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Abstract

From the 17th century until recently, the scientific community observed and gathered
tremendous information about the cosmos solely through electromagnetic (EM) radia-
tion and Neutrinos. While the ends of the EM spectrum limited astronomy, parallel
breakthroughs in technical and theoretical fronts made it possible to open a new window
to observe the universe: Gravitational-wave (GW) astronomy. We witnessed the first
direct detection of GWs in 2015 by two LIGO interferometers [1]. Since then, nearly a
hundred of merging stellar-mass binaries have been identified, with more to follow in
the next decade [2]. While LIGO and other ground-based detectors continue searching
for these high-frequency signals, the space-based interferometers (LISA, TianQuin,
DECIGO) [3–5] will explore the sources emitting GWs in the low frequency range
(mHz-deci Hz). One of the most important sources for LISA will be the capture orbits
of stellar-mass compact objects into the massive black holes that reside in galactic
nuclei. These are known as extreme-mass-ratio inspirals (EMRIs), and the observation
of even a single such source can significantly advance our understanding of massive
black holes, their stellar environments, or even the true theory of gravitation itself.
GW astronomy is an intricate inverse problem where source signals are buried in the
detector noise. Apart from the technical challenges, unlocking the scientific potential of
sources like EMRIs with complex orbital dynamics heavily depends on our theoretical
knowledge. To filter the signal present in the noise, we need accurate modeling of
the predicted EMRI waveform. The event is then further analyzed to infer source
properties. Both detections of signals and bias in parameters are directly affected if
our waveform templates are inaccurately modeled.

Despite two decades of research activity in the area, many critical pieces remain
to be incorporated. For instance, the current models are focused on clean, isolated
EMRI systems, i.e., unaffected by the environment. This assumption is well motivated
(although uncertain) as the clean systems will offer uninfluenced tests of general
relativity (GR) in a strong-field regime. A recent work [6] pointed out that nearby
stellar-mass objects induced resonances leave an observable imprint on the gravitational
waveform. These resonances contain information about the next closest black hole(s) or
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stars to these systems, which cannot be obtained otherwise and may contain important
clues for astrophysicists studying the formation of galaxies. Moreover, if we do not
account for these resonance effects, we lose the opportunity to perform precision tests
of GR with EMRIs and may even misattribute the effect of these nearby objects to
deviations from GR.

My current research carries out an in-depth study of these newly discovered tidal
resonances in EMRIs by exploring their impact on the EMRI’s orbital parameter
space. We find that a large portion of inspirals encounter a low-order resonance in the
observationally important regime. Moreover, we show that the effect is detectable for
a significant fraction of sources. Motivated by this result. we extended our work and
also present a new fast and efficient waveform model taking resonances into account.
Using this model and Fisher matrices, we study the parameter measurement precision,
and the bias induced by ignoring resonances.



Table of contents

List of figures xiii

Nomenclature xv

1 Introduction 1
1.1 Chapter Synopses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 GW astronomy 9
2.1 A brief theoretical review of GWs . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Linearized gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 GWs generation in linearised theory . . . . . . . . . . . . . . . . 13

2.2 Effect of GWs and detection principles . . . . . . . . . . . . . . . . . . 15
2.2.1 Ground-based and spaced-based interferometers . . . . . . . . . 15
2.2.2 Target source overview . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Basics of data analysis in a nutshell . . . . . . . . . . . . . . . . . . . . 20

3 Orbital dynamics in Kerr space-time 23
3.1 Importance of extreme-mass-ratio inspirals . . . . . . . . . . . . . . . . 24
3.2 Orbital dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 The metric and geodesic equations . . . . . . . . . . . . . . . . 25
3.3 Dissipative effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Action angle formalism and gravitational self-force . . . . . . . . 28
3.3.2 Adiabatic inspiral . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Transient resonances in EMRIs 33
4.1 Framework of self-force resonance . . . . . . . . . . . . . . . . . . . . . 34
4.2 Different origins of resonances in EMRIs . . . . . . . . . . . . . . . . . 36



xii Table of contents

5 Tidally perturbed Kerr space-time 39
5.1 Slow-motion approximation . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 The metric perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Tidal resonances in EMRIs 45
6.1 Executive summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.1 Event rate for tidal resonances . . . . . . . . . . . . . . . . . . . 46
6.3 Framework of tidal resonances . . . . . . . . . . . . . . . . . . . . . . . 47

6.3.1 Method of determining inspiral . . . . . . . . . . . . . . . . . . 53
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4.1 Inspiral crossing tidal resonances . . . . . . . . . . . . . . . . . 54
6.4.2 Dependence on orbital phase . . . . . . . . . . . . . . . . . . . . 56
6.4.3 Trends and fitting formulae . . . . . . . . . . . . . . . . . . . . 57
6.4.4 Computation of jump and consistency with numerical evolution 64
6.4.5 Impact on gravitational waveform . . . . . . . . . . . . . . . . 66

7 Modeling transient resonances in EMRIs 75
7.1 Executive summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.3 Modeling Tidal Resonances . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3.1 Gravitational wave data analysis . . . . . . . . . . . . . . . . . 77
7.3.2 Resonance model . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.4.1 Mismatch analysis . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.4.2 Parameter estimation and systematic bias . . . . . . . . . . . . 88

8 Conclusion 91

Appendix A 93
A.1 Fitting formulae for n : k : m = 3 : 0 : −2 . . . . . . . . . . . . . . . . . 93
A.2 Suppression of odd k +m integer resonances . . . . . . . . . . . . . . . 95

A.2.1 Qualitative discussion for m = ±1 resonances . . . . . . . . . . 95
A.2.2 Qualitative discussion for m = ±2 resonances . . . . . . . . . . 96

References 97



List of figures

1.1 Perihelion advance of Mercury . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Bending of light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Orbital decay of PSR B1913+16 . . . . . . . . . . . . . . . . . . . . . . 4
1.4 GW150914-Direct detection . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 GW spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 GW polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 LIGO detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 LISA detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Fundamental orbital frequencies . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Resonant and non-resonant phase-space orbits . . . . . . . . . . . . . . 30

6.1 Resonance combinations . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Inspiral crossing tidal resonances . . . . . . . . . . . . . . . . . . . . . 55
6.3 Phase dependence on resonance jump . . . . . . . . . . . . . . . . . . . 57
6.4 Resonance strength dependence on eccentricity . . . . . . . . . . . . . . 58
6.5 Resonance strength dependence on spin . . . . . . . . . . . . . . . . . . 59
6.6 Resonance strength dependence on inclination for n : k : m = 3 : 0 : −2 59
6.7 Resonance strength dependence on orbital inclination for prograde orbit 60
6.8 Resonance strength dependence on orbital inclination for retrograde orbit 60
6.9 Resonance strength dependence on orbital parameters for m = 1 resonance. 62
6.10 Resonance strength dependence on orbital parameters for m = 0 resonance. 63
6.11 Resonance strength dependence on perturber’s inclination. . . . . . . . 64
6.12 Jump in Lz and Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.13 Accumulated phase for a prograde orbit crossing the 3 : 0 : −2 resonance 67
6.14 Accumulated phase for a prograde orbit crossing the 3 : −4 : 2 resonance 68
6.15 Accumulated phase for a retrograde orbit crossing the 3 : 0 : 2 resonance 69



xiv List of figures

6.16 Accumulated phase for a retrograde orbit crossing the 3 : −4 : −2
resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.17 Accumulated phase for a orbit crossing the 3 : −1 : −1 and 3 : 2 : 0
resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.1 Workflow of Resonance Model . . . . . . . . . . . . . . . . . . . . . . . 80
7.2 Smooth v/s step impulse function . . . . . . . . . . . . . . . . . . . . . 81
7.3 Snapshots of resonant waveforms . . . . . . . . . . . . . . . . . . . . . 82
7.4 Cumulative Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.5 Measurement precision of EMRI’s parameters . . . . . . . . . . . . . . 85
7.6 Systematic bias of EMRI’s parameters . . . . . . . . . . . . . . . . . . 85
7.7 Covariance plot with peak shifted to parameter values estimated with

induced systematic error. . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.8 Covariance plot for unperturbed EMRI signal. . . . . . . . . . . . . . . 87

A.1 Section of orbit in qϕ - qθ plane for different resonance conditions. . . . 95
A.2 Section of orbit in qr - qθ plane for different resonance conditions. The

red lines and blue dashed lines are obtained for qϕ = 0 and qϕ = π/2,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



