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Abstract. Recently, the Nash-style convex integration has been becoming the main scheme

for the mathematical study of turbulence, and the main building block of it has been either

Beltrami flow (finite mode) or Mikado flow (compactly supported in the physical side). On the

other hand, in physics, it is observed that turbulence is composed of a hierarchy of scale-by-

scale vortex stretching. Thus our mathematical motivation in this study is to find another type

of building blocks accompanied by vortex stretching and scale locality (possibly finitely many

Fourier modes). In this paper, we give a complete list of solutions to the 3D Euler equations

with finitely many Fourier modes, which is an extension of the corresponding 2D result by

Elgindi-Hu-Šverák (2017). In particular, we show that there are no 3D Euler flows with finitely

many Fourier modes, except for stationary 2D-like flows and Beltrami flows. We also discuss

the case when viscosity and Coriolis effect are present.

1. Introduction

Recent DNS [5, 6, 12, 13] of turbulence at sufficiently high Reynolds numbers have reported

that there exists a hierarchy of vortex stretching motions in developed turbulence. In partic-

ular, Goto-Saito-Kawahara [6] clearly observed that turbulence at sufficiently high Reynolds

numbers in a periodic cube is composed of a self-similar hierarchy of antiparallel pairs of vortex

tubes, and it is sustained by creation of smaller-scale vortices due to stretching in larger-scale

strain fields. They also observed that vortices at each hierarchical level are most likely to be

stretched in strain fields around two to eight times larger vortices (we call it scale locality).

This observation is further investigated by Y-Goto-Tsuruhashi [15] (see also [14]). Thus we

could conclude physically that local-scale energy transfer is mainly induced by vortex stretch-

ing, and in mathematics, the following question naturally arises (see also [8, 9, 10] for the

related results):

Can we construct a solution (locally in scale) to the incompressible Euler

equations accompanied by vortex stretching, as a concrete picture of the

hierarchy of turbulence?

Nowadays, the Nash-style convex integration has been becoming the main scheme for the

mathematical study of turbulence. This scheme was first initiated by De Lellis and Székelydihi Jr.

[3]. They showed the existence of a C0+
x,t weak solution of the 3D Euler equations which is non-

conservative, following the Nash scheme with Beltrami building blocks. After several results

appears, Isett [7] showed existence of dissipative weak solutions in the regularity class C
1/3−
x,t

by using the Mikado flows, as building blocks. Thus in the Nash scheme, Beltrami flows and
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Mikado flows (both are stationary Euler flows) are the elementary pieces in multi-scale ideal

turbulence. More precisely, in the Nash scheme, we need to construct a sequence of triplets

(vq, pq, R̊q)
∞
q=1 solving the following Euler-Reynolds system (see[2]):

∂tvq +∇ · (vq ⊗ vq) +∇pq = ∇ · R̊q

∇ · vq = 0.

And then we set the perturbation wq := vq − vq−1 as the following:

wq(x, t) =
∑
k

ak,q(x, t)ϕk,q(x, t)Bk,qe
iλqk·x,

where ak,q is the amplitude, ϕk,q is a phase function and Bk,qe
iλqk·x is a complex Beltrami mode

at frequency λq (in this case, this is the building block). Thus in this Nash scheme, we need to

choose appropriate ak,q and ϕk,q in order to have R̊q → 0 in a weak sense.

Clearly, the antiparallel pair of vortex tubes with stretching motion (locally in scale) is neither

Beltrami flow nor Mikado flow, thus, in order to construct a concrete picture of turbulence by

using this Nash scheme, we need to solve the following question:

Can we find another type of Euler flows as building blocks (possibly finitely

many Fourier modes), to construct the dissipative Euler solutions?

In this paper, we give a partial answer to it, namely, we show that, at least, finite-mode

(stationary or non-stationary) Euler flow does not exist except for stationary 2D-like flows and

Beltrami flows. This means that we cannot construct any Euler flow accompanied by vortex

stretching supported on finitely many Fourier modes. In what follows, let us formulate this

partial answer more precisely.

The incompressible Euler equations on R3 are expressed as follows:

∂tu+ (u · ∇)u+∇p = 0, ∇ · u = 0, (1.1)

and we characterize (real-valued) solutions of the form

u(t,x) =
∑
n∈S

un(t)e
in·x, p(t,x) =

∑
n∈Sp

pn(t)e
in·x;

un : I → C3, pn : I → C, I ⊂ R: open interval, S, Sp: finite subsets of R3.

Note that the corresponding problem in 2D was already answered by Elgindi-Hu-Šverák [4] (see

Theorem 1.3 below). We do not restrict the frequency to a lattice, so the solutions we consider

are in general spatially quasi-periodic.

The real-valuedness implies that S should be symmetric (i.e., −S = S) and u−n = un for

n ∈ S, and similarly for Sp and {pn}n∈Sp . Since the zero mode of p is not relevant, we may

assume 0 ̸∈ Sp. If 0 ∈ S, we see from the equation that the zero mode (or the spatial mean) is

independent of t; u0(t) ≡ u0. Then, (v, q) defined by

v(t,x) = u
(
t,x+ tu0

)
− u0 =

∑
n∈S\{0}

un(t)e
itn·u0ein·x,

q(t,x) = p
(
t,x+ tu0

)
=
∑
n∈Sp

pn(t)e
itn·u0ein·x
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is a mean-zero solution of (1.1) with the same Fourier support. Conversely, for any given mean-

zero solution (v, q) and any u0 ∈ R3, we obtain a solution (u, p) with u0(t) ≡ u0 by inverting

the above transformation. Therefore, it suffices to characterize mean-zero solutions supported

on finitely many Fourier modes.

Definition 1.1. LetH denote the set of all real-valued divergence-free vector fields with finitely

many Fourier modes; that is,

H :=

{
u(x) =

∑
n∈S

une
in·x :

S ⊂ R3 \ {0} finite and symmetric,

un ∈ C3 \ {0}, u−n = un, n · un = 0 (∀n ∈ S)

}
.

Here and in the sequel, we also denote by “·” the dot product for vectors in C3 (it is C-
bilinear and different from the inner product of C3 which is sesquilinear). We also define the

corresponding set HI of space-time functions on I × R3, for an open interval I ⊂ R, by

HI :=

u(t,x) =
∑
n∈S

un(t)e
in·x :

S ⊂ R3 \ {0} finite and symmetric,

un : I → C3, un ̸≡ 0,

u−n = un, n · un = 0 (∀t ∈ I, ∀n ∈ S)

 .

The set S is called the Fourier support of u.

As in the definition of H and HI , by writing u(x) =
∑

n∈S une
in·x we normally assume that

the coefficient vectors are nonzero for n ∈ S, and we use the convention that un = 0 if n ̸∈ S.

For u(t,x) =
∑

n∈S un(t)e
in·x ∈ HI , we see that

(u · ∇)u(x) =
i

2

∑
n∈S+S
n̸=0

ein·x
∑

n1,n2∈S
n1+n2=n

[
(un1 · n2)un2 + (un2 · n1)un1

]
.

(Note that the zero mode does not appear due to the divergence-free condition.) Hence, if

(u, p) is a solution to (1.1) on I ×R3, then the pressure p has the expression p =
∑

n∈Sp
pne

in·x

with Sp ⊂ S̃ := S ∪
[
(S + S) \ {0}

]
and

∂tun +
i

2

∑
n1,n2∈S
n1+n2=n

[
(un1 · n2)un2 + (un2 · n1)un1

]
= −ipnn, t ∈ I, n ∈ S̃.

For n ∈ R3 \ {0}, let P̂n denote the orthogonal projection in C3 onto the two-dimensional

subspace {v ∈ C3 : n · v = 0}, so that P̂n is the representation of the Helmholtz projection on

the Fourier side. Since P̂nun = un and P̂nn = 0, it holds that

∂tun +
i

2
P̂n

∑
n1,n2∈S
n1+n2=n

[
(un1 · n2)un2 + (un2 · n1)un1

]
= 0, (1.2)

i

2

(
Id− P̂n

) ∑
n1,n2∈S
n1+n2=n

[
(un1 · n2)un2 + (un2 · n1)un1

]
= −ipnn, (1.3)

t ∈ I, n ∈ S̃.
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Once we obtain a solution {un(t)}n∈S of (1.2), {pn(t)}n∈Sp is determined by (1.3); in fact, it is

given by

pn(t) = − 1

|n|2
∑

n1,n2∈S
n1+n2=n

(un1(t) · n2)(un2(t) · n1), t ∈ I, n ∈ S̃.

Hence, it suffices to give a characterization of u ∈ HI for which {un(t)}n∈S solves the ODE

system (1.2). From now on, we consider the equation (1.2) instead of (1.1). As observed in the

2D case [4], a vector field u ∈ HI solving (1.2) has the Fourier coefficient vectors {un(t)} each

of which has components real analytic in time. In particular, the set

I0 := {t ∈ I : un(t) = 0 for some n ∈ S} (1.4)

cannot have an accumulation point in I. Note that the Fourier support of u(t, ·) coincides with
the set S if t ∈ I \ I0.
Before stating our result, let us recall some basic facts on Beltrami flows. We call a

(divergence-free) eigenfield of the curl operator a Beltrami flow; that is, b ∈ H is a Beltrami

flow if

∃λ ∈ C; ∇× b = λb,

where “×” stands for the cross product. A Beltrami flow b(x) is always a stationary solution

to (1.1) with p = −|b|2/2, and also an eigenfield of the Laplace operator ∆ with eigenvalue

−λ2. The following lemma gives a characterization of the Beltrami flows (for the proof, see,

e.g., the argument in [11, Section III]):

Lemma 1.2. A vector field b ∈ H is a Beltrami flow (with eigenvalue λ) if and only if

λ ∈ R \ {0} and the following conditions (i)–(ii) hold:

(i) The Fourier support of b is a subset of the sphere with radius |λ| centered at the origin.

(ii) For each frequency n in the Fourier support of b, the coefficient vector bn at n satisfies

|Rebn| = |Imbn| and Rebn · Imbn = 0. Moreover, (n,Rebn, Imbn) forms a right-

handed (resp. left-handed) system if λ > 0 (resp. λ < 0).

Note that the condition (i) characterizes eigenfields of the Laplacian, and the additional

condition (ii) on the coefficient vectors is needed for a characterization of eigenfields of the curl.

The so-called Arnold-Beltrami-Childress flow (ABC flow)

u(x) =
(
B cosx2 + C sinx3, C cosx3 + A sinx1, A cosx1 +B sinx2

)
, A,B,C ∈ R,

which is also known as a stationary Euler flow, is an example of Beltrami flows. In fact, its

Fourier support is {±(1, 0, 0),±(0, 1, 0),±(0, 0, 1)} and the coefficient vectors are given by

u±(1,0,0)=A
(
0,

±1

2i
,
1

2

)
, u±(0,1,0)=B

(1
2
, 0,

±1

2i

)
, u±(0,0,1)=C

(±1

2i
,
1

2
, 0
)
,

from which we easily see that the above conditions (i), (ii) are satisfied (with λ = +1).

The specific aim of this article is to give the complete list of the vector fields in HI solving

(1.2). Let us recall a characterization of such flows in 2D given in [4]:
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Theorem 1.3 ([4, Theorem 5.1]). If u(t,x) is a (real-valued, mean-zero) solution of 2D in-

compressible Euler equations which is supported on finitely many Fourier modes, then u is

independent of time. Moreover, its Fourier support is either a subset of a circle centered at the

origin, or a line passing through the origin.

It is easy to see that the above necessary condition on the shape of the Fourier support is also

sufficient for a vector field to be a stationary Euler flow. In particular, there is no restriction

on the coefficient vector of each Fourier mode.

The 2D result, Theorem 1.3, was shown by the following steps:

Step 0: Two modes une
in·x, umeim·x do not contribute to the mode n +m through nonlinear

interaction if and only if either n is parallel to m or |n| = |m|.
This can be easily shown by the vorticity representation. (Notice here that the

coefficient vectors un,um are not relevant.)

