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Definable er sheaf on o-minimal spectrum 
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Consider an o-minimal expansion of the real field i. and a definable er sub
manifold M of ]Rm, where r is a nonnegative integer. Let £ be the first-order - -language of JR. The o-minimal spectrum M of M is the set of all complete 

m-types of the first-order theory ThIR(i.) which imply a formula defining M. 

A stalk of the sheaf of definable er functions on M at a point a E M is a 
local ring. Its residue field is naturally an £-structure. We show that the 

residue field is a minimal elementary extension of the o-minimal structure JR 

containing Cd.£(M)/ supp(a) and satisfying that, for any a E (C:'ir(M)t and 

any formula ¢(x), the extension satisfies the sentence ¢(a) if and only if the 

definable subset of M defined by ¢(a) is an element of a. Here, the notation 

C;'ir(M) denotes the ring of all definable C functions on M. 

1 Introduction and definitions 

We fix an o-minimal expansion of the real field JR in this paper. We also assume 

that the interpretation of any function symbol of the language £ in JR is of class er on 

its domain of definition throughout the paper. The definition of o-minimal structures 

and their basic properties are found in [4, 5]. The term 'definable' means 'definable 

in the o-minimal structure JR' in this paper. A typical example of JR is the ordered 

field structure on the real field. A definable set is a semialgebraic set in this case. 

Consider a Euclidean space ]Rn and the real spectrum of the polynomial ring X = 
Sper(JR[X1, ... , Xn]). Real spectrum of a commutative ring is defined in [2, Section 
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7.1]. A subset fJ of X is defined for any semialgebraic subset U of JRn. The sets U 

are open bases in the spectral topology of X when U are semialgebraic open subsets 

of ]Rn_ The definition of iJ is found in [2, Proposition 7.2.2]. Sheaves on subsets 

of X are defined and investigated in semialgebraic geometry. For instance, given an 

affine Nash submanifold M of ]Rn, the sheaf NM is defined on M such that, for any 

semialgebraic open subset U of M, the ring NM(U) is the ring of all Nash functions 

on U. The stalk of the sheaf NM at o: EM is the real closure k(o:) of the quotient 

field of JR[X1 , ... , Xnl/ supp(o:) with the ordering induced by the prime cone o: by [2, 

Proposition 8.8.1, Proposition 8.8.2, Proposition 8.8.3]. Note that the real closed field 

containing JR is an elementary extension of the real field JR as L 0 f-structures, where 

Lof is the first order language of ordered fields, because the theory of real closed fields 

has quantifier elimination by [2, Proposition 5.2.2]. 

A sheaf s0 T on f is another example, where T is a semialgebraic subset of ]Rn. The 

ring s0r(U) coincides with the ring of all semialgebraic continuous functions on a 

semialgebraic open subset U of T. The residue field of the stalk of this sheaf at o: E T 

is also the real closure k(o:) by [2, Proposition 7.3.2, Proposition 7.3.3, Proposition 

7.3.4]. 

We want to generalize these results to general o-minimal cases. In this paper, 

we consider a definable er manifold M and definable er functions on its definable 

subsets, where r is a nonnegative integer. We can neither use the real spectrum of 

the polynomial rings nor expect quantifier elimination in our cases. We must find 

another appropriate space. Candidates for such a space may be the spectrum or the 

real spectrum of the ring C':i.r(M), where C:i.r(M) denotes the ring of all definable er 
functions on M. However, they have too much points as demonstrated in Section 2. 

Another candidate is the o-minimal spectrum defined in [12, 6]. We consider sheaves 

on the o-minimal spectrum. 

We introduce notations necessary so as to describe our results more precisely. Con

sider an o-minimal expansion of the real field JR and a definable er manifold M. Note 

that all definable er manifolds are affine by [10, Theorem 1.1] and [8, Theorem 1.3]. 

We use this fact without explicitly stated in this paper. Assume that M is a definable 

C submanifold of JRm. Theo-minimal spectrum Mis the set of all complete m-types 

of the first-order theory ThJR(ffi.) which imply a formula defining M. It is equipped 

with the topology, called spectral topology, generated by the basic open sets of the 
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form 
fJ = {p E M I ( the formula defining U) E p}, 

where U are definable open subsets of M. 

The notation DM denotes the set of all definable subsets of M. The set DM of all 

D M-ultrafilters is our main concern. The definitions of filters are found in [l]. We 

define a topology in D M as follows: The open bases of the topology are the subsets 

of the form 

where U are definable open subsets of M. The topological space DM is homeomorphic 

to M by [6, Section 2]. We identify M with DM in the rest of this paper. 

We first investigate the relation between real spectrum and o-minimal spectrum. 

For that purpose, we consider three other topological spaces. Let DCM be the lattice 

consisting of all definable closed subset of M. The first topological space DCM is 

the set of all prime DCM-filters with the following topology. The open bases of the 

topology of DCM are the subsets of the form 

where U are definable open subsets of M. 

The notation Si denotes the set of all definable er functions on JR which are odd, 

increasing, bijective and r-flat at the origin. A subset T C C':;_r(M) is called Si-fixed 

if any definable er function g on M with ¢ o g E T for some¢ E Si is contained in T. 

The second topological space is a topological subspace of the spectrum Spec( Caf( M)) 

of the ring Caf(M) with the Zariski topology. Its underlying set consists of all Si

fixed prime ideals. It is denoted by Specfixed ( Car( M)). The last topological space 

Sperfixed ( Car( M)) is a topological subspace of the real spectrum Sper( Car( M)) of the 

ring Caf(M) with the spectral topology. Its underlying set is the set of all Si-fixed 

prime cones. See [2, Section 7.1] for the definitions ofreal spectrum of a commutative 

ring and its topology. 

Our first main theorem is the following theorem: 

Theorem 1.1. Consider an a-minimal expansion of the real field JR. Let M be a 

definable er manifold. The five topological spaces M, DM, DCM, SpecfixeiCd/M)) 

and SperfixeiCd/M)) are all homeomorphic to each other. Furthermore, the spaces 
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Specfixed(C;;/M)) and SperfixeiC;;/M)) coincide with the spectrum Spec(C;;/M)) 

and the real spectrum Sper(C;;/M)), respectively, when the a-minimal structure i is 

polynomially bounded. 

