THE AKE PRINCIPLE MEETS CLASSIFICATION THEORY

JUNGUK LEE

ABSTRACT. Using a type-amalgamation style criterion of NATP, we give a proof of the AKE principle for NATP in the case of equicharacteristic 0.

In [1], Ahn and Kim introduced a new dividing line, called the *an*tichain tree property (ATP), and they provide a nice dichotomy for SOP₁, that is, a complete theory T is SOP₁ if and only if it is TP₂ or ATP as like unstability is equal to IP or TP, and TP is equal to TP₁ or TP₂. So, NATP is located in the map of the universe in Model Theory as follows:

DLO
$$\longrightarrow$$
 NIP \longrightarrow NTP₂ \longrightarrow NATP
 $\uparrow \qquad \uparrow \qquad \uparrow$
Stable \longrightarrow Simple \longrightarrow NSOP₁ \longrightarrow NSOP₂ $\longrightarrow \cdots$

On the other hand, one of most fundamental principles in model theory of valued fields is the *Ax-Kochen-Ershov* principle (in short, the AKE principle), roughly saying that elementary properties of unramified henselian valued fields of characteristic 0 is determined by elementary properties of its residue field and value group. In [4, 8], Ax and Kochen, and independently Ershov showed that two henselian valued fields of equicharacteristic 0 are elementary equivalent if and only if their residue fields and value groups are elementary equivalent.

In [2], we studied several basic properties of NATP, for example, witness of NATP in a single variable and the equivalence ATP and k-ATP, and provided several algebraic examples of NATP theories. Most of all, we show that the Ax-Kochen-Ershov principle for NATP in the case of equicharacteristic 0. Namely, a given henselian valued field of

The author is supported by KAIST Advanced Institute for Science-X fellowship. This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

JUNGUK LEE

equicharacteristic 0 is NATP if and only if its residue field is NATP. In this note, we aim to give a new proof of the AKE principle for NATP in the case of equicharacteristic 0, given in [2, Theorem 3.27], via a type-amalgamation criterion of NATP ([2, Theorem 3.27]).

Theorem 0.1. [7, Théorèm 8][5, Theorem 7.6][2, Theorem 3.27] Let $\mathcal{K} = (K, \Gamma, k)$ be a henselian valued field of equicharacteristic 0 in the Denef-Pas language, where K is a valued field, Γ is a value group, and k is a residue field.

- (1) (Delon) $\operatorname{Th}(\mathcal{K})$ is NIP if and only if $\operatorname{Th}(k)$ is NIP.
- (2) (Chernikov) $\operatorname{Th}(\mathcal{K})$ is NTP_2 if and only if $\operatorname{Th}(k)$ is NTP_2 .
- (3) (Ahn-Kim-L.) $\operatorname{Th}(\mathcal{K})$ is NATP if and only if $\operatorname{Th}(k)$ is NATP.

Also, using similar methods, we can prove the AKE principle for NATP in the case of mixed characteristic in [10], and we can find several examples having NATP in [3], for example, a random parametrization of DLO is NATP, which is TP_2 and SOP.

1. Preliminaries

1.1. Antichain tree property. We briefly recall several notions and facts around the antichain tree property from [2].

Notation 1.1. Let κ and λ be cardinals.

- (1) By κ^{λ} , we mean the set of all functions from λ to κ .
- (2) By $\kappa^{<\lambda}$, we mean $\bigcup_{i<\lambda} \kappa^i$ and call it a tree.

Let $\eta, \nu \in \kappa^{<\lambda}$.

- (3) By $\eta \leq \nu$, we mean $\eta \subseteq \nu$. If $\eta \leq \nu$ or $\nu \leq \eta$, then we say η and ν are comparable.
- (4) By $\eta \perp \nu$, we mean that $\eta \not \leq \nu$ and $\nu \not \leq \eta$. We say η and ν are incomparable if $\eta \perp \nu$.
- (5) By $\eta \wedge \nu$, we mean the maximal $\xi \in \kappa^{<\lambda}$ such that $\xi \leq \eta$ and $\xi \leq \nu$.
- (6) By $l(\eta)$, we mean the domain of η .
- (7) By $\eta <_{lex} \nu$, we mean that either $\eta \leq \nu$, or or $\eta \perp \nu$ and $\eta(l(\eta \wedge \nu)) < \nu(l(\eta \wedge \nu))$.
- (8) By $\eta^{-}\nu$, we mean $\eta \cup \{(l(\eta) + i, \nu(i)) : i < l(\nu)\}.$
- (9) We say a subset X of $\kappa^{<\lambda}$ is an *antichain* if the elements of X are pairwise incomparable.

