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1 Introduction 

We use notation and terminology from Kikyo [8], Baldwin-Shi [2] and Wagner 
[11]. We also use some terminology from graph theory [4]. 

Suppose A is a graph. V (A) denotes the set of vertices of A, and E (A) the set of 
edges of A. If X ~ V(A), AIX denotes the substructure B of A such that V(B) = X. 
If there is no ambiguity, X denotes A IX. We usually follow this convention. B ~ A 
means that B is a substructure of A. A substructure of a graph is an induced 
subgraph in graph theory. AIX is the same as A[X] in Diestel's book [4]. 

We say that Xis connected in A if X is a connected graph in the graph theoret­
ical sense [ 4]. A maximal connected substructure of A is a connected component 
of A. 

Let A, B, Cbe graphs such that A~ C andB ~ C. AB denotes Cl(V(A) UV(B)), 
A nB denotes Cl(V(A) n V(B)), and A-B denotes Cl(V(A) - V(B)). We also 
write X - Y in general for the relative compliment of Y in X also known as the set 
difference of X and Y. If A nB = 0, E(A,B) denotes the set of edges xy such that 
x EA and y EB. We put e(A,B) = IE(A,B)I- E(A,B) and e(A,B) depend on the 
graph in which we are working. 

Let D be a graph and A, B, and C substructures of D. We write D = B EBA C if 
D = BC, BnC =A, and E(D) = E(B) UE(C). E(D) = E(B) UE(C) means that 
there are no edges between B -A and C -A. D is called a free amalgam of B and 
Cover A. If A is empty, we write D = B EB C, and D is also called a free amalgam 
ofBandC. 

Definition 1.1 Let a be a real number such that O < a < 1. 
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(1) For a finite graph A, we define a predimension function 8a by 

8a(A) = IAI - e(A)a. 

(2) Let A and B be substructures of a common graph. Put 

8a(A/B) = 8a(AB) - 8a(B). 

Definition 1.2 Let A and B be graphs with A ~ B, and suppose A is finite. 
A <a B if whenever A~ X ~ B with X finite then 8a(A) < 8a(X). 
We say that A is closed in B if A <a B. We also say that Bis a strong extension 

of A. 

Let Ka be the class of all finite graphs A such that 0 <a A. 
Some facts about <a appear in [2, 11, 12]. Some proofs are given in [8]. 

Fact 1.3 Let A and B be disjoint substructures of a common graph. Then 

8a(A/B) = 8a(A) - e(A,B)a. 

Fact 1.4 If A < a B ~ D and C ~ D then An C < a B n C. 

Fact 1.5 Let D = B EBA C. 

(1) 8a(D/A) = 8a(B/A) + 8a(C/A). 

(2) If A <a C then B <a D. 

(3) If A <a Band A <a C then A <a D. 

Let B, C be graphs and g : B----+ Ca graph embedding. g is a closed embedding 
of B into C if g(B) <a C. Let A be a graph with A ~ B and A ~ C. g is a closed 
embedding over A if g is a closed embedding and g(x) = x for any x EA. 

In the rest of the paper, K denotes a class of finite graphs closed under isomor­
phisms. 

Definition 1.6 Let K be a subclass of Ka. (K, <a) has the amalgamation prop­
erty if for any finite graphs A, B, C E K, whenever g1 : A ----+ B and g2 : A ----+ C are 
closed embeddings then there is a graph DE Kand closed embeddings h1 : B----+ D 
and g2 : C----+ D such that h1 o g1 = h2 o g2. 
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K has the hereditary property if for any finite graphs A, B, whenever A ~BEK 
then A EK. 

K is an amalgamation class if 0 E K and K has the hereditary property and 
the amalgamation property. 

A countable graph Mis a generic structure of (K, <a) if the following condi­
tions are satisfied: 

(1) If A ~ M and A is finite then there exists a finite graph B ~ M such that 
A~B<aM. 

(2) If A ~ M then A E K. 

(3) For any A, B EK, if A <a Mand A <a B then there is a closed embedding 
of B into M over A. 

Let A be a finite structure of M. There is a smallest B satisfying A ~ B <a M, 
written cl(A). The set cl(A) is called the closure of A in M. 

Fact 1.7 ([2, 11, 12]) Let (K, <a) be an amalgamation class. Then there is a 
generic structure of (K, <a)- Let M be a generic structure of (K, <a)- Then 
any isomorphism between finite closed substructures of M can be extended to an 
automorphism of M. 

Definition 1.8 Let K be a subclass of Ka. (K, <a) has the free amalgamation 
property if whenever D = BEBA C with B,C E K,A <a Band A <a CthenD EK. 

By Fact 1.5 (2), we have the following. 

Fact 1.9 Let K be a subclass of Ka. If (K, <a) has the free amalgamation prop­
erty then it has the amalgamation property. 

Definition 1.10 Let JR.+ be the set of non-negative real numbers. Suppose f: 
JR.+ ➔ JR.+ is a strictly increasing concave (convex upward) unbounded function. 
Assume that f(O) = 0, and f(l) s; 1. We assume that f is piecewise smooth. 
f~(x) denotes the right-hand derivative at x. We have f(x+h) s; f(x) + f~(x)h 
for h > 0. Define K1 as follows: 

Kj = {A E Ka I B ~A==? Oa(B) 2'. f(IBI)}. 

Note that if KJ is an amalgamation class then the generic structure of (KJ, <a) 
has a countably categorical theory [12]. 

A graph Xis normal to f if o(X) 2: f(IXI). A graph A belongs to K1 if and 
only if U is normal to f for any substructure U of A. 
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Fact 1.11 ([8]) Suppose l > p / q > 0 where p and q are cop rime positive integers. 
Then there is a tree W with the following properties: Let L be the set of all nodes 
of W and F the set of all leaves of W. 

