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RIGIDITY AND DEGENERATION OF 3-DIMENSIONAL 
HYPERBOLIC CONE STRUCTURES 
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ABSTRACT. In this note, we survey rigidity of hyperbolic cone structures and 
give an example of degeneration with decreasing cone angles. This example is 
constructed by gluing four copies of a certain polyhedron. We can explicitly 
describe the isometry types of such hyperbolic polyhedra. Furthermore, we 
introduce a generalization of cone structure to avoid intersection of cone loci. 

1. INTRODUCTION 

The Mostow-Prasad rigidity [15, 16] implies that the isometry type of a finite 
volume hyperbolic 3-manifold is uniquely determined by its topology. Hence there 
is no deformation of (complete) finite volume hyperbolic structures on a 3-manifold. 
Nevertheless, we can obtain deformation via hyperbolic cone structures by allowing 
cone-type singularities. Deformation via cone structures has two major applica
tions: Dehn fillings [8] and geometrization of orbifolds [2, 3, 6]. 

Related to the uniqueness of deformation via cone structures, there are two no
tions: local and global rigidity. Local rigidity asserts that the deformation space 
is locally parametrized by cone angles. Global rigidity asserts uniqueness for fixed 
cone angles. Local rigidity for finite volume cone structures holds if the cone an
gles are at most 21r [7]. On the other hand, global rigidity for finite volume cone 
structures is known to hold only when the cone angles at most 1r [10]. 

Small deformation of cone structures is possible by local rigidity, Sometimes, 
however, there are degenerations, in which continuous deformation cannot be ex
tended. The following types of degeneration are known: 

(1) collapsing (where the volumes decrease to zero), 
(2) appearance of an essential Euclidean sub-cone-surface, and 
( 3) intersection of cone loci. 

The first and second types do not occur if the cone angles decrease. Kojima [10] 
showed that the third type does not occur if the cone angles are less than 1r. One 
might expect that cone structures do not degenerate if the cone angles decrease. 
However, this conjecture fails in an example by the author [21]. Cone loci may 
intersect even if the cone angles decrease. 

Such degeneration is likely to be ordinary, but explicit construction is hard in 
general. In our single example, we construct cone structures by gluing four copies 
of a certain polyhedron. Then we are reduced to considering isometry types of such 
polyhedra. 

Furthermore, we introduce the notion of holed cone structures. The author is 
preparing a paper for a detailed account [20]. The construction of our example 
is naturally extended to holed cone structures. Then we can avoid intersection of 
cone loci. 
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2. RIGIDITY OF HYPERBOLIC CONE STRUCTURES 

In this section, we survey rigidity of hyperbolic cone structures on a 3-manifold. 
Let X be a 3-manifold, and let E be a link in X. Let E1, ... , En denote the 
components of E. Suppose that X \ E admits an incomplete hyperbolic structure, 
and the completed metric has the form 

dr2 + sinh2 rd02 + cosh2 rdz2 

in cylindrical coordinates around each component Ei for 1 ~ i ~ n, where r is 
the distance from the singular locus, z is the distance along the singular locus, 
and 0 is the angle measured modulo 0i > 0. Then the metric on (X, E) is called 
a (hyperbolic) cone structure. More precisely, an equivalence class of such cone 
metrics by isometries isotopic to the identity is a cone structure. The angle 0i is 
called the cone angle at the cone locus Ei. In our definition, the cone loci consist 
of disjoint closed geodesics. 

If 0i = 21r, the metric around Ei is smooth. By generalizing the notion, 0i = 0 
means that Ei is a cusp. If 0i = 21r /ni for ni EN, the metric space (X, E) can be 
regarded as a hyperbolic orbifold. 

From now on, fix a pair (X, E). Let C1o,a] = C1o,a] (X, E) denote the set of 
cone structures on (X, E) such that the cone angles are at most a. We usually 
consider C10,2,,.]. The set C1o,a] admits the pointed Gromov-Hausdorff topology, 
which is induced by the geometric convergence of metric spaces. The continuous 
map 8: C10,a] --+ [O, at is defined by 8(g) = (01, ... , 0n), where 0i is the cone angle 
at Ei in the cone-manifold (X, E; g). 

