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NUMBER THEORY OF BI CUSPIDAL GEODESICS 

GREG MCSHANE 

ABSTRACT. We discuss the relationship between Penner's .>--lengths, with both Fermat's 
theorem on representation of a prime as the sum of squares and the Markoff spectrum. 
The text follows pretty closely the two talks I gave in June 2021 for the online meeting. 
We have included an informal discussion of some work on sums of squares which was 
suggested by questions raised at the meeting. 

1. INTRODUCTION 

The Farey tessalation is a fundamental object in the theory of Fuchsian groups. It is a 
tessalation of hyperbolic space by ideal triangles. 

4/ 1 

5~ 1 /4 

1/o ~~===-------------------==~~ 01i 

FIGURE 1. Farey diagram. 

The tessalation is invariant under the action of the modular group r = PSL(2, Z). This 
group has a pair of (torsion free) normal subgroups of index 6 namely: 

• the principal congruence subgroup f(2) 
• the derived subgroup r' = [r, r]. 

This work was partially funded by the Equipe Action ToFu part of Persyval-Lab. 
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The quotient of the upper half space by the modular group is the modular orbifold which 
has a single cusp and two cone points. The modular orbifold admits two degree 6 covers 
corresponding to the normal subgroups above 

• the three punctured sphere ll-lI/f(2) 
• the once punctured modular torus ll-lI/r'. 

Both of these surfaces are non compact but have finite hyperbolic area equal to 21r. The 
non compactness is due to the presence of cusps - ll-lI/f(2) has exactly 3 cusps and ll-lI/f' 
has just one. These surfaces have many interesting geometric properties well documented 
in the literature but in this text we will be concerned principally with their relation to 
problems in number theory. The first of these is Fermat's theorem on primes which are the 
sums of two squares and the second is Frobenius' unicity conjecture for Markoff numbers. 
In each case we will see that the question can be stated in terms of lengths of bi cuspidal 
geodesics on one of these surfaces. The geodesic edges of the Farey tessalation yield a set 
of three such geodesic, in fact the shortest bi cuspidal geodesics, on the quotient surfaces. 
The geodesics obtained from projecting the Farey tessalation are simple, that is they have 
no self intersections, and their complement consists of a pair of ideal triangles. Of course, 
a bi cuspidal geodesic a has infinite length with respect to the Poincare metric but one 
can define a useful geometric quantity by truncating the geodesic ie removing a portion 
of infinite length which is inside the cusp regions of the surface. This idea of associating 
a finite length to an arc, that is a simple bi cuspidal geodesic, (paragraph 2.1) appears in 
Penner's work on moduli [15]. He defined the >.-length of simple bi cuspidal geodesic on a 
punctured surface to be the exponential of the length of the portion outside of some fixed 
system of cusp regions. Lemma 2.3 shows that in the context we consider a >. length is 
always the square of the determinant of an integer matrix. 

In the following text we show how considerations of >.- length lead to proofs of: 

• Fermats's theorem on which primes are the sum of two squares 
• A result of Baragar-Button-Zhang on the uniqueness of certain Markoff numbers. 

The connections between continued fractions and hyperbolic geodesics on the modular 
surface have been known since Hedlund, Hopf and others began investigating the geodesic 
flow of hyperbolic surfaces. 

1. 1. Sums of squares. The following pair ofresults are the basis of many undergraduate 
courses on elementary number theory: 

Theorem 1. 1. Let p be a prime then the equation 

x2 = -1 

admits a solution in lFP iff p = 2 or p - 1 is a multiple of 4. 

Theorem 1.2 (Fermat). Let p be a prime then the equation 

x2+y2=p 

has a solution in integers iff p = 2 or p - 1 is a multiple of 4. 

They are intimately linked. The first is an immediate corollary of the second but it 
is also possible to deduce the second as a corollary of the first, for example, by using 
unique factorisation in the Gaussian integers. In an article with Vlad Sergesciu [13] we 
present a unified geometric approach to these results using the theory of group actions 
and in particular an application of Burnsides's Lemma. As with Zagier's remarkable proof 
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[20] (see also [10, 16, 2, 6] for closely related constructions and discussion) both follow 
from showing that a certain involution has a fixed point. Amusingly Burnsides's Lemma 
reduces this to showing that another involution has exactly two fixed points: 

• In the proof of Theorem 1.1 this is a consequence of the fact that a quadratic 
equation over a field has at most two solutions. 

• In the proof of Theorem 1.2 this follows from some geometry and the fact that 

(1) e;l k;l)=2p=/=2. 

We will see later that this determinant can be interpreted as (essenially) the length of a 
bi cuspidal geodesic on the three punctured sphere lHI/f(2). 

