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SHELAH-STRONG TYPE AND ALGEBRAIC CLOSURE OVER A 
HYPERIMAGINARY 

HYOYOON LEE 
DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY 

ABSTRACT. We characterize Shelah-strong type over a hyperimagianary with the alge
braic closure of a hyperimaginary. Also, we present and take a careful look at an example 
that witnesses acleq(e) is not interdefinable with acl(e) where e is a hyperimaginary. 

Fix a first order language .C, complete theory T and monster model M. Throughout, 
fix a hyperimaginary e = aE where a is a (possibly infinite) real tuple and E 
is an 0-type-definable equivalence relation on Mlal. 

Most of the facts and remarks whose proofs are omitted can be found in the author's 
dissertation [6]. 

Fact 1. 

(l) A real tuple b is simply bf (/\;<a. Xi = Yi) where b = (bi)i<a, hence can be seen as 
(that is, interdefinable with) a hyperimaginary; an imaginary tuple (b;j Fi)i<a. is 
(bi)i<a.l(/\i<a. Fi(xi, Yi)) where all xi, Yi 's are disjoint, hence is a hyperimaginary 
as well. In this regard, considering over a set of real elements or a 
set of imaginaries can be safely replaced by considering over a single 
hyper-imaginary. 

(2) In the same manner as above, a sequence of hyperimaginaries can be regarded as 
a single hyperimaginary: A tuple of hyperimaginaries (b;j Fi)i<a. is interdefinable 
with (bi)i<a.l(/\i<a. Fi(xi, Yi)) where all xi, Yi 's are disjoint. 

Definition 2. 

(1) For any hyperimaginary e', we denote e' E dcl(e) and say e' is definable over e if 
f(e') = e' for all f E Aute(M). 

(2) For any hyperimaginary e', we denote e' E bdd(e) and say e' is bounded over e if 
{f(e') : f E Aute(M)} is bounded. 

Remark 3. In Definition 2, e' E dcl( e) and e' E bdd( e) are independent of the choice of 
a monster model M. 

Proof. It is easy, but anyway we prove it. Let M -< M' be monster models of T. Suppose 
that there are only K-many automorphic images of e' in M, whereas there are at least K+ 
images in M'. Saye'= bF where bis a real tuple and Fis an 0-type-definable equivalence 
relation. Let (b;j F)i<i<+ be an enumeration of automorphic images of bF in M'. Since 
there is (b:)i<i<+ =a (bi)i<r;,+ where each b; EM, there are at least K+ -many conjugates of 
bF in M (recall e = a/ E), a contradiction. □ 

Fact 4. 

(1) A hyperimaginary bF is called countable if lbl is countable. It's not so difficult 
to prove that any hyperimaginary is interdefinable with a sequence of countable 
hyperimaginaries(see, for example [5, Lemma 4.1.3]). 
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(2) From now on, definable closure of e, dcl(e) will be seen as an actual (small) set, 
the set of all countable hyperimaginaries which are definable over e: In this way, 
e' E dcl( e) now means that there is a sequence of countable hyperimaginaries 
that is interdefinable with e' and fixed by any f E Aute(M). Also note that 
f E Autctc1(e)(M) if and only if f fixes all hyperimaginaries that are definable over 
e. As pointed out in Fact 1(2), dcl(e) also can be seen as a single hyperimaginary. 

(3) Likewise, the bounded closure of e, bdd(e) is the set of all countable hyper
imaginaries which are bounded over e. In the same way as above, e' E bdd(e) 
means that there is a sequence of countable hyperimaginaries that is interdefin
able with e', and the number of e-automorphic images of it is bounded. Again, 
f E Autbdd(e)(M) is equivalent to saying that f fixes all hyperimaginaries that are 
bounded over e. 

Remark & Definition 5. 
(1) For a hyperimaginary e', denote e' E acl(e) and say e' is algebraic over e if 

{f(e') : f E Aute(M)} is finite. As in Remark 3, this definition is independent of 
the choice of a monster model. 