Suppose that the cone structures on (X, E) have finite volume. In practice, it is 
sufficient to suppose only that X \ E admits a cusped hyperbolic structure of finite 
volume. Then local and global rigidity for cone structures are known as follows. 

Theorem 2.1 (The local rigidity by Hodgson and Kerckhoff [7]). The space C10,2,,.1 
is Hausdorff, and the map 8: C10,2,,.l --+ [O, 21r]n is a local homeomorphism. In other 
words, the space C10 ,2,,.1 is locally parametrized by the cone angles. 

This result is induced from the infinitesimal rigidity of cone structures, which 
extends the local rigidity theory of Weil [17] by using Hodge theory. Infinitesimal 
deformations preserving cone angles are represented by L 2-harmonic forms, which 
are finally shown to vanish. The possibility of local deformation follows from a cal
culation of the dimension of representation space. This result cannot be generalized 
to the case that cone angles exceed 21r. Izmestiev [9] constructed infinitesimally 
flexible hyperbolic cone-manifolds with cone angles more than 21r. 

Theorem 2.2 (The global rigidity by Kojima [10]). The map 8: C1o,1r] --+ [0, 1rt 
is injective. In other words, the cone structure is determined by the cone angles if 
the cone angles do not exceed 1r. 

Global rigidity is not known when cone angles exceed 1r. Let go be an element 
in C1o,1r] such that 8(go) = (0, ... , 0). The cusped hyperbolic structure go is unique 
for (X, E) by the Mostow-Prasad rigidity [15, 16]. Theorem 2.2 follows from this 
fact and Theorems 2.1 and 2.3. Cone structures are uniquely deformed from g0 to 
g E C1o,1r] with respect to a fixed path of increasing cone angles. 

Theorem 2.3 ([10]). Let g E C1o,1r] · Suppose that 8(g) = (01, ... , 0n) E [0, 1rt. 
Then there is A C C10,1r] such that g E A and BIA: A --+ [0, 01] x · · · x [0, 0n] 
is a homeomorphism. In other words, we can obtain a continuous family of cone 
structures from g to g0 by arbitrarily decreasing cone angles. 

A continuous degenerating family of cone structures is a continuous map 
,: [0, 1) --+ C10 ,2 ,,.1 such that limt-+1 8(,(t)) E [0, 21r]n but 7(t) does not converge 
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in C[o,21r] as t ➔ 1. Theorem 2.3 implies that there is no continuous degenerating 
family of cone structures with decreasing cone angles if the cone angles are at most 
1r. However, Theorem 3.1 implies that Theorem 2.3 cannot be generalized for cone 
angles less than 21r. 

Similar results are known for 3-dimensional hyperbolic cone-manifolds with ver
tices. Local rigidity for cone angles less than 21r was proved by Mazzeo and Mont
couquiol [13], and independently Weiss [19]. Global rigidity for cone angles at most 
1r was proved by Weiss [18]. The methods in the proofs are similar to [7, 10]. 

A few results are also known for 3-dimensional hyperbolic cone-manifolds of 
infinite volume. In this case, similarly to hyperbolic 3-manifolds without cone 
singularity, there is deformation preserving the cone angles. Nevertheless, one may 
expect that the cone angles and the end invariants determine the isometric type. 

Local rigidity for geometrically finite cone-manifolds means that the deformation 
space is locally parametrized by the conformal invariant at infinity and the cone 
angles. In the case that there are no rank-one cusps, this local rigidity was proved 
by Bromberg [4]. 

It is possible to consider the case that cone loci are open. Global rigidity for 
quasi-Fuchsian cone-manifolds with cone angles less than 7r was proved by Lecuire 
and Schlenker [12], using quite a different argument from the above results. This is 
an analog of Bers' simultaneous uniformization theorem. Local rigidity for quasi
Fuchsian cone-manifolds are proved only when the cone angles are less than 1r by 
Moroianu and Schlenker [14]. 