Step 1: Let Sconv be the convex hull of the Fourier support S of a solution, and assume that

Sconv is not contained in a line. Then, all the vertices of Sconv are located on a circle

centered at the origin and there is no point on the boundary of Sconv other than its

vertices.

This can be verified from Step 0 and the following fact: There is no contribution

from the nonlinear interaction between any vertex of Sconv and its adjacent point in

S on the boundary of Sconv (which may be an adjacent vertex or a point on a side of

Sconv). This is roughly because the mode created by such two points could not be in

S and could not be achieved by any other pairs of two points in S.

Step 2: Any two vertices of Sconv (not necessarily adjacent) create no contribution through

nonlinear interaction.

In 2D this is an immediate consequence of Step 0 and Step 1.

Step 3: There is no point of S in the interior of Sconv. In particular, Step 2 shows that any two

points in S do not interact, and then the solution must be stationary.

This is shown via contradiction argument: If not, then the interior point m ∈ S

which is the “farthest from the origin” would interact with the point n ∈ S which is

one of its “nearest vertices” of Sconv to create nonzero contribution at a point outside S.

Therefore there would be other pair(s) of points in S which cancel it out. However, all

the other possible pairs would have to consist of two vertices of Sconv by the definition

of m, and hence, by Step 2, create no output. We would thus come to a contradiction.

In 3D, the Euler flows with finitely many Fourier modes include at least the following sta-

tionary examples:

• u(x) = (0, u2(x1), u3(x1)), p = 0, where u2, u3 are any functions supported on finitely

many Fourier modes.

• u(x) = (0, 0, u3(x1, x2)), p = 0, where u3 is any function supported on finitely many

Fourier modes.

• 2D flows: u(x) = (u1(x1, x2), u2(x1, x2), 0), p(x) = p(x1, x2), where (u1, u2, p) is a 2D

Euler flow supported on finitely many Fourier modes. (A characterization of such a

flow is given in Theorem 1.3.)

• Beltrami flows.



6 NOBU KISHIMOTO AND TSUYOSHI YONEDA

In a sharp contrast to the 2D case, any condition on the shape of the Fourier support is not

enough by itself for characterization of the whole solutions supported on finitely many Fourier

modes, and an extra condition on the coefficient vectors should be required. Indeed, the Fourier

support of a Beltrami flow is on a sphere centered at the origin (similarly to the circle condition

in 2D), but not all such vector fields (i.e., divergence-free eigenfields of the Laplacian) are

stationary Euler flows.

Now, we state our main result:

Theorem 1.4. u = u(t,x) ∈ HI is a solution of (1.2) on an open interval I ⊂ R if and only

if it is independent of time and satisfies one of the following:

(i) S, the Fourier support of u(x) ∈ H, is a subset of a line passing through the origin.

(ii) S has two linearly independent points and is a subset of a plane P containing the origin.

Moreover, one of the following holds:

(a) u(x) is perpendicular to P everywhere.

(b) u(x) = u∥(x) + u⊥(x)e⊥, where e⊥ denotes (one of) the unit normal vector to P

and u∥ : R3 → R3, u⊥ : R3 → R satisfy the following:

• u∥(x) ∈ H is parallel to P everywhere, and its Fourier support is a subset

of a circle on P (with radius λ > 0) centered at the origin and contains at

least four points.

• u⊥(x) = Q(ω(x)) −
〈
Q(ω)

〉
, where ω(x) is the scalar function defined by

∇×u∥ = λωe⊥, Q is a polynomial with real coefficients, and
〈
Q(ω)

〉
denotes

the zero mode (mean value) of Q(ω(x)).

(iii) S has three linearly independent points and is a subset of a sphere centered at the origin,

and u(x) is a Beltrami flow.

We make some remarks on Theorem 1.4.

Remark 1.5. The flows of type (i) and (ii)-(a) are obtained by rotating those of the form

u(x) = (0, u2(x1), u3(x1)) and (0, 0, u3(x1, x2)), respectively, while rotation of the 2D Euler flow

u(x) = (u1(x1, x2), u2(x1, x2), 0) gives the flow of type (ii)-(b) with Q = 0. Hence, except for the

obvious examples mentioned above, the flow of type (ii)-(b) with Q ̸= 0 is the only possibility

for the Euler flow with finite Fourier support. In particular, it turns out that Beltrami flows

are the only genuinely 3D Euler flows with finitely many Fourier modes.

The flow of type (ii)-(b) with Q ̸= 0 is obtained as a rotation of a two-dimensional and three-

component flow u(x1, x2); the theorem says that the vertical component u3(x1, x2) of such a

solution (with finite Fourier support) must be a polynomial of the vorticity field associated with

the horizontal component (u1(x1, x2), u2(x1, x2)). We also notice that a flow of type (ii)-(b) is

a Beltrami flow if and only if Q(ω) = ±ω.

Remark 1.6. The 2D result (Theorem 1.3) remains true for complex-valued solutions, as men-

tioned in [4]. This is, however, not the case in 3D; at some points of the proof of Theorem 1.4

we will take advantage of real-valuedness in a more crucial way. In fact, the complex-valued

vector field

u(x) =
1

2i

∑
σ∈{±1}

{
σ(1,−1, 0)ei(σ,σ,1)·x + σ(1, 1, 0)ei(σ,−σ,−1)·x

}
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=
(
eix

3

sin(x1+x2)+e−ix3

sin(x1−x2),−eix
3

sin(x1+x2)+e−ix3

sin(x1−x2), 0
)

is a stationary solution to (1.1) with p(x) = cos(2x1)+cos(2x2), and its Fourier support consists

of four points forming a regular tetrahedron, but it is not a Beltrami flow.

Remark 1.7. In the 2D case [4], the characterization given in Theorem 1.3 was used as one

of the key tools to investigate long-time behavior of solutions to partially undamped Navier-

Stokes equations on the 2D torus. With our theorem, part of their result may be extended

to the 3D case, provided that the equation is appropriately modified so that it admits global

strong solutions. We plan to address this problem in a forthcoming paper.

Here are some comments on the proof of Theorem 1.4. In 2D the divergence-free condition

reduces the problem to the scalar equation; while in 3D, two-dimensional degree of freedom still

remains for each Fourier coefficient, which makes the argument substantially more involved. A

basic tool is the characterization of two modes not interacting with each other, which corre-

sponds to Step 0 in the 2D case and will be discussed in Section 2. A straightforward calculation

gives an algebraic description (Lemma 2.1 below), and we also give a geometric interpretation

using a rotation operator (Proposition 2.2 below). The algebraic characterization will be ex-

ploited to treat the planar case (i.e., the situation (ii) in the theorem) in Section 3; the analysis

on the horizontal component u∥ is similar to the proof for the 2D result in [4] based on elemen-

tary convex analysis, while the narrowing-down argument for the vertical component u⊥ seems

new and of its own interest. The main novelty is the reduction to Beltrami flows in the 3D case

(i.e., the situation (iii) in the theorem) to be presented in Section 4, where the geometric char-

acterization of two non-interacting modes will be combined with the Gauss-Bonnet theorem to

play a vital role.

Finally, we point out that our approach remains valid under the presence of viscosity and

Coriolis effect. Although it is not the main goal of this paper, as an interesting generalization of

Theorem 1.4 we will include the precise statement of characterization of finite-mode solutions

in this setting and give a proof in Section 5.

2. Interaction between two modes

In this section, we characterize two Fourier modes which do not interact (i.e., which do not

give contribution through the nonlinear interaction of (1.2)). The characterization to be given

in Lemma 2.1 and Proposition 2.2 will be a basic tool to prove Theorem 1.4. This corresponds

to Step 0 of the proof for the 2D result, but the condition is more complicated.

Lemma 2.1. Let n1,n2 ∈ R3\{0} be two frequencies and assume they are linearly independent.

Let e⊥ be (one of) the unit vector perpendicular to n1 and n2, and define e
∥
n := e⊥× n

|n| for

n ∈ {n1,n2,n1+n2}, so that Ran P̂n = Ce∥n⊕Ce⊥. Let u1,u2 ∈ C3 satisfy u1 ·n1 = u2 ·n2 = 0;

i.e., P̂nj
uj = uj, j = 1, 2, and write uj = u

∥
je

∥
nj + u⊥

j e
⊥. Then, we have

P̂n1+n2

[
(u1 · n2)u2 + (u2 · n1)u1

]
=

(n1×n2) · e⊥

|n1||n2|

{
u
∥
1u

∥
2(|n2|2 − |n1|2)
|n1 + n2|

e
∥
n1+n2

+
[
u
∥
1u

⊥
2 |n2| − u

∥
2u

⊥
1 |n1|

]
e⊥
}
.
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In particular, for linearly independent n1 and n2, the output of the nonlinear interaction in

(1.2) between two modes u1e
in1·x, u2e

in2·x (satisfying u1 · n1 = u2 · n2 = 0) has

• non-zero component parallel to e
∥
n1+n2

if and only if u
∥
1u

∥
2(|n1|2 − |n2|2) ̸= 0,

• non-zero component parallel to e⊥ if and only if u
∥
1u

⊥
2 |n2| ≠ u

∥
2u

⊥
1 |n1|.

Proof. A straightforward calculation using

(e⊥×n1) · n2 = −(e⊥×n2) · n1 = (n1×n2) · e⊥,

(e⊥×nj) ·
(
e⊥×(n1 + n2)

)
= nj · (n1 + n2) (j = 1, 2)

yields that[
(u1 · n2)u2 + (u2 · n1)u1

]
· e∥n1+n2

= u
∥
1u

∥
2

([
(e⊥× n1

|n1|) · n2

][
(e⊥× n2

|n2|) · (e
⊥× n1+n2

|n1+n2|)
]

+
[
(e⊥× n2

|n2|) · n1

][
(e⊥× n1

|n1|) · (e
⊥× n1+n2

|n1+n2|)
])

= u
∥
1u

∥
2

(n1×n2)·e⊥
|n1||n2||n1+n2|

(
|n2|2 − |n1|2

)
,

and that[
(u1 · n2)u2 + (u2 · n1)u1

]
· e⊥ = u

∥
1

[
(e⊥× n1

|n1|) · n2

]
u⊥
2 + u

∥
2

[
(e⊥× n2

|n2|) · n1

]
u⊥
1

= (n1×n2)·e⊥
|n1||n2|

(
u
∥
1u

⊥
2 |n2| − u

∥
2u

⊥
1 |n1|

)
.

The claim follows. □

For ω1,ω2 ∈ S2 with ω2 ̸= ±ω1, let Rω1 7→ω2 be the (unique) rotation on R3 mapping ω1 to

ω2 along the geodesic of S2 connecting these points. In other words, Rω1 7→ω2 is the rotation

around the axis ω1×ω2 by the angle θ ∈ (0, π) with cos θ = ω1 · ω2. Note that Rω1 7→ω2 maps

the tangent plane Tω1S2 isometrically to Tω2S2. We regard Rω1 7→ω2 as the operator on C3 by

letting it act on the real and the imaginary parts respectively.

Proposition 2.2. Let n1,n2 ∈ R3 \ {0} be two frequencies such that n1 ̸= ±n2, and let

u1,u2 ∈ C3 \ {0} satisfy u1 · n1 = u2 · n2 = 0. Then, we have the identity

P̂n1+n2

[
(u1 · n2)u2 + (u2 · n1)u1

]
= 0 (2.1)

if and only if one of the following holds:

(i) n1 and n2 are linearly dependent. (No additional condition is imposed on u1,u2.)

(ii) (i) does not hold, and the real and the imaginary parts of u1,u2 are all perpendicular

to the plane containing n1,n2 and the origin.