(2) As in Fact 4, the algebraic closure of e, acl(e) can be regarded as a bounded set of 
countable hyperimaginaries, which is interdefinable with a single hyperimaginary 
bp E bdd(e) (but possibly bp (}. acl(e)). 

(3) Note that given di/ Li E acl(e) (i:::; n), as pointed out in Fact 1, (do/ L0 , • • • , dn/ Ln) 
is interdefinable with a single dL E acl(e). Hence by compactness, for any hyper
imaginaries bp and cp, 

bp =aci(e) Cp if and only if bp =dL Cp for any dL E acl(e). 

Definition 6. 

(1) Aute(M) = {f E Aut(M): f(e) = e} (! may permute the elements of e). 
(2) Autfe(M) is a subgroup of Aute(M) generated by 

{f E Aute(M) : f E AutM(M) for some M p== T such that e E dcl(M)}. 

It can be easily seen that Autfe(M) is a normal subgroup of Aute(M). 
(3) The Lascar group over of T e is the quotient group 

GalL(T, e) = Aute(M)/ Autfe(M). 

Remark 7. 

(1) Up to isomorphism, GalL(T, e) is independent of the choice of a monster model 
M. 

(2) There are well-defined maps µ and v such that: 

Aute(M) ~ SM(M) ➔ GalL(T, e) 
fr-+ tp(f(M)/M) r-+ f = 1r(f) 

where M is a small model of T such that e E dcl(M), and 1r : Aute(M) ---+ 
GalL(T, e) is the canonical projection. 

The topology of GalL(T, e) is given by the topology induced by the quotient 
map v, and it is independent of the choice of M. 

Fact 8. 
(1) GalL(T, e) is a topological group. 
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(2) Let H ~ Aute(M) and let H' = 7r(H) ~ GalL(T, e). Then H' is closed in 
GalL(T, e) and H = 7r-1 (H'), if and only if H = Aute'e(M) for some hyperimag
inary e' E bdd( e). 

(3) Let H' ~ GalL(T, e) be closed and F be an 0-type-definable equivalence relation. 
Then for H = 7r-1(H'), Xp =: YF is equivalent to Xp =e'e YF for some hyper
imaginary e' E bdd(e), and hence Xp =: YF is an e'e-invariant type-definable 
bounded equivalence relation. Especially, if H' ~ GalL(T, e), then Xp =: YF is 
e-invariant. 

Definition 9. 

(1) Gal[(T, e) denotes the connected component of the identity in GalL(T, e). 
(2) Autfs (M, e) := 7r-1 (Gal[(T, e)). 
(3) Two hyperimaginaries bp and Cp are said to have the same Shelah-strong type if 

there is f E Autfs (M, e) such that f(bF) = cp, denoted by bp =! Cp. 

Remark 10. Note that Gal[(T, e) is a normal closed subgroup of GalL(T, e) ([4]) and 
=! is the orbit equivalence relation =!utfs (M ,e), thus =! is type-definable over e by Fact 
8(3). We denote 

Gals(T, e) := GalL(T, e)/ GalE(T, e) ~ Aute(M)/ Autfs (M, e). 

Thus Gals(T, e) is a profinite (i.e. compact and totally disconnected) topological group. 
Gal[(T, e) is the intersection of all closed (normal) subgroups offinite indices in GalL(T, e), 
since such an intersection is the identity for a profinite group ([4]). 

Proposition 11. 

(1) Autfs (M, e) = Autacl(e) (M). 
(2) Let bp, cp be hyperimaginaries. The following are equivalent. 

(a) bp =! cp. 
(b) bp =aci(e) Cp. 

Proof. (1). We claim first that 

GalE(T, e) = n{7r(AutdLe(M)): dL E acl(e)}. 