Nomenclature

Symbols

c speed of light

G Gravitational constant

Abbreviations

BH Black hole

CBC compact binary coalescence

COBE Cosmic Background Explorer

CSPT Cumulative shift of periastron time

EHT Event horizon telescope

EM Electromagnetic

EMRI Extreme Mass Ratio Inspiral

ESA European Space Agency

ET Einstein telescope

GR General theory of relativity

GW Gravitational wave

INTEGRAL INTErnational Gamma-Ray Astrophysics Laboratory

KAGRA Kamioka Gravitational Wave Detector

LIGO Laser Interferometer Gravitational-wave Observatory



xvi Nomenclature

LISA Laser Interferometer Space Antenna

LVC LIGO-Virgo collaboration

NanoGrav North American Nanohertz observatory

NASA National Aeronautics and Space Administration

NR Numerical relativity

NS Neutron star

PN Post-Newtonian

PTA Pulsar timing array

QNM Quasi normal modes

SMBH Supermassive black hole

SNR Signal-to-noise ratio

SR Special theory of relativity

TT Transverse–Traceless

VLBI Very-long baseline interferometry

WMAP Wilkinson Microwave Anisotropy Probe



Chapter 1

Introduction

"In questions of science, the authority of a thousand is not worth the
humble reasoning of a single individual." - Galileo Galilei

The 17th century saw Sir Isaac Newton publish his most acclaimed work, Principia
Mathematica, laying the foundation for classical mechanics and giving birth to the
Universal Law of Gravitation. He introduced the concept of absolute space and time.
Shakespeare’s words "All the world is a stage" are an apt metaphor for this theory,
where all creation is enacted on a stage (space-time) that never changes. In Principia,
Newton described a gravitational force that was inversely proportional to the square
of the distance between the centers of mass and proportional to the product of the
masses of the bodies. In mathematical notation, the force between masses m1 and m2,
at a distance r and gravitational constant G is,

F = Gm1m2

r2 . (1.1)

Newton’s law of gravitation proved to be an invaluable tool to astronomers, allowing
them to predict the motion of planets. However, over the century that followed,
astronomical observations brought to light some minute deviations between Newton’s
theory and what was observed. A prominent observation was Mercury’s peculiar
precession, a phenomenon explained by Newton’s gravity as a result of planetary
perturbations. This effect is demonstrated in Fig. 1.1. The observed precession of 574”
per century did not agree well with Newton’s calculations of 531” per century, with an
additional 43” per century that would later be accounted for by GR [7].

In 1905, Albert Einstein published his paper on SR [8, 9] which was based on two
key postulates — 1) the laws of physics are the same in all inertial frames of reference,
and 2) speed of light must be constant, measured by any two observers, regardless
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Fig. 1.1 Demonstration of the advance of Mercury’s (blue) perihelion (star) about the
Sun (yellow). Figure not to scale.

of their relative motion. Einstein united space and time by treating them on equal
footing and hence, abolishing Newton’s idea of absolute space and time. In 1915, he
went on to extend SR to GR where he presented a geometrical view of gravity with
curvature being caused by the presence of mass. The words of John Archibald Wheeler
sum it up well — "Space-time tells matter how to move; matter tells space-time how
to curve". This complex theory of gravity is encapsulated within the famous Einstein
field equations [10]:

Gµν = 8πG
c4 Tµν . (1.2)

In the above expression, the right-hand side describes the energy/matter content of
the system via the stress-energy tensor Tµν , while the left-hand side describes the
curvature of space-time via the Einstein Tensor Gµν . In weak-field limits, GR reduces to
Newtonian gravity, or in reverse, it extends Newtonian gravity to stronger gravitational
fields. Since its birth, GR has been tested several times and came out with flying
colors [7]. To support/check his theory, Einstein proposed three observational tests:
the precession of Mercury’s orbit, the deflection of light about the Sun, and the
gravitational redshift of light. GR could explain the advancement of Mercury’s orbit
and agreed strongly with the observation.

Sir Arthur S. Eddington an English astronomer, carried out the second test in May
1919 (see Fig 1.2 for schematic description), observing a solar eclipse and concluding
that the light passing close to the Sun was indeed bent in a manner consistent with GR
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Fig. 1.2 Demonstration of light deflection by the Sun. Figure not to scale.

[11]. Soon after, Walter S. Adams an American astronomer, measured the predicted
gravitational redshift in 1925, which describes the shift in photon wavelengths to longer
wavelengths when observed from a higher gravitational potential [12]. In the past
century, such experiments have improved significantly while continuing to demonstrate
the validity of Einstein’s theory of general relativity. Moreover in 2019, we have had
the unique opportunity to probe the space-time surrounding a SMBH at the center
of galaxy M87. An image of the SMBH M87 was obtained using EHT [13], which
combined observations from seven millimeter and sub-millimeter instruments around
the globe (or VLBI). The image reconstructed is in close agreement with theoretical
predictions of GR [14].

In 1905, Henri Poincare, a French mathematician was independently attempting to
resolve the problem of instantaneous action at a finite distance posed by Newtonian
gravity. He assumed that the gravitational force propagates at the speed of light,
and the effect is propagated by gravitational waves (ondes gravifiques). The term
‘Gravitational waves’ was first used in his paper ‘On the Dynamics of the Electron’,
published by the French Académie des Sciences [15]. In 1916, Einstein predicted the
existence of GWs — ripples in the space-time fabric as a direct consequence of his field
equations. Einstein (not fully convinced) spent a long time on this problem and after
meaningful inputs from De Sitter, Leopold Infeld and Howard Robertson, resubmitted
the proofs in 1936 after correcting the mathematical errors and was convinced of their
existence.

In 1974 American physicists, Joseph H. Taylor and Alan R. Hulse together discovered
a binary pulsar PSR B1913+16 or commonly known as the “Hulse-Taylor” binary [16]
after its discoverers. This fascinating binary system was carefully studied over the
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Fig. 1.3 Decay of the orbital period of the Hulse-Taylor binary pulsar system PSR
B1913+16 [17] (data points with error bars “mostly too small to see”). The solid line
depicts the predicted orbital decay from the emission of GWs, which is in remarkable
agreement with the observed data. The years in the late 1990s with no data correspond
to the period when Arecibo telescope was closed for upgrades. From Ref. [17] under
non-exclusive license.

following three decades and proved to be one of the significant events in the history
of detection of GWs. The binary orbit shrinks due to the GW emission resulting in
decrease of orbital period. As shown in the Fig 1.3, the decay of the period clearly
appeared in the cumulative shift of the periastron time. The observed CSPT curve
matches perfectly with the predictions of GR, which tells us that GWs carry energy and
angular momentum away from the system. This astronomical observation gave concrete
evidence for the existence of GWs and as well as a first indirect GW observation. In
1993, the duo received the Nobel Prize “for the discovery of a new type of pulsar, a
discovery that has opened up new possibilities for the study of gravitation”.

The direct detection of GWs has been a long and arduous process due to their
incredibly difficult measurement. The initial run of LIGO lasted from 2002 to 2010
with no detections. Several decades later, on the historic day of September 14, 2015 the
LIGO observatories located in Hanford, and Livingston, simultaneously observed GWs
from a binary black hole system — GW150914 [1]. Based on a careful analysis of the
data, it was estimated the signal originated from a merging binary BHs with masses
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Fig. 1.4 GW150914 detected by LIGO observatories at Hanford and Livingston (See text
for details). From the discovery paper, Ref. [1] distributed under Creative Commons
Attribution 3.0 License.

of 36+4
−5 M⊙ and 29+4

−4 M⊙, located 410+160
−180 Mpc away. During a fraction of a second,

this event released approximately fifty times the energy of all the stars in the universe.
Usually, such perturbations of space-time are listed as a quantity called strain, which
is given by ∆L/L, where L is the characteristic distance between two masses, and ∆L
is the resulting change in length between them caused by the passing of a gravitational
wave. The GW strain measured by LIGO for GW150914 was 10−21, which means that
as the wave peaked, the LIGO arms oscillated by about 0.1 percent of the radius of a
proton! In figure 1.4, the first row shows the strain versus time in the two detectors.
The solid line in the second row shows a NR waveform for a source with parameters
consistent with the merger, ringdown, and inspiral of binary BHs showing excellent
agreement with the observed signal. In 2017, Reiner Weiss, Barry Barish and Kip
Thorne were awarded the Nobel Prize "for decisive contributions to the LIGO detector
and the observation of gravitational waves".

The first observation run (O1) lasted from September 2015 to January 2016 and
the second observation run (O2) lasted from November 2016 to August 2017. During
the end of O2 term, Virgo detector in Italy joined the venture and together with LIGO
collaboration (or LVC) detected nine more GW signals from merging BH binaries, as
well as one detection of GWs from a merging pair of neutron stars, GW170817 [18].
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The first NS-NS binary detection was significant because a short gamma-ray burst
had been observed by the Fermi and INTEGRAL satellite, a second after the end of
the GW signal. Virgo helped in localization of the event, and an alert was released
to different observatories all over the world to follow up EM observations from the
event [19]. Combining with the third observation run (commenced on April 2019),
close to hundred observations of GWs have been made by LVC [20]. Undoubtedly,
with advanced sensitivity, the network of detectors will fetch numerous signals in the
coming era and a new science.

