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Isogeny graphs of superspecial abelian varieties

By

Bruce W. Jordan
∗

Abstract

We define three different isogeny graphs of principally polarized superspecial abelian va-

rieties, prove foundational results on them, and explain their role in number theory and geom-

etry. This is background to joint work with Yevgeny Zaytman on properties of these isogeny

graphs for dimension g > 1, especially the result that they are connected, but not in general

Ramanujan.

§ 1. Introduction

A superspecial abelian variety A/Fp of dimension g is by definition isomorphic to a

product of g supersingular elliptic curves. There is in fact only one superspecial abelian

variety of dimension g > 1: Fix a supersingular elliptic curve E/Fp with O = OE =

End(E) a maximal order in the rational definite quaternion algebra Hp ramified at p.

Theorem 1.1. (Deligne, Ogus [22], Shioda [27]) Suppose A/Fp is a superspecial

abelian variety with dimA = g > 1. Then A ∼= Eg.

If A = Eg, then

End(A) = Matg×g(O) ⊆ End0(A) = End(A)⊗Q = Matg×g(Hp).

The theory of superspecial abelian varieties thus bifurcates: for dimension g = 1 there

are many superspecial abelian varieties (= supersingular elliptic curves) each with one

principal polarization, whereas for dimension g > 1 there is one superspecial abelian

variety with many principal polarizations.
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Let A = (A = Eg, λ) be a principally polarized superspecial abelian variety of

dimension g over Fp with Fp-isomorphism class [A ]. The principal polarization λ is an

isomorphism from A to Â = Pic0(A) satisfying the conditions of Definition 2.1. The

number of such isomorphism classes [A ] is finite and denoted h = hg(p); we shall see

that h is a type of class number. Set

SPg(p)0 = {Fp-isomorphism classes [A ]}(1.1)

= {[A1], . . . , [Ah]} with Aj = (Aj , λj) and Aj = Eg if g > 1.

So, for example,

SP1(p)0 = {supersingular j-invariants in characteristic p} and

# SP1(p)0 = h1(p) = h(Hp), the class number of the quaternion algebra Hp.

A principal polarization λ of an abelian variety A/Fp defines the Weil pairing on

A[ℓ], ℓ 6= p prime: 〈 , 〉λ,ℓ : A[ℓ]×A[ℓ]→ µℓ. Put

(1.2) Isoℓ(A ) = {maximal isotropic subgroups C ⊆ A[ℓ]}; # Isoℓ(A ) =

g∏

k=1

(ℓk + 1).

Proposition 1.2. (cf. [21, §23], [24, p. 36]). Suppose ℓ 6= p, A = (A, λ) is

a principally polarized abelian variety over Fp, and C ⊆ A[ℓ]. Let ψC : A → A/C =:

A′. Then there is a principal polarization λ′ on A′ so that ψ∗
Cλ

′ = ℓλ if and only

if C ∈ Isoℓ(A ). In this case write A ′ = (A′, λ′) = A /C. If [A ] ∈ SPg(p)0, then

[A ′] ∈ SPg(p)0.

If [A ] ∈ SPg(p)0 and C ∈ Isoℓ(A ), then A → A ′ = A /C is an (ℓ)g-isogeny. Such

(ℓ)g-isogenies induce correspondences from the finite set SPg(p)0 to itself. These cor-

respondences can be used to define various graphs—in this paper we define three (ℓ)g-

isogeny graphs: the big isogeny graph Grg(ℓ, p), the little isogeny graph grg(ℓ, p), and

the enhanced isogeny graph g̃rg(ℓ, p). In this introduction we content ourselves with

defining the simplest of the three, the big isogeny graph Gr := Grg(ℓ, p):

Definition 1.3. The vertices of the graphGr = Grg(ℓ, p) are Ver(Gr) = SPg(p)0,

so h = hg(p) = #Ver(Gr). The (directed) edges of the graph Gr connecting the vertex

[Ai] ∈ SPg(p)0 to the vertex [Aj ] ∈ SPg(p)0 are

Ed(Gr)ij = {C ∈ Isoℓ(Ai) | [Ai/C] = [Aj ]}.

