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JOONHEE KIM 
YONSEI UNIVERSITY 

1. INTRODUCTION 

This note is based on the author's talk in RIMS Symposia, "Model theoretic 
aspects of the notion of independence and dimension", held on December 13-15, 
2021. Kim's lemma has been a key observation in the study of forking and dividing, 
especially in the proof of the equivalence of forking (Kim-forking) and dividing 
(Kim-dividing) in simple theories and NTP2 theories (NSOP1 theories, resp.). In 
a collaboration with Bonghun Lee and Hyoyoon Lee, now we are trying to show 
that Kim-forking and Kim-dividing are equivalent in NATP theories. Following the 
strategy of [CK12], we obtained a partial result which is expected to play a role in 
proving the equivalence, namely 

Theorem 1.1. In NATP theories, if a formula Kim-divides over a model M, then 
it coheir-divides over M. 

2. PRELIMINARY 

We summarize notations and basic facts of the subjects to be covered in this 
note. First we recall notations and definitions of tree properties. 

Notation 2.1. Let r;, and >. be cardinals. 

(i) By ,.,,>-, we mean the set of all functions from >. to J-£. 

(ii) By r;,<>-, we mean Ua<>- ,.,,a and call it a tree. If r;, = 2, we call it a binary 
tree. If r;, ~ w, then we call it an infinitary tree. 

(iii) By 0 or O, we mean the empty string in r;,<>-, which means the empty set 
(recall that every function can be regarded as a set of ordered pairs). 

Let T/, v E ,.,,<>-. 

(iv) By T) ::::i v, we mean T) <;;; v. If T) ::::i v or v ::::i T/, then we say T) and v are 
comparable. 

(v) By T) l_ v, we mean that T) i) v and vi) T/· We say T) and v are incomparable 
ifri1-v. 

(vi) By T) I\ v, we mean the maximal ( E ,.,,<>- such that ( ::::i T) and ( ::::i v. 
(vii) By l(ri), we mean the domain of T/· 

(viii) By T) <tex v, we mean that either T) ::::i v, or rJ l_ v and ri(l(ri I\ v)) < 
v(l(TJ I\ v)). 

(ix) By ri~v, we mean rJ U {(i + l(ri), v(i)) : i < l(v)}. 
Let X <;;; ,.,,<>-. 

(x) By T/~ X and x~ri, we mean {ri~x: x EX} and {x~ri: x EX} respec­
tively. 

Let T)o, ... , T/n E ,.,,<>- • 
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(xi) By cl(770, ... , 17n), we mean a tuple (770 /\ 770, ... , 770 /\ 17n, ... , 17n I\ 770, ... , 17n I\ 77n)­
(xii) We say a subset X of K<>. is an antichain if the elements of X are pairwise 

incomparable, i.e., 77 l_ v for all 77, v E X). 

Definition 2.2. Let <p(x, y) be an £-formula. 

(i) We say <p(x, y) has the tree property (TP) if there exists a tree-indexed set 
(a17 )17 Ew<w of parameters and k E w such that 

{<p(x,a17rnnnEw is consistent for all 77 E WW (path consistency), and 
{<p(x,a17-i)}iEw is k-inconsistent for all 77 E w<w, i.e., any subset of 
{<p(x,a17-i)}iEw of size k is inconsistent. 

(ii) We say <p(x, y) has the tree property of the first kind (TP1) if there is a 
tree-indexed set (a17 )17 Ew<w of parameters such that 

{ 'P ( X' a'7 r n)} nEw is consistent for all 77 E WW' and 
{<p(x,a17 ),<p(x,a,,,)} is inconsistent for all 771- v E w<w_ 

(iii) We say <p(x, y) has the tree property of the second kind (TP2 ) ifthere is an 
array-indexed set (ai,j)i,jEw of parameters such that 

{<p(x,an,TJ(n))}nEw is consistent for all 77 E ww, and 
{<p(x,ai,j),'P(x,ai,k))} is inconsistent for all i,j,k E w with j-/- k. 

(iv) We say <p(x, y) has the 1-strong order property (SOP1) if there is a binary­
tree-indexed set (a17 ) 17 E 2 <w of parameters such that 

{ 'P ( x, a'7 r n)} nEw is consistent for all 77 E 2w, 
{<p(x,a17-1),'P(x,a17-o-v)} is inconsistent for all 77,v E 2<w_ 

(v) We say <p(x, y) has the 2-strong order property (SOP2 ) if there is a binary­
tree-indexed set (a17 ) 17 E2<w of parameters such that 

{ 'P ( x, a'7 r n)} nEw is consistent for all 77 E 2w, 
{<p(x,a17 ),<p(x,a,,,)} is inconsistent for all 771- v E 2<w. 