For each integer n, the automorphisms of lHI/f(2) act on the set of bi cuspidal geodesic 
on this surface of >. length n. In [13] we show (Lemma 5.2) that if p is congruent to 1 
modulo 4 there is a certain orientation preserving involution which leaves one of these 
geodesics invariant and from this we deduce Theorem 1.2. 

1.1.1. Heath-Brown's proof. In 1984 Heath-Brown published a proof of Theorem 1.2 ap­
parently in the journal of the Oxford University undergraduate mathematics society. His 
proof arose from a study of the account of Liouville's papers on identities for parity func­
tions. Zagier's celebrated one line proof [20] is a clever reformulation of this argument. 
Heath-Brown studies the action of a Klein four group on a finite set and considerations 
of parity. To define his set Heath-Brown introduces an auxiliary equation namely 

p = 4xy + z2 

whereas in our proof the sum of squares decomposition arises directly as the result of 
a geometric construction. As such, the motivation for our work is to show that the 
finite sets involved in the proof can be chosen to be both natural and have a geometric 
interpretation. For example, in Section 2 we give a proof of Theorem 1.1 using a group 
generated by 

X f-+ -X 

x c-+ l/x 
and in the proof of Theorem 1.2 our group is conjugate to a group generated by 

z c-+ -z 
z c-+ l/z . 

Although we use the Burnside lemma in [13] it is not essential to our argument and that 
one can achieve the same reduction by considering the signature of the permutations 
associated to the involutions we consider. This approach is closer to the parity arguments 
in Heath-Brown [10]. 

1.2. Markoff numbers. A Markoff triple is a solution (X, Y, Z) in positive integers to 
the Markoff cubic 

(2) x 2 + y2 + z2 - 3XY z = o. 
A Markoff number is an integer in a Markoff triple. It is classical that one can associate a 
tree, the Markoff tree (see Figure 2) to the set of all Markoff triples - the set of vertices is 
just the set of triples and two triples are joined by an edge iff they share a pair of Markoff 
number. 
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FIGURE 2. Markoff tree. 

H. Cohn initiated an approach which culminated in a correspondence (see [8, 9]) between 
Markoff numbers and the lengths of simple closed geodesics on the modular torus IHI/r', 
where f' < PSL(2, Z) is the commutator subgroup. More precisely, if I is such a geodesic 
then: 

(3) X=-cosh -2 (£') 
3 2 ' 

is a Markoff number where £1 is the length of 1 . Conversely, every Ylarkoff number arises 
as the length of such a geodesic. 

Less well known is that there is a connection between .A-lengths and Markoff numbers 
showing that every such number is the sum of two squares without applying Theorem 1.2. 
By using calculations in Wolpert [19] (for background on the various coordinate systems 
he introduced see also [11]) one can show that, for a suitable choice of cusp region on the 
modular torus the A-lengths of arcs coincide with the squares of Markoff numbers. We 
give a proof of the following result which is implicit in [19]: 

Theorem 1.3. For each Markoff triple (X, Y, Z) there is a (unique) ideal triangulation 
of the modular torus such that the .X-lengths of the arcs are X 2 , Y2 , Z 2 . 

Then, using the fact that each arc is invariant under the elliptic involution of the torus 
one can show, using Lemma 2.1, that every Markoff number is the sum of two squares. In 
fact this was the observation that was the starting point for this work. We then proceed 
to show in Theorem 6.4 the uniqueness for Markoff numbers satisfying certain arithmetic 
conditions following Baragar and Button (see also [14, 21, 22] for alternative approaches.) 

1.3. Thanks. The first author thanks Louis Funar, Hidetoshi Masai and Vlad Sergesiu 
for many useful conversations over the years concerning this subject. He would also like 
to thank Xu Binbin for reading early drafts of the manuscript. 
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He would also like to thank the organisers of the conference and appreciates their work 
during the emergency situation. 

2. RECIPROCALS OF SUMS OF SQUARES AND ARCS 

This group of integer matrices SL(2, Z) acts on IHI by linear fractional transformations 
that is: 

( ~ ~) E SL(2, Z), z E IHI, ( ~ ~) .z = :: : !-
The key lemma that relates this SL(2, Z) action to sums of squares is: 

Lemma 2.1. Let n be a positive integer. The number of ways of writing n as a sum of 
squares 

n=c2 +d2 

with c, d coprime positive integers is equal to the number of integers O < k < n - 1 
coprime to n such that the line 

{k/n+it, t > O} 
contains a point in the SL(2, Z) orbit of i. 