The adjacency matrix Ad(Gr)ij = #Ed(Gr)ij is a constant row-sum matrix by (1.2):

(1.3)
h∑

j=1

#Ed(Gr)ij =

g∏

k=1

(ℓk + 1).
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Yevgeny Zaytman and I spoke at the conference on these isogeny graphs and our

results in [16], focusing on the theorem:

Theorem 1.4. ([16, §8]) The isogeny graphs Grg(ℓ, p), grg(ℓ, p), and g̃rg(ℓ, p) are

connected. If g > 1, the regular graph Grg(ℓ, p) is in general not Ramanujan.

One ingredient of our proof is strong approximation for the quaternionic unitary group.

The quaternionic unitary group has previously been applied to moduli of abelian va-

rieties in characteristic p; see Ekedahl/Oort [23, §7, esp. Lemma 7.9], Chai/Oort [4,

Prop. 4.3], and Chai [3, Prop. 1]. In my lecture and here I treat the general back-

ground and broader context of the isogeny graphs. Zaytman [28] will explain the proof

of Theorem 1.4. A common notation is shared between the two papers. Full proofs and

references for the results considered here can be found in [16].

My task of explaining isogeny graphs in arithmetic geometry is complicated by their

opaque history: The subject is certainly over 75 years old, dating back at least to Brandt

[1] from 1943. During this time, our graphs appear in disguises and in variations: the

big, little, and enhanced isogeny graphs all are there. So the broader contexts and work

done in other settings are not readily accessible. Let me give a personal example: The

work on these graphs I have used most from graduate student days to the present is the

1979 paper [18] of Kurihara entitled On some examples of equations defining Shimura

curves and the Mumford uniformization. Who would guess that this had anything to do

with isogeny graphs? In fact, the word “isogeny” does not appear in the entire paper.

It is perhaps helpful to list in chronological order the four lives of our isogeny

graphs, with A, B, and C subsequently playing a role in our story:

A. 1943 – : Brandt matrices. In this first appearance there are no graphs, no

elliptic curves, and no abelian varieties—only the Brandt matrices which are the adja-

cency matrices of Grg(ℓ, p) and the weighted adjacency matrices of grg(ℓ, p). The major

theorem was the trace formula. Brandt [1] defined the matrices for g = 1, primarily

treating definite quaternion algebras over Q. Eichler then introduces strong approxi-

mation and develops the theory for higher weight and totally real fields in case g = 1,

including the trace formula. Shimura [26] laid the foundations to generalize to g > 1

and the quaternionic unitary group; Brandt matrices in this setting were defined in

the 1980’s by Hashimoto, Ibukiyama, Ihara, and Shimizu—see [8]. Gross’s algebraic

modular forms [7] subsequently provided a more general context for these matrices.

B. 1976 – : Shimura curves and g = 1. In this incarnation the graphs appear,

but not from isogenies of supersingular elliptic curves. Rather they arise from the bad

reduction of Shimura curves in the work of Čerednik and Drinfeld. The explicit graphs

are deduced from the results of Čerednik and Drinfeld in [12], the jacobian of the graph

g̃r1(ℓ, p) is computed in [13], and the integral Hodge theory of the graphs gr1(ℓ, p),

g̃r1(ℓ, p) with applications to congruences between newforms and old forms is in [11].
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In §5.1 of this paper and [16, §9] we uniformize gr1(ℓ, p) and g̃r1(ℓ, p) as quotients of

the tree ∆ = ∆ℓ for SL2(Qℓ) using Kurihara [18]. The question of how the Čerednik-

Drinfeld results generalize to the higher-dimensional case g > 1 remains a magnet for

research.

C. 1988 – : LPS graphs; Ramanujan graphs and complexes. In an influential

paper, Lubotzky, Phillips, and Sarnak [19] construct families of Cayley graphs from

the Hamilton quaternions and show that they are Ramanujan. This work made the

Ramanujan property a central focus. These LPS graphs are shown to be explicit covers

of the little isogeny graph gr1(ℓ, 2) in [14, §3]. A higher-dimensional Ramanujan com-

plex was first constructed in [15]. But the full flowering of Ramanujan complexes is

due to the work over the last 15 years of Alex Lubotzky and Winnie Li, together with

their students, collaborators, and colleagues. Obviously this thread begs for a notion of

isogeny complex to generalize isogeny graph; this is the subject of [17].

