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Abstract

We numerically and theoretically study the transient response of dense non-Brownian sus-
pensions under impacts. We use the coupled lattice Boltzmann and discrete element method
(LBM-DEM) simulation for dense suspensions. First, we investigate a free-falling impactor
into dense suspensions and focus on the elastic rebound and investigate its parameter de-
pendences. We find that the rebound depends on the impact speed, the volume fraction of
the suspensions, and frictional contact between suspended particles. We then visualize local
quantities inside the suspensions after the impact. We find a region with high normal stress
but no high shear stress is observed after the impact, opposite to what was observed in the
discontinuous shear thickening (DST). Then, we analyze the topological structure of the
contact network between suspended particles using persistent homology. Second, we propose
a simple phenomenology called the floating + force chain model that captures the viscoelastic
response of the impact process. We observe power-law relationships among the impact
velocity, the maximum force exerted on the impactor, and the time to reach the maximum
force on high impact speed, which can be solely explained by the viscous process while
percolating force chains are necessary to recover the elastic rebound. Third, we delineate
the dynamically jammed region (DJR) induced by the impact and quantify its viscosity and
elasticity. Using the contributions from the DJR, elastic response can be recovered even
without percolating force chains. Finally, we discuss the impact of a foot-spring-body system
to mimic the hopping motion on dense suspensions.
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Chapter 1

Introduction

1.1 Non-Brownian Suspensions

Mixtures are physical combinations of two or more substances. It is interesting to understand
the physics of such mixtures since they yield different behavior compared to their constituents
alone. In this thesis, we are interested in mixtures of solid particles and fluid solvents. The
size of the particles can dictate how these mixtures behave (See Fig. 1.1). If the particles are
very small (less than 1 nm), they dissolve in the solvent and become a homogenous mixture
which is called a solution. A suspension is a heterogeneous mixture of solid solute particles
and solvent medium, in which the solute particles do not dissolve but are suspended in the
solvent and are floating around freely in the medium [11]. When the size of particles is ranged
between 1 nm and 1 µm, the behavior is dictated by thermal agitations, which is a Brownian
(colloidal) suspension. The interaction between charged colloidal particles is described by
the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, including the effects of the van der
Waals interactions and the electrostatic forces [25, 112], and the hydrodynamic interaction
between colloidal particles. Finally, if the particle size is ranged between 1 µm and 100 µm,
the Brownian effects are negligible. Therefore, only mechanical agitations are important to
dictate the behavior of such systems. We denote them non-Brownian suspensions which are
the systems of interest for this thesis.

Non-Brownian suspensions are ubiquitous in nature and in our daily life. The most
popular example is the suspension of cornstarch in water. Cornstarch can be easily bought
in supermarkets and most of us even have it in our kitchen. There are a lot of videos
on YouTube that demonstrate the properties of cornstarch and water suspensions under
mechanical disturbance. For example, hitting them with a hammer or people trying to run
on top of it, in which the suspensions behave as solids right after the impacts and become
fluid-like again afterwards. This phenomenon can also be utilized for industrial applications
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such as protective vests, where the vests can become rigid in response to impacts of shooting,
while otherwise remaining fluid-like and comfortable to wear [62]. This thesis focuses on
this hardening behavior of dense suspensions under impact.

Fig. 1.1 Various kinds of heterogeneous mixtures based on the particle size, the mixtures
within the scope of this thesis (suspensions) are confined by the dotted box.

1.2 Steady-state rheology of dense suspensions

In this section, we briefly review the current understanding regarding the steady-state rheology
of dense suspensions. Rheology is a branch of physics that deals with the deformation and
flow of materials. In many rheological experiments, the shear stress σxy is measured under
the condition where steady simple shear is applied to the suspension with shear rate γ̇ . The
viscosity η is defined as

η =
σxy

γ̇
. (1.1)

In other words, the viscosity η tells us how "hard" for the suspensions to flow. As one might
expect, the suspended solid particles play an important role in determining η . Studies on
how the solid particles affect the viscosity was initiated by Einstein in his seminal paper in
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Fig. 1.2 Continuous (φ ≤ 0.54) and discontinuous (φ > 0.54) shear thickenings of dense
suspensions under simple shear in the numerical simulation.

1905 [28]. The obtained viscosity for dilute suspensions in Ref. [28] is given by

η

η0
= 1+

5φ

2
+O(φ 2), (1.2)

where η0 is the viscosity of the solvent and φ is the volume fraction of the suspended particles.
There is a certain fraction φ = φJ beyond which the suspensions cannot flow anymore i.e.
jammed, where φJ is the jamming fraction. Thus, viscosity diverges with φ approaching φJ

as

η ∝

(
1− φ

φJ

)−λ

, (1.3)

where the exponent λ has been shown to be λ ≈ 2 [54, 72, 105].
For Newtonian fluids, the viscosity is independent of the shear rate and is regarded as

an intrinsic material parameter. This is not the case for suspensions, where the rheological
behavior is non-Newtonian in which the apparent viscosity η depends on the shear rate.
In some cases, the viscosity may decrease as the shear-rate increases, which is called
shear thinning. In another case, the viscosity increases as the shear rate increases. Such a
phenomenon is denoted as a shear thickening. The shear thickening can be further categorized
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Fig. 1.3 Phase diagram on the plane of the control parameters φ and γ I
0 (initial strain

amplitude) for monolayer dense suspensions under oscillatory shear. The lines represent the
occurrences of DST-like phenomena.

into two cases: one is the continuous shear thickening (CST) and the other is the discontinuous
shear thickening (DST) (See Fig. 1.2). The DST is an abrupt increase of the apparent viscosity
at a critical shear rate γ̇c if the volume fraction of the solvent is larger than the critical value
φc. It is noteworthy that such DST also takes place in an assembly of dry frictional granular
particles under a simple shear [83]. We also note that DST-like discontinuous change of the
viscosity can be observed in dilute inertial suspensions [49, 37, 111, 100, 50, 49, 30, 97, 1,
98, 38, 108].

The DST has been extensively studied experimentally [116, 3, 27, 17, 15, 23]. Since
it is not easy to visualize suspended particles, insights regarding the microscopic mech-
anism of DST are gained through numerical simulations [101, 72, 73, 87]. Seto and his
coworkers confirmed the role of the mutual friction between particles for the DST in the
non-Brownian[101, 72] and Brownian suspensions[73] as in the case of dry granular mate-
rials [83]. Extensive reviews along this line have been published in Refs. [16, 24, 80]. On
the theoretical side, the phenomenological Wyart-Cates (WC) model that is based on the
fraction of frictional contact between particles is widely used in many cases [117, 103, 36].
References [110] analyzed the force in the correlations in the dual of the position space and
found a relationship between DST and the anisotropy of the stress tensor. Then, Ref. [87]
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reproduced the viscosity using a phenomenology based on the angular distribution of the
contact forces.

As mentioned earlier, the viscosity diverges if the suspension is jammed. Jammed systems
do not flow under applied stresses, whereas unjammed systems flow under any applied
stresses [67, 68]. The jamming transition between unjammed and jammed states should be
distinguished from the temperature-driven glass transition. For frictionless monodisperse
spheres in the zero shear limit, the jamming occurs at φJ ≈ 0.64, close to the random close
packing (RCP) of identical spheres in a box. Once the system is jammed, it behaves as a
solid and its mechanical response of it is expressed as

G =
σxy

γ
, (1.4)

where G and γ are the shear modulus and strain, respectively. In other words, G must be
non-zero if the system is jammed. In two-dimensional dry frictional granular particles, the
system goes through two new different states as one increases the applied stress at φS < φJ

[7, 84]: (i) Fragile state, where the system can only sustain load in one direction and (ii) shear
jammed state, where the system can sustain load in all directions [84]. Shear jammed state
has also been observed in dense suspensions experimentally under a steady shear [86], and
numerically under an oscillatory shear [87], where both studies suggest that DST correspond
to the fragile states (Fig. 1.3).

1.3 Transient dynamics of dense suspensions

(a) (b) (c)

Fig. 1.4 (a) The displacement field of dense suspensions undergoing an impact. (b) The
strain-rate fields of dense suspensions under impact in vertical direction. (c) The strain-rate
fields of dense suspensions under impact in lateral direction.
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A typical example of the hardening behaviour of dense suspensions is that a running
person can stay afloat on the top of suspensions. Once the person starts to walk or stop
running, the person sinks into the suspensions. The DST is often used to explain such an
impact-induced hardening [62, 2, 79]. There are, however, several differences between
the two processes. One is that the impact-induced hardening is the process to have large
normal stress with small shear stress, while the DST is the process to get a discontinuous
jump of both the shear stress and normal stress. Second, DST is a steady process while
impact-induced hardening is a transient process. Thus, we believe that the explanation of the
hardening process by using the DST is misleading. In this section, we review our current
understanding of the transient response of dense suspensions. Surprisingly enough, the
transient dynamics of dense suspensions are less studied than the steady-state ones.

The earliest experiments to investigate the response of dense suspensions under an
impact used a free-falling impactor and discovered a solid-like region right beneath the
impactor, while the other part remains fluid-like [114] (Fig. 1.4(a)). This adds another
difference between the DST and the impact-induced hardening, where DST is homogeneous
while impact-induced hardening is localized and inhomogeneous. Such region is called the
dynamically jammed region (DJR), in which DJR was expected to have a higher volume
fraction compared to the rest of the suspensions [115]. However, using high-speed ultrasound
imaging, Ref. [34] discovered that there is no significant change in the volume fraction of
the DJR. Thus, the DJR is not formed through compression. Moreover, they were also able
to visualize the flow field inside the suspensions using particle-image velocimetry (PIV)
and found that the strain rate peaked in the boundary of the DJR (Figs. 1.4(b) and 1.4(c)).
They proposed that the mechanism behind the forming of the DJR is closely related to shear
jamming. Such a picture is then extended to discuss the transient behavior of suspensions
under shear [35, 36]. However, due to the difficulties in visualizing the stress distribution
and force propagation in experiments, little is still known about the mechanical properties
such as the stress, viscosity, and rigidity of the DJR. Therefore, numerical simulations for
this problem are necessary.

For a free-falling impactor, one can discuss the relation between the impact speed u0

and the maximum force acting on the impactor Fmax or the elapsed time tmax to reach Fmax.
Previous studies [13, 79, 114] showed the existence of power-law relations

Fmax ∝ uα
0 , tmax ∝ uβ

0 . (1.5)

Experiments observed that α ≈ 1.5 and β ≈−0.5. It is noteworthy that similar relations are
also found in impact processes for dry granular materials [55]. To explain the motion of the
impactor, Ref. [114] proposed a phenomenology called the added-mass model, where impact
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on suspensions can be regarded as an inelastic collision between the impactor and a growing
DJR. Added-mass model can be solved numerically and yields α = 2 and β =−1 [79]. Then,
based on the observation in Ref. [34], where strain rate is peaked at the boundary of DJR,
Ref. [13] proposed a phenomenology based on the viscous force acting on the boundary of
DJR. This viscous force model yields α = 3/2 and β =−1/2, which agrees well with the
experimental results.

Another interesting aspect of the transient response of dense suspensions under impact is
the emergence of elasticity. Experiments have observed a much stronger response than that
observed in suspensions undergoing DST. For shallow suspensions, even fractures can be
observed on the surface of the suspensions [95]. In a series of experiments using penetrating
intruders [71, 2, 79], a huge increase of stress exerted on the intruder is observed once the
intruder is close to the bottom boundary, indicating the existence of a system-spanning DJR.
Alternatively, the elastic response of dense suspensions under impact can also be captured
from the free-falling impactor experimental setup [26], where rebounds of the impactor
are observed for impact in a shallow container. Indeed, no DJR-based model mentioned
above can explain such an elastic response. Furthermore, the connection between the elastic
rebound of an impactor and the relations among u0, Fmax, and tmax also needs to be clarified.

As far as we know, the only attempt to simulate the transient dynamics of dense sus-
pensions was done using fluid-based multiphase simulations that contain the solvent and
granular phases [5], where such simulations can reproduce the transient dynamics in various
setups. However, their fluid simulations require the usage of constitutive equations with
a tremendous amount of fitting parameters and a fluid-based method cannot capture the
particle dynamics. In contrast, the particle-based simulation that is often used for simulating
dense suspensions under shear [101, 72] cannot be used for the impact problem since such
simulations cannot handle the free-surface of the suspensions. In this thesis, we extend
the coupled lattice Boltzmann [104, 58, 59] and discrete element method [22, 70] that has
been used to simulate DST and shear jamming of dense suspensions [87] to include the
free-surface of the suspensions [106, 64].

1.4 Scope of this thesis

The main goal of this thesis is to understand the transient dynamics of dense suspensions
under impacts. The main part is divided into four parts. In Chapter 2, we describe the coupled
lattice Boltzmann method and discrete element method for simulating dense suspensions,
including its extension to include the free surface of the suspensions. In Chapter 3, which
corresponds to the paper published in Ref. [88], we use the simulation scheme to simulate
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the impact of a free-falling impactor into dense suspensions. Here we focus on the elastic
rebound and investigate its parameter dependences. We also visualize several local quantities
including the stress inside the suspensions after the impact. Interestingly, no high shear
stress is observed after the impact, in contrast to what was observed in the DST. Finally, we
analyze the topological structure of the contact network between suspended particles using
persistent homology. In Chapter 4, which corresponds to the paper published in Ref. [89],
we focus on the connection between elastic rebound and the power-law relationship among
u0, Fmax, and tmax. We observe that such power laws are independent of the system size,
while rebound strongly depends on the depth of the container. We propose a phenomenology
called the floating + force chains model that contains both viscous and elastic contributions.
The floating model which does not include any effect of force chains can recover both the
power-law exponents and the crossover from the low to high u0 regime. We also find that
the elastic force from the percolating contact force network is necessary to recover rebound.
In Chapter 5, which corresponds to Ref. [90], we investigate the effective viscosity and
elasticity of the DJR by replacement of the fitting effective viscosity in the floating + force
chains model with the evaluated values of effective viscosity and elasticity of the DJR. Then,
we extend such a model to discuss the possibility to run on top of suspensions by simulating
a hopper that consists of a foot, spring, and body part. In Chapter 6, we conclude our
results and discuss the future prospects of this research. In Appendix A, we describe the
persistent homology analysis used in Chapter 3. In Appendix B, we describe the dynamic
Hertzian contact model to explain the motion of the impactor. In Appendix C, we present the
complete analytical solution of the floating model. In Appendix D, we describe the details
of the algorithm to determine the percolating force chains, which are used in Chapter 4. In
Appendix E, we show the relationships among u0, Fmax, and tmax depend on the volume
fraction of the suspensions.



Chapter 2

Coupled DEM-LBM simulation for dense
suspensions

2.1 Overview

Fig. 2.1 An illustration of a suspension with free surface, yellow spheres are the suspended
particles.