Proof. Suppose there is such a point which we denote w. The point w is a fixed point 
of some element of order 2 in SL(2, Z). Since the Ford circles are SL(2, Z) invariant this 
element must permute F with the Ford circle tangent to the real line at the real part of 
w. So, in particular, w is the midpoint of the line that it lies on and by Lemma 2.3 one 
has: 

1 1 . ai + b Imi 
- = Im-(k+i) = Im-.-d = ~d2 • 
n n cz+ c + 

Conversely if c, d are coprime integers then there exists a, b such that 

ad- be= 1 ⇒ (~ ~) E SL(2,Z). 

By applying a suitable iterate of the parabolic transformation z r-+ z + 1, one can choose 
w such that O :=::; Rew < 1. So if n = c2 + d2 then ~I!~ is on one of the lines of the family 
in the statement. 

□ 
2.1. Ford circles, lengths, midpoints. Lemma 2.1 illustrates the connexion between 
sums of squares, the orbit SL(2, Z).i and Poincare geodesics. We now recall some standard 
ideas from hyperbolic geometry which in particular will allow us to give an intuitive 
definition of our set X in the next section. We define an arc to be a Poincare geodesic 
with endpoints in 8IHI a pair of extended rationals, that is elements of IQ U oo. 

We denote by F the set { z, Im z > 1} this is a homball in IHI centered at oo. The image 
of Funder the SL(2, Z) action consists of F and infinitely many disjoint discs, which we 
will refer to as Ford circles, each tangent to the real line at some rational m/n. We adopt 
the convention that F is also a Ford circle of infinite radius tangent to the extended real 
line at oo = 1/0. 

The following is well known and is easily checked: 

Lemma 2.2 .. 

(1) The Ford circle tangent to the real line at m/n has Euclidean diameter 1/n2 . 
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FIGURE 3. Ford circles with tangent points and curvatures. Recall that the 
curvature of a euclidean circle is the reciprocal of the square of its radius. 

(2) The closures of a pair of distinct Ford circles are either disjoint or meet in a point 
of the SL(2, .Z)-orbit of i. 

Let a/c, b/d be a pair of distinct rationals. We define the length of the arc joining these 
rationals to be the length, with respect to the Poinacre metric on lHI, of the portion of 
this arc outside of the Ford circles tangent at a/c, b/d . Further we define its mid point 
to be the midpoint of this sub arc. 

Following Penner [15] we define the >.-length of the arc to be the exponential of this 
length. It is a consequence of Lemma 2.3 below that the arcs of >.-length 1 are the edges 
in the so-called Farey diagram (see Figure 1). The lemma is a simple exercise left to the 
reader: 

Lemma 2.3. Let a/c, b/d be a pair of distinct extended rationals. Then the >.-length of 
the arc joining them is the square of the determinant of the matrix 

Further if a/b = l/0 then the arc is a vertical line whose midpoint has imaginary part 
equal to 1/d . 

2.2. Continued fractions. Though we will not use we feel that we must mention the 
work of Caroline Series [18] which studies the combinatorics of hyperbolic geodesics 1 
starting at the point i E lHI and with an end point on the real line ,+. She relates 
the cutting sequence for I to the continued fraction expansion of ,. In particular she 
introduces the idea of pivot sequence for a geodesic. As the geodesic , crosses the Farey 
triangulation then it separates each triangle in its path into two components one of which 
has a single spike the other has two. The pivot sequence is a sequence of integers which 
count the number of consecutive single spike components on the left and on the right 
of ,. If ,+ is rational then there is an ambiguity because the final trangle of the Farey 
tessalation is cut into two components which each have a single spike but this is doesn't 
pose any serious problems in practice. 

3. THE THREE PUNCTURED SPHERE 

We consider f(2), the principal level 2 congruence subgroup of SL(2, .Z). This group 
acts on .Z2 , that is pairs of integers, preserving parity. 
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It also acts on lHI by linear fractional transformations that is: 

G ~) E S1(2, Z), z E lHI, ( ~ ~) .z = ;: : !-
The quotient JHI/r(2) is conformally equivalent to the Riemann sphere minus three points 
which we will refer to as cusps (see Figure 5). Following convention we label these cusps 
0, 1, oo respectively corresponding to the three r(2) orbits of Q U oo. Finally, the standard 
fundamental domain for r(2) is the convex hull of the points oo, -1, 0, 1. This region can 
be decomposed into two ideal triangles oo, -1, 0 and 0, 1, oo as in Figure 4. The edges of 
the ideal triangles project to three disjoint simple geodesics on JHI/r(2) and each edge has 
a midpoint which is a point of the S1(2, Z) orbit of i (see Figure 5). 

3.0.1. Cusp regions. The image of a Ford circle on JHI/r(2) is a cusp region around one of 
the three cusps 0, 1, oo. Pairs of these cusp regions are tangent at one of the midpoints 
labelled i, 1 + i, ½ (1 + i). It is not difficult to see that these cusp regions are permuted by 
the automorphisms of JHI/r(2). It follows that if an automorphism preserves a geodesic 
joining cusps on JHI/r(2) then it must permute the Ford regions at each end of a lift to lHI. 

