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概要

abstract Locally a-minimal structures are some local adaptation from a-minimal 

structures. They were treated, e.g. in [1], [2]. We try to characterize types of definably 

complete locally o-minimal structures. And we argue about the dp-rank of them. 

1. Introduction 

We recall some definitions and fundainental facts at first. 

Definition 1. Let M be a densely linearly ordered structure without endpoints. 

M is o -minimal if every definable subset of M1 is a finite union of points and intervals. 

M is locally o -minimal if for any element a E M and any definable subset X C M1, there 

is an open interval I C M such that Iうaand In X is a finite union of points and intervals. 

M is definably complete if any definable subset X of M1 has the supremum and infimum 

in MU｛士oo}.

Here we consider densely linearly ordered structures only. 

Example 2. [1], [2] 

(R, +, <, Z) where Z is the interpretation of a unary predicate, and (R, +,<,sin) are defin-

ably complete locally o-minimal structures. 

Fact 3. [1] Definably complete local a-minimality is prese而 edunder elementa可 equivalence.

Thus we argue in a sufficiently large saturated model M as us叫．

〇-minimalstructures are characterized by means of behavior of 1-types. They consider 

two kinds of 1-types by the way to cut linear orders of parameter sets, e.g. in [5]. Here we 

consider nonisolated types only. 

Definition 4. Let M be a densely linearly ordered structure and ACM. 

And let p(x) E Sfr(A), that is, p(x) is complete over A w.r.t. the order relation. 
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We say that p(x) is cut over A if for any a E A, if a < x E p(x), then there is b E A 

such that a < b < x E p(x), and similarly if x < a E p(x), then there is c E A such that 

X < C < a E p(x). 

We say that q(x) E S1r(A) is noncut over A if q(x) is not a cut type. 

And sometimes we call q(x) E S1(A) cut(noncut) over A if q(x) contains a cut(noncut) 

p(x) E Srr(A). 

Remark 5. Let M be a densely linearly ordered structure and Ac M. And let p(x) E S1r(A) 

be noncut. 

There are four kinds of noncut types. 

p(x) = {b < x < a : b < a EA} for some fixed a, or {a< x < b : a< b EA} for some 

fixed a. 

Here we call these types bounded noncut types. 

And p(x) = {b < x : b EA} or {x < b : b EA}. 

We call these types unbounded noncut types. 

2. Characterization of definably complete locally a-minimal struc­
tures 

In o-minimal structures, types of the order relation are complete. Similar argument hold in 

definably complete locally o-minimal structures to some extent. 

Lemma 6. Let M be a definably complete locally a-minimal structure and ACM. 

Then any bounded noncut type p(x) E S1r(dcl(A)) is complete over dcl(A). 

Proof; 

Let p(x) E S1r(dcl(A)) be bounded noncut, that is, p(x) = {c < x < a : c < a E dcl(A)} 

for some fixed a E dcl(A) ( Another case is proved similarly). By local a-minimality, for any 

formula cp(x, b) over dcl(A), there is an interval I c M such that a E I and In cp(M, b) is 

a union of finite points and intervals. Thus there is c E I such that either for any d E I 

with c < d < a, M p= cp(d, b), or for any d E I with c < d < a, M p= ,cp(d, b). Now 

we assume that for any d E I with c < d < a, M p= cp(d, b). We consider the formula 

Vy(x < y <a----+ cp(y, b)). By definably completeness, there is the infimum e EM such that 

for any f withe < f < a, M p= cp(J, b) { If e = -oo, then "x < a" implies cp(x, b) ). And 

e E dcl(A). I 

Notation 7. In the lemma above, for p(x) = {c < x < a c < a E dcl(A)} for some 
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fixed a E dcl(A), there is the infimum e EM such that for any f withe< f < a satisfies the 

formula <p(y, b). We denote "brp" such boundary point in the following. 

Next we characterize about the definability of types. We recall the definition. 

Definition 8. Let M be a structure. 

A type p(x) E Sn(M) is definable if for any £-formula <p(x, y), there is an L(M)-formula 

d<p(y) such that for all a EM, <p(x, a) E p(x) if and only if M F d<p(a). 

We can prove the next fact. 

Fact 9. Let M be a definably complete locally a-minimal structure and let p(x) E S1(M). 

Then p( x) is definable if and only if p( x) is noncut. 

We can generalize the fact above for n-types to a certain extent. 

Definition 10. [6] Let M be a sufficiently large saturated densely linearly ordered structure 

and AcM. 

