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Introduction

The stack of G-zips is an object in the realm of group-theory, which was introduced
by Moonen–Wedhorn ([15]) and more thoroughly studied by Pink–Wedhorn–Ziegler in
[16, 17]. One of the main applications of this stack is to study stratifications in moduli
spaces in positive characteristic. Let k be an algebraic closure of Fp. Let G be a
connected reductive group over Fp and µ : Gk → Gk a cocharacter. Pink–Wedhorn–
Ziegler attach to (G,µ) an algebraic stack G-Zipµ over k. Its underlying topological
space is finite and admits an explicit parametrization in terms of the Weyl group of G
(see Theorem 2.1). This stack appears in the theory of Shimura varieties. If SK is the
special fiber of a Hodge-type Shimura variety with good reduction, then Zhang showed
([19]) that there is a smooth (surjective) map ζ : SK → G-Zipµ, where (G,µ) denotes
the reductive group over Fp and the cocharacter µ : Gm,k → Gk deduced from the
Shimura datum. The fibers of the map ζ are the Ekedahl–Oort strata of SK .

The stack G-Zipµ itself is an interesting algebraic object, endowed with a natural
stratification, as well as a family of vector bundles. Denote by P the parabolic subgroup
deduced from the cocharacter µ (see §2 for the precise definition) and let L ⊂ P be the
Levi subgroup given by the centralizer of µ. Any algebraic P -representation (V, ρ) gives
rise to a vector bundle V(ρ) on G-Zipµ. In the paper [13], we studied line bundles on the
stack G-Zipµ and showed the existence of generalized µ-ordinary Hasse invariants. This
result was generalized to all strata in [7]. In the paper [12], we studied vector bundles of
the form VI(λ) for λ ∈ X∗(T ). The vector bundle VI(λ) is the vector bundle attached
to the P -representations VI(λ) := IndPB(λ) where B is a Borel subgroup contained in P .
These vector bundles arise naturally in the context of automorphic forms. Indeed, the
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global sections of VI(λ) over SK are automorphic forms modulo p of level K and weight
λ. By pullback via the map ζ : SK → G-Zipµ, global sections of VI(λ) over G-Zipµ can
also be viewed as such automorphic forms. Therefore, it is relevant to study the space
H0(G-Zipµ,VI(λ)). When P is defined over Fp, we determined this space in terms of
the representation VI(λ) in [12, Theorem 3.7.2]. In the general case, we give an explicit
formula for the space H0(G-Zipµ,V(ρ)) for an arbitrary P -representation (V, ρ) in [9,
Theorem 3.4.1]. Returning to vector bundles of the form VI(λ), we are interested in the
set

Czip := {λ ∈ X∗(T ) | H0(G-Zipµ,VI(λ)) 6= 0}.

This set is a cone in X∗(T ) (i.e. an additive submonoid). For a cone C ⊂ X∗(T ), write
〈C〉 for the saturated cone of C, i.e. the set of λ ∈ X∗(T ) such that some positive
multiple of λ lies in C. It is conjectured that the cone 〈Czip〉 controls the possible
weights of modulo p automorphic forms (see Conjecture 6.1).

The goal of this proceedings paper is to present some new results regarding the
set Czip that constitute part of the work in progress [6] in collaboration with Imai and
Goldring. It is inspired by results of Diamond–Kassaei in [3, 4] for Hilbert–Blumenthal
Shimura varieties, which show (among other results) that the weight of any nonzero
Hilbert modular form in characteristic p is spanned over Q>0 by the weights of certain
partial Hasse invariants constructed by Andreatta–Goren in [1]. We introduce a general
notion of partial Hasse invariants, for arbitrary reductive groups G. To explain it, recall
the stack of G-zip flags G-ZipFlagµ defined in [7]. It admits a natural projection map

π : G-ZipFlagµ → G-Zipµ .

For any character λ ∈ X∗(T ), there is a line bundle Vflag(λ) such that π∗(Vflag(λ)) =

VI(λ). Furthermore, the stack G-ZipFlagµ admits a natural stratification (Cw)w∈W .
Write ∆ for the set of simple roots of G. The codimension one strata are of the form
(Cw0sα)α∈∆, where w0 is the longest element of W and sα is the reflection along α.
For each α ∈ ∆, there exists a section Hα ∈ H0(G-ZipFlagµ,Vflag(λα)) for a certain
character λα ∈ X∗(T ), whose vanishing locus is precisely the Zariski closure of the codi-
mension one stratum Cw0sα . Note that Hα, λα are not completely uniquely determined
by α, but the small ambiguity in the choice is irrelevant. Since π∗(Vflag(λα)) = VI(λα),
the partial Hasse invariant Hα can also be interpreted as a global section of VI(λα) over
G-Zipµ.

Inspired by the result of Diamond–Kassaei mentioned above, we introduce the
cone CHasse ⊂ X∗(T ) generated by the weights (λα)α∈∆ of the partial Hasse invariants.
From the definition of Czip, one has CHasse ⊂ Czip. The natural group-theoretical
generalization of Diamond–Kassaei’s result would be the equality 〈Czip〉 = 〈CHasse〉.
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However, this equality is false in general (see §7 for a counter-example). In the work in
progress [6], we determine exactly for which pairs (G,µ) this equality holds by giving
an explicit characterization (Theorem 8.1). If this condition holds, we say that (G,µ)

is of Hasse-type. Therefore, one can hope to generalize the results of [3, 4] to Shimura
varieties such that (G,µ) is of Hasse-type.
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§ 1. The F -zip attached to an abelian variety

Let p be a prime number and denote by k an algebraic closure of Fp. Let σ : k → k,
x 7→ xp be the p-power Frobenius homomorphism. If A is an abelian variey over k,
then the p-torsion H = A[p] is a finite, commutative k-group scheme killed by p. By
Dieudonne theory, there is an equivalence of categories H 7→ D(H) between such objects
and triples (M,F, V ), where

(i) M is a finite-dimensional k-vector space,

(ii) F :M →M is a σ-linear endomorphism,

(iii) V :M →M is a σ−1-linear endomorphism,

subject to the conditions FV = 0 and V F = 0. If the triple (M,F, V ) satisfies further-
more Ker(F ) = Im(V ) and Ker(V ) = Im(F ), then we call it a Dieudonne space. For
group schemes of the form A[p], the associated triple (M,F, V ) is a Dieudonne space.
If g = dim(A), then dimk(M) = 2g and F, V have rank g. It is easy to see that there
are only finitely many isomorphism classes of Dieudonne spaces of dimension 2g, let
{H1, . . . , HN} be a set of representatives.

Similarly, let S be a scheme of characteristic p and A → S an abelian scheme over
S of relative dimension g. For each point s ∈ S, we can consider the abelian variety
As := A⊗S κ(s) where κ(s) is the field of definition of s and κ(s) is an algebraic closure.
We can then study how the isomorphism class of As[p] varies for s ∈ S. We obtain a
finite decomposition

S =

N⊔
i=1

Si



62 Jean-Stefan Koskivirta

where Si is the set of s ∈ S such that As[p] ' Hi. For example, the ordinary locus of
S is the set of s ∈ S for which

(1.1) As[p] ' µg
p × (Z/pZ)g.

We now explain a useful way to think about this decomposition. Consider the relative
algebraic de Rham cohomology M := H1

dR(A/S). It is a locally free OS-module of rank
2g, equipped with the following structure:

(i) A Hodge filtration 0 ⊂ Ω ⊂ M, where Ω is a locally free OS-submodule of rank g,

(ii) an OS-linear map F : M(p) → M,

(iii) an OS-linear map V : M → M(p).

Furthermore, (M, F, V ) satisfies Ker(F ) = Im(V ) = Ω(p) and Ker(V ) = Im(F ). When
S = Spec(k), this is simply the Dieudonne space attached to an abelian variety, as we
explained above.

We note that there is a natural equivalence between such triples and quadruples
(M, C,D, ι•), where

(i) M is a locally free OS-module of rank 2g,

(ii) C ⊂ M and D ⊂ M are locally free OS-submodules of rank g,

(iii) ι0 : C(p) → M/D and ι1 : (M/C)(p) → D are isomorphisms of OS-modules.

This equivalence is given by sending (M, F, V ) to (M,Ω, Im(F ), ι•) where ι0, ι1 are the
isomorphisms naturally deduced from F and V . We call such a quadruple (M, C,D, ι•)
an F -zip of rank g over S. Consider the stack F-Zipg over Fp which classifies F -zips
of rank g. In other words, for any Fp-scheme T , morphisms T → F-Zipg correspond
bijectively to F -zips over T .

Recall that we started with an abelian scheme A → S and attached an F -zip of
rank g on S. In particular, we obtain a natural morphism of stacks ζ : S → F-Zipg. By
definition, the underlying topological space of F-Zipg is the set of equivalence classes
of maps Spec(K) → F-Zipg where K is an algebraically closed field. Hence, they corre-
spond to isomorphism classes of F -zips over algebraically closed fields of characteristic p.
Over such a field, an F -zip is simply a Dieudonne space, so we deduce that the underly-
ing topological space of F-Zipg is in bijection with the set {H1, . . . , HN}. Furthermore,
the locus Si ⊂ S defined earlier coincides with the fiber of the map ζ : S → F-Zipg

above the point of F-Zipg corresponding to Hi.
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§ 2. More general reductive groups

One often considers abelian varieties endowed with some extra structure. For ex-
ample, let S be an Fp-scheme and (A, ξ) a principally polarized abelian variety over S.
Let (M,Ω, F, V ) be the F -zip attached to A. The principal polarization ξ induces a
perfect pairing 〈−,−〉 : M×M → OS . Furthermore, it is compatible with F, V in the
sense that 〈Fx, y〉 = 〈x, V y〉(p), where 〈−,−〉(p) denotes the induced pairing on M(p).
The stack that classifies tuples (M,Ω, F, V, 〈−,−〉) is called the stack of symplectic
F -zips of rank g.

More generally, in order to study F -zips with additional structure, it is convenient to
consider the stack of G-zips, for any connected reductive Fp-group G. Fix a cocharacter
µ : Gm,k → Gk. This cocharacter gives rise to a pair of opposite parabolics P±, where
P+ (resp. P−) is the parabolic subgroup of Gk whose Lie algebra is

⊕
n≥0 gn (resp.⊕

n≤0 gn), where gn ⊂ Lie(Gk) is the subspace where x ∈ Gm,k acts by multiplication
with xn via µ. The intersection L = P+ ∩ P− is a common Levi subgroup, equal to
the centralizer of µ. Set P := P−, Q = (P+)

(p), and M = L(p). The stack of G-zips
of type µ is the stack G-Zipµ such that for any k-scheme S, G-Zipµ(S) parametrizes
tuples (I, IP , IQ, ι), where

(i) I is a G-torsor over S,

(ii) IP ⊂ I is a P -torsor over S,

(iii) IQ ⊂ I is a Q-torsor over S,

(iv) ι : (IP /U)(p) → IQ/V is an isomorphism of M -torsors.

We recall an important result of Pink–Wedhorn–Ziegler. If H is an algebraic group,
denote by Ru(H) the unipotent radical of H. For x ∈ P , we can write uniquely x = xu

with x ∈ L and u ∈ Ru(P ). This defines a projection map θPL : P → L; x 7→ x.
Similarly, we have a projection θQM : Q → M . Denote by φ : G → G the Frobenius
homomorphism. Since M = L(p), it induces a map φ : L → M . The zip group is the
subgroup of P ×Q defined by

E := {(x, y) ∈ P ×Q | φ(θPL (x)) = θQM (y)}.

Let E act on the left on Gk by the rule (x, y) · g := xgy−1 for all (x, y) ∈ E and all
g ∈ Gk. Then, by [17, Th. 1.5], there is an isomorphism of k-stacks

(2.1) G-Zipµ ' [E\Gk] .

In particular, the underlying topological space of G-Zipµ coincides with the set of
E-orbits in Gk. We explain a parametrization of these orbits from [16]. Fix a Borel pair
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(B, T ) satisfying B ⊂ P and T ⊂ L, and suppose for simplicity that (B, T ) is defined
over Fp. After possibly changing µ to a conjugate cocharacter, such a Borel pair always
exists. Write Φ for the set of T -roots. Let Φ+ ⊂ Φ denote the positive roots (where
positivity is defined with respect to the Borel subgroup opposite to B). Finally, let ∆

be the set of simple roots. Recall that there is a bijection between subsets of ∆ and
conjugacy classes of parabolic subgroups of Gk (Borel subgroups corresponding to the
empty set). Let I, J ⊂ ∆ denote the types of P,Q respectively. We put ∆P := ∆ \ I.
Note that since B ⊂ P , the set I coincides with the set ∆L of simple roots of L.
Let W be the Weyl group of T and ℓ : W → Z≥0 the length function. Write w0

for the longest element in W . For a subset K ⊂ ∆, let WK ⊂ W be the subgroup
generated by {sα | α ∈ K}, and let w0,K be the longest element of WK . Define WK

as the set of elements w ∈ W which are of minimal length in the coset wWK . For
w ∈ W , choose a representative ẇ ∈ NG(T ), such that (w1w2)

· = ẇ1ẇ2 whenever
ℓ(w1w2) = ℓ(w1) + ℓ(w2) (this is possible by choosing a Chevalley system, see [2], Exp.
XXIII, §6). Define z := w0w0,J . For w ∈ W , define Gw as the E-orbit of ẇż−1. The
E-orbits in G form a stratification of G by locally closed subsets.

Theorem 2.1 ([16, Th. 11.3]). The map w 7→ Gw induces a bijection from W J

onto the set of E-orbits in G. Furthermore, for w ∈W J , one has

dim(Gw) = ℓ(w) + dim(P ).

We explain the connection with F -zips, symplectic F -zips and G-zips. For this, let
Sp(2g) be the symplectic group over Fp attached to the matrix

Ψ :=

(
−J

J

)
where J :=


1

. .
.

1

 .

Let B ⊂ Sp(2g) be the Borel subgroup of lower-triangular matrices in Sp(2g) and T ⊂ B

the maximal torus given by diagonal matrices in Sp(2g). Consider the cocharacter

µg : Gm → Sp(2g), z 7→

(
zIg 0

0 z−1Ig

)
. We may also view µg as a cocharacter of

GL2g,Fp
. Then, through the correspondence between vector bundles and torsors for

the general linear group, F -zips of rank g identify naturally with GL2g-zips of type µg.
Similarly, symplectic F -zips of rank g identifiy with Sp(2g)-zips of type µg.
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§ 3. Vector bundles on G-Zipµ

For an algebraic group H over k, write Rep(H) for the category of algebraic rep-
resentations of H, i.e. morphisms ρ : H → GL(V ) where V is a finite-dimensional
k-vector space.

Let G be a reductive group over Fp and µ : Gm,k → Gk a cocharacter. Write
again P,Q,L,M for the algebraic groups defined in §2. Let ρ : P → GL(V ) be an
algebraic representation. By definition, the stack G-Zipµ carries a universal P -torsor
IP , thus by applying ρ to this P -torsor, we obtain a vector bundle V(ρ) on G-Zipµ.
This construction gives rise to a functor

Rep(P ) → VB(G-Zipµ)

where the notation VB(X ) (for a stack X ) denotes the category of vector bundles on X .
The natural projection θPL : P → L induces a fully faithful functor (θPL )

∗ : Rep(L) →
Rep(P ). Hence, we view Rep(L) as the full subcategory of Rep(P ) of P -representations
which are trivial on the unipotent radical Ru(P ). In particular, we are interested in the
following kind of representations.

Since we assumed T ⊂ L, the group BL := B ∩ L is a Borel subgroup of L. For a
character λ ∈ X∗(T ), define an L-representation VI(λ) by

VI(λ) = IndLBL
(λ).

Denote by VI(λ) the vector bundle on G-Zipµ attached to VI(λ). We call VI(λ) the
automorphic vector bundle associated to the weight λ on G-Zipµ. This terminology
comes from the theory of Shimura varieties. Indeed, let SK be the special fiber of the
Kisin–Vasiu integral model of a Hodge-type Shimura variety with good reduction at
p, and let G be the reductive group over Fp deduced from the Shimura datum. Then
Zhang showed in [19] that there is a smooth map ζ : SK → G-Zipµ. Then, the pullback
ζ∗VI(λ) is an automorphic bundle, and its global sections over SK are automorphic
forms modulo p of level K and weight λ. Note that if λ ∈ X∗(T ) is not L-dominant,
then VI(λ) = 0 and hence VI(λ) = 0.

In the example of G = Sp(2g), µ = µg, we can make this question much more ex-
plicit. Recall that in this case, the stack G-Zipµ parametrizes tuples (M,Ω, F, V, 〈−,−〉)
(see §1). Identify X∗(T ) = Zg and for λ = (k1, . . . , kg), write VI(k1, . . . , kg) for VI(λ).
The family of vector bundles VI(k1, . . . , kg) is obtained by applying Schur functors to Ω.
Another way to think about it is via the stack of zip flags. For a general Fp-reductive
group G and cocharacter µ : Gm,k → Gk, it is defined as follows. It is the stack that
parametrizes pairs (I, J) where I = (I, IP , IQ, ι) is a G-zip and J ⊂ IP is a B-torsor.
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We denote this stack by G-ZipFlagµ. There is a natural projection map

π : G-ZipFlagµ → G-Zipµ

given by (I, J) 7→ I. For any representation (V, ρ) ∈ Rep(B), by applying the universal
B-torsor on G-ZipFlagµ, we obtain a vector bundle Vflag(ρ). We have the identification

π∗(Vflag(ρ)) = V(IndPB(ρ)).

In particular, we can think of the vector bundle VI(λ) on G-Zipµ as the push-forward
of the line bundle Vflag(λ). Let us return to the example of the symplectic group.
In this case, the stack of zip flags parametrizes tuples (M,Ω,F•, F, V, 〈−,−〉), where
(M,Ω, F, V, 〈−,−〉) is a symplectic F -zip, and F• is a full flag of Ω. Specifically, it is a
filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fg−1 ⊂ Fg = Ω

where Fi is a locally free OS-module of rank i, locally direct factor of Ω. In this
description, we used the fact that for the group Sp(2g), a B-torsor contained in IP

corresponds to a symplectic flag refining the Hodge filtration, and by using the pairing
〈−,−〉, it is equivalent to give a full flag of Ω (with no condition). Define the line bundle
Li := Fi/Fi−1 on G-ZipFlagµ for 1 ≤ i ≤ g. For λ = (k1, . . . , kg) ∈ Zg, the line bundle
Vflag(λ) on G-ZipFlagµ is then concretely given by

L(k1, . . . , kg) :=
g⊗

i=1

L−ki
i .

Similarly, the vector bundle VI(k1, . . . , kg) is the push-forward of L(k1, . . . , kg) via π.

§ 4. Global sections of vector bundles

In the paper [9], we determine the space of global sections H0(G-Zipµ,V(ρ)) for an
arbitrary representation (V, ρ) ∈ Rep(P ). This space can be expressed in terms of the
part of the Brylinski–Kostant filtration of V which is invariant under a certain finite
group scheme (see [9, Theorem 3.4.1]). To simplify, we will assume here that P is defined
over Fp and we will only consider representations in Rep(L). For (V, ρ) ∈ Rep(L), write
V =

⊕
χ∈X∗(T ) Vχ for the T -weight decomposition of V . Recall that ∆P := ∆ \ I.

Define a subspace V ∆P

≥0 ⊂ V as the sum of weight spaces Vχ such that 〈χ, α∨〉 ≤ 0 for
all α ∈ ∆P .
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Theorem 4.1. Let (V, ρ) ∈ Rep(L). There is an identification

H0(G-Zipµ,V(ρ)) = V L(Fp) ∩ V ∆P

≥0 .

In particular, this formula applies to the L-representations VI(λ), which are of
particular interest for us. In the papers [8, 12], we studied global sections of the vector
bundle VI(λ). In particular, we investigated for which λ ∈ X∗(T ), this vector bundle
admits nonzero global sections on G-Zipµ. From the point of view of representation
theory, it seems very difficult to determine when the intersection VI(λ)L(Fp) ∩ VI(λ)∆

P

≥0

is nonzero. We will study this question in the next section.
Again, let us consider the case G = Sp(2g), µ = µg. As we explained, we have

π∗L(k1, . . . , kg) = VI(k1, . . . , kg), hence the space H0(G-Zipµ,VI(k1, . . . , kg)) identifies
with global sections of L(k1, . . . , kg) on G-ZipFlagµ. Recall also that G-ZipFlagµ

parametrizes tuples (M,Ω,F•, F, V, 〈−,−〉). Let us give examples of sections of the line
bundles L(k1, . . . , kg). Fix an integer 1 ≤ i ≤ g. By restricting the Verschiebung map
V : Ω → Ω(p) to Fi and composing with the projection Ω(p) → (Ω/Fg−i)

(p), we obtain
a map Vi : Fi → (Ω/Fg−i)

(p) of vector bundles of rank i. Taking the determinant, we
obtain a map

(4.1) Hi := det(Vi) : L1 ⊗ · · · ⊗ Li → (Lg−i+1 ⊗ · · · ⊗ Lg)
p

In other words, Hi is a section of the line bundle L(λi) where

λi = (1, . . . , 1, 0 . . . , 0)− (0, . . . , 0, p . . . , p)

(both 1 and p appear i times). In particular, for i = g, the section Hg is the classical
Hasse invariant. Write ω =

∧g
Ω, hence we have VI(λg) = ωp−1. Let Ag be the

moduli stack of principally polarized abelian varieties over Fp. As we explained, there
is a natural map ζ : Ag → G-Zipµ. Then, the pullback of Hg by ζ is the classical
Hasse invariant of Ag, whose non-vanishing locus is the ordinary locus of Ag. More
generally, the sections Hi (1 ≤ i ≤ g) are called partial Hasse invariants. We explain
this terminology in the next section. We give the vanishing loci of the other sections Hi

in §7.

§ 5. Flag strata and partial Hasse invariants

Let G be a reductive group over Fp and µ : Gm,k → Gk a cocharacter. There
is a natural stratification (Cw)w∈W of G-ZipFlagµ which corresponds to the Bruhat
stratification of G. Specifically, if we write G-Zipµ = [E\Gk] as in (2.1), then the
stack G-ZipFlagµ is isomorphic to [E′\Gk], where E′ := E ∩ (B × Q) acts on Gk by
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restricting the action of E. Furthermore, it is easy to see that E′ ⊂ B× zB (recall that
z = w0w0,J). Composing with the map g 7→ gz, we finally obtain a morphism

ψ : G-ZipFlagµ → [B\G/B].

The Bruhat stratification (BwB)w∈W gives a natural stratification of the stack [B\G/B].
By pulling back via ψ, we obtain a locally closed stratification (Cw)w∈W of G-ZipFlagµ.
The codimension of Cw coincides with the colength of the element w ∈ W (defined as
ℓ(w0)−ℓ(w)). In particular, there are exacty |∆| strata of codimension one, correspond-
ing to the elements w0sα for α ∈ ∆.

Let us come back to the case (G,µ) = (Sp(2g), µg). Recall the definition of the
flag space Fg of Ag. Similarly to G-ZipFlagµ, it parametrizes tuples (A, ξ,F•) where
(A, ξ) ∈ Ag and F• ⊂ ΩA is a full flag. This space was first introduced by Ekedahl–Van
der Geer in [5]. The space Fg can also be viewed as the fiber product

Fg = Ag ×G-Zipµ G-ZipFlagµ .

By pullback from G-ZipFlagµ, we obtain a stratification (Sw)w∈W of Fg. For a more
concrete description of the stratum Sw in this case, see [5, §4]. The sections Hi (1 ≤ i ≤
g) constructed in (4.1) have the following property. Identifying X∗(T ) = Zg as usual,
write αi = ei − ei+1 for i = 1, . . . , g − 1 and αg = 2eg. Then, the vanishing locus of the
section Hi ∈ H0(G-ZipFlagµ,L(λi)) coincides with the Zariski closure of Cw0sαi

. For
this reason, we call these sections partial Hasse invariants on G-ZipFlagµ. The cone in
Zg generated by the weights λi (1 ≤ i ≤ g) is called the Hasse cone, and is denoted by
CHasse ⊂ Zg.

Similarly, for an arbitrary pair (G,µ), there exist characters λα ∈ X∗(T ) and
sections hα ∈ H0(G-ZipFlagµ,Vflag(λα)) such that the vanishing locus of hα is Cw0sα .
See [10] for a general study of partial Hasse invariants and their properties. Again, we
denote by CHasse ⊂ X∗(T ) the cone generated by the characters λα. Concretely, the
cone CHasse can also be defined as the image of the set of dominant characters X∗(T )+

by the linear map

h : X∗(T ) → X∗(T ), λ 7→ λ− pσ(zw0λ)

where σ indicates the action of Frobenius on X∗(T ).

§ 6. The zip cone

Again, let (G,µ) be an arbitrary cocharacter datum, with attached groups P,L,Q,M .
Fix also a Borel pair (B, T ) defined over Fp as in §2. The zip cone is defined as the set
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of λ ∈ X∗(T ) such that VI(λ) admits nonzero sections over G-Zipµ, in other words:

Czip := {λ ∈ X∗(T ) | H0(G-Zipµ,VI(λ)) 6= 0}.

By Theorem 4.1, the set Czip is also the locus where the L-representaton VI(λ) satisfies
that VI(λ)L(Fp) ∩ VI(λ)

∆P

≥0 6= 0. Using the identification of H0(G-Zipµ,VI(λ)) with
H0(G-ZipFlagµ,Vflag(λ)), it follows from the formula Vflag(λ+λ

′) = Vflag(λ)⊗Vflag(λ
′)

for all λ, λ′ ∈ X∗(T ) that Czip is stable under addition. One has also obviously 0 ∈ Czip.
For a cone C ⊂ X∗(T ), denote by 〈C〉 the saturated cone of C, i.e. the set of λ ∈ X∗(T )

such that some positive multiple of λ lies in C. We have the inclusions

CHasse ⊂ Czip ⊂ X∗
+,I(T )

where X∗
+,I(T ) denotes the set of L-dominant characters, i.e. characters λ satisfying

〈λ, α∨〉 ≥ 0 for all α ∈ I. The first inclusion follows from the definition, and the second
one from the fact that VI(λ) = 0 if λ /∈ X∗

+,I(T ).
Even though Czip is completely defined in group-theoretical terms, it is useful to

return to the theory of Shimura varieties to understand Czip intuitively. Recall that
a Shimura variety comes as a tower of algebraic varieties Sh = (ShK)K defined over
some number field F , where K varies in the set of compact open subgroups of G(Af )

(here G is the corresponding connected reductive group over Q). Assume that Sh is
of Hodge-type, and that GQp

is unramified. Furthermore, fix a hyperspecial subgroup
Kp ⊂ G(Qp). Then, Kisin ([11]) and Vasiu ([18]) constructed a canonical model S =

(SKp)Kp of the tower ShKp
= (ShKpKp)Kp over OFp

, for any place p|p in F . For
K of the form KpK

p (where Kp ⊂ G(Ap
f )), let SK be the special fiber of SK . It is

defined over the residual field κ of p. As we explained, there is a smooth surjective map
ζK : SK → G-Zipµ (where G denotes the special fiber of a Zp-reductive model of GQp

).
Furthermore, the maps ζK commute with change of level. It is natural to define a set
CK(k) as follows

CK(k) := {λ ∈ X∗(T ) | H0(SK ⊗κ k,VI(λ)) 6= 0}.

Here, we denoted again by VI(λ) its pullback via ζK . The set CK(k) indicates the
possible weights of nonzero automorphic forms over k, which is an important question.
The set CK(k) highly depends on the level K. However, since the change of level maps
are finite etale, one can show that the saturated cone 〈CK(k)〉 is independent of K. For
this reason, we conjectured the following:

Conjecture 6.1 ([8, Conjecture 2.1.6]). One has

〈CK(k)〉 = 〈Czip〉.
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Note that the inclusion Czip ⊂ CK(k) is obvious. We proved this conjecture in
several cases in loc. cit.. Since the vector bundles VI(λ) admit natural models over OFp

,
one can also define a set CK(C) in a similar way. By the same argument, 〈CK(C)〉
is independent of K. Let CGS denote the set of characters λ ∈ X∗(T ) satisfying the
conditions

〈λ, α∨〉 ≥ 0 for α ∈ I,

〈λ, α∨〉 ≤ 0 for α ∈ Φ+ \ ΦL,+.

For example, in the case of Sp(2g), the set CGS is given by the tuples (k1, . . . , kg) such
that 0 ≥ k1 ≥ · · · ≥ kg. By work of Griffiths–Schmid, one has

〈CK(C)〉 = CGS.

Furthermore, by reducing sections modulo p, one can see that one has always an in-
clusion 〈CK(C)〉 ⊂ 〈CK(k)〉 (see [12, Proposition 1.8.3]). Hence, if Conjecture 6.1
is correct, we should have an inclusion CGS ⊂ 〈Czip〉, which is now a purely group-
theoretical statement. We indeed verify this prediction for an arbitrary pair (G,µ) in
the work in progress [6] (generalizing [12, Corollary 3.5.6]):

Theorem 6.2. For arbitrary (G,µ), one has CGS ⊂ 〈Czip〉.

Hence, Theorem 6.2 substantiates Conjecture 6.1, since the inclusion CGS ⊂ 〈Czip〉
is predicted by Conjecture 6.1 (at least for groups attached to Shimura varieties of
Hodge-type). We now explain in more detail the proof of Theorem 6.2. For λ ∈ X∗

+,I(T ),
let fλ ∈ VI(λ) be a nonzero element of the highest weight line in the L-representation
VI(λ). We define the norm Norm(fλ) of fλ. For simplicity, we explain its construction
in the case when P is defined over Fp. It is defined by taking the product of the s · fλ
over s ∈ L(Fp), and corresponds to an element

Norm(fλ) ∈ V (dλ)L(Fp)

where d = |L(Fp)|. Hence, by Theorem 4.1, if Norm(fλ) lies in the subspace VI(λ)∆
P

≥0 ,
then this element defines a global section over G-Zipµ of weight dλ. We explain the
result in the general case (here we do not assume that P is defined over Fp). Let L0 ⊂ L

be the largest Levi subgroup containing T and defined over Fp.

Theorem 6.3 ([6]). The element Norm(fλ) defines a (nonzero) global section
over G-Zipµ if and only if for all α ∈ ∆P , the following holds:

∑
w∈WL0

(Fp)

rα−1∑
i=0

pi+ℓ(w) 〈wλ, σi(α∨)〉 ≤ 0.
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When P is defined over Fp, Theorem 6.3 is enough to show the inclusion CGS ⊂
〈Czip〉. Indeed, in this case and for λ ∈ CGS, all summands of the above sum are ≤ 0,
hence the sum is ≤ 0. Therefore, Norm(fλ) defines a nonzero section of weight dλ,
which shows that λ ∈ 〈Czip〉. In other words, denote by Chw the set of λ ∈ X∗

+,I(T )

such that the inequalities of Theorem 6.3 are satisfied (here, ”hw” stands for ”highest
weight”). Then we have CGS ⊂ Chw ⊂ 〈Czip〉. However, when P is not defined over Fp,
the inclusion CGS ⊂ Chw may not hold (on the other hand, the inclusion Chw ⊂ 〈Czip〉
always holds). To show CGS ⊂ 〈Czip〉 in the general case, we study in detail the case
when G is a Weil restriction. Then, we embed diagonally G in ResFpm/Fp

(GFpm
) for

an appropriate m ≥ 1 and deduce the result for G. To sum up, we have the following
inclusions

〈CHasse〉� r

$ $I
II

II
II

II

X∗
−(L)

� � //
� r

$$J
JJ

JJ
JJ

JJ
Chw

� � // 〈Czip〉 �
�

// X∗
+,I(T )

CGS

, �

::uuuuuuuuu

HereX∗(L)− denotes the setX∗(L)∩X∗(T )−, whereX∗(T )− is the set of anti-dominant
characters. We recall results of [13] about µ-ordinary Hasse invariants. In loc. cit., we
considered the set

(6.1) X∗(L)−,reg = {λ ∈ X∗(L) | 〈λ, α∨〉 < 0, ∀α ∈ ∆P }.

We showed ([13, Theorem 1]) that if λ ∈ X∗(L)−,reg, then there exists a section Hµ ∈
H0(G-Zipµ,V(Nλ)) (some integer N ≥ 1), such that the non-vanishing locus of Hµ

is the unique open stratum of G-Zipµ. In particular, it implies X∗(L)−,reg ⊂ 〈Czip〉.
Hence, the present discussion is a vast generalization of the results of [13].

§ 7. Example: The case Sp(6)

Let us focus on the case (Sp(2g), µg) for g = 3. We retain the notations introduced
in §3. We constructed partial Hasse invariants, which are sections over G-ZipFlagµ of
weights λ1 = (1, 0,−p), λ2 = (1, 1− p,−p) and λ3 = (1− p, 1− p, 1− p) respectively. It
is possible to construct more complicated sections. Consider the map V : Ω → Ω(p). By
twisting, we also have a map V (p) : Ω(p) → Ω(p2). By composition, we have V (p) ◦ V :

Ω → Ω(p2). Now, take the tensor product of the maps V (p) ◦ V |L1
: L1 → Ω(p2) and
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V (p)|Lp
1
: Lp

1 → Ω(p2). We obtain a map

f : L1 ⊗ Lp
1 → Ω(p2) ⊗ Ω(p2).

Compose this map with the natural map ∧ : Ω(p2)⊗Ω(p2) →
∧2

Ω(p2) and the projection∧2
Ω(p2) →

∧2
(Ω/F1)

(p2). Since
∧2

(Ω/F1) = L2 ⊗ L3, we obtain finally a map

f1 : L1 ⊗ Lp
1 → (L2 ⊗ L3)

p2

,

hence a section of L(p + 1,−p2,−p2). This section f1 is an example of section of the
form Norm(fλ) (see Theorem 6.3). It seems very difficult to grasp the definition of f1,
however its vanishing locus has a simple interpretation. View this section on the flag
space Fg by pullback, and let x = (A, ξ,F•) be a point of Fg(k). Write M = D(A[p])

for the Dieudonne space of A. The Hodge filtration corresponds to 0 ⊂ VM ⊂ M .
Furthermore, VM is endowed with a filtration

0 = F0 ⊂ F1 ⊂ F2 ⊂ F3 = VM

given by F•. Then we have an equivalence

f1(x) 6= 0 ⇐⇒ F1 ⊕ V (F1)⊕ V 2(F1) = VM.

In other words, the non-vanishing locus corresponds to the points where the three k-lines
F1, V (F1) and V 2(F1) are linearly independent. There is also a section f2 of weight
(1, 1,−(p2 + p)) whose non-vanishing locus is given by a similar condition for the dual
M∨. The construction of f2 is similar to f1, we refer the interested reader to [12, §6.4].
For arbitrary g ≥ 1, we can also give the vanishing locus for the partial Hasse invariants
Hi (1 ≤ i ≤ g). One has:

Hi(x) 6= 0 ⇐⇒ Fg−i ⊕ V (Fi) = VM.

In particular for i = g, the section Hg is the classical Hasse invariant. Its non-vanishing
locus coincides with the ordinary locus by the following easy lemma.

Lemma 7.1. The following conditions are equivalent.

(i) A is ordinary.

(ii) One has VM ⊕ FM =M .

(iii) One has V (VM) = VM .

Proof. By (1.1), A is ordinary if and only if M ' µg
p×(Z/pZ)g. Via the Dieudonne

equivalence explained in §1, this amounts to M = VM ⊕ FM , which shows the equiv-
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alence between (i) and (ii). Moreover, this implies immediately V (VM) = VM . Con-
versely, if V (VM) = VM then V is injective on VM by dimension reasons, hence
VM ∩ FM = 0 and thus M = VM ⊕ FM . This terminates the proof.

For Sp(6), the cones are given by the following equations

CHasse = N(1, 0− p) +N(1, 1− p,−p) +N(1− p, 1− p, 1− p).

