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ABSTRACT. The smallest algebraically closed set which appears in Poizat's 
original definition for WEI coincides with algebraic closure of finite real tuple 
which appears in Pillay's alternative definition for WEI. 

1. Two DEFINITIONS FOR WEI 

Let M be a sufficiently saturated model of T. a, b, c, ... denote finite tuples 
in M and a, b, c, ... denote elements of M. L(a) denotes the set of £-formulas 
with parameter a. For <p(x, a) E L(a), <p(x, a)M := {m c M : M F <p(m, a)}. 
We work in Meq := {a/ E : a/ E is the E-class of a, where a is a finite tuple of 
M and E(x, y) is a ¢-definable equivalence relation with lh(x) = lh(y) = lh(a) }. 
Let A c Meq_ For a/ E E Meq, we write a/ E E acleq(A) if the orbit of a/ E by 
automorphisms fixing A pointwise is finite, and a/ E E dcleq(A) if a/ E is fixed by 
automorphisms fixing A pointwise. For a C M, we write a E acl(A) if the orbit 
of a by automorphisms fixing A pointwise is finite, and a E dcl(A) if a is fixed by 
automorphisms fixing A pointwise. 

Definition 1.1. We say that T admits weak elimination of imaginaries (WEI) in 
the sense of B.Poizat (See pp.321-322 in [Po2]), for any <p(x, a) E L(a) we have the 
smallest algebraically closed set B such that <p(x, a) is definable over B. 

Fact 1.2. Theorem 16.15 in [Po2]: T admits WEI in the sense of B.Poizat if and 
only if for any <p(x, a) E L(a) there exists an 0-definable formula "Pa(x, z) such that 
1 ::::: l{b c M : <p(x, a)M = "Pa(x, b)M}I < w . Note that 1 = l{b c M : <p(x, a)M = 
"Pa(x, b)M}I is equivalent to elimination of imaginaries. 

Proof. Although the proof is given in [Po2], by using our notations, we give the 
proof for the sake of completeness. 
(::::;,-): Let B = acl(B) be the smallest algebraically closed set defining <p(x,a). 
By compactness there exist b c B and 0-definable formula 'lj;~(x, z) such that 
<p(x,a)M = 'lj;~(x,b)M. By way of contradiction suppose that for each n < w 
there exist distinct bi(l :::; i :::; n) such that b = b1 , tp(b) = tp(bi) and "Pa(x, b)M = 
"Pa(x, bi)M. By compactness there exists b' such that tp(b) = tp(b'), b' (j. acl(b) and 
"Pa(x,b)M = "Pa(x,b')M. As <p(x,a)M = "Pa(x,b')M, by the smallestness of B, we 
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have b C B ~ acl(b') and b' r/. acl(b). Note that b' witnesses that acl(b) is strictly 
contained in acl(b'). As tp(b) = tp(b'), there exist a- E Aut(M) such that a-(b') = b. 
As '1/Ja(x,b)M = '1/Ja(x,b')M, we have '1/J~(x,a-(b))M = '1/J~(x,b)M = <p(x,a)M and 
acl(a-(b)) is strictly contained in acl(b) ~ B. This contradicts the smallestness of B. 
So we have that 1 s l{b' c M : tp(b) = tp(b'), '1/Ja(x, b)M = '1/Ja(x, b')M}I < w. By 
compactness there exists p(z) E tp(b) such that 1 S l{b' C M : p(b')/\ Vx( '1/Ja(x, b) +--+ 

'1/Ja(x, b'))}I < w. Put '1/Ja(x, z) == p(z) /\ '1/J~(x, z) as desired. 
( <¢= ): Suppose that cp(x, a) is definable over C. For any a- E Aut(M/C) we have 
that for any b E {b c M : cp(x, a)M = '1/Ja(x, b)M} which is a non-empty finite set, 
we have '1/Ja(x,b)M = cp(x,a)M = cp(x,a-(a))M = '1/Ja(x,a-(b))M. So we have that 
a-( {b c M : cp(x, a)M = '1/Ja(x, b)M}) = {b c M : cp(x, a)M = '1/Ja(x, b)M} =: {bi : 
1 Si Sn} for some 1 Sn< w. We see that acl(b1, ... , bn) ~ acl(C). As cp(x, a) 
is definable over bi for each 1 S i S n, we see that acl(b1, ... , bn) = acl(bi) is the 
smallest algebraically closed subset defining cp(x, a). □ 

Proposition 1.3. T admits WEI in the sense of A.Pillay (See pp.63 in [Pi2]}; for 
any a/ E E Meq there exist a finite tuple b C M such that a/ E E dcleq(b) and 
b E acleq(a/ E) if and only if T admits WEI in the sense of B.Poizat. 