We say that p(x) E Sn(A) is noncut over A if; 

1) n = 1, we define it by the same way as above, and 

2) n ~ 2, let x = (x1, x2, · · · , Xn), we define inductively, 

q(x') := tp(x1 · · · Xn-i/ A) is noncut over A and tp(xn/ Aa1 · · · an-1) is noncut over 

AU {a1, · · · , an-1} for any realizations a1 · · · an-1 of q(x'). 

Fact 11. Let M be a locally a-minimal structure and let p(x) E Sn(M) be noncut. 

Then p(x) is definable. 

Next we characterize definably complete locally o-minimal structures by the notion of fork­

ing. We recall some definitions. 

Definition 12. A formula <p(x, a) divides over a set A if there is a sequence {ai : i E w} 

with tp(a;JA) = tp(a/A) such that {<p(x,ai): i E w} is k-inconsistent for some k E w. 

A formula ¢(x, a) forks over A if ¢(x, a) f- Vi<n 1Pi(x, bi) and each i < n, 1Pi(x, bi) divides 

over A. 

In some papers, they consider the notion of dimension for ( definably complete ) locally 

o-minimal structures, e.g. in [3]. 

Definition 13. Let M be a densely linearly ordered structure without endpoints and let 

X C Mn be a nonempty definable subset. 

The dimension dim(X) of X is the maximal nonnegative integer d such that 7r(X) has a 

nonempty interior for some coodinate projection 71' : Mn ----+ Md. 
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According to the argument in [7], we recall some lemmas. 

Lemma 14. Let M be a sufficiently large saturated definably complete locally a-minimal 

structure and ACM. And let p(x), q(x) E S1 (A) (with dim(p) = dim(q) = 1). 

Then either 

(a) (i) all A-definable f: p(M)---+ q(M) are increasing, or 

(ii) all A-definable f: p(M) ---+ q(M) are decreasing. 

(b) In case (i), whenever B :J A, a E p(M) and a> dcl(B) n p(M), 

then dcl(aA) n q(M) > dcl(B) n q(M), 

In case (ii), whenever B :J A, a E p(M) and a< dcl(B) np(M), 

then dcl(aA) n q(M) > dcl(B) n q(M). 

In the lemma above, we just say that if there is a function f between p(M) and q(M), 

then f has these properties. There is no definable function between a cut type and a noncut 

type. By this lemma, they consider characteristic extensions of complete types in a-minimal 

structures. Here we adapt the argument for noncut types. 

Definition 15. Let p(x1, · · · , Xn) E Sn(A) of dimension n and AC B. 

Fix some sequence T/ = ( TJ(l), • • • , TJ( n)) where each TJ( i) is 1 or 0. 

For 1 :Si :Sn, let p;(x1, · · · , Xi) be the restriction of p to the variables x1, · · · , x;. 

We define an extension Pi] E Sn(B) of p. Choose a realization (b1, · · · , bn) of Pi] inductively 

as follows; 

b1 E p1(M) and if TJ(l) = 1, then b1 > dcl(B) np1(M), 

while if TJ(l) = 0, then b1 < dcl(B) np1 (M). 

For some realization b1, · · · , b; of Pi ( X1, · · · , x;), let bi+ 1 be a realization of Pi+ 1 (b1, · · · , b;, X;+ 1) 

such that : 

if TJ(i + 1) = 1, then b;+1 > dcl(B, b1, · · · , b;) n Pi+i(b1, · · · b;, M) and 

if T/ ( i + 1) = 0, then bi+ 1 < dcl ( B, b1, · · · , b;) n Pi+i ( b1, · · · b;, M). 

Lemma 16. [7] Let p(x) E Sn(A) of dimension n and let q(y) E S1 (A) of dimension 1. 

Then there is T/ E n2 as in the definition above such that ; 

for any B :J A and any realization a of P1(x), dcl(aA) n q(M) > dcl(B) n q(M). 

By the lemmas above, we can prove the next fact. 

Proposition 1 7. Let M be a sufficiently large saturated definably complete locally a-minimal 

structure. And let c EM and Ac M with dim(tp(c/A)) = 1, and AU {c} c B. 

Moreover let r(x) E S1 (B) be a bounded noncut type of cover dcl(B) satisfying r r AcJ.L r. 

Then r(x) divides over A. 
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Sketch of proof ; 

Let r(x) := { C < X < d : d E dcl(B)} ( Another case is proved similarly). As r r Ac }Lr, 

there is an L(B)-formula <p(x, b) E r(x) such that for any L(Ac)-formula 'lj;(x) E r(x), 

b"' < b'l/J. 