(vi) We say a theory has TP if there is a formula having TP with respect to its 
monster model of the theory. Sometimes we say that the theory is TP, and 
we call the theory an TP theory. We define TP1 theory, TP2 theory, SOP1 
theory, and SOP2 theory in the same manner. 

(vii) We say a theory is NTP if the theory is not TP, and we call the theory 
NTP theory. We define NTP1 theory, NTP2 theory, NSOP1 theory, and 
NSOP2 theory in the same manner. 

The following facts are well known (cf [Con12], [DS04], [KKll], and [She90]). 

Fact 2.3. (i) A theory has TP1 if and only if it has SOP2 • 

(ii) A theory has TP if and only if it has TP1 or TP2 . 

(iii) A theory has TP if and only if it has SOP1 or TP2 . 

(iv) If a theory has SOP2 , then it has SOP1. 

Definition 2.4. [AK20, Definition 4.1] We say a formula 'P( x, y) has the antichain 
tree property (ATP) if there exists a tree indexed set of paremeters (a17 ) 17 E 2 <w such 
that 

(i) for any antichain X in 2<w, the set { <p(x, a17 ) : 77 EX} is consistent, 
(ii) for any 77, v E 2<w, if 77 5J v, then { <p(x, a17 ), <p(x, a,,)} is inconsistent. 

We say a theory has ATP if there exists a formula having ATP. If a theory does 
not have ATP, then we say the theory has NATP. 
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If a theory has ATP, then the theory always has TP2 and SOP1 ([AK20, Proposi­
tion 4.4, 4.61). Thus the class of NTP2 theories and the class of NSOP1 theories are 
subclasses of the class of NATP theories. Therefore we have the following diagram: 

NTP2 -------+ NATP 

T T 
simple ---+ NSOP1 ---+ NSOP2 ---+ · · · 

Now we recall notions of forking, dividing, and pre-independence. 

Definition 2.5. Let ,C be a language, T an £-theory, M a monster model of T, 
ACM a small set, r.p(x,y) an £-formula, p(x) a type over A. 

(i) A global extension p of p is said to be invariant over A if r.p(x, c') E p 
whenever r.p(x,c) E p and c =Ac'. 

(ii) A global extension p of pis said to be Lascar invariant over A if r.p(x, c') E p 
whenever r.p(x,c) E p and c =:;i c'. 

(iii) A global extension p of p is called a coheir of p ( over A) if for all r.p( x, c) E p, 
there exists m EM such that F r.p(m, c). 

(iv) A sequence (ci)iEw is called an invariant sequence over A in p if there exists 
a global A-invariant extension p of p over A such that Ci F 'f51Ac<i for all 
i E w. 

(v) A sequence (ci)iEw is called a coheir sequence over A in p if there exists a 
global coheir extension p of p over A such that Ci F 'f51Ac<i for all i E w. 

(vi) We say r.p(x, c) divides over A if there exists an A-indiscernible sequence 
(ci)iEw such that co= c and {r.p(x,ci)}iEw is inconsistent. 

(vii) We say r.p(x, c) forks over A if there exist 1jJ0 (x, c0), ••• , 1/Jn(x, en) such that 
r.p(x, c) f-- V Wi(x, ci) and Wi(x, Ci) divides over A for each i. 

(viii) We say p(x) divides over A if there exists r.p(x,c) such that p(x) f-- r.p(x,c) 
and r.p(x, c) divides over A. 

(ix) We say p(x) forks over A if there exists r.p(x, c) such that p(x) f-- r.p(x, c) and 
r.p(x, c) forks over A. 

(x) We say r.p(x, c) Kim-divides over A if there exists an A-invariant sequence 
(ci)iEw in tp(c/A) such that {r.p(x, ci)}iEw is inconsistent. 

(xi) We say r.p(x, c) coheir-divides over A if there exists a coheir sequence ( ci)iEw 
over A in tp(c/A) such that {r.p(x,ci)}iEw is inconsistent. 

(xii) By the same manner above, we define Kim-forking, coheir-forking for for­
mulas, and Kim-dividing, Kim-forking, coheir-dividing, coheir-forking for 
types. 