In this chapter, we explain the simulation method used in this thesis. The simulated
system consists of suspended particles and a solvent fluid in a container box. To study the
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Fig. 2.2 Summary of the coupled LBM-DEM simulations [89].

impact problem in such suspensions, the free surface also needs to be taken into account.
The schematic of the suspensions with a free surface can be seen in Fig. 2.1.

The suspended particles are assumed to be spherical particles which are, in general, not
monodisperse in size distribution. Equations of motion including the torque balance of the
particle i are given by

mi
duuui

dt
= FFFc

i +FFFh
i +FFF lub

i +FFFr
i +FFFg

i , (2.1)

Ii
dωωω i

dt
= TTT c

i +TTT lub
i +TTT h

i , (2.2)

where uuui, ωωω i, mi, and Ii = (2/5)mia2
i (with ai the radius of i−th particle), are the translational

velocity, angular velocity, mass, and the moment of inertia of particle i, respectively. FFFg
i =

−migẑzz is the gravitational force acting on the suspended particle i, where g is the gravitational
acceleration and ẑzz is the unit vector in the vertical direction. The summary of this method can
be seen in Fig. 2.2. Our method accounts for both the short lubrication (force FFF lub

i and torque
TTT lub

i ) in addition to the hydrodynamic force FFFh
i and torque TTT h

i from the lattice Boltzmann
method (LBM)[81, 87], though some previous simulations contains only the short-range
force for dense suspensions [101, 72]. In Section 2.2, we explain the LBM, treatment of
hydrodynamic interactions, and the method to simulate the free surface of the suspensions.
The contact forces FFFc

i j and torques TTT c
i j are computed using the linear-dashpot model with
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Coulomb friction rules and friction coefficient µ [70]. We also introduce the electrostatic
repulsive force FFFr

i j arising from the double layer to prevent particles from clustering when we
neglect the Brownian force [87, 72]. Details of such particle-particle interactions is written
in Section 2.3.

2.2 Lattice Boltzmann method for dense suspensions

2.2.1 Hydrodynamic interactions

On molecular level, hydrodynamic interactions are the result of momentum transfer from
a suspended particle to solvent molecules, and then from the solvent molecules to another
suspended particle [21]. Nevertheless, since the length-scale and time-scale separations
between suspended particles and solvent molecules are, at least, two orders of magnitude, the
solvent is treated as a continuum fluid [10]. For suspensions, such dynamics can be described
by the Stokes equations for the mass density ρ , and momentum density ρvvv

∇ · vvv = 0, (2.3)

∇∇∇ ·←→σ v = ∇p+η0∇
2vvv =− fff , (2.4)

where p is the pressure,←→σ v is the viscous (deviatoric) stress tensor, vvv is the fluid velocity, fff
represents the body force, and η0 is the solvent’s shear viscosity. It is usually assumed that a
stick boundary condition exists on the solid particle surfaces. In other words, the velocity of
the fluid adjacent to the surface of particle i is equal to the local velocity of the surface at that
point

vvv(rrrs) = uuui +ωωω i× (rrrs−RRRi), (2.5)

for all points rrrs on the surface S, where RRRi and uuui is the position and velocity of the center of
mass of the particle i and ωωω i is its angular velocity. The hydrodynamic force and torque are
then obtained by integrating the stress over the particle surface

FFFh
i =

∮
S ttt(rrrs)dS

TTT h
i =

∮
S rrrs× ttt(rrrs)dS,

(2.6)

where ttt = pnnn+←→σ v ·nnn is the surface traction and nnn is the outward surface normal unit vector.
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2.2.2 Lattice Boltzmann method

The hydrodynamic interactions (Eqs. (2.3) - (2.6)) are solved using the LBM. The LBM was
introduced as an extension of the lattice gas automata and has been extensively used as a
computational fluid dynamics solver [74, 104]. There are also several studies on suspensions
using the LBM [94, 56, 60, 61], where this method has been confirmed to be efficient and
accurate for sedimentation simulations [82]. Since the hydrodynamic fields are explicitly
calculated in the LBM, one can simulate the flow of suspensions in various types of flows.
Then, the free surface of the suspensions can also be incorporated. Such extension is not
possible using the implicit or resistance matrix-based simulation for suspensions such as
Stokesian dynamics [12] or LF-DEM [101, 72]. Indeed, such advantages of the LBM
make it computationally expensive. However, the implementation of parallelized LBM is
straightforward.

In the LBM, the hydrodynamic fields are calculated by computing the discrete distribution
function on lattices. Due to such discrete nature of the LBM, one needs to discretize the unit
of length into the lattice unit ∆x and ∆c = ∆x/∆t.. We take the lattice unit ∆x as ∆x = 0.2amin,
where amin is the radius of the smallest particle. The hydrodynamic fields (mass density ρ f

and momentum density ρ f vvv) are calculated on the Eulerian node rrr inside cells of a fixed
Cartesian grid as

ρ f (rrr) = ∑
qqq

fqqq(rrr), ρ f vvv(rrr) = ∑
qqq

fqqqcccqqq(rrr), (2.7)

where cccqqq is the lattice velocity of the direction qqq. All simulations in this thesis adopt
nineteen directions (LBM community calls these lattices as D3Q19 lattices for 19 direc-
tions/quadratures in 3 dimensions) of cccqqq [64, 94, 104, 106]. fqqq(rrr) is the abbreviation of
fqqq(rrr, t) which is the discrete distribution function and has the dimension of mass density.
The evolution equation of fqqq(rrr,cccqqq) is

fqqq(rrr+ cccqqq∆t, t +∆t) = fqqq(rrr, t)+∆t(Ωqqq,c +Ωqqq, f ), (2.8)

where Ωqqq,c is the collision operator and Ωqqq, f is an additional operator if a volumetric force
density f̃ff acts on the system. We use the Bhatnagar-Gross-Krook approximation for the
collision operator [6], which relaxes the system to the equilibrium state f eq

qqq as

Ωqqq,c =
f eq
qqq − fqqq

τr
, (2.9)
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where τr is the relaxation time and is related to the kinematic viscosity ν as ν = η0/ρ f ,
through the Chapman-Enskog expansion [19, 104] as

τr = ∆t/2+ν/c2
s , (2.10)

with cs is the lattice sound speed, cs =
√

∆c2/3. The equilibrium distribution function
f eq
qqq = f eq

qqq (ρ f ,vvv) can be written as

f eq
qqq (ρ f ,vvv) = wqqqρ f

[
1+

cccqqq · vvv
c2

s
+

(vvvvvv : (cccqqqcccqqq− c2
s III))

2c4
s

]
, (2.11)

where wqqq is the lattice weight that depends on the configurations and : denotes the double
inner product. The volumetric force density f̃ff is incorporated through Ωqqq, f as [33]

Ωqqq, f = wqqq

(
1− ∆t

2τr

)[
(cccqqq− vvv)

c2
s

+
(cccqqq · vvv)

c4
s

cccqqq

]
· f̃ff . (2.12)

As a result, the fluid velocity is changed so the momentum density introduced in Eq. (2.7)
becomes

ρ f vvv(rrr) = ∑
qqq

{
fqqqcccqqq(rrr)+

∆t f̃ff (rrr)
2

}
. (2.13)

2.2.3 Mass-tracking algorithm for simulating free surface

To simulate the free surface, we need to implement the mass tracking algorithm [52, 106, 65].
First, we label each node as a fluid, gas, or interface node, where the interface node exists
between the fluid and gas nodes as in Fig. 2.3. Note that Eqs. (2.7) and (2.8) are only used in
the fluid and interface nodes.

A gas node represents the cell which is not occupied by the fluid, hence fqqq = 0. An
interface node expresses the interface between fluid and gas, where the streaming and
collision of fqqq exist as in fluid nodes. Here, we introduce a variable m f , which represents the
density of the fluid in a single cell, to track the evolution of the surface. The interface node
turns into a fluid node if m f ≥ ρ∗f or into a gas node if m f ≤ 0, where ρ∗f is the unit density
of the fluid. Therefore, the state of each node is characterized by the liquid fraction λ :

λ = 1 if the node is liquid

0 < λ < 1 if the node is interface,

λ = 0 if the node is gas,

(2.14)
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Fig. 2.3 An illustration of the division of the lattice nodes into fluid, interface, and gas nodes
[88].

where m f = λρ f . The evolution of the m f is determined by the balance between the
populations streaming into the node fqqq′(rrr+ cccqqq′∆t, t) (qqq′ =−qqq) and out of the node fqqq(rrr, t)

m f (t +∆t) = ∑
qqq

αqqq( fqqq′(rrr+ cccqqq′∆t, t)− fqqq(rrr, t))+m f (t), (2.15)

where αqqq is a function of λ of the neighboring node (located at rrr+ cccqqq′∆t).

αqqq =


1
2 [λ (rrr, t)+λ (rrr+ cccqqq′∆t, t)] if fqqq′(rrr+ cccqqq′∆t, t) streams from an interface node,

1 if fqqq′(rrr+ cccqqq′∆t, t) streams from a fluid node,

0 if fqqq′(rrr+ cccqqq′∆t, t) streams from a gas node.
(2.16)

When an interface node turns into a fluid node, the neighboring gas nodes turn into
interface nodes. When an interface node turns into a gas node, the neighboring fluid nodes
turn into interface nodes. Although the density in a continuum model must be conserved, the
discrete model contains a small loss or gain of m f . The surplus (or shortfall) of m f is then
computed at every time step and is corrected to satisfy the conservation among all interface
nodes.
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As stated before, LBM equations are solved only in the liquid and interface nodes. This
creates a problem in the implementation of the population streaming to the interface nodes
from gas nodes, which is necessary for Eq. (2.8) is not well-defined. Assuming that the gas
node is always in equlibrium and has the identical velocity to that of the interface node vvvin

and a constant atmospheric density ρa < ρ f , the incoming distribution function (first term on
the right hand side of Eq. (2.8)) is replaced by the equilibrium distribution function with vvvin

and ρa [63],
fqqq(rrr, t)→ f eq

qqq (vvvin,ρa). (2.17)

This is analogous to applying a fixed-pressure boundary condition at the interface and local
symmetry conditions for the velocity.

2.2.4 Coupling with particles

2.2.4.1 Overview

In this section, we explain how to calculate the hydrodynamic force and torque on particle i
i.e FFFh

i and TTT h
i including the lubrication terms FFF lub

i and TTT lub
i in Eqs. (2.1) and (2.2). We use

two different approaches to calculate the hydrodynamic forces from the LBM. For suspended
particles, we combine the LBM with the immersed boundary method. This approach has been
proven to be stable and accurate [106, 65, 63]. However, the immersed boundary method
requires all parts of the particle to be immersed in the fluid, and thus cannot be used for an
impactor or an intruder that is initially outside the suspensions. Therefore, for the impactor,
we use an alternative approach called the bounce-back method. The discrete nature of the
LBM has the consequence that it cannot capture the hydrodynamic force at a small gap
between particles. Such lubrication force is indeed important for dense suspensions, meaning
other correction terms (FFF lub

i and TTT lub
i ) must be added. Details of such corrections and the

comparison between our approach and the full solution of the two-body hydrodynamic
interactions are also discussed in the section.

2.2.4.2 Immersed boundary method

The immersed boundary method is originally developed by Peskin in 1972 for the simulation
of blood flow and cardiac mechanics coupling [85]. In immersed boundary method, the
structure (particles) is represented on a Lagrangian coordinate rrrL that moves freely without
being constrained. The force exerted by the particle on the fluid is then treated as a source
term in the momentum equation. This method has been widely used and combined with
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Fig. 2.4 The discretization of the spherical particles into particle nodes.

many computational fluid dynamics methods to simulate complicated structures immersed in
fluid [76].

In this thesis, the Lagrangian coordinates represent the particles corresponding to the
lattice nodes of the LBM, thus rrrL = rrr [65, 63] (See Fig. 2.4). Then, the hydrodynamic force
on each particle node F̃FF

h
(rrr) can be computed directly from the differences between fluid and

particle velocities

F̃FF
h
(rrr) =

∆x3

∆t
ρ f (rrr)[vvv(rrr)−uuucell(rrr)], (2.18)

where uuucell is the velocity of the particle node and it is calculate in the similar manner as Eq.
(2.5),

uuucell(rrr) = uuui +ωωω i× (rrr−RRRi). (2.19)

The resultant hydrodynamic force on suspended particle i, FFFh
i is the sum of all forces on the

nodes inside the particle l as
FFFh

i = ∑
rrr∈l

F̃FF
h
(rrr). (2.20)

Similarly, the hydrodynamic torque is given by

TTT h
i = ∑

rrr∈l
(rrr−RRRi)× F̃FF

h
(rrr). (2.21)
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Thus, if suspended particles exist, the body force density of the fluid ( f̃ff in Eqs. (2.13) and
(2.12)) becomes

f̃ff (rrr) =−ρ f gẑzz− F̃FF
h
(rrr)

∆x3 . (2.22)

The first term on the right-hand side of Eq. (2.22) expresses the gravity force. Note that this
scheme requires the whole particle to be inside the solvent fluid.

2.2.4.3 Bounce-back method

Fig. 2.5 An illustration of the bounce-rule in LBM simulation [89]. Filled circles represent
fluid nodes, open circles represent solid nodes, open squares represent boundary nodes, and
arrows represent the streaming discrete distribution functions.