Several tests of GR and fundamental physics are already feasible with these first
detections, such as: Is the ring down phase of the observed waveform consistent with
the QNMs of the final black hole predicted by GR? The BH ringdown radiation) is
characterized by QNMs with frequency f and damping time τ . Both the damping time
and frequency of this oscillation are determined by the mass and spin of the Kerr BH
formed after the merger (denoted by Mf and χf , respectively). In GR, the ringdown
waveform h+(t) − ih×(t) is a superposition of various modes such that [21],

h+(t) − ih×(t) =
+∞∑
ℓ=2

ℓ∑
m=−ℓ

+∞∑
n=0

Aℓmn exp
[
− t− t0

(1 + z)τℓmn

]
exp

[
2πifℓmn(t− t0)

1 + z

]

−2Sℓmn(θ, ϕ, χf),
(1.3)

where z is the cosmological redshift, and the (ℓ,m, n) indices label the QNMs. The
quantitiy Aℓmn is the complex amplitude that measures the mode excitation and the
phase of modes at a reference time. All the fℓmn and τℓmn are determined by the final
mass and spin of the remnant. Usually, (ℓ,m) = (2, 2) mode are dominant due to
the longest damping time. We can compare the prediction by GR with the damped
oscillating behavior of the final part of the waveform. This test was performed with
GW150914 and within the available accuracy, data is consistent with GR prediction
for frequency and decay time of the damped black hole QNM [22].

Soon, more events are expected with a high SNR flooring the way for more stringent
tests. Moreover, the observations ahead may answer the following fundamental questions
and paint a better picture of the cosmic landscape. We may unveil — a) How far
does the black hole mass function extend? b) How are compact binaries formed in the
cosmos? c) Are there middle sized black holes still to be detected? d) What is the
maximum mass for a stellar origin black hole?

The current catalog of GW sources has already revolutionized our understanding
by putting constraints on fundamental theories of gravity . As the current and future
ground-based detectors continue to search for high-frequency signals (with bandwidth
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Fig. 1.5 GWs spectrum depicting different sources on basis of frequency range.

of a few tens of Hz), the space-based interferometers (LISA, TianQuin, DECIGO) will
explore the sources emitting GWs in the lower frequency range (mHz-deci Hz) [3–5]. In
particular, LISA is planned to launch in 2034, and preparatory work is now ramping up
to span the full spectrum of astrophysical GW sources. A potential source under this
regime are massive BH coalescence resulting from galaxy mergers. Another promising
source target for LISA is EMRIs, where a stellar-mass object (a few tens of solar
masses) spirals into a massive black hole (a few million of solar masses). The estimated
event rate of such binaries is about a few tens per year [23]. EMRIs will spend at
least a year in the observable band before plunging, given the extremity in mass ratio.
Therefore, the signals from such systems encode space-time information around the
massive black hole and allow for incredibly precise tests of GR and other modified
gravity theories [24, 25].

Furthermore, by observing galactic millisecond pulsars with radio telescopes, it is
possible to use arrays of such pulsars as natural detectors in the nano-hertz gravitational
band [26]. For these arrays, the most promising signals are derived from the stochastic
background signals of inspiralling SMBH binaries, for which detection is expected
within the next decade. Thanks to pulsar timing arrays and space-based detectors, the
gravitational spectrum can be observed nearly completely (see Fig. 1.5).

1.1 Chapter Synopses

We provide an elementary overview of GW astronomy in Chapter 2, with a strong
focus on its theoretical characteristics: the mathematical framework of GWs, their
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generation, and interaction with test masses. Additionally, the working principle of
ground and space-based interferometers is discussed, and respective target sources are
listed. In the last section, a statistical analysis of detector data is presented.

In Chapter 3, we first discuss the importance of EMRIs and LISA science. To
understand the orbital dynamics of such sources, we present the geodesic equations
of Kerr space-time and fundamental frequencies. Further, the self-force interaction is
discussed via the action-angle formalism showing that the dissipative piece of self-force
is responsible for the inspiral motion of the object.

Chapter 4 describes the phenomena of transient resonances in EMRIs with a
particular focus on the framework of self-force resonances. Additional origins of
resonances arising from extrinsic and intrinsic deviation from the Kerr space-time in
EMRI evolution are discussed in the last section.

In Chapter 5, we show the method used to obtain the metric of a tidally perturbed
black hole. The chapter summarises in brief the three-step procedure showing the
construction of the Newman-Penrose scalar and potential, which yields the metric
perturbation on applying the Chrzanowski operator. This metric perturbation is the
key element to study the impact of tidal resonances.

Chapter 6 introduces the concept/framework of tidal resonances and explores the
impact of such resonances over the observable orbital parameter space. The results
show that the dephasing caused in the waveform is in the observable regime of LISA
for a large portion of orbital parameter space.

Chapter 7 examined the modeling of transient resonances in EMRIs. The resonance
model introduced efficiently implements the impact of resonances in waveforms. Using
this model and Fisher matrices, the parameter measurement precision and systematic
bias are studied. The study carried out is crucial for modeling self-force resonances as
well. Finally, concluding remarks and additional discussion of possible future research
directions are given in Chapter 8.



Chapter 2

GW astronomy

With the remarkable discovery of GWs from compact binaries, the seed of GW astron-
omy has begun to bloom. The experimental aspect of GW astronomy is rich as it makes
use of extraordinary techniques that allow us to measure displacements that were
unachievable in the past. The theoretical aspect of GWs is also quite interesting, for it
brings together different areas of physics, such as GR, astrophysics, and cosmology.
This chapter intends to provide a brief review of Einstein’s field equations and to
introduce the concept required for the discussion of GWs. We use the geometrical
language of GR to discuss GWs as opposed to field theory. While both descriptions
are complementary on the fundamental level, the geometric description allows the
interaction of GWs with the detectors to be easily and better understood.

2.1 A brief theoretical review of GWs

Here, we discuss how GWs arise from Einstein’s general theory of relativity and what
their properties are. As a first step, we will write the field equations in a weak field
approximation, also known as the linearized gravity approximation which consists of
expanding the equations around a near Minkowski (flat or slightly curved) metric.
Based on the resulting wave equation, we can explore the basic properties of GWs (with
the appropriate gauge) and evaluate how they are generated and how they interact
with matter. Michele Maggoire influential work [21] is the source of our discussion
here.
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2.1.1 Linearized gravity

GR does not view space-time as a static and absolute entity, but rather presents
fundamental equations of motion governing the dynamics of space-time. It also
eliminated the notion of a preferred coordinate system or observer. As a result, gravity
is not considered as a force between two massive objects, but rather as a curvature of
space-time. The connection between the mass-energy content and resulting space-time
curvature is derived by taking the variation of gravitational action (sum of Einstein-
Hilbert and matter action) with respect to the metric tensor gµν . The resulting relation
is

Gµν ≡ Rµν − gµνR

2 = 8πG
c4 Tµν . (2.1)

The quantity Tµν is the energy-momentum tensor, which accounts for the mass-energy
content in a system. Whereas on the left-hand side, the Einstein tensor Gµν includes a
measure of the curvature through the Ricci tensor Rµν and Ricci scalar R; they are
functions of the metric tensor gµν . A solution to these field equations is a metric tensor
gµν , describing a space-time geometry, whose curvature depends on the mass-energy
content.

To understand the concept of GWs, we work in a much simpler setting called
‘linearized or weak field equations.’ When the gravity is weak, the space-time metric is
very close to the flat Minkowski space-time. Thus, the metric can be decomposed into
two parts — a flat Minkowski metric ηµν plus a small perturbation hµν :

gµν = ηµν + hµν , (2.2)

such that |hµν | ≪ 1 and is symmteric. We use the Minkowski metric ηµν and its inverse
ηµν to raise and lower the tensor indices such that we have hαβ = ηµαηνβhµν . The
inverse of the space-time metric gµν to the first order in perturbation is given as,

gµν = (ηµν + hµν)−1 = ηµν − hµν + O(h2). (2.3)

Notation: Greek indices, such as α, β, . . . take the values 0 . . . 3, while the spatial
indices are denoted by Latin letters, i, j, · · · = 1, 2, 3. The signature for flat space-time
metric is

ηµν = (−,+,+,+).

We use the two-step (broadly) procedure to derive Einstein’s linearized field equation
taking into account the above-mentioned approximations:
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• To compute the Gµν in terms of perturbation, the first step is to compute the
Christoffel symbols defined as

Γρ
µν = 1

2g
ρσ(∂µgσν + ∂νgσµ − ∂σgµν).

• Next, Riemann curvature tensor is computed using the following definition

Rµ
νρσ = ∂ρΓµ

νσ − ∂σΓµ
νρ + Γµ

αρΓα
νσ − Γµ

ασΓα
νρ.

Thereafter, the Ricci tensor and the Ricci scalar is obtained from the Riemann
curvature tensor: Rµν = Rα

µαν and R = gµνRµν .

Gµν and Tµν are symmetric tensors, this makes Einstein’s field equation a set of
non-linear partial differential equations of second order with 10 linearly independent
variables. Further, the Bianchi identities reduce the number of independent equations
from 10 to 6.

