

from the existence of mountain topography because of the failure of models to predict the 

exact location and strength of thunderstorms. 

In general, error growth and predictability are highly related to the properties of moist 

convection in interest. Thus, the factors that change the mechanisms during the convection 

initiation and development could also result in different error growth and predictability. 

Topography mitigates the error growth during the convection initiation when the topography 

can trigger convection in a way with less uncertainty. On the other hand, environmental flows 

impact the duration of the convection life cycles, which leads to different limit times of 

predictability. While topography impacts less on the instantaneous prediction of thunderstorms 

after moist convection grows to a mature stage, its restraint on moisture field and large-scale 

rainfall distribution leads to a more reliable prediction of several-hours accumulated rainfall. 

These findings advanced the understanding of the predictability at convective scales and are 

expected to provide insight into the interpretation of predictions of thunderstorms in NWP 

models. 
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