(1) Lis a path in W with p vertices and p- l edges. 

(2) IF I = q - p + l. Every leaf is adjacent to some vertex in L. 

(4) BnF <p/qBforanypropersubstructureBofW. 

We call W a twig for p / q. 

2 On classes defined by bounded control functions 

If the control function f is a constant function f(x) = 0, then K1 = Ka. The 
generic structures of (Ka, <a) have a very rich (wild) structure (Brody-Laskowski, 
Evans-Wong). 

Fact 2.1 (Evans, Wong[S]) Let a be a rational number with l > a > 0. Let M be 
the generic structure of (Ka, <a)- Then any finite graphs are definable in M (the 
domain and the edge relation are definable with parameters). More strongly, there 
are two formulas <J)v(x;z) and <J>e(x,y;z) such that for any finite graph G there is a 
tuple me in M such that ( <J)v(M;mc), <J>e(x,y;mc)) is isomorphic to G. Here, x, y, 
and z are tuples of variables. 

Similarly, the finite bipartite graphs are uniformly definable in M. 

Proof Evans and Wong gave a proof in the case of K1 where the members of 
K1 are structures with one ternary relation which represents 3-hyperedges for the 
sake of simplicity. We give a proof for our case. We show that all finite graphs are 
uniformly definable in M with parameters. 

Let n be a natural number. Let Gn = W1 EBF W2 EBF · · · EBF Wn where all l½ are 
twigs for a and F is the set of leaves of Wi. Note that Wi are isomorphic over F. 

Let Ci be the tuple of nodes of Wi. Let V = {c1, ... ,en}- We code edges on 
Vas follows. To put an edge between Ci and Cj with i -=J. j, attach a twig l½j for 
a so that some leaf of l½j is identified with a vertex in Ci and another leaf of l½j 
is identified with a vertex in Cj, and the rest of leaves of l½j are identified with 
vertices in F. Let G~ be an extension of Gn obtained by this way. Then G~ belongs 
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to Ka. Embed G~ into M so that the isomorphic image of G~ in M is closed in 
M. Then there are no extension of the isomorphic image of G~ in M by attaching 
some twig for a to it. Note that the set of "vertices" V = { c1, ... , cn} is definable 
over F and also the set of edges are definable over F in a uniform way. Hence, all 
finite graphs are uniformly definable in M with parameters. □ 

It is likely that the following conjecture holds: 

Conjecture 2.2 Let a be a rational number with 1 >a> 0. Assume (K1, <a) 
has FAP and f: JR+ ➔ JR+ is bounded. let M be the generic structure of(KJ, <a). 
Then any finite graphs are uniformly definable in M. 

At the RIMS meeting 2021, the author announced that this conjecture is true, 
but it is not clear that the all substructures of the proposed structure belong to the 
class K1. 

Theorem 2.3 let M be the generic structure of (Ka, <a)- Then an infinite group 
is definable in some elementary extension of M. 

Proof A Desarguesian projective plane is a two sorted structure with a sort for 
points, a sort for lines, and an incidence relation between points and lines. It can 
be represented as a bipartite graph. So, any finite Desarguesian projective plane 
are definable in M in a uniform way. In a Desarguesian projective plane, a group 
structure is definable on the set of points on a line by a formula independent of a 
particular projective plane. 

Since there are arbitrarily large Desarguesian projective planes, an infinite 
group is definable in some elementary extension of M. □ 

3 On classes defined by unbounded control functions 

We begin this section by some facts. 

Fact 3.1 Assume that (Kj, <a) has the free amalgamation property. Let M be the 
generic structure of (Kj, <a)-

lf f is unbounded, then Th(M) is ~a-categorical. 
Let A, B be finite substructures of M. If A <a M, B <a Mand a : A ➔ B is a 

graph isomorphism then a can be extended to an automorphism of M. 
Hence, qftp(A) = qftp(B) with A <a M, B <a M implies tp(A) = tp(B). 
tp(A) is determined by qftp(cl(A)). 
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The following is the main theorem. 

Theorem 3.2 Let a be a rational number with 1 >a> 0. Assume (Kt, <a) has 
FAP and f: ffi.+ ➔ ffi.+ is unbounded. let M be the generic structure of (Kt, <a). 
Then no infinite groups are definable in any elementary extensions of M. 

Proof Note that Th(M) is ~a-categorical. Suppose a formula G(x,a) defines 
an infinite group in an elementary extension of M, where a is a parameter. Since 
Th(M) is ~a-categorical, we can assume that a EM. Let a be the closure of a in 
M. Let g be a non-algebraic element of Mover a satisfying G(x,a). Consider g,a. 
We have a <a g,a with g (/. a. Let D = D1 ffiaD2 where Di ~a g,a. D belongs to 
Kt by FAP. Embed Dover a so that the isomorphic image of Dis closed in M. 
Let g1, g2 be isomorphic images in D1 and D2 of g respectively. 

Let g3 = g1 · g2 be the product in the group. 
g1, a U g2, a is closed. g3 is definable over g1 and g2. g3 belongs to g1, a U g2, a 

because the algebraic closure and the closure in M are the same. Hence g3 belongs 
to g1,a or g2,a, say g3 E g1,a. Since g2 is definable over g1 and g3, this implies 
that g2 E g1, a. But this is a contradiction by the construction of D and the choice 
of g1 and g2. □ 

The following question is natural but the author has no idea at the moment. 

Question 3.3 Is the following statement true? Let a be a rational number with 
1 > a> 0. Assume (Ka,1, <) has FAP and f: ffi.+ ➔ ffi.+ is unbounded. let M 
be the generic structure of (Ka,1, <). Then no infinite groups are interpretable in 
any elementary extensions of M. 
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