CGS = {(k1, k2, k3), 0 ≥ k1 ≥ k2 ≥ k3}
Chw = {(k1, k2, k3), p2k1 + pk2 + k3 ≤ 0}.

Let us represent graphically these cones. In R3, we choose a generic affine hyper-
plane that cuts all the cones, and represent the intersections with this hyperplane.
Hence, a point represents a half-line from the origin. As explained, all cones are
contained in the set of L-dominant characters, i.e. the set of (k1, k2, k3) ∈ Z3 with
k1 ≥ k2 ≥ k3. We represent the weights of the two sections f1, f2 defined above, as well
as the weights of the three partial Hasse invariants.

To avoid cluttering the picture, we did not represent the Hasse cone, which is
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generated by (1, 0 − p), (1, 1 − p,−p) and (1 − p, 1 − p, 1 − p). Note that it intersects
both CGS and Chw and there is no inclusion relation between these three cones.

§ 8. G-zips of Hasse-type

In the case Sp(6), the above diagram shows explicitly the cone 〈Czip〉. However,
for g ≥ 4 and for most reductive groups G, this cone is still undetermined. We give in
this section a family of cases where we can determine 〈Czip〉. Via Conjecture 6.1, this
potentially will apply to the study of automorphic forms in characteristic p.

This work is inspired from the papers [3, 4] of Diamond–Kassaei. They show as
a corollary of [4, Theorem 8.1], that for Hilbert–Blumenthal Shimura varieties (also in
ramified cases), one has an equality

(8.1) 〈CK(k)〉 = 〈CHasse〉.

We also proved this result using different techniques in [8]. We showed moreover that
a similar equality holds for Siegel threefolds (G = Sp(4)Fp), and Picard surfaces at
split primes (G = GL3,Fp

). Since we have in general CHasse ⊂ Czip ⊂ CK(k), the
cones of (8.1) also coincide with 〈Czip〉. However, we saw that for Sp(6), the inclusion
〈CHasse〉 ⊂ 〈Czip〉 was strict, so we cannot expect such a result to hold for general groups
G.

To explain the second result of [6], we must first recall the topological properties
of the various cones. For a cone C ⊂ X∗(T ), write CR≥0

for the cone generated over
R≥0 by C inside X∗(T )⊗Z R. In what follows, endow the subset X∗

+,I(T )R≥0
with the

subspace topology inherited from X∗(T )⊗ZR. Also, recall the definition of X∗(L)−,reg

given in (6.1). We explained the inclusion X∗(L)−,reg ⊂ 〈Czip〉. We note that:

Fact. The set Czip,R≥0
is a neighborhood of X∗(L)−,reg inside X∗

+,I(T )R≥0
.

For example, in the case Sp(6), the set X∗(L)−,reg is the half-line R≥0(−1,−1,−1),
which contains the weight of the classical Hasse invariant λ3 = (1 − p, 1 − p, 1 − p).
The above fact can be proven separately, but can also be deduced immediately from
the (much more difficult) inclusion CGS ⊂ Czip. Indeed, it is clear that CGS,R≥0

is
a neighborhood of X∗(L)−,reg inside X∗

+,I(T )R≥0
, thus so is Czip,R≥0

. One can ask
whether the Hasse cone CHasse,R≥0

is also a neighborhood of X∗(L)−,reg. First of all,
it can happen that X∗(L)−,reg is not contained in CHasse,R≥0

. Secondly, even when
the inclusion X∗(L)−,reg ⊂ CHasse,R≥0

holds, it can happen that this cone is not a
neighborhood of X∗(L)−,reg. This can be observed in the case Sp(6) explained in §7.

Theorem 8.1 ([6]). Let (G,µ) be an arbitrary cocharacter datum, with attached
groups P,L,Q,M . The following properties are equivalent:
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(i) CHasse,R≥0
is a neighborhood of X∗(L)−,reg inside X∗

+,I(T )R≥0
.

(ii) The inclusion CGS ⊂ CHasse holds.

(iii) One has the equality 〈Czip〉 = 〈CHasse〉.

(iv) The parabolic P is defined over Fp, and the Frobenius σ acts on I by −w0,I .

In Property (iv), note that since P is defined over Fp, the subset I ⊂ ∆ is stable
by the action of σ. Note also that the element −w0,I preserves I as well. We say that
(G,µ) is of Hasse-type if any of the above conditions is satisfied. For example, in the
case of Hilbert–Blumenthal Shimura varieties considered by Diamond–Kassaei, we have
I = ∅, so it is obviously of Hasse-type. The case (Sp(2g), µg) is of Hasse-type if and
only if g ≤ 2. The case (GL3, µ) where µ : z 7→ diag(z, z, 1) is also of Hasse-type.

Returning to Shimura varieties, we may ask when the equality (8.1) of Diamond–
Kassaei generalizes. If this equality holds, then a fortiori 〈Czip〉 = 〈CHasse〉, hence
(G,µ) must be of Hasse-type. Conversely, we conjecture that for Hodge-type Shimura
varieties such that (G,µ) is of Hasse-type, the equality (8.1) holds. Beside the cases
already mentioned treated in [8], the Hodge-type Shimura varieties attached to spinor
groups GSpin(2n + 1, 2) are also of Hasse-type. Therefore, Diamond–Kassaei’s results
potentially generalize to these Shimura varieties.
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