Let dL E acl(e) where dL is a hyperimaginary. Say d1(= dL), • • • , d'}, are all the conjugates 
of dL over e. Then any f E Aute(M) permutes the set { dL · · · , d'},}. Hence it follows that 
AutdLe(M) has a finite index in Aute(M). Thus (due to Fact 8(2)) 7r(AutdLe(M)) is a 
closed subgroup of finite index in GalL(T, e). Then as in Remark 10, we have Gal[(T, e) ~ 
7r(AutdLe(M)). 

Conversely, given a normal closed subgroup H' ~ GalL(T, e) of finite index and H := 

7r-1 (H'), Fact 8(2) says H' = 7r(Autbpe(M)) for some bp E bdd(e). But since H' is 
of finite index, the same holds for H = Autbpe(M) in Aute(M), and we must have 
bp E acl(e). Thus the claim follows from Remark 10. 

Therefore 

Autfs (M, e) = 7f-1 (GalE(T, e)) = 7f-1 (n{7r(AutdLe(M)): dL E acl(e)}) 

= n{AutdLe(M) : dL E acl(e)} = Autacl(e)(M), 

where the last equality follows by Remark & Definition 5(3). 

(2) follows from (1). □ 
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Recall that acleq(e) := {e} U (acl(e) n Meq) is the eq-algebraic closure of e, where as 
usual Meq is the set of all imaginary elements ( equivalence classes of 0-definable equiva
lence relations) of M. Good summary of basic facts concerning imaginary elements can 
be found in [1, Chapter 1]. The following remark is proved using the proof of [9, Theorem 
21]. 

Remark 12. For any small set A of imaginaries, acleq(A)( = acl(A)nMeq) is interdefinable 
with acl(A). 

Proof. Recall that Gal~(T, A) is the intersection of all closed (normal) subgroups of fi
nite indices in GalL(T, A) (Remark 10). Let H' be a closed subgroup of finite index in 
GalL(T, A). It suffices to show that H' = 7r(AutbA(M)) for some b E acleq(A); by Fact 
8(2), we have 

Gal[(T, e) = n{H': H' is a closed subgroup of finite index in GalL(T, A)} 

~ n{7r(AutdLA(M)): dL E acleq(A)}; 

thus if we show that H' = 7r(AutbA(M)) for some b E acleq(A), then Gal~(T, A) = 

n{7r(AutdLA(M)) : dL E acleq(A)}. Taking 71"-1 , we get Autacl(A)(M) = Autac1eq(A)(M) 
(by a similar manner as in the last lines of the proof of Proposition 11(1)). 

Since H is closed in GalL(T, A), by Fact 8(3), H = 7r(AutcFA(M)) for some hyper
imaginary Cp E bdd(A). But H has finite index in GalL(T, A), hence (by Fact 8(2),) 
Cp E acl(A). Say { Cp = Co/ F, · · · , Cn-d F} is the set of all A-conjugates of Cp. 

We may assume that F is closed under conjunction and all formulas in F are symmetric 
and reflexive. Note that by compactness, there is 8 E F such that for all i < j < n, 

cicj ~ :3zoz1z2(8(x, zo) A 8(zo, z1) A 8(z1, z2) A 8(z2, y)). 

Let 84 (x, y) = :3z0 z1z2(8(x, z0 ) A8(z0 , z1) A8(z1, z2) A8(z2, y)), and define 8m(x, y) similarly 
form< w. Note that in particular, 8(ci, M)'s are pairwise disjoint. 

Let d be any realization of tp(co/A). Then d p= vi<n F(x, Ci), thus d F vi<n 8(x, Ci), 
implying that there is rp(x) E tp(c0/A) such that rp(x) F Vi<n 8(x, c;), that is, rp(M) can 
be partitioned as {rp(M) n 8(c;,M): i < n}. Note that we can say rp(x) is A-invariant; 
this is possible because A is a set of imaginaries, not a hyperimaginary. 

Claim 1. For any a', a" F rp(x), 
a'a" F 82(x, y) if and only if a', a" E rp(M) n 8(c;, M) for some i < n. 

