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A QUICK TOUR TO THE DISTANCE ON TEICHMULLER 
SPACE VIA RENORMALIZED VOLUME 

HIDETOSHI MASAI 

ABSTRACT. We give a quick introduction to a distance on the Teichmiiller 
space defined via the notion of renormalized volume. The definitions and 
properties are summarised without proofs. 

1. INTRODUCTION 

The purpose of this note is to give a quick summery of results in [Masa] which is 
about a distance and compactification of the Teichmiiller space via the renormalized 
volume. 

There have been many attempts to relate the hyperbolic volume of 3-manifolds 
with quantities which appear in Teichmiiller theory. In this note, we discuss closed 
orientable surface S of genus 2':: 2. One way to associate hyperbolic 3-manifolds via 
T(S) is to consider quasi-Fuchsian manifolds. By the Bers simultaneous uniformiza
tion [Ber70], the space of quasi-Fuchsian manifolds is parametrized by the product 
T(S) x T(S). Let qf(X, Y) denote the quasi-Fuchsian manifold parametrized by 
X, Y E T(S). Although quasi-Fuchsian manifolds are of infinite hyperbolic vol
umes, there are several natural ways to extract finite "volumes" of them. One 
standard and classical object is the volume of convex core, which we call the con
vex core volume of qf(X, Y) and denote it by Vc(X, Y). Another natural notion is 
so-called the renormalized volume which is extensively studied by several authors 
[BBB19, BBB2, BBP, BCl 7, KM18, KS08, Sch13, Sch19]. Let VR(X, Y) denote the 
renormalized volume of qf(X, Y). In [Masa], we define a distance dR on T(S) via 
the renormalized volume, and demonstrate that the distance dR is natural to the 
volume of hyperbolic 3-manifolds. 

Let us first summarise known results about distances on T(S) and volume of 
hyperbolic 3-manifolds. Brock [Bro03] has shown that the Weil-Petersson distance 
dwp(X, Y) on T(S) is coarsely equal to the convex core volume Vc(X, Y). By 
[BCl 7], Vc(X, Y) differs from VR(X, Y) by a finite amount, Brock's work shows 
the coarse correspondence between dwp(X, Y) and VR(X, Y) as well. The error 
constants in Brock's result are not explicit, but by using the work of Krasnov
Schlenker[KS08], Kojima-McShane [KM18] showed 

VR(X, Y) ::=:: 31rlx(S)ldr(X, Y) 

where x(S) is the Euler characteristics of S. Notice that opposite inequality is 
impossible as by any Dehn twist T, dr(X, Tn(X)) ---+ oo whereas VR(X, Tn X) is 
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bounded as n ➔ oo. The works of Brock and Kojima-McShane extend to the hy
perbolic volume of mapping tori M ( 'ljJ) of pseudo-Anosov mapping class 'lj;. Namely 
by replacing VR(X, Y) with vol(M('lj;)) and distances with translation distances of 
'lj;, we get the same estimates. 

In [Masa], we introduced a new distance, denoted dR via the renormalized vol
ume. One important feature of dR is the following. 

Theorem 1.1. Let 'ljJ E MCG(S) be a pseudo-Anosov mapping class and M('lj;) = 
S x J/(x,1) ~ ('lj;(x),0) denote the mapping torus of'lj;. Then the translation 
distance of 'lj; with respect to dR is equal to the hyperbolic volume of M('lj;), that is, 
for any XE T(S), we have 

lim "l_dR(X, 'lj;n X) = vol(M('lj;)). 
n--+oo n 

In this note, we give a quick overview of [Masa] about dR. We do not give proofs 
and refer [Masa] for the details. 

Acknowledgement. The work of the author is partially supported by JSPS KAK
ENHI Grant Number 19K14525. 

2. RENORMALIZED VOLUME, DISTANCE AND COMPACTIFICATION 

The idea of the renormalized volume comes from Graham-Witten [GW99] and 
it is studied by several authors for hyperbolic 3-manifolds (see e.g. [BBB19, BBB2, 
BBP, BCl 7, KM18, KS08, Sch 13, Sch19]). 

For X, Y E T(S), let QD(X) denote the space of quadratic differentials on 
X, and qy(X) E QD(X) denote the mapping defined via Bers embedding with 
base point X. We further let QD(S) = UxEQD(X) denote the space of quadratic 
differentials on S which is a bundle over T(S). Notice the notation qy(X) is not 
standard for the Bers embedding. For the discussion in this note, we would like to 
regard qy as the function determined by Y. It is known by Nehari's inequality that 
qy(X) is contained in a closed metric ball QDB(X) with respect to L 00-norm. 

In this note, we adopt the following variation formula as the definition of VR. 

Theorem 2.1 ([KM18, Lemma 2.4], [Sch19, Corollary 3.13]). For any YE T(S), 
VR(·, Y) is differentiable on T(S). If CJ : [-1, 1] ➔ T(S) is a differentiable path, 

dd I VR(dt), Y) = -Re(qy(CJ(0)), a(0)). 
t t=O 

Now we define the space LQ(S) which is the space of sections of a bundle over 
T(S). 