(iii) (i), (ii) do not hold, |n1| = |n2|, and moreover u2 = γRn̂1 7→n̂2u1 for some γ ∈ C \ {0},
where n̂j := nj/|nj|.

Remark 2.3. By the above proposition, we see the remarkable fact (but similar to the 2D case)

that two frequencies with no interaction must have exactly the same size, except for rather

trivial situations (i), (ii).



3D EULER FLOWS WITH FINITE FOURIER MODES 9

Remark 2.4. When n1,n2 are linearly independent, the conditions (ii), (iii) in Proposition 2.2

can be rewritten with the notation introduced in Lemma 2.1 as follows:

(ii) ⇐⇒ (ii)’ u
∥
1 = u

∥
2 = 0,

(iii) ⇐⇒ (iii)’

 u
∥
1u

∥
2 ̸= 0, |n1| = |n2|,

(u
∥
2, u

⊥
2 ) = γ(u

∥
1, u

⊥
1 ) with γ = u

∥
2/u

∥
1 ∈ C \ {0}.

Indeed, the first equivalence is trivial, while the second one can be seen by observing that

Rn̂1 7→n̂2e
∥
n1 = e

∥
n2 and Rn̂1 7→n̂2e

⊥ = e⊥.

Proof of Proposition 2.2. By Remark 2.4, we may consider the conditions (ii)’ and (iii)’ instead

of (ii) and (iii), respectively. The sufficiency of (i)–(ii)’–(iii)’ for (2.1) is easily checked by the

representation given in Lemma 2.1. To prove the necessity of (i)–(ii)’–(iii)’, assume that (2.1)

holds and that (i), (ii)’ do not hold. By Lemma 2.1, it holds that

u
∥
1u

∥
2(|n1|2 − |n2|2) = 0, u

∥
1u

⊥
2 |n2| = u

∥
2u

⊥
1 |n1|.

Since (ii)’ does not hold, at least one of u
∥
1 and u

∥
2 is non-zero. From the second equality of the

above and the assumption that both u1 and u2 are non-zero, we deduce that both of u
∥
1 and

u
∥
2 are non-zero. Then, we see |n1| = |n2| from the first equality, and u⊥

2 = u
∥
2u

⊥
1 /u

∥
1 from the

second one. We have thus verified the condition (iii)’. □

3. Characterization in the planar case

In this section, we consider the case where Sconv is two dimensional and conclude the following:

Proposition 3.1. Let u(t,x) ∈ HI be a solution of (1.2) on an interval I ⊂ R, and assume

that the convex hull Sconv of its Fourier support S is a (nondegenerate) symmetric polygon on

a plane P . Assume further that u(t,x) is not perpendicular to P for some (t,x) ∈ I × R3.

Consider the decomposition u(t,x) = u∥(t,x) + u⊥(t,x)e⊥, where u∥(t,x) ∈ HI is parallel to

P (and not identically zero), and e⊥ is (one of) the unit normal vector to P .

Then, u is independent of t, and the following holds.

(i) The Fourier support of u∥ ∈ H, denoted by S∥, contains at least four points and is a

subset of a circle centered at the origin (with its radius denoted by λ).

(ii) There exists a (unique) polynomial Q with real coefficients and without the constant

term such that u⊥(x) = Q(ω(x))−
〈
Q(ω)

〉
, where ω(x) is the (unique) scalar function

satisfying ∇×u∥ = λωe⊥ and
〈
Q(ω)

〉
is the zero mode of Q(ω(x)).

Conversely, any field u = u∥ + u⊥e⊥ ∈ H satisfying the above conditions is a stationary

solution of (1.2).

Proof of (i). First, we prove the property (i) and that u∥(t,x) is independent of t. Take the

horizontal component (i.e., the component parallel to P ) of the equation (1.2) to obtain

∂tu
∥
n +

i

2
P̂n

∑
n1,n2∈S∥
n1+n2=n

[
(u∥

n1
· n2)u

∥
n2

+ (u∥
n2

· n1)u
∥
n1

]
= 0.

(3.1)
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Namely, the horizontal component u∥(t,x) is in itself a solution of (1.2). In particular, for each

n ∈ S∥ the coefficient vector u
∥
n(t) is non-zero for almost all t ∈ I.

We first claim that S∥ has two linearly independent vectors. Suppose for contradiction that

it is contained in a line ℓ on P . In this case, the second term on the left-hand side of (3.1)

vanishes, so the horizontal component u∥ is independent of t. Choose n1 ∈ S∥ ⊂ ℓ so that

|n1| = max{|n| : n ∈ S∥}, and take any t0 ∈ I \ I0, where I0 is defined by (1.4). Notice that

the Fourier support of u⊥(t0), which we denote by S⊥(t0) and for which S = S∥ ∪S⊥(t0) holds,

contains at least one point outside ℓ. Choose n2 ∈ S⊥(t0) \ ℓ so that n2 · n1 = max{n · n1 :

n ∈ S⊥(t0) \ ℓ}, and consider the nonlinear interaction between n1 and n2. First, we have

n1 + n2 ̸∈ ℓ and (n1 + n2) · n1 > n2 · n1, hence n1 + n2 ̸∈ S by the definition of n2. Secondly,

suppose that n1 + n2 = n3 + n4 for some pair of distinct points {n3,n4} ≠ {n1,n2} in S. One

of n3,n4 must be away from ℓ, so we assume n3 ̸∈ ℓ. Then, we see n4 ̸∈ S∥; otherwise, we would

have n3 ·n1 = n2 ·n1 + |n1|2 −n4 ·n1 > n2 ·n1 by the definition of n1 and that n4 ̸= n1, which

contradicts the definition of n2. Now, the condition (ii)’ in Remark 2.4 holds for the pair n3,n4

and the associated coefficient vectors un3(t0),un4(t0), so there is no interaction (i.e., (2.1) holds)

between these frequencies. By the equation (1.2) with n = n1 + n2 and the fact n1 + n2 ̸∈ S,

we deduce that the frequencies n1,n2 and the associated coefficient vectors at t = t0 must

also satisfy (2.1). But now, since n2 is linearly independent with n1, u
∥
n1 ̸= 0, u

∥
n2 = 0 and

u⊥
n2
(t0) ̸= 0, Lemma 2.1 implies that the vertical component (i.e., the component perpendicular

to P ) of the left-hand side of (2.1) is nonzero, which is a contradiction. Therefore, S∥ is not

contained in a line, and has at least four points by symmetry.

We next show that S∥ is contained in a circle on P centered at the origin. The proof is almost

the same as that of Theorem 1.3 in [4], but we will give it for completeness. The proof consists

of the following two steps:

(a) All the vertices of Sconv
∥ (the convex hull of S∥) are located on a circle centered at the

origin, and S∥ ∩ ∂Sconv
∥ has no point other than the vertices of Sconv

∥ .

(b) There is no point of S∥ in the interior of Sconv
∥ .

To show (a), we take any side E of Sconv
∥ , and let n1, . . . ,np be the list of all points in E ∩S∥

which are located in this order (and hence n1,np are the two endpoints of E). It then suffices

to verify p = 2 and |n1| = |n2|. Let N be the Minkowski functional of the convex polygon Sconv
∥

on P ; i.e., N(n) := inf{r > 0 : n ∈ rSconv
∥ } for n ∈ P . Note that Sconv

∥ = {n ∈ P : N(n) ≤ 1}
and ∂Sconv

∥ = {n ∈ P : N(n) = 1}. Let f be the linear functional on P such that f ≡ 1 on

E. We see that f ≤ 1 on Sconv
∥ and that n ∈ Sconv

∥ and f(n) = 1 imply n ∈ E. Note also

that N ≡ f on the sectorial region {rn : n ∈ E, r ≥ 0}. With these functionals, consider the

interaction between n1 and n2. First, we see n1 + n2 ̸∈ S∥ from N(n1 + n2) = f(n1 + n2) =

f(n1) + f(n2) = 2 > 1. Secondly, if n,n′ ∈ S∥ satisfy n+n′ = n1 +n2, then we have n,n′ ∈ E

(since 2 = f(n + n′) = f(n) + f(n′) ≤ 1 + 1 = 2 implies f(n) = f(n′) = 1), so by the

definition of nj’s the only possibility is that {n,n′} = {n1,n2}. Therefore, the equality (3.1)

with n = n1 + n2 shows that P̂n1+n2

[
(u

∥
n1(t) · n2)u

∥
n2(t) + (u

∥
n2(t) · n1)u

∥
n1(t)

]
= 0 on I. This

and Lemma 2.1 verify |n1| = |n2|, since n1, n2 are linearly independent and u
∥
n1(t),u

∥
n2(t) are

non-zero for almost all t ∈ I. It remains to see p = 2, so suppose p > 2. Then, the same

argument verifies |np−1| = |np|, and in particular, each of the perpendicular bisectors of two
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segments [n1,n2], [np−1,np] passes through the origin. This is however impossible, because

these lines are parallel. Hence, we have p = 2.

To prove (b), suppose for contradiction that S∥\∂Sconv
∥ ̸= ∅, and choose n0 such that N(n0) =

max{N(n) : n ∈ S∥\∂Sconv
∥ }, so that 0 < N(n0) < 1 and S∥\∂Sconv

∥ ⊂ N(n0)S
conv
∥ . Then, there

exist two adjacent vertices n1,n2 of S
conv
∥ and 0 ≤ θ < 1 such that n0 = N(n0)[(1−θ)n1+θn2].

To derive a contradiction, we consider the interaction between n0 and n2 (note that these

frequencies are linearly independent since θ ̸= 1). Let f be as above; namely, the linear

functional on P satisfying f(n1) = f(n2) = 1, and note that N ≡ f on the sectorial region

{r[(1 − θ)n1 + θn2] : r ≥ 0, 0 ≤ θ ≤ 1}. Since f(n0 + n2) = N(n0) + N(n2) > 1, we have

n0 + n2 ̸∈ S∥. Assume that n + n′ = n0 + n2 for a pair {n,n′} ⊂ S∥ which is different from

{n0,n2}. We claim that both of n,n′ are vertices of Sconv
∥ : In fact, if f(n) = 1, then we see

from (a) that n ∈ {n1,n2}, and therefore (n,n′) = (n1,n0 + (n2 −n1)). By a simple geometric

observation and N(n0) < 1, we have n′ = n0+(n2−n1) ̸∈ N(n0)S
conv
∥ , and thus n′ must be one

of the vertices of Sconv
∥ . In the same manner, if f(n′) = 1, then n′ = n1 and n must be another

vertex. If f(n), f(n′) < 1, then from f(n)+f(n′) = 1+N(n0) we have N(n0) < f(n), f(n′) < 1,

which shows that both of n,n′ are vertices (different from n1,n2). Consequently, it must hold

that |n| = |n′| and, by Lemma 2.1, that these two frequencies do not contribute to (3.1); i.e.,

P̂n0+n2

[
(u

∥
n(t) ·n′)u

∥
n′(t)+ (u

∥
n′(t) ·n)u∥

n(t)
]
= 0 on I. Using the equation (3.1) at n0+n2 ̸∈ S∥,

we deduce that P̂n0+n2

[
(u

∥
n0(t) ·n2)u

∥
n2(t) + (u

∥
n2(t) ·n0)u

∥
n0(t)

]
= 0 on I. This and Lemma 2.1

again imply |n0| = |n2|, which is a contradiction. We have thus verified that S∥ \ ∂Sconv
∥ = ∅,

and the claim (i).

Finally, we point out that any pair of frequencies in S∥ is of the same distance from the

origin, and hence has no contribution to the sum in (3.1) by Lemma 2.1. This implies that

∂tu
∥ = 0; i.e., u∥ is independent of t. □

Proof of (ii). Next, we prove that u⊥(t,x) is also independent of t and it can be represented as

claimed in (ii). Let S∥ consist of p points n0,n1, . . . ,np−1 ∈ P lying on the circle in this order,

and let λ := |n0| = |n1| = · · · = |np−1|. As in Lemma 2.1, the horizontal component u∥(x) can

be represented as

u∥(x) =

p−1∑
j=0

αje
∥
je

inj ·x with some α0, . . . , αp−1 ∈ C \ {0}, (3.2)

where e
∥
j := e⊥× nj

|nj | . Since nj×e
∥
j = λe⊥, the scalar function ω satisfying ∇×u∥ = λωe⊥ is

represented by

ω(x) =

p−1∑
j=0

iαje
inj ·x.

