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1 Local rigidity of discrete subgroups of Isom (IHid) 

Let JHid be the hyperbolic d-space and Isom (JHid) be the isometry group of JHid. For a discrete 
subgroup r < Isom (lH!d), we denote the set of all group homomorphisms of r to Isom (lH!d) by 
R(r), called the representation space of r. Note that we do not restrict our attention to faithful 
or discrete representations. We endow R(r) with the compact-open topology. The inclusion map 
r '---> Isom (JHid) is denoted by p0 . The isometry group Isom (JHid) acts on n(r) by conjugation. 

Definition 1.1. A discrete subgroup r < Isom (JHid) is said to be locally rigid if the orbit Isom (JHid) • 
p0 is open in the representation space n(r). 

Remark 1.1. Mostow rigidity theorem does not imply the local rigidity. The theorem states that 
the quotient of the set of all the faithful and discrete representations of a lattice r < Isom (JHid) to 
Isom (lH!d) by conjugation is the one point set for d 2 3. However, it is possible to exist representa
tions neither faithful nor discrete near the inclusion map po, We shall give such an example of r in 
Section 3. 

We call a continuous path Pt in R(r) passing through po a deformation of r. A deformation 
Pt is said to be trivial if there exists a continuous path gt E Isom (JHid) such that Pt = gtpogt1 for 
any t. The local rigidity of r is equivalent to say that any deformation of r is trivial. Roughly 
speaking, a non-trivial deformation of r corresponds to a deformation of the hyperbolic orbifold 
lH!n /r. Consider the following problem. 

Problem 1.1. Given a discrete subgroup r < Isom (JHid), when is r locally rigid? 

There are well-known results about the local rigidity of lattices in Isom (JHid). Here a discrete 
subgroup r < Isom (JHid) is called a lattice if the hyperbolic orbifold lH!d /r has finite volume. 

Theorem 1.1 ([9]). If d 2 3 and the hyperbolic orbifold lH!d /r is compact, then r is locally rigid. 

Theorem 1.2 ([2]). If d 2 4 and r is a lattice, then r is locally rigid. 

In this note, we consider the local rigidity of discrete subgroups of Isom (JHid) for d 2 4. By 
Theorem 1.2, we focus on discrete subgroups which are not lattices. 
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2 Hyperbolic Coxeter groups 

Definition 2.1. A closed subset P c lHid is called a hyperbolic d-polytope if the interior of Pin lHid is 
N 

not empty and there exists a finite family of closed half-spaces H1, ... , HN such that P = n Hi-, 
i=l 

where Hi- is the closed half-space bounded by the hyperplane Hi. We assume that such a finite 

family of closed half-spaces is minimal, that is, P <;;; n Hj- for any i. We call P c lHid a hyperbolic 
#i 

7f 
Coxeter d-polytope if dihedral angles of P are of the form - for 2 S m S oo. Moreover, if all 

m 
7f 

dihedral angles of P are 2, we call P a right-angled hyperbolic Coxeter polytope. 

For a hyperbolic Coxeter d-polytope P C lHid, we denote the subgroup of Isom (lHid) generated 
by the reflections in the bounding hyperplanes of P by I'p, called the hyperbolic Coxeter group 
associated with P. If P is right-angled, then the group r p is callled the right-angled hyperbolic 
Coxeter group. 

Theorem 2.1 ([8, Lemma 1.3. pp.199, Proposition 1.4. pp.200]). (1) If Pis a hyperbolic Coxeter d
polytope, then the subgroup r p < Isom (lHid) is discrete. (2) For any discrete subgroup r < Isom (lHid) 
generated by finitely many reflections, there exists a hyperbolic Coxeter d-polytope P such that 
r = rp. 

In this note, if a hyperbolic Coxeter polytope P has a hyperplane intersecting with all bounding 
hyperplanes of P perpendicularly (see Figure 1), the hyperbolic Coxeter group r p is said to be 
Puchsian. If I'p is Fuchsian, then I'p can be viewed as a discrete subgroup of Isom (lHid-l) by 
considering the intersection of Panda hyperplane intersecting with bounding hyperplanes of P. 