There is a sheaf ::DM on M such that the ring '.'.DM(U) coincides with the ring 

C'dr(U) of all definable er functions on a definable open subset U of M. The stalk 

(::DM )a of the sheaf ::DM at a point a E M is a local ring. The residue field of this 

local ring is denoted by k(a). Let £ be the language of the o-minimal structure 

i. We view the field k(a) as an £-structure. We denoted this £-structure by k(a). 

Consider an £-formula c/>(x) with n free variables x = (x1, ... , Xn)- For any a = 

( a1, ... , an) E k( at, we define that ¢(a) is satisfied in k( a) if the definable set 

{ x E M I i F c/>(F1 (x ), ... , Fn(x))} is contained in the ultrafilter a, where Fi : U --t JR 

are definable er functions on a definable open subset U of M which are simultaneously 

representatives of the elements ai E k(a) for all 1 ~ i ~ n. We show that the above 

definition is well-defined in Section 3. In [12], Pillay gave the same definition only in 

the case in which M is an Euclidean space and r = 0. Our second main theorem is 

the following theorem. It is a variant of [3, Section 5.2, Section 5.3]. 

Theorem 1.2. Consider an a-minimal expansion of the real field JR and its language 

£. Let M be a definable er manifold. The £-structure k(a) is an elementary extension 

of i whose underlying set contains the ring c;;/M)/ supp(a). Here, the notation 

supp(a) is a prime ideal defined by supp(a) ={FE c;;/M) I p-1(0) Ea}. 

Let K, be an elementary extension of JR whose underlying set K contains 

the ring c;;/M)/ supp(a). Assume further that, for any £-formula c/>(x) and 

F = ( F1 , ... , F n) E ( c;;/ M) t, the fallowing two conditions are equivalent: 

• K p== c/>(F), and 

• the ultrafilter a contains the definable set { x E M I i F ¢( F 1 ( x), ... , F n ( x))}. 

Then, there exists a unique elementary embedding k(a) -< K. 

This paper is organized as follows: We first demonstrate Theorem 1.1 in Section 2. 

Propositions similar to Theorem 1.1 are found in [9], and the results in [9] are often 

used in this section. We show that the above interpretation in k(a) is well-defined in 

Section 3. Section 3 is also devoted to the proof of Theorem 1.2. 
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2 Correspondence among VM, VCM, Spec(Cd/M)) and 

Sper( Cd/ M)) 

We first show that the topological space M is compact. 

Proposition 2.1. Let M be a definable er manifold. The topological space M is 

compact. 

Proof. The set DM is a boolean subalgebra of the boolean algebra of subsets of M. 

The Stone space of DM defined in [2, Section 7.1] has the same underlying set as 

D M, and its topology is finer than the topology of D M. Since the Stone space is 

compact, D M is also compact. The topological space M is also compact because they 

are homeomorphic. □ 

The following theorem is a part of Theorem 1. 1. 

Theorem 2.2. Let M be a definable er manifold. The map T: DM ➔ DCM given 

by 
T(o:) ={CE DCM ICE o:} 

is a homeomorphism. 

Proof. We may assume that M is a definable subset of a Euclidean space ffi.n because 

Mis affine. It is easy to show that T(o:) is a prime DCM-filter. 

We first demonstrate that T is injective. Let o:1, o:2 E DM with T(o:1) = T(o:2). 

We have only to show that o:1 C o:2 by symmetry. Consider an arbitrary element 

C E o:1 and a definable cell decomposition of ffi.n partitioning C by [4, Chapter 3, 

(2.11)]. Since o:1 is an ultrafilter, at least one cell contained in C is an element of o:1 . 

Let D be such a cell of the minimum dimension. We lead a contradiction assuming 

that D (j_ 0:2. Let Ebe the closure of D, which is an element of 0:1 because D E 0:1 

and D C E. It is simultaneously an element of T(o:1). We have E E T(o:2 ) because 

T(o:1 ) = T(o:2 ). In particular, Eis an element of o:2 . Since Eis a union of the cells, 

there exists a cell D' which is contained in E and is simultaneously an element of 

o:2 . Note that the dimension of D' is smaller than that of D because D (j_ o:2 . We 

can show that the closure E' of D' is an element of o:1 in the same way as above. At 



12

least one of the cells contained in E' is an element of o:1 . This cell is of dimension 

strictly smaller than the dimension of D. It contradicts the assumption that D has 

the minimum dimension. We have shown that o:1 C o:2. We have demonstrated that 

T is injective. 

Secondly, we demonstrate that T is surjective. For any /3 E 'DCM, define d(/3) as 

the minimum of the dimensions of all the elements in /3. We define a subset o: of DM 

as follows: 

o: ={CE DM IV n C =I- 0 and dim(V n C) ~ d(/3) for all VE /3}. 

We first show that o: is an ultrafilter. 

(i) It is obvious that M E o: and 0 (/. a. 

(ii) We show that C1 n C2 E o: when C1 E o: and C2 E o:. We have to show that 

V n C1 n C2 =/- 0 and dim V n C1 n C2 ~ d(/3) for any V E /3. There exists a 

definable closed set V' E /3 of dimension d(/3) contained in V for any V E /3. In 

fact, let W E /3 with dim W = d(/3), then the intersection V' = W n V is an 

element of /3 of dimension d(/3). We have VnC1 nC2 =/- 0 and dim VnC1 nC2 ~ 

d(/3) if V' nC1 nC2 =/- 0 and dim V' nC1 nC2 ~ d(/3). Therefore, we may assume 

that V is of dimension d(/3) without loss of generality. Consider a definable cell 

decomposition of ffi.n partitioning V, C1 and 0 2. Let {Di}b1 be the collection 

of cells of dimension d(/3) contained in V. The closure of Di is denoted by Ei for 

each 1 :<:::: i :<:::: m. We have V = LJZ':, 1 Ei U F, where Fis a definable closed set of 

dimension smaller than d(/3). Since /3 is a prime DCM-filter, we get Ei E /3 for 

some 1 :<:::: i :<::; m. The equality dim(Ei n 0 1 ) = d(/3) should be satisfied because 

Ei E /3 and 0 1 E o:. We get Di C C1 because Di is a cell of the definable cell 

decomposition partitioning C1. We also get Di C C2 in the same way. We have 

demonstrated that Di is contained in V n C1 n 0 2. We have V n C1 n 0 2 =/- 0 
and dim V n 0 1 n 0 2 ~ d(/3). It means that 0 1 n 0 2 E o:. 