3. AN ALTERNATING LINK IN THE THICKENED TORUS 

We consider a link L = L1 LJ • • • LJ L4 c T 2 x I as indicated in the left of Figure 1, 
where I is an open interval. (A fundamental domain of T 2 x I is drawn.) Let 
C = C[o,21r] = C[o,21ri(T2 x I,L) denote the space of cone structures on (T2 x I,L), 
where the components of T 2 x 81 keep to be two cusps. Note that any of the cone 
angles cannot be equal to 21r. The map 8: C ➔ [O, 21r) 4 assigns the cone angles at 
Li. 

Theorem 3.1. There is a continuous degenerating family of cone structures on 
(T2 x I, L) with decreasing cone angles. In this degeneration, two of the cone loci 
L intersect transversally. Two simultaneous intersections may occur. 

FIGURE 1. Decomposition of (T2 x I, L) into trapezohedra 

The space (T2 x I,L) is topologically decomposed into four (tetragonal) trape
zohedra as indicated in Figure 1. The four trapezohedra correspond to the comple
mentary regions of the diagram of L in T 2 • 
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FIGURE 2. Gluing four copies of a trapezohedron 

Conversely, we can construct a cone structure on (T2 x I, L) by gluing four copies 
of a hyperbolic trapezohedra with right dihedral angles except at ii as indicated 
in Figure 2. This construction can be called "double of double". Let Csym denote 
the set of cone structures obtained by this construction. A cone structure in Csym 
is symmetric with respect to an action by '11.,/2'11., x '11.,/2'11., on (T2 x I,L). 

The two ideal vertices disjoint from ii correspond to the components ofT2 x 8I. 
The edge ii corresponds to the cone locus Li. If the dihedral angle at ii is equal to 
ai, the cone angle at Li is equal to 2ai. We remark that ii degenerates to an ideal 
vertex if ai = 0. We use the term "trapezohedron" also for such a degenerated 
polyhedron. 

The local rigidity implies that the set Csym is the union of components of C. In 
fact, the space Csym is connected. Though we have no proof, it is very likely that 
Csym = C. Otherwise the global rigidity for C fails. 

The above argument for go E C with 8(90) = 0 induces a decomposition of 
T 2 x I\L into four regular ideal octahedra. This decomposition was given in [1, 5], 
and the "double of double" construction was described in detail in [11]. 

4. DIHEDRAL ANGLES OF A TETRAGONAL TRAPEZOHEDRON 

By the construction in Section 3, we are reduced to consider hyperbolic trapezo
hedra (possibly ii degenerates to an ideal vertex) with right dihedral angles except 
at ii. Let A denote the image of the map ½8: Csym --+ [O, 7r) 4 • In other words, 
( a1, ... , a4) E A if and only if there exists a trapezohedron with dihedral angles ai 
at ii and 7r /2 at the other edges in the hyperbolic space. We explicitly describe A. 
From now on, the indices i = 1, ... , 4 are regarded modulo 4. See [21] for details. 

Theorem 4.1. The map ½8: Csym--+ A is a homeomorphism. In particular, the 
isometry class of a hyperbolic trapezohedron is determined by the element of A. 

Theorem 4.1 is non-trivial because we do not know whether the global rigidity 
holds in general. 
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Theorem 4.2. For 1 ::; i ::; 4, let a function ~i be defined by 

~;(c1, ... , c4) = C;C;+1 ( C;C;+1 + l)c;+2C;+3 - C;C;+1 (c; + C;+1)(c;+2 + C;+3) 

+ (c; + C;+1)2 - C;C;+1 - 1. 