Figure 1: Schematic picture of a hyperplane intersecting with bounding hyperplanes of P perpen
dicularly 

N 

Definition 2.2. For a hyperbolic d-polytope P = n Hi-, the intersection Hin P is called a facet 
i=l 

of P. 

For two facets Fi and Fj of P, the mutual positions of the facets are divided into three cases; 
intersecting, parallel, and ultraparallel (see Figure 2). Fi and Fj are parallel (resp. ultraparallel) if 

they meet at a point at infinity (resp. do not intersect in lll[d). 

It is known that the hyperbolic Coxeter group r p has the following group presentation. 

(2.1) 
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•/ef·~ 
intersecting parallel ultra parallel 

Figure 2: Schematic pictures of the mutual positions of two facets F; and Fj 

where s; is the reflection in the hyperplane H; and m;j means that the dihedral angle between F; 

and Fj is equal to __!!____. This group presentation enable us to describe a neighborhood of po E R(r p) 
ffiij 

in terms of the outer normal vectors of the bounding hyperplanes of P. 

3 Representation spaces of hyperbolic Coxeter groups 

We recall the hyperboloid model of lllld (for details see [7]). Let JRd,l be the (d+ 1)-Lorentzian space 
with the following Lorentzian inner product. 

(x, y) := XlYl + · · · + XdYd - Xd+1Yd+l· 

A vector v E JRd,l is called a space-like, light-like, and time-like if (v, v) > 0, (v, v) = 0 ,and 
( v, v) < 0, respectively. For a nonzero vector v E JRd,l, the orthogonal complement v_1_ is said to be 
space-like, light-like, and time-like if v is time-like, light-like, and space-like, respectively. The set 
of all the time-like vectors whose the last coordinates are positive is denoted by Hd, and is called 
the hyperboloid model of lllld, that is, 

For any hyperplane H C Hd, there exists a space-like unit vector v E JRd,l such that H = Hdnv_1_. 
Note that the vector v is unique up to the sign. We call such space-like unit vectors outer normal 
vectors of a hyperplane H. Here and in the sequel we write Hv for a pair (H, v) of a hyperplane 
H and its outer normal vector v. Then, the closed half-space H;; bounded by a hyperplane Hv is 
written as follows. 

H;; = { x E Hd I (x, v) ::; 0}. 
The reflection Sv E Isom (lllld) in a hyperplane Hv is defined by sv(x) = x - 2 (x, v) v. Let dSd be 
the set of space-like unit vectors and Ref be the set of reflections. We have the following covering 
map, 

dSd --+ Ref; v r-+ Sv. 

Lemma 3.1 ([1, Lemma 2.3]). For any reflections E Jsom(lllld), there exists a neighborhood Uc 
Isom (lllld) of s such that ifs' E U and s'2 = 1, then s' is also a reflection. 

N 

Consider a hyperbolic Coxeter group r p, where P = n H;;,. For simplicity, we write H;- and 
i=l 

H; for H;;, and Hvi· By Lemma 3.1, we can find an open neighborhood U of po E R(I'p) such 
that for any p E U, the isometries p( s1), ... , p( s N) are reflections. Therefore for the study of the 
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local rigidity of hyperbolic Coxeter groups, it is sufficient to consider representations such that the 
generators are reflections. By considering the covering map dSd --+ Ref, we obtain the following 
injective continuous map <I> : U--+ (JRd+l )N defined on a sufficiently small neighborhood U of po. 

By the group presentation (2.1), a map p: { s1, ... , SN}---> RefN extends to a group homomor
phism p: fp--, Isom (lHid) if and only if (p(si)p(sj)r,, = l. Therefore we see that 

<l>(U) C { (v1, ... ,vN) E (JRd+l)N I (vi,vi) = 1, (vi,vj) = -cos ;j} · 

We give an example of a non-trivial deformation of a 3-dimensional right-angled Coxeter group 
fp. Note that if Pc lHI3 is compact, then fp is locally rigid by Theorem 1.1. Consider the regular 
ideal octahedron O satisfying the following properties (see Figure 3). 