Definition 2.6. [CK12] [Adl08] A ternary relation~ is called a pre-independence 
relation if it is invariant under automorphisms. For a pre-independence relation~, 
we say 

(i) it satisfies monotonicity if aa' ~ A bb' implies a~ Ab, 
(ii) it satisfies base monotonicity if a~ A be implies a~ Ab c, 

(iii) it satisfies transitivity on the left ( over A) if a~ Ab c and b ~Ac implies 
ab~Ac, 

(iv) it satisfies right extension (over A) if for all a,b,c,A with a~Ab, there 
exists c' =Ab c such that a~ A be', 
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(v) it satisfies left extension (over A) if for all a, b, c, A with a --LA b, there exists 
c' = Aa c such that ac' --LA b. 

(vi) We say a set A is an extension base for --L if a--L A A for all a. 
(vii) We say -..L preserves indiscernibility over a set A if I is aA-indiscernible 

whenever a -..LA I and I is A-indiscernible. 

Definition 2. 7. [CK12] [Adl08] Let .C be a language, T an £-theory, M a monster 
model of T, A, B CM small sets, and a EM. Suppose A<;;; B. 

(i) a--L!B iftp(a/B) does not divide over A. 

(ii) a--L~B iftp(a/B) does not fork over A. 
(iii) a --L 1 B if tp( a/ B) does not Kim-fork over A. 
(iv) a --L ~ B if there exists a global Lascar invariant type over A containing 

tp(a/ B). 
(v) a--L: B if there exists a global coheir over A containing tp(a/ B). 

Fact 2.8. [CK12] [Adl08] For all a, b and a model M a --L ~ b ⇒ a --L ~ b ⇒ 
a --L~ b ⇒ a --L ~ b and a --L~ b ⇒ a --L ~ b. If M is a model, then --Lu satisfies 
monotonicity, base monotonicity, transitivity on the left over M, right extension 
over M, and left extension over M. 

Definition 2.9. Let p(x) = tp(a/M). 

(i) A global extension p of pis called a strong coheir of p (over M) if pis a 

coheir over Mand for any A ;;;::i M, if a' p== PIA then A--l~ a'. 
(ii) A sequence (ai)iEw is called a strong coheir sequence over Min p if there 

exists a global strong coheir extension p of p over M such that ai F fJIMa<i 
for all i E w. 

(iii) We say a formula cp(x, a) strong coheir-divides over M if there exists a 
strong coheir sequence (ai)iEw over M in p such that { cp(x, ai)}iEw is in­
consistent. 

(iv) We say that tp(a/Bb) is strictly invariant over B (denoted by a--L~t b) if 

there is a global extension p, which is Lascar invariant over B (so a--Lk b) 

and for any C ;;;::i Bb, if c F Pie then C --L~ c. 

(v) We write a--L:st b if there is a global extension p of tp(a/Bb), which is 

Lascar invariant over B (so a--Lkb) and for any C ;;;::i Bb, if c F Pie then 

c--L~ c. 

(vi) We write a--L~Kst b if there is a global strong coheir of tp(a/Bb). 

3. KIM-DIVIDING AND COHEIR-DIVIDING ON NATP THEORIES 

In [CK12], Chernikov and Kaplan proved that forking and dividing are equivalent 
over models, in NTP2 theories. In other words, they proved that in NTP2 theories, 
for a model M, if a formula forks over M, then it divides over M. 

The strategy they have taken can be divides into two main part. First they show 
that in NTP2 and over a set B, if a pre-independence relation -..L satisfies every 
property in Definition 2.6, then every formula dividing over B coheir-divides over 
B. In particular, in NTP2 theories, for any model M, if a formula divides over M, 
then it coheir-divides over M. As a corollary they show that in NTP2 theories, 

-..List is an extension base over models. 
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As the second step, they prove Kim's lemma for NTP2 theories over models. 
That is, if a formula c.p(x, a) divides over a model M, then for any sequence (ai)iEw 

such that ao = a and ai J., ~ a<i for all i E w, the set { c.p(x, ai) hEw is inconsistent. 
Using these observation, they prove that forking and dividing are equivalent 

over models in NTP2 theories. If a formula c.p(x, a) forks over a model M, then 
there exist 'ljJ0 (x, a0 ), ... , 1/Jn(x, an) such that Wi divides over M for each i ::; n 

and c.p(x,a) f--- V'l/Ji(x,ai)- Since they prove that J.,i st is an extension base over 
models, there exists a global extension p(x, x0 , ... , Xn) of tp(a, a0 , ... , an/M) sat-
isfying (iv) in Definition 2.9. If we choose any sequence (aJ,al, ... ,a{)1Ew such 

that (a1 , ab, ... , a{) F PIMa<J, a;?, ... , a;;J for each j E w, then by Kim's lemma, 
{c.p(x,a1)1JEw is inconsistent. Thus c.p(x,a) divides over M. 