We use a language $\mathcal{L}_0 := \{ \leq, <_{lex}, \land \}$ for a tree with a natural interpretation in Notation 1.1. We say that an antichain A of $\kappa^{<\lambda}$ is *universal* if any finite antichian of $\kappa^{<\lambda}$ is embedded into A as \mathcal{L}_0 -structures. Let T be a complete theory in a language \mathcal{L} , and let M be a monster model of T. For a tuple a of elements in M and a parameter A, we write $\operatorname{tp}_{\mathcal{L}}(a/A)$ for the complete type of a over A and write $\operatorname{qftp}_{\mathcal{L}}(a/A)$ for the quantifier free type of a over A. If there is no confusion, we omit the subscription \mathcal{L} . Let $(a_{\eta})_{\eta \in \kappa^{<\lambda}}$ be a tree-indexed tuple of parameters from M. For $\overline{\eta} = (\eta_0, \ldots, \eta_m)$, we denote $(a_{\eta_0}, \ldots, a_{\eta_m})$ by $a_{\overline{\eta}}$. We say that $(a_{\eta})_{\eta \in \kappa^{<\lambda}}$ is strongly indiscernabile if for tuples $\overline{\eta}, \overline{\nu}$ of elements in $\kappa^{<\lambda}$,

$$qftp_{\mathcal{L}_0}(\bar{\eta}) = qftp_{\mathcal{L}_0}(\bar{\nu}) \Rightarrow tp_{\mathcal{L}}(a_{\bar{\eta}}) = tp_{\mathcal{L}}(a_{\bar{\nu}}).$$

Definition 1.2. [2, Definition 1.1, Definition 3.19] Let $\varphi(x; y)$ be a \mathcal{L} -formula. For a positive integer $k \geq 2$, we say that $\varphi(x; y)$ has the *k*-antichain tree property (*k*-ATP) if there is a tree of parameters $(a_{\eta})_{\eta \in 2^{<\omega}}$ such that

- For any antichain $A \subset 2^{<\omega}$, $\{\varphi(x; a_{\eta}) : \eta \in A\}$ is consistent.
- For any comparable distinct elements $\eta_0, \eta_1 \in 2^{<\omega}$,

$$\{\varphi(x;a_{\eta_0}),\varphi(x;a_{\eta_1})\}$$

is inconsistent.

The antichain tree property (ATP) means the 2-antichain tree property. We say that T has k-ATP if there is a formula having k-ATP. We write NATP for non ATP.

Fact 1.3. [2, Theorem 3.17, Lemma 3.20]

- (1) If there exists a witness of ATP, then there exists a witness of ATP in a single free variable.
- (2) T is ATP if and only if T has k-ATP for some $k \ge 2$. Moreover, if a formula $\varphi(x; y)$ has k-ATP for some $k \ge 2$, then a formula of the form

$$\varphi(x; y_0) \wedge \cdots \wedge \varphi(x; y_m)$$

has ATP for some $m \geq 1$.

We recall a type-amalgamation style criterion for NATP.

Fact 1.4. [2, Theorem 3.27] Let κ and κ' be cardinals such that $2^{|T|} < \kappa < \kappa'$ with $cf(\kappa) = \kappa$. The following are equivalent.

- (1) T is NATP.
- (2) For any strongly indiscernible tree $(a_{\eta})_{\eta \in 2^{<\kappa'}}$ with $|a_{\emptyset}| \leq |T|$ and b with |b| = 1, there are some $\rho \in 2^{\kappa}$ and b' such that (a) $(a_{\rho \frown 0^{i}})_{i < \kappa'}$ is indiscernible over b', and (b) $b \equiv_{a_{\rho}} b'$.

JUNGUK LEE

(3) For any strongly indiscernible tree $(a_{\eta})_{\eta \in 2^{<\kappa'}}$ with $|a_{\emptyset}| \leq |T|$ and b with |b| = 1, there are some $\rho \in 2^{\kappa}$ such that for $p(x; a_{\rho}) = \operatorname{tp}(b/a_{\rho})$,

$$\bigcup_{i<\kappa'} p(x; a_{\rho^\frown 0^i})$$

is consistent.

We finis this subsection with a fact on the existence on a 'homogeneous' universal antichain.

Fact 1.5. [2, Corollary 3.23(b)] Let $(a_{\eta})_{\eta \in 2^{<\kappa'}}$ be a strongly indiscernible tree and b be a tuple of elements in M for some cardinals κ and κ' such that $2^{|T|+|a_{\emptyset}|+|b|} < \kappa < \kappa'$ and $cf(\kappa) = \kappa$. Then, there is a universal antichain $S \subset 2^{\kappa}$ such that

$$a_\eta \equiv_b a_{\eta'}$$

for all $\eta, \eta' \in S$.