D. 2011 – and 1986 – : Applications of isogenies. In this current optic, ap-

plications are found for isogenies and isogeny graphs. This begins with Mestre’s 1986

“méthode des graphes” [20] for computing Hecke operators. Then another completely

different application is introduced with Jao and de Feo’s 2011 proposal [10] for an

isogeny-based key exchange using supersingular elliptic curves.

§ 2. Polarizations of superspecial abelian varieties

Let X be an abelian variety over a field k of dimension g; the dual abelian variety

X̂ = Pic0(X) is defined over k. A homomorphism τ : X → X̂ is symmetric if τ̂ = τ ,

where we identify X =
ˆ̂
X via the canonical isomorphism

(2.1) κX : X
≃
−→

ˆ̂
X of [6, Thm. 7.9], for example.

Let P be the Poincaré line bundle on X × X̂.

Definition 2.1. (cf. [6, Cor. 11.5, Defn. 11.6]) A polarization of an abelian

variety X over a field k is a symmetric isogeny λ : X → X̂ over k such that the line

bundle (idX , λ)
∗P is ample. The degree deg(λ) of the polarization λ is the degree of

the isogeny λ, i.e., # ker(λ). The degree deg(λ) is always a square by the Riemann-

Roch theorem, see [21, §16]. It is convenient to define the reduced degree rdeg(λ) of

the polarization λ to be rdeg(λ) =
√
deg(λ). A polarization of degree 1 is a principal

polarization.

Remark 2.2. For a polarization λ we have rdeg(nλ) = ngrdeg(λ). For an

isogeny f : X → X ′ and polarization λ′ on X ′, degf∗(λ′) = deg(f)2 deg λ′.
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Many of the results in this section can be found in the paper [9] by Ibukiyama, Katsura,

and Oort and many were known to Serre.

Let H be a positive definite quaternion algebra over Q with a maximal order OH,

main involution x 7→ x, and reduced norm NmH/Q(x) = Nm(x) = xx. The reduced

norm Nm : Matg×g(H) → Q is the multiplicative polynomial of degree 2g generalizing

the reduced norm Nm : H→ Q. Put

SLg(OH) = {M ∈ Matg×g(OH) | Nm(M) = 1}.

A matrix H ∈ Matg×g(H) is hermitian if H = H† := H
t
. Set

(2.2) Hg(OH) = {H ∈ Matg×g(OH) | H is positive-definite hermitian}.

The “Haupt norm” HNm of Braun-Koecher [2, Chap. 2, §4] (see also [21, Thm. 6 and

proof, §21]) gives a map HNm : Hg(OH)→ N. For an integer d ≥ 1 put

(2.3) Hg,d(OH) = {H ∈Hg(OH) | HNm(H) = d}.

Definition 2.3. Let H be a definite quaternion division algebra over Q with

maximal order OH. Set OĤ
= OH⊗ Ẑ, the profinite completion of OH, and Ĥ = O

Ĥ
⊗Q.

There is a right action of M ∈ SLg(OH) on hermitian H ∈Hg,d(OH):

(2.4) H ·M :=M†HM.

Set Hg,d(OH) := Hg,d(OH)/SLg(OH) with [H] ∈ Hg,d(OH) the class defined by H ∈

Hg,d(OH).

If B is an algebra with anti-involution with fixed ring R, set

Ug(B) = {M ∈ Matg×g(B) |M†M = Idg×g},

GUg(B) = {M ∈ Matg×g(B) |M†M = λ Idg×g with λ ∈ R×}.

We will have B = O = OE , OH, OH[1/ℓ], H, OĤ
, and Ĥ in the course of this paper.

We now consider polarizations on A/Fp = Eg/Fp with End(E) = OE = O ⊆ Hp.

For A = (A, λ) a polarized superspecial abelian variety over Fp, let [A ] denote the

isomorphism class defined by A over Fp.