We use the bounce-back rules for no-slip boundary conditions on walls and the surface
of the impactor. At every time step, the nodes on container walls and the surface of the
impactor are treated as boundary nodes bn. The bounce-back rule simply states that whenever
discrete distribution function fqqq is streaming towards the boundary, this distribution function
is reflected and bounced back in the opposite direction qqq′ (See Fig. 2.5 ). Then, this rule can
be expressed as

fqqq′(rrr, t +∆t) = fqqq(rrr, t). (2.23)
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If the wall is moving, the reflection has to take into account the momentum transfer by an
addititonal term [58, 59]

fqqq(rrr, t)− fqqq′(rrr, t +∆t) =
(

2wqqqρ f uuubn · cccqqq

c2
s

)
, (2.24)

where uuubn is the velocity of the boundary nodes. Here, uuubn is calculated as

uuubn(rrr) = uuuI +(rrr−RRRI)×ωωω
I, (2.25)

where uuuI and ωωω I are the translational velocity and the angular velocity of the impactor,
respectively. RRRI denotes the center of mass of the impactor. The momentum exchange
described in Eq. (2.24) results in a force on each node on the impactor surface F̃FF

bn
(rrr) as

F̃FF
bn
(rrr) =

∆x3

∆t

(
2 fqqq(rrr, t)−

2wqqqρ f uuubn · cccqqq

c2
s

)
cccqqq. (2.26)

The hydrodynamic force on the impactor FFFh
I is the sum of the forces for all boundary nodes

in the surface as
FFF I,h = ∑

rrr∈bn
F̃FF

bn
(rrr). (2.27)

Similarly, the hydrodynamic torque on the impactor can be expressed as

TTT I,h = ∑
rrr∈bn

(rrr−RRRI)× F̃FF
bn
(rrr). (2.28)

2.2.4.4 Lubrication corrections

This thesis mainly deals with suspensions on high volume fractions. For dense suspensions,
the lubrication interaction between particles at a small inter-particle gap becomes highly
important. As is shown in Fig. 2.4, the surface of the spherical particles in the LBM is
not smooth, and its smoothness depends on the lattice size ∆x. Indeed, the accuracy of the
hydrodynamic interactions that can be captured through the LBM also depends on ∆x. So
the hydrodynamic interactions that arise from a small gap (hi j ≪ ∆x) between suspended
particles cannot be captured correctly. Therefore, we need to incorporate the lubrication
correction when the gap between particles is small. This correction is calculated by the
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grand-resistance matrix formulation of pairwise lubrication interaction [81]

FFF lub
i

FFF lub
j

TTT lub
i

TTT lub
j

←→
σ lub

i←→
σ lub

j


=−



←→
A ii

←→
A i j

←→
B ii

←→
B i j←→

A ji
←→
A j j −←→B ji −

←→
B j j←→

B ii
←→
B i j

←→
C ii

←→
C i j

−←→B ji −
←→
B j j

←→
C ji

←→
C j j←→

G ii
←→
G i j

←→
H ii

←→
H i j

−←→G ji −
←→
G j j

←→
H ji

←→
H j j




UUU i j

UUU ji

ΩΩΩi

ΩΩΩ j

 (26)

where FFF lub
i is the lubrication force on particle i. While for particle j, FFF lub

j =−FFF lub
i . UUU i j =

UUU i−UUU j is the relative velocity. Here, we adopt the notation in Ref. [48, 46] such as
←→
A i j = (A(i j)

αβ
). Due to the Lorentz reciprocal theorem, one has got the symmetry relations

such as
A(i j)

αβ
= A( ji)

βα
. (2.29)

For axisymmetric geometries, the coefficients can be expressed in terms of scalar functions
as

A(i j)
αβ

= XA
i jn

(i j)
α n(i j)

β
+Y A

i j (δαβ −n(i j)
α n(i j)

β
), (2.30)

B(i j)
αβ

= Y B
i j εαβγn(i j)

γ , (2.31)

C(i j)
αβ

= XC
i j n

(i j)
α n(i j)

β
+YC

i j (δαβ −n(i j)
α n(i j)

β
), (2.32)

G(i j)
αβγ

= XG
i j (n

(i j)
α n(i j)

β
− 1

3
δαβ )n

(i j)
γ

+Y G
i j (n

(i j)
α δβγ +n(i j)

β
δαγ −2n(i j)

α n(i j)
β

n(i j)
γ ), (2.33)

H(i j)
αβγ

= Y H
i j (εαγκn(i j)

α n(i j)
β

εβγκn(i j)
κ n(i j)

α ), (2.34)

where n(i j)
α is the normal unit vector between particles i and j in the α direction and εαγκ is

the Levi-Civita symbol. The scalar functions X and Y are functions of interparticle gap hi j.
For two spheres of arbitrary size with the leading order only, the scalar functions are written
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as

XA
i j = 6πai

[
2β 2

(1+β )3
1

hi j +δ

]
, (2.35)

XG
i j = 4πa2

i

[
3β 2

(1+β )3
1

hi j +δ

]
, (2.36)

Y A
i j = 6πai

[
4β (2+β +2β 2)

15(1+β )3 ln
1

hi j +δ

]
, (2.37)

Y B
i j = 4πa2

i

[
β (4+β )

5(1+β )2 ln
1

hi j +δ

]
, (2.38)

Y G
i j = 4πa2

i

[
β (4−β +7β 2)

10(1+β )3 ln
1

hi j +δ

]
, (2.39)

YC
i j = 8πa3

i

[
β 2

10(1+β )
ln

1
hi j +δ

]
, (2.40)

Y H
i j = 8πa3

i

[
β 2(1+7β )

20(1+β )2 ln
1

hi j +δ

]
, (2.41)

where β is the ratio of the particles’ radius defined as β = ai/a j and δ is the roughness
length playing the role of the cutoff length for the lubrication force [101, 72, 87]. Note that
perfect spherical hard particles in the Stokes flow do not allow any contact between particles
since the lubrication force diverges if the gap between particles reaches zero [48, 46, 45, 41].
All simulations in this thesis adopt δ/amin = 1×10−2.

It is noteworthy that the resistance matrix in Eq. (26) slightly differs from the full two-
body resistance matrix of hydrodynamic interactions [46, 45, 41], where the full solutions
contain some terms from the background flow that depends on the rate of strain of the
imposed flow tensor

←→
E ∞. As a benchmark, we validate our simulation by simulating two

particles under simple shear i. e. E∞

αβ
= γ̇δαxδβy (see Fig. 2.6(a)). We then compare the

simulation results with the exact solution of two body hydrodynamic interactions [46, 45, 41].
As one can see in Fig. 2.6(b), the LBM with lubrication corrections (Eq. (26)) is sufficient to
recover the exact solution for two-body problem, while the deviation becomes larger if we
include the

←→
E ∞ terms in the lubrication correction [91].

2.3 Discrete Element Method and Electrostatic interac-
tions

We adopt the linear spring dashpot model for the contact between particles, which involves
both the normal and the tangential parts of the contact force [70]. Note that we omit
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(a) (b)

Fig. 2.6 (a) Two particles under simple shear with shear rate γ̇ . (b) Plots of the time evolution
of the interparticle gap h between two particles under simple shear, where green filled circles
and red squares express the results by the LBM with lubrication correction in Eq. (26), and
the LBM with lubrication correction including E∞ terms, respectively [91]. The blue solid
line is the exact solution of two spheres under the simple shear from Refs.[46, 45, 41].

the dissipative part for the tangential contact force as in Refs. [101, 72] for numerical
stability. For the particle i, the contact force FFFc

i and torque TTT c
i are, respectively, written as

FFFc
i = ∑i ̸= j(FFF

nor
i j +FFF tan

i j ) and TTT c
i = ∑i ̸= j ainnni j×FFF tan

i j , where ai is the radius of particle i. The
normal force is explicitly expressed as

FFFnor
i j = (knδ

n
i j−ζ

(n)u(n)i j )nnni j, (2.42)

where kn is the spring constant, δ n
i j is the normal overlap, nnni j is the normal unit vector

between particles, u(n)i j is the normal velocity difference of the contact point u(n)i j = u(n)i −u(n)j ,
and ζ (n) =

√
m0kn is the damping constant, where m0 is the average mass of the suspended

particles. If the tangential contact force is smaller than the slip criterion, tangential contact
force is represented as

F̃FF
tan
i j = ktδ

t
i jttt i j, (2.43)

where kt , assumed to be 0.2kn, is the tangential spring constant, δ t
i j is the tangential compres-

sion and ttt i j is the tangential unit vector at the contact point between particles i and j. We
adopt the Coulomb friction rules as

|FFF tan
i j |= µ|FFFnor

i j | if |F̃FF
tan
i j | ≥ µ|FFFnor

i j | (slip), (2.44)

|FFF tan
i j |= |F̃FF

tan
i j | if |F̃FF

tan
i j | ≤ µ|FFFnor

i j | (stick), (2.45)
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whereas δ t
i j is updated each time with relative tangential velocity [70].

We also adopt electrostatic repulsive force FFFr
i between suspended particles. Such

electrostatic forces are also expressed by pairwise interactions as FFF r
i = ∑ j ̸=i FFFr

i j. The ex-
plicit expression of FFFr

i j is expressed by the Derjaguin-Landau-Verwey-Overbeek (DLVO)
theory[25, 112, 44] for the double layer electostatic force as

FFFr
i j = F0 exp(−h/λ )nnni j, (2.46)

where F0 = kBT λBẐ2(eamin/λ/(1+ amin/λ ))2/h2 with the charge number Ẑ, the Bjerrum
length λB and the Debye-Hückel length λ . Here, we adopt the Debye-Hückel length λ =

0.02amin. Our simulation ignores the Brownian force. Thus, the electrostatic repulsion force
is important to prevent the suspended particles from clustering [87, 72].



Chapter 3

The impact-induced hardening in dense
suspensions

3.1 Introduction

Under an impact, the suspension becomes rigid-like so that the impactor rebounds [26].
Some people use the discontinuous shear thickening (DST) to explain such impact-induced
hardening [62, 2, 79], while the connection between these two processes is unclear [16].
Actually, there are some differences between these two processes. First, DST is observed
in the dense suspensions undergoing steady shear, while the impact-induced hardening
is a transient process undergoing normal compression. Second, the flow field of dense
suspensions under impact is inhomogeneous [34]. This is contrary to the common DST
which is anisotropic but still homogeneous [87]. Therefore, to make a further distinction
between the impact-induced hardening and the DST, we need a detailed study of impact-
induced hardening. Some papers also suggested some similarities between the shear jamming
and the impact-induced hardening [34, 86], but the connection between the two processes is
also unclear.

Previous experiments have already visualized the displacement and flow fields [114, 34],
and measured the stress exerted on the impactor [71], but any experimental measurement
of the shear and normal stresses fields of dense suspensions under impact has not been
reported yet. On the other hand, the local distribution of the stress can be calculated and
visualized through particle-based suspensions simulations [101, 72, 87]. Moreover, numerical
simulation is an important tool to understand the microscopic mechanism behind several
phenomena in suspensions since the forces acting on the suspended particles is not visible in
three-dimensional experiments, unlike in 2-dimensional dry granular materials where the
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force acting on each grain can be visualized with the photoelastic disks [20]. However, a
particle-based simulation of a free-falling impactor hitting a suspension has not been reported
so far because of the difficulty of simulating suspension with a free surface. As far as
we know, the first fluid-based simulation of suspensions under impact has been conducted
recently in Ref. [5], where the authors successfully reproduced various transient processes
in dense suspensions. Since, however, their fluid simulations with a constitutive equation
with some fitting parameters cannot capture the particle dynamics, the mechanism behind
impact-induced hardening on the microscopic level remains elusive. In this chapter, we
use the simulation method explained in the previous chapter to simulate the impact of a
free-falling impactor into dense suspensions.

This chapter corresponds to Ref. [88], though some parts of it have been omitted and
written in the Appendix for clarity. The outline of this chapter is as follows. The simulation
setup for this chapter is explained in Sec. 3.2. In Sec. 3.3, we focus on the rebound motion
of the impactor and investigate its parameter dependencies, namely the volume fraction of
the suspensions, impact velocity, and the frictional interactions between suspended particles.
Then, to get a better understanding of the mechanism behind the impact-induced hardening,
we also visualize several local quantities inside the suspensions after the impact in Sec. 3.4.
We analyze the topological structure of the contact network between suspended particles
using persistent homology in Sec. 3.5. Finally, we summarize this chapter in Sec. 3.6.

3.2 Simulation setup in this chapter

Let us explain the setup of the simulations used in this chapter. Suspended particles (with
bidispersity ratio amax = 1.2amin, where the radii of the large and small particles are amax

and amin, respectively) are confined into a rectangular box (W ×D×H) with smooth walls.
Details of the particle simulations can be seen in Chapter 2. We use two system sizes: (i)
system with N = 2000 particles for in-depth analysis of the rebound motion, including the
visualization of the local quantities and force network analysis and (ii) system with N = 1200
particles for analyzing the parameter dependences and drawing the phase diagrams. We
discuss the finite-size effects in our simulation in Sec. 3.3.3.

At each simulation, a spherical impactor is dropped to the suspensions. The force and
torque acting on the impactor are, respectively, given by

FFF I = FFF I,h +FFF I,lub +FFF I,c +FFF I,g, (3.1)

TTT I = TTT I,h +TTT I,c +TTT I,lub, (3.2)
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where FFF I,h and TTT I,h are the hydrodynamic force and torque from the LBM, FFF I,lub and TTT I,lub

are the force and torque from the lubrication corrections, FFF I,c and TTT I,c are the contact force
and torque, and FFF I,g =−mIgẑzz is the gravitational force acting on the impactor with mass mI .
Details on how to calculate such forces can be seen in Chapter 2. The radius of the impactor
aI is chosen to be aI = 4.5amin for N = 2000 and aI = 3.75amin for N = 1200 so that the
ratios W/aI = 8, D/aI = 8, and H/aI = 4 are fixed. The impactor is released from various
heights H0 that corresponds to the impact velocity as u0 =

√
2gH0, which also specifies

the units of time in our simulation tg =
√

amin/2g, units of velocity u∗ =
√

2gamin, units of
force F0 =

4
3πρ f a3

ming, and units of stress σ0 = F0/a2
min. The illustration of the free-falling

impactor simulation can be seen in Figs. 3.1(a) and 3.1(b).

(a) (b)

Fig. 3.1 Snapshots of our simulation for φ = 0.54, µ = 1, and u0/u∗ = 4.26 at (a) t/tg = 0.
(b) t/tg = 0.1.

3.3 Rebound motion of the impactor

3.3.1 Impactor motion and the force response

Fig. 3.2 Successive snapshots of the impactor in a quasi-two-dimensional slice of container,
where the dashed lines mark the maximum penetration.
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In this section, we discuss the motion of the impactor shortly after the impact. By looking
at the successive motions of the impactor from Fig. 3.2, where we set time t = 0 and height
z = 0 at the moment of impact, one can confirm that initially, the impactor penetrates and
then slightly rebounds after reaching the maximum penetration. We plot the impactor speeds
uI

z(t)/u∗ against time for various volume fractions of suspended particles φ in Fig. 3.3(a).
The vertical position of the impactor z(t)/amin for various volume fractions φ can be seen
in Fig. 3.3(b). Both results are obtained by using 2000 frictional particles with µ = 1.0.
One can observe the rebound of the impactor (uI

z(t)/u∗ < 0) for φ ≥ 0.54, which agrees
semi-quantitatively with the free-falling impactor experiment [26]. This rebound is the
instance of the impact-induced hardening of the suspension shortly after the impact. After
the rebound, the suspension relaxes, and the impactor starts to sink. Note that φ for rebounds
might be a little higher than that in the experiment [26].

(a) (b)

Fig. 3.3 (a) Plots of impactor speeds in the z-direction, uI
z(t)/u∗, against time for various

volume fractions φ . (b) Plots of the heights of the impactor against time for various volume
fractions φ . Both results are obtained by using 2000 frictional particles whose friction
constant is µ = 1.

In Fig. 3.4(a), we plot the time evolution of total forces exerted on the impactors for both
rebound and no-rebound cases for µ = 1.0 and N = 2000. One can see that the maximum
exerted force for the rebound case is larger than that for the no-rebound case. We find that
the peak of the contact force is located slightly after the peak of the total force, which follows
the weaker peak from the hydrodynamic contribution. The time difference between these
two peaks is not large so they merge into a single peak in the total force. In an experiment
with a rod impactor, two peaks in the acceleration of the impactor are observed for deep
suspensions while for shallower suspensions, in which rebound takes place, the separation
between peaks is not detectable [114]. Thus, we confirm that the second peak in Ref. [114]
originated from the contact between suspended particles. Moreover, they also observed the
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second peak when the impact force is transmitted to the boundary. To clarify this, we plot
the force exerted on the bottom wall in Fig. 3.4(b). Compared to the force exerted on the
impactor, one can see a clearer distinction between the rebound and no-rebound cases, where
the force exerted on the bottom wall in the rebound case is about three times larger than
in the no-rebound case. This indicates that the rebound takes place when the contact force
network percolates from the impactor to the boundaries, which is consistent with the picture
in Ref. [71].