3.1. Automorphism groups of JHI/f(2). From covering theory an isometry of lHI induces 
an automorphism of lHI/f(2) iff it normalises the covering group i.e. f(2). It follows that, 
since f(2) is a normal subgroup of S1(2, Z), the quotient group 

H+ := S1(2, Z) /f(2) 

acts as a group of (orientation preserving) automorphisms of the surface lHI/f(2). More 
generally, f(2) is normal in GL(2, Z) and 

H := GL(2,Z)/f(2) 

acts as a group of possibly orientation reversing automorphisms of the surface lHI/f(2). 

00 

1 - i l+ i 

-1 0 1 
FIGURE 4. Standard fundamental domain for f(2) and its decomposition 
into ideal triangles. 
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3.2. Orientation reversing automorphisms. To prove Theorem 1.2 we will have to 
work with automorphisms that do not preserve the orientation and in particular those 
induced by the involutions: 

U: z H -z 
V: z H 1 - z. 

Both U and V normalise f(2) so induce automorphisms of IHI/f(2). In fact, since Vis the 
composition of U and z Hz+ l, it suffices to show that U normalises f(2). This is easy 
to check, for if a, b, c, d E Zand f(z) = (az + b)/(cz + d) then one has: 

--_- az-b 
U Of O U-1(z) = -f(-z) = -f(-z) = --, 

-cz+d 

so conjugation does not change the parity of a, b, c, d and it follows that U normalises 
r(2). 

3.3. Klein four group of automorphisms. The pair of involution U, V generate a 
group of isometries of IHI, which we denote by k 00 , isomorphic to the infinite dihedral 
group D00 infinite dihedral group. One checks that 

U o V(z) =Vo U(z) = z + l 
and we note that 

z + l (1 1) 
z + l = O + 1 = 0 1 .z, 

0 

1., 

-- - -- - - - - - - ------- - _--_-_--_--_·..:..-·=-=·..e.=--=-=...._ 

00 
l+i 

1 
FIGURE 5. Three punctured sphere with cusps and midpoints labelled. The 
dotted loop is the fixed point set of the automorphism induced by V'. 
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so the composition is not covered by an element of f(2) though its square is. One sees 
from this that U, V induce a group of automorphisms of IHI/f(2) isomorphic to a Klein 
four group. 

Consider the subgroup K 00 of automorphisms that preserve the puncture oo. If g E K 00 

• preserves both 0 and 1 then it is induced by U 
• permutes 0 and 1 then it is induced by either V or U o V 

Thus we have proved: 

Lemma 3.1. The group of automorphisms that preserves a cusp on the three punctured 
sphere is a Klein four group. 

3.4. Fixed point sets. Recall that k 00 , the group generated by U, V, it is isomorphic 
to the dihedral group D 00 • Consider the fixed point sets of the elements 

• U fixes the vertical line { it, t > 0} 
• V fixes the vertical line {½+it, t > 0} 
• U o V is a translation and has no fixed points in IHI as such. 

From this we may deduce that the automorphisms of IHI/f(2) induced by U and Veach 
fix a pair of lines on the surface. The fixed point set of V projects to a geodesic on 
IHI/f(2) ( depicted as a dotted loop in Figure 5) separating the surface into two pieces 
which arc permuted by the corresponding automorphism, so the fixed point set is exactly 
this geodesic. For U the fixed point set of the induced automorphism is strictly bigger as 
it will also fix the images on the surface of {1 + it, t E ffi.} and the semi circle joining Oto 
1. This is because 

U(l +it)= -1 +it= f(l + it), 
where f : z c-+ z - 2 is induced by an element of f(2). 

Lemma 3.2. The fixed point set of the automorphism induced by U o V is exactly the 
intersection of the fixed point sets of the automorphisms induced by U and V. This is a 
single point namely the image of ½(1 + i) on IHI/f(2) 

Proof. The standard fundamental domain for the action of f(2) is the convex hull of 
oo, -1, 0, 1. This can be decomposed into two ideal triangles ( as in Figure 4) with vertices 
oo, -1, 0 and 0, 1, oo respectively. The map U o V takes the first of these onto the second 
which means that if the induced automorphism has fixed points then they can only arise 
from points on the semi circle joining Oto 1. Now 

Uov(~(-l+i)) =~(l+i)=t(~(-l+i)), 

where f (z) = 2z:1 which is clearly induced by an element of f(2). 
□ 

4. ACTION ON A FAMILY OF ARCS 

Let K 0 denote the subgroup of automorphisms that preserves the cusp labelled 0 on 
IHI/f(2). This group is generated by automorphisms induced by the maps 

U': z c-+ 2 - z, V': z c-+ z/(z - l) 

so that their composition is 

U' o V': z c-+ z c-+ (-z + 2)/(z + 1) 
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whose fixed point is i + 1. 
Now K 0 permutes the cusps labelled oo and 1 on IHI/f(2). and further will obviously 

permute the geodesics joining them. If 'Y is such a geodesic then any lift i' C IHI is an arc 
joining a point in the f(2) orbit of oo to another in the f(2) orbit of 1 and so 'Y has a 
well defined ,\ length. So for any integer n K 0 permutes the set of geodesics joining the 
cusps labelled oo and 1 on IHI/f(2) of >.-length n2 . This will be our set X. 

4.1. Canonical lifts. Let n be an integer and N' the set of integers coprime with n. 
Consider the family of geodesics of IHI. 

{k/pn + it, t > 0}, k EN'. 

The image of this family on the quotient surface IHI/f(2) consists of 2¢(n) geodesics and, 
since f(2) preserves parity, these split into two sub families namely: 

• those joining the cusps labelled oo and 1 that is belonging our set X 
• those joining the cusps labelled oo and 0. 

The first of these sub families consists of projections of the lines 

X := {k/n + it, t > 0}, k EN', k odd. 

Obviously one has: 

Lemma 4.1. Let p be a prime then the set X consists of p - l elements. 

5. SKETCH OF PROOF OF FERMAT'S THEOREM 

We discuss the idea of the proof in [13] without going into the details. Throughout this 
section the integer n is a prime which we denote p. We can deduce Theorem 1.2 from: 

Lemma 5.1. Let p be a prime congruent to 1 or 2 modulo 4. Then there is always a 
geodesic in the family X that has as its midpoint a point in the 81(2, Z) orbit of i. 

This is equivalent to saying that, on projecting to the surface IHI/f(2), there is always 
a geodesic in X which passes through the fixed point of the map induced by U' o V'. 

5.1. The singular case of Lemma 5.1. The case p = 2 is exceptional and we will 
deal with it first. From the preceding paragraph there is a single geodesic namely the 
projection of the line 

{1/2 + it, t E IR} 

and this contains the point ½(1 + i) Note that one has 

(1 0) (1 0). 1 . l l ESL(2,Z), l l .i= 2(1+i) 

so this point is in the 81(2, Z) orbit of ii, Then one has as in Lemma 2.1: 

1 . 1 (1 0) . Im i 
Im 2 ( 1 + i) = 2 = Im 1 1 . i = l2 + 12 

So, in a rather roundabout way, we obtain 2 as a sum of squares by comparing denomi­
nators: 
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5.2. Inversions and fixed points in X. We finish the proof of Lemma 5.1 by showing 
that there is a geodesic invariant by the orientation preserving automorphism in K 0 , 

obtaining the required midpoint as the fixed point of the automorphism. Our argument 
is exactly the same as for Theorem 1.1. More precislely, we show that, for p > 2: 

(1) the automorphism induced by U' preserves no geodesic in X 
(2) the automorphism induced by V' preserves at most two geodesics in X 

The first point is rather easy (the automorphism induced by U' fixes three disjoint 
geodesics joining cusps and permutes the pair of ideal triangles in their complement) but 
the second requires establishing the analogue of the fact that the equation 

x2 = 1 

has at most two solutions in any field or integral domain for that matter. Explicity the 
analogous result from [13] is: 

Lemma 5.2. Let p be a prime. The automorphism induced by V' preserves two and 
exactly two geodesics in X. 

For the inversions we consider the fixed point sets are arcs joining rationals so a nec­
essary condition for the inversions to be conjugate by an element of SL(2, Z) is that the 
fixed point sets have the same >.-length. Observe that, if we consider the fixed point set of 
V' as an arc, then it has >.-length 4 but for any rational k/p the inversion of IHI that swaps 
the Ford circles based at k/p and oo must fix the rationals (k ± 1)/p. The >.-length of 
the arc joining these points is seen to be strictly greater than 4 from equation (1) unless 
k = ±1 so it is not a lift of V'. 

5.3. Eisenstein integers. The Eisenstein integers Z[w] where w is an irrational cubic 
root of unity are the ring of integers of a quadratic extension of Q. If a+bw is an Eisenstein 
integer then its norm is 

a2 - ab+ b2 . 

Obviously there is an analogue of Theorem 1.2 in this setting: 

Theorem 5.3. Let p be a prime then the equation 

w ~-~+~=p 
has a solution in integers iff p = 3 or p - 1 is a multiple of 6. 

It is easy to see why this condition is necessary since if one has equation (4) then in lFP 

a2 - ab+ b2 = o 
and so , for p > 3, a/b is a cubic root of -1 ie an element of order 6 in the group of units 
and it follows that 6 divides the order of this group which is just p - 1. 

Similarly to Theorem 1.2 this result has an interpretation in terms of bi cuspidal 
geodesics on IHI/f(2) and fixed points of automorphisms. Begin by observing that the 
element 

(~ ~l) E SL(2,Z) 

induces an automorphism ¢ of order 3 on IHI/f(2) which permutes the cusps cyclically. 
Note that w projects to one of the fixed points of this automorphism and Theorem 5.3 is 
equivalent to: 
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There is some member of the family of geodesics of IHI 

{k/p+it,t>O} 

which projects to a bi cuspidal geodesic on IHI/f(2) passing through a fixed points of the 
automorphism ¢. 

Unfortunately there does not seem to be a straightforward geometric argument giving 
a proof of this fact. 

6. MARKOFF NUMBERS 

We discuss the connection between >.-lengths and Markoff numbers showing that every 
such number is the sum of two squares without applying Theorem 1.2. We then proceed to 
show uniqueness for Markoff numbers satisfying certain arithmetic conditions (Theorem 
6.4) following Baragar and Button see also [14, 21, 22] for alternative approaches. The 
content is almost purely expository and, as such, we make no claims of originality. We 
will assume that the reader has some familiarity with the theory of Fuchsian groups. 

Recall, from the introduction, that the lengths of simple closed geodesics on the mod­
ular torus that is IHI/r' where r' < PSL(2, Z) is the commutator subgroup and Markoff 
numbers are related by a simple formula. If , is such a geodesic then : 

(5) X = -cash -2 (/J,') 
3 2 ' 

is a Markoff number where R, is the length of,. 
We will now develop the correspondence between >.-lenghts of arcs and Markoff numbers. 

6.1. Character Variety. It is convenient to change variables and study solutions off 

(6) x 2 + y2 + z2 - XY z = o. 
By the work of Fricke the set of solutions in positive real numbers can be identified with 
a certain slice of the relative character variety of Z * Z. This is the set of representations 

p: Z * Z-+ SL(2,~) 

such that the trace of the image of the commutator of the generators is -2 up to conjuga­
tion. The key point in Fricke's work is that an (irreducible) representation pis determined 
up to conjugation by the three numbers 

X trp(a), 

Y trp(/3), 
Z trp(a/3)), 

where a, /3 are generators of Z * Z. Fricke calculates the trace of the commutator and 
shows that 

(7) 

The quotient surface IHI/ p(Z * Z) is invariably a once punctured torus and we identify 
Z * Z with its fundamental group. The a/3a-113-1 is a loop around the puncture and the 
condition of the trace means that the monodromy around this loop is parabolic. 
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6.2. >. lengths. There is an embedded cusp region Hof area 2 on the punctured torus 
IHI/ p(7L * 7L) (see [12] for a discussion). By replacing p by a conjugate representation we 
may assume p(7L * 7L) that 

p(a/3a-1/3-1): z c-+ z + 6, 

it follows that H lifts to the set fI = {Im z > 3}. Let °'* be anarc that is a bicuspidal 
geodesic without self intersetions. There is a lift of °'* to IHI which is a vertical line which 
evidently meets fI, we claim that any lift of of°'* which meets fI is a vertical line and 
not a semi circle. For, if C is a semi circle that meets fI its diameter is strictly greater 
than 6 and it follows that C and C + 6 meet transversely in some pointx. Such a point 
gives rise to a self intersection on the quotient surface It follows that, the portion of a* 
outside of H is connected, and define and we define >. length to be the exponential of the 
length of this sub arc. 

Lemma 6.1. Let °'* be an arc on a once punctured torus and a the unique simple 
closed geodesic disjoint it. Then the square root of the >.-length of the arc a is equal to 
~ cosh la/2. 

It is possible to prove this directly using hyperbolic trigonometry following the same 
schema as in [12] but here we give a more conceptual proof using the computations from 
[19]. 

Given an arc a* one may extend it to an ideal triangulation off the punctured torus: 
that is there is a pair of arcs /3*, 1 *, each disjoint from a* and their complement is a pair 
of ideal tirangles. Let X denote 2 cosh la/2 where a is the unique closed simple geodesic 
disjoint from a. 

Y 2cosh£13 /2 

Z 2cosh£,/2 

where /3 resp , is the unique closed simple geodesic disjoint from /3* resp. ,*. 
In [19] Wolpert divides the Markoff cubic by XYZ to obtain 

X y y 
YZ + XZ + XZ = 1. 

The three terms in this relation have a geometric interpretation which we will exploit to 
compute the >.-length of a*. Let H denote the cusp region of area 2. A comer of an ideal 
triangle is one of the three components of its intersection with H. Every torus admits an 
elliptic involution which leaves each of the arcs of the ideal triangulation invariant and 
swaps the triangles. So, in fact, to each triangulation we can associate three numbers 
namely the areas of the corners of one of the ideal triangles and these coincide with 
Wolpert's three numbers. 

Lifting the ideal triangulation to IHI as in Figure 6 one sees that a* decomposes into two 
arcs of length - log(Y / X Z) and - log( Z / XY) respectively so that its is of length 2 log X. 

So, on any hyperbolic punctured torus, the >.-length of a* wrt the cusp region of area 
2 is the exponential of this, that is: 
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FIGURE 6. Calculating the hyperbolic length of a* in the upper half plane 
the >-.-length is the exponential of this. The mid point of a* is marked by a 
circle and the two corners adjacent to a* are shaded 

Now on the modulaire torus IHI/r' there is an embedded cusp region of area 6 and the 
>-.-length of a* wrt this cusp region is 

x2 
9 

6.3. Sum of squares. In the proof of Lemma 6.1 we used the fact that every torus admits 
an elliptic involution which leaves each of the arcs of the ideal triangulation invariant and 
swaps the triangles. For the modular torus the involution is covered by z f--t -1/ z and 
this means that for any arc a* every lift contains a point of the SL(2, Z)-orbit of i. In 
particular, by Lemma 6.1, a lift which is a vertical line ends at a rational which has 
as denominator a Markoff number and so this Markoff number is a sum of two squares. 
Conversely, every Markoff number arises as the square of a >-.-length of some arc a* and 
so must be the sum of two squares. By extending this reasoning slightly one may show: 

Theorem 6.2. Frobenius' conjecture is equivalent to: Let m be a Markoff number then 
exactly one of the vertical lines with endpoint k/m, where 1 ::; k ::; m - 1 is coprime to 
m, projects to a simple arc on the modular torus. 

Proof. The Markoff triples form a binary tree with a preferred vertex corresponding to the 
fundamental triple (1, 1, 1) (see Figure 2). Define the multiplicity of a Markoff number to 
be the number of triples for which it appears as the largest integer. One can easily check 
that for the so-called singular Markoff numbers 1 and 2 their multiplicity is 3 and, since, 
group of automorphisms of the tree that fix the fundamental triple of order 6 that the 
multiplicity of any other Markoff number is at least 6. Thus Frobenius' conjecture can be 
restated as: multiplicity of any other Markoff number is at most 6. 

Using Cohn's correspondence it follows that Frobenius' conjecture is equivalent to: the 
number of oriented closed simple geodesics on the modular torus of any given length is at 
most 6. Each (unoriented) closed simple geodesic is disjoint from exactly one arc so that 
there can be at most three arcs of any given >-.-length. 



97

NUMBER THEORY OF BI CUSPIDAL GEODESICS 

The group of orientation preserving automorphisms of the modular torus is canonically 
isomorphic to 

SL(2,Z)/r' '.::::' Z/3Z x Z/2 ZZ '.::::' Z/6Z. 

The commutator of the generators of r' is z f--t z + 6 and since each automorphism ¢ 
must leave the cusp invariant it lifts to a map of the form ¢ : z f--t z + k, k = 0, ... 5. 
Now consider the lift of some arc on the modular torus which, WLOG, is a vertical line. 
After applying ( the lift of) an automorphism ¢ we may assume it has its end point in IR. 
between O and 1. The statement now follows by counting multiplicities as before. 

□ 

6.4. Uniqueness of Markoff Numbers. Frobenius' conjecture says that the largest 
number in a Markoff triple determines the remaining two numbers [1]. Button and Baragar 
(see chapter 10 of Aigner [1]) used basic algebraic algebraic number to show that certain 
Markoff numbers satisfied the uniqueness conjecture. Subsequently Aigner extended used 
this approach showing: 

Theorem 6.3 (Aigner). Let m be a Markoff number of the form 

m=Npk 

where pis an odd prime and N :S 1035 is another Markoff number. Then mis unique. 

This is a strengthening a result from Button's thesis: 

Theorem 6.4 (Baragar, Button, Schmutz). Let m be a Markoff number of the form 
m = pk or m = 2pk then it is unique if p is an odd prime. 

We give a short proof of this using the fact that the Gaussian integers is a unique 
factorisation domain. 

Proof. : Suppose that m = pk is a Markoff number. By the previous paragraph there are 
coprime integers a, b so that 

pk= a2 + b2 =} a2b-2 = -1 E lFP. 

It follows that p is either 2 or 1 mod 4 and so by Theorem 1.2 there are coprime positive 
integers c, d, unique up to permutation, so that 

p = c2 + d2 = ( c + id) ( c - id). 