Case 1. c =A b'P. 

We consider an automorphism er E AutA(M) such that cr(c) = b'P. And let b/ = cr(b'P). 

Thus c < b"' < b/. 

Case 2. c ¢Ab"'. 

Now there is an L(A)-formula 'lj;(x) such that ,'lj;(x) E tp(c/A) and 'lj;(x) E tp(b"'/A). As 

for any L(A)-formula 'lj;(x) E r(x), b'P < b,;,, so for any d with c < d < b<p, F 'lj;(d). 

In the lemmas above, let p(x) = tp(cb"'/A), q(x) = r(x) 1 A, and the noncut extension 

p'(x) E S 11 (bcA) of p such that for any c'b/ F p'(x), dcl(c'b/ A) n q(M) > dcl(bcA) n q(M). 

If c < c' :S b<p, then F 'lj;(d), a contradiction. Thus c < b"' < c' < b/. 

We iterate this construction infinitely many times and prove that the formula c < x < b"' 

divides over A. I 

Corollary 18. Let M be a sufficiently large saturated definably complete locally a-minimal 

structure. And let AC BC CC M and p(x) E S1 (C) be a cut type over C. 

Suppose that there is d E B with dim(tp(d/A)) = 1 and a bounded noncut type q(x) E 

S 1 (dcl(B)) of d such that q f Ad¥ q and p 'r q. 

Then p(x) divides over A. 

3. Op-rank of locally o-minimal structures 

We recall some definitions. 

Definition 19. An independent partition pattern of a partial type p(x) is a sequence of 

formulas ( <p"'(x, y"') )a<K and tuples lir for a< K, and i < w satisfying that ; 

for any a< ,,;,, { <p"'(x, b?) Ii< w} is k"'-inconsistent for some k"' < w, and for any 7) E w", 

{ <p"'(x, b~(a)) I a< ,,;, } is consistent with p(x). 

For a theory T, the invariant "'inp(T) is the smallest infinite cardinal,,;, such that non-type 

has an inp-pattern of cardinality "'· 

A formula <p(x, y) has the independence property if there are sequences ( ii; : i < w) and 

(br : IC w) such that F <p(ii;, b1) if and only if i EI. 

A formula <p(x, y) has the tree property of the second kind (T P 2 ) if there are tuples 
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(bf)a,i<w such that { cp(x, bf) Ii < w} is 2-inconsistent for any a < w, and for any TJ E ww, 

{ cp(x, b~(a)) I a< w} is consistent. 

We call the burden of p(x) the supremum of the cardinalities "'of all inp-patterns for p. It 

is known that the burden of p is equal to the (classical) weight of p in simple theories. 

Theorem 20. e.g. [15] 
For any theory T, 

any formula cp(x, y) with Ix I = n is NTA if and only if Kfnp(T)::; IT 1+ ( < oo ). 

Definition 21. An independent contradictory types pattern is a sequence of formulas 

( cp"'(x, y"') )a<1. and tuples bf for a< Kandi< w satisfying that ; 

for any TJ E w", the following set of formulas is consistent, 

r ry(x) := { cp"'(x, b?) I a< "', i < w, TJ(a) = i} u { ,cp"'(x, bf) I a<"', i < w, TJ(a) =/- i }. 

Theorem 22. e.g. [11] 

If Tis NIP, then Kict(T) = Kinp(T). Otherwise, Kict(T) = oo. 

And we recall the definition of dp-rank from [16]. 

Definition 23. Let p(x) be a partial type over a set A c M. We define the dp - rank of 

p(x) as follows. 

The dp-rank of p(x) is always greater than or equal to 0. Let µ be a cardinal. 

We say that p(x) has dp-rank ::; µ if given any realization a of p and any 1 + µ mutually 

A-indiscernible sequences, at least one of them is indiscernible over Aa. 

And we say that p has dp-rank =µif it has dp-rank ::; µ, but it is not the case that it has 

dp-rank ::; >. for any >. < µ. 

We call p dp - minimal if it has dp-rank 1, we denote rk-dp(p) = 1. 

We call p dependent if it has an ordinal dp-rank, that is, rk-dp(p) < oo. 

And we call p strongly dependent if rk-dp(p) ::; w. 

There exists many examples whose theories are dp-minimal. For example, structures of 

superstable with U-rank = 1, C-minimal, p-adics, ordered set with finite width, tree, and so 

on. Here we recall the next fact. It is proved by the argument about the notion of Vapnik­

Chervonenkis density ( or VC-minimality ). 