(iii) It is obvious that any element of D M containing an element of o: is also an 

element of o:. 

(iv) We finally show that, for any 0 1 , 0 2 E DM with 0 1 U 0 2 E o:, at least one of 

C1 and C2 is an element of o:. Assume the contrary. There exist Vi, Vi E /3 

with dim(¼ n Ci) < d(/3) for i = 1, 2. We have dim((C1 U 0 2) n V1 n Vi) = 
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max{ dim(C1 nVi nVi), dim(C2nV1 nVi)} :::; max{ dim(C1 nVi), dim(C2nVi)} < 

d((3). It is a contradiction because V1 n Vi E (3 and C1 U C2 Ea. 

We have shown that the subset a is a DM-ultrafilter. 

We next demonstrate that (3 = T(a). The inclusion (3 C T(a) is obvious. We show 

the opposite inclusion. The set T( a) is described as follows: 

T(a) = {VE DCM I W n V =I- 0 and dim W n V 2: d((3) for all WE (3}. 

Take an arbitrary element V E T(a) and an element W E (3 of dimension d((3). 

Consider a definable cell decomposition of ]Rn partitioning V and W. Let { Di}~1 be 

the collection of cells of dimension d((3) contained in W. The closure of Di is denoted 

by Ei for each 1 :::; i :::; m. We have W = LJ7:1 Ei U F for some definable closed subset 

F of M of dimension smaller than d(/3). A definable closed set Ei is an element of (3 

for some 1 :::; i :::; m because (3 is a prime filter. We have dim(V n Ei) = d(/3) because 

V E T(a). Hence, the cell Di is contained in V. The closure Ei is also contained in 

V because Vis closed. We get VE (3 because Ei CV and Ei E (3. We have shown 

that (3 = T(a). We have demonstrated that Tis surjective. 

It remains to show that the bijective map T is a homeomorphism. Set fJD = { a E 

'D M I U E a} and fJDC = {(3 E 'DCM I M \ U ~ (3} for all definable open subsets 

U of M. We have only to show that T(fJD) = fJDC. We first show the inclusion 

T(fJD) c fJDC_ Let a E fJD_ We have U Ea, and M \ U ~ a; hence, M \ U ~ T(a). 

We have shown that T( a) E fJDC. The next task is to illustrate the opposite inclusion. 

We assume that (3 E fJDC. We have M \ U ~ (3. Since T is onto, there is a E 'DM 

with (3 = T(a). We get M \ U ~ a. Since a is an ultrafilter, we have U Ea. We have 

shown the opposite inclusion. □ 

Consider the ring cdf( M) of all definable er functions on a definable er mani

fold M. The author showed that three topological spaces DCM, Spec(Cctr(M)) and 

Sper(Cctr(M)) are all homeomorphic to each other when the o-minimal structure JR is 

polynomially bounded in [9, Theorem 2.11, Corollary 2.12]. 

An open basis of 'DCM is defined as a set of the form {(3 E 'DCM I V ~ (3} in [9], 

where V = LJ7=1 {x EM I fi(x):::; O} for some Ji, ... , !k E Cctf(M). It seems slightly 

different from the definition in this paper, but they are identical. In fact, an open 

basis in [9] is an open basis in this paper because U = M \Vis a definable open set. 
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On the contrary, for any definable open subset U in M, there exists a definable er 
function on M with J-1 (0) = M\U by [9, Lemma 2.1]. Set V = {x EM I f2(x)::; 0}, 

then we get fJ ={,BE veM I V (/. ,B}. An open basis in this paper is an open basis 

in [9]. 

The example in [9, Example 3.1] shows that veM is not homeomorphic to 

the spectrum Spec(Cdr(M)) when the a-minimal structure i is not polynomially 

bounded. We consider appropriate subsets Specfixea(Cdf(M)) and Sperfixea(Cdf(M)) 

of Spec(Cdr(M)) and Sper(Cdr(M)), and show that they are homeomorphic to veM. 

We review the maps defined in [9]. The map I: veM-+ Spec(Cdr(M)) is given by 

and it is continuous by [9, Proposition 2.4]. The map a : veM -+ Sper(Cdr(M)) is 

given by 
a(,B) = {f E Cdr(M) I f- 1 ([0, oo)) E ,B}, 

and it is also continuous by [9, Lemma 2.6]. We call this map A instead of a because 

we use the symbol a to represent an element of V M in this section. Finally, the 

continuous map <I>r: Sper(Cdr(M))-+ Spec(Cdr(M)) is given by <I>r(P) = supp(P) = 

{f E cdf(M) If E p and - f E P}. 

Lemma 2.3. The maps I and A send a prime DCM-filter to an SR-fixed prime ideal 

and an SR-fixed prime cone, respectively. 

Proof. The maps I and A send a prime DCM-filter to a prime ideal and a prime cone 

by [9, Proposition 2.4, Lemma 2.6]. It is obvious that they are SR-fixed. □ 

Lemma 2.4. The map Z: SpecfixeiCd/M))-+ veM defined by 

z(p) = u-1 (0) 11 E P} 

is a continuous map, and the equality I(Z(p)) = p holds true for any SR-fixed prime 

ideal p of Cd/M). 

Proof. The set Z(p) is a DCM-filter by [9, Proposition 2.4]. We show that it is a 

prime DCM-filter. Let A and B be definable closed subsets of M with AU B E Z(p ). 