Definition 2.2. Let C := 3J1r(g - 1). Then we define 

LQ(S) := IT {[-Cdwp(b,X),Cdwp(b,X)] X QDB(X)}, 
XET(S) 

(LQ stands for .Lipschitz and Quadratic differential). Furthermore by the notation 
(,;, q) E LQ(S), we mean a pcint given by ( : T(S) ➔ ~ and q : T(S) ➔ QD(S), 
where ,;(X) E [-dwp(b,X),dwp(b,X)] and q(X) E QDB(X). We equip LQ(S) with 
the topology of point-wise convergence, or equivalently the product topology. 

It turns out that LQ(S) is a "nice" space. 
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Proposition 2.3 ([Masa, Proposition 5.4]). The space LQ(S) is a compact, Haus
dorff, and second countable {hence metrizable) space. 

In [Masa], we constructed a compactification of T(S) by embedding it in LQ(S). 

2.1. Lipschitz property of the renormarized volume. In [Sch19] and [KM18], 
Schlenker and Kojima-McShane proved that there are explicit upper bounds of the 
renormalized volume VR in terms of the WP metric and the Teichmiiller distance. 

Theorem 2.4 ([Sch19, Theorem 5.4],[KM18]). Let X, YE T(S). Then we have 

(1) VR(X, Y) :-S: 3J7r(g - l)dwp(X, Y), and 
(2) VR(X, Y) :-s: 37rlx(S)ldr(X, Y). 

The proof of Theorem 2.4 is reduced to the following. 

Lemma 2.5 ([Sch13, Proof of Theorem 1.2], [KM18, Proof of Theorem 1.4]). Let 
Y E T(S) and CJ : [O, T] ➔ T(S) be a differentiable path. 

(1) If CJ is a geodesic with respect to the Teichmuller metric, then 

I! VR(CJ(t), Y)I :-s: 37rlx(S)l-

(2) If CJ is a geodesic with respect to the WP metric, then 

I :t VR(CJ(t), Y)I :-S: 3J7r(g - 1). 

Theorem 2.4 is obtained by integrating quantities in Lemma 2.5 along corre
sponding geodesic segments. 

Imitating horofunctions defined with distances, we define a function on T(S) via 
the renormalized volume as follows. Let us fix a base point b E T(S). 

Definition 2.6. Let Z E T(S). We define vz: T(S) ➔ JR by 

vz(X) := VR(X, Z) - VR(b, Z) 

for XE T(S). We call Vz a volume horofunction. 

The variation formula of VR (Theorem 2.1) gives the following integral expression 
of vz: 

Proposition 2.7 ([Masa, Proposition 6.4]). Let X,Z E T(S) and let CJ: [O,T] ➔ 
T(S) be a piecewise differentiable path connecting X and b. Then 

vz(X) := 1T -Re(qz(u(t)), a(t))dt. 

By Proposition 2.7, we see that the function Vz is a Lipschitz map: 

Proposition 2.8 ([Masa, Proposition 6.5]). The function vz : T(S) ➔ JR is a 
Lipschitz map with respect to both the Teichmuller metric and the WP metric, i.e. 

(1) lvz(X) - vz(Y)I :-S: 3J7r(g - l)dwp(X, Y), and 
(2) lvz(X) - vz(Y)I :-S: 37rlx(S)ldr(X, Y). 

Thus we see that Vz is a Lipchitz function and vanishes at the base point b. From 
now on we consider the WP metric on T(S) and Lipchitz functions with respect to 
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the WP metric. Let Lipf T(S) denote the space of C-Lipchitz functions on T(S) 
for C = 3J1r(g - 1) which vanishes at b. We have a map 

V' : T(S) ---+ Lipf T(S) 

defined by V'(Z) := vz. 

Proposition 2.9 ([Masa, Proposition 6.6]). The map V' : T(S) ---+ Lipf T(S) is 
injective and continuous. 

Recall that for C = 3J1r(g - 1), 

Lipf T(S) C IT [-C · dwp(b, X), C · dwp(b, X)], 
xET(S) 

and qx(Y) E QD8 (Y) (Bers embedding). We are ready to define a function which 
gives our compactification. 

Definition 2.10. We define a map 

V : T(S) ---+ LQ(S) 

by V(Z) = (vz(X), qz(X))xET(S)· 

The map V is an embedding: 

Proposition 2.11 ([Masa, Proposition 6.9]). The map V : T(S) ---+ LQ(S) is a 
homeomorphism onto its image. 

By Proposition 2.11 and 2.3, the closure V(T(S)) is compact. 
--vh 

Definition 2.12. We denote the closure by T(S) := V(T(S)) (yolume and horo) 
and the boundary by 8vhT(S) := V(T(S)) \ V(T(S)). 

--vh 
The construction of T(S) is compatible with the action of the mapping class 

group MCG(S) on T(S). 