Keeping to the first order in the perturbation, we obtain the following expression
for the Christoffel symbol,

Γρ
µν = 1

2η
ρσ(∂µhσν + ∂νhσµ − ∂σhµν). (2.4)

The linearization of Reimann tensor gives,

Rµ
νρσ = ∂ρΓµ

νσ − ∂σΓµ
ρν . (2.5)

On substituting the expression of linearized Christoffel symbol in above equation, the
Reimann tensor reduces to,

Rµ
νρσ = 1

2(∂ρ∂νh
µ
σ − ∂ρ∂

µhνσ − ∂σ∂νh
µ
ρ + ∂σ∂

µhνρ). (2.6)

Contracting the first and the third indices, we get the Ricci tensor

Rνσ = 1
2(∂µ∂νh

µ
σ − □hνσ − ∂σ∂νh+ ∂σ∂

µhνµ), (2.7)

where □ = ∂µ∂
µ is the d’Alembertian operator in flat space-time and h is the trace of

the metric perturbation defined as h = hµ
µ. Contracting the indices again to obtain

the Ricci scalar yields,
R = ∂µ∂νh

µν − □h. (2.8)
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So far, we have all the quantities needed to write the linearized form of Einstein tensor.
Before that is useful to define a tensor called ‘trace reverse’ of perturbation. As the
name implies, the trace of this tensor is −h.

h̄µν = hµν − 1
2ηµνh. (2.9)

Given this definition and linearized form of Riemann tensor, it is now straightforward
to write Einstein Tensor Gµν = Rµν − gµνR/2 in linear form,

Gµν = 1
2(∂α∂µh̄

α
ν + ∂α∂ν h̄

α
µ − □h̄µν − ηµν∂α∂σh̄

ασ). (2.10)

The harmonic or Lorenz gauge is the generalization of the Lorenz gauge in electromag-
netism, and consists of the 4 conditions

∂ν h̄
µν = 0. (2.11)

We see that in this gauge the Einstein tensor simplifies to

Gµν = −1
2□h̄µν ,

so the Einstein field equations in the vacuum (i.e. T µν = 0) is simplified to

□h̄µν = 0 (outside the source). (2.12)

On the basis of linearized theory, this equation shows that the trace-reversed metric
perturbation propagates as a wave deforming a flat space-time. Since □ = (1/c2)∂2

t +∇2,
the wave equation implies that GWs travel at the speed of light. It has the solution of
the form called a plane wave solution.

h̄αβ = Aαβexp(ikαx
α), (2.13)

where Aαβ is called the amplitude tensor and kα is the propagation four vector. Using
the Lorentz gauge condition and plane wave solution of field equation, we get

kαkα = 0, Aαβkβ = 0. (2.14)

implying that kα is a null vector and amplitude tensor is transverse to the propagation
vector kβ. The tensor Aαβ is symmetric since h̄αβ is symmetric. The four constraints
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on the ten independent components of Aαβ arise from the Lorenz condition (2.14). The
remaining four constraints come from the left-over gauge fixing as follows. We choose
the standard TT gauge by imposing the three spatial conditions and the trace-free
condition

A0i = 0, tr(A) = 0. (2.15)

This leaves two dynamical degrees of freedom in Aαβ that correspond to two possible
polarization of GWs in GR . In matrix form, we can write the amplitude as (assuming
we orient our spatial coordinate axes such that the GW is travelling in the positive
z-direction),

AT T
αβ =


0 0 0 0
0 A11 A12 0
0 A12 −A11 0
0 0 0 0

 (2.16)

As a result, the metric perturbation in this gauge reduces to its transverse and traceless
part, hT T

ab . The only non-zero component of the metric perturbation are the plus (+)
and the cross (x) polarization of GWs such that,

h̄T T
11 = −h̄T T

22 ≡ h+; h̄T T
12 = −h̄T T

21 ≡ hx. (2.17)

2.1.2 GWs generation in linearised theory

The framework for the generation of radiation is greatly simplified if the velocities
inside the source are non-relativistic. In a non-relativistic system, for a source with
size R, the reduced wavelength of the radiation generated is much bigger than the
size of the system. Morever, we are interested in the value of hT T

ij at large distance
from the source where the detector is located (far field solution), say at distance r.
Combining the two approximations we get

R ≪ λ ≪ r.

On neglecting the internal motions of the source, we have

h̄αβ(t, x) ∼ 4G
c4r

∫
Tαβ(t− r/c, x′) d3x′. (2.18)

On switching to TT gauge, we only need to compute the spatial components of the
trace-reversed metric perturbation. Following the conservation laws and ignoring the



14 GW astronomy

boundary terms, the above expression reduces to

h̄ij(t, x) ∼ 2G
c4r

∂2

∂t2

∫
x

′ix
′j T 00(t− r/c, x′) d3x′. (2.19)

Defining the quadrupole tensor,

I ij(t) =
∫
x

′ix
′j T 00(t− r/c, x′) d3x′, (2.20)

our solution in TT gauge is

h̄T T
ij (t) ∼ 2G

c4r
ÏT T

ij (t− r/c). (2.21)

with
IT T

ij (t) = PikI
klPlj − 1

2PijP
klIkl, (2.22)

and the transverse projector operator being

Pij = δij − n̂in̂j, (2.23)

where n̂i = xi/r is the unit vector in the propagation direction and overhead dot denotes
the time derivative. From the equation (2.21), we see that the lowest-order radiation
emitted is quadrupolar in nature, i.e., generated by a time-varying mass quadrupole
moment. In the multipole expansion, the leading order term is mass quadrupole. GWs
do not have monopole or dipole radiation. The monopole term depends only on the
mass M , and the dipole term depends on momenta P i ∼

∫
d3xT 0i(t, x). Due to the

conservation of mass and the total momentum of the source, the monopole and dipole
terms do not contribute to radiated GWs.

GWs carry energy and angular momentum at the expense of energy and angular
momentum of the source. The total radiated power (P ) and angular momentum (J)
in quadrupole approximation are given as [27]

Pquad = G

5c5

〈 ...
I ij

...
I ij

〉
, (2.24)

(
dJ i

dt

)
quad

= 2G
5c5 ϵ

ikl
〈 ...
I ij

...
I ij

〉
, (2.25)

where the angular brackets correspond to averaging over several orbits and ϵikl is the
Levi-Civita tensor.
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2.2 Effect of GWs and detection principles

The equation of motion of a test particle in a background metric gαβ can be derived
from geodesic equation,

d2xα

dτ 2 + Γα
µν

dxµ

dτ

dxν

dτ
= 0. (2.26)

where xα represents the coordinates of the particle and τ is the proper time measured
by a clock carried along the trajectory. In the TT gauge, GWs have a particularly
simple form. We define the corresponding frame as the TT frame, and calculate the
initial acceleration of the particle using the geodesic equation. If the test mass is at
rest at τ = 0, we find

d2xi

dτ 2 = −
[
Γi

00

(
dx

dτ

)2]
τ=0

, (2.27)

where
Γi

00 = 1
2(2∂0h0i − ∂ih00). (2.28)

In the TT gauge, however, this quantity disappears because both h00 and h0i are set to
zero. As a result, in linearised gravity and the TT frame particles remain at rest even
after the wave arrives. It does not mean that GWs have no physical impact. Rather,
such effects can be determined by monitoring the proper distances or proper times.

Consider two events at (t, x1, 0, 0) and (t, x2, 0, 0) in the TT gauge. The coordinate
distance x2 − x1 = L remains unchanged even after the passing of GW. However, the
proper distance between these two events (upto linear order and assuming propagation
direction as z-axis) is

s ∼ L [1 + 1
2h+ cos(ωt)]. (2.29)

Thus the proper distance changes periodically in time because of the passing GW.
The time evolution of a ring of free-falling test particles under the influence of h+ and
hx mode is shown Fig 2.1. The proper distance is what determines the time it takes for
light to travel back and forth between the two test masses (mirrors), and so the fact
that GWs affect the proper distance means that they can be detected by measuring
the round trip time. This is the bottom line of the detection principle used in our
interferometric detectors discussed in the following subsections.

2.2.1 Ground-based and spaced-based interferometers

All our knowledge of the cosmos came from neutrinos and EM radiation in the past.
Until the 1930s, visible light was the only form of astronomy that provided a serene
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Fig. 2.1 The displacement of the test mass under the action of GW of plus (+) and
cross (x) polarizations.

view of stars, planets, and galaxies. Edwin Hubble, an American astronomer discovered
that our Universe is expanding by observing the nearby Nebulae and gave the famous
Hubble’s law [28]. With the advancement in technology, astronomers began observing
different parts of the EM spectrum. Our view of the Universe has been revolutionized
by the observation of active galaxies through radio and microwave astronomy. American
astronomers, Arno A. Penzias and Robert W. Wilson discovered the cosmic microwave
background radiation, which supports the big bang model and furthermore the isotropy
and homogeneity of the universe through the later observations by COBE, WMAP and
Planck spacecraft [29–31]. Observing new wavelengths of light can lead to revolutions
in astronomy, and so what do we expect when we see an entirely new GW spectrum?