Proof. Assume F 82(a',a"), hence there is some a* such that F 8(a',a*) A 8(a*,a"). 
Suppose a' and a" belong to different components for a contradiction. Then 

F 8(ci, a') A 8(a', a*) A 8(a*, a") A 8(a", cj) 

for some i =/= j < n, implying C;Cj F 84 (x,y), a contradiction. 
For the converse, suppose a', a" E rp(M) n 8(ci, M) for some i < n. Then F 8(a', ci) A 

8(c;, a"). □ 

Now define 

L(x, y) = ( ,rp(x) A ,rp(y)) V ( rp(x) A rp(y) A 82(x, y)). 

Since rp(x) is A-invariant, L is an A-definable equivalence relation with finitely many 
classes, ,rp(M), rp(M) n 8(c0 , M), · · · , rp(M) n 8(cn-i, M). Note that some imaginary 
b(E acl(A)) is interdefinable with c/L ([1, Lemma 1.10]). 



97

SHELAH-STRONG TYPE AND ALGEBRAIC CLOSURE OVER A HYPERIMAGINARY 

Claim 2. c/ F and b ( or equivalently, c/ L) are interdefinable over A. 

Proof. Let f E AutA(M). Then 

f(c/F) = c/F iff F(f(c),c) holds iff F 62(f(c),c) 

iff L(f(c),c) holds iff f(c/L) = c/L, 

where the second logical equivalence follows since: Otherwise, F 62 (f(c), c) but F(ci, f(c)) 
and F(c, cj) hold for some i-/- j < n. But then we have F 64 (ci, cj), a contradiction. □ 

By Claim 2, H = 1r(AutcpA(M)) = 1r(AutbA(M)) where b E acleq(A). 

□ 

However, contrary to [5, Corollary 5.1.15], in general acl(e) and acleq(e) need not be 
interdefinable; the error occurred there due to the incorrect proof of [5, 5.1.14(1) =} (2)]. 
An example presented in [3] for another purpose supplies a counterexample. Consider the 
following 2-sorted model: 

M = ((M1, S1, {gi/n: n 2". 1}), (M2, S2, foi;n: n 2". 1}), 6) where 

(1) M1 and M2 are unit circles centered at origins of two disjoint (real) planes. 
(2) Si is a ternary relation on Mi, defined by Si(b, c, d) holds if and only if b, c and d 

are in clockwise-order. 
(3) gf;n is a unary function on Mi such that gf;n(b) = rotation of b by 21r/n-radians 

clockwise. 
(4) 8: M1 ---+ M2 is the double covering, i.e. 8(cos t, sin t) = (cos 2t, sin 2t). 
(5) Let M be a monster model of Th(M) and M 1 , M 2 be the two sorts of M. 

In [2, Theorems 5.8 and 5.9], it is shown that each Th(Mi) has weak elimination of 
imaginaries (that is, for any imaginary element c, there is a finite real tuple b such that 
c E dcl(b) and b E acl(c)), using the B. Poizat's notion of weak elimination of imaginaries 
([7, Chapter 16.5]). The following fact is a folklore, whose explicit proof was observed in 
RIMS model theory workshop by I. Yoneda ([8]). 

Fact 13. A (complete) theory T has weak elimination of imaginaries if and only if every 
definable set has a smallest algebraically closed set over which it is definable. 

Remark & Definition 14. 

(1) For each element b of sort i = 1, 2, g~(b) means (gf;nr(b) where r is a rational 
number m/n. 

(2) For each element b of sort 2, 5-1(b) = { Co, ci}, the 8-preimage of b. 
(3) For a set of elements B = B1 U B2 of M where each element of Bi is of sort i, 

cl(B) = {g;(b): r E Q, b E B 1} U {6(g;(b)): r E Q, b E B 1} 

U {g;(b) : r E Q, b E B2} U U 5-1(g;(b)). 
rE(Q,bEB2 

( 4) Note that in the above item, the substructure generated by Bis formed by omitting 
the last union: UrEIQ,bEB2 5-i (g; ( b)). 