Let 8A denote the frontier of A in [0, 1r ) 4 . Then the set A consists of the elements 
( 0:1, ... , 0:4) E [0, 1r ) 4 satisfying ~i ( cos 0:1, ... , cos 0:4) < 0 or cos a; + cos °'i+l > 0 
for any i. Moreover, it holds that 8A = LJ; o;A, where 

o;A = { ( 0:1' ... '0:4) E [0, 7r ) 4 I ~i ( cos 0:1' ... 'cos 0:4) = 0, cos a; + cos °'i+l ::; 0, 

cos a;::; COS0:;+2, COS0:;+1::; COS0:;+3}. 

As (a1, ... , a 4) EA approaches to 8;A, the edge between L; and L;+1 degenerates. 

Theorem 4.2 enables us to see the shape of A more explicitly. 

• A# [0, 1r)4 • 

• The space A is connected. 
• (a, (3, a, (3) EA for any a, (3 E [O, 1r). 
• o;A n 8;+2A = 0. 
• o;A n 0;+1A # 0. This corresponds to a degeneration in Csym in which two 

intersections of cone loci occur. 
• [0, arccos(l - v'2))4 c A. 
• (arccos(l - v'2), arccos(l - v'2), 0, 0) (/. A. 

Theorem 3.1 follows from Theorem 4.2. For instance, (21r /3, ... , 21r /3) EA and 
(21r /3, 21r /3, 0, 0) (/. A. The edge between L1 and L2 degenerates while decreas
ing cone angles from (21r /3, ... , 21r /3) to (21r /3, 21r /3, 0, 0). This corresponds to a 
degeneration of cone structures in Csym· 

We sketch an outline of the proof. Let us consider a hyperbolic trapezohedron 
T whose dihedral angles are a; at L; and 1r /2 at the other edges. We use the 
upper half-space model of hyperbolic 3-space. Regard 8llll3 = lE.2 U { oo }. The 
trapezohedron T has two ideal vertices disjoint from L;. We set them at oo and 
0 = (0, 0). We project T to lE.2 C 8llll3 as indicated in Figure 3. 

We consider the following points and circles: 

• P; and Q; are the end points of the edge f;. 
• P; and Q; are respectively the images of P; and Q; by the projection. 
• The circle C; is the boundary of the geodesic plane containing OQ;_ 1P;Q;. 
• R; is the center of C;. 
• S; is the intersectional point of C; and C;+l other than O. 

The dihedral angles a; are indicated in Figure 4. The point Q; is the intersection 
of the segments OS; and P;P;+ 1. Since the other dihedral angles are equal to 1r, we 
may assume that 

Pi= (P1,P2),P2 = (-p3,p2),P3 = (-p3,-p4),P4 = (P1,-p4), 

R1 = (P1,tp1),R2 = (-tp2,P2),R3 = (-p3,-tp3),R4 = (tp4,-p4), 

for p; > 0 and t ~ 0. Let q; = Pi+l . Since a positive constant multiple on lE.2 
Pi 

extends an isometry of lHI3, an isometry type of T determines q; and t. Moreover, 
q; - t 

we have cos a; = ~. 
vl +t2 

Conversely, we can construct the above points by q; > 0 and t ~ 0. Then the 
condition for the projection of a trapezohedron is as follows: 

• The segments OS; and P;P;+l intersect, and 
• their intersection Q; is distinct from Pi+l· 
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FIGURE 3. Projection of a trapezohedron 
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FIGURE 4. Image of the projection 
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This is equivalent to the following inequalities for each i: 

1 1 
t ~ 2(qi - qi ), (1 - qiqi+l)t <qi+ qi+l· 

The latter inequality concerns degeneration. If Qi = Pi+l, the edge between Li 
and Li+1 degenerates, which corresponds to intersection of Li and Li+l in T 2 x I. 

Let 
4 

4 II 1 -1 B={(q1, ... ,Q4,t)ElR>0 xlR::,ol qi=l, t~ 2(qi-qi )}, 
i=l 

Bo= {(q1, ... ,% t) EB I (1 - qiqi+1)t <qi+ qi+1}-

Define f: B --+ JR4 by 

( q1 - t q4 - t ) 
f(q1, ... , q4, t) = v'"f+"t2' ... , v'"f+"t2 = (cosa1, ... , cosa4). 

1 + t 2 1 + t 2 

Then f is a homeomorphism onto ( -1, 1] 4. Moreover, we have f (Bo) = cos (A), 
where cos(a1, ... , a4) = (cos a1, ... , cos a4). Theorems 4.1 and 4.2 follow from this 
description. In particular, Bo=/= B implies that A=/= [O, 1r)4. 

The fact that (a, ... , a) EA for any a E [O, 1r) is elementarily shown in the left 
of Figure 5. A degeneration is shown in the right of Figure 5 . 

.. ··. 

FIGURE 5. Examples of projections 

5. HOLED CONE STRUCTURES 

We introduce holed cone structures on a 3-manifold as a generalization of cone 
structures. This enables to avoid intersection of cone loci in deformation, and 
extend the deformation space. The author is preparing a paper for a detailed 
account [20]. 

Definition 5.1. Let X be a 3-manifold, and let L be a link in X. Let B be union 
of finitely many (possibly empty) disjoint closed 3-balls in X \ ~- A (hyperbolic) 
holed cone metric on (X, ~) is a (hyperbolic) cone metric on (X \ int(B), ~) with 
smooth boundary 8B. We call each component of B a hole. 
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Definition 5.2. Let g and g' be (hyperbolic) holed cone metrics on (X, ~) respec
tively with holes B and B'. The metrics g and g' are equivalent if there are holed 
cone metrics g; with holes B; on (X, ~) for O :::; i :::; n such that go = g, 9n = g', 
and for each O :::; i :::; n - 1 either 

• there is a map f: (X, ~) --+ (X, ~) isotopic to the identity (preserving ~) 
such that the restriction of f to (X \ int(B;), ~; g;) is an isometry onto 
(X \ int(B;+1), ~;9;+1), 

• B; C B;+1, and 9i+l is the restriction of g; to X \ int(B;+1), or 
• B;+l CB;, and g; is the restriction of 9i+l to X \ int(B;). 

We call an equivalent class a {hyperbolic) holed cone structure. Let 1iC(X, ~) denote 
the set of holed cone structures on (X, ~). The deformation space 1iC(X, ~) is 
endowed with the quotient topology induced from C 00-topology of metrics. 

For a holed cone structure, the holonomy representation of 7!'1 (X\~) to Isom(lHI3 ) 

is well-defined. 
Our example can be extended to holed cone structures. We construct a holed 

cone structure on (T2 x I, L) by gluing four copies of a "holed trapezohedra" in 
the same manner as in Section 3. Here a holed trapezohedron is the complement 
of holes in a trapezohedron endowed with a hyperbolic metric such that each face 
is totally geodesic. This is isometrically immersed in JHI3 as indicated in Figure 6. 
We suppose that the holes do not intersect L;. 

The construction in Section 4 is naturally extended to holed trapezohedra (see 
Figure 7). As a result, every element in B corresponds to a holed trapezohedron. 
Hence every quadruple in [O, 27r)4 is realized as cone angles of a holed cone structure 
on (T2 xl, L). Let 1iCsym(T2 xl, L) denote the set of holed cone structures obtained 
by this construction. Then 0: 1iCsym(T2 x I,L)--+ [0,27r)4 is a homeomorphism. 

We do not know whether 1iCsym(T2 x I, L) is a component of 1iC(T x I, L). This 
question concerns local rigidity for holed cone structures. It is doubtful whether 
local rigidity holds for all the holed cone structures with cone angles at most 27!'. 
However, we may have a chance if we restrict the shape of holes. Deformation via 
holed cone structures may be effective to consider global rigidity for cone structures. 

FIGURE 6. A holed trapezohedron 

REFERENCES 

[1] C. ADAMS, A. CALDERON, AND N. MAYER, Generalized bipyramids and hyperbolic volumes 
of alternating k-uniform tiling links, Topology Appl., 271 (2020), p. 107045. 