Joseph Weber, an American physicist proposed a method of measuring the energy
radiated by binary stars in 1960. After working on the proposal for several years, he
finally built an antenna to detect waves in 1966. A five-foot-long, two-foot-diameter
aluminum solid cylinder weighing 3000 pounds was chosen for the work. The cylinder
was suspended in a vacuum chamber with a wire wound around its circumference to
isolate it from external disturbances. The length was calculated to match the frequency
of about 1000 cycles per second, targeted at a supernova gravitational collapse, which
is supposed to produce gravitational waves. The concept was to produce a ‘ring’ lasting
for a certain duration as waves hit the cylinder analogous to the kind of ring in tuning
fork. In 1969, Weber published detection results of his apparatus (came to be known as
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Fig. 2.2 Schematic design of ground-based LIGO detector. Image courtesy: Cal-
tech/MIT/LIGO Laboratory (open gallery).

Weber bars) claiming 17 coincidence events from two of his detectors built separately
within the range of 1000 km. He observed anisotropy of more than 6σ in GW intensity
with peaks in the direction of galactic center. This created a stir in the community as
it implied massive scale conversion of mass into energy within the galaxy and hence
lack of matter to gravitationally bound it. After a few attempts, observations were
found to be unaccommodating and soon lost integrity. Nevertheless, the lack of a
sounding apparatus to explain theoretical studies prompted several groups to improve
upon Weber’s observations by designing their own detectors. Fortunately, the discovery
of indirect GWs in 1974 made by Hulse and Taylor revived interest in the detection of
waves [16].

In the 1980s, a project for the first ground-based kilometer-scale gravitational
wave interferometer was proposed by a joint effort of eminent physicists. The initial
run of LIGO lasted from 2002 to 2010 with no detections. The instrument design
was improved over the years and is called Advanced LIGO (aLIGO). LIGO is an
engineering marvel with the practical idea suggested by Rainer Weiss at MIT. LIGO’s
observatories are technically interferometers mainly comprised of a mirror, detector and
two laser beams (schematic design shown in figure 2.2). When the crest of two waves
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Fig. 2.3 Schematic Design of spaced-based LISA orbit.

of light overlap, they unite to form a constructive interference pattern. In contrast,
when the peak of one light wave overlaps with the trough of another, the two waves
create destructive interference. In LIGO, the high-power lasers bouncing back between
the arms cancel each other entirely. However, if a gravitational wave happened to
pass through the LIGO observatory, it would induce curvature in space-time fabric
and thus stretching one detector arm and compressing the other, throwing off this
destructive interference — making light reach the photo-detector. It also explains
why LIGO detectors are ‘L’ shaped. This interference pattern of light signal would
provide data about the changes the arms experienced and thus unveil features about
the gravitational wave event and their source.

Ground-based interferometers such as LIGO (USA), Virgo (Italy) and KAGRA
(Japan) observe high frequency GWs, but to detect low frequencies, we’ll need an
extremely quiet area sheltered from any disturbances — even the tiny gravitational
waves generated by flies! To further explore the Cosmos, NASA and the ESA is jointly
working to develop LISA, a constellation of three satellites that would form a triangular
interferometer with three 2.5 million-kilometer arms. The cluster would be placed in
an Earth-like orbit at a distance of 1 AU from the Sun, 20◦ behind the Earth and
inclined at 60◦ to the ecliptic. The schematic heliocentric orbit is shown in Fig 2.3.
LISA will focus on low-frequency (mHz) range and is expected to launch in the 2030s.
For exploring sources at a lower frequency than LISA bandwidth, NANOGrav (or
PTA) uses the Galaxy itself to detect gravitational waves with the help of objects
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called pulsars — exotic stars that send out pulses of radio waves with extraordinary
periodicity. Figure 1.5 shows the the target sources of operating ground-based and
future space-based detectors.

2.2.2 Target source overview

Here we list some of the prospected high and low-frequency GW sources (also see
Fig. 1.5 ). The sources of the high-frequency universe, observed with ground-based
detectors at frequencies between 10 Hz to a few kHz can be classified as [32]:

• Compact binary coalescence: CBCs comprise of binary neutron star, binary
black hole and black hole-neutron star binaries. CBCs are transient sources
as they can last for a fraction of seconds or a few minutes (depending on the
parameters) in the ground-detector bandwidth. At design sensitivity aLIGO
can detect neutron star binaries out to a distance of ∼ 400Mpc, and black hole
binaries out to ∼ 10Gpc.

• Continuous-wave sources: Sources producing continuous waves are generally
steady, producing signals with roughly constant amplitudes and frequencies over
the observation period. In particular, more than 2000 radio pulsars have been
discovered with precise location and frequency measurements. Some of them
have spin frequencies above 20 Hz, making them accessible to aLIGO and Virgo.

• Unmodelled Bursts: refer to short-duration events caused by a sudden change
of state in the source that does not have well-modeled waveform templates such
as pulsar glitches [33]. Glitches are mystifying spin-up events seen in mostly
relatively young neutron stars such as Crab and Vela. During a glitch there is a
sudden increase in the rotational frequency of a pulsar. Such events are likely
to be within reach of ET (future underground detector), but still too weak for
aLIGO and Virgo sensitivity. Another exciting source falling in this category
is the Core collapse supernovae (CCSNae). Violent dynamics in CCSNae are
expected to generate low amplitude, short-duration, bursts of gravitational waves
over a wide frequency range, from 50 to 1000 Hz, if they are aspherical. Due
to the richness of the input physics accompanied by the infall of matter and its
bounce, gravitational wave bursts do not have universal characteristics. The
EM observations of CCSNae might reveal secondary observables such as ejecta
composition, mass, and progenitor type. GWs, on the other hand, are emitted
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from the core of the CCSN and can therefore provide direct, live insight into the
dynamics of the collapse and bounce of the core.

• A stochastic background can arise from a large number of weak sources so
that there are many signals of comparable strength with overlapping frequencies
within every resolvable frequency bin. Such background can also result from the
primordial gravitational waves produced at the inflation era [34].

The sources of the low-frequency universe, observed with space-based detectors
at frequencies between mHz to 0.1Hz can be listed as [32]:

• Massive black hole coalescence are binaries resulting from the merger of
galaxies and are detected at the time of their coalescence out to luminosity
distance of around 230 Gpc. Hence, the upcoming LISA-like observatories will
therefore provide an extremely complete census of such massive objects throughout
the universe.

• Some of the most important sources for LISA will be the capture orbits of
stellar-mass compact objects into the massive black holes that reside in galactic
nuclei. These are known as EMRIs. The observation of even a single such source
can significantly advance our understanding of massive black holes, their stellar
environments, or even the true theory of gravitation itself. These sources will be
the focus of the next chapter as well as the work discussed in this thesis.

2.3 Basics of data analysis in a nutshell

In GW strain observations, it is not uncommon for the SNR from laser interferometers
to be low, due to the high levels of instrumental and environmental noise. A template
filter generated from waveform models can, however, be applied to the data in order to
increase the SNR. The output of any real detector is a combination of noise and GW
signal such that,

s(t) = h(t) + n(t). (2.30)

The noise n(t) in the detectors is ideally stationary and Gaussian, but the characteristics
are the same. Under these assumptions, the probability of a particular realization of
stationary and Gaussian noise process n(t) can be concisely written as,

pn[n(t)] ∝ e−(n,n)/2. (2.31)
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The notation of curly brackets stand for noise-weighted inner product defined as,

⟨a|b⟩ := 4 Re
∫ ∞

0

ã(f)b̃∗(f)
S(f) df, (2.32)

where S(f) is the one-sided power spectral density of the noise and ã(f) is the Fourier
transform of the signal a(t). A matched filter is a process that involves cross-correlating
a signal h with some optimal template filter K(t) that maximizes the output SNR. It
is defined as,

S

N
=

∫∞
−∞ df h̃(f)K̃∗(f)

[
∫∞

−∞ df (1/2)S(f) |K̃(f)|2]1/2
. (2.33)

In the above equation, we are assuming, based on the theoretical model, we already
know what GW signal we are looking for. The technique is called matched filtering
because the filter is chosen to ‘match’ the signal we are searching for. In LIGO-Virgo
detectors, this technique is heavily used for detecting signals from raw data. In both
signal detection and parameter estimation, the principle of comparing detector data
with many templates and identifying the best match is used. The generating waveform
model should be as accurate as possible otherwise the SNR could be greatly reduced.
Considering the large number of templates needed in both procedures, it must also be
computationally efficient. There are different strategies for detection and parameter
estimation. Detection is a global search over the parameter space of the model, and
parameter estimation explores (along a more localized region) the likelihood that the
template-subtracted data will be consistent with detector noise.