( i) 0 is combinatorially equivalent to Euclidean regular octahedron. 

(ii) All dihedral angles of Oare 1r/2. 

( iii) All vertices of O are points on the boundary at infinity. 

Figure 3: Depicted in the projective ball model 

Definition 3.1. An edge e of hyperbolic 3-polytope is said to be contractible if the two faces 

containing e have at least four edges and the dihedral angels at the edges incident to e are i (see 

Figure 4). 

~ 
Figure 4: The four edges incident to the red edge have dihedral angles ;, so that the red edge is 
contractible. 
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Theorem 3.1 ([5, Proposition 1, 2.]). Let P be a hyperbolic 3-polytope of finite volume whose 
dihedral angles are at most ~ . 

(1) Suppose that P has a contractible edge e and the dihedral angle ate is 0o. For any O < 0 S 0o, 
there exists a hyperbolic 3-polytope Pe of finite volume satisfying the following properties: Pe and P 
are combinatorially equivalent. The dihedral angles of Pe at the edges other than e are the same as 
that of P. The dihedral angle of Pe at the edge e is 0. 

(2) Suppose that P has a contractible edge e. There exists a hyperbolic 3-polytope Po of finite 
volume satisfying the following properties {see Figure 5): Po is combinatorially equivalent to the 
3-polytope obtained by contracting the edge e of P to a vertex of valency 4- The dihedral angles of 
Po at the edges are the same as that of P. 

(3) Suppose that P has a vertex of valency 4. Then there exists O < 0 ::::; 1r /2 and a hyperbolic 3-
polytope Pe of finite volume satisfying the following properties (see Figure 5): Pe is combinatorially 
equivalent to the 3-polytope obtained by inserting an edge e into a vertex of P of valency 4. The 
dihedral angles of Pe at the edges other than e are the same as that of P. The dihedral angle of Pe 
at the edge e is 0. 

By Theorem 3.1, we obtain an deformation of Das in the Figure 5 

Figure 5: The dihedral angle at the blue edge is 0 and the other dihedral angles are 1r /2 in both 
left and right polytopes. 

The deformation of Das in the Figure 5 gives rise to a non-trivial deformation of ro as follows. 
We denote the 3-polytope in the right of Figure 5 by De. Label the faces of D by F1, ... , Fs and 
denote the outer normal vectors of F; by v;. We adopt the labels on the faces of De as same as 0 
and the outer normal vectors are denoted by v1 ( 0), ... , vs ( 0). Then 

8 

De= n H;-(0), H;-(0) = { x E H 3 I (x,v;(0)) SO}. 
i=l 

We define a map Pe: {s1, ... , ss}--+ Isom (lHI3 ) (0 S 0 S 1r/2) by 

s;(0) = x - 2 (x, v;(0)) v;(0). 

We can see that Pe defines a group homomorphism Pe E R(r o) as follows. The right-angled 
hyperbolic Coxeter group r o has the following group presentation. 

ro = (s1, · · · , sslsi = · · · = s~ = 1, (s;sj) 2 = 1 if faces F;, Fj are intersecting;. 

It is trivial that Pe preserves the relations of the form s; = 1. Since the dihedral angles at the red 
colored edges of Oe are the same as that of 0, Pe preserves the relations of the form (s;sj) 2 = 1. 
Therefore we obtain a non-trivial deformation of ro. In particular, this example tells us that 
Mostow rigidity theorem does not imply the local rigidity. 
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4 Local rigidity of hyperbolic Coxeter groups with Fuchsian ends 

By Theorem 1.2, lattices in Isom (lllld) are locally rigid for d 2 4, so that we consider the following 
problem. 

Problem 4.1. Let r < Isom (lllld) be a discrete subgroup. Suppose that d 2 4 and the hyperbolic 
orbifold lllld /r has infinite volume. When is r locally rigid? 

For the study of the geometry of lllld /r of infinite volume, the notion of the convex core is 
important. Here the convex core core (r) of r is the quotient of the convex hull of the limit set of 
r by r. 

Definition 4.1. Suppose that r is finitely generated. 

(1) r is said to be geometrically finite if core (r) has finite volume and is not compact. 