Proposition 2.13 ([Masa, Proposition 6.11]). The action of MCG(S) on T(S) 
--vh 

extends to a continuous action by homeomorphisms on T(S) by 

(2.1) '¢ · v(X) := v('¢- 1X) - v('¢- 1b) for each XE T(S) 

'¢·q:='¢*q 

and '¢(v,q) = ('¢ • v,'¢ • q). 

2.2. Volume of mapping tori. A mapping class '¢ E MCG(S) is called pseudo
Anosov if'¢ has exactly two fixed points F+('¢),F-('¢) E PMF(S) which we 
may characterize as limn--+oo'IPn(X) = F+('¢) and limn--+-oo'IPn(X) = F_('¢) for 
any X E T(S) in the Thurston compactification. Thurston has shown that the 
mapping torus 

M('¢) := S x [0, 1]/(('¢(x), 0) ~ (x, 1)) 
admits a complete hyperbolic metric of finite volume. Let vol(M('¢)) denote the 
hyperbolic volume of M('¢). The following proposition follows from [BB16,KM18, 
Sch13]. 

Proposition 2.14 (c.f. [Masa, Proposition 6.18]). Let'¢ E MCG(S) be pseudo
Anosov. Then 

1 
lim -VR(b,'¢-nb) = vol(M('¢)). 

n--+oo n 
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3. A DISTANCE ON 1(8) VIA RENORMALIZED VOLUME 

3.1. Renormalized volume function VR is not a distance. The renormalized 
volume of quasi-Fuchsian manifolds defines a function 

VR : T(S) X T(S) ---+ R 

with the properties: 

• VR(X, Y) ?: 0 and VR(X, Y) = 0 if and only if X = Y ([BBB19,BBP]), and 
• VR(X, Y) = VR(Y, X) (by definition of quasi-Fuchsian manifolds). 

Therefore it is natural to ask if VR defines a distance on T(S) (see e.g. [DHM15, 
Problem 5.7(Agol)]). 

In [Masa], we showed that the triangle inequality is not valid. 

Theorem 3.1 ([Masa, Theorem 7.2]). The function VR : T(S) x T(S) ---+ JR does 
NOT satisfy the triangle inequality. 

3.2. A distance via the renormalized volume. We now define a distance on 
T(S). 

Definition 3.2. Given X, Y E T(S) , let 

dR(X, Y) := sup v(X) - v(Y), 
(v,q) 

--vh 
where the supremum is taken over (v, q) E T(S) . 

--vh 
Remark 3.3. We remark that as T(S) is compact the supremum is actually 

--vh 
attained by some (v, q) E T(S) . Hence for any piecewise differentiable path 
a: [O, T]---+ T(S) connecting X and Y, we have 

(3.1) dR(X, Y) = for -Re(q(a(t)), &(t))dt, 

--vh 
for some (v, q) E T(S) . Note also that if one takes the supremum over T(S) (not 
--vh --vh 
T(S) ), one still gets the same distance as T(S) c T(S) is open dense. 

It is also worth mentioning that if one considers the horofunctions with respect 
to a distance, say d, then the distance defined similarly to the one in Definition 3.2 
recovers the original distance d by the triangle inequality. Due to the lack of the 
triangle inequality for VR, the function dR differs from VR. 

The following properties of dR is easy consequences of above discussions, see 
[Masa] for details. 

Theorem 3.4 ([Masa, Theorem 7.5]). We have the following estimates of dR in 
terms of dwp, dr, and VR. 

(1) dR(X, Y) :S 3yf~7r(~g--~l)dwµ(X, Y), 
(2) dR(X, Y) ::=:: 3Jrlx(S)ldr(X, Y), 
(3) VR(X, Y) :S dR(X, Y). 

Theorem 3.5 ([Masa, Theorem 7.6]). The function dR: T(S) x T(S) ---+ JR gives 
a (possibly asymmetric) distance, that is: for any X, Y, Z E T(S), we have 

(1) dR(X, Y)?: 0 and dR(X, Y) = 0 -{==} X = Y. 
(2) dR(X, Y) :S dR(X, Z) + dR(Z, Y). 
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As an immediate corollary of the work of Brock [Bro03], we have: 

Theorem 3.6 ([Masa, Theorem 7.9]). The distance dR is quasi isometric to the 
WP distance dwp· More precisely, there exists constants L ?: 1 and K ?: 0 which 
depends only on S such that 

1 
Ldwp(X, Y) - Ks dR(X, Y) s 3J1r(g - l)dwp(X, Y). 

Let us re-state the main theorem. 

Theorem 3.7. Let 'I/; E MCG(S) be a pseudo-Anosov mapping class and M('l/;) the 
mapping torus of 'I/;. Then the translation length Tv ('I/;) of 'I/; with respect to dR is 
equal to the hyperbolic volume of the mapping torus M('I/;), i.e. for any XE T(S), 

Tv('l/J) := lim dR(X,r(X)) = vol(M('I/;)). 
k--+oo 

In the proof, we utilize some ergodic theory, which is inspired by Karlsson
Ledrappier [KL06, Proof of Theorem 1.1], see [Masa, Theorem 7.10] for the proofs. 
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