Let λ0 be the standard product polarization of A; the polarization λ0 is principal.

For H ∈Hg,d(O) ⊆ Matg×g(O), let λH be the polarization with

λH : A
H
−→ A

λ0−→ Â.

If H ∈Hg,d(O), then λH is a polarization of A = Eg with reduced degree rdeg(λH) = d.
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Theorem 2.4. If g > 1, there are one-to-one correspondences induced by asso-

ciating the polarization λH to the hermitian matrix H:

(a) polarizations λ of A = Eg with rdeg(λ) = d←→Hg,d(O) and

(b) isomorphism classes [A = (A = Eg, λ)] with rdeg(λ) = d←→Hg,d(O).

For H ∈ Hg,d(O) with g > 1, we denote by A (H) = (A = Eg, λH) the associated

polarized superspecial abelian variety. Theorem 2.4 allows us to describe the isomor-

phism classes SPg(p)0 of principally polarized superspecial abelian varieties [A ] over Fp

as in (1.1).

Proposition 2.5. If g > 1, there is a bijection

Hg,1(O)↔ SPg(p)0

associating [H] ∈Hg,1(O) to [A (H)] ∈ SPg(p)0.

As discussed in §1, the theory of superspecial abelian varieties bifurcates into the

cases g > 1 and g = 1. In spite of this we are able to give a uniform treatment of the

principally polarized isomorphism classes in Theorem 2.9 below by shifting from the

hermitian matrices for g > 1 in Proposition 2.5 to a notion of hermitian modules.

Let H0 be the hermitian form on Hg given by Idg×g. Let L ⊆ Hg be a finitely

generated right OH-module such that L⊗Q = Hg. We say that L is principally polarized

if there exists c ∈ Q× such that cH0|L is OH-valued and unimodular. We define the

dual of L to be L̂ = c−1L.

We can classify principally polarized right OH-modules. For M ∈ GUg(Ĥ), denote

by [M ] the coset containingM in GUg(Ĥ)/GUg(OĤ
) and define the principally polarized

right OH-module γ(M) :=MOg

Ĥ
∩Hg.

Theorem 2.6. A one-to-one correspondence

{principally polarized right OH-modules} ↔ GUg(Ĥ)/GUg(OĤ
)

is given by GUg(Ĥ)/GUg(OĤ
) ∋M ↔ γ(M) =MOg

Ĥ
∩Hg.

Finally we define the classes of GUg(OH), denoted Pg(OH), as the equivalence

classes [L] of principally polarized rightOH-submodules L up to left multiplication by GUg(H):

(2.5) Pg(OH) = GUg(H)\GUg(Ĥ)/GUg(OĤ
).

The set Pg(OH) is finite. We define the class number hg(H) of GUg(OH) by

(2.6) hg(H) = #Pg(OH);

it is independent of the choice of maximal order OH.
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Remark 2.7. In case g = 1, (2.5) becomes P1(OH) = H×\Ĥ×/O
Ĥ
. Hence

P1(OH) is the usual ideal classes ofOH and h1(H) = #P1(OH) is the usual class number

h(H) of the quaternion algebra H. In particular P1(O) is in one-to-one correspondence

with SP1(p)0.

For g > 1 we can relate principally polarized right OH-modules to hermitian ma-

trices using strong approximation—see [16, §2]—obtaining:

Theorem 2.8. If g > 1, the set Hg,1(OH) is in one-to-one correspondence with

Pg(OH).

We thus obtain the following description of SPg(p)0.

Theorem 2.9. We have one-to-one correspondences:

(a) For g ≥ 1, SPg(p)0 ←→Pg(O) = GUg(Hp)\GUg(Ĥp)/GUg(OĤp
).

(b) For g > 1, SPg(p)0 ←→Pg(O)←→Hg,1(O) .

In particular, with hg(p) := # SPg(p)0 as in §1, we have hg(p) = hg(Hp).

§ 3. Brandt matrices

Let h = hg(H) and Pg(OH) = {[L1], . . . , [Lh]} with [Li] the class defined by the

principally polarized right OH-module Li as in (2.5). For 1 ≤ j ≤ h, set

eg(j) = #{U ∈ GUg(H) | Lj = ULj}.