There are definable er functions f, g E Cdr(M) with 1-1 (0) = A and g-1 (0) = B 

by [9, Lemma 2.2]. Since AUBE Z(p), there is a definable er function h E p with 
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AU B = h-1 (0). There exist CJ E Si and u E C:;_f(M) with CJ o (Jg) = uh E p by 

[9, Lemma 2.1]. We have Jg E p because p is Si-fixed; and, we get f E p or g E p 

because pis a prime ideal. We have shown that A E Z(p) or BE Z(p). The set Z(p) 

is a prime DCM-filter. 

We next show the I(Z(p)) = p for any Si-fixed prime ideal p of C:;_f(M). The 

inclusion p C I(Z(p)) is obvious. We show the opposite inclusion. Let f E I(Z(p)), 

there exists a definable er function g E p with J-1 (0) = g-1 (0). There exist CJ E Si 

and h E C:;_f(M) with CJ of= gh E p by [9, Lemma 2.1]. Since pis Si-fixed, we have 

f E p. 
We finally illustrate that Z is continuous. Let Ube a definable open subset of M. 

There exists a definable er function f E c:;_f(M) with M \ U = 1-1 (0) by [9, Lemma 

2.2]. We have only to show that 

Assume that f E p, then M \ U E Z(p), and Z(p) (/. ff. On the other hand, if 

Z(p) (/. fJ, we have M \ U E Z(p), and f E I(Z(p)) = p. □ 

Lemma 2.5. If a prime cone PE Sper(Cd/M)) is Si-fixed, the support supp(P) is 

an Si-fixed prime ideal. 

Proof. The set supp(P) is a prime ideal by [2, Proposition 4.3.2]. We have only to 

show that, if g E c:;_f(M) and CJ E Si with CJ o g E supp(P), the element g is contained 

in supp(P). We have g E P because CJ o g E P and P is Si-fixed. Remember that 

CJ: JR--+ JR is an odd function. We also have -g E P because CJ o (-g) = -CJ o g E P. 

It means that g E supp(P). □ 

Theorem 2.6. The restriction 

is a homeomorphism, and its inverse map is A o Z. 

Proof. The continuous map <I>r is well-defined by Lemma 2.5, The map Ao Z is also 

well-defined and continuous by Lemma 2.3 and Lemma 2.4. The remaining task is to 

show that the composition of two maps are the identity maps. 

We first show that P = A(Z(<I>r(P))) for any P E Sperfixed(C:;_f(M)). Set P' = 
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A(Z(<I>r(P)), then we have supp(P') = I(Z(supp(P))) by [9, Lemma 2.6]. Apply 

Lemma 2.4, then we get supp(P') = supp(P). The prime cones P and P' coincide by 

[9, Proposition 2.8]. 

The equality <I>r(A(Z(p))) = p is easy to prove, where p E Specfixe<l(Caf(M)). In 

fact, we have <I>r(A(Z(p))) = I(Z(p)) by [9, Lemma 2.6]. The right hand side of the 

equality coincides with p by Lemma 2.4. □ 

Theorem 2.7. The map I: DCM ---+ Specfixed(Cd/M)) is a homeomorphism, and 

its inverse map is Z. 

Proof. The maps I and Z are continuous by [9, Proposition 2.4] and Lemma 2.4. We 

also have I(Z(p)) = p for any Si-fixed prime ideal p of Car(M). It is obvious that 

Z(I(/3)) = (3 for any prime DCM-filter (3. □ 

The author promised that Theorem 1.1 is proved in this section. In fact, Theo

rem 1.1 follows from Theorem 2.2, Theorem 2.6, Theorem 2.7, [6, Section 2] and [9, 

Theorem 2.11, Corollary 2.12]. 

3 Sheaf of definable er functions on o-minimal spectrum and 

its stalk 

We introduce several lemmas and propositions used in the proof of Theorem 1.2. 

Lemma 3.1. Let M be a definable er manifold with O :::; r < oo. Let X and Y 

be definable closed subsets of M with X n Y = 0. Then, there exists a definable er 

function f: M---+ [0, 1] with 1-1 (0) = X and 1-1 (1) = Y. 

Proof. There exist definable er functions g, h : M---+ JR with g-1 (0) = X and h-1 (0) = 

Y by [9, Proposition 2.2]. The function f: M---+ [0, 1] defined by f(x) = g(x)2~((x)2 

satisfies the requirement. □ 

Lemma 3.2. Let M be a definable er manifold with O :::; r < oo. Let C and U be 

definable closed and open subsets of M, respectively. Assume that C is contained in 

U. Then, there exists a definable open subset V of M with C c V c V c U. 

Proof. There is a definable continuous function h : M---+ [0, 1] with h-1 (0) = C and 
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h-1(1) = M \ U by Lemma 3.1. The set V 

requirement. 

{x E M; h(x) < ½} satisfies the 

□ 

Lemma 3.3 (Partition of unity). Let MC ffi.m be an a definable er manifold. Given 

a finite definable open covering {Ui} {=l of M, there exist nonnegative definable er 
functions Ai on M for all 1 ~ i ~ q such that LiEI Ai = 1 and the closure of the set 

{x EM I Ai(x) > 0} is contained in Ui. 

Proof. Let hi(x) = dist(x, M \ Ui) be the distance between a point x E Mand the 

closed set M \ Ui for any 1 ~ i ~ q. Set v:; = {x EM I hi(x) > max1:<'.j:<'.q hj(x)/2}. 

The closure of v:; in M is contained in Ui. In fact, let x be a point in the closure of 

v:;. We have hj(x) > 0 for some 1 ~ j ~ q because {Ui};=1 is an open covering. Since 

hi(x) 2: max1:<'.j:<'.q hj(x)/2 > 0, we get x E Ui. We next show that {¼};=1 is a finite 

definable open covering of M. Fix an arbitrary point x EM. There exists an integer 

1 ~ i ~ q with x E Ui, and hi(x) > 0. Let k be the positive integer with 1 ~ k ~ q 

and hk(x) = max1:<'.j:<'.q hj(x) > 0. It is obvious that the point x belongs to Vk. 

There exists a definable er function Ji on M with fi-1(0) = M\ v:; by [9, Lemma 2.2]. 