We also note that iαj+(p/2) = iαj for 0 ≤ j < p/2, since u∥ and ω are real-valued. On the other

hand, the vertical component of the equation (1.2) reads as

∂tu
⊥
n (t) + i

∑
(n′,ñ)∈S∥×S⊥(t)

n′+ñ=n

(u
∥
n′ · ñ)u⊥

ñ (t) = 0, or

∂tu
⊥ + (u∥ · ∇)u⊥ = 0, t ∈ I,

(3.3)
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where u
∥
n′ = αje

∥
j for n′ = nj, j = 0, . . . , p − 1. What we need to prove is that any finite-

mode, real-valued and mean-zero solution u⊥(t,x) =
∑

n u
⊥
n (t)e

in·x to (3.3) is represented as

u⊥(t,x) = u⊥(x) = Q(ω(x))−
〈
Q(ω)

〉
for some real polynomial Q without the constant term.

We continue to use the Minkowski functional of Sconv
∥ : N(n) := inf{r > 0 : n ∈ rSconv

∥ }
(n ∈ P ). We first claim the following:

Lemma 3.2. Let ξ(t,x) =
∑

n ξn(t)e
in·x be a smooth real-valued mean-zero scalar function,

whose Fourier support is finite and contained in P , such that

∂tξ + (u∥ · ∇)ξ = 0, t ∈ I, (3.4)

or equivalently,

∂tξn(t) + i
∑

(n′,ñ)∈S∥×Sξ(t)

n′+ñ=n

(u
∥
n′ · ñ)ξñ(t) = 0, t ∈ I, n ∈ Sξ∪

[
S∥+Sξ

]
,

(3.5)

where Sξ(t) denotes the Fourier support of ξ(t) and Sξ :=
⋃

t∈I Sξ(t) (which is assumed to be a

finite, symmetric subset of P \ {0}). Assume ξ ̸≡ 0 (so that Sξ ̸= ∅), and define

q := max{N(n) : n ∈ Sξ} > 0,

i.e., q is the smallest number satisfying Sξ ⊂ qSconv
∥ . Then, q must be an integer and

{n ∈ Sξ : N(n) = q} = {ñj,k : j = 0, 1, . . . , p− 1, k = 0, 1, . . . , q − 1},

ñj,k := (q − k)nj + knj+1,

where we use the convention np = n0. In other words, the set Sξ ∩ ∂[qSconv
∥ ] consists of the

vertices of qSconv
∥ and the points that equally divide each side of ∂[qSconv

∥ ] into q pieces.

Proof. We shall show Sξ(t0)∩ ∂[qSconv
∥ ] = {ñj,k} for any t0 ∈ I such that Sξ(t0)∩ ∂[qSconv

∥ ] ̸= ∅
(such a time t0 exists by the definition of q). Pick up any ñ ∈ Sξ(t0)∩ ∂[qSconv

∥ ], then ñ can be

written as ñ = q{(1− θ)nj + θnj+1} with j ∈ {0, 1, . . . , p− 1} and θ ∈ [0, 1) in a unique way.

Since u
∥
nj+1 ̸= 0, and nj+1, ñ are linearly independent, the interaction between nj+1 and ñ

gives non-zero contribution at nj+1 + ñ; i.e., (u
∥
nj+1 · ñ)ξñ(t0) ̸= 0. On the other hand, since

N coincides with a linear functional f on P in the sectorial region {snj + tnj+1 : s, t ≥ 0}, we
have N(nj+1 + ñ) = 1 + q > q, and thus nj+1 + ñ ̸∈ Sξ by the definition of q. Hence, from the

equation (3.5) there must be (n′, ñ′) ∈ S∥ × Sξ(t0), which is different from (nj+1, ñ), such that

n′+ñ′ = nj+1+ñ and (u
∥
n′ ·ñ′)ξñ′(t0) ̸= 0. The only possible one is (n′, ñ′) = (nj, ñ+(nj+1−nj));

otherwise, f(n′) < f(nj+1) and then f(n′ + ñ′) = f(n′) + f(ñ′) < f(nj+1) + q = f(nj+1 + ñ),

which is a contradiction. As a consequence, the point ñ + (nj+1 − nj) must be in Sξ(t0). It

then must hold that ñ + r(nj+1 − nj) = qnj+1 for some positive integer r, since otherwise

the above procedure could be repeated to create a point in Sξ(t0) outside the polygon qSconv
∥ ,

contradicting the definition of q. Now, we have qnj+1 ∈ Sξ(t0)∩ ∂[qSconv
∥ ], so setting ñ = qnj+1

and repeating this argument to conclude that q is an integer and the complete list of the points

in Sξ(t0) ∩ ∂[qSconv
∥ ] is {ñj,k}0≤j≤p−1, 0≤k≤q−1. □

Our next claim is as follows:
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Lemma 3.3. Under the hypotheses of Lemma 3.2, there exists a (unique) constant βq ∈ R\{0}
such that ζ(t,x) := ξ(t,x)−βq

{
ω(x)q−

〈
ωq
〉}

is another smooth, real-valued, mean-zero solution

of (3.4), with its Fourier support finite and contained in (q− 1)Sconv
∥ . In particular, ζ = 0 and

ξ(t,x) = β1ω(x) when q = 1.

Proof. From the argument in the proof of Lemma 3.2, we deduce that(
u∥
nj+1

· ñj,k

)
ξñj,k

(t) +
(
u∥
nj

· ñj,k+1

)
ξñj,k+1

(t) = 0, 0 ≤ j ≤ p− 1, 0 ≤ k ≤ q − 1, t ∈ I,

where we have used the convention ñj,q = ñj+1,0, ñp,0 = ñ0,0. (More precisely, this equality

has been verified for t ∈ I satisfying Sξ(t) ∩ ∂[qSconv
∥ ] ̸= ∅, while otherwise it holds trivially.)

Substituting u
∥
nj = αje

∥
j and noticing that e

∥
j · nj+1 = −e

∥
j+1 · nj ̸= 0, we have

ξñj,k+1
(t) =

(q − k)αj+1

(k + 1)αj

ξñj,k
(t), 0 ≤ j ≤ p− 1, 0 ≤ k ≤ q − 1, t ∈ I.

For each t ∈ I, define the complex number βq(t) by ξñ0,0(t) = (iα0)
qβq(t). (The map t 7→ βq(t)

is smooth, as ξñ0,0(t) is smooth.) Then, all of ξñj,k
is determined by the above relation as

ξñj,k
(t) =

(
q

k

)
(iαj)

q−k(iαj+1)
kβq(t), 0 ≤ j ≤ p− 1, 0 ≤ k ≤ q − 1, t ∈ I.

Since ξ(t,x) is real-valued, ñ0,0 = −ñp/2,0 and iαp/2 = iα0, we can show that βq(t) ∈ R:

βq(t) =
(ξñ0,0(t)

(iα0)q

)
=

ξñp/2,0
(t)

(iαp/2)q
= βq(t).

On the other hand, from the Fourier representation of ω we see that

ω(x)q =

p−1∑
j=0

q−1∑
k=0

(
q

k

)
(iαj)

q−k(iαj+1)
keiñj,k·x + ηq(x)

for some function ηq on R3 whose Fourier support is finite and contained in {n ∈ P : N(n) < q}
(the interior of qSconv

∥ ). Therefore, the Fourier support of the (smooth, real-valued, mean-zero)

function ζ(t,x) := ξ(t,x)− βq(t)
{
ω(x)q −

〈
ωq
〉}

, denoted by S ′, is also finite and contained in

{n ∈ P : N(n) < q}.
We next claim that S ′ ⊂ (q − 1)Sconv

∥ . Observe that

(u∥(x) · ∇)
{
ω(x)q −

〈
ωq
〉}

= qω(x)q−1

p−1∑
j,l=0

(αje
∥
j) · (−αlnl)e

i(nj+nl)·x = 0, (3.6)

since e
∥
j · nl = −e

∥
l · nj. Hence, by the equation (3.4), ζ solves

∂tζ(t,x) + (u∥(x) · ∇)ζ(t,x) = −β′
q(t)
{
ω(x)q −

〈
ωq
〉}

. (3.7)

Suppose for contradiction that q̃ := max{N(n) : n ∈ S ′} > q − 1. Then, noticing that the

Fourier support of ∂tζ(t) and that of the right-hand side of (3.7) are contained in {n : N(n) ≤
q}, the same argument as for Lemma 3.2 would imply that q̃ is an integer, contradicting q̃ < q

which we have shown above. As a consequence, in the case q = 1 we have ζ ≡ 0 since ζ is

mean-zero.
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Now, we have only to show that βq(t) is independent of t ∈ I (which implies βq ̸= 0). When

q = 1, we immediately obtain β′
q(t) = 0 from the equation (3.7). We assume q > 1 and compare

the Fourier coefficient of both sides of (3.7) at ñ0,0:

i
∑

(n′,ñ)∈S∥×S′

n′+ñ=ñ0,0

(u
∥
n′ · ñ)ζñ(t) = −(iα0)

qβ′
q(t).

Observe that the only possible pair (n′, ñ) ∈ S∥ × S ′ satisfying n′ + ñ = ñ0,0 = qn0 is (n′, ñ) =

(n0, (q − 1)n0): In fact, noticing S ′ ⊂ (q − 1)Sconv
∥ , this can be verified by a simple argument

using a linear functional g on P satisfying g(n0) = 1 and g < 1 on Sconv
∥ \ {n0}. Then, since

these frequencies do not interact (as they are linearly dependent), the left-hand side of the

above equality is zero, and so β′
q(t) = 0. □

Let us return to the proof of Proposition 3.1(ii). We note that ξ = u⊥ satisfies the assump-

tions of Lemma 3.2, and so does the function ζ given in Lemma 3.3, unless ζ = 0. Then, we can

apply Lemmas 3.2–3.3 repeatedly until ζ becomes zero (which occurs within q times) to obtain

the (unique) polynomial Q of degree q with real coefficients and without the constant term

such that u⊥(t,x) = Q(ω(x))−
〈
Q(ω)

〉
. We have thus proved (ii) and that u⊥ is independent

of t. □

Proof of the converse. We note that any flow u∥(x) ∈ H with Fourier modes on P and parallel

to P everywhere is represented as (3.2). Since the Fourier modes of u∥ are equidistant from the

origin, we see by Lemma 2.1 that u∥ satisfies the equation (3.1). It then suffices to prove that

u⊥(x) := Q(ω(x))−
〈
Q(ω)

〉
solves the equation (3.3), which follows from the calculation (3.6).

This concludes the proof of Proposition 3.1. □

4. Characterization in the 3D case

In this section, we consider the case where the Fourier support S has three linearly inde-

pendent vectors. By exploiting the characterization of two non-interacting frequencies given in

Proposition 2.2, we shall prove:

Theorem 4.1. Any solution u ∈ HI of (1.2) is a (stationary) Beltrami flow when its Fourier

support is not contained in a plane.

We introduce some terminology to be used frequently in the proof of Theorem 4.1:

Definition 4.2.

(i) Let S be a finite subset of R3 \ {0}. We call a pair of two distinct points n1,n2 ∈ S

simply interacting pair in S (SIP for short) if the following conditions hold:

• n1 + n2 ̸∈ S.