Proof. ( <¢= ): Let E(x, y) be an 0-definable equivalence relation. By Fact 1.2 there 
exists an 0-definable formula '1/Ja(x, z) such that 1 s l{b c M : E(x, a)M = 
'1/Ja(x, b)M}I < w. Take b E {b c M : E(x, a)M = '1/Ja(x, b)M}. For any a- E 

Aut(M/b) we have E(x, a)M = '1/Ja(x, b)M = E(x, a-(a))M. Put e := a/ E. So 
we see that e E dcleq(b). On the other hand for any T E Aut(Meq/e), we have 
'1/Ja(x,b)M = E(x,a)M = E(x,T(a))M = '1/Ja(x,T(b))M. As 1 s l{b c M : 
E(x, a)M = '1/Ja(x, b)M}I < w, we see that b E acleq(e). 
(⇒): Let cp(x,a) E L(a) and put E(y,z) := Vx(cp(x,y) +--+ cp(x,z)). By assumption 
there exists a finite tuple b c M such that a/ E E dcleq(b) and b E acleq(a/ E). Put 
e := a/ E. We show that acl(b) is the smallest algebraically closed set over which 
cp(x, a) is definable. 

Claim 1. Minimality: Suppose that cp(x, a) is definable over C. Then acl(b) C 

acl(C). 

Let {b1, ... , bn} be the set of e-conjugates of b, where b1 = b. Ase E dcleq(bi) for 
each 1 Si Sn, we see that cp(x, a) is definable over bi for each 1 S i Sn. Suppose 
that cp(x, a) is definable over C. Let a- E Aut(M/C). As cp(x, a) is definable 
over C, we have cp(x, a)M = cp(x, a-(a))M, so we see that M p== E(a, a-(a)), so we 
have e E dcleq(C). Therefore for any a- E Aut(M/C) and each 1 S i S n we 
have tp(b/e) = tp(bi/e) = tp(a-(bi)/e). So we have {a-(bi) : a- E Aut(M/C)} ~ 
{b1, ... , bn}- So we see that bi E acl(C) for each 1 S i Sn. In particular we see 
that acl(b) ~ ad( C). 

Claim 2. Uniqueness: Let c CM be such that e E dcleq(c) and c E acleq(e). Then 
acl(b) = acl(c). 

Suppose that cp(x, a) is definable over B. Then acl(c) ~ acl(B) by claim 1. As 
cp(x, a) is definable over each b and c, by using Claim 1 twice, we see acl(b) C 

acl(c) ~ acl(b) as desired. □ 
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2. THE ELIMINATION OF ::3 00 IS ORTHOGONAL TO WEI 

Remark 2.1. (1) Elimination of ::3 00 does not imply WEI: Any a-minimal the-
ory (which is a dense linear ordered set without endpoints) admits elimi
nation of ::3 00 ; any definable set X C M in an a-minimal structure M is 
of form that X = Ui:::;i<j:Sn (ai, a1) U Ui:::;k:::;m {b1 }, where ai < a1 for each 
1 ~ i < j ~ n. If IXI is bigger than the number of parameters, X is an 
infinite set. If the elimination of ::3 00 implies WEI, any a-minimal theory ad
mits elimination of imaginaries by lexicographic ordering of a/ E-conjugates 
of b in Proposition 1.3, a contradiction, since A.Pillay gives an a-minimal 
structure without elimination of imaginaries on pp. 714 in [Pil]. 

(2) When we want to deduce WEI from the elimination of ::3 00 , we try to show 
this by induction on the length of parameters as follows: By induction 
hypothesis we have {bi: 1 ~ i ~ n} := {b c M: Vx'</y(c.p(x,y,a) +--+ 

'lf!a(x,y,b)}I < w. For a EM, suppose that {c c M: Vx(c.p(x,a,a) +--+ 

'1Pa ( x, c, bi))} I < w for each i = 1, ... , n, this case is as desired. Otherwise, 
suppose there exist infinitely many c such that Vx(c.p(x, a, a)+--+ 'lf!a(x, c, bi)) 
for some 1 ~ i ~ n. However, we only have M F =3 00 y'<lx(c.p(x, a, a) +--+ 

'lf!a(x, y, bi)), we do not know that 

M FVx(c.p(x,a,a) +--+ =3 00 y'I/Ja(x,y,bi)). 

(3) A.Pillay points out that WEI does not imply elimination of ::3 00 : Let T be 
a stable theory with finite cover property. Then req has EI and does not 
eliminate ::3 00 • 

3. FACTS ON WEI AND GEI 

Definition 3.1. (1) T admits geometric elimination of imaginaries if for any 
a/ E E Meq there exists b c M such that a/ E E acleq(b) and b E 
acleq(a/E). (See [Hr].) 

(2) T admits elimination of imaginaries if for any a/ E E Meq there exists 
b c M such that a/EE dcleq(b) and b E dcleq(a/E). (See [Po2].) 