Set Ai = fl/ L)=l JJ. The definable er functions Ai on M satisfy the requirements. 

□ 

Lemma 3.4. Let M C ffi.n be a definable er submanifold of ffi.n, which is closed in 

ffi.n. For any definable er function f on M, there exists a definable er extension F to 

ffi.n. 

Proof. There exists a definable open neighborhood U of M and definable er map 

p : U --+ M such that the restriction of p to M is the identity map by [7, Theorem 

1.9]. Let V be a definable open neighborhood of M with MC V CV CU given in 

Lemma 3.2. There exists a definable er function hon ffi.n with h-1(0) = ffi.n \ V and 

h-1(1) = M by Lemma 3.1. A definable er extension F: ffi.n--+ ffi. off is given by 

F(x) = { ~(x)f(p(x)) if XE V, 
otherwise. 

□ 

Lemma 3.5. Let M C ffi.n be a definable er submanifold of ffi.n, which is closed in ffi.n. 

Consider a definable continuous function f on M which is of class er on M\J-1 (0). 
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There exists a definable continuous extension F of f to ]Rn which is of class er on 

]Rn \ p-l (0). 

Proof. We can construct an extension F in the same way as Lemma 3.4. □ 

Proposition 3.6. Let M be a definable er manifold. Consider a definable subset A 

of M and a definable er function on A. Assume that, for any x 0 E A\ A, the limit of 

the function f at x 0 exists and it is zero. Then, there exists an element c, E SR such 

that the composition c, o f has a definable er extension to M. 

Proof. Since M is affine, there is a definable er embedding l : M '----+ ]Rn. Since M \ M 

is a definable closed set, there exists a definable er function H on ]Rn vanishing only on 

M\M by [5, Theorem C.11]. The image of the definable er embedding i': M---+ ]Rn+l 

given by l1(x) = (l(x), 1/H(x)) is a closed subset. Hence, we may assume that Mis 

a definable er submanifold of a Euclidean space ]Rn, which is simultaneously closed 

in lRn. 

Consider a definable continuous function F : M ---+ JR defined by 

if XE A, 
otherwise. 

It is of class er on M \ p-l (0). There is a definable continuous extension F : ]Rn ---+ JR 

of F such that it is of class er on ]Rn\ (F)-1 (0) by Lemma 3.5. The composition 

c, o F is a definable er function for some c, E SR by [5, Corollary C.10]. Hence, the 

composition c, of has a definable er extension to M. □ 

Lemma 3. 7. For any definable continuous function f : JR ---+ JR, there exists a positive 

definable er function p: JR---+ JR such that lf(x)I < p(x) for any x E JR. 

Proof. We may assume that f is not negative by considering Iii instead off. There 

exists a finite subset { t 1 , ... , tm} of JR such that f is of class er on V0 = JR\ {ti, ... , tm} 

by [4, Theorem 3.2 and Exercise 3.3 of Chapter 7]. Set Yi = f(ti) + 1 and ¼ = 

{t E JR I f(t) < yi} for all 1 ::; i ::; m. The family {Vo, Vi, ... , Vm} is a definable 

open covering of R Let { >.i}~0 be a definable er partition of unity subordinate to 

{Vo, V1, ... , Vm} given in Lemma 3.3. Set p(x) = I::~1 YiAi(x) + >.o(x)(f(x) + 1), 

then it is a definable er function with f(x) < p(x) for any x ER □ 
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Lemma 3.8. For any definable er function f : IR.n -+ IR., there exists a positive defin

able er function g: IR.n-+ IR. such that limllxll-+oo g(x) = 0 and limllxll-+oo f(x)g(x) = 
0. 

Proof. Consider a definable continuous function ¢ : IR. -t IR. given by 

</J(t) = { ll~~t lf(x)I 
lf(O)I 

if t 2'.'. 0, 

otherwise, 

where O is the origin of IR.n. There exists a positive definable er function p : IR. -t 

IR. with ¢(t) < p(t) for any t E IR. by Lemma 3.7. Set K,(t) = p 2 (t)+t2 , then we 

have limt➔oo K,(t) = 0 and limt➔oo ¢(t)K,(t) = 0. Set g(x) = K,(llxll 2 ), then we have 

limllxll-+oo g(x) = 0 and limllxll-+oo f(x)g(x) = 0. □ 

Lemma 3.9. Consider a definable er manifold M. Let f : U-+ IR. be a definable er 
function on a definable open subset U of M. Then, there exists a definable er function 

g on M such that g is positive on U, zero on the boundary ofU and lim f(x)g(x) = 
U3x-+xo 

0 for any point x 0 in the boundary of U. 

Proof. We may assume that M is a definable er submanifold of IR.n and closed in 

IR.n in the same way as the proof of Proposition 3.6. There exists a definable er 
function H on IR.n such that au = U \ U = H-1 (0) by [5, Theorem C.11]. The 

definable er map l : IR.n \ au -+ JR.n+l is given by i(x) = ( x, H(x)). Consider the 

function f o i-1 defined on i(U). Since i(U) is closed in JR.n+l, we have its definable 

er extension F to JR.n+l by Lemma 3.4. We can take a positive definable er function 

G on JR.n+l such that limllxll-+oo G(x) = 0 and limllxll-+oo F(x)G(x) = 0 by Lemma 

3.8. Since the restriction of G o l to U satisfies the assumption of Proposition 3.6, 

there exists /J E siR such that /J O G O l has a definable er extension g to Af. It 

is obvious that g is positive on U and zero on the boundary of U. Let x 0 be a 

point of the boundary of U. The limit lim Gg(x; ) lim /J ~ G 0/~x) exists 
U3x-+xo o l X U3x-+xo o l X 

because 1J is an element of SiR and lim Go i(x) = 0. We have lim f(x)g(x) = 
U3x-+xo U3x-+xo 

( lim F(i(x))G(i(x))) • ( lim Gg(x; )) = 0. □ 
U3x-+xo U3x-+xo o l X 

Lemma 3.10. Let {Ci}~1 be a definable er cell decomposition of IR.n given in [4, 
Theorem 3.2 and Exercise 3.3 of Chapter 7/, where r is a nonnegative integer. For 
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any 1 ::::; i ::::; m, there exist a definable open neighborhood Wi of Ci in ~n and a 

definable er map Pi : Wi -+ Ci such that the restriction of Pi to Ci is the identity 

map. 

Proof. We fix an integer 1 ::::; i ::::; m. The maps n1 : ~n -+ ~z are the projections 

onto the first l coordinates for all 1 ::::; l :=:; n. We inductively define a definable open 

neighborhood wi,l C ~l of 7rz(Ci) and a definable er map Pi,l : wi,l -+ 7rz(Ci) such 

that the restriction of Pi,l to nz(Ci) is the identity map. 

When l = 1, n 1 ( Ci) consists of a single point a or is a connected open interval 

IC~- Set Wi,l =~and Pi,1(x) = a in the former case. Set Wi,l = I and Pi,1(x) = x 

in the latter case. 

When l > 1, the definable set nz (Ci) is one of the following forms: 

nz(Ci) = {(x, t) E n1-1(Ci) x ~It= f(x)} and 

nz(Ci) = {(x, t) E 7rz-1(Ci) x ~ I fi(x) < t < h(x)}, 

where f, Ji and f2 are definable er functions on 7rz-1(Ci)- Set wi,l = wi,l-l X ~ in 

the former case. The definable er map Pi,l : wi,l = wi,l-l X ~ -t 7rz(Ci) is given by 

Pi,z(x,t) = (Pi,Z-1(x),f(Pi,Z-l(x))). Set wi,l = {(x,t) E wi,l-l X ~ I fi(Pi,Z-l(x)) < 
t < h(Pi,z-1(x))} in the latter case. The definable er map Pi,Z : Wi,Z -+ nz(Ci) is 

given by Pi,z(x, t) = (Pi,z-1(x), t). 

The definable open set Wi = Wi,n and the definable er map Pi = Pi,n satisfy the 

conditions required in this lemma. □ 

We have finished introducing the preliminary results. We begin to define a sheaf 

on the o-minimal spectrum. 

Proposition 3.11. Let M be a definable er manifold. There exists a sheaf 'J)M on 

M such that, for any definable open subset U of M, the equality 'J:JM(U) = CdiU) is 

satisfied. 

Proof. The proof is the same as the proof of [2, Proposition 7.3.2]. We omit the 

proof. □ 

Proposition 3.12. Let M be a definable er manifold. The stalk ('J:JM )a of the sheaf 
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'.DM at a point a E M is a local ring, and its maximal ideal is given by 

where F E C'a,/U) is a representative of the element f E ('.DM )a and U is a definable 

open subset of M with U E a. 

Proof. We first show that ma is an ideal. Let f Ema and g E ('.DM )a- The definable 

er functions F E C:;_r(U) and G E c:;_f(U') are their representatives. We may assume 

that U' = U considering the intersection Un U'. We have (GF)- 1 (0) ::J p-1 (0) E 

a; hence (GF)-1 (0) E a and gf E ma. When Ji, h E m°" we can take their 

representatives Fi, F2 E C'{j.r(U) for some common definable open subset U of M in 

the same way as the previous case. We get (F1 + F2)-1 (0) ::J F1- 1 (0) n F2- 1 (0) Ea; 

hence, (Fi+ F2)-1(0) Ea and Ji+ h Ema. We have shown that ma is an ideal. 

We next show that all the elements in ('.DM )a\ ma are units. Let f E ('.DM )a\ ma 

and FE Caf(U) be a representative off. Set V = U \ p-1 (0). It is an element of a 

because f (j. ma. The restriction Flv of F to V is also a representative off and the 

function 1/ Flv E C':i.r(V) is a representative of the multiplicative inverse of f. The 

element f is a unit in ('.DM )a- □ 

Lemma 3.13. Let r be a nonnegative integer. Let M be a definable er manifold, 

and a E M. Given any f E ('.DM )a, there exist g, h E C'a,/M) and u E SIR such that 

g (/. ma and u o (gf) = h in ('.DM)a-

Proof. Let F E Caf(U) be a representative off, where U is a definable open subset 

of M with a E U. There exists a definable er function g on M such that g is positive 

on U and lim g(x)F(x) = 0 for all x 0 E U \ U by Lemma 3.9. We have g (j. ma 
U3x--+xo 

because g is positive on U and U Ea. Using Proposition 3.6, we can find u E SIR such 

that u o (gf) is extendable to M as a definable er function. Let h be the extension. 

We have u o (gf) = h in ('.DM )a- D 

Let a be an arbitrary element of M. We want to define an interpretation of 

£-formulae in the residue field k(a). For that purpose, we first determine an in

terpretation in the stalk ('.DM )a- For any constant symbol c, the interpretation 

of c in ('.DM)a is given by cCD~)" = ~- The notation~ denotes the interpre

tation of the constant symbol c in R Let g be a function symbol in n variables 
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in £. For any Ji, ... , fn E (:DM-)c,, the interpretation of g in (:DM )a is given by 

g('1)~)°'(!1,--•,fn) = i(F1, ... ,Fn) E (:Dk)m where Fi: U -t JR are definable er 
functions which are representatives of Ji for all 1 ::; i ::; n. We finally consider a 

relation symbol R in n variables. The interpretation of R in (:Dk )a is given by 

It is easy to check that the above definitions are independent of the choice of the 

representatives F 1 , ... , Fn. Under the above interpretation, the local ring (:Dk )a is 
---------an £-structure. We denote this £-structure by (:Dk )a. 

Proposition 3.14. Consider a definable er manifold M, where r is a nonnegative 

integer. Let a E M be a DM-ultrafilter, ¢(x) be an £-formula with n free variables 
---------and f = (!1, ... , fn) E ((:Dk )at. The £-structure (:Dk )a satisfies ¢(7) if and only 

if the set 

belongs to the DM-ultrafilter a, where Fi : U -t JR are definable er functions which 

are representatives of Ji for all l ::; i ::; n. 

Proof. We prove the proposition by induction on the complexity of the formula ¢(x). 

The proposition is obviously true when ¢(x) is an atomic formula. It is easy to show 

the proposition when ¢ = ¢1 /\ ¢2 or ¢ = , 'lj; for some £, formulae ¢1 , ¢2 and 'lj;. 

The remaining case is the case in which ¢(x) = ::ly 'lj;(x, y). We may assume that the 

formula '1/J(x, y) satisfies the statement of the proposition by the induction hypothesis. 

We first consider the case in which the definable set 

X = {x EU I JR F ¢(F1(x), ... , Fn(x))} 

is an element of a:. Consider the definable set Y given by 

Y = { ( X, Y) E X X JR I JR F '1/J ( F1 ( X), ... , F n ( X), Y)}. 

Let 7r : Y -t X be the projection, then the definable map 7r is onto by the definition 

of X. 

We may assume that M is a definable er submanifold of a Euclidean space ]Rm. 

Apply the definable er cell decomposition theorem [4, Theorem 3.2 and Exercise 3.3 



23

of Chapter 7]. We get a definable er cell decomposition of ffi.m+l partitioning Y. One 

of cells in ffi.m, say C, is contained in X and belongs to o:. There exists a definable er 
function h: C ➔ ffi. such that the definable set {(x, h(x)) Ix EC} is contained in Y. 

In fact, a cell D with n(D) = C is contained in Y because 7r is onto. Seth= u if the 

cell Dis of the from {(x,y) EC x ffi. I y = u(x)} for some definable er function u on 

C. Seth= ui!u2 if the cell Dis of the from {(x,y) EC x ffi. I u 1(x) < y < u2(x)} for 

some definable er functions u 1 and u2 on C. There exists a definable open subset W 

of Mand a definable er map p: W ➔ C with Cc Wand Pie= id by Lemma 3.10. 

We have W E o: because C C W and C E o:. Set G = h o p, and let g be the image 

of G in (f'M )a- The definable set 

Z = {x EU n WI i F 'lj;(F1(x), ... , Fn(x), G(x))} 

contains C, hence; we have Z E o:. We get (f'M)a I= 'l/JCJ,g) by the induction 
-----------hypothesis. We obtain (f'M )a F c/JCJ). 

We next consider the case in which the relation (f'M )a F cjJ(l) is satisfied. There 
-----------exists g E (f'M)a with (f'M)a F 'lj;(l,g). Let G: U ➔ ffi. be a representative of g. 

We may assume that F1 , ... , Fn and G have the common domain U by shrinking U 

if necessary. Set A = { x E U I i F 'lj; ( Fi ( x), ... , F n ( x), G ( x))}. It belongs to o: by 

the induction hypothesis. For any x E A, the formula :3y 'lj;( F 1 ( x), ... , Fn ( x), y) holds 

true by taking y = G ( x). It means that the set 

contains A; therefore, the set X belongs to o:. □ 

Proposition 3.15. Consider a definable er manifold M, where r is a nonnegative 

integer. Leto: E M be a D M-ultrafilter. Let c/J(x) be an .C-formula with n free variables. 

Let f = (!1, ... , fn), ?J = (g1 ... , gn) E ((f'M )at with Ji - gi Ema for all l :::; i:::; n. 
-----------He re, ma is the maximal ideal of the loca~ (f'M)a- The .C-structure (f'M)a 

satisfies cjJ(l) if and only if c/J(g) is true in (f'M )a. 

Proof. By symmetry, we have only to show that (f'M )a F c/J(?J) if (f'M )a F c/JCJ). 

Let Fi and Gi be representatives of Ji and gi for all 1 :::; i :::; n, respectively. We may 

assume that the domains of Fi and Gi are common without loss of generality. Let U 

be the common domain. It is an element of o:. Set Zi = {x EU I Fi(x) = Gi(x)} for 
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all 1 :<::; i :<::; n, then it belongs to a by the definition of the maximal ideal ma. The 

intersection z = n~=l zi is also an element of a. 

Set X = {x E U I JR F ¢(Fi(x), ... ,Fn(x))} and Y = {x E U I JR F 
¢(G1 (x), ... , Gn(x))}. We have XE a by the assumption and Proposition 3.14. We 

get Y n Z E a because Y n Z = X n Z and X, Z E a. We obtain Y E a because 
---------------y n Z C Y. We finally have ('.DM )a F ¢(?1) by Proposition 3.14. □ 

Let M be a definable er manifold. The residue field k( a) of the stalk of the sheaf '.DM 
at a point a E M can be considered an £-structure under the following interpretation: 

For any £-formula ¢(x) with n free variables and a = (a1 , ... , an) E (k(a)r, the 

sentence ¢(a) is true if ('.DM)°' F ¢(11, ... ,fn), where Ji E ('.DM)a is a representative 

of ai for each 1 :<::; i :<::; n. The above definition is independent of the choice of the 

representatives Ji, ... , f n by Proposition 3.15. This £-structure is denoted by k(a). 

We are finally ready to demonstrate Theorem 1.2. 

Theorem 3.16. The £-structure k(a) is an elementary extension of JR. 
Let K, be an elementary extension of ~ whose underlying set K contains 

the ring C~iM)/ supp(a). Assume further that, for any £-formula ¢(x) and 

F = (Fi, ... , F n) E ( Cd/ M)) n, the following two conditions are equivalent: 

• K, F ¢(F), and 

• the ultrafilter a contains the definable set { x E M I JR F ¢( Fi ( x), ... , F n ( x))}. 

Then, there exists a unique elementary embedding k(a) -< K. 

Proof. We first demonstrate that k(a) is an elementary extension of JR. Consider an 

£-formula ¢(x, y). Let a= (a1, ... , an) be a sequence of real numbers and f E k(a) 

with k(a) F ¢(a, f). We have only to show that JR F ¢(a, b) for some b E ~ by [11, 

Proposition 2.3.5]. The set C = {x EU I JR F ¢(a1 , ... , an, F(x))} is contained in a 

by Proposition 3.14, where F E C'af(U) is a representative off. In particular, C is 

not an empty set. Take c E C and set b = F(c). It is obvious that JR F ¢(a, b). We 

have shown that k(a) is an elementary extension of JR. 
Let K, be an elementary extension of ~ satisfying the conditions in the theorem. 

We construct a map l : k(a) -+ K. Consider an arbitrary element a E k(a). Let 

f E ('.DM )a be a representative of a. There exist g, h E C':i.f(M) and a E SR such that 
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g (/_ supp(a) and u o (gf) = h in (:DM)o: by Lemma 3.13. Since JC is an elementary 

extension of~, there exists a unique definable er bijective extension UK : K -t K of 

u to K. We define 
(1) 

We demonstrate that the map l is an elementary embedding. Assume that M is 

a definable er submanifold of ~m. The notation Xi denotes the restriction of the 

i-th coordinate function on ~m to M or the its image in k(a) for each 1 :s:; i :s:; m. 

Let a= (a1 , ... , an) E (k(a)t. Let Fi : U -t ~ be a definable er function which 

is a representative of ai. We have U E a. The notation <I>(x1 , ... , xm) denotes the 

formula representing the definable set U, that is, U = {x E ~m I IR F <I>(x)}. We 

have 
(2) 

by the assumption on JC because X 1 , ... Xm are definable er functions on M. 

The formula \J!i(x1, ... , Xm, y) represents the relation y = Fi(x1, ... , xm)- It means 

that y = Fi(x1, ... , Xm) if and only if IR F \J!i(x1, ... , Xm, y) for any (x1, ... , Xm) E 

~m and y ER We first show the following claim: 

Claim. For any 1 :s:; i :s:; n, the unique element y E K satisfying the formula 

\J!i(X1, ... , Xm, y) in JC is t(ai)-

We begin to prove the claim. We get 

(3) 

for all 1 :s:; i :s:; n. Since~-< JC, the same sentence holds true in JC, that is; 

Using the relation (2), we get 

It means that only one element y E K can satisfy the formula \J!i(X1, ... , Xm, y) in 

JC. The remaining task to complete the proof of the claim is to demonstrate that 

JC F \J!i(X1, ... , Xm, t(ai)). 
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There exist definable er functions 9i, hi on M and ai E Sni with 9i €}. supp(a) and 

ai o (giFi) = hi in ('..DM )a by Lemma 3.13. It implies that the definable set 

{x EM Ii F Vy (ai(gi(x)y) = hi(x)--+ -.<I>(x) V Wi(x, y))} 

belongs to a by shrinking U if necessary. We obtain 

by the assumption on K. By the definition of L(ai) given in the equality (1), the 

equality ai(9il(ai)) = hi is satisfied in K. Hence, we have K, F Wi(X1, ... , Xm, L(ai)). 

We have demonstrated the claim. 

The map l is well-defined because the solution of the relation K, F Wi(X1, ... , Xm, y) 

is unique and we can show that, if we take another ai, 9i and hi, the element 

y = a; 1 (hi)/gi satisfies the relation K, F Wi(X1, ... ,Xm,Y) in the same way as 

above. 

We begin to prove that the map l is an elementary extension. Consider an £

formula ¢(x) with n free variables. We first show that the condition that k(a) F ¢(a) 

implies the condition that K, F ¢(L(a)), where L(a) := (L(a1), ... , L(an)) E Kn. Let 

y = (Y1, ... , Yn) be free variables. Set 

n 

'I/J(x, y) = /\. (<I>(x1, ... , Xm)--+ Wi(x1, ... , Xm, Yi))/\ ¢(y). 
i=l 

We have 

because we assume that k(a) F ¢(a). The definable set V = {x E M I JR F 
'I/J(x, Fi(x), ... , Fn(x))} is contained in a by Proposition 3.14. Set 'I/J'(x) = ::ly 'I/J(x, y) 

and W = { x E M I JR F 'I/J' ( x)}. The definable set W contains the definable set 

V; and we get W E a. Since X 1, ... , Xm are definable er functions on M, we get 

K, F 'I/J'(X1, ... , Xm) by the assumption on K. It means the following: 

However, by the relation (2) and the above claim, the only L(a) E Kn satisfies the first 

condition /\~=1(<I>(X1, ... ,Xm)--+ Wi(X1, ... ,Xm,Yi)) of'ljJ(X1, ... ,Xm,y). Hence, 

we have K, F 'I/J(X1, ... , Xm, L(a)); therefore, K, F ¢(L(a)). 
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We show the opposite implication, that is; we demonstrate that the con

dition that JC F ¢(l(a)) implies the condition that k(a) F ¢(a). We have 

JC I= A~=l '11'i(X1, ... , Xm, l(ai)) I\ cp(l(a)) by the above claim and the assumption. 

We get JC F ::ly A~=l '11'i(X1, ... , Xm, Yi) I\ ¢(y). Using the assumption on JC, the 

definable set {x EM I ::ly A~=l '11i(x, Yi) I\ ¢(y)} is an element of a. We get 

n 

k(a) F ::ly /\ '¥i(X1, • • •, Xm, Yi) I\ ¢(y) (4) 
i=l 

by Proposition 3.14. On the other hand, the relation (3) implies the relation that 

because IR--< k(a) as we have demonstrated. The relation k(a) F <I>(X1 , ... , Xm) is 

obviously satisfied by the definition of U and Proposition 3.14. We get 

(5) 

from the above relations. The relation 

(6) 

is obvious by the definition of Fi and Proposition 3.14. Using the relations (4), (5) 

and (6), we get k(a) F ¢(a). We have demonstrated that the map l is an elementary 

embedding. 

The remaining task is to show that the map l is the unique elementary embedding. 

Let l 1 : k( a) --< JC be an elementary embedding. Let v be an arbitrary element of 

k(a). We have only to show that l(v) = l 1(v). There exist g, h E C'dr(M) and O' E Sj_ 

such that g =I- 0 in k(a) and O' o (gv) = h in k(a) in the same way as above. We have 

O'K(g · l 1(v)) = h in JC because l 1 is an elementary embedding. Since O'K is a bijection, 

we get l(v) = l'(v) by the equality (1). □ 
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