Following their strategy, we are trying to show that Kim-forking and Kim­
dividing are equivalent over models in NATP theories, and obtained a small result 
which corresponds to their first step. Note that we can not expect to prove that 
forking and dividing are equivalent over models since they are not equivalent in 
NSOP1 theories. 

To explain our result, we need a notion of T;, which describes trees that grow 
downward. The notion is originally from [KR20]. 

Definition 3.1. Suppose a and o are ordinals. We define T; to be the set of 
functions 7) so that 

(i) dom(rJ) is an end-segment of a of the form [,B, a) for ,B equal to O or a 
successor ordinal. If a is a successor or 0, we allow ,B = a, i.e. dom(rJ)=0. 

(ii) ran(rJ)c;; o 
(iii) finite support: the set {'y E dom( 7/) : 7)(,) -=I= 0} is finite. 

We interpret T; as an .Cs,a-structure by defining 

(iv) 7/ :SJ v if and only if 7/ c;; v. Write 7/ l_ v if ,(rJ :SJ v) and ,(v :SJ rJ). 
(v) 7) /\ v = rJl[f:l,a) = vl[f:l,a) where ,B = min{'y: rJl[,,a) = vlr,,a)}, if non-empty 

(note that ,B will not be a limit, by finite support). Define 7/ /\ v to be the 
empty function if this set is empty (note that this cannot occur if a is a 
limit). 

(vi) 7) <tex v if and only if 7) <l v or, 7) l_ v with dom(rJ /\ v)=['Y + 1, a) and 
7)(,) < v(,). 

(vii) for all ,B E a \ lim (a), P f:l = { 7/ E T; : dom ( 7/) = [,B, a)} ( the ,B-th floor). 

We will also need the following notation. 

(viii) (canonical inclusion) For a'> a, T;_ can be embedded in T,;_, with respect 
to Ls,a' by a map f a,a' : T,;_ ---+ T;_, : 7) r-+ 7) U { (,B, 0) : ,B E a'\ a}. Unless 
otherwise stated, we regard T,;_ as fa,a'(T;_) in T,;_, 

(ix) 7) 1-zex v if and only if 7) <tex v and 7) iJ v. For an indexed set {ary}riET,;' 
and 7/ ET,;_, by a_J__lex1/ we mean the set {av: I/ l_zex rJ}. 

(x) for each 7/ ET;, let h(rJ) be an ordinal such that dom(rJ) = [h(rJ),a). 
(xi) for each 7/ E T;, let Cry ( the cone on 7/) be the set of all v E T; such that 

7/ :SJ 1/. 

Remark 3.2. Let a, ,B be ordinals and suppose ,B < a. Let us consider T,;_. 
(i) By finite support, <tex is a well-ordering on Pf:l. 

(ii) If a is a cardinal, then IPf:ll = a. 
(iii) If a is a cardinal, then IC'7 I < a for all 7J E T,;_. 
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Lemma 3.3. Let 0 and ,-,, be cardinals such that ,-,, is uncountable, e+ < ,-,, and 
cf(,-,,) = ,-,,, where e+ is the successor cardinal of 0. Let c be a 0-coloring on T; (a 
function from T; to 0) which satisfies: 

(*) for each /3 < a and rJ, v E P13, if 1) <zex v then c(rJ) :::; c(v). 
Then for any infinite cardinal>. < ,-,,, there exists an £-embedding f : 'T?: ---+ T; and 
l < 0 such that c( 1)) = l for all 1) E f (7?:). 