• If two distinct points n3,n4 ∈ S satisfy n1+n2 = n3+n4, then {n1,n2} = {n3,n4}.
(ii) Let n ∈ R3 \ {0}. We call a vector un ∈ C3 \ {0} positive (resp. negative) Beltrami

vector at n (BV ± for short) if it is an eigenvector of in× with respect to the eigenvalue

+|n| (resp. −|n|), or equivalently (by Lemma 1.2), if the following conditions hold:

• Reun · n = Imun · n = Reun · Imun = 0, |Reun| = |Imun|.
• (n,Reun, Imun) is a right-handed (resp. left-handed) system.
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Remark 4.3.

(i) When u(t,x) =
∑

n∈S un(t)e
in·x ∈ HI is a solution to (1.1) on I × R3, the coefficient

vectors u1 = un1 , u2 = un2 at an SIP of two frequencies n1,n2 ∈ S always satisfy (2.1),

due to (1.2) with n = n1 + n2. Note that the converse is not necessarily true; namely,

(2.1) may be true even for non-SIP frequencies.

(ii) We note that SIP is not a transitive relation. For instance, when S contains four points

n1,n2,n3,n4 that form a parallelogram in this order (i.e., n1+n3 = n2+n4), the pairs

(n1,n2), (n2,n3), (n3,n4), (n4,n1) can be SIP but not are (n1,n3) and (n2,n4).

(iii) From Lemma 1.2, u(x) =
∑

n∈S une
in·x ∈ H is a Beltrami flow if and only if S ⊂ λS2

for some λ > 0 and the coefficient vectors are all BV + or all BV − (corresponding to

the eigenvalue λ or −λ, respectively).

(iv) It is easy to see that for any n ∈ R3 \ {0}, each of BV + and BV − at n is invariant

under multiplication by non-zero complex number. Moreover, when n1,n2 ∈ R3 \ {0}
are linearly independent and |n1| = |n2|, a vector v ∈ C3 is BV + (resp. BV −) at n1

if and only if Rn̂1 7→n̂2v is BV + (resp. BV −) at n2, because the geometric conditions

determining BV ± are not disrupted by the rotation Rn̂1 7→n̂2 . Consequently, in the

situation of Proposition 2.2 (iii), if u1 is shown to be BV + (resp. BV −) at n1, then u2

is also BV + (resp. BV −) at n2.

Let us begin to prove Theorem 4.1. We first give an analog of Step 1 in the 2D case:

Proposition 4.4. Let u =
∑

n∈S un(t)e
in·x ∈ HI be a solution of (1.2) on I ⊂ R and t0 ∈ I\I0,

where I0 is defined in (1.4). Assume that S is not contained in a plane. Then, the following

properties hold:

(i) All the vertices of the polyhedron Sconv (the convex hull of S) are located on a sphere

centered at the origin.

(ii) There is no point of S on each edge of Sconv except for two endpoints.

(iii) For each edge of Sconv, its two endpoints are SIP in S, and (iii) of Proposition 2.2 holds

for these vertices and the associated coefficient vectors at t = t0.

(iv) For each vertex n of Sconv, Reun(t0), Imun(t0) ∈ R3 are linearly independent.

Before proving the above proposition, we prepare two lemmas.

Lemma 4.5. Under the assumptions in Proposition 4.4, let E be an arbitrary edge of Sconv.

(i) If E ∩ S consists of the endpoints of E, then the endpoints are SIP in S and the

associated coefficient vectors at t = t0 satisfy either (ii) or (iii) of Proposition 2.2.

(ii) If E ∩ S has more than two points, then (ii) of Proposition 2.2 occurs for any pair of

points in E ∩ S and the associated coefficient vectors at t = t0.

In particular, any pair of adjacent vertices of Sconv do not interact.

Proof. Let E∩S consist of p (≥ 2) points n1,n2, . . . ,np located in this order (thus the endpoints

n1,np are adjacent vertices of Sconv).

(i) When p = 2, it is easily shown that two endpoints n1,n2 are SIP. To see this, let F1, F2

be the two faces of Sconv sharing E as a side, f1, f2 be the linear functionals on R3 which are

identically equal to 1 on F1 and F2, respectively, and define f := (f1 + f2)/2. Then, we see
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that Sconv ⊂ {n ∈ R3 : f(n) ≤ 1}, and that Sconv ∩ {f(n) = 1} = E. First, f(n1 + n2) =

f(n1) + f(n2) = 2 > 1 and thus n1 + n2 ̸∈ S. Secondly, assume that n′,n′′ ∈ S satisfy

n1+n2 = n′+n′′, then it holds that f(n′)+f(n′′) = 2 and f(n′), f(n′′) ≤ 1, which implies that

f(n′) = f(n′′) = 1 and thus n′,n′′ ∈ E. But S ∩E = {n1,n2}, so we have {n1,n2} = {n′,n′′}.
This shows that n1,n2 are SIP in S. By Remark 4.3 (i), the coefficient vectors at n1,n2 satisfies

(2.1), and hence the claim follows from Proposition 2.2 (since n1,n2 are linearly independent).

(ii) We next assume p ≥ 3. It follows that n1,n2 are SIP: In fact, n1+n2 = n′+n′′, n′,n′′ ∈ S

imply that n′,n′′ ∈ E (by the same argument as the above case of p = 2) and that the two

segments [n1,n2] and [n′,n′′] have the common middle point. By the definition of n1,n2, it

must hold that {n1,n2} = {n′,n′′}. A similar argument shows that n1, n3 are also SIP (because

it is only n2 that is in S∩E and between n1,n3). Hence, (2.1) holds for the pair n1,n2 and the

associated coefficient vectors, so that either (ii) or (iii) of Proposition 2.2 occurs, and the same is

true for the pair n1,n3. Now, suppose n1,n2 are as in (iii) of Proposition 2.2, then the coefficient

vector at n1 is not perpendicular to the plane containing E and the origin, which shows that

n1,n3 are also as in (iii). This implies |n1| = |n2| = |n3|, which is, however, impossible

because these three points are collinear. Therefore, the coefficient vectors at n1,n2,n3 are all

perpendicular to that plane and any two of them are as in (ii) of Proposition 2.2, verifying the

claim for p = 3.

In the case p ≥ 4, we can show by induction that all of n1, . . . ,np are actually in the

same relation (and hence the claim follows): Suppose any two of n1, . . . ,nq−1 (4 ≤ q ≤ p)

are as in (ii), and consider the nonlinear interaction contributing to n1 + nq. The above

argument with the linear functional f shows that n1 + nq ̸∈ S, and that n1 + nq = n′ + n′′,

n′,n′′ ∈ S, {n1,nq} ≠ {n′,n′′} imply n′,n′′ ∈ {n2, · · · ,nq−1}. By the induction assumption

and Proposition 2.2, such a pair (n′,n′′) is not interacting (i.e., (2.1) holds). Then, the equation

(1.2) shows that (2.1) also holds for the pair (n1,nq). From Proposition 2.2 again, this pair is

also as in (ii). In particular, the coefficient vectors at n1, . . . ,nq are all perpendicular to the

plane containing E and the origin, and any two of them are as in (ii). □

Lemma 4.6. Let p ≥ 3 and ω1,ω2, . . . ,ωp be p points located on a circle C ⊂ S2 in this order,

and assume that C is not a great circle of S2. Let A(F ∗) ∈ (0, 2π) be the area of the spherical

p-polygon F ∗ corresponding to the p-polygon ω1ω2 . . .ωp (i.e., F ∗ is the subset of S2 enclosed

by the geodesics connecting ωj and ωj+1, j = 1, 2, . . . , p, with the convention ωp+1 = ω1).

Then, the operator R1 := Rωp 7→ω1 ◦ Rωp−1 7→ωp ◦ · · · ◦ Rω1 7→ω2 is the rotation around the axis

ω1 by the angle either A(F ∗) or −A(F ∗).

Proof. We may assume without loss of generality that the p-polygon ω1ω2 . . .ωp is in northern

hemisphere {x3 > 0} and parallel to the (x1, x2) plane, and that the ordering ω1,ω2, . . . ,ωp is

“westward”. Define the orthonormal frame {e1(ωj), e
2(ωj)} of the tangent plane Tωj

S2 by the

“eastward” and “northward” unit vectors; namely,

e1(ωj) :=
e3×ωj

|e3×ωj|
, e2(ωj) := ωj×

e3×ωj

|e3×ωj|
(j = 1, 2, . . . , p),

where e3 = (0, 0, 1) denotes the north pole.
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Figure 1. Rωj 7→ωj+1
: Tωj

S2 → Tωj+1
S2 is the rotation by the angle 2θj

By a simple geometric observation (see Fig. 1), it turns out that the operator Rωj 7→ωj+1
maps

Tωj
S2 onto Tωj+1

S2 and acts as the rotation by the angle 2θj:

Rωj 7→ωj+1
e1(ωj) = (cos 2θj)e

1(ωj+1) + (sin 2θj)e
2(ωj+1),

Rωj 7→ωj+1
e2(ωj) = −(sin 2θj)e

1(ωj+1) + (cos 2θj)e
2(ωj+1) (j = 1, 2, . . . , p),

where θj denotes the angle between the latitude circle and the geodesic curve passing through

ωj,ωj+1 such that θj ∈ (0, π/2) [resp. ∈ (π/2, π)] when ∠ωjωj−1ωj+1 < π/2 [resp. > π/2],

with the convention ωp+1 = ω1, ω0 = ωp. Therefore, the composition operator R1 restricted

to Tω1S2 is the rotation on Tω1S2 by 2
∑p

j=1 θj. It is clear that ω1 is invariant under R1.

Now, let Θ(F ∗) be the sum of the interior angles of the spherical polygon F ∗, namely Θ(F ∗) =

pπ− 2
∑p

j=1 θj. The celebrated Gauss-Bonnet theorem tells us that A(F ∗) = Θ(F ∗)− (p− 2)π,

and hence 2
∑p

j=1 θj = 2π−A(F ∗). Therefore, in this case the rotation angle of R1 is equal to

−A(F ∗). When the ordering ω1,ω2, . . . ,ωp is “eastward”, the same argument concludes that

the rotation angle is A(F ∗). □

Proof of Proposition 4.4. The main part of the proof is to establish (iv). Suppose, for the sake

of contradiction, that Reun(t0) and Imun(t0) are linearly dependent (including the case where

one of them is zero; since t0 ̸∈ I0, at least one of them is nonzero) for some vertex n of Sconv.

Observe that this property “propagates” to adjacent vertices of Sconv, because by Lemma 4.5

any pair of adjacent vertices satisfies either (ii) or (iii) of Proposition 2.2. Hence, for every

vertex n of Sconv a line ℓ(n) ⊂ R3 passing through the origin is uniquely determined so that

both Reun(t0) and Imun(t0) are parallel to ℓ(n) (or one of them is zero and the other is parallel

to ℓ(n)).

We claim that ℓ(n2) = Rn̂1 7→n̂2ℓ(n1) for each pair (n1,n2) of adjacent vertices of S
conv, where

n̂j = nj/|nj|. In fact, if n1,n2 are as in (ii) of Proposition 2.2, ℓ(n1) = ℓ(n2) is the line

perpendicular to the plane including n1, n2 and the origin, and also it is the rotation axis of
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Rn̂1 7→n̂2 and thus invariant under that transformation. For the situation (iii) of Proposition 2.2,

this follows immediately from Proposition 2.2. As a consequence, for any closed chain of edges

of Sconv, say n1n2 . . .npn1 (where nj is a vertex of Sconv and adjacent to nj−1 for each j, with

n1 adjacent to np), the composition operator R1 = Rn̂p 7→n̂1 ◦ Rn̂p−1 7→n̂p ◦ · · · ◦ Rn̂1 7→n̂2 does not

change the initial line ℓ(n1). Therefore, to derive a contradiction, it suffices to find a closed

chain of edges of Sconv such that R1ℓ(n1) ̸= ℓ(n1).

Let Ŝconv be the convex hull of {n̂ := n/|n| : n is a vertex of Sconv}, the set of normalized

vertices of Sconv. Note that Ŝconv is a symmetric polyhedron and all its vertices are located on

S2. In particular, it has at least six faces, and hence there exists a face F̂ of Ŝconv such that

the area A(F̂ ∗) of the corresponding spherical polygon F̂ ∗ ⊂ S2 is not greater than 2π/3. Now,

let n̂1, n̂2, . . . , n̂p be the list of all vertices of F̂ located in this order, and let n1,n2, . . . ,np be

the corresponding vertices of Sconv. From Lemma 4.6, we see that the resulting operator R1 is

the rotation by the angle ±A(F̂ ∗) around the axis n1. Since ℓ(n1) is perpendicular to n1 and

±A(F̂ ∗) ̸∈ πZ, we have R1ℓ(n1) ̸= ℓ(n1) and reach a contradiction, as desired.

We have thus proved (iv). Note that the property (iv) prohibits the situation (ii) of Propo-

sition 2.2 for any pair of adjacent vertices of Sconv. Then, Lemma 4.5 implies (ii) and (iii).

Finally, the property (i) follows from (iii). □

We are now in a position to show that:

Proposition 4.7. Under the same assumptions as in Proposition 4.4, it holds that the coeffi-

cient vectors un(t0) at vertices of S
conv are all BV + or all BV −.

Proof. As observed in the proof of Proposition 4.4, there is a face F of Sconv such that the

spherical polygon F̂ ∗ ⊂ S2 corresponding to the normalized face F̂ of Ŝconv has the area

A(F̂ ∗) ∈ (0, 2π/3]. Let n1,n2, . . . ,np ∈ S be the list of all vertices of F located in this order.

By Proposition 4.4 (iii) and Proposition 2.2, there exist γ1, · · · , γp ∈ C \ {0} such that

un1(t0) =
[
(γpRn̂p 7→n̂1) ◦ (γp−1Rn̂p−1 7→n̂p) ◦ · · · ◦ (γ1Rn̂1 7→n̂2)

]
un1(t0)

= (γ1γ2 · · · γp)R1un1(t0)

with R1 = Rn̂p 7→n̂1 ◦ Rn̂p−1 7→n̂p ◦ · · · ◦ Rn̂1 7→n̂2 ; namely, un1(t0) ∈ C3 \ {0} is an eigenvector

of the rotation operator R1. By Lemma 4.6, the rotation angle is ±A(F̂ ∗), which is not an

integral multiple of π. We may focus on the case of +A(F̂ ∗), then it is easily verified thatR1 has

three distinct eigenvalues 1, eiA(F̂ ∗), e−iA(F̂ ∗), with the corresponding eigenspaces {αn̂1 : α ∈ C},
{BV + at n1} ∪ {0} and {BV − at n1} ∪ {0}, respectively. Since un1(t0) · n1 = 0, we see that

un1(t0) is either BV + or BV − at n1. Now, Remark 4.3 (iv) together with Proposition 4.4 (iii)

leads to the conclusion. □

If n1,n2 ∈ R3 are two distinct frequencies satisfying |n1| = |n2|, and if un1 ,un2 ∈ C3 are both

BV + or both BV − at these frequencies, then these two modes satisfy the condition (i) or (iii)

of Proposition 2.2, and hence do not interact. In particular, we see from Proposition 4.7 that

there is no contribution from the nonlinear interaction between any pair of vertices of Sconv

(not necessarily adjacent). This property (corresponding to Step 2 in 2D) will play a key role

in verifying the following proposition (corresponding to Step 3 in 2D):



3D EULER FLOWS WITH FINITE FOURIER MODES 19

Proposition 4.8. Under the same assumptions as in Proposition 4.4, there is no point of S

other than the vertices of Sconv.

Proof. The idea is very similar to the 2D case. Arguing by contradiction, we suppose that

S \ V (S) ̸= ∅, where V (S) denotes the set of all vertices of Sconv.

Let N be the Minkowski functional of the convex set Sconv containing the origin; i.e.,

N(n) := inf{r > 0 : n ∈ rSconv}.

Note that N is a norm on R3 and Sconv = {n : N(n) ≤ 1}, ∂Sconv = {n : N(n) = 1}. Then,

we choose n0 ∈ S \ V (S) so that N(n0) = max{N(n) : n ∈ S \ V (S)}. Since n0 ̸= 0, we

have 0 < N(n0) ≤ 1. Let F be (one of) the face of Sconv on which n0/N(n0) ∈ ∂Sconv is

located, let F̃ := N(n0)F (so that n0 ∈ F̃ ), and denote by P̃ the plane containing F̃ . (Note

that F̃ = F when N(n0) = 1.) We also find the (unique) linear functional f on R3 satisfying

f ≡ 1 on F . Observe that f coincides with N in the conic region {rn : n ∈ F, r ≥ 0}, that
Sconv ⊂ {n : f(n) ≤ 1}, and that Sconv ∩ {n : f(n) = 1} = F . Moreover, by the definition of

n0, n ∈ S \ V (S) implies either f(n) < f(n0) or n ∈ F̃ .

Next, fix an arbitrary point ñ∗ ∈ Int(F̃ ) and define the function Ñ on P̃ by

Ñ(n) := inf{r > 0 : n− ñ∗ ∈ r[F̃ − ñ∗]}, n ∈ P̃ .

Note that F̃ = {n ∈ P̃ : Ñ(n) ≤ 1}, ∂F̃ = {n ∈ P̃ : Ñ(n) = 1}. By replacing n0 if necessary,

we may assume that Ñ(n0) = max{Ñ(n) : n ∈ [S \ V (S)] ∩ F̃}. We have 0 ≤ Ñ(n0) ≤ 1, and

Ñ(n0) < 1 if N(n0) = 1, because S ∩ ∂F ⊂ V (S) by means of Proposition 4.4 (ii). Let

F̃ ′ := ñ∗ + Ñ(n0)[F̃ − ñ∗]

be the polygon on P̃ obtained by contracting F̃ by the ratio of Ñ(n0) with respect to the base

point ñ∗. By the definition, we see [S \ V (S)] ∩ F̃ ⊂ F̃ ′, and in particular, that n ∈ S \ V (S)

implies either f(n) < f(n0) or n ∈ F̃ ′.

Then, noticing n0 ∈ ∂F̃ ′, define Ẽ ′ as (one of) the side of F̃ ′ on which n0 is located, and

denote the corresponding side of F by E. We can find a linear functional g on R3 satisfying

g ≡ 0 on E and g > 0 on F \ E. It then follows from a simple geometric observation that

g ≡ g(n0) ≥ 0 on Ẽ ′ and g > g(n0) on F̃ ′ \ Ẽ ′. Finally, choose n1 ∈ V (S) so that n1 is an

endpoint of E and linearly independent with n0.

Let us consider the nonlinear interaction contributing to the mode n0+n1. By Proposition 4.4

(iv) and the fact that |n0| ≠ |n1|, the two modes n0,n1 of u(t0) satisfy none of the conditions

(i)–(iii) of Proposition 2.2, and hence have nonzero contribution at n0+n1. On the other hand,

N(n0 + n1) = f(n0 + n1) = f(n0) + f(n1) = N(n0) +N(n1) = N(n0) + 1 > 1,

which shows n0 + n1 ̸∈ Sconv. Therefore, by (1.2) there must be another pair {n2,n3} ⊂ S of

distinct points which satisfies n0 + n1 = n2 + n3 and creates nonzero contribution at n0 + n1

through nonlinear interaction. As we mentioned above, any two modes in V (S) do not interact,

and hence one of n2 and n3, say n2, is not a vertex of Sconv. This implies that either f(n2) <

f(n0) or n2 ∈ F̃ ′. But we have f(n2) + f(n3) = f(n0) + f(n1) and f(n3) ≤ 1 = f(n1), so

the only possible situation is that n2 ∈ F̃ ′ and f(n3) = 1 (i.e., n3 ∈ F ). We next consider the

equality g(n2) + g(n3) = g(n0) + g(n1) = g(n0). Since n3 ∈ F , we have g(n3) ≥ 0 and then
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g(n2) ≤ g(n0), which combined with n2 ∈ F̃ ′ leads to g(n2) = g(n0) and g(n3) = 0, namely,

n2 ∈ Ẽ ′ and n3 ∈ E. Now, Proposition 4.4 (ii) shows that n1,n3 must be two endpoints of E,

and in particular |n1 − n3| = |E|. This, however, implies that

|E| = |n0 − n2| ≤ |Ẽ ′| = N(n0)Ñ(n0)|E| < |E|,

which is a contradiction.

We therefore conclude that S \ V (S) = ∅. □

By Propositions 4.7 and 4.8, we see that any two modes of u(t) do not interact if t ∈ I \ I0.
In particular, by (1.2) we have ∂tun(t) = 0 for any t ∈ I \ I0 and n ∈ S. Since I \ I0 is dense

in I and un is smooth in t, we have ∂tu ≡ 0 on I × R3, and therefore u is stationary. Finally,

in view of Proposition 4.7 and Remark 4.3 (iii), it is a Beltrami flow.

This is the end of the proof of Theorem 4.1, and hence, Theorem 1.4.

5. Viscosity and Coriolis effect taken into account

As a generalization of Theorem 1.4, let us consider characterization of finite-mode solutions

(u, p) to the following Navier-Stokes-Coriolis equations:

∂tu− ν∆u+ Ωe3×u+ (u · ∇)u+∇p = 0, ∇ · u = 0, (5.1)

where ν,Ω ∈ R and e3 = (0, 0, 1). (The sign of ν is not relevant, since finite-mode solutions are

real analytic with the radius of analyticity equal to infinity.) To remove the zero mode u0(t),

we first observe that it satisfies

∂tu0 + Ωe3×u0 = 0. (5.2)

Given the initial value u0,∗ = (u1
0,∗, u

2
0,∗, u

3
0,∗) ∈ R3 at some t = t∗, this can be explicitly solved:

u0(t) =
(
u1
0,∗ cos(Ω(t−t∗)) + u2

0,∗ sin(Ω(t−t∗)), u
2
0,∗ cos(Ω(t−t∗))− u1

0,∗ sin(Ω(t−t∗)), u
3
0,∗

)
.

Using this, we define the new velocity field v and pressure q by

v(t,x) = u
(
t,x+

∫ t

t∗

u0(τ)dτ
)
− u0(t), q(t,x) = p

(
t,x+

∫ t

t∗

u0(τ)dτ
)
,

which is again a finite-mode solution of (5.1) and does not have the zero mode. Conversely, for

any given mean-zero solution (v, q) of (5.1) and any prescribed zero mode u0(t) satisfying (5.2),

we obtain a solution (u, p) by the inverse transformation (defined by simply replacing u0(t) with

−u0(t)). Therefore, as for the Euler equations (1.1), it suffices to consider characterization of

mean-zero solutions; namely, solutions in HI . Furthermore, we apply the projection P̂n to the

equation for the Fourier coefficient vector un(t) to obtain

∂tun + ν|n|2un + ΩJnun +
i

2
P̂n

∑
n1,n2∈S
n1+n2=n

[
(un1 · n2)un2 + (un2 · n1)un1

]
= 0,

n · un = 0, t ∈ I, n ∈ S̃ = S ∪ (S + S) \ {0}, (5.3)
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where

Jn =
n3

|n|2

 0 −n3 n2

n3 0 −n1

−n2 n1 0

 , n = (n1, n2, n3) ∈ R3 \ {0}

is the matrix given by Jnv = P̂n

[
e3×(P̂nv)

]
(v ∈ C3). Given a solution {un(t)}n∈S, we can

recover the Fourier coefficient {pn(t)}n∈Sp for the pressure p by

pn(t) =
1

|n|2
(
iΩ
(
n2u1

n(t)− n1u2
n(t)

)
−

∑
n1,n2∈S
n1+n2=n

(un1(t) · n2)(un2(t) · n1)
)
, t ∈ I, n ∈ S̃,

where un(t) = (u1
n(t), u

2
n(t), u

3
n(t)). In this way, as in the Euler case, characterization of finite-

mode solutions of (5.1) is reduced to that of solutions of (5.3) belonging to HI .

We shall prove the following theorem for (5.3), which includes Theorem 1.4 as a special case

ν = Ω = 0.

Theorem 5.1. Let I ⊂ R be an open interval. Then, u = u(t,x) ∈ HI is a solution of (5.3)

on I if and only if u evolves according to the linear equation

∂tun + ν|n|2un + ΩJnun = 0

and satisfies one of the following for some t∗ ∈ I (or equivalently, for any t∗ ∈ I):

(i) The Fourier support S of u(t∗) ∈ H is a subset of a line passing through the origin.

(ii) S has two linearly independent points and is a subset of a plane P containing the origin.

Moreover, one of the following holds:

(a) Ω=0 or P =P3 := {n∈R3 : n·e3=0}, and u(t∗) is perpendicular to P everywhere.

(b) u(t∗) = u∥(t∗) + u⊥(t∗)e
⊥, where e⊥ is (one of) the unit normal vector to P and

u∥(t∗), u
⊥(t∗) satisfy the following:

• u∥(t∗) ∈ H is parallel to P everywhere, and its Fourier support is a subset

of a circle on P (with radius λ > 0) centered at the origin and contains at

least four points.

• u⊥(t∗,x) = Q(ω(x))−
〈
Q(ω)

〉
, where ω(x) is the scalar function defined by

∇×u∥(t∗) = λωe⊥ and
Q is a polynomial with real coefficients if Ω = 0 or P = P3, and ν = 0;

Q(ω) = κω for some κ ∈ R if Ω = 0 or P = P3, and ν ̸= 0;

Q(ω) is either ω or −ω if Ω ̸= 0 and P ̸= P3.

(iii) S has three linearly independent points and is a subset of a sphere centered at the origin,

and u(t∗) is a Beltrami flow.

Remark 5.2. As is evident from the proof below, the same result holds if the viscosity −ν∆ of

the equation (5.1) is replaced by the fractional Laplacian ν(−∆)α with any α > 0.

Remark 5.3. Let us confirm that each of the conditions (i)–(iii) holds for any t∗ ∈ I once it

holds some t∗, provided that u(t) evolves linearly:

un(t) = e−ν(t−t∗)|n|2e−Ω(t−t∗)Jnun(t∗), t ∈ I, n ∈ S. (5.4)
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Note that the Fourier support of u(t) ∈ H is equal to that of u ∈ HI for any t ∈ I. Then, the

property (i) is preserved under the flow. Next, we see that the Coriolis term ΩJnun vanishes

when Ω = 0 or n ∈ P3. Therefore, the property (ii)-(a) is also preserved. If Ω = 0 or P = P3

and ν = 0, u(t) is independent of t. In the other cases, the condition (ii)-(b) or (iii) implies

that all points n of the Fourier support of u are equidistant from the origin, and so the effect of

the viscosity term is simply multiplication by the same constant for all Fourier modes. Then,

(ii)-(b) is preserved if Ω = 0 or P = P3 (and ν ̸= 0). Finally, we notice that the additional

condition Q(ω) = ±ω in (ii)-(b) is equivalent to saying that u∥(t∗)+Q(ω)e⊥ is a Beltrami flow.

Since the effect of the Coriolis term on each Fourier coefficient vector un is simply rotation on

the plane perpendicular to n (see (5.5) and following comments), in view of the characterization

Lemma 1.2, a Beltrami flow is changed to another Beltrami flow (of the same sign) by the linear

evolution (5.4).

The fact we have just verified is sufficient to conclude the if part of Theorem 5.1, because

each of the conditions (i)–(iii) at some time t∗ ∈ I implies that there is no nonlinear interaction

(i.e., the last term on the left-hand side of (5.3) vanishes) at t = t∗ (see the proof of the if part

of Theorem 1.4).

In the rest of this section, we shall prove the only if part of Theorem 5.1. We first recall the

following property of the matrix Jn (see, e.g., [1, Section 2]):

n · un = 0 ⇒


Jnun =

n3

|n|

( n

|n|
×un

)
,

e−ΩtJnun = cos
(
Ωt

n3

|n|

)
un − sin

(
Ωt

n3

|n|

)( n

|n|
×un

)
.

(5.5)

In particular, we see the following:

• If n ∈ P3={n : n3 = 0} and n · un = 0, then Jnun = 0 and e−ΩtJnun = un.

• If n ̸∈ P3, then on {v ∈ C3 : n ·v = 0}, Jn acts as rotation by ±π/2 plus multiplication

by a non-zero real constant n3/|n|, and e−ΩtJn acs as rotation by ±Ωtn3/|n|.
• Jn and e−ΩtJn commute with the operation in×. In particular, each of the sets of

positive and negative Beltrami vectors BV ± at n is invariant under Jn and e−ΩtJn .

Proof of the only if part of Theorem 5.1. When S is a subset of a line, there is no nonlinear

interaction, i.e., the nonlinear term in (5.3) vanishes for each n. Then, the evolution for each

coefficient vector un(t) is decoupled and becomes linear, verifying the case (i). When S has

three directions, we see that u(t) must be a Beltrami flow for each t, by exactly the same

reduction as given in Section 4. This again means that the nonlinear term in (5.3) vanishes

and each mode evolves linearly, which gives the case (iii). Also, when S is planar, ν = 0, Ω ̸= 0

but P = P3, the Coriolis term in (5.3) vanishes identically, which leads to the same situation

as for the Euler equation (1.2). Hence, the only situation requiring additional consideration is

the planar case (ii), with either ν ̸= 0 or “Ω ̸= 0, P ̸= P3”. As we will see below, a major part

of the argument in Section 3 remains valid in the present context.

First, assume that u is perpendicular to P everywhere at every time. Since there is no

nonlinear interaction for such a solution, each Fourier mode evolves linearly. This excludes the
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case that Ω ̸= 0 and P ̸= P3, for which the coefficient vector at any mode n with n3 ̸= 0 is

rotating and cannot be perpendicular to P for all time.

Hereafter, we assume that the horizontal component of u (the component parallel to P ) is

not identically zero. As in Lemma 2.1, we write

un(t) = u∥
n(t)e

∥
n + u⊥

n (t)e
⊥ (n ∈ S), e∥n := e⊥× n

|n| ,

so that the set S∥ := {n ∈ S : u
∥
n ̸≡ 0} is non-empty and symmetric. Taking the horizontal

component of the equation (5.3) and setting u
∥
n(t) := u

∥
n(t)e

∥
n, we obtain that

∂tu
∥
n + ν|n|2u∥

n − Ω
n3

|n|
u⊥
ne

∥
n +

i

2
P̂n

∑
n1,n2∈S∥
n1+n2=n

[
(u∥

n1
· n2)u

∥
n2

+ (u∥
n2

· n1)u
∥
n1

]
= 0,

(5.6)

which will be used as the counterpart of (3.1).

We begin with observing that S∥ is not contained in a line (and hence it has at least four

points). In fact, this can be shown in exactly the same way as for the Euler case; recall the

contradiction argument for proving Proposition 3.1(i). Now, the theorem follows once the

following claims (1)–(3) are verified:

(1) S∥ is contained in a circle centered at the origin.

(2) The set S⊥ := {n ∈ S : u⊥
n ̸≡ 0} is a subset of S∥ (and hence S = S∥).

(3) Each un(t) evolves linearly, and u⊥
n (t∗) = iκu

∥
n(t∗)

for some

{
κ ∈ R in Case A: Ω = 0 or P = P3, and ν ̸= 0,

κ ∈ {±1} in Case B: Ω ̸= 0 and P ̸= P3.

We shall prove these claims for the two Cases A and B separately.

Case A: Ω = 0 or P = P3, and ν ̸= 0.

In this case, the third term on the left-hand side of the equation (5.6) vanishes, so the

equation for the horizontal component u∥(t) is decoupled from that for the vertical part u⊥(t).

Then, the claim (1) can be verified by the same argument as in the Euler case; see the proof

of Proposition 3.1(i). In particular, there is no pair of frequencies in S creating the horizontal

component through the nonlinear interaction, so the horizontal component evolves linearly.

This allows us to set the horizontal component of u(t,x) as follows:

u∥(t,x) = e−νλ2(t−t∗)u∥(t∗,x) := e−νλ2(t−t∗)

p−1∑
j=0

αje
∥
nj
einj ·x,

where λ > 0 is the radius of the circle containing S∥, p ≥ 4 is an even integer, n0, . . . ,np−1

denote all the points of S∥ located in this order, and αj ∈ C \ {0} satisfies iαj+(p/2) = iαj for

0 ≤ j < p/2. The equation for the vertical component u⊥(t,x) =
∑

n∈S⊥
u⊥
n (t)e

in·x is given by

∂tu
⊥ − ν∆u⊥ + e−νλ2(t−t∗)

(
u∥(t∗) · ∇

)
u⊥ = 0, t ∈ I, (5.7)

which is the counterpart of (3.3) in the Euler case.

In order to prove the claims (2) and (3), we assume u⊥ ̸≡ 0 and set q := max{N(n) : n ∈
S⊥} > 0, where N is the Minkowski functional of Sconv

∥ on the plane P . Then, exactly the same

argument as for Lemma 3.2 shows that q must be a positive integer and S⊥∩∂[qSconv
∥ ] = {ñj,k :
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j = 0, . . . , p − 1, k = 0, . . . , q − 1}, where ñj,k = (q − k)nj + knj+1. In contrast to the Euler

case, it will turn out that q > 1 is prohibited due to the presence of the viscosity term in (5.7).

Following the proof of Lemma 3.3, we first obtain the same expression of {u⊥
ñj,k

}j,k as in the

Euler case:

u⊥
ñj,k

(t) =

(
q

k

)
(iαj)

q−k(iαj+1)
kβ(t), 0 ≤ j ≤ p− 1, 0 ≤ k ≤ q − 1, t ∈ I,

for some non-zero smooth function β : I → R. Similarly as before, the function ω(x) satisfying

∇×u∥(t∗,x) = λω(x)e⊥ is explicitly given by ω(x) =
∑p−1

j=0 iαje
inj ·x. Recalling that

ω(x)q =

p−1∑
j=0

q−1∑
k=0

(
q

k

)
(iαj)

q−k(iαj+1)
keiñj,k·x + η(x)

for some function η whose Fourier support is finite and contained in {n ∈ P : N(n) < q}, we
introduce a new function ζ(t,x) := u⊥(t,x)− β(t)ω(x)q whose Fourier support is contained in

{n ∈ P : N(n) < q}. From (5.7) and that (u∥(t∗) · ∇)ωq = 0,

∂tζ − ν∆ζ + e−νλ2(t−t∗)(u∥(t∗) · ∇)ζ = −β′(t)ωq + νβ(t)∆[ωq].

Since all the terms but the last one on the left-hand side have Fourier supports in qSconv
∥ , in

the same manner as we did in the proof of Lemma 3.3, we can show that the Fourier support of

ζ is actually contained in (q − 1)Sconv
∥ (and ζ ≡ 0 if q = 1). Comparing the Fourier coefficients

of the both sides at ñ0,0 as before, we have

0 = −β′(t)(iα0)
q + νβ(t)(−q2λ2)(iα0)

q.

Solving this, we have β(t) = β∗e
−νq2λ2(t−t∗) for some β∗ ∈ R \ {0}, which gives

∂tζ − ν∆ζ + e−νλ2(t−t∗)(u∥(t∗) · ∇)ζ = νβ∗e
−νq2λ2(t−t∗)

(
q2λ2ωq +∆[ωq]

)
. (5.8)

Now, we shall prove q = 1. Suppose q > 1, then the Fourier coefficient of the right-hand side

of (5.8) does not vanish at ñj,k for any 0 ≤ j ≤ p− 1 and 1 ≤ k ≤ q − 1; in fact, it is given by

νβ∗e
−νq2λ2(t−t∗)

(
q

k

)
(iαj)

q−k(iαj+1)
k
(
|ñj,0|2 − |ñj,k|2

)
.

On the other hand, the Fourier coefficient of the left-hand side of (5.8) at these frequencies can

be computed as

e−νλ2(t−t∗)
(
u∥
nj
(t∗) · i

[
(q − k − 1)nj + knj+1

])
ζ(q−k−1)nj+knj+1

+ e−νλ2(t−t∗)
(
u∥
nj+1

(t∗) · i
[
(q − k)nj + (k − 1)nj+1

])
ζ(q−k)nj+(k−1)nj+1

= e−νλ2(t−t∗)
[
(nj×nj+1) · e⊥

](
iαjkζ(q−k−1)nj+knj+1

− iαj+1(q − k)ζ(q−k)nj+(k−1)nj+1

)
.

(Note that the only possible pairs (n′, ñ′) with n′ ∈ S∥, ñ
′ ∈ (q − 1)Sconv

∥ , n′ + ñ′ = ñj,k

are (nj, (q − k − 1)nj + knj+1) and (nj+1, (q − k)nj + (k − 1)nj+1).) Comparing the Fourier

coefficients of both sides of (5.8) at these frequencies, we obtain the equality

iαjkζ(q−k−1)nj+knj+1
− iαj+1(q − k)ζ(q−k)nj+(k−1)nj+1
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= νβ∗e
−ν(q2−1)λ2(t−t∗)

(
q

k

)
(iαj)

q−k(iαj+1)
k |ñj,0|2 − |ñj,k|2

(nj×nj+1) · e⊥

for each 0 ≤ j ≤ p− 1 and 1 ≤ k ≤ q− 1. Noticing
(
q
k

)
= q

q−k

(
q−1
k

)
= q

k

(
q−1
k−1

)
, we divide both

sides of the above equality by k(q−k)
q

(
q
k

)
(iαj)

q−k(iαj+1)
k to have

ζ(q−k−1)nj+knj+1(
q−1
k

)
(iαj)q−k−1(iαj+1)k

−
ζ(q−k)nj+(k−1)nj+1(

q−1
k−1

)
(iαj)q−k(iαj+1)k−1

= νβ∗e
−ν(q2−1)λ2(t−t∗)

q

k(q − k)

|ñj,0|2 − |ñj,k|2

(nj×nj+1) · e⊥
.

Summing up these equalities for 0 ≤ j ≤ p− 1 and 1 ≤ k ≤ q − 1, we obtain

0 = qνβ∗e
−ν(q2−1)λ2(t−t∗)

p−1∑
j=0

q−1∑
k=1

|ñj,0|2 − |ñj,k|2

k(q − k)
[
(nj×nj+1) · e⊥

] .
Since all the terms in the sum are non-zero and have the same sign, this is a contradiction.

Therefore, it holds that q = 1 and ζ ≡ 0, and thus u⊥(t∗,x) = β∗ω(x) for some β∗ ∈ R \ {0}.
This shows the claims (2) and (3).

Case B: Ω ̸= 0 and P ̸= P3.

We have to modify the previous argument for Case A, since the equation (5.6) for u∥

now contains u⊥ as well. We again consider the set Sconv
∥ and the corresponding Minkowski

functional N on P . We shall derive q := max{N(n) : n ∈ S⊥} ≤ 1 before proving the claim

(1).

Suppose for contradiction that q > 1. Then, since ∂[qSconv
∥ ] contains at least one point of

S⊥, there is a side E of the polygon Sconv
∥ such that S⊥ ∩ [qE] ̸= ∅. Let n1,n2, . . . ,np be all the

points of S∥ located on E in this order; hence n1,np are the endpoints of E. Since P ̸= P3, we

may assume that n1 ̸∈ P3. Let n be the point of S⊥ ∩ [qE] which is the closest to the endpoint

qn1, and we claim that n = qn1. Suppose this is not the case, then the frequency n interacts

with n1 ∈ S∥ to create non-zero vertical component at n + n1. Since n + n1 ̸∈ S, there must

exist a pair (n′, ñ′) ∈ S∥×S⊥ such that (n′, ñ′) ̸= (n1,n) and n′+ ñ′ = n1+n. By an argument

using the linear functional which is equal to 1 on E, we see n′ ∈ E and ñ′ ∈ qE. It then holds

that n′ ∈ {n2, . . . ,np}, which however implies that ñ′ is either out of the segment qE or closer

to qn1 than n, contradicting the definition of n. We therefore verify that qn1 ∈ S⊥.

We next claim q < 2. To see this, observe that ΩJqn1uqn1 has non-zero horizontal component

(note that qn1 ̸∈ P3). Since qn1 ̸∈ S∥, from the equation (5.3) it must be canceled out by

the interaction of two frequencies n′,n′′ in S∥. This implies that q = N(qn1) = N(n′ + n′′) ≤
N(n′)+N(n′′) ≤ 2. Furthermore, if q = 2, then the only possible n′,n′′ ∈ S∥ with n′+n′′ = 2n1

is n′ = n′′ = n1 (this can be shown by using a linear functional f with f(n1) = 1 and f < 1 on

Sconv
∥ \ {n1}), which however do not interact. Therefore, it must hold that q < 2.

We can then deduce that all the vertices of Sconv
∥ are located on a circle on P centered at the

origin and there is no point of S∥ on ∂Sconv
∥ other than the vertices. To show this, it suffices to

verify that any vertex n0 of Sconv
∥ and an adjacent point n′

0 ∈ S∥ ∩ ∂Sconv
∥ satisfy |n0| = |n′

0|.
In fact, if |n0| ̸= |n′

0|, then non-zero horizontal component would be created at n0 + n′
0. Since

N(n0 + n′
0) = 2 and q < 2 imply n0 + n′

0 ̸∈ S, and that there is no other pair of frequencies
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in S∥ creating the mode n0 + n′
0, this component could not be canceled out, which contradicts

the equation (5.3).

So far, we have shown 1 < q < 2, qn1 ∈ S⊥, and S∥ ∩ E = {n1,n2}. We can now derive a

contradiction by an argument similar to the proof of Lemma 3.2. Indeed, the vertical component

at qn1+n2 ̸∈ S created from qn1 ∈ S⊥ and n2 ∈ S∥ could be canceled only by the contribution

from (q−1)n1+n2 and n1. The contribution from (q−1)n1+n2 ∈ S⊥ and n2 ∈ S∥ must in turn

be canceled with that from (q − 2)n1 + 2n2 and n1. However, since (q − 2)n1 + 2n2 ̸∈ qSconv
∥ ,

this is a contradiction. We therefore confirm that q ≤ 1.

Now that there is no point of S in {n ∈ P : N(n) > 1}, we can prove the claim (1) by

following the proof of Proposition 3.1(i). We first see that all the vertices of Sconv
∥ are located

on a circle centered at the origin and that S∥ ∩ ∂Sconv
∥ consists of the vertices of Sconv

∥ , which

is verified by the same argument as for the claim (a) in the proof of Proposition 3.1(i). Next,

we recall the argument for the claim (b) in the proof of Proposition 3.1(i) to show that there

is no point of S∥ in the interior of Sconv
∥ , and hence the claim (1).

Moreover, we follow the proof of Lemma 3.2 (and the first half of the proof of Lemma 3.3)

to see that q = 1, S⊥ ∩ ∂Sconv
∥ = S∥ (unless u⊥ ≡ 0) and

u∥
nj+1

(t)u⊥
nj
(t) = u∥

nj
(t)u⊥

nj+1
(t), 0 ≤ j ≤ p− 1, t ∈ I. (5.9)

Since each of u
∥
nj(t), u

⊥
nj
(t) is real analytic and not identically zero on I (unless u⊥ ≡ 0), the

above relations (5.9) are easily extended to

u∥
nj
(t)u⊥

nj′
(t) = u∥

nj′
(t)u⊥

nj
(t), 0 ≤ j, j′ ≤ p− 1, t ∈ I.

Hence, we deduce from Lemma 2.1 that there is no interaction between any pair {nj,nj′} of two

vertices of Sconv
∥ (not necessarily adjacent). Using this fact, we can show S⊥∩{n ∈ P : N(n) <

1} = ∅ by a slight modification of the argument for the claim (b) in the proof Proposition 3.1(i).

This verifies the claim (2).

Finally, we shall establish the claim (3). We have already seen that there is no interaction

between any pair of frequencies in S. Then, all the coefficient vectors evolve linearly: un(t) =

e−νλ2(t−t∗)e−Ω(t−t∗)Jnun(t∗); or in each component,

u∥
n(t) = e−νλ2(t−t∗)

{
cos
(
Ω(t− t∗)

n3

|n|

)
u∥
n(t∗) + sin

(
Ω(t− t∗)

n3

|n|

)
u⊥
n (t∗)

}
,

u⊥
n (t) = e−νλ2(t−t∗)

{
− sin

(
Ω(t− t∗)

n3

|n|

)
u∥
n(t∗) + cos

(
Ω(t− t∗)

n3

|n|

)
u⊥
n (t∗)

} (5.10)

for t ∈ I and n ∈ S.

Here, we claim that u
∥
n(t) ̸= 0 for all n ∈ S and t ∈ I. Suppose this is not the case, say

u
∥
nj(τ) = 0 for some j and τ ∈ I. Note that u⊥

nj
(τ) ̸= 0, since otherwise we have unj

≡ 0 on I

from (5.10), contradicting that nj ∈ S∥. The relation (5.9) then implies that u
∥
nj+1(τ) = 0, and

similarly, u
∥
n(τ) = 0 and u⊥

n (τ) ̸= 0 for all n ∈ S. From (5.10), we have

u∥
n(t) = e−νλ2(t−τ) sin

(
Ω(t− τ)

n3

λ

)
u⊥
n (τ),

u⊥
n (t) = e−νλ2(t−τ) cos

(
Ω(t− τ)

n3

λ

)
u⊥
n (τ), n ∈ S, t ∈ I.
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Substituting them into (5.9), we obtain that

sin
(
Ω(t− τ)

n3
j+1 − n3

j

λ

)
= 0, 0 ≤ j ≤ p− 1, t ∈ I.

This is, however, impossible because the assumption P ̸= P3 implies n3
j+1 ̸= n3

j for some j.

Now, from (5.9) we see that γ(t) := u⊥
n (t)/u

∥
n(t) ∈ C is independent of n ∈ S for each t ∈ I.

Moreover, since u(t) is real-valued, it holds that unp/2
(t) = un0(t); i.e., (−u

∥
np/2

(t), u⊥
np/2

(t)) =

(u
∥
n0(t), u⊥

n0
(t)). Therefore, we have

γ(t) =
(u⊥

n0
(t)

u
∥
n0(t)

)
=

u⊥
np/2

(t)

−u
∥
np/2

(t)
= −γ(t),

which shows that γ(t) = iκ(t) with κ(t) ∈ R. Substituting the relation u⊥
n (t) = iκ(t)u

∥
n(t) into

(5.10), we have

− sinϕ+ iκ(t∗) cosϕ = iκ(t)
{
cosϕ+ iκ(t∗) sinϕ

}
, ϕ := Ω(t− t∗)

n3

|n|

for any t ∈ I and n ∈ S. If we choose n ∈ S \P3 and t ∈ I such that ϕ ̸∈ π
2
Z, then this implies

1 = κ(t)κ(t∗) and κ(t) = κ(t∗), and therefore κ(t) ∈ {±1}. By the continuity of γ(t), it holds

either κ(t) ≡ 1 or κ(t) ≡ −1 on I. We have thus proved the claim (3) for Case B.

This is the end of the proof of Theorem 5.1. □
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