1.2. **Denef-Pas language.** Let $\mathcal{K} = (K, \Gamma, k, \nu : K \to \Gamma \cup \{\infty\}, \text{ac} : K \to k)$ be a henselian valued field of characteristic (0,0) in the **Denef-Pas language** $\mathcal{L}_{Pas} = \mathcal{L}_K \cup \mathcal{L}_{\Gamma,\infty} \cup \mathcal{L}_k \cup \{\nu, \text{ac}\}$ where $\nu : K \to \Gamma \cup \{\infty\}$ is a valuation map and acl : $K \to k$ is an angular component map.

We recall Delon's description of types in a single variable on the valued field sort (c.f. [7, 11]). Let $\mathcal{M} = (M, \ldots)$ be a monster model of Th(\mathcal{K}). Take $x \in M \setminus K$, and define

$$I_K(x) := \{ \gamma \in \Gamma : \exists a \in K \, (\gamma = \nu(x - a)) \}.$$

Then, there are three possibilities of $I_K(x)$:

- (Immediate) $I_K(x) = \{\nu(x-a) : a \in K\}$ and does not have a maximal element.
- (Residual) $I_K(x) = \{\nu(x-a) : a \in K\}$ and has a maximal element.
- (Valuational) $I_K(x) \neq \{\nu(x-a) : a \in K\}.$

Fact 1.6. [7, Théorèm 5][11, Theorem 2.1.1] There are three possibilities of tp(x/K):

(1) (Immediate) Let $(a_{\rho}, \gamma_{\rho})$ be a sequence indexed by a well-ordered set such that $a_{\rho} \in K$, $\gamma_{\rho} = \nu(x - a_{\rho})$, and (γ_{ρ}) is cofinal in $I_{K}(x)$. Then,

$$\{\nu(x - a_{\rho}) = \gamma_{\rho}\} \models \operatorname{tp}(x/\mathcal{K}).$$

(2) (Residual) There are $a \in K$ and $\gamma \in \Gamma$ such that $\nu(x-a) = \gamma$, $\operatorname{ac}(x-a) \notin k$, and

$$\{\nu(x-a) = \gamma\} \cup \operatorname{tp}(\operatorname{ac}(x-a)/k) \models \operatorname{tp}(x/\mathcal{K}).$$

(3) (Valuational) There is
$$a \in K$$
 such that $\nu(x-a) \notin \Gamma$ and
 $\operatorname{tp}(\nu(x-a)/\Gamma) \cup \operatorname{tp}(\operatorname{ac}(x-a)/k) \models \operatorname{tp}(x/\mathcal{K}).$

2. Proof of Theorem 0.1(3)

In this section, we aim to give a new proof of Theorem 0.1(3) using a type-amalgamation style criterion for NATP (Fact 1.4(3)) and a description of type in a single variable on the valued field sort (Fact 1.6).

Let $\mathcal{K} = (K, \Gamma, k, \nu : K \to \Gamma, \text{ac} : K \to k)$ be a henselian valued field of characteristic (0,0), which is saturated enough, in the Denef-Pas language. We use x, y, z, \ldots for tuples of variables on $K, x^{\Gamma}, y^{\Gamma}, z^{\Gamma}, \ldots$ for tuples of variables on Γ , and x^k, y^k, z^k, \ldots for tuples of variables on k. We first recall the following fact.

Fact 2.1. [2, Lemma 4.27] Suppose Th(k) is NATP. Let

$$\varphi(x; yy^{\Gamma}y^{k}) \equiv \chi(\nu(x-y); y^{\Gamma}) \wedge \rho(\operatorname{ac}(x-y); y^{k})$$

where |x| = |y| = 1, $\chi \in \mathcal{L}_{\Gamma,\infty}$ and $\rho \in \mathcal{L}_k$. Then, $\varphi(x; yy^{\Gamma}y^k)$ does not wintess ATP. Moreover, by Fact 1.3(2), it does not witness k-ATP for all $k \geq 2$.

From now on, we assume that Th(k) is NATP. By [9], $\text{Th}(\Gamma)$ is automatically NATP. Note that k and Γ are stably embedded (c.f. [6, Lemma 2.3]).