(a) (b)

Fig. 3.4 Plots of the force for both rebound (φ = 0.54) and no-rebound (φ = 0.50) cases
with N = 2000. (a) Force exerted on the impactor, where the solid lines are the total force,
dashed lines represent the contact contributions, dot-dashed lines represent the hydrodynamic
contributions, and (b) the total force exerted on the bottom wall. All results are obtained for
µ = 1 and u0/u∗ = 4.26.

3.3.2 Parameter dependences of the rebound motion

Now let us discuss the parameters that determine the existence of the rebound motion of the
impactor. First, we fixed the friction coefficient at µ = 1 and vary the impact speed u0 and
volume fraction φ and check whether rebound takes place or not. Due to the limitation of
our computational resources, the data for this phase diagram are obtained with N = 1200
particles. The phase diagram of the rebound process in the plane of control parameters u0

and φ is plotted in Fig. 3.5(a). We observe that the impact-induced hardening depends both
on the impact speed u0 and the volume fraction φ , where one can see that the tendency for a
rebound is higher at high u0 and φ . Some papers reported that impact-induced hardening
depends on impact speed [71, 5]. Note that the highest rebound volume fraction (φ = 0.56)
in our simulation is still below the frictional (µ = 1) jamming fraction φ

µ=1
J ≈ 0.585 [102].

Rebound takes place on 0.50 ≤ φ ≤ 0.56. This range is similar to the observed volume
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(a) (b)

Fig. 3.5 (a)Phase diagram showing whether the impactor rebounds before sinking as a
function of the volume fraction φ and the impact speed u0. (b) Phase diagram showing
whether the impactor rebounds before sinking on a plane of volume fraction φ and friction
coefficient µ .

fractions for the DST under simple shear in numerical simulations [101, 72, 87]. However,
one should recognize that the two processes are different since impact-induced hardening is
a heterogeneous and transient process, while shear thickening is a homogenous steady-state
process.

We then clarify the roles of mutual friction between particles and plot the rebound phase
diagram on a plane of the friction coefficient µ and volume fraction φ in Fig. 3.5(b). Due to
the limitation of our computational resources, the data for this phase diagram are obtained
by simulations of N = 1200 particles. One can verify that the impact-induced hardening is
enhanced as µ increases, as the tendency to rebound is higher for high µ . This µ-dependence
is analogous to that for DST in dense suspensions under steady shear [83, 101, 72, 110, 87]
and for impact in dry granular materials [51].

To investigate how frictional interactions between suspended particles affect the dynamics
of the impactor, we plot the time evolution of the forces exerted on the impactor for both the
frictional and frictionless cases both for φ = 0.54 in Fig. 3.6(a). Here, one can verify that the
force in the frictional case persists longer than that in the frictionless case. To quantify such
tendency, we plot the impulse J defined by J =

∫ t=0.1
t=0 F I

z (t)dt in Fig. 3.6(b). One can confirm
that the impulse for the frictional case monotonically increases as the friction coefficient µ

increases for all volume fractions φ . Here, one can see that friction between particles plays
an important role in impact-induced hardening, where the role of the frictions is to stabilize
the contact between suspended particles, which are essential for the strong hardening of the
suspensions that leads to the rebound of the impactor.
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(a) (b)

Fig. 3.6 (a) Plots of the forces exerted on the impactors for φ = 0.54, u0/u∗ = 4.26 for µ = 0
(no-rebound) and µ = 1 (rebound). (b) Impulses on the impactor J as functions of the friction
coefficient µ for various φ .

3.3.3 Finite size effects

Fig. 3.7 Plots of impactor speeds in the z-direction, uI
z(t)/u∗, against time for several numbers

of particles N for φ = 0.54. The time scale t is scaled by the particle numbers Nκ with
κ = 0.35

In this subsection, we examine how the impactor motion depends on the number of
particles in our system. We plot the time evolution of the impactor velocity for several
numbers of particles N for φ = 0.54 and u0/u∗ = 4.26 in Fig. 3.7. We keep the ratios of the
impactor radius to the width and depth of the box as W/aI = 8, D/aI = 8, and H/aI = 4.
Therefore, varying the numbers of particles N also changes the ratio of impactor radius
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aI to the smallest suspended particles radius amin as aI/amin = 2.25,3,3.75, and 4.5 for
N = 300,600,1200, and 2000, respectively.

We found that the system size mainly scales the time of the impact processes. Although
the impactor velocity depends a little on the system size (and as a result, the phase diagrams
also depend a little on the system size), such system size dependences are not significant.
For instance, if we scale the time by Nκ with exponent κ = 0.35 for the data of φ = 0.54,
we can obtain an approximate universal curve of the impact speed. Thus, one can guess the
behavior in the thermodynamic limit from the simulations with small systems. However, the
value of κ might depend on φ thus a systematic study in finite-size scaling for simulations of
dense suspensions under impact is necessary.

3.4 Inside the hardening suspensions

Fig. 3.8 Force chains of the normal contact forces scaled by the gravitational force |FFFc,n
i j |/F0.

To understand the microscopic mechanism behind the impact-induced hardening, we
visualize the suspension shortly after the impact. First, we visualize the force chains generated
by the impactor by plotting the ratio of the normal contact force to the gravitational force
|FFFc,n

i j |/F0 in Fig. 3.8. One can observe the percolating force chains span from the impactor
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to the boundary without any loops. This spanned region of force chains from the impactor to
the boundaries can be regarded as the dynamically jammed region.

Let us proceed to visualize the quantities of the suspended particles. For this purpose,
we slice the region in the middle of the simulation box as in Fig. 3.9(a). First, we compute
the local volume fraction φi on each particle with the aid of radical Voronoi tesselation [92].
We use an open-source c++ library Voro++ to construct the radical Voronoi tesselation in
our simulation domain [96]. Then, the local volume fraction φi is calculated as φi = vi/Vi,
where vi = 4πa3

i /3 is the volume of particle i and Vi is the volume of its corresponding
Voronoi cell. In Fig. 3.9(b), we visualize φi in the sliced region. One can observe that the
local volume fraction is almost homogeneous and not largely affected by the impact. This
corresponds to the experimental observation where no detectable increase of packing fraction
in the suspension is observed when impact-induced hardening takes place [34].

We visualize the normal stress on each suspended particle σ i
zz in the sliced region in

Fig. 3.9(c). Here we observe a localized region with a distinctively high value of σ i
zz

corresponding to force chains in Fig. 3.8, which extends from the impactor to the boundary.
In Fig. 3.9(d), we visualize each particle displacement in normal (z-) direction ∆zi, also sliced
in the middle of the simulation box. One can observe the existence of a localized region of
high normal displacements, which corresponds to the regions in Figs. 3.9(c) and 3.8. The
visualization of ∆zi within our simulation reminisces the experimentally observed one in
Refs. [114, 34]. The regions of large σ i

zz (Fig. 3.9(c)), ∆zi (Fig. 3.9(d)), and the force chains
(Fig. 3.8) correspond to the dynamically jammed region in Refs. [114, 34]. As indicated in
Refs. [114, 34, 71, 5], the propagation speed of the jamming front depends on the impact
speed. After the impactor stops, one can imagine that the vanishing of the stress exerted on
the suspension by the impactor allows the suspension to relax and to become soft, which
in turn the impactor subsequently sinks after the impact. On the other hand, we observe a
uniformly weaker magnitude of the shear stress σ i

xz compared to the normal stress σ i
zz as we

plot the ratio σ i
xz/σ i

zz of each particle in the sliced region in Fig. 3.9(e). Thus, the local shear
stress is unrelated to the dynamically jammed region. This observation distinguishes the
impact-induced hardening and the DST.

3.5 Topology of the force network: Persistent homology
analysis

In this section, we elaborate the role of the network formed by contacting particles (force)
chains in impact-induced hardening. One can analyze the topological structure of force
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(a)

(b) (c)

(d) (e)

Fig. 3.9 Visualizations of local quantities for φ = 0.54 and u0/u∗ = 4.26 shortly after the
impact (t/tg = 0.1): (a) A top view of the sliced region. (b) Local volume fraction φi. (c)
Magnitude of the dimensionless normal stress σ i

zz/σ0. (d) Normal displacement ∆zi. (e)
Absolute ratio between the shear and normal stress.
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chains using persistent homology analysis [18]. In addition to successfully distinguishing the
liquid, amorphous, and crystalline states of, e.g. silicon dioxide [39], persistent homology
allows us to quantify the structure of the force chains in granular materials [53, 109] and in
dense suspensions under simple shear [29].

Since no persistent loops or higher dimensional structures are observed in the force
network in Fig. 3.8, the relevant topological structure is only the connected component
represented by the zeroth Betti number β0. One can perform persistent homology analysis
for connected component by filtering the force chains by increasing threshold θ f , where a
link in a force chain appears when |FFFc,n

i j |/F0 ≤ θ f . We regard this as the birth of a connected
component. As the threshold further increases, the structure grows in size as additional
contacts are added. When connected components merge, the structure that is born later in
the filtration (which has higher birth θ f ) dies. We record the birth θ f as θ f ,b and the death
θ f as θ f ,d . This rule ensures that θ f ,d ≥ θ f ,b. The algorithm for filtering chains is available
in public domains [75]. Note that in Refs. [53, 109, 29], θ f ,b is not always smaller than
θ f ,d , since they adopt filtration by reducing the threshold. We plot these quantities in the
persistence diagram. Details on how to transform the force networks into a persistence
diagram are written in Appendix A.

(a) (b)

Fig. 3.10 (a) Persistence diagram of the connected components of force network for φ = 0.54,
u0/u∗= 4.26, and µ = 1 shortly after the impact (t/tg = 0.1). (b) Plots of the total persistence
of the connected components T P0, scaled by the number of suspended particles N, against
time for φ = 0.54 and u0/u∗ = 4.26 (red lines), and the corresponding contact force on the
impactor in the z−direction F I,c

z (dashed blue lines).

We plot θ f ,d against θ f ,b for all connected components appearing in Fig. 3.8 in the
persistence diagram (Fig. 3.10(a)). Shortly after the impact, we observe more points far from
the diagonal, representing the connected components which persist through the increments
of the force threshold with the life span (θ f ,d−θ f ,b). The mechanism for the occurrence of
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a long lifespan for some connected components is by forming a long chain. Thus, persistent
homology emphasizes the length of the chain instead of its magnitude. This argument shows
that percolated force chains exist. One point to note is that a component with θ f ,d = −1
has infinite persistence, i.e. it does not die until the filtration ends. The components with
infinite persistence represent the contact forces links that do not form any connection with
other links. Persistent homology ignores the effect of such contact forces since we are only
interested in extracting the structural information.

The total persistence of the connected components T P0 is the sum of all life spans in the
persistence diagram

T P0 = ∑
(θ f ,d ,θ f ,b)

(θ f ,d−θ f ,b). (3.3)

This allows us to describe the persistence diagram by a single number. Higher T P0 means
more merging of force chains takes place, while T P0 = 0 means that no connected components
are merged. We plot T P0 scaled by the number of suspended particles N against time in Fig.
3.10(b). It is remarkable that T P0 reaches its peak at the same time as the corresponding
contact force and that the shape of T P0 is similar to that of the contact force. Thus, the peak
of the contact force inducing the hardening of the suspension originates from the existence
of long and sustained force chains. This can only take place when the force chains are
percolated to the boundaries. Our results provide quantitative proof for the argument in
Refs. [114, 71, 26] in which the impact-induced hardening takes place when the dynamically
jammed region spans from the impactor to the boundary.

To conclude this section, let us re-state the implications of our persistent homology
analysis. First, the magnitude of the force chains is not as important as its topological struc-
ture. Second, persistent homology provides quantitative proof that the dynamically jammed
region that spans from the impactor to the boundary exists. Third, there are no persistent
loops of force chains in our simulations. Meanwhile, loops are more significant for sheared
suspensions where DST is observed since the total persistence of β1 can capture the behavior
of the viscosity [29]. This distinction exists because the force chains in sheared suspensions
are more structured and uniformly distributed than that in suspensions undergoing impact.
Thus, this gives us another distinction between the impact-induced hardening and the DST.

3.6 Summary of this chapter

We have simulated the impact-induced hardening of suspensions by the LBM simulation
with a free surface, where the free-falling impactor rebounds for high impact speed with
the suspension of high volume fraction involving frictional particles. By visualizing each
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suspended particle, we observed the emergence of the dynamically jammed region with a
distinctively huge value of particle normal stress σ i

zz, formed by force chains of contacting
particles. Meanwhile, the particle shear stress σ i

xz of the suspension is not significantly
affected by the impact. We also found that frictional interaction between suspended particles
is necessary for the impact-induced hardening to maintain the dynamically jammed region.
The fact that the jammed region is characterized by the normal stress instead of shear stress is
important since it distinguishes the impact-induced hardening from shear-induced phenomena
such as DST and shear jamming. Finally, with the aid of persistent homology, (i) we provided
the quantitative proof of the existence of a system-spanning dynamically jammed region,
and (ii) we found that only the topological structure of the force chains is important for the
contact force acting on the impactor, and (iii) we did not observe any persistent loops formed
by the force networks, which distinguish the impact-induced hardening and the DST.





Chapter 4

Viscoelastic response of the impact
process in dense suspensions

4.1 Introduction

Previously in Chapter 3, we have discussed the elastic response of the suspensions, charac-
terized by the rebound process of the free falling impactor. In this chapter, we discuss the
relation between the impact speed u0 and the maximum force acting on the impactor Fmax

or the elapsed time tmax to reach Fmax in impact processes. Previous studies [114, 79, 13]
showed the existence of power-law relations such as

Fmax ∝ uα
0 , tmax ∝ uβ

0 . (4.1)

It is noteworthy that similar relations are also found in impact processes for dry granular
materials [55]. To explain the motion of the impactor after the impact, Ref. [114] proposed
the added-mass model. The numerical solution of the added-mass model suggests α = 2
and β = −1 [79], though the exponents in their experiment are α = 1.5 and β = −1/2.
Moreover, a closer look at the data in Ref. [114] suggested that u0-independent exponents
α and β are not appropriate to fit the data in all ranges of the impact speed since such
power-law only exists at high impact speed. A recent experiment [13] also suggested α = 1.5
and β = −1/2. These values of the exponents are obtained as the solution of the viscous
force model [13], which is inspired by the existence of a growing dynamically jammed
region below the impactor [114, 34]. Nevertheless, the viscous force model [13] has two
defects in which (i) the model cannot explain the behavior for low u0 regime observed in Ref.
[114], and (ii) the model cannot explain the mechanism of the rebound process since any
elastic term is absent. Therefore, the connection between the rebound of the impactor and
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the relationships among u0, Fmax, and tmax should be clarified to understand the viscoelastic
response of an impactor on dense suspensions.