It is well known that the RHS is the unique factorisation of p in the Gaussian integers 
and it follows that the unique factorisation of m is 

pk= (c + idl(c - idl. 

A consequence of this is that the pair coprime positive integers a, b such that pk = a2 + b2 

is unique up to permutation. Explicitly we have: 

(8) a Re (c ± idl 

(9) b = Im (c ± idl. 

Since a, b are unique up to permutation then, by Lemma 2.1, there can only be a single 
geodesic of the family of vertical lines ending at k/pk which meets the SL(2, Z)-orbit of i. 
The result follows immediately from the Paragraph 6.3. 
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Now suppose that m = 2pk is a Markoff number. By the above pk can be written as a 
sum of squares a2 + b2 = la+ ibl 2 essentially uniquely. Observe that 2 factors as 

2 = i(l + i)2. 

Observe that 2pk can also be written as a sum of squares essentially uniquely namely 

2pk = 1(1 + i)(a + ib)l 2 = (a - b)2 +(a+ b)2, 
so that the result follows in this case too. 

□ 

6.5. Fibonacci numbers, primes, sums of squares. It is quite difficult to say any­
thing useful about the set of Markoff numbers. Though Theorem 6.4 is quite elegant it is 
not known if there are infinitely many Markoff numbers which satisfy the hypothesis of 
the theorem. We discuss this problem in a more restricted context. 

Recall that the Fibonacci numbers Fn are defined recursively by 

Fo=Fi=l 

and 

Fn+2 = Fn+l + Fn 

The odd-indexed Fibonacci numbers Fn, and the of odd-indexed Pell numbers Pn give 
rise to two families of Markoff triples. It is easy to check that, for any integer n, 

(F2n+l, F2n-l, 1), 

is a Markoff triples. So F2n+l is a Markoff number: it is conjectured that there are 
infinitely many prime Fibonacci numbers but at the time of writing only 51 of them are 
known to be prime. 

The Fibonacci numbers satisfy many identities. Among the most useful of these is the 
Cassini identity 

(10) 

and Ocagne's identity 

(11) 

Cassini's identity is easy to prove by interpreting the LHS as the determinant of a matrix 
namely: 

( Fn+l Fn ) = (1 l)n 
Fn Fn-l l 0 

In fact, setting A = G ~) and using the factorisation A 2n = An An, one has 

( F2n+1 F2n ) = (F~+l + F~ Fn(Fn+l + Fn-1)) 
F2n F2n-l * * 

so that comparing coefficients in the first rows one obtains the following identities: 

(12) 
(13) 

F2n+l = F;, + F;,+l 

F2n = Fn(Fn+l + Fn-1)-

The first of these gives an explicit representation, it is tempting to say this is the canonical 
expression, for an odd indexed Fibonacci number as a sum of squares. In the previous 
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section the proof of Button's Theorem followed from the fact that 2pk had an essentially 
unique (ie canonical) decomposition as a sum of squares. 

Obviously (12) shows that there is a recursion for integers such that F2n+l· In fact this 
is true more generally for all Markoff numbers and there appears to be a "canonical" way 
to write each of them as a sum of squares whether they are prime which we will outline 
now. Let's look at this recursion from a slightly different perspective. For the odd indexed 
numbers one has: 

(14) 

or 

(15) 

The key observation is that one can take the "square root" of this relation as follows. Our 
starting point is the relation (12) from which it follows that: 

Hn-1 liFn + Fn-11 2 

F2n+1 = liFn + Fn+ll2 

so that considering the product of the Gaussian integers on the RHS one obtains 

(iFn + Fn-1)(iFn + Fn+1) (Fn+lFn-1 - F;,) + iFn(Fn+l + Fn-1) 

= (Fn+lFn-1 - F;,) + iF2n 

= (-lt + iF2n 

where the second last line follows by Ocagne's identity and the last from Cassini's. 
For a general Markoff number we begin by considering the Markoff cubic as a quadratic 

equation in Z: 
Z2 - (3XY)Z + (X2 + Y2) = 0. 

Let z± denote the roots of this equation, one has the Vieta formulas 

(16) z+ + z- 3XY 

(17) z+xz- = x2+Y2 =IX+iYl2. 

The Markoff triples (X, Y, z±) are adjacent vertices of the Markoff tree as defined above. 
In fact the first Vieta formula (17) can be used to enumerate all the Markoff triples but 
it is the second that will concern us here and we will show how to extract it's "square 
root" as we did for (15) in the preceding paragraph. 

We have implemented this algorithm as a computer program and are working on its 
connections to moduli of ideal triangulations of the once punctured torus. 

7. CONCLUDING REMARKS 

We have presented an approch to some classical problems of number theory from a 
geometric point of view and indicated that there are still open questions. 
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