Let κ and κ' be cardinals such that $2^{\aleph_0} < \kappa < \kappa'$ with $cf(\kappa) = \kappa$. Take a strongly indiscernible tree $(a_\eta)_{\eta \in 2^{<\kappa'}}$ with $|a_\eta|$ countable and let b a tuple of element in \mathcal{K} of length 1. Without loss of generality, we may assume that each $a_\eta = (K_\eta, \Gamma_\eta, k_\eta)$ is a elementary substructure of \mathcal{K} , where K_η is a valued field, Γ_ρ is a value group, and k_ρ is a residue field. Suppose $b \in \Gamma$. Since Γ is stably embedded, $\operatorname{tp}(b/a_\eta) = \operatorname{tp}(b/\Gamma_\eta)$ for each η . Since $\operatorname{Th}(\Gamma)$ is NATP, by Fact 1.4(3), there is $\rho \in 2^{<\kappa'}$ such that for $p(x; a_\rho) = \operatorname{tp}(b/a_\rho)$,

$$\bigcup_{i < \kappa'} p(x; a_{\rho \frown 0^i})$$

is consistent. By similar way, the same thing holds for the case that $b \in k$. So, we may assume that $b \in K$.

By Fact 1.5, there is a universal antichain $S \subset 2^{\kappa}$ such that $a_{\eta} \equiv_b a_{\eta'}$ for all $\eta, \eta' \in S$. Take $\rho \in S$ arbitrary. Put $p(x; a_{\rho}) = \operatorname{tp}(b/a_{\rho})$ and put $q(x) := \bigcup_{i < \kappa'} p(x; a_{\rho \cap 0^i})$.

Claim 2.2. q(x) is consistent.

JUNGUK LEE

Proof. If $b \in K_{\rho}$, then by strong indiscernibility, $b \in K_{\eta}$ for all $\eta \in S$ and so $b \models q$. Now, we assume that $b \notin K_{\rho}$. Suppose q is not consistent. Then, by compactness, strong indiscernibility, and Fact 1.6, there are

• a formula of the form:

$$\varphi(x; yy^{\Gamma}y^{k}) \equiv \chi(\nu(x-y); y^{\Gamma}) \wedge \rho(\operatorname{ac}(x-y); y^{k}),$$

• for a positive integer n and for each i < n,

$$c_i \in a_{\rho \frown 0^i}, \ c_i^{\Gamma} \subset \Gamma_{\rho \frown 0^i}, \ c_i^k \subset k_{\rho \frown 0^i}$$

such that

$$\bigwedge_{i < n} \varphi(x; c_i c_i^{\Gamma} c_i^k)$$

is inconsistent. Since $b \models \bigcup_{\eta \in S} p(x; a_{\eta})$ and S is a universal antichain, the formula $\varphi(x; yy^{\Gamma}y^{k})$ witness *n*-ATP, a contradiction to Fact 2.1. Thus, q(x) is consistent.

Now, by Fact 1.4, $Th(\mathcal{K})$ is NATP.

References

- [1] J. Ahn and J. Kim, SOP_1 , SOP_2 , and antichain tree property, submitted.
- [2] J. Ahn, J. Kim, and J. Lee, On the antichain tree property, accepted in J. Math. Log.
- [3] J. Ahn, J. Kim, H. Lee, and J. Lee, Preservation of NATP, in preparation.
- [4] J. Ax and S. Kochen, Diophantine problems over local fields. III. Decidable fields, Ann. of Math., 83 (1966), 437-456.
- [5] A. Chernikov, Theories without the tree property of the second kind, Ann. Pure. Appl. Logic, 165 (2014), 695-723.
- [6] A. Chernikov and M. Hils, Valued difference fields and NTP₂, Israel J. Math., 204 (2014), 299-327.
- [7] F. Delon, Types sur $\mathbb{C}((X))$, Study Group on Stable Theories (Bruno Poizat), Second year: 1978/79, Exp. No. 5, 29 pp., Secrétariat Math., Paris, 1981.
- [8] Y. L. Ershov, On the elementary theory of maximal normed fields, *Dokl. Akad. Nauk SSSR*, 165 (1965), 21-23.
- [9] Y. Gurevich and P.H. Scmitt, The theory of ordered abelian groups does not have the independence property, *Trans. Amer. Math. Soc.*, 284 (1984), 171-182.
- [10] J. Lee, The AKE principle meets NATP, in preparation.
- [11] P. Sinclair, Relationships between Model Theory and Valuations of Fields, PhD thesis, McMaster University, 2018.

KAIST, DEPARTMENT OF MATHEMATICAL SCIENCES, 291 DAEHAK-RO YUSEONG-GU, 34141, DAEJEON, SOUTH KOREA

Email address: ljwhayo@kaist.ac.kr