(2) r is said to be convex cocompact if core (r) is compact. 

(3) r has totally geodesic boundary if every component of the boundary of core (r) is totally 
geodesic. 

It is known that convex cocompact hyperbolic 3-manifolds are topologically the interiors of 
3-manifolds with boundary consisting of closed surfaces of genus bigger than 1. Moreover, such 
hyperbolic 3-manifolds have non-trivial deformations parametrized by the deformation of conformal 
structure on the boundary surfaces. However, we can not hope to find the same phenomenon in 
higher dimensions. 

Theorem 4.1 ([4, Theorem 1.1., p. 758.]). Let Md be a compact hyperbolic d-manifold with bound
ary. Suppose that d 2 4 and every component of the boundary of Md is totally geodesic. For any 
holonomy representation po : 11"1 ( M) ---, Isom (lllld), the discrete group po ( 11"1 ( M)) is locally rigid. 

In contrast to Theorem 4.1, there are a few examples of non-trivial deformations of geometrically 
finite discrete subgroups of Isom (llll4) having totally geodesic boundary. The first example of such a 
non-trivial deformation is due to Kerckhoff and Storm [3]. They considered a right-angled hyperbolic 
4-polytope P22 obtained by removing two disjoint facets from the regular ideal 24-cell. Here we do 
not explain what P24 is in detail, but an important property of P24 is that all facets of P24 are the 
regular ideal octahedra. Since the removed facets are disjoint, P22 has two ends each isometric to 
the regular ideal octahedron times [O, oo ). We denote the right-angled hyperbolic Coxeter group 
associated with P22 by r22- By cutting the ends of P22, we see that the convex core core (r22) is 
isometric to P24. In core (r22), we view the removed two facets as totally geodesic boundary. Then, 
Kerckhoff and Storm constructed a non-trivial deformation of r22 by deforming the two boundary 
regular ideal octahedra (see Figure 6). 

Conjecture 4.1 ([4, Conjecture 6.2., p. 782]). Let Md be a hyperbolic d-manifold of finite volume 
with boundary. Suppose that d 2 5 and every component of the boundary of Md is totally geodesic. 
For any holonomy representation po : 11"1 ( M) ---, Isom (lllld), the discrete group po ( 11"1 ( M)) is locally 
rigid. 

In general, it is not easy to construct explicitly the hyperbolic manifolds satisfying the given 
conditions. Concerning the Conjecture 4.1, the coloring technique due to Kolpakov and Slavich is 
a way to construct hyperbolic manifolds of finite volume with geodesic boundary from right-angled 
hyperbolic polytopes(see [6] for details). 
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P0 

Figure 6: Deformation of the boundary regular ideal octahedron 

Let P be a right-angled hyperbolic d-polytope. Suppose that facets F1, ... , Fk of Pare mutually 
disjoint. Then, the polytope P' obtained from P by removing the facets F1, ... , Fk has k ends each 
isometric to F; x [0, oo ), and hence the group r P' is geometrically finite and has totally geodesic 
boundary. 

Definition 4.2. [1]. Let P be a right-angled hyperbolic d-polytope. The right-angled hyperbolic 
Coxeter group r p has Fuchsian end ifthere exists finitely many hyperplanes H1, ... , Hk such that 

k 

the polytope P = P n n H;- is right-angled hyperbolic d-polytope of finite volume and the facets 
i=l 

F1 = H1 n P, ... , Fk = Hk n P are mutually disjoint. 

By applying the coloring technique to right-angled Coxeter groups with Fuchsian ends, we can 
construct various hyperbolic manifolds satisfying the conditions in the Conjecture 4.1. The following 
is a first example of locally rigid 5-dimensional right-angled Coxeter groups with Fuchsian ends. 

Theorem 4.2 ([10]). There exists a right-angled hyperbolic 5-polytope of finite volume such that for 
any family Fi, ... , Fk of mutually disjoint facets, the right-angled Coxeter group I'p, with Fuchsian 
ends associated with the polytope P' obtained by removing the facets F1, ... , Fk from P is locally 
rigid. 
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