Lemma 15. Let B = {b0 , · • · , bn-i} be a subset of M. Then 

acl(B) = cl(B). 
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Proof. Say B = {b0 , • • • , bm-l, bm, · · · , bn-i} where b0 , • • • , bm-l are of sort 1 and the 
others are of 2. Choose any element b of sort 1. If 

b tf_ {g;(bi) : r E Q, i < m} U 
rEIQ,m:c;i<n 

then b tf_ acl(B) since there are infinitely many elements which are infinitesimally close to 
b and there is an B-automorphism mapping b to each such element. 

Likewise, for an element b of sort 2, if 

b tf_ {g;(8(bi)): r E Q,i < m} U {g;(bi): r E Q,m ~ i < n}, 

then b tf_ acl(B). Thus acl(B) ~ cl(B). 
For the converse, it is easy to observe that 

{g;(bi): r E Q,i < m} U {g;(8(bi)): r E Q,i < m} 

U {g;(8(bi)): r E Q, m ~ i < n} ~ dcl(B) and 

LJ c5-1(g;(bi)) ~ acl(B) 
rEIQ,m:c;i<n 

since each b E UrEIQ,m:c;i<n c5-1(g;(bi)) has at most two B-automorphic images (has only 
one B-automorphic image if m =I- 0). □ 

Proposition 16. Th(M) has weak elimination of imaginaries. 

Proof. Let cp(x, Yo,··· , Yn-1) E £ and B = {bo, · · · , bn-1} = {bo, · · · , bm-1}U{bm, · · · , bn-1} 
where b0 , • • • , bm-l are of sort 1 and the others are of 2. According to Fact 13, it suf
fices to show that there is a smallest algebraically closed set over which cp(M, B) = 
cp(M, bo, · · · , bn-1) is definable. 

Since there is some e; such that c5 ( e;) = bi for each i E { m, • • • , n - 1}, we may 
assume that every element of B is of sort 1. Choose D = { d0 , • • • , dk_i} ~ B such that 
{g;(di): r E Q,i < k} = {g;(bi): r E Q,i < n} and di tf_ cl(D) \ {d;} for each i < k. 
Then cp(M, B) is definable over D and there is some minimal subset D' of D such that 
cp(M, B) is definable over acl(D') by Lemma 15. □ 

Now for i = 1, 2, we let Ei(x, y) if and only if x and yin Mi are infinitesimally close, 
i.e. 

Ei(x, y) := /\ (Si(x, y, gf;n(x)) V Si(Y, x, gf;n(Y))), 
l<n 

which is an 0-type-definable equivalence relation. Let b E M 2 , c, c' E M 1 where 8(c) = 
8(c') = b. Note that c,d are antipodal to each other and cfE1, c'fE1 are conjugates over 
bf E 2, hence cf E1, c' f E 1 E acl(bf E 2). 

Theorem 17. acl(bf E2) and acleq(bf E2) are not interdefinable. 

Proof. We prove following Claim and then conclude. 

Claim. acleq(bf E2) is interdefinable with bf E2. 

Proof. To lead a contradiction, suppose that there are distinct imaginaries d1, d2 E acleq(bf E2) 
such that d1 =b/E2 d2. Weak elimination of imaginaries of Th(M) (Proposition 16) implies 
that acleq(d1,d2) and D := {d EM: d E acleq(d1,d2)} are interdefinable (*). In partic
ular, D ~ acleq(bf E 2) n M. However, for any infinitesimally close d, d' E Mi (i = 1, 2), 
there is f E Autb/E2 (M) sending d to d'. Hence indeed D = 0, which contradicts (*) 
(because d1 =b/E2 d2 and d1 =/-d2 E acleq(d1,d2)). D 
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□ 
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