Definition 3.1. For n ≥ 1 define the Brandt matrix Bg(n) ∈ Math×h(Z) by

Bg(n)ij =
#{U ∈ GUg(H) | [Li : ULj ] = n2g}

eg(j)

and define Bg(0)ij = 1/eg(j).

Suppose g = 1. The class number h1(H) in (2.6) is the usual class number h = h(H)

of the quaternion algebra H by Remark 2.7. The principally polarized right OH-modules

L1, L2, . . . , Lh can be identified with representatives I1, I2, . . . , Ih for the right OH-

ideal classes. The norm Nm(I) of a (right or left) fractional OH-ideal is the positive

rational number generating the fractional ideal of Q generated by {Nm(α) | α ∈ I}. Let

Oi be the left order of the right OH-ideal Ii. Then e(i) = e1(i) = #O×
i . We thus have

B(n)ij = B1(n)ij =
#{λ ∈ IiI

−1
j | Nm(λ) = nNm(IiI

−1
j )}

e(j)
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and B(0)ij = 1/e(j), which is precisely the classical definition of Brandt matrices for a

rational definite quaternion algebra.

The Brandt matrices Bg(n) for a maximal order OH ⊆ H are amenable to machine

computation, although the memory requirements rapidly grow with n and especially

g so that few examples are accessible with g = 3. We had no computations finish

for g ≥ 4. As an example, take H = H5, the rational definite quaternion algebra of

discriminant 5. The first class numbers of H5 are: h1(H5) = 1, h2(H5) = 2, h3(H5) = 3.

The Brandt matrix Bg(ℓ) has constant row-sum
∏g

k=1(1 + ℓk). Brandt matrices for H5

with g = 1, 2, 3 are given in Table 1, where ? means the computation did not finish.

Bg(2) Bg(3) Bg(7) Bg(11)

g = 1 [3] [4] [8] [12]

g = 2

[
12 3

10 5

] [
34 6

20 20

] [
322 78

260 140

] [
1164 300

1000 464

]

g = 3



54 27 54

30 15 90

14 21 100






292 180 648

200 200 720

168 168 784


 ? ?

Table 1. Brandt matrices Bg(ℓ) for H5

§ 4. The big, little, and enhanced isogeny graphs

We will consider (ℓ)g-isogenies of principally polarized superspecial abelian varieties

in charteristic p with p 6= ℓ; see Section 1 for the definitions. As discussed there, there

are three natural graphs constructed from superspecial abelian variety isogenies—the

big isogeny graph Grg(ℓ, p), the little isogeny graph grg(ℓ, p), and the enhanced isogeny

graph g̃rg(ℓ, p). The different graphs arise depending on how isogenies and polarizations

are identified. Big, little, and enhanced isogeny graphs have subtly different properties,

so we need to be careful with the definitions...

Definition 4.1. A graph Gr has a set of vertices Ver(Gr) = {v1, . . . , vs} and a

set of (directed) edges Ed(Gr). An edge e ∈ Ed(Gr) has initial vertex o(e) and terminal

vertex t(e). For vi, vj ∈ Ver(Gr), put

Ed(Gr)ij = {e ∈ Ed(Gr) | o(e) = vi and t(e) = vj}.
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The adjacency matrix Ad(Gr) ∈ Mats×s(Z) of Gr is defined as

Ad(Gr)ij = #Ed(Gr)ij .

We place no further restrictions on our definition of a graph. Serre [25] requires

graphs to be graphs with opposites: every directed edge e ∈ Ed(Gr) has an opposite

edge e ∈ Ed(Gr) with e = e. An edge e with e = e is called a half-edge. Serre forbids

half-edges; we will call a graph satisfying his requirements a graph without half-edges.

Kurihara [18] relaxes Serre’s definition to allow half-edges giving the notion of a graph

with half-edges. (A graph with half-edges may have ∅ as its set of half-edges, so every

graph without half-edges is a graph with half-edges.) Following [18], if Gr is a graph

with half-edges, Gr∗ is the graph with the half-edges removed.