Theorem 24. [14], [17] 

Weakly a-minimal theories are dp-minimal. 

But there are examples oflocally o-minimal structures whose theories have the independence 

property. 
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Many results are proved under the strong assumption that structures M -< M are dp-minimal. 

Proposition 25. [13] 

Let M be an inp-minimal linearly ordered structure without endpoints and Ac M. And let 

M be IAl+-saturated andp(x) E S\(M). 

Then the following are equivalent ; 

1 . p( x) divides over A. 

2. There exist a, b E M such that pf-- a < x < b and a =A b. 

We can prove the next fact under the same assumption. 

Fact 26. Let M be a sufficiently large saturated definably complete locally a-minimal struc­

ture and Ac M. And let Th(M) be inp-minimal. 

Moreover let p(x) E S1 (dcl(A)) be an unbounded noncut type. 

Then p(x) does not fork over 0. 

4. Further problems 

For definably complete locally a-minimal structures, we can prove the next fact easily. 

Lemma 27. Let M be a definably complete locally a-minimal structure and A C M with 

dcl(A) -/- 0. 
Then the isolated 1-types ofTh(M,a)aEA are dense. 

Thus I will try to characterize definably complete locally a-minimal structures by means of 

prime models. 

And I will try to characterize locally o-minimal structures satisfying some additional con­

ditions of their theories. The additional conditions are ; definably complete, dp-minimal, 

strongly dependent, NIP or NTP2 • 

References 

[1] C.Toffalori and K.Vozoris, Nate on local o - minimality, Math.Log.Quart., 55, 

pp617-632, 2009. 

[2] T.Kawakami, K.Takeuchi, H.Tanaka and A.Tsuboi, Locally o - minimal structures, 

J. Math. Soc.Japan, vol.64, no.3, pp 783-797, 2012. 

[3] M.Fujita, Locally o - minimal structures with tame topological properties, 

J. Symb. Logic, to appear. 



126

[4] A.Pillay and C.Steinhorn, Definable sets in ordered structures. I, Trans of A.M.S., 

vol.295, no.2, pp 565-592, 1986. 

[5] D.Marker and C.Steinhorn, Definable types in o - minimal theories, J. Symb. Logic, 

vol.59, no.1, pp 185-198, 1994. 

[6] A.Dolich, Forking and independence in o - minimal theories, J. Symb. Logic, vol.69, 

pp 215-240, 2004. 

[7] Y.Peterzil and A.Pillay, Generic sets in definably compact groups, Fund. Math, 193, 

pp 153-170, 2007. 

[8] S.Shelah, Dependent first order theories, continued, Israel J. Math., vol.173, pp 1-60, 

2009. 

[9] S.Shelah, Strongly dependent theories, Israel J. Math., vol.204, pp 1-83, 2014. 

[10] E.Hrushovski and A.Pillay, On NIP and invariant measures, J. Eur. Math. Soc., 

vol.13, pp 1005-1061, 2011. 

[11] H.Adler, Strong theories, burden, and weight, Preprint, 2007. 

[12] A.Onshuus and A.Usvyatsov, On DP - minimality, strong dependence and weight, 

J. Symb. Logic, vol.76, no.3, pp 737-758, 2011. 

[13] P.Simon, On dp- minimal ordered structures, J. Symb. Logic, vol. 76, no.2, pp 448-460, 

2011. 

[14] A.Dolich, J.Goodrick and D.Lippel, Dp - minimality 

Notre Dame J. Form. Logic, vol.52, no.3, pp267-288, 2011. 

basic facts and examples, 

[15] A.Chernikov, Theories without the tree property of the second kind, Ann. Pure. and 

Appl. Logic, vol.165, pp695-723, 2014. 

[16] I.Kaplan, A.Onshuus and A.Usvyatsov, Additivity of the dp - rank, Trans of A.M.S., 

vol.365, pp 5783-5804, 2013. 

[17] M.Aschenbrenner, A.Dolich, D.Haskell, D.MacPherson and S.Starchenko, Vapnik -

Chervonenkis density in some theories without the independence property, I, Trans of 

A.M.S., vol.368, no.8, pp 5889-5949, 2016. 

[18] L.van den Dries, Tame topology and o - minimal structures, London Math. Soc. Lecture 

Note Ser, 248, Cambridge University Press, 1998. 

[19] F.O.Wagner, Simple Theories, Mathematics and its applications, vol.503, Kluwer 

Academic Publishers, Dordrecht, 2000. 