(3) T has finite set property if F = {a1 , ... , an} is a finite set of finite sequences 
of M, then there exists b C M such that a-(F) = F {cc} a-lb= idr, for any 
a- E Aut(M). (See Definition 2.3. in [T].) 

Remark 3.2. (1) T admits elimination of imaginaries if and only if T admits 
weak elimination of imaginaries and has finite set property. Proposition 1.6 
in [CF] 

(2) T admits WEI ::::;,- if X C Mn is definable over each A = acl(A) and 
B = acl(B), then X is definable over An B. Does the converse implication 
hold? 

(3) < Aut(M/A), Aut(M/ B) >= Aut(M/AnB) for A, B c M ::::;,- if X c Mn 
is definable over each A and B, then X is definable over A n B. 

Fact 3.3. (1) If T is w-categorical and M F T is countable, then T ad-
mits WEI {cc}< Aut(M/A),Aut(M/B) >= Aut(M/A n B) for finite A= 
acl(A), B = acl(B) CM. (See Lemma 1.3 in [EH].) 

(2) D.M.Hoffmann shows that the simple theory CCMA( =Compact Complex 
Manifolds with an Automorphism) having GEI and finite set property in 
Theorem 4.3.6 and Lemma 4.3.7 in [Ho]. But CCMA does not having EI 



62

by Corollary 3.6 in [BHM]. As WEI+finite set property=EI by Proposition 
1.6 in [CF], CCMA does not have WEI. 

(3) Let T be a rosy theory having weak canonical bases with respect to a strict 
independence relation __L. Suppose that any type over algebraically closed 
sets in the real sort is _l-stationary. THEN Tis stable, non-forking relation 
coincides with __L, and geometric elimination of imaginaries implies weak 
elimination of imaginaries. (See [Y].) 

Question 3.4. (1) If Tis stable, do we have that T admits WEI 
{:;> < Aut(M/A),Aut(M/B) >= Aut(M/A n B) for A= acl(A),B 
acl(B) c M? 

(2) Find a stable theory which admits GEI but does not admit WEI. 
(3) Hrushovski 's new strongly minimal set admits WEI (See [Hr]) but does 

not have finite set property (See [BV]), so does not have EI. Find a new 
strongly minimal set D which geometrically eliminates imaginaries but does 
not weakly eliminate imaginaries, and determine the natural number n that 
D is n-ample but not (n + 1)-ample. 

( 4) SCF e for each e E w U { oo} in the language of fields does not eliminate 
imaginaries (See Remark 5.3 in [Ml) and has finite set property, so it does 
not have WEI. Is SCF e for each e E wU { oo} in the language of fields stable? 
Does SCF e for each e E w U { oo} in the language of fields geometrically 
eliminate imaginaries? 

4. QUESTION 3.4 (2) AND BEAUTIFUL PAIR 

First of all, we recall the definition of beautiful pair for stable £-theories as in 
[Pol]. 

Definition 4.1. Let T be an £-theory and P be a new unary predicate symbol. 
Lp denotes LU {P}. Let Mp== T. We say that (M, P(M)) is a beautiful pair of T 
if 

(1) P(M)-< Mis ITl+-saturated elementary substructure of M. 
(2) If A is a finite subset of Mand any £-type p E SL(P(M)A), then pM -=/- 0. 

If T is stable, any two beautiful pairs of Tare Lp-elementary equivalent. 
If T is stable without finite cover property, the complete theory Tp of beautiful 
pairs is again stable. The following fact is in [PiV]. 

Fact 4.2. Let T = req be stable without finite cover property. Then the following 
are equivalent. 

(1) Any imaginary e E (M, P(M)tq is Lp-interdefinable with some f EM. 
(2) Any imaginary e E (M, P(M))eq is Lp-interalgebraic with some f EM. 
(3) No infinte group is definable in any model of T. 

If T := ACFp, we have T = req does not have finite cover property. The 
following fact in [Pi3]. 

Fact 4.3. Let (K, F) be a saturated model of beautiful pair of ACFp. Let e E 
(K, Ftq. Then there are a connected algebraic group G, an irreducible variety V 
and a rational (in sense of algebraic geometry) action of G on V, all defined (in 
sense of algebraic geometry) over F = P(K), such that 
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(1) for a generic point v E V(K) over F = P(K) and la -=/- g E G(F) we have 
g · v -=/- v. (i.e. generically free action.) 

(2) for some v E V(K) generic over F = P(K), e is Lp-interalgebraic with a 
canonical parameter of G(F) · v. 

Remark 4.4. (1) By Fact 4.2, (ACFp)P does not admit GEL 
(2) By Fact 4.3, (ACFp)P admits GEi in some additional sorts: algebraic prin

cipal homogeneneous spaces, say (G(F), G(F) -v), where v E V(K) is some 
generic over F = P(K). In such additional sorts, does (ACFp)P admit 
WEI? Does it have finite set property with respect to L p-automorphisms? 
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