We define two quantities which serve as a measure of similarity between two template
waveforms ha(t) and hb(t), the Overlap O(ha, hb) and Mismatch M(ha, hb), by

O(ha, hb) = ⟨ha|hb⟩√
⟨ha|ha⟩⟨hb|hb⟩

(2.34)

M(ha, hb) = 1 − O(ha, hb). (2.35)

If O(ha, hb) = 1, the two waveforms are identical. Waveforms with O(h1, h2) = 0 are
mutually orthogonal. In contrast, by definition, the smaller M(ha, hb), the better the
match is. In addition to waveform models, the detection pipelines also incorporate
generic search techniques. This usually involves identifying excess power in spectra of
the data, which is a time-frequency plot of the power spectrum density of short-term
sources, and they are also useful for detecting transient sources, such as burst sources.
GW astronomy is likely to evolve to include modern statistical techniques such as deep
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neural networks [35, 36] in addition to or as a substitute for the standard detection
algorithms based on template banks.



Chapter 3

Orbital dynamics in Kerr space-time

Since the discovery of the Kerr solution, the mathematics of the Kerr black hole has
been well studied and understood. Moreover, it has wide astrophysical relevance
and plays an important role in the mathematical problems of general relativity. An
approach to understanding space-time around a Kerr BH is to examine the orbital
dynamics in this background. Chandrashekar [10] presents a comprehensive summary
of the Kerr geodesics.

Newton’s gravity is particularly effective in explaining the motion of a test mass
in weak fields. The resulting Keplerian orbits are quite simple with a conserved
total energy E (due to time translation symmetry) and a conserved orbital angular
momentum L (due to rotational invariance) which leads to a planar motion. Bound
orbits are exactly periodic and are characterised by the azimuthal frequency. When
the field is strong, the bound orbits become complicated and are no longer periodic:
the deviation of the potential from the inverse-distance law produces the relativistic
precession effect, whose observational imprint on Mercury’s perihelion advance became
a legendary example of validating GR theory during its infancy.

We introduce Kerr geodesics in this chapter and describe the notation and con-
ventions we use. Also discussed are the Kepler orbital elements and their associated
frequencies. We will then examine the gravitational self-force, the dissipative portion
of which leads to orbit shrinkage and thereby to the emission of GWs. This allows
one to compute GWs from binary systems containing a compact stellar mass object
moving around a supermassive primary BH, so-called extreme-mass-ratio inspirals.
The following sections summarise why EMRIs are particularly rewarding target sources
for LISA and the event rate.
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3.1 Importance of extreme-mass-ratio inspirals

We have already gained a modest catalog of sources from the current network of
ground-based detectors that has greatly increased our understanding of black holes
and neutron stars, and strengthened our confidence in Einstein’s general theory of
relativity. Now, preparation is in full swing for a new generation of observatories
that will cover the full range of astrophysical GW sources. Millihertz signals are
particularly abundant in this spectrum, which includes EMRIs and late-stage events
involving massive black holes binaries. Scientists will have access to the millihertz
GW sky only via space-based detectors such as LISA, the third large-class mission in
ESA’s Cosmic Vision program, scheduled to launch in 2034. In particular, a typical
EMRI is expected to spend more than a year in observational band and undergoes
∼ 105 orbital cycles around the central massive black hole, i.e., about 106 radians in
gravitational-wave phase. There are two independent channels to form an EMRI. The
“traditional” channel operates through scattering and capture processes. These can
put stellar-mass objects in galactic nuclei close enough to the central massive BHs in
galactic centers for the object to be gravitationally bound to the SMBH [24, 23, 37–40].
Recently, an alternative formation channel for EMRIs around accreting massive black
holes has been proposed [39, 40] and is referred to as the wet formation channel. In
this channel, stellar-mass black holes (and stars) on inclined orbits are captured by the
accretion disk, and migrate under the influence of density wave generation towards
the central SMBH [41]. Despite the fact that roughly 1% local galaxies and 10%
high-redshifted galaxies have active galactic nuclei [42, 43], this wet EMRI formation
channel is fairly efficient and expected to be equally important (if not more important)
as the traditional channel. The two formation scenarios have distinct characteristics:
EMRIs formed in the dry environment of traditional capture channels are expected
to have higher eccentricities and higher inclinations than EMRIs formed in the wet
environment of accretion disks when they enter the LISA band. For this reason, capture
channels are particularly interesting for our work as asserted in the following chapters.
EMRI event rate is determined by a combination of several uncertain parameters like
the stellar distribution surrounding the SMBH, spin distribution of the central SMBH,
and the formation scenario. According to the Monte-Carlo study of [44], the number
of EMRIs detected by LISA is likely to be O(10) − O(103) per year at an SNR of 20.

The orbit of the compact object can exhibit high eccentricity or extreme precession
since it occurs deep in the strong gravitational field of the central black hole; this
endows EMRI signals with rich harmonic content. Efforts to solve the EMRI inverse
problem are well motivated by the scientific payoff of a successful observation [45]. One
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of the main goals of LISA is: Space-time geodesy — testing the no-hair theorem which
states that every black hole is fully described by just three quantities: its mass, spin
and charge [46]. All other properties (hairs) are lost during the formation process. In
particular for a Kerr BH with mass M and spin parameter a, so that all higher mass
multiples moments Ml and spin multipoles Sl are fixed in terms of M and a by

Ml + i Sl = M (ia)l.

The exterior vacuum space-time of any stationary, axi-symmetric body is specified
by mass and current moments. These moments tell us how fields constructed from a
metric fall off with distance and their angular dependence. GWs from EMRIs will be
used to infer these moments, and if inconsistency is found between the observed and
predicted multipole moments, that object cannot be a BH or may signal the impact
of environment near EMRI system. EMRIs can be used to detect deviations of the
quadrupole moment from that predicted by the Kerr geometry, at the level of 0.1% [47].

The precision of measurements made with EMRI signals has unmatched potential
in astrophysics, cosmology, and the study of fundamental physics. The detection of
EMRIs will complement electromagnetic astronomy in probing the formation rates
and evolution scenarios of massive black holes, as well as serve as standard sirens for
studying the expansion history of the Universe.

3.2 Orbital dynamics

3.2.1 The metric and geodesic equations

In Boyer-Lindquist coordinates (t, r, θ, ϕ), the Kerr metric is written as,

ds2 = −
(

1 − 2Mr

Σ

)
dt2− 4a sin2 θMr

Σ dtdϕ+(ϖ4−∆a2 sin2 θ)sin2 θ

Σ dϕ2+Σdθ2+ Σ
∆dr2,

where

Σ ≡ r2 + a2 cos2 θ , (3.1a)
∆ ≡ r2 + a2 − 2Mr , (3.1b)
ϖ ≡

√
r2 + a2 , (3.1c)

and M , a are the black hole mass and spin parameter. For the remainder of this section
we use natural units with G = c = 1. We first summarise the generic geodesic motion
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in Kerr spacetime [48–51]. Consider a point-like body of mass µ orbiting a Kerr black
hole described by mass M and spin parameter a. We use Boyer-Lindquist coordinates
{t, r,θ,ϕ} and Mino time λ to describe the geodesic equations:

(
dr

dλ

)2

=
[
E(r2 + a2) − aLz

]2
− ∆

[
r2 + (Lz − aE)2 +Q

]
≡ R(r) , (3.2a)(

dθ

dλ

)2

= Q− cot2θL2
z − a2cos2θ(1 − E2)

≡ Θ(θ) , (3.2b)
dϕ

dλ
= Φr(r) + Φθ(cos θ) − aLz , (3.2c)

dt

dλ
= Tr(r) + Tθ(cos θ) − aE . (3.2d)

The quantities E,Lz, andQ are the orbital energy (per unit µ), axial angular momentum
(per unit µM), and Carter constant (per unit µ2M2), respectively. Here, the Mino time
parameter λ is related to proper time τ by dλ = dτ/Σ. The explicit forms of functions
in Eqs. (3.2c) and (3.2d) can be found, e.g., in Fujita & Hikida’s paper, Ref [51].