A graph with weights is a graph Gr with opposites together with a weight function

w : Ver(Gr) ∪ Ed(Gr) → N satisfying w(e) = w(e) and w(e)|w(o(e)) for each edge e.

The weighted adjacency matrix Adw(Gr) of a graph with weights Gr is

(4.1) Adw(Gr)ij =
∑

e∈Ed(Gr)ij

w(vi)

w(e)
.

Following [18, §3], a graph with lengths is a graph Gr with opposites together with a

length function f : Ed(Gr) → N satisfying f(e) = f(e) for e ∈ Ed(Gr). A graph

with weights determines a graph with lengths by taking the length of an edge to be its

weight. If Gr is a graph with weights or lengths, then Gr∗ inherits weights or lengths,

respectively, from Gr.

§ 4.1. The big isogeny graph Gr := Grg(ℓ, p)

The big isogeny graph Gr = Grg(ℓ, p) was defined in Definition 1.3; this is the

usual “isogeny graph”. In particular, Ver(Gr) = SPg(p)0, so #Ver(Gr) = h = hg(p).

We have

Ed(Gr)ij = {C ∈ Isoℓ(Ai) | [Ai/C] = [Aj ]}

with Isoℓ(A ) as in (1.2). The adjacency matrix Ad(Gr) is a constant row-sum matrix

as in (1.3):
h∑

j=1

Ad(Gr)ij =

g∏

k=1

(ℓk + 1).

It is in fact a familiar matrix:

Theorem 4.2. Let Bg(ℓ) be the Brandt matrix for O ⊆ Hp. Then Ad(Grg(ℓ, p)) =

Bg(ℓ).
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The adjacency matrix Ad(Gr) = Bg(ℓ) is not in general symmetric, so Gr cannot

be a graph with opposites. In particular, taking the dual isogeny does not give a well-

defined involution on Ed(Gr), so Gr is not a graph with opposites via dual isogenies.

§ 4.2. The little isogeny graph gr := grg(ℓ, p)

The little (ℓ)g-isogeny graph gr = grg(ℓ, p) has vertices

Ver(gr) = SPg(p)0,

so Ver(gr) = Ver(Gr) and #Ver(gr) = h = hg(p). If [A ] ∈ SPg(p)0 and C,C ′ ∈

Isoℓ(A ), say C ∼ C ′ if there exists α ∈ Aut(A ) such that αC = C ′. The class

[C] ∈ isoℓ(A ) := Isoℓ(A )/ ∼ is defined by C ∈ Isoℓ(A ). We put

Ed(gr)ij = {[C] ∈ isoℓ(Ai) | [Ai/C] = [Aj ]}.

Unlike the big isogeny graph, the little isogeny graph gr is a graph with opposites:

the dual isogeny gives a well-defined involution on Ed(gr). In general we have edges

e ∈ Ed(gr) with e = e, so gr is a graph with half-edges. Beyond this, gr is a graph with

weights: set w([A ]) = #Aut(A ) and w([C]) = #Aut(A, λ,C) for a vertex correspond-

ing to [A = (A, λ)] ∈ SPg(p)0 and the edge emanating from that vertex corresponding

to [C] ∈ isoℓ(A ). The weighted adjacency matrix (4.1) of the little isogeny graph is the

Brandt matrix:

Theorem 4.3. Adw(grg(ℓ, p)) = Ad(Grg(ℓ, p)) = Bg(ℓ).

§ 4.3. The enhanced isogeny graph g̃r := g̃rg(ℓ, p)

Recall the notation (1.1):

SPg(p)0 = {[A1], . . . , [Ah]} =: {v1, . . . , vh}.

Suppose [A = (A, λ)] ∈ SPg(p)0. Let ℓA := (A, ℓλ), a g-dimensional superspecial

abelian variety with ℓ times a principal polarization (which we call an [ℓ]-polarization

of type g in [16]). Set

SPg(p)g = {[ℓA1], . . . , [ℓAh]} =: {vh+1, . . . , v2h}.