Proof. By Remark 3.2 (ii), IP/31 = ,-,, for each /3 < ,-,,_ Thus for each /3 < ,-,,, 
there exists lf3 < 0 such that l{rJ E P13 : c(rJ) = i13}I = ,-,,_ By Remark 3.2 (i), 
{ 1) E P13 : c( 1)) = lf3} has the least element with respect to <zex, say 1//3 · We show 
that c(rJ) = lf3 for all rJ E P13 with rJ/3 < rJ. Suppose not. Then there exists rJ E P13 
such that rJ/3 < 1) and lf3 < c(rJ). Let v = rJ/3 I\ 1). Then {rJ E P13: c(rJ) = i13} ~ Cv 
by(*). But by Remark 3.2 (iii), ICvl < ,-,,_ It is a contradiction. 

Let >. be an infinite cardinal such that e+ :::; >. < ,-,,_ For each /3 < >., let 'Y/3 be 
the largest ordinal such that 1)13('"'113) = 1. We can find such an ordinal by finite 
support. Since cf(,-,,) = ,-,,, we can choose an ordinal '"'( < ,-,, such that >. < '"Y, and 
'Y/3 < '"Y for all /3 < >.. Let~ be an element of 7; such that dom(~) = b, ,-,,), ~('"Y) = 1 
and ~('"Y') = 0 for all 1' > "(. Then each floor in C1; is monochromatic with respect 
to c. Since the cone has at least >.-many floors and we have only 0-many colors, we 
can find >.-many floors in the cone which have the same color. This completes the 
proof. □ 

Proof of the main theorem. Suppose cp(x, a) Kim-divieds over M. Then there ex­
ists a global M-invariant type p(y) containing tp(a/M) such that for all (ai)iEw I= 
p®w IM, the set { cp(x, ai)}iEw is k-inconsistent for some k E w. To get a contradic­
tion, we assume there is no global coheir extension q(y) of tp(a/M) such that for 
all (ai)iEw I= q®w IM, the set { cp(x, ai)}iEw is inconsistent. Note that the number of 
all global coheir extensions oftp(a/M) is bounded. Let {qi}i<e be an enumeration 
of all global coheir extension of tp(a/M), where 0 is a cardinal number. Let ,-,, be 
a cardinal such that e+ < ,-,, and cf(,-,,) = ,-,,_ 

Claim. For any ordinal a and any set A ;2 M, there exists {b,,,},,,ET,;' which satisfies: 

(i) b,,, I= Pl Mb~,, for each 1) E T;, and 
(ii) For each 1) E T;, there exists i < 0 such that b,,, I= qi IAh,ex,, and b,,, ~ 

qi, IAbj_ for all i' < i. 
lex1J 

(iii) A' -1,, ~ A where A' = {b,,, },,,ETa. 

Furthermore, for any set A ;2 M, we can construct a sequence { {b,,,},,,E?;; }a<i< 
whose elements satisfy (i) and (ii) above, and {b,,,},,,ET,;' ~ {b,,,},,,ET;, for a< a'<,-,, 
by canonical inclusion. 

Proof of Claim. First we construct {b,,,},,,E7o2. Choose any A ;2 M. Then there 

exist and b I= PIM and b' I= qolA . Since b' --.l~A, by left extension, there exists 
b* =Mb' b such that b*b' --.l~A. In particular, b* I= PIM and b* --.l~A. Thus there 
exists i < 0 such that b* I= qilA- We may assume i is the smallest one of those 
indices. Let b0 := b*. Then {b,,,},,,E?;; satisfies (i), (ii), and (iii). 

Now we consider the successor case. Assume that the statement is true for some 
ordinal /3. Let a := /3 + l. Choose any A ;2 M and suppose we have constructed 
{{bn}nE'T: }/3'</3 whose members satisfies (i), (ii), (iii), and {bn}nE'T: ~ {bn}nE'T: 

•1 "I f3' 'f 'I /31 'I 'I (311 

for each /3' < /3" :::; /3 by canonical inclusion. For each rJ E TJ, let bg := b,,,. By 
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the induction hypothesis, we have {b~}ryE7il' satisfing (i), (ii), and (iii) over AU A0 

where A0 = {bg}ryE7il'· Let A1 = {b~}ryE7il'· 

For each T/ E T;_ \ {0}, let bry := b~f:). Choose any b F PIAA" Al. Note that 

A0 A1 J_,~A by left transitivity. Hence we can apply left extension to get b* =AoA1 b 
such that b* A0 A 1 J_, ~A. In partinular, b* J_, ~A. Thus there exists i < 0 such that 
b* F qi IA- We may assume i is the smallest one of those indices. Let b0 := b*. Then 
{bry}ryE'l;; satisfies (i), (ii), and (iii). Clearly {bry}ryETJ ~ {bry}ryET,;' by canonical 
inclusion. 