[2] M. BOILEAU, B. LEEB, AND J. PORT!, Geometrization of 3-dimensional orbifolds, Ann. of 
Math., 162 (2005), pp. 195-290. 

[3] M. BOILEAU, S. MAILLOT, AND J. PORT!, Three-Dimensional Orbifolds and their Geometric 
Structures, vol. 15 of Panoramas et Syntheses, Soc. Math. de France, 2003. 



9

FIGURE 7. Projection of a holed trapezohedron 

[4] K. BROMBERG, Rigidity of geometrically finite hyperbolic cone-manifolds, Geom. Dedicata, 
105 (2004), pp. 143-170. 

[5] A. CHAMPANERKAR, I. KOFMAN, AND J. s. PURCELL, Geometrically and diagrammatically 
maximal knots, J. Lond. Math. Soc., 94 (2016), pp. 883-908. 

[6] D. COOPER, C. D. HODGSON, ANDS. P. KERCKHOFF, Three-dimensional Orbifolds and Cone
Manifolds, vol. 5 of MSJ Memoirs, Math. Soc. of Japan, 2000. 

[7] C. D. HODGSON ANDS. P. KERCKHOFF, Rigidity of hyperbolic cone-manifolds and hyperbolic 
Dehn surgery, J. Differential Geom., 48 (1998), pp. 1-59. 

[8] --, Universal bounds for hyperbolic dehn surgery, Ann. of Math., 162 (2005), pp. 367-421. 
[9] I. IZMESTIEV, Examples of infinitesimally flexible 3-dimensional hyperbolic cone-manifolds, 

J. Math. Soc. Japan, 63 (2011), pp. 581-598. 
[10] S. KOJIMA, Deformations of hyperbolic 3-cone-manifolds, J. Differential Geom., 49 (1998), 

pp. 469-516. 
[11] A. KOLPAKOV AND B. MARTELLI, Hyperbolic four-manifolds with one cusp, Geom. Funct. 

Anal., 23 (2013), pp. 1903-1933. 
[12] C. LECUIRE AND J.-M. SCHLENKER, The convex core of quasifuchsian manifolds with particles, 

Geom. Topol., 18 (2014), pp. 2309-2373. 
[13] R. MAZZEO AND G. MONTCOUQUIOL, Infinitesimal rigidity of cone-manifolds and the Stoker 

problem for hyperbolic and Euclidean polyhedra, J. Differential Geom., 87 (2011), pp. 525-576. 
[14] S. MOROIANU AND J.-M. SCHLENKER, Quasi-Fuchsian manifolds with particles, J. Differential 

Geom., 83 (2009), pp. 75-129. 
[15] G. D. MOSTOW, Strong rigidity of locally symmetric spaces, vol. 78 of Ann. of Math. Studies, 

Princeton University Press, 1973. 
[16] G. PRASAD, Strong rigidity of IQ-rank 1 lattices, Invent. Math., 21 (1973), pp. 255-286. 
[17] A. WEIL, On discrete subgroups of Lie groups, Ann. of Math., 72 (1960), pp. 369-384. 
[18] H. WEISS, Global rigidity of 3-dimensional cone-manifolds, J. Differential Geom., 76 (2007), 

pp. 495-523. 
[19] ---, The deformation theory of hyperbolic cone-3-manifolds with cone-angles less than 21r, 

Geom. Topol., 17 (2013), pp. 329-367. 
[20] K. YOSHIDA, Holed cone structures on 3-manifolds, in preparation. 
[21] ---, Degeneration of 3-dimensional hyperbolic cone structures with decreasing cone angles, 

preprint, arXiv:1909.06622, (2019). 

DEPARTMENT OF MATHEMATICS, SAITAMA UNIVERSITY, 255 SHIMO-OKUBO, SAKURA-KU, SAITAMA
SHI, SAITAMA 338-8570, JAPAN. 

Email address: kyoshida©mail. sai tama-u. ac. jp 