Define the [ℓ]-dual Â = (Â, [λ]) of [A ] ∈ SPg(p)0
∐

SPg(p)g by requiring that the

composition

[λ] ◦ λ : A
λ
−→ Â

[λ]
−→ A

from A to itself is multiplication by ℓ. This [ℓ]-dual construction interchanges type

0 (principal polarizations) and type g: If [A ] ∈ SPg(p)0, then [Â ] ∈ SPg(p)g; and if

[A ] ∈ SPg(p)g, then [Â ] ∈ SPg(p)0.

We can now define the enhanced isogeny graph g̃r := g̃rg(ℓ, p):
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Definition 4.4. The vertices of g̃r = g̃rg(ℓ, p) are

Ver(g̃r) = SPg(p)0
∐

SPg(p)g = {v1, . . . , vh}
∐
{vh+1, . . . , v2h}.

Hence #Ver(g̃r) = 2h = 2hg(p).

The edges connecting the vertex vh+i = [ℓAi] ∈ SPg(p)g to the vertex vj = [Aj ] ∈

SPg(p)0 are

Ed(g̃r)h+i,j = {[C] ∈ isoℓ(Ai) | [Ai/C] = [Aj ]}

with isoℓ(A ) as in §4.2. For vi = [Ai] ∈ SPg(p)0 and vh+j = [ℓAj ] ∈ SPg(p)g,

Ed(g̃r)i,h+j = {[Ĉ] ∈ isoℓ(Âi) | [Âi/Ĉ] = [Âj ]}.

In case 1 ≤ i, j ≤ h or h+ 1 ≤ i, j ≤ 2h, Ed(g̃r)ij = ∅.

The enhanced isogeny graph g̃r is a graph with opposites: If e ∈ Ed(g̃r)ij , the

opposite edge e ∈ Ed(g̃r)ji is the equivalence class of the dual isogeny. We never have

e = e, so g̃r is a graph without half-edges. The graph g̃r is a graph with weights: define

w as the order of automorphism group as for gr .

Theorem 4.5. (a) The enhanced isogeny graph g̃r is the bipartite double cover

of the little isogeny graph gr with inherited weights.

(b) Let Ad = Ad(gr) and Adw = Adw(gr) = Ad(Gr). Then

Ad(g̃r) =

[
0 Ad

Ad 0

]
and Adw(g̃r) =

[
0 Adw

Adw 0

]
=

[
0 Bg(ℓ)

Bg(ℓ) 0

]
.

Let ι : g̃r → g̃r be the involution defined on vertices by ι([A ]) = [Â ] and on edges

such that if e ∈ Ed(g̃r)ij corresponds to the class [C], then ι(e) ∈ Ed(g̃r)i+h,j+h (where

the indices are added mod 2h) also corresponds to the class [C]. Then ι fixes no vertices

and no edges of g̃r and g̃r/ι = gr .

§ 5. ℓ-adic uniformization of isogeny graphs

In this section we give the uniformization of the isogeny graphs gr1(ℓ, p) and

g̃r1(ℓ, p) by the Bruhat-Tits building ∆ = ∆ℓ of SL2(Qℓ), which is an (ℓ+1)-regular tree.

We then use this uniformization to relate gr1(ℓ, p) and g̃r1(ℓ, p) to the bad reduction of

Shimura curves.

§ 5.1. ℓ-adic uniformization of isogeny graphs for g = 1

The quaternion algebra H(p) := Hp is split at the prime ℓ, so

Γ0 := O[1/ℓ]× →֒ GL2(Qℓ) ∼= (H(p)⊗Q Qℓ)
×.
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Set Γ1 := {γ ∈ Γ0 | NmH(p)/Q(γ) = 1}. Then Γ1\∆ and Γ0\∆ are finite graphs with

weights defined by the orders of the stabilizer subgroups for the action on ∆. Kurihara

[18] shows the following:

Theorem 5.1 (Kurihara). Let B1(ℓ) the Brandt matrix at ℓ for the maximal

order O ⊆ H(p) = Hp.

(a) Adw(Γ0\∆) = B1(ℓ).

(b) The graph with weights Γ1\∆ is the bipartite double cover of Γ0\∆.

Proof. (a): [18, p. 294].

(b): [18, p. 296].

In [16, §9], we prove the following:

Theorem 5.2.