Finally, let a be a limit ordinal and assume that the statement is true for all /3 < 
a. Suppose we have constructed a sequence {{bry}ryETJ}/3<a such that {bry}ryE7il' ~ 
{bry}ryET2 for all /3 < /3' < a, and {bry}ryE71 satisfies (i),(ii), and (iii) for each 

f3' /3 

/3 < a. Then the union {bry}ryET,;' := LJ/3<a {bry}ryETJ satisfies (i), (ii), and (iii). This 
completes the proof of the claim. D 

Now we have {bry}ryE'T,z satisfies (i) and (ii) over M, by the claim above. Let 
c be a 0-coloring on 'T; such that c(T/) = i if and only if bry F qilMb_i_1ex" and 
bry ~ qi, IMb_1_lex" for all i' < i, as in (ii). By the construction, if 'f) and v are in the 
same floor and 7/ <tex v, then {b,hEc,, =MH1exry {bd(ECv, and hence c(T/)::; c(v) 
by the minimality of the index i in (ii). Thus this coloring satisfies the hypothesis in 
Lemma 3.3, and we can find an £-embedding f: TJ ➔ T; such that c(f(T,;)) = i 

for some i < 0. For each T/ E T,;, let Cry .- bf(ry)· Then {cry}ryETJ satisfies the 
following conditions: 

(iv) Cry F PIMcc,,, for each T/ E 'TJ. 
(v) Cry F q,IMc_1_lex'I for each T/ E TJ. 

In particula, every finite antichain X in 7J is an initial segment of some coheir 
sequence in q, over M. Thus the set { cp(x, cry)}ryEX is consistent. On the other 
hand, every finite path X in 7J with IXI ~ k is an initial segment of some Morley 
sequence in p over M. Thus the set { cp(x, cry)}ryEX is inconsistent. Therefore by 
compactness, we can construct an antichain tree, which yields a contradiction with 
the assumption that Tis NATP. □ 

The following two corollaries can be shown by using the same argument in [CK12, 
Lemma 3.1, Proposition 3.7]. 

Corollary 3.4. Suppose that T is NATP. If a formula Kim-forks over a model M, 
then it quasi divides over M. 

Corollary 3.5. In NATP theories, every model is an extension base for J_, uKst . 

Thus if we can prove Kim's lemma for Kim-dividing in NATP, we can prove that 
Kim-forking and Kim-dividing are equivalent in NATP, over models. 

Conjecture 3.6. In NATP thoeries, if a formula cp(x, a) Kim-divides over a model 
M, then {cp(x,ai)}iEw is inconsistent for any strong coheir sequence (ai)iEw over 
M. 

REFERENCES 

[Adl08] Hans Adler, An introduction to theories without the independence property, Archive for 
Mathematical Logic, (2008). 



78

KIM-FORKING AND KIM-DIVIDING IN NATP THEORIES 

[AK20] JinHoo Ahn and Joonhee Kim, SOP1, SOP2, and Antichain Tree Property, submitted, 
2020 

[Con12] Gabriel Conant, Dividing lines in unstable theories, Unpublished, https: //wvrw. dpmms. 
cam.ac.uk/-gc610/Math/Properties_in_Unstable_Theories.pdf, 2012. 

[CK12] Artem Chernikov and Itay Kaplan, Forking and Dividing in NTP2 theories, The Journal 
of Symbolic Logic, 77, (2012). 

[DS04] Mirna Dzamonja and Saharan Shelah, On <J*-maximality, Ann. Pure Appl. Logic, 125 
(2004), no. 1-3, 119-158. 

[KKll] Byunghan Kim and Hyeung-Joon Kim, Notions around tree property 1, Ann. Pure Appl. 
Logic 162 (2011). 

[KR20] Itay Kaplan and Nicholas Ramsey, On Kim-Independence, Journal of the European Math­
ematical Society, 22, (2020). 

[She90] Saharan Shelah, Classification theory and the number of nonisomorphic models, Second 
edition. Studies in Logic and the Foundations of Mathematics, 92. North-Holland Publishing 
Co., Amsterdam, 1990. 

DEPARTMENT OF MATHEMATICS 

Yonsei University 
Seoul 03722 
South Korea 

kimjoonhee©yonsei.ac.kr 