In this chapter, we try to clarify the connection between the relations among u0, Fmax,
and tmax and the rebound process. In addition, we propose a phenomenology to explain
these processes, including the elastic force as a result of percolated force chains between the
impactor and bottom plate to describe the rebound phenomenon. This model is essentially
reduced to the viscous force model if percolated force chains are absent. This chapter
corresponds to Ref. [89]. The structure of this chapter is as follows. In Sec. 4.2, we briefly
describe the simulation setup and the parameter selections. In Sec. 4.3, we present the
phenomenological floating + force chains model. In Sec. 4.4, the floating + force chains
model is validated with the simulation results. In Sec. 4.5, we summarize the results of this
chapter.

4.2 Simulation setup and parameter selections

Fig. 4.1 An illustration of an initial setup of our simulation.

We simulate a binary mixture of suspension consisting of equal number of large and
small particles with bidispersity ratio amax = 1.2amin, where the radii of the large and small
particles are amax and amin, respectively. We use such a mixture to avoid the crystallization of
suspended particles. These suspended particles have the identical density ρp which is equal
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to the density ρ f of the solvent. The suspension is confined in a rectangular box surrounded
by smooth sidewalls and a smooth bottom plate. Since we simulate the free falling processes
of an impactor, there is no lid above the container. The volume V of the suspension at rest
is expressed as V =W ×D×H, where H is the depth of the suspension and W = D is the
width of the container as shown in Fig. 4.1. The volume fraction φ of the suspension at
rest without the impactor is defined as φ = 2Nπ(a3

max +a3
min)/3V , where N is the number of

suspended particles used in the simulation. The hydrodynamic interaction among particles
is simulated using the LBM. The contact force between suspended particles is modeled by
the DEM with spring constant kn between contacting particles [70]. In this paper, we adopt
the friction coefficient µ = 1 for all cases. Details of our simulation method can be seen in
Chapter 2.

A spherical impactor with diameter DI and density ρI is released from the height H0

which corresponds to the impact speed u0 =
√

2gH0 with the gravitational acceleration g.
In our simulation ρI and DI satisfy ρI = 4ρ f and DI = 6amin, respectively. The mass of the
impactor mI is expressed as mI = πρID3

I /6. We also introduce the time scale tg =
√

amin/2g,
speed scale u∗ =

√
2gamin, and force scale Fg =

4
3πρ f (DI/2)3g. All variations of simulated

volume fractions φ and box sizes are summarized in Table. 4.1. Note that we use three
ensembles for these sets of parameters: (i) φ = 0.53, W = D = 6DI , H = 3DI and (ii)
φ = 0.53, W = D = 6DI , H = 2DI . We only simulate one ensemble for the other cases.

Volume fraction φ Depth H Width W No. of particles N
0.00 3DI 6DI 0
0.10 3DI 6DI 409
0.25 3DI 6DI 1021
0.40 3DI 6DI 1634
0.48 3DI 6DI 1960

2DI 4DI 617
0.51 3DI 6DI 2083

6DI 5DI 2893
7DI 4DI 2160
2DI 4DI 642

0.53 2DI 6DI 1443
3DI 6DI 2164
7DI 4DI 2245

0.56 2DI 4DI 677
7DI 4DI 2371

Table 4.1 All variations of simulated volume fractions φ and box sizes with the corresponding
numbers of suspended particles N.
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4.3 Phenomenology: Floating + force chains model

4.3.1 Overview

We propose the following simple phenomenology to describe the vertical motion of an
impactor:

mI
d2zI

dt2 =−mI g̃+F I
D, (4.2)

where zI(t) is the vertical position of the center of mass of the impactor, g̃ is the effective
gravitational acceleration defined as g̃ = g(ρI − ρ f )/ρ f , and F I

D is the drag force acting
on the impactor. It should be noted that we previously adopted the dynamical Hertzian
contact model (DHCM) in Ref. [88] but the predictions of the DHCM, 6/5 < α < 4/3 and
−1/3 < β <−1/5, disagree with the simulation and experimental results. DHCM has also
another drawback in which it cannot recover the u0 independent regime observed in our
simulation. Details on DHCM can be seen in Appendix B.

Brassard et al. [13] proposed the viscous force model with a drag term that is proportional
to the depth of the impactor, though their model ignores the gravity term mI g̃ and the elastic
force to reproduce the rebound process. Although their model cannot explain u0 independent
regime and the rebound process, the analytic solution of the model yields α = 1.5 and
β = −0.5. Of course, we should take into account the elastic force in the later stage of
the impact if there are percolated force chains from the impactor to the bottom plate (Sec.
4.3.3). The model used in Sec. 4.3.3 reduces to the model in Sec. 4.3.2 when the number of
percolated force chains n(t) vanishes. Thus, our proposed model in Sec. 4.3.2 is essentially
the same as that in Ref. [13] with keeping the gravity term. Nevertheless, explain the floating
model with n(t) = 0 in Sec. 4.3.2, and introduce the floating + force chain model with
n(t) ̸= 0 in Sec. 4.3.3 separately.

4.3.2 Floating model

Let us propose a simple phenomenology which we call the floating model to explain the
behavior of the impactor for both Fmax and tmax. To model the motion of the impactor, we
assume that the impactor is only influenced by the gravity and viscous drag force from the
surrounding suspension in the early stage. This assumption is based on the observation that
the dynamically jammed region is floating without touching the bottom plate in the early
stage of the impact [114, 34]. We also assume that the drag force is proportional to the
impactor velocity because the fluid drag should be determined by the Stokes flow. Thus, in
order to extract the coefficient, we plot the drag exerted on the impactor F I

D divided by the
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(a) (b)

Fig. 4.2 (a) Plot of the drag exerted on the impactor F I
D,z scaled by Fg and impactor velocity

uI
z/u∗ against impactor depth scaled by the diameter of the impactor zI/DI . Black dashed

line represents the linear fit of F I
D,z/Fg for zI/DI ≤ 0.7. (b) An illustration of an impactor

in the suspension liquid to explain z, zI , and θ0 (the black solid line connects the deepest
position of the impactor at z with the center of mass at zI , the red solid line is the line between
the surface of the suspension and the center of mass, the green dashed line represents the
deepest point z, the red dashed line is the surface of the suspension (z = 0), and θ0 is the
angle between the black and red solid lines.

velocity against |z| in Fig. 4.2(a), where z is the deepest position of the impactor (z = 0 is the
instance of the impactor touches the surface of the liquid). Here, we confirm that the drag is
proportional to the impactor depth when |z|/DI ≤ 0.7. It should be noted that the center of
mass of the impactor zI is related to z as zI = z+aI .

The linear relationship between |z| and the drag force in Fig. 4.2(a) may be understood by
the following simple model. For |z|< DI , the surface of the impactor is partially surrounded
by the liquid. Here, we assume that Stokes drag law can be used for the region surrounded
by the liquid. Stokes’ drag force consists of two parts, the pressure drag F I

D,p and friction
drag F I

D, f as F I
D = F I

D,p +F I
D, f [4],

F I
D,p =−3πηeffaI żI

∫
θ0

0
cos2

θ sinθdθ , (4.3)

F I
D, f =−3πηeffaI żI

∫
θ0

0
sin3

θdθ

=−3πηeffaI żI(1− cosθ0)+F I
D,p, (4.4)

where aI is the radius of the impactor satisfying aI = DI/2, ηeff is the effective viscosity
of the surrounding suspensions, and θ0 is the separation angle between moving direction
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(θ = 0) and the line from the impactor center to the surface of the liquid (see Fig. 4.2(b)).
Note that the deepest position of the impactor satisfies the relation |z|= a(1− cosθ0). Thus,
one can reach

F I
D =−3πηeffżI|z|. (4.5)

Then, we can write the equation of motion of the impactor as

mI
d2zI

dt2 =−mI g̃−3πηeffżI|z|. (4.6)

Equation (4.6) can be solved exactly with the aid of the Airy functions (see Appendix C).
The solution of Eq. (4.6) yields

α =
3
2
, β =−1

2
(4.7)

for high u0. Fmax should be independent of u0 for low u0 because the second term on the
right-hand side (r.h.s.) of Eq. (4.6) is much smaller than the first term for low u0.

4.3.3 Floating + force chains model

Unfortunately, Eq. (4.6) cannot explain the rebound of the impactor because of the absence
of elastic force which is the origin of the rebound. This indicates the drawback of the viscous
force model which cannot explain the rebound process. Since the force can be transmitted via
contacts of suspended particles along the chains, we can calculate the elastic force along the
chains (see Chapter 3 and Appendix D for definition and visualizations of the force chains).
Then, we include an elastic term to Eq. (4.6) from the connected force chains between the
impactor and bottom plate as

mI
d2zI

dt2 =−mI g̃−3πηeffżI|z|+n(t)kn|z|, (4.8)

where n(t) is the number of connected chains from the impactor to the bottom plate, and kn

is the spring constant between suspended particles in the DEM. In other words, the elastic
force (the third term on the r.h.s. of Eq. (4.8)) is originated from the contacting elastic force
along the force chains of contacting suspended particles between the impactor and bottom
plate. Details of the algorithm to determine n(t) is written in Appendix D. It is obvious that
Eq. (4.8) is reduced to Eq. (4.6) if the percolated force chains do not exist, i. e. n(t) = 0 in
the early stage of the impact. In this sense, the model in Eq. (4.8) is more general than the
floating model described by Eq. (4.6).
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4.4 Simulation results

4.4.1 Impactor motion: Revisit the rebound motion

In Fig. 4.3, we plot the time evolutions of the velocity and vertical position of the impactor,
the force acting on the impactor, and the force acting on the bottom plate obtained from our
simulation. From Fig. 4.3(a), one can see the existence of a rebound process i.e. the region
with −uI

z < 0. From Fig. 4.3(c), one can define Fmax as its peak value and tmax as the time to
reach Fmax. Note that tmax coincides with the onset time of the force exerted on the bottom
plate Fw,b

z , while the rebound takes place around and after the peak of Fw,b
z (see Fig. 4.3(d)).

This indicates that the rebound of the impactor takes place when the force from the impactor
is transmitted through the force chains to the bottom plate.

The solutions for zI(t), uI
z(t) = dzI(t)/dt, and F I

z (t) = mId2zI(t)/dt2 from Eq. (4.8)
and Eq. (4.6) are plotted alongside the simulation results in Fig. 4.3. We use the value
of the effective viscosity ηeff = 4.9× 104m0/(amintg) as a fitting parameter. This value
is about a hundred times larger than the viscosity of the solvent η0 and five times larger
than the observed viscosity for DST under simple shear using LBM simulation [87]. Such
enhancement of viscosity will be explained in detail in the next chapter.

We also find that tmax is located much earlier than the time of the rebound region (uI
z < 0).

This suggests that Fmax and tmax are not related to the rebound motion. This is consistent with
the following observation in which Fmax and tmax are independent of system size [13] but the
rebound motion strongly depends on the system size. Indeed, as can be seen in Fig. 4.4(a),
the rebound takes place only for the suspension in a shallow vessel as in the case of H = 2DI ,
while the rebound cannot be observed for the suspension in a deep vessel (H = 3DI). At the
early stage for t/tg < 0.05, such depth dependence does not exist.

In Fig. 4.4(b), we plot time evolutions of the impactor velocity from our simulation along-
side with the corresponding results of Eqs. (4.6) and (4.8) with ηeff = 4.9×104m0/(amintg)
and kn = 2.5×104m0/(amint2

g). Here, one can see that the rebound of the impactor can be
recovered by the introduction of the third term on the r.h.s. of Eq. (4.8) for the shallow
vessel case (H = 2DI) (see Fig. 4.4(b)). On the other hand, the floating model (Eq. (4.6)) is
sufficient to recover the impactor velocity correctly for the deep vessel case (H = 3DI) where
rebound does not take place. Thus, the phenomenology described by Eq. (4.8) can describe
the quantitative behavior of the impactor by the introduction of two fitting parameters ηeff

and n(t), though n(t) is determined by the observation as shown in Appendix D. Thus, our
phenomenology is more accurate than the linear model in Ref. [26] and the DHCM in Ref.
[88].
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Fig. 4.3 Plots of the time evolutions of the impactor motion (blue solid lines) for φ = 0.53,
W = D = 6DI , and H = 2DI for (a) the velocity uI

z/u∗ (black dashed line represents uI
z/u∗ =

0), (b) the position of the deepest point of the impactor z(t)/amin, (c) the force exerted on the
impactor F I

z /Fg, and (d) the force exerted on the bottom plate Fw,b
z /Fg, respectively. Dashed

purple lines in (a), (b), and (c) represent the solution of Eq. (4.8) and dashed light blue lines
in (a), (b), and (c) represent the solution of Eq. (4.6). Black dotted lines highlight Fmax and
tmax.
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(a) (b)

Fig. 4.4 (a) Plots of the time evolutions of the impactor velocities uI
z/u∗ for φ = 0.53 and

W = D = 6DI (left vertical axis) for various u0 and H. Blue and cyan solid lines represent
the results for H = 2DI with u0/u∗ = 3.2, and H = 2DI with u0/u∗ = 2.6, respectively. Red
and yellow solid lines represent the results for H = 3DI with u0/u∗ = 3.2, and H = 2DI with
u0/u∗ = 2.6, respectively. Black dashed line represents uI

z/u∗ = 0. The dot-dashed lines
represent the corresponding forces exerted on the bottom plate Fw,b

z /Fg (right vertical axis).
(b) Plots of time evolutions of velocities of the impactors for a rebound case with H = 2DI
and a no-rebound case with H = 3DI . Filled triangles represent the simulation results of
φ = 0.53, W = D = 6DI , and H = 2DI . The green solid line represents the solution of Eq.
(4.6), and the purple solid line represents the solution of Eq. (4.8) (the black dashed line
represents uI

z/u∗ = 0). Here, we also plot the simulation results for φ = 0.53, W = D = 6DI ,
and H = 3DI (black squares), where rebound does not take place.
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4.4.2 Relationships among u0, Fmax, and tmax

In Fig. 4.5, we plot Fmax exerted on the impactor scaled by the gravitational force Fg against
u0 for φ ≥ 0.48 (see Appendix E for the results of φ ≤ 0.40). Here, the results of our
simulation for Fmax and tmax show the existence of power-law regimes satisfying

Fmax ∝ uα
0 , tmax ∝ uβ

0 (4.9)

with α = 1.432±0.003 and β =−0.523±0.042 for u0 > u∗. One can find that the data for
all volume fractions and system sizes are collapsed on a universal curve for Fmax, while tmax

does not have such data collapse. The observed exponents from our simulations agree with
those in the experiments [114, 13] and is smaller than the solution of the added-mass model
[79]. The values of α and β also are very close to those obtained by the viscous force model
[13].

Our simulation illustrates that a single power-law is insufficient for Fmax versus u0 to
fit the data in all ranges of the impact speed. Instead, we find a crossover of the relation
between Fmax and u0 from u0 independent regime for low u0 to the power-law region for
high u0 regime (see Fig. 4.5(a)). The corresponding u0 independent regime of tmax for low
u0 is also visible in Fig. 4.5(b), though it is not as obvious as in the Fmax case. Even though
the authors of Ref. [114] did not mention such a crossover in their paper, their data suggest
the existence of a subtle crossover in the relation between u0 and Fmax, similar to what we
observe. Furthermore, it is obvious that a set of single values of α and β is no longer valid if
the acceleration due to gravity plays some role. This might be the reason why the viscous
force model in Ref. [13] cannot explain the existence of u0 independent regime.

The numerical solutions for Fmax and tmax (the blue solid lines) are presented in Figs.
4.5(a) and 4.5(b), respectively. We use the value of the effective viscosity ηeff = 4.9×
104m0/(amintg) as a fitting parameter. One can see that Eq. (4.6) can recover the crossover
from u0 independent regime for low u0 to the power-law regime for high u0 observed in
our simulations. This is understandable since the peak of the force exists in the early stage
where the elastic force to produce the rebound does not play any role. Thus, one does not
need to take into account the elastic force to explain the relations among u0, Fmax, and tmax.
Moreover, we have simulated variations of widths and depths in Fig. 4.5 to confirm that the
relations among u0, Fmax, and tmax are independent of the system size. This is in contrast to
the rebound phenomenon which strongly depends on the width and depth of the simulation
box (see Fig. 4.4). This observation is another evidence that the relations among u0, Fmax,
and tmax are not related to the rebound phenomenon.



4.5 Summary of this chapter 47

(a) (b)

Fig. 4.5 (a) Plots of maximum forces exerted on the impactor Fmax scaled by the gravitational
force Fg against u0/u∗ for various container sizes, where the green dashed line represents
1.58(u0/u∗)1.432. (b) Plots of time tmax to reach Fmax scaled by tg against u0/u∗, where the
green dashed line represents 0.03(u0/u∗)−0.523. The blue solid lines in both figures represent
the solution of the floating model (Eq. (4.6)).

4.5 Summary of this chapter

We have numerically studied the impact processes on dense suspensions using a coupled
model of LBM and DEM to elucidate the connection between the elastic rebound of the
impactor and the relations among u0, Fmax, and tmax. Then, we have also proposed a simple
phenomenology called the floating + force chain model to explain our simulation results.
This model reduces to the floating model if there are no percolated force chains from the
impactor to the bottom plate. We numerically find the existence of a power-law regime
satisfying Fmax ∝ uα

0 , with α = 1.432± 0.003 and tmax ∝ uβ

0 , with β = −0.523± 0.042,
while the analytic solution of the floating model indicates α = 3/2 and β =−1/2. We have
also confirmed the existence of u0-independent regimes of Fmax and tmax for low u0. The
crossovers of Fmax and tmax from u0-independent regimes to the power-law regimes can be
reproduced by the floating model correctly. We conclude that the relations among u0, Fmax,
and tmax are not related to the rebound process based on three observations: (i) We found
that Fmax emerges in the early stage of the impact, while the rebound of the impactor takes
place in the later stage. (ii) We have confirmed that the relations among u0, Fmax, and tmax

are independent of the system size, while the rebound strongly depends on the size of the
container. (iii) One can recover the exponents for Fmax and tmax with a drag term that is
proportional to the impactor depth without considering any elastic force, which agrees with
Ref. [13]. In contrast, rebound requires an elastic term from the percolated force chains.





Chapter 5

Effective viscosity and elasticity of
dynamically jammed region and their
role for the hopping motion on dense
suspensions

5.1 Introduction

People being able to run on top of dense suspension has attracted the interest of scientists as
well as the general public [16, 80]. Most physical studies for impact-induced hardening use
a free-falling impactor (as we have discussed in Chapter 3 and Chapter 4) or a constant speed
penetrating intruder. We have also mentioned that using a free-falling impactor, Ref. [114]
reported the existence of a localized rigid region beneath the impactor called the dynamically
jammed region (DJR). In Chapter 3, we observed that such a region corresponds to the force
chains formed by contacting suspended particles. Since such a DJR grows in size, Ref. [114]
proposed the added-mass model, which treats the impact as an inelastic collision between
the impactor and the DJR that evolves with time. Then, Ref. [34] visualized the flow field
inside dense suspensions around penetrating intruder and found that the strain rate peaked on
the boundary of the DJR. Inspired by this observation, Ref. [13] proposed a model based
on the viscous force acting on the boundary of the DJR. Yet, none of the above models can
explain the existence of elastic response of dense suspensions under impacts such as fractures
[95], high stress near boundary [71], and rebound of the impactor [26]. Reference [71]
proposed a constitutive model and measured the elastic modulus once the DJR spans from
the impactor to the boundary. In Chapter 4, the viscoelastic response of dense suspensions
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under the impact is captured using the floating + force chains model [89], where percolated
force chains of contacting suspended particles are necessary to recover the elastic motion.
However, such a picture neglects the fact that even if the force chains are not touching the
boundary, the DJR itself might have effective elasticity. Therefore, the rigidity of such a DJR
needs to be thoroughly investigated.

The motion of a running or walking person is more complicated than the free-falling
impactor or penetrating intruder. One particular approach to directly investigate the running
motion on the suspensions has been carried out in Ref. [79]. They discussed the maximum
penetration depth of a foot for various impact velocities corresponding to walking, jogging,
and running, and fit the data using a constitutive model with the aid of the elastic modulus
obtained in Ref. [71]. They also showed that the added mass model is not sufficient to
recover the response of the suspensions under running motion. Nevertheless, little is still
known about the dynamics of multiple impacts on dense suspensions, which are important
for running and walking motions. Some studies have tried to reproduce mechanical models
for legged animal locomotions. One of the simplest and most celebrated models is the
spring-mass model inspired by biomechanical observations [9]. Such a model has been
realized as a one-legged hopping robot [93]. In the spring-mass model, the human leg is
represented by a spring and the human body is simply represented by a point mass. Inspired
by such a model, we study a foot-spring-body system in dense suspensions in this chapter.

This chapter corresponds to Ref. [90]. The structure of this chapter is as follows. In Sec.
5.2, we describe the coarse-graining method to characterize the elasticity and viscosity of the
DJR. We compare the result of the model including the effective elasticity and that of the
floating model without elasticity [89] to clarify the role of elasticity of the DJR when force
chains are not connected with the bottom boundaries. We then extend the previous floating +
force chains model to include the effective elasticity. In Sec. 5.3, we describe the simulation
setup for the foot-spring-body model. By using the coarse-graining method, we discuss the
hopping motion of such a system to clarify the criterion for the hopping motion. Finally in
Sec. 5.4, we conclude our findings.

5.2 Dynamical jammed region model with effective viscos-
ity and elasticity

5.2.1 Setup for a free-falling impactor simulation

We adopt the coupled LBM-DEM simulation as in Chapters 3 and 4. Details of the simulation
method can be seen in Chapter 2. The simulation setup for this section is as follows. A
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suspension with N particles and volume fraction φ is contained in a box sized W ×H×D.
We have adopted the perfect density matching between the solvent and suspended particles,
where the densities of particles and solvent satisfy the relation ρp = ρ f , where ρp and ρ f

are the densities of a suspended particle and solvent fluid, respectively. In this section, a
spherical impactor with the diameter DI and density ρI , is released from the height H0 which
corresponds to the impact speed u0 =

√
2gH0 with the gravitational acceleration g. In our

simulation ρI and DI satisfy ρI = 4ρ f and DI = 6amin, respectively, where amin is the radius
of smallest suspended particle. We also introduce the time scale tg =

√
amin/2g, speed scale

u∗ =
√

2gamin, and force scale Fg =
4
3πρ f (DI/2)3g. We evaluate the impactor motions in

deep and shallow containers. Here we use φ = 0.53, H = 3DI , W = D = 4DI , and N = 960
for the deep container case and φ = 0.53, H = 2DI , W = D = 4DI , and N = 670 for the
shallow case.

5.2.2 Coarse-graining method and delineating the dynamically jammed
region

The DJR can be defined once we obtain the strain rate, strain, and stress field inside the
suspensions. The approximate description of such fields from discrete particle data can
be carried out using the coarse-graining method that has been used in granular materials
[119, 99]. As an example, the discrete particle data for microscopic mass density ρdis at
position rrr and time t can be expressed as

ρ
dis(rrr, t) = ∑

i
miδ (rrr− rrri(t)), (5.1)

where rrri and mi are the position and mass of particle i, respectively. For smoothed and
coarse-grained density ρ , the delta function in Eq. (5.1) is replaced with a coarse-graining
function Φ(rrr) as

ρ(rrr, t) = ∑
i

miΦ(rrr− rrri(t)). (5.2)

Here, we adopt a Gaussian with width w

Φ(rrr− rrri) =
1

(w
√

2π)3
exp

[
−(rrr− rrri)

2

2w2

]
, (5.3)
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where rrr = (x,y,z) and rrri = (xi,yi,zi) are the field position and particle position, respectively.
Similarly, the coarse-grained momentum density ppp(rrr, t) can be introduced as

ppp(rrr, t) = ∑
i

miuuui(t)Φ(rrr− rrri(t)), (5.4)

where uuui is the velocity of particle i. The velocity field uuu(rrr, t) is defined by uuu(rrr, t) =
ppp(rrr, t)/ρ(rrr, t). The stress tensor←→σ contains the contributions from the contact←→σ c and
hydrodynamics←→σ h

←→
σ =←→σ h +←→σ c. (5.5)

The contact contribution is calculated from the pairwise contact force

←→
σ

c(rrr) =−1
2 ∑

i, j
FFFc

i j⊗ rrri jΦ(rrr− rrri) (5.6)

where FFFc
i j and rrri j are the pairwise contact force and the interparticle distance between parti-

cles i and j, respectively. Here ⊗ denotes the tensor product. Meanwhile, the hydrodynamic
contribution is given as

←→
σ

h(rrr) = ∑
i

←→
σ

h
i Φ(rrr− rrri), (5.7)

where←→σ h
i is the hydrodynamic stress tensor on each particle, obtained from the LBM and

lubrication stresslet (See Chapter 2 for details). The vector field of particle overlaps δδδ n

(which represents the deformation) can be obtained from the contact overlap on each particle
δδδ

i
n

δδδ n = ∑
i

δδδ
i
nΦ(rrr− rrri). (5.8)

Note that we ignore the contributions from rattlers.
Once the flow field is obtained, one can get the symmetric part of the strain rate tensor

←→
D

←→
D =

1
2
(∇uuu+∇uuuT ). (5.9)

Meanwhile, the strain tensor
←→
L is defined as

←→
L =

1
2
(∇δδδ n +∇δδδ

T
n ). (5.10)

Let us introduce the scalar viscosity η defined as [31, 32],

η =
1
2

←→
σ :
←→
D

←→
D :
←→
D

, (5.11)
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where : denotes the scalar or double inner product. The strain rate ε̇ is defined as

ε̇ =

√
2
←→
D :
←→
D . (5.12)

The field of ε̇ can be seen in Fig. 5.1(a). Then, the effective viscous stress σ (vis) is simply
given by [31, 32]

σ
(vis) = ηε̇. (5.13)

Note that σ (vis) contains both the contributions from the normal and shear parts, though, as
shown in Ref. [88], it is dominated by the normal part. Finally, similar to the strain rate, the
scalar strain field ε is defined as

ε =

√
2
←→
L :
←→
L . (5.14)

Similar to Eq. (5.11) one can introduce the rigidity as

G =
1
2

←→
σ :
←→
L

←→
L :
←→
L
. (5.15)

Thus, the effective elastic stress is given by

σ
(el) = Gε. (5.16)

5.2.3 The dynamically jammed region

The DJR can be defined in the following two ways. First, it can be delineated from the strain
rate field since the front of the DJR corresponds to the peak in the strain rate field [34]. As
shown in Fig. 5.1(a), the z−position of the peak of ε̇ is denoted as zfront. The height of the
DJR Hdjr is defined as the distance between the front and the deepest point of the impactor.
Thus, one can approximate the DJR as a hemisphere with radius Hdjr (the red shaded region
in Fig. 5.1(b)). We denote this approach the ε̇−based delineation of the DJR. Alternatively,
we can also define the DJR as the region that has non-zero rigidity G (yellow shaded region in
Fig. 5.1(b)). We denote this approach as the G−based delineation of the DJR. Such G−based
delineation of the DJR essentially represents the region formed by contacting suspended
particles. As one can see in Fig. 5.1(b), both delineations yield qualitatively similar regions.
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(a) (b)

(c) (d)

Fig. 5.1 (a) Strain rate ε̇ field with its peak annotated as the front of the DJR zfront and Hdjr is
the distance between zfront and the deepest point of the impactor. (b) The delineated DJR, the
red region represents the ε̇−based delineation and the yellow region represents the G−based
delineation. The zfront and Hdjr in (a) are also annotated here. (c) Time evolutions of the
effective viscosity ηeff/η0 based on ε̇-based DJR and G−based DJR. (d) Time evolutions of
the effective rigidity Geff/kn based on ε̇−based DJR and G−based DJR.
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Once the DJR is delineated, one can obtain the effective quantities by integrating the
viscosity η and rigidity G fields over the region shown in Fig. 5.1(b) as

ηeff = η0 +
1

Vdjr

∫
d

ηdV, Geff =
1

Vdjr

∫
d

GdV, (5.17)

where d represents the region enclosed by the yellow or red surface in Fig. 5.1(b), and Vdjr is
its volume. Here, η0 is the apparent viscosity of the suspensions, multiplied by the solvent
viscosity before the impact. In Figs. 5.1(c) and 5.1(d), we plot the time evolutions of the
effective viscosity ηeff and rigidity Geff obtained from the ε̇−based delination of the DJR as
well as the G−based delination of the DJR. For the viscosity, one can see that ηeff increases
with time. This confirms the enhancement of the effective viscosity as the result of the
impact, as indicated in the previous chapter. We also observe non-zero rigidity even when the
DJR does not touch the bottom boundary. One can see that the ε̇−based and the G−based
delineations yield a qualitatively similar effective viscosity ηeff and rigidity Geff. However,
quantitative differences exist since the ε̇−based delineations approximate the region as a
hemisphere. From the next subsection onwards, we solely use the G−based delineation of
the DJR to obtain the effective quantities.

5.2.4 Updated viscoelastic model with effective viscosity and elasticity

In the floating + force chains model in Chapter 4, the elastic response only exists when the
force chains percolate. Now, we include the effect of elastic response through the elastic
modulus of the DJR even if the force chains are not percolated in the present chapter. Thus,
we propose the dynamically-jammed-region (DJR) model as

mI z̈I =−mIg−3πηeff(t)|z|żI +Ckeff(t)|z|, (5.18)

where mI is the mass of impactor, z is the deepest point of the impactor, zI is the vertical
position of the impactor, z̈I := d2zI/dt2, keff is the effective spring constant defined as
keff = Geff(t)AD/HD, with AD and HD are the top surface area and height of the dynamically
jammed region, respectively. We also introduce a fitting parameter C which is the order of
unity.

First, we check the validity of the DJR model for the case without rebound and percolating
force chains (impact velocity u0 = 1.8u∗, deep container with H = 3DI). In Fig. 5.2(a), we
plot the solution of Eq. (5.18) for both the solution of the DJR model with C = 1.0 and
the solution from the floating model with a fitting parameter η

′
eff. One can see that both

solutions agree well with the results of the simulation while they have subtle differences.
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(a) (b)

(c)

Fig. 5.2 Time evolutions of the impactor velocity uz/u∗ under various situations: (a) Solution
of Eq. (5.18) is plotted alongside simulation results and the floating model [89] without
rebound and percolating force chains (impact velocity u0 = 1.8u∗, deep container with
H = 3DI). (b) Solution of Eq. (5.18) is plotted alongside simulation results and the floating
+ force chains model[89] for the case with rebound and percolating force chains (impact
velocity u0 = 4.2u∗, shallow container with H = 2DI). (c) Solution of Eq. (5.18) is plotted
alongside simulation results and the floating model [89]] for the case without percolating
force chains but with a small elastic response (impact velocity u0 = 4.2u∗, deep container
with H = 3DI). The inset of (c) shows the magnified impactor velocity around the elastic
response.
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Then, we check Eq. (5.18) for the case of rebound and percolating force chains (impact
velocity u0 = 4.2u∗, shallow container with H = 2DI). In Fig. 5.2(b), we plot the solution
of Eq. (5.18) for the DJR model with C = 0.9 alongside with the solution from the floating
+ force chains model with fitting parameters η

′
eff, and n(t) as in Ref. [89]. In this case, the

DJR percolates and is spanned throughout the system, thus enhancing the elastic response.
Although the floating+force chains model reproduces the result of the simulation almost
perfectly, while the results of the DJR model seem to have slight deviations for a relatively
short time regime. Finally, we examine Eq. (5.18) for the case without percolating force
chains but with a small elastic response (impact velocity u0 = 4.2u∗, deep container with
H = 3DI). In Fig. 5.2(c), we plot the solution of Eq. (5.18) for the DJR model with C = 0.8,
alongside with the solution from the floating model with a fitting parameter η

′
eff. The floating

model cannot capture the elastic rebound, while the DJR model can (see the inset of Fig.
5.2(c)), though the solution of the DJR model slightly deviate from the result of the simulation
around t/tg = 0.1. Thus, the ability to describe the elastic response without non-percolating
force chains is the advantage of the DJR model.

5.3 Foot-spring-body dynamics in dense suspensions

Now let us introduce the foot-spring-body model as a toy model to express a bouncing
motion on suspension liquids. The foot in the foot-spring-body model is expressed as a
rectangular plate impactor with volume Vp =Wp×Hp×Dp and mass mp =Vpρp, where ρp

is the density of the foot plate and we adopt ρp = 1.2ρ f . The body is represented by a sphere
with diameter Db and mass mb. We adopt the density of the body ρb as ρb = 2ρp = 2.4ρ f .
The body and the foot are then connected with a massless spring with the stiffness ks and
natural length L0. Here we use φ = 0.51, H = 2Db, W = D = 4Db, and N = 618. Note that
we are only interested in the vertical (z direction) motion of the system. We then modify Eq.
(5.18) to be the set of equations

mbz̈b =−mbg− ks(zb− zp−L0)−ζsżb

mpz̈p =−mpg−3πηeff(t)zżp +Ckeff(t)|z|
+ ks(zb− zp−L0)−ζsżp, (5.19)

where mb and zb are the mass and the vertical position of the body, respectively, zp is the
vertical position of the plate impactor, ζs is the damping constant, ζs =

√
ks(mp +mb)/2.

With the parallel procedure to the free-falling case, one can draw the DJR induced by the
impact between the foot and the suspensions. The illustration of this setup and the DJR
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(a) (b)

(c)

Fig. 5.3 (a) A snapshot of the simulation of the foot-spring-body system. The body (blue
sphere) is connected with the foot (grey plate) by a massless spring (yellow tube). The green
region expresses the surface of the DJR. (b) Time evolutions of the velocities of the foot
(reds) and body (greens) in z−coordinate, where the black dashed line expresses uz = 0, the
solid lines express the solutions of Eq. (5.19), and the triangles express the results of the
simulations. (c) Time evolutions of the positions of the foot (reds) and body (greens) in
z−coordinate, where the black dashed line expresses the suspension surface, the solid lines
express the solutions of Eq. (5.19), and the triangles express the results of the simulations.
All results here are obtained with ks = 100m0/(amint2

g) and u0 = 4u∗.
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induced by the impact can be seen in Fig. 5.3(a). A typical motion of the foot-spring-body
system can be seen in Figs. 5.3(b) and 5.3(c). Here, we adopt C = 0.9. One can see that
the solution of Eq. (5.19) agrees well with the results of the simulation. Initially, the foot
experiences a strong deceleration as in the free-falling impactor due to the interaction between
the foot and suspensions. Meanwhile, the body still accelerates due to gravity. Then, the
system exhibits a damped oscillation. Thanks to the spring force and the rigidity of the
suspensions, the foot undergoes multiple rebounds (up < 0), and also hops (zp > 0) multiple
times. This result suggests that composite materials including elastic springs inside the body
can maintain their position for a while. This is the first step to realizing the running process
on a suspension.

(a) (b)

Fig. 5.4 Time evolutions of the foot position in z−direction zp with (a) various spring stiffness
ks at u0 = 4u∗ and (b) various initial velocity u0 at ks = 100m0/(amint2

g).

We then evaluate the multiple rebound motion of the foot in detail. First, we check how
the motion of the foot depends on the stiffness of the spring ks. The simulation results for
various ks are presented in Fig. 5.4(a). Here one can see a lower tendency to have multiple
rebounds or hops for higher ks. Moreover, for a rigid system (ks→ ∞), the foot only rebound
once and then sink afterwards. This is similar to the prediction by the added-mass model
in Ref. [79], where they suggested that running on top of suspensions is impossible for a
perfectly stiff leg. Then, we check the initial velocity (u0) dependences in Fig. 5.4(b). As one
might expect, the foot sinks and does not hop for low u0 since the impact-induced hardening
is stronger for high u0 [114, 26, 13, 88].
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5.4 Summary of this chapter

With the aid of a coarse-graining method of the simulation results, we quantified the DJR
induced by the impact on dense suspensions and measured its effective viscosity and elasticity.
As a benchmark, we used the obtained viscosity and modulus and extend the floating + force
chains model in Chapter 4, so that such a model can capture the elastic motion even when
the DJR does not touch the bottom plate. We found good agreements between the simulation
results and the DJR model. To mimic the hopping motion, we discussed the impact of the
foot-spring-body system on the top of dense suspensions. We found that the foot undergoes
multiple rebounds and also hops multiple times due to the spring force and the rigidity
of the suspensions. The DJR model also agrees well with the simulation results for the
foot-spring-body system. Finally, we found a lower tendency for hopping and multiple
rebounds in higher spring stiffness ks and low initial velocity u0.



Chapter 6

Conclusions and outlook

6.1 Conclusions

In this thesis, we numerically and theoretically studied the transient response of dense non-
Brownian suspensions under impacts. We used the coupled lattice Boltzmann method and
discrete element method (LBM-DEM) simulations. Here, the hydrodynamic interactions
were solved using LBM and lubrication corrections. Within the LBM framework, the free
surface of suspensions was also simulated. Then, the contact between suspended particles
was simulated using DEM.

In Chapter 3, we investigated the case of free-falling impactor into dense suspensions.
We observed a rebound of the impactor at high impact speed and high volume fraction. We
also found stronger rebounds for stronger frictional contact between suspended particles. By
visualizing each suspended particle, we observed the emergence of the dynamically jammed
region (DJR) with a distinctively huge value of particle normal stress σ i

zz, formed by force
chains of contacting particles. However, the particle shear stress σ i

xz of the suspension is not
significantly affected by the impact. This distinguishes the impact-induced hardening from
shear-induced phenomena such as discontinuous shear thickening (DST) and shear jamming.
Finally, using persistent homology, we could (i) provide quantitative proof of the existence
of a system-spanning dynamically jammed region, (ii) determine that only the topological
structure of the force chains is important for the contact force acting on the impactor, and
(iii) find that the force networks do not form persistent loops, in contrast to DST.

In Chapter 4, we focused on the connection between the elastic rebound of the free-falling
impactor and the relations among the impact speed u0, the maximum force exerted on the
impactor Fmax, and the time to reach it tmax. We also proposed a simple phenomenology
called the floating+force chain model to explain the motion of the impactor. We numerically
found the existence of a power-law regime satisfying Fmax ∝ uα

0 , with α = 1.432±0.003 and
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tmax ∝ uβ

0 , with β =−0.523±0.042, while the analytic solution of the floating model yields
α = 3/2 and β =−1/2. We also observed crossovers of Fmax and tmax from u0-independent
regimes to the power-law regimes and such crossovers can be correctly reproduced by the
floating model. We concluded that the relations among u0, Fmax, and tmax are not related to
the rebound process based on: (i) We confirmed that the relations among u0, Fmax, and tmax

are independent of the system size, while the rebound strongly depends on the size of the
container. (ii) We found that Fmax emerges in the early stage of the impact, while the rebound
of the impactor takes place in the later stage. (iii) The exponents for Fmax and tmax can be
recovered without considering any elastic force, In contrast, the rebound needs an elastic
term caused by the percolated force chains from the impactor to the bottom plate.

In Chapter 5, we delineated the DJR induced by the impact on dense suspensions and
quantified its effective viscosity and elasticity. The delineation of the DJR was performed by
coarse-graining our simulation data. We used the obtained viscosity and elastic modulus and
extended the floating + force chains model in Chapter 4 to capture the elastic motion even
when the DJR does not touch the bottom plate. The simulation results and the DJR model
were found to be in good agreement. The impact of the foot-spring-body system on the
top of dense suspensions was discussed to mimic the hopping motion. The foot undergoes
multiple rebounds and also hops multiple times due to the spring force and the rigidity of the
suspensions. The DJR model matches the simulation results closely, and we discovered that
higher spring stiffness ks and low initial velocity u0 have a lower tendency for hopping and
multiple rebounds.

6.2 Outlook

This thesis has elucidated the role of the particle-level interactions in the transient macro-
scopic behavior of dense suspensions through numerical simulations. Such particle-level
interactions have not been confirmed experimentally. In particular, one can reproduce our
finding in Chapter 3 that the response to the impact is affected by the friction coefficient
between suspended particles through experiments. For steady-state experiments, it has been
demonstrated that the shape and the asperity of the suspended particles can be controlled
[40]. We also have discussed the role of force chains in dense suspensions under impact. Not
only in dense suspensions, but such force chains also have important roles in the macroscopic
behavior of dry granular materials. In fact, similar force networks are observed in a variety of
other aggregates of athermal particles, such as emulsions, foams, and living cells. This makes
the force chains deserve studies on their own. Through studying the spatial correlation of the
contact network in dry granular materials, Ref. [47] suggested that the force chains arise from
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the topological constraint of the contact network rather than the details of the interaction force
and the balance of force and torque on each particle. This is analogous to the conclusions
drawn by persistent homology analysis of the contact network of dense suspensions under
impact in Chapter 3. Indeed, studies within this line appear to be a worthwhile pursuit.

In Chapter 5, we have delineated the dynamically jammed region induced by the impact
on dense suspensions and quantified its effective viscosity and rigidity from simulation data.
Indeed, it is necessary to construct the equation of motion of the DJR itself. The model
for the growth of zfront with a constant penetrating intruder has been proposed [34, 35].
However, little is known about the relaxation process of the DJR, which is necessary to
reproduce the time evolution of the DJR in the cases of the free-falling impactor, hopping
foot-spring-body system, as well for the sinking process. Thus, it is important to investigate
how the DJR relaxes. Moreover, the usage of particle-based simulation in the DJR studies
allows future research to study the microscopic properties of the DJR in more detail. In
addition to the DST under simple shear and the impact-induced hardening, the motion of a
sinking intruder in dense suspensions also exhibits interesting behavior. Ref. [113] reported
oscillations and stick-slip motions of such a sinking intruder. One could hypothesize that
the origin of such stick-slip motions is the emergence and cessation of the DJR. It would be
interesting to investigate such behavior with the method explained in Chapter 5. We have
discussed the foot-spring-body system in Chapter 5 and our results indicate that hopping on
top of dense suspensions will not be possible for a perfectly stiff leg. However, our analysis
still ignores the horizontal motion of the system, whereas the actual one-legged robot can
also hop horizontally [93]. Thus, it might be of interest for future research to simulate or
experimentally investigate the motion of a more realistic hopper on top of dense suspensions.
Efforts in this line of research will be useful to understand the ability of people to run on
top of dense suspensions and to create a robot that can actually hop or run on top of dense
suspensions.

In Chapter 4, We have discussed the viscoelastic response of dense suspensions under
impact. Such viscoelastic materials are ubiquitous in nature and have a wide range of
applications. Human and animal tissues can also be regarded as viscoelastic materials.
Thus, understanding the penetration dynamics on viscoelastic materials can elucidate the
response of tissues under disturbance such as drug injections [107]. A recent approach using
photoelastic measurement has shed a light on distinct spatiotemporal stress distributions in
gelatin under different types of injection, including needle-free injection with up to 200m/s
penetration speed [77]. The spatial stress distributions exhibit a high-stress region with
a sharp interface, reminiscent of what we have observed and discussed in Chapter 3 and
Chapter 5. However, for dense suspension cases, the high stress region is localized in the
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normal direction of the penetration, while for gelatin, the stress is localized in the lateral
directions. It is then natural to ask whether such difference arises from different microscopic
interactions of the viscoelastic materials or if there are other underlying mechanisms beneath
this phenomenon. Thus, more detailed and comprehensive studies regarding the penetration
dynamics of the human and animal tissues will be necessary.

In contrast to the passive suspensions system discussed in this thesis, active suspensions
contains constituent elements that consume energy to move. Active matter can be classified
further as dry (no momentum conservation) and wet (momentum conserved through coupling
with solvent fluid). Wet active suspensions are less studied compared to their dry counterparts.
The most common model to describe motile particles in solvent is the squirmer model, which
is based on the polynomial expansion of slip velocity on the particles’ surface [66, 8]. Effort
on resolving the hydrodynamic interactions on such swimmers is still an ongoing subject. The
far-field approximation of hydrodynamic interactions is often used in the squirmer model,
in which the swimmers are represented as point dipoles and quadrupoles. Indeed, such
far-field approximations are only relevant for dilute suspensions. The near-field and far-field
approximation of two-body hydrodynamic interactions have been derived for squirmers
[43, 118]. However, these approximations currently neglect the effect of intermediate-ranged
hydrodynamic interactions. A recent alternative approach combines the two-body near-
field analytical solutions with numerical computational fluid dynamics methods such as the
boundary element method (BEM) [42]. Yet, the BEM is computationally expensive thus
the method might not be scalable to discuss the collective behavior of squirmers. So for
non-dilute active suspensions, there is a need for a computational model which takes the
hydrodynamics into account accurately that can also deal with a large number of particles.
Therefore, one may extend the LBM and lubrication correction method used in this thesis for
active suspensions, whereas the bare LBM without lubrication corrections has been used to
simulate squirmers in the dilute limit [69].



Appendix A

Details of persistent homology

(a) (b) (c)

Fig. A.1 (a) An illustration of a force network configuration, where the numbers represent the
force magnitude and the colors represent each connected component. (b) The corresponding
barcode and (c) the corresponding persistence diagram.

In this Appendix, we briefly explain the procedure to plot a persistence diagram from
a network configuration [29, 75]. First, let us consider a force network configuration as
in Fig. A.1(a), where the numbers represent the force magnitude and the colors represent
each connected component. Now, let us filter the force chains by increasing threshold θ f ,
where a link in a network appears when the magnitude is greater than or equal to θ f . Once a
connected component appears during the filtration, we start to record its appearance in the
barcode (Fig. A.1(b)). Note that when θ f = 3, first component (brown) appear, followed by
the second component (blue) at θ f = 5. These are the birth θ f for each connected component.
As θ f increases, more chains appear and the connected components grow. At θ f = 25,
two connected components (blue and green) merge with each other. When merging of the
connected component takes place, we adopt a rule such that a component that is born later
in the filtration (which has higher birth θ f ) dies. In other words, at θ f = 25, component
green (birth θ f = 15) dies since it merges with the component blue (birth θ f = 5). Then, at



66 Details of persistent homology

θ f = 30, blue component merges with the brown component. Since θ f = 30 is the maximum
value of the filtration, component brown will never die. Thus, we consider that it has infinite
persistence. In addition, component black also never die since it does not merge with any
other components until the end of the filtration. Finally, we plot the death and birth θ f of
each connected component in the persistence diagram (Fig. A.1(c)), where we assign death
θ f = −1 for the connected components with infinite persistence. From this example, we
demonstrate that persistent homology emphasizes more on the structure of each component
rather than its total magnitude since: (i) Green component has higher total magnitude than
the blue component, but the blue component has bigger life span (death θ f− birth θ f ) and
(ii) we ignore single link (black component) that is not merged with another component.



Appendix B

The dynamical Hertzian contact model

Fig. B.1 Plots of the speeds of impactors in the z-direction uI
z(t)/u∗ against time (dashed

lines) and the solution of Eq. (B.1) (solid lines) for φ = 0.54 and N = 2000 with fitting
parameters A = 1.64× 105m0/(amint2

g) and B = 6.48× 104m0/(amintg) for various aI and
m0 = 4πa3

minρ f /3.

In this Appendix, we explain the dynamical Hertzian contact model (DHCM) to explain
the motion of the impactor [57, 14]. The equation motion for the deformation h of the
Hertzian contact is written as

mI
d2h
dt2 =−A

√
aIh

3
2 −B

√
aIh

1
2

dh
dt

, (B.1)

where A and B are fitting parameters which correspond to the elastic modulus and viscosity,
respectively. In Fig. B.1, we plot the results of the simulation alongside with the solutions of
Eq. (B.1). One can see that the results of the simulation agree with the model shortly after
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the impact. We also clarified that the impact speed uI
z(t) clearly depends on the radius of

impactor, which cannot be explained in the linear spring model used in Ref. [26].
We also evaluated the power-law relationships among u0, Fmax, and tmax as in Eq. (4.9).

However, Eq. (B.1) yields 6/5 < α < 4/3 and −1/3 < β <−1/5, which disagree with the
simulation results in Chapter 4. Such disagreements are caused by the assumptions of the
DHCM that are violated in our system. First, Hertzian theory essentially assumes that the
liquid surface behaves as an elastic sheet when the penetration of the impactor is small. Yet,
surface of the suspensions is different than an elastic sheet. As shown in Chapter 4, the elastic
response takes place in the later stage after the impact when the impactor has penetrated
much deeper than the surface of the suspensions. In addition, Hertzian theory also assumes
that the surfaces are frictionless, which indeed violated in our cases since we consider the
friction between the impactor and the suspended particles.



Appendix C

Analytical solution of the floating model

In this Appendix, we present the analytical solution of Eq. (4.6). The dimensionless form of
Eq. (4.6) with the aid of aI and tI =

√
aI/g̃ is written as

z̈∗I =−1−η
∗ż∗I |z∗I −1|, (C.1)

where z∗I = zI/aI , t∗ = t/tI , żI
∗ = dz∗I (t)/dt∗ = −uI

z/u∗, z̈I
∗ = d2z∗I (t)/dt∗2, and η∗ =

3πηeffaI
√

aI/g̃/mI . Then, Eq. (C.1) can be solved exactly in terms of the Airy functions as

z∗I (t) =−
κ[Ai′(Φ)Bi′(Θ)−Ai′(Θ)Bi′(Φ)]

γ[Bi(Φ)Ai′(Θ)−Ai(Φ)Bi′(Θ)]
, (C.2)

where γ = (η∗)2/3, κ = 22/3, Θ = u∗0
3
√

η∗/2, and Φ = (u∗0+ t∗) 3
√

η∗/2, where u∗0 = u0tI/aI .
Here, Ai(x) is the Airy function of the first kind, which is defined as Ai(x) =

∫
∞

0 cos(t3/3+
xt)dt/π , and Ai′(x) is its derivative. Bi(x) is the Airy function of the second kind, which is
defined as Bi(x) =

∫
∞

0 [exp(−t3/3+ xt)+ sin(−t3/3+ xt)]dt/π , and Bi′(x) is its derivative.
One can differentiate Eq. (C.2) two times to get the expression for z̈I as

z̈∗I =−

[
κγ

3
2

(
t∗−u∗0

)(
Ai′(Θ)Bi(Φ)−Ai(Φ)Bi′(Θ)

)2(
Ai′(Θ)Bi′(Φ)−Ai′(Φ)Bi′(Θ)

)
− γΛ

]
(

Ai′(Θ)Bi(Φ)−Ai(Φ)Bi′(Θ)

)3 ,

Λ =Ai′(Θ)3Bi(Φ)3 +2Ai′(Θ)3Bi′(Φ)3

−3Ai(Φ)Ai′(Θ)2Bi′(Φ)2Bi′(Θ)−6Ai′(Φ)Ai′(Θ)2Bi′(Φ)2Bi′(Θ)

+3Ai(Φ)2Ai′(Θ)Bi(Φ)Bi′(Θ)2 +6Ai′(Φ)2Ai′(Θ)Bi′(Φ)Bi′(Θ)2

+Ai(Φ)3Bi′(Θ)3−2Ai′(Φ)3Bi′(Θ)3. (C.3)
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To obtain the expression of Fmax and tmax, we adopt the short time expansion for Eq. (C.3)
since Fmax appears in the region t/tg≪ 1, Thus, up to third order, one can obtain

z̈∗I =−1+η
∗u∗20 t∗+

3η∗u∗0t∗2

2

−
(

2u∗30 (η∗)2

3
− η∗

2

)
t∗3 +O

([
t∗

u∗0

]4)
. (C.4)

Then, we differentiate Eq. (C.4) to obtain ...z ∗I as

...z ∗I =η
∗u∗20 +3η

∗u∗0t∗

−
(

2u∗30 (η∗)2

3
− η∗

2

)
t∗2 +O

([
t∗

u∗0

]3)
. (C.5)

Then, for ...z ∗I = 0, one can solve the quadratic equation in Eq. (C.5) for tmax as

tmax

tI
=

3u∗0 +
√

3u∗20 +8η∗u∗50

4η∗u∗30 −3
. (C.6)

For η∗u∗0≫ 1, Eq. (C.6) reduces to

tmax

tI
≈

u
∗− 1

2
0√

2
. (C.7)

Thus, we confirm the exponent β =−1/2. To obtain Fmax, we plug Eq. (C.7) into Eq. (C.4)
and take the limit η∗u∗0≫ 1. Thus, for Fmax =−mI(z̈I(tmax)) we obtain

Fmax

mI g̃
= u
∗ 3

2
0

√
2η∗

9
. (C.8)

Thus, we confirm the exponent α = 3/2 for large u0. From Eq. (C.6), tmax diverges at
u0,c =

3
√

3/4η∗. This result suggests the limitation of the short time approximation.



Appendix D

Determining the number of percolating
force chains in the floating+force chains
model

Fig. D.1 An illustration of the terminology in force chains. Lines represent the links, circles
represent the nodes.

In this Appendix, we explain the algorithm to determine the connected force chains from
the impactor to the bottom plate used in the floating + force chain model in Sec. 4.3.3. First
of all, let us explain how we draw the force chains. Note that force chains are defined as a
collection of nodes and links representing the contacting suspended particles (see Fig. D.1).
Thus, for each pair of contacting suspended particles, we draw a network in which a node
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represents the center of a contacting pair of particles and a link is a straight line connecting a
pair of adjacent nodes. The initial force chains can be seen in Fig. D.2(a).

(a) (b) (c) (d)

Fig. D.2 Illustrations of the algorithm to determine n(t) from force chains network. (a) An
initial network of force chains. (b) The remaining chains after the lateral chains are removed.
(c) All connected components after removing all edges that do not touch the impactor or
bottom plate, where blue and red lines represent the corresponding connected components
that self-loops and chains between the impactor and bottom plate, respectively. (d) Percolated
force chains from the impactor to the bottom plate.

The algorithm to determine n(t) is as follows. Since we are only interested in the force
propagation in the vertical direction, we remove links that expand in the lateral directions
(dangling chains). For this purpose, we remove all links in which the height difference |zi−z j|
for a contacting pair of particles i and j is less than the smallest radius of the suspended
particles amin. The corresponding network after the removal of lateral chains can be seen in
Fig. D.2(b).

Fig. D.3 A plot of the number of connected force chains from the impactor to the bottom
plate n(t) against time for φ = 0.53, W = D = 6DI , and H = 2DI with u0 = 2.6u∗.
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Our goal is to determine connected networks from the impactor to the bottom plate. Thus,
we remove all links to reach the edges of the force chains which do not touch the bottom plate
nor the impactor. Once such links are removed, the leftover chains create new links at the
edges of the force chain. We repeat these labeling and removal processes until there are no
edges of dangling chains except for the edges which touch the bottom plate or the impactor.
Then, we label each connected component (the blue and red connected components in Fig.
D.2(c)).

Note that the connected components do not need to be percolated from the impactor to the
bottom plate to survive in our algorithm at this stage due to the existence of connected edges
which form a self-loop (blue connected components in Fig. D.2(c)). Therefore, we need to
examine whether each connected component is percolated or not. Then, we remove non-
percolated connected components (blue component) while keeping the percolated connected
component (red component) as shown in Fig. D.2(d). Finally, we evaluate n(t) by the number
of links that touch the bottom plate. The above processes are illustrated in Fig. D.2 . The
obtained n(t) for φ = 0.53, W = D = 6DI , and H = 2DI with u0 = 2.6u∗ against time is
plotted in Fig. D.3.





Appendix E

Dependence of the existence of the
power-law relations on volume fraction of
the suspensions

Fig. E.1 A phase diagram showing whether the impactor has Fmax as a function of the volume
fraction φ and the impact speed u0 for W = D = 6DI and H = 3DI . Red squares represent
set of parameters where the relations among u0, Fmax, and tmax can be explained by Eq. (4.6).
Green squares are points where Fmax exist but Eq. (4.6) fails. Blue squares are where Fmax
does not even exist.

In this Appendix, we have examined whether the relations among u0, Fmax, and tmax only
exist in the impact process in dense suspensions, though the rebound only exists in dense
suspensions. We summarize the dependence on the volume fraction in the phase diagram in
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Fig. E.1. Our simulation indicates that Fmax only exists in all range of u0 when φ ≥ 0.48,
while Fmax does not exist for dilute suspensions except for very high u0. This result clarifies
the role of suspensions in which our analysis in Chapter 4 is only valid for dense suspensions.

(a) (b)

Fig. E.2 Plots of forces exerted on the impactor against time for various volume fractions for
W = D = 6DI and H = 3DI for (a) u0/u∗ = 5.84 (Dashed lines represent the solutions of Eq.
(E.1)) and (b) u0/u∗ = 0.93.

In Fig. E.2, we plot the force exerted on the impactor against time to clarify the difference
between dense and dilute cases. For high u0 (Fig. E.2(a)), tmax for the dilute case emerges
earlier than that in the denser case. In addition, dilute cases have smaller Fmax. Such
differences occur since the origin of Fmax in a dilute case is different from that in the dense
case. In dense situations, the dominant contribution is from the contact force between
the impactor and the suspended particles, while for the dilute situations, the dominant
contribution is from the hydrodynamic force exerted on the impactor [88]. For low u0 (Fig.
E.2(b)), one can see that Fmax only exists in dense situation. Since the acceleration due to
the gravity is dominant for low u0, the sufficient drag resistance to compete with the gravity
forces only exists for dense suspensions.

In Fig. E.3, we plot the deepest point of the impactor |z| scaled by the impactor diameter
DI against time. Here, one can see that the impactor sinks right after the impact in dilute
suspensions, while the impactor can keep its position near the surface for dense suspensions.
The behavior in which the impactor stays for a while near the surface of the suspension is a
characteristic of dense suspensions under impact. Thus, the floating model (Eq. (4.6)) cannot
be used for dilute situations since the floating model assumes that the impactor is partially
surrounded by fluid. We also summarize the region where Eq. (4.6) is applicable in Fig. E.1.
When the impactor is completely sunk, the second term on the r.h.s. of Eq. (4.6) should be
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Fig. E.3 Plots of the deepest points of the impactor scaled by the diameter of the impactor for
u0/u∗ = 5.84 for W = D = 6DI and H = 3DI .

Fig. E.4 Plots of the velocities of the impactor for low volume fractions and for W = D = 6DI
and H = 3DI alongside with the solutions of Eq. (E.1).
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replaced by the Stokesian drag as

mI
d2zI

dt2 =−mI g̃−3πηeffaI żI. (E.1)

In Fig. E.4, we plot the impactor velocity against time alongside the solutions of Eq. (E.1)
for the dilute cases. Note that Eq. (4.6) cannot describe even the behavior of the impactor
velocity in dilute cases.

As expected, the apparent viscosity ηeff/η0, where η0 is the solvent viscosity, becomes
larger as the volume fraction increases. Although the agreement between the solution of
Eq. (E.1) and our simulation is remarkable for uI

z (see Fig. E.4), Eq. (E.1) cannot capture
Fmax in dilute suspensions (see the dashed lines in Fig. E.2(a)). This is because there is
no competition between time increasing and time decreasing contributions in Eq. (E.1).
Although one may extend the studies on the impact process on water (without suspended
particles) alone to dilute suspensions [78], such a problem is beyond the scope of this thesis.
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