(a) gr1(ℓ, p)
∼= Γ0\∆ as graphs with weights.

(b) g̃r1(ℓ, p)
∼= Γ1\∆ as graphs with weights.

Note that the big isogeny graph Gr1(ℓ, p) is not ℓ-adically uniformized since, as we saw

in Section 4.1, it is not even a graph with opposites.

Theorem 5.2 in turn will show that our isogeny graphs gr1(ℓ, p) and g̃r1(ℓ, p) arise

from the bad reduction of Shimura curves, which we now explain. Let B be the indefinite

rational quaternion division algebra with DiscB = ℓp. Let VB/Q be the Shimura curve

parametrizing principally polarized abelian surfaces with QM (quaternionic multiplica-

tion) by a maximal orderM ⊆ B. There is then a model MB/Z of VB/Q constructed

as a coarse moduli scheme by Drinfeld [5]; see also [12]. Let L /Zℓ be the ℓ-adic upper

half-plane. The dual graph G(L /Zℓ) of its special fiber is canonically ∆ = ∆ℓ. For

Γ ⊆ PGL2(Qℓ) a discrete, cocompact subgroup, the quotient Γ\L is the formal com-

pletion of a scheme LΓ/Zℓ along its closed fiber. We have that LΓ/Zℓ is an admissible

curve in the sense of [12, Defn. 3.1]. Its dual graph G(LΓ/Zℓ) as in [12, Defn. 3.2] is a

graph with lengths and G(LΓ/Zℓ) ≃ (Γ\∆)∗, see [18, Prop. 3.2].

For the formulation below, see [12].

Theorem 5.3 (Čerednik, Drinfeld). Let wℓ be the Atkin-Lehner involution at ℓ

of MB. Let Γ0 be the image of Γ0 ⊆ GL2(Qℓ) in PGL2(Qℓ) and similarly for Γ1. Let

O be the ring of integers in the unramified quadratic extension of Qℓ.

(a) The scheme MB × Zℓ is the twist of LΓ1
/Zℓ given by the 1-cocycle

χ ∈ H1(Gal(O/Zℓ),Aut(LΓ1
×O/O)), where χ : Frobℓ 7→ wℓ :

MB × Zℓ = (LΓ1
)χ.
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(b) (MB/wℓ)× Zℓ = LΓ0
/Zℓ.

Corollary 5.4.

(a) G(MB × Zℓ) = Γ1\∆ = g̃r1(ℓ, p) as graphs with lengths.

(b) G((MB/wℓ) × Zℓ) = (Γ0\∆)∗ = gr1(ℓ, p)
∗ as graphs with lengths with (Γ0\∆)∗,

gr1(ℓ, p)
∗ as in Definition 4.1.

§ 5.2. ℓ-adic uniformization of isogeny graphs for g > 1

We would like to generalize Theorem 5.2 to g ≥ 1. Recall that A = Eg, O =

End(E), and End(A) = Matg×g(O). Let Bg be the Bruhat-Tits building for Sp2g(Qℓ)

with SSg its special 1-skeleton of Bg: the vertices of SSg are the special vertices of Bg
and its edges are the edges of Bg between special vertices.

We prove the following theorem in [16, §9].

Theorem 5.5. The groups GUg(O[1/ℓ]), Ug(O[1/ℓ]) are as in Definition 2.3.

(a) grg(ℓ, p) = GUg(O[1/ℓ])\SSg as graphs with weights.

(b) g̃rg(ℓ, p) = Ug(O[1/ℓ])\SSg as graphs with weights.

In case g = 1, Sp2(Qℓ) = SL2(Qℓ), SS1 = ∆ℓ, U1(O[1/ℓ]) = Γ1, GU1(O[1/ℓ]) = Γ0,

and we recover Theorem 5.2: gr1(ℓ, p) = Γ0\∆ℓ, g̃r1(ℓ, p) = Γ1\∆ℓ. As remarked in

Section 1, there is great interest in generalizing Theorem 5.3 to g > 1.
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[14] Jordan, B. and Livné, R., Ramanujan local systems on graphs, Topology 36(5) (1997):

1007–1024.
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