By introducing λ the radial and angular equations of motion are completely de-
coupled as can be seen in Eqs. (3.2a) and (3.2b). Therefore, for a bound orbit, radial
motion r(λ) and angular motion θ(λ) become periodic functions with Mino-time periods
Λr,Λθ defined as [51],

Λr = 2
∫ ra

rp

dr√
R(r)

, Λθ = 4
∫ π/2

θmin

dθ√
Θ(θ)

, (3.3)

where ra, rp are the values of r at the apoapsis and periapsis respectively and θmin is
the minimum value of θ (measured from the black hole’s spin axis). The motion in
t and ϕ can be written as a sum of three parts: a linear term with respect to λ, an
oscillatory radial part with period Λr, and an oscillatory angular part with period Λθ

as follows:

t(λ) = t0 + Γtλ+ t
(r)
λ + t

(θ)
λ , (3.4)

ϕ(λ) = ϕ0 + γϕλ+ ϕ
(r)
λ + ϕ

(θ)
λ . (3.5)

In the above equations, t0 and ϕ0 describe the initial conditions. The quantities Γt

and γϕ describe the frequency of coordinate time and ϕ with respect to λ, respectively,
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which are given by [51]

Γt = ⟨Tr(r)⟩λ + ⟨Tθ(cosθ)⟩λ + aLz , (3.6)
γϕ = ⟨Φr(r)⟩λ + ⟨Φθ(cosθ)⟩λ − aE , (3.7)

where ⟨. . . ⟩λ represents the time average over λ.
The associated frequencies with Mino-time periods are given by

γr,θ = 2π
Λr,θ

. (3.8)

The frequencies associated with distant observer time can be obtained by taking
the ratio of the Mino-time frequencies to Γt:

ωr,θ,ϕ = γr,θ,ϕ

Γt

. (3.9)

Unlike Keplerian orbits, bound Kerr geodesics are triperiodic. The radial frequency ωr is
associated with oscillations in the radial direction. The polar frequency ωθ is associated
with oscillations in the θ direction, while the azimuthal frequency ωϕ describes the
rotations around the central BH spin axis. The frequencies of the precessional motions
of the periastron and the orbital plane are ωr −ωϕ and ωθ −ωϕ, respectively. As shown
in Fig. 3.1, in the weak field regime, these three frequencies asymptote to the frequency
predicted by Kepler’s law whereas, in the strong field, they increasingly deviate from
each other and evolve at different rates. Orbits are marginally stable at the separatrix
and beyond this point, they become plunging orbits.

Besides the three constants of motion: {E,Lz, Q}, the Kerr geodesic orbit can
be characterised by another set of parameters: the semi-latus rectum p, the orbital
eccentricity e, and orbital inclination angle I. These parameters are defined by

p := 2rpra

M(rp + ra) , (3.10)

e := ra − rp

ra + rp
, (3.11)

I := π/2 − sgn(Lz) θmin . (3.12)

For later convenience, we also introduce x = cos I. To find the relation between the
constants of motion {E,Lz, Q} and orbital parameters {p, e, I}, one has to solve the
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Fig. 3.1 Dimensionless fundamental frequencies as a function of semi-latus rectum
for orbital eccentricity e = 0.33 and orbital inclination 30◦. The spin parameter a of
central massive BH is set to be 0.9. The vertical grey line marks the location of the
separatrix.

following set of equations:

R(r) = 0 , (3.13)
Θ(θ) = 0 . (3.14)

The closed-form of the relation obtained after solving can be found in Ref. [49].

3.3 Dissipative effects

At leading order in mass ratio, the smaller body can be treated as a point-like particle
moving along a geodesic orbit around the large black hole. At subsequent orders, a ‘self-
force’ arises from the small body’s interaction with its own gravitational perturbation
that moves the orbit away from the geodesic of the Kerr spacetime [52–55]. The
dissipative piece of the self-force is predominantly responsible for the inspiral, while
the conservative piece shifts the orbital frequencies. In the following section, we review
the action-angle formalism and use it to add the effect of self-force in the dynamical
evolution equations.

3.3.1 Action angle formalism and gravitational self-force

An integrable system is one in which the Hamiltonian has the maximum number of
mutually independent constants of motion. It follows that for a system of N degrees of
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freedom, the Hamilton-Jacobi equations can be divided into N independent equations.
Consider a system with N degrees of freedom, that is, a phase space consisting of N -
dimensional positional vector Q⃗ = (Q1, ..., QN ) and a corresponding set of N conjugate
momenta P⃗ = (P1, ..., PN). Hamilton’s equations then read

dQ
dt = ∂H

∂P
,

dP
dt = −∂H

∂Q
. (3.15)

In the case of an integrable system, there exists a suitable choice of canonical coordinates,
known as the action-angle variables, for which the new Hamiltonian is independent of
the angle coordinates. Therefore, new momenta Ji are constants of motion and the
new coordinates qi vary linearly in time. Following the canonical transformation, the
equations of motion reduce to

q̇qq ≡ ωωω(J) = ∂H

∂J
, J̇ = −∂H

∂qqq
= 0 . (3.16)

For N pairs of action-angle variables, the orbits lie on N -dimensional invariant tori
in the 2N -dimensional phase space. If we consider an integrable system with two
degrees of freedom, that is a 4-D phase space, we can express the motion as trajectories
winding around a 2-dimensional torus. This is illustrated in Fig. 3.2. The orbits are
visualized as trajectories wrapped around a two-dimensional torus with characteristic
frequencies ω1 and ω2, associated with the angular advances q1 and q2. For rational
values of ω2/ω1, the orbital trajectory will retrace its path, while for irrational values
of ω2/ω1 a trajectory will fill the torus densely.

The geodesic equations in Kerr are integrable, i.e., there exists one integral of
motion for each degree of freedom. The integrability allows one to introduce a set of
“action-angle” variables, such that the “angle” variables qi parameterize a torus and
the conjugate “action” variables Ji are functions of the constants of motion {E,Lz, Q}.
This method is advantageous in obtaining the frequencies of Kerr orbits [49] and
including deviations to the geodesic motion due to different forces. Thus, we rewrite
the equations of motion in this formalism to describe the dynamics in (r, θ, ϕ) [56].

dqi

dτ
= ωi(J) + ηg

(1)
i,sf(qθ, qr,J) +O(η2), (3.17)

dJi

dτ
= ηG

(1)
i,sf(qθ, qr,J) +O(η2) . (3.18)

where η = µ/M denotes the mass ratio of EMRI. As can be seen from the above
equations, at zeroth order (on short timescales ∼ M), a particle with mass µ is well
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Fig. 3.2 Two panels show the intersections of phase-space trajectories (black) through
a section surface (blue). The orbits stay on the torus defined by the action variables
which are functions of integrals of motion (red). The left trajectory is resonant where
the frequency of motion over the small circle of the torus is two-thirds of that over the
large circle (ω2

ω1
= 3

2). The trajectory on right is non-resonant and it asymptotically
trace out the whole cross-section of the torus.

approximated by a geodesic of the background space-time. At this order, action
variables are conserved, and qi increases at a fixed rate in time. However, in secular
timescale (∼ M/η) the EMRI orbit deviates from geodesic motion due to the particle’s
self-force (gi,sf ,Gi,sf) [52–55]. The leading order self-force motion is an adiabatic inspiral.
Over the longer timescale, it is necessary to consider various post-adiabatic corrections
currently under development [57, 58].

For a slowly evolving orbit, we can take aid of frequency domain and express each
component of the self force in terms of the underlying fundamental modes:

gµ =
∞∑

k=−∞

∞∑
n=−∞

gµ
kne

−i(kωθ+nωr)t . (3.19)

The azimuthal frequency does not appear in the above series because the Kerr space-
time is axi-symmetric and hence does not depend on the axial position of the small
object. As an orbit slowly evolves, both the Fourier components gµ

kn and the frequencies
themselves gradually change. From Eq. (3.19), we see that the impact of self-force is
mainly given by a near-constant piece (gµ

00). This is because, the rapidly oscillating
terms with k ̸= 0, n ≠ 0 average to zero over multiple orbits, and the bulk of the self
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interaction arises from 00 piece of the force. It is crucial to mention that some orbits
may have commensurate fundamental frequencies such that ωθ/ωr = n/k, where n
and k are small integers. When this relation holds (namely, the self-force resonance
condition), the phase term in Eq. (3.19) does not oscillate, and the corresponding
Fourier amplitude contributes to the altering the orbital evolution. This breaks down
the ‘standard’ adiabatic approximation. The next chapter focuses on the topic of
orbital resonances.

3.3.2 Adiabatic inspiral

The self force can be broken into a conservative (time-symmetric) piece, and a dissipative
(time-asymmetric) piece:

gµ = gµ
diss + gµ

cons . (3.20)

Generally, the dissipative piece of the self-force drives energy and angular momentum
from the binary, causing the binary to inspiral, and the conservative piece shifts the
orbital frequencies from their geodesic values. When we consider the leading order,
i.e., in the adiabatic approximation, we neglect the conservative self-force, focusing
instead on dissipative self-interactions.
Thus, the instantaneous rate of change of the conserved integrals can be expressed as:

dE

dt
= −ξ(t)

µ gµ
diss , (3.21)

dLz

dt
= ξ(ϕ)

µ gµ
diss , (3.22)

dQ

dt
= 2Qµνu

νgµ
diss , (3.23)

where E, Lz are related to the time-like and axial Killing vectors as: E = −ξ(t)
µ uµ, and

Lz = ξ(ϕ)
µ uµ. The quantity uµ ≡ dzµ/dτ is the 4-velocity of the small body. On the

other hand the Carter constant Q is related to a Killing tensor: Q = Qµνu
µuν . These

components can be written

dC
dt

= Ċ00 +
∞∑

k=−∞
k ̸=0

∞∑
n=−∞

n̸=0

Ċkne
−iΦkn(t) , (3.24)

where C stands for E, Lz, or Q. The 00 components are separated to emphasize that
these components survive the long-time averaging. The second term averages out due
to the fast oscillation of phase term for non-resonant orbits.
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For generic orbits, calculating the self-force directly can be challenging, especially
in Kerr spacetime. Since the point mass limit causes the self field to diverge, practical
calculations of the GSF will require a huge amount of time and computing resources.
Therefore, PN expansions in the first-order black hole perturbation theory are primarily
concerned with time-averaged dissipative forces that dominate the evolution of inspirals.
For circular orbits and equatorial orbits, the 22PN calculation of the energy flux has
been demonstrated in the Schwarzschild case [59] and the 11PN calculation in the
Kerr case [60]. Additionally, PN formulae are presented for slightly eccentric and
arbitrary inclined orbits up to the 5PN order, as well as the tenth-order correction of
the eccentricity, which includes the effect of black hole absorption [61].

For the fast and qualitative computation of GWs, the scientific community relies on
Kludge approximations [62]. Templates using the Kludge approximation might be useful
as a search template in the first step of a hierarchical and multi-step search. Kludge
templates have been used in EMRI studies for a long time. In the first kludge models,
back-reaction effects were approximated using PN formulas [63]. The waveforms are
based on Peters and Mathews decomposition and hence quadrupolar. However, there
is a long-running program [64–67] aimed to improve the accuracy of the models using
numerical data from self-consistent self-force calculations.



Chapter 4

Transient resonances in EMRIs

Systems with resonance islands lack sufficient conserved quantities due to non-integrability.
Resonances have been examined in several papers, focusing on their role in astrophysics
and black hole orbital dynamics [68–72]. In particular, the self-force resonances were
studied in detail by Hinderer and Flanagan [73, 74], who developed the framework by
coupling exact Kerr geodesics to a post-Newtonian self-force model. Based on their
analysis, they found that resonant behavior near commensurate orbits significantly
changes the evolution of a binary, by inducing a ‘jump’ in the orbit’s conserved integrals
compared to a study without resonance. To prepare for the upcoming low-frequency
stage of GWs, we need our waveform models to be very accurate because gravitational
wave observations rely on matched filtering techniques that are extremely sensitive
to the phase of the gravitational waves emitted by the system. Accurate waveform
modeling is not only required to extract the signal, but also a prerequisite to parameter
estimation. Since the phase is directly related to the orbital evolution, it is necessary
to take the resonant effects into consideration.

Using the two-timescale expansion [75], the orbital phase can be expanded with
respect to the mass ratio η = µ/M (considering a body of mass µ orbiting an SMBH
of mass M) as

ψ = 1
η

(
ψ(0) + η1/2ψ(res) + ηψ(1) +O(η3/2)

)
, (4.1)

where ψ(0)/η denotes the orbital phase determined by the averaged dissipative piece of
the first order self-force whereas ψ(1) denotes the post-adiabatic order derived from the
remaining oscillatory piece of the first order self-force and dissipative piece of the second
order self-force. Corrections to the phase due to resonance scale as the square root of
the inverse of mass ratio. These corrections thus become large over an EMRI inspiral,
dominating over post-adiabatic effects. Significant efforts focusing on the computation
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of the self-force are made by the community to model EMRI waveforms [61, 76, 77].
While self-force calculations are tedious, resonances (both self-force and tidal) will
further complicate this enterprise [78, 79, 6, 80]. Recent work has shown the impact of
self-force resonances on parameter estimation, suggesting that parameter estimates of
a resonant EMRI orbit are likely to be biased if resonances are not taken into account
in waveform modeling [81].

The purpose of this chapter is to summarise the importance of transient resonances
in modeling EMRIs. We discuss the observational signatures of the well-studied
self-force resonances in the literature. Additionally, we briefly discuss different types
of resonances (due to extrinsic and intrinsic deviations from Kerr) besides self-force
resonances.

4.1 Framework of self-force resonance

When analyzing resonances it is useful to refer to characteristic timescales. We use
coordinate time t which corresponds to the time measured by an observer at infinity.
Translation to Mino time can be done with an appropriate factor of Γt (see Eq. (3.6)).
We discuss scales of the orbital period T , the radiation reaction or inspiral timescale
τrr, and the resonance timescale τres.

The simplest and shortest timescales are the orbital periods Tr = 2π/ωr, Tθ = 2π/ωθ

and Tϕ = 2π/ωϕ. The radiation reaction timescale, which is longest one in the physical
setting is defined as

τrr = C
Ċ
, (4.2)

where an overdot denotes a derivative with respect to t and C stands for E, Lz, Q.
This timescale sets the period over which there is a significant change in the frequencies
and scales as τrr ∼ M/η. As a result, using the adiabatic prescription is also possible
because it means the trajectory moves slowly through different orbital parameters.

Another important time scale is the resonance duration τres. From the fact that
the phase in Eq. (3.19) changes slowly during a resonance, we can estimate its scale.
In particular, expanding the phase variable qkn := kqθ + nqr in a Taylor series around
the time at which the system encounters resonance, τres,0

qkn(τ) = qkn(τres,0) + (kωθ + nωr)(τ − τres,0) + 1
2(kω̇θ + nω̇r)(τ − τres,0)2 + · · · . (4.3)

The frequency and its derivative are evaluated at τres,0. For non-zero integers k, n, the
second term kωθ + nωr = 0 at τres,0. Thus, the duration of resonance is given by the
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condition that the third term becomes O(1), i.e.,

τres ∼
√

2
kω̇θ + nω̇r

∼ M

√
1
η
. (4.4)

Hence, the resonance time scale is longer than the orbital time scale and shorter than
the radiation reaction time scale.

We are only concerned with the radial ωr and polar ωθ frequency resonances for
self-force resonances when it comes to their impact on orbital evolution. Due to the
axisymmetric nature of spacetime, resonances with azimuthal frequency are irrelevant.
Since the equations are the same for all values of axial angle, it does not matter where
the small object is placed in ϕ for the EMRI to evolve. However, this does not mean
that resonances with m ≠ 0 are not relevant. Due to the preferential direction of
gravitational waves, such resonances can cause small kicks to the binary system. As
pointed out by [82], this is negligibly small for EMRIs, but could have some interesting
consequences for systems with more equal masses.

An EMRI can pass through a resonance during the observationally relevant period.
It can lead to a ‘jump’ in constants of motion relative to the adiabatic prescription.
After spending hundreds of orbital cycles in the resonance region, the parameters of
the inspiraling orbit are different from those calculated from an adiabatic evolution.
Flanagan and Hinderer [73] gave an analytic expression for this deviation in the context
of self-force resonances.

∆Ji = η
∫ ∞

−∞
G

(1)
i (qθ, qr,J)dτ = η

∑
s=±1

√
2π
|Γs|exp

[
sgn(Γs)iπ4 + isχ

]
G

(1)
i,sk,sn(J) . (4.5)

Here, χ = kqθ0 +nqr0 and Γ = kω̇θ0 +nω̇r0, and the quantities qi0 and ω̇i0 are phases and
frequency derivatives evaluated at τres,0 respectively. The jump across the resonance is
evaluated by summing over non-vanishing harmonics of the self force Gi,kn after orbit
averaging. In principle, s ranges over all integers but since low-order resonances are
dominant we only sum over s = ±1. All the quantities are evaluated at resonance.

From Eq. (4.5), we see that the jump across resonance has sensitive dependence on
the resonant phase, i.e., χ. The “shape” of the resonant orbit is dependent upon the
value of χ. Phase can make a significant difference in the appearance of orbits whose
principal parameters (i.e., E, Lz, Q) are the same. Thus, the driving force which alters
the flux rate during a resonance depends on the phase at resonance. Thus, to model the
radiative evolution across a resonance we must know the exact phase of the orbit as it
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enters the resonance. This implies a crucial point — resonances pose a computational
challenge because the adiabatic approximation erases phase information.

4.2 Different origins of resonances in EMRIs

Besides self-force, there can be other sources breaking the integrability of the Kerr
spacetime. The origin can be an intrinsic deviation from the Kerr metric such that
the solution obeys Einstein’s field equations but is not a Kerr BH, or some exotic
object deviating from Einstein’s theory of relativity. The current theoretical models
lack information about how massive BHs formed at the galactic center. Therefore,
the nature of this supermassive object is an open and valid question. Motivated by
this open issue, there are several works discussing possible observations which can
guide us to the answer [68, 71, 70]. The approach to this problem is handled by the
argument of integrability. If a system is integrable, it has at least as many conserved
quantities as degrees of freedom. In principle, a non-integrable system exhibits chaotic
behavior in its dynamical evolution. Recent work [71] focuses on a space-time that
considers theoretical deviations from Kerr’s description of dark compact objects. