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Polarized superspecial simple abelian surfaces with
real Weil numbers: a survey

By

Jiangwei Xue∗ and Chia-Fu Yu∗∗

Abstract

In this survey article we describe recent results of explicit formulae for (a) the number
of superspecial abelian surfaces over Fq with real Frobenius endomorphism √

q equipped with
a polarization module; (b) the type number of each genus of these polarized superspecial
abelian surfaces; and (c) the refined class and type numbers of such abelian surfaces with a
given automorphism group. These formulae suggest an interesting connection with arithmetic
genera of Hilbert modular surfaces.

§ 1. Introduction

The aim of this article is to report recent progress on explicit formulae for variant
counting problems for polarized superspecial abelian surfaces in the isogeny class corre-
sponding to a real Weil number. Throughout this article p denotes a prime number. Let
Fq denote the finite field of q = pn elements, and let π be a Weil q-number. Let Xπ/Fq

be a simple abelian variety attached to the Galois conjugacy class of the Weil q-number
π by the Honda-Tate theorem. The abelian variety Xπ is unique up to Fq-isogeny. We
denote by

Isog(π) := {Fq-isom. classes of abelian varieties X that are Fq-isogenous to Xπ}.
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Explicit calculation of the size of Isog(π) is an interesting problem; though some special
cases are known, many of them are still open. This challenging problem compels us to
explore various arithmetic techniques and methods. The problem was first studied by
Deuring for elliptic curves and was extended by Waterhouse for abelian varieties. How-
ever, explicit formulae for the number of abelian surfaces over Fq in a (not necessarily
simple) isogeny class were only known quite recently. The cases of superspecial abelian
surfaces are determined in the works [20,21,22,23] of Tse-Chung Yang and the present
authors.

It is also interesting to count abelian varieties equipped with a polarization within
a fixed Fq-isogeny class. Problems in this direction are studied by Howe, Ritzenthaler,
Achter, Marseglia, and many others; see [1, 7, 9, 10,13,24]. Let

PPAV(π) := {prin. pol. abelian varieties (X,λ) over Fq with [X] ∈ Isog(π)}/'/Fq
.

Let Dπ := End0(Xπ) be the endomorphism algebra of Xπ over Fq. Put

Tp(π) := {End(X) | [X] ∈ Isog(π) }/' (conjugate by D×
π ),

Tppp(π) := {End(X) | [X,λ] ∈ PPAV(π) }/' (conjugate by D×
π ).

Set

h(π) := |Isog(π)|, hpp(π) := |PPAV(π)|,
t(π) := |Tp(π)|, tpp(π) := |Tppp(π)|.

We also study refined class numbers with a fixed automorphism group. For any finite
group G, let

hpp(π,G) := #{[X,λ] ∈ PPAV(π) | Aut(X,λ) ' G}.

If Xπ is supersingular, we put

Sp(π) := {[X] ∈ Isog(π) |X is superspecial },

PPSp(π) := {[X,λ] ∈ PPAV(π) |X is superspecial }.

In the following, we let π be a real Weil q-number, that is, π = ±√q . Then

Dπ '

Dp,∞ if n is even,
D∞1,∞2

if n is odd,

where Dp,∞ is the definite quaternion Q-algebra ramified exactly at {p,∞}, and D∞1,∞2

is the definite quaternion F -algebra ramified exactly at the two real places {∞1,∞2}
of F = Q(

√
p ).
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When π = ±√q with n even, the classical result of Deuring establishes a bijection
between the set Isog(π) and the set Cl(Dp,∞) of ideal classes of a maximal order in
Dp,∞. The class number h of Dp,∞ is well known due to Eichler [5] (Deuring and Igusa
gave different proofs of this result), and is given by

(1.1) h =
p− 1

12
+

1

3

(
1−

(
−3

p

))
+

1

4

(
1−

(
−4

p

))
,

where
(

·
p

)
denotes the Legendre symbol. Under the correspondence Isog(π) ' Cl(Dp,∞),

the type number t of Dp,∞ is equal to the number of non-isomorphic endomorphism
rings of members [E] in Isog(π). An explicit type formula is also well known due to
Deuring [4], which is given by

(1.2) t =
p− 1

24
+

1

6

(
1−

(
−3

p

))
+


h(−p)/4 if p ≡ 1 (mod 4),

1/4 + h(−p)/2 if p ≡ 7 (mod 8),

1/4 + h(−p) if p ≡ 3 (mod 8),

for p > 3, and t = 1 for p = 2, 3. Here for any square-free integer d ∈ Z, we write h(d)

for the class number of Q(
√
d ).

For p = 2, 3, one has h = 1 and the unique elliptic curve [E] ∈ Isog(π) has
automorphism group

(1.3) Aut(E) '

SL2(F3) ' E24 for p = 2;
C3 ⋊ C4 ' Q12 for p = 3.

Here Cn is the cyclic group of order n, E24 is the binary tetrahedral group, and Q12 is the
dicyclic group of order 12. If p ≥ 5, then for any [E] ∈ Isog(π), Aut(E) ∈ {C2, C4, C6}.
For p ≥ 5, we have

h(π,C2) =
p− 1

12
− 1

4

(
1−

(
−4

p

))
− 1

6

(
1−

(
−3

p

))
,(1.4)

h(π,C4) =
1

2

(
1−

(
−4

p

))
, h(π,C6) =

1

2

(
1−

(
−3

p

))
,(1.5)

where h(π,G) denotes the number of supersingular elliptic curves [E] ∈ Isog(π) such
that Aut(E) ' G. The aim of [26] and some earlier works of the authors is to generalize
(1.2)-(1.5) from supersingular elliptic curves to polarized simple superspecial abelian
surfaces with Weil q-number √q for an odd power q of p.

§ 2. Explicit formulae for superspecial abelian surfaces

Now let q be an odd power of p, and let Sp(
√
q ) be the set of isomorphism classes

of superspecial abelian surfaces over Fq in the isogeny class corresponding to the Weil
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numbers ±√q . As a generalization of (1.1), we have the following explicit formula for
| Sp(√q )| (see [22, Theorem 1.2], see also [21, Theorem 1.3]).

Theorem 2.1. Let F = Q(
√
p ), and OF be its ring of integers.

(1) The cardinality of Sp(√q ) depends only on p, and is denoted by H(p).
(2) We have H(p) = 1, 2, 3 for p = 2, 3, 5, respectively.
(3) For p > 5 and p ≡ 3 (mod 4), one has

H(p) = h(F )

[
ζF (−1)

2
+

(
13− 5

(
2

p

))
h(−p)

8
+

h(−2p)

4
+

h(−3p)

6

]
,

where h(F ) is the class number of F and ζF (s) is the Dedekind zeta function of F .
(4) For p > 5 and p ≡ 1 (mod 4), one has

H(p) =

h(F )
[
8ζF (−1) + 1

2h(−p) + 2
3h(−3p)

]
for p ≡ 1 (mod 8);

h(F )
[(

45+ϖ
2ϖ

)
ζF (−1) +

(
9+ϖ
8ϖ

)
h(−p) + 2

3h(−3p)
]

for p ≡ 5 (mod 8);

where $ := [O×
F : A×] ∈ {1, 3} and A := Z[√p ] is the suborder of index 2 in OF .

Let T (Sp(
√
q )) denote the set of isomorphism classes of endomorphism rings of

abelian surfaces in Sp(
√
q ). The cardinality of T (Sp(

√
q )) again depends only on the

prime p ( [21, Theorem 1.3]), and is denoted by T (p). We have the following explicit
formula for T (p) [27, Theorem 1.2], which generalizes (1.2).

Theorem 2.2. Let F = Q(
√
p ) and T (p) := |T (Sp(

√
q ))|.

(1) We have T (p) = 1, 2, 3 for p = 2, 3, 5, respectively.
(2) For p ≡ 3 (mod 4) and p ≥ 7, we have

(2.1) T (p) =
ζF (−1)

2
+

(
13− 5

(
2

p

))
h(−p)

8
+

h(−2p)

4
+

h(−3p)

6
.

(3) For p ≡ 1 (mod 4) and p ≥ 13, we have

(2.2) T (p) = 8ζF (−1) +
h(−p)

2
+

2h(−3p)

3
.

It follows from Theorems 2.1 and 2.2 that H(p) = T (p)h(F ) except for the case
where p ≡ 5 (mod 8) and $ = 1. When p ≡ 3 (mod 4), we actually prove this result
first and use it to get formula (2.1). For the case where p ≡ 1 (mod 4), we explain how
this coincidence arises in part (1) of Remark 4.3 of [27].

For refined class numbers we restrict ourselves to superspecial abelian surfaces
whose endomorphism rings are maximal orders.



Superspecial abelain surfaces 43

Let D = D∞1,∞2
be the totally definite quaternion F -algebra ramified only at the

two infinite places of F . Fix a maximal OF -order O in D. In this case, there is a natural
bijection (see [19, Theorem 6.2] and [22, Theorem 6.1.2])

Cl(O) ' {[X] ∈ Sp(π) | OF ⊂ End(X)}.

For any member [X] ∈ Sp(π), the reduced automorphism group is defined by RAut(X) :=

Aut(X)/Z×, where Z := End(X) ∩ F . For any finite group G, put

h(G) := #{[X] ∈ Sp(
√
q ) | OF ⊂ End(X),RAut(X) ' G}.

t(G) := #{End(X) | [X] ∈ Sp(
√
q ), OF ⊂ End(X),RAut(X) ' G}/' .

The number t(G) is actually the number of D×-conjugacy classes of maximal OF -orders
O ⊂ D such that O×/O×

F ' G, which is the refined type number of D with respect to
G.

We have the class-type number relation [27]

(2.3) h(G) = h(F ) · t(G), ∀G.

Thus, knowing t(G) amounts to knowing h(G). For any n ≥ 1, denote by Dn the
dihedral group of order 2n.

Lemma 2.3. We have

• p = 2, h(O) = 1 and h(S4) = 1.

• p = 3, h(O) = 2 and h(S4) = h(D12) = 1.

• p = 5, h(O) = 1 and h(A5) = 1.

Theorem 2.4. Assume p ≥ 7.
(1) (Hashimoto [8]) For p ≡ 1 mod 4, we have

t(C1) =
ζF (−1)

2
− h(−p)

8
− h(−3p)

12
− 1

4

(
3

p

)
− 1

4

(
2

p

)
+

1

2
,

t(C2) =
h(−p)

4
+

1

2

(
3

p

)
+

1

4

(
2

p

)
− 3

4
,

t(C3) =
h(−3p)

4
+

1

4

(
3

p

)
+

1

2

(
2

p

)
− 3

4
,

t(D3) =
1

2

(
1−

(
3

p

))
, t(A4) =

1

2

(
1−

(
2

p

))
,

and t(G) = 0 for any group G not in the above list.
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(2) (Li-Xue-Yu [12]) For p ≡ 3 mod 4, we have

t(C1) =
ζF (−1)

2
+

(
−7 + 3

(
2

p

))
h(−p)

8
− h(−2p)

4
− h(−3p)

12
+

3

2
,

t(C2) =

(
2−

(
2

p

))
h(−p)

2
+

h(−2p)

2
− 5

2
,

t(C3) =
h(−3p)

4
− 1, t(C4) =

(
3−

(
2

p

))
h(−p)

2
− 1,

t(D3) = 1, t(D4) = 1, t(S4) = 1,

and t(G) = 0 for any group G not listed above.

By Theorem 2.4, there exists a supersingular abelian surface X over Fp with non-
abelian reduced automorphism group RAut(X) if and only if p 6≡ 1 (mod 24). Note
that p ≡ 3 (mod 4) implies that p 6≡ 1 (mod 24).

§ 3. Explicit formulae for polarized superspecial abelian surfaces

In this section we consider superspecial abelian surfaces equipped with a polariza-
tion. For simplicity and without loss of generality, we may assume π =

√
p , instead of

√
q for an odd power q of p. Observe that the set PPSp(

√
q ) of isomorphism classes

of principally polarized superspecial abelian surfaces over Fq with Frobeninus endomor-
phism π = ±√q is naturally in bijection with the set of PPAV(

√
p ) of those of principally

polarized supersingular abelian surfaces over Fp with π = ±√p . Our aim is to compute
explicit formulae for hpp(

√
p ), tpp(√p ), and refined class numbers hpp(

√
p ,G). One can

also consider an explicit formula for tpp(
√
p ,G), but this can be deduced from the for-

mula for t(
√
p ,G) and is skipped for simplicity. The followings are new results proved

in [26].

Theorem 3.1.
(1) hpp(

√
p ) = 1, 1, 2 for p = 2, 3, 5, respectively.

(2) For p ≥ 13 and p ≡ 1 (mod 4),

(3.1) hpp(
√
p ) =

(
9− 2

(
2

p

))
ζF (−1)

2
+

3h(−p)

8
+

(
3 +

(
2

p

))
h(−3p)

6
.

(3) For p ≥ 7 and p ≡ 3 (mod 4),

(3.2) hpp(
√
p ) =

ζF (−1)

2
+

(
11− 3

(
2

p

))
h(−p)

8
+

h(−3p)

6
.

Theorem 3.2. The type number tpp(
√
p ) of PPAV(

√
p ) is given as follows:
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(1) tpp(
√
p ) = 1, 1, 2 for p = 2, 3, 5, respectively.

(2) If p ≡ 1 (mod 4) and p ≥ 13, then

(3.3) tpp(
√
p ) = 8ζF (−1) +

h(−p)

2
+

2h(−3p)

3
.

(3) If p ≡ 3 (mod 4) and p ≥ 7, then

(3.4) tpp(
√
p ) =

ζF (−1)

4
+

(
17−

(
2

p

))
h(−p)

16
+

h(−2p)

8
+

h(−3p)

12
.

Recall that for each finite group G,

hpp(
√
p ,G) := #{[X,λ] ∈ PPAV(

√
p ) : Aut(X,λ) ' G}.

For m ≥ 2, let
Q4m := 〈s, t | s2m, t2 = sm, tst−1 = s−1〉,

and call it the dicyclic group of order 4m. When m = 2, Q8 = {±1,±i,±j,±k} is the
quaternion group of order 8.

For p = 2, 3, PPAV(
√
p ) = {[X,λ]} consists of one member, and

Aut(X,λ) '

E48 for p = 2,

Q24 for p = 3,

where E48 denotes the binary octahedral group. For p = 5, PPAV(
√
p ) = {[X1, λ1], [X16, λ16]}

consists of two members, where End(X1) is a maximal order and End(X16) is an order
of index 16 in any maximal order containing it. Moreover,

Aut(X1, λ1) ' E120 ' SL2(F5), E120/{±1} ' A5, and Aut(X16, λ16) ' Q12.

The group E120 is generally called the binary icosahedral group.
For p ≥ 7, if G = Aut(X,λ) for some (X,λ) ∈ PPAV(

√
p ), then

G ∈ {C2, C4, C6, Q8, Q12, E24}, and
G ∈ {C2, C4, C6, Q12, E24}, if p ≡ 1 (mod 4).

We have the following explicit formulae for refined class numbers hpp(G), where we
write hpp(G) for hpp(

√
p ,G).

Theorem 3.3. Let p ≥ 7 be a prime.
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(1) If p ≡ 1 (mod 4), then

hpp(C2) =

(
9− 2

(
2

p

))
ζF (−1)

2
− 3h(−p)

8
−

(
3 +

(
2

p

))
h(−3p)

12

− 1

4

(
2

p

)
− 1

2

(
p

3

)
+

3

4
,

hpp(C4) =
3h(−p)

4
+

1

4

(
2

p

)
+

(
p

3

)
− 5

4
,

hpp(C6) =
1

4

(
3 +

(
2

p

))
h(−3p) +

1

2

(
2

p

)
+

1

2

(
p

3

)
− 1,

hpp(Q12) = 1−
(
p

3

)
, hpp(E24) =

1

2

(
1−

(
2

p

))
.

(2) If p ≡ 3 (mod 4), then

hpp(C2) =
ζF (−1)

2
−

(
11− 3

(
2

p

))
h(−p)

8
− h(−3p)

12
+

1

4

(
2

p

)
− 1

2

(
p

3

)
+

5

4
,

hpp(C4) =

(
11

4
− 3

4

(
2

p

))
(h(−p)− 1)−

(
2

p

)
+

(
p

3

)
,

hpp(C6) =
h(−3p)

4
− 1

2

(
2

p

)
+

1

2

(
p

3

)
− 1,

hpp(Q8) = 1, hpp(Q12) = 1−
(
p

3

)
, hpp(E24) =

1

2

(
1 +

(
2

p

))
.

As a convention, if G is any finite group not listed above, then hpp(G) = 0.

§ 4. On the proofs

We explain the ideas of the proof of Theorem 3.1.

§ 4.1. Decomposition into genera

The notion of genera for abelian varieties with or without additional structures
appears in [28, 29], and is investigated further in [24]. If x = X0 is an abelian variety
over Fq, we define a group scheme Gx over Z as follows: for any commutative ring R,
Gx(R) := (End(X0) ⊗ R)×. If x = (X0, λ0) is a polarized abelian variety over Fq, we
define a group scheme Gx over Z similarly:

Gx(R) := {g ∈ (End(X0)⊗R)× : gtλg = λ}

for any commutative ring R.
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Definition 4.1. (1) Let X1 and X2 be two abelian varieties over Fq. They are
said to be isogenous, denoted by X1 ∼ X2, if there exists a quasi-isogeny α : X1 → X2

over Fq. They are said to be in the same genus if X1 ∼ X2 and X1[`
∞] ' X2[`

∞]

over Fq for all primes ` including p. The genus of X1, denoted by G(X1), consists of all
abelian varieties X2/Fq which are in the same genus as X1.

(2) Two polarized abelian varieties (X1, λ1) and (X2, λ2) over Fq are said to be
isogenous, denoted by (X1, λ1) ∼ (X2, λ2), if there exists a quasi-isogeny α : X1 → X2

over Fq such that α∗λ2 = λ1. They are said to be in the same genus if (X1, λ1) ∼
(X2, λ2) and (X1, λ1)[`

∞] ' (X2, λ2)[`
∞] for all primes `. The genus of (X1, λ1), denote

by G(X1, λ1), consists of all polarized abelian varieties (X2, λ2)/Fq which are in the
same genus as (X1, λ1).

Proposition 4.2. Let x = X0 be an abelian variety over Fq, and let Λ(x) be the
set of isomorphism classes of members in the genus G(x) of X0. Let x = (X0, λ0) be
a polarized abelian variety over Fq, and let Λ(x) be the set of isomorphism classes of
members in the genus G(x) of (X0, λ0). Then there are natural bijections:

Λ(x) ' Gx(Q)\Gx(Af )/Gx(Ẑ),

Λ(x) ' Gx(Q)\Gx(Af )/Gx(Ẑ).

In general, one has

Isog(π) =
r∐

i=1

Λ(xi), PPAV(π) =
r′∐
i=1

Λ(xi).

Therefore, h(π) = | Isog(π)| is a sum of certain class numbers of Gxi
and hpp(π) =

|PPAV(π)| is a sum of certain class numbers of Gxi
.

§ 4.2. The unpolarized case Isog(
√
p ).

From now on, let π =
√
p , and D = D∞1,∞2

. One has

Isog(
√
p ) =

Λ1

∐
Λ8

∐
Λ16, if p ≡ 1 (mod 4);

Λ1 otherwise.

For each i ∈ {1, 8, 16}, we have Λi ' D×\D̂×/Ô×
i , where Oi ⊂ D is an order satisfying

(4.1) there exists [X] ∈ Λi with Oi ' End(X).

Such orders can easily be described locally at each prime ` using Tate’s theorem. The
subscript i ∈ {1, 8, 16} is chosen so that Oi has index i in any maximal order containing
it. Particularly, O1 is maximal.
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In this case, one has |Λ1| = h(O1) = h(D) and h(D) = h(F )t(D), where t(D) is
the type number of the quaternion algebra D. For p ≥ 7, one has

t(D) =
ζF (−1)

2
+

h(−p)

8
+

h(−3p)

6
, for p ≡ 1 (mod 4),

t(D) =
ζF (−1)

2
+

(
13− 5

(
2

p

))
h(−p)

8
+

h(−2p)

4
+

h(−3p)

6
, for p ≡ 3 (mod 4),

which is due to Peters, Kitaoka and Ponomarev; see [11,14].
Let dF be the discriminant of F = Q(

√
p ), which is equal to p or 4p depending on

whether p ≡ 1 (mod 4) or not. Several people have also observed that

(4.2) t(D) = H+(dF ),

where H+(dF ) is the proper class number of even positive definite quaternary quadratic
forms over Z of discriminant dF .

§ 4.3. The polarized case PPAV(
√
p ).

We have the decomposition into genera:

(4.3) PPAV(
√
p ) =

Λpp
1

∐
Λpp
16 , if p ≡ 1 (mod 4);

Λpp
1 , if p ≡ 3 (mod 4) or p = 2.

For each i ∈ {1, 16}, fix an order Oi ⊂ D such that

(4.4) there exists [X,λ] ∈ Λpp
i with Oi ' End(X).

Then there is a bijection

(4.5) Λpp
i ' D1\D̂1/Ô1

i

where D̂1 := Ker(N : D̂× → F̂×), and D1, Ô1
i ⊂ D̂1 are norm one subgroups in D×

and in Ô×
i , respectively.

Let us take a closer look at condition (4.4) for i = 1. Fix a maximal order O0

satisfying (4.4). The set Tp(D) of types of maximal orders of D can be expressed as

Tp(D) ' D×\D̂×/N (Ô0),

where N (Ô0) is the normalizer of Ô0 in D̂×. Denote

(4.6) Ψ : Λpp
1 → Tp(D), [X,λ] 7→ [End(X)].
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For the moment, suppose that p ≡ 3 (mod 4). Then the Gauss genus group
Pic+(OF )/Pic+(OF )

2 can be canonically identified with the multiplicative group {±1}.
The surjective norm map

(4.7) Tp(D) ' D×\D̂×/N (Ô0)
N−→ F×

+ \F̂×/(F̂×)2Ô×
F = {±1}

induces a decomposition

Tp(D) = Tp+(D)
∐

Tp−(D),

where Tp+(D) and Tp−(D) are the fibers of +1 and −1, respectively. It can be shown
that a maximal order O ⊂ D satisfies (4.4) if and only if [O] ∈ Tp+(D). Therefore,

(4.8) tpp(
√
p ) = |Tp+(D)| when p ≡ 3 (mod 4).

Chan and Peters [3] made the following improvement of (4.2). When p ≡ 3 (mod 4),
the quaternary quadratic forms in question are separated into two genera since the Gauss
genus group Pic+(OF )/Pic+(OF )

2 has order 2 in this case. Changing the notation
slightly, write γ+ for the principal Gauss genus and γ− the non-principal one. Chan
and Peters showed that there is a way to label the two genera of quaternary quadratic
forms by γ+ and γ− respectively such that

H+(4p) = H+(4p, γ+) +H+(4p, γ−), and(4.9)

H+(4p, γ+) = |Tp+(D)|

=
ζF (−1)

4
+

(
17−

(
2

p

))
h(−p)

16
+

h(−2p)

8
+

h(−3p)

12
,

(4.10)

H+(4p, γ−) = |Tp−(D)|

=
ζF (−1)

4
+

(
9− 9

(
2

p

))
h(−p)

16
+

h(−2p)

8
+

h(−3p)

12
.

(4.11)

Combining with (4.8) we obtain a new relation

(4.12) tpp(
√
p ) = H+(4p, γ+) when p ≡ 3 (mod 4).

For notation, we put t(D, γ+) := |Tp+(D)| and t(D, γ−) := |Tp−(D)|.
We return to the general case where p is arbitrary.

Lemma 4.3. (1) If p 6≡ 3 (mod 4), then the map Ψ : Λpp
1

∼−→ Tp(D) is a
bijection.

(2) If p ≡ 3 (mod 4), then Ψ : Λpp
1 ↠ Tp+(D) is a two-to-one cover ramified over

the subset
{[O] ∈ Tp+(D) : N(O×) = O×

F,+}.
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Part (1) of the lemma implies that when p ≡ 1 (mod 4), condition (4.4) is no more
stronger than condition (4.1) (as far as maximal orders are concerned). Moreover, in
this case

|Λpp
1 | = |Tp(D)| = h(O0)

h(F )
=

ζF (−1)

2
+

h(−p)

8
+

h(−3p)

6
.

Similar results hold for i = 16 as well, so we have

|Λpp
16 | = |Tp(O16)| =

h(O16)

h(A)
, where A = Z[

√
p ].

This gives

|Λpp
16 | =

(
8− 2

(
2

p

))
ζF (−1)

2
+

h(−p)

4
+

(
2 +

(
2

p

))
h(−3p)

6
.

Combining the above formulas, we obtain

hpp(
√
p ) = |Λpp

1 |+ |Λpp
16 |

=

(
9− 2

(
2

p

))
ζF (−1)

2
+

3h(−p)

8
+

(
3 +

(
2

p

))
h(−3p)

6
.

This completes the proof for the case p ≡ 1 (mod 4).

§ 4.4. The case p ≡ 3 (mod 4): the class number formula of the norm one
group.

For this part we use the Selberg trace formula. In our initial proof, we calculate the
orbital integrals in the elliptic terms directly. The approach we explain here uses the
formulae for norm-one class numbers and spinor class numbers of quaternion algebras
in [25]. That simplifies and shortens the direct compuations.

From the previous section, the task of computing hpp(
√
p ) when p ≡ 3 (mod 4) is

separated into two steps:

1. find an explicit maximal order O0 in D = D∞1,∞2
satisfying (4.4);

2. compute the class number h1(O0) := |D1\D̂1/Ô1
0|.

Combining (4.3) and (4.5), we get hpp(
√
p ) = h1(O0).

The first step is relatively easy. Let E/Fp2 be an elliptic curve with [E] ∈ Isog(p),
and λE be the canonical principal polarization of E. Take (X,λX) := ResFp2/Fp

(E, λE),
the Weil restriction of (E, λE) with respect to Fp2/Fp. Then [X,λX ] ∈ PPAV(

√
p ).

For simplicity, put o := EndFp2
(E), which is a maximal order in End0Fp2

(E) = Dp,∞.
Similarly, put O := EndFp

(X), which is also a maximal order in End0Fp
(X) = D. By

functoriality of the Weil restriction, o⊗OF acts on X. This action identifies Dp,∞ ⊗F

with D and realizes o⊗OF as a suborder of O.
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Now we make the above construction explicit. Since p ≡ 3 (mod 4), there is a
unique member [E0] ∈ Isog(p) with AutFp2

(E0) ' C6 by (1.5). Its endomorphism ring
is given by

(4.13) o0 := EndFp2
(E0) = Z[i, (1 + jp)/2] ⊆ Dp,∞,

where 1, i, jp, ijp is a Q-basis of Dp,∞ satisfying i2 = −1, j2p = −p and i · jp = −jp · i.
Now put j := jp/

√
p ∈ D = Dp,∞ ⊗ Q(

√
p ), then 1, i, j, ij is the standard basis of

D =
(

−1,−1
Q(

√
p )

)
. One easily checks that

(4.14) O0 := OF +OF i+OF

√
p + j

2
+OF i ·

√
p + j

2

is the unique maximal order in D containing o0 ⊗ OF . Therefore, if we put X0 =

ResFp2/Fp
(E0), then O0 = EndFp

(X0), and it satisfies (4.4) by our construction.
Now we move on to the next step. To motivate the calculation of the class number

h1(O0), let us recall the classical Eichler class number formula. For the moment let F

be an arbitrary totally real field, D be a totally definite quaternion F -algebra of reduced
discriminant d, and O ⊂ D be an Eichler OF -order of level n in D. The class number
h(O) by definition is the cardinality of the double coset space D×\D̂×/Ô×. According
to [17, Corollary V.2.5], h(O) can be computed by the following formula:

(4.15) h(O) = Mass(O) +
1

2

∑
w(B)>1

h(B)(1− w(B)−1)
∏
p

mp(B),

Here Mass(O) is defined in [17, p. 143] and can be computed by the mass formula [17,
Corollary V.2.3]. The summation is taken over all OF -orders B such that B ⊗OF

F is
a CM-extension of F and w(B) := [B× : O×

F ] > 1. Up to isomorphism, there are only
finitely many such orders B, so the summation is finite. Lastly, for each finite prime
p of F , we write Emb(Bp,Op) for the set of optimal embeddings of Bp into Op. More
explicitly,

(4.16) Emb(Bp,Op) := {ϕp : Bp ↪→ Op | Op/ϕp(Bp) is OFp
-torsion free}.

We define mp(B) to be the number of O×
p -conjugacy classes of optimal embeddings of

Bp into Op, that is,
mp(B) := |Emb(Bp,Op)/O×

p |.

The formula for mp(O) is given by Eichler in the case n is square-free and by Hijikata for
general n. For almost all p, we have Op ' Mat2(OFp

), which implies that mp(B) = 1.
Thus the product in (4.15) is finite as well. In fact, many results in this article (such
as formula (1.1) and Theorem 2.1) are direct consequences of (variants of) Eichler class
number formula.



52 Jiangwei Xue and Chia-Fu Yu

Naturally, one desires a similar formula for the class number h1(O) := |D1\D̂1/Ô1|.
Different from h(O), the value of h1(O) depends not only on F , d and n, but also more
subtly on O itself. To explain this, let us fix an Eichler order O0 of level n and write
Tp(O0) for the set of types of Eichler orders of level n in D. Similar to (4.7), we consider
the (surjective) reduced norm map

(4.17) Tp(O0) ' D×\D̂×/N (Ô0)
N−→ F×

+ \F̂×/N(N (Ô0)).

Two Eichler orders O and O′ of level n are said to be in the same spinor genus and
denoted by O ∼ O′ if their types [O] and [O′] belong to the same fiber of the norm map
in (4.17). This definition does not depend on the choice of O0. An easy calculation
shows that h1(O) is uniquely determined by the spinor genus of O. Thus to get a class
number formula for h1(O), one must make distinctions of the spinor genera and figure
out how such distinctions manifest themselves in the calculation of h1(O). It is at this
critical juncture where optimal spinor selectivity comes in.

Let K/F be a CM-extension that is F -embeddable into D, and B ⊂ K be an
OF -order. We define the symbol

(4.18) ∆(B,O) =

1 if ∃O′ such that O′ ∼ O and Emb(B,O′) 6= ∅;
0 otherwise.

Once again, Emb(B,O′) denotes the set of optimal embeddings of B into O′. From [18,
Corollary 30.4.8], there exists an Eichler order O0 of level n in D with Emb(B,O0) 6= ∅
if and only if mp(B) 6= 0 for every finite prime p. In particular, ∆(B,O) = 0 if there
exists p such that mp(B) = 0.

Definition 4.4. Suppose that mp(B) 6= 0 for every finite prime p. We say B

is optimally spinor selective (or selective for short) for Eichler orders of level n in D if
there exists an Eichler order O′′ of level n such that ∆(B,O′′) = 0.

The assumption of Definition 4.4 guarantees that there exists an Eichler order O0

of level n with ∆(B,O0) = 1. If B is selective and ∆(B,O′
0) = 1 for some O′

0, then we
say the spinor genus of O′

0 is selected by B.
Factorize the level n into a product of prime powers

∏
p p

νp(n). The optimal spinor
selectivity theorem provides an elegant criterion for selectivity in terms of class field
theory.

Theorem 4.5. Let D be a totally definite quaternion algebra over a totally real
field F , and let B be an OF -order of a CM-extension K/F . Suppose that B is optimally
embeddable into an Eichler order of level n in D. Then B is selective for Eichler orders
of level n in D if and only if both of the following conditions hold:
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1. both D and K are unramified at all the finite primes of F ;

2. if p is a finite prime of F with νp(n) ≡ 1 (mod 2), then p splits in K.

If B is selective, then exactly half of the spinor genera are selected by B.

In fact, if B is selective, then starting from a known selectivity symbol ∆(B,O),
one can express all other ∆(B,O′) in terms of ∆(B,O) and the “relative position” of O
and O′. See [25, Theorem 2.11] for details. A variant of Theorem 4.5 is first proved for
indefinite quaternion algebras by Arenas et al. [2] and by Voight [18, Theorem 31.1.7]
independently. Similar ideas of the proofs in loc. cit. are adapted to extend to totally
definite quaternion algebras here.

Given a CM-extension K/F , we put s(n,K) = 1 if K and D satisfy both of the
conditions in Theorem 4.5, and s(n,K) = 0 otherwise. Following [17, §V.2, p. 143], we
put

(4.19) M(B) :=
h(B)

w(B)

∏
p

mp(B).

Now we are ready to state the norm-one class number formula for an Eichler order O
of level n:

(4.20) h1(O) = 2Mass1(O) +
1

4h(F )

∑
|µ(B)|>2

2s(n,K)∆(B,O)(|µ(B)| − 2)M(B).

Here µ(B) is the group of roots of unity in B, and the summation is over all OF -orders
B such that B⊗OF

F is a CM-extension of F and |µ(B)| > 2. Write r = [F : Q]. Then
Mass1(O) can be computed by the following formula:

(4.21) Mass1(O) =
1

2r
|ζF (−1)|N(n)

∏
p|d

(N(p)− 1)
∏
p|n

(1 + N(p)−1).

The proof of (4.20) relies on the Selberg trace formula for compact quotient spaces,
namely D1\D̂1 in the present setting. Instead of computing the orbital integrals directly,
we take a lengthy and arduous process to regroup the terms and connect them with the
spinor trace formula [25, Proposition 2.15] to obtain (4.20).

Finally, we return to the computation of hpp(
√
p ) = h1(O0). In this case F =

Q(
√
p ), D = D∞1,∞2 , and d = n = OF . It follows that Mass1(O0) = ζF (−1)/4, and

s(n,K) = 1 if and only if K = F (
√
−1 ). For B ⊂ F (

√
−1 ), the values of ∆(B,O0)

can be computed directly using the explicit expression (4.14) of O0. All other terms in
(4.20) are calculated routinely. This yields

(4.22) h1(O0) =
ζF (−1)

2
+

(
11− 3

(
2

p

))
h(−p)

8
+

h(−3p)

6
.

This finishes the explanation of the proof of Theorem 3.1.
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Remark 4.6. If O ⊆ D is a maximal order with [O] ∈ Tp−(D), i.e. O 6∼ O0,
then a similar calculation as above yields that

(4.23) h1(O) =
ζF (−1)

2
+

(
3− 3

(
2

p

))
h(−p)

8
+

h(−3p)

6
.

Observe that the second terms in (4.22) and (4.23) are different while the third terms
coincide. This is precisely because OF -orders in F (

√
−1 ) are selective for maximal

orders in D while OF -orders in F (
√
−3 ) are non-selective.

§ 5. Connections with Hilbert modular surfaces

Let F be an arbitrary real quadratic field. We regard F ⊕ F as the column vector
space and let Mat2(F ) = EndF (F ⊕ F ) act on F ⊕ F by left multiplication. For any
ideal a of OF , let

SL(OF ⊕ a) = {g ∈ SL2(F ) | g · (OF ⊕ a) = OF ⊕ a },
Γ(OF ⊕ a) = the image of SL(OF ⊕ a) in PSL2(F ),

Γm(OF ⊕ a) = the Hurwitz-Maass extension of Γ(OF ⊕ a).

Let H be the complex upper half plane. For Γ = Γ(OF ⊕ a) or Γ = Γm(OF ⊕ a), we
denote by (Γ\H2)∗ the minimal compactification of Γ\H2, which is obtained by adding
all cusps Γ\P1(F ) to Γ\H2. Let YΓ be a projective smooth model of (Γ\H2)∗. The
arithmetic genus of YΓ is defined to be

(5.1) χ(YΓ) :=

2∑
i=0

(−1)i dimHi(YΓ,OYΓ).

The arithmetic genus χ(YΓ) does not depend on the choice of the smooth model YΓ.
Note that if the narrow ideal classes [a] and [a′] are in the same Gauss genus in

Pic+(OF )/Pic+(OF )
2, then

Γ(OF ⊕ a)\H2 ' Γ(OF ⊕ a′)\H2 and (Γ(OF ⊕ a)\H2)∗ ' (Γ(OF ⊕ a′)\H2)∗.

So one can choose smooth models of them such that YΓ(OF⊕a) ' YΓ(OF⊕a′). For each
class γ ∈ Pic+(OF )/Pic+(OF )

2, put Y (dF , γ) := YΓ(OF⊕a), where a is an ideal of OF

such that [a] ∈ γ. Then χ(Y (dF , γ)) only depends on γ. Similarly, we let Ym(dF , γ) :=

YΓm(OF⊕a).
Now let F = Q(

√
p ). Based on known explicit formulae for χ(Y (dF , γ)) [6, Theo-

rems II.5.8–9], χ(Ym(dF , γ)) [15, §I.4, p. 13] , t(D) and H+(dF ) [3, §1], and the explicit
formula for |Λpp

1 | (Theorems 3.1), if p 6≡ 3 (mod 4), we have

(5.2) χ(Y (dF , γ)) = χ(Ym(dF , γ)) = |Λpp
1 | = t(D) = H+(dF ),
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where dF = p if p ≡ 1 (mod 4), and dF = 8 if p = 2.
If p ≡ 3 (mod 4), then there are two Gauss genera. Let γ+ denote the principal

Gauss genus and γ− the non-principal one. Based on known explicit formulae loc. cit.,
Theorem 3.2, and (4.10), (4.11), (4.12), we have

(5.3) χ(Y (4p, γ−)) = |Λpp
1 |,

(5.4) χ(Ym(4p, γ+)) = t(D, γ−) = H+(4p, γ+),

(5.5) χ(Ym(4p, γ−)) = t(D, γ+) = H+(4p, γ−).

As for current status, the identities |Λpp
1 | = t(D) = H+(p) for p ≡ 1 (mod 4) and

t(D) = H+(4p) for p ≡ 3 (mod 4) were proved directly without knowing their formulae.
For other identities, it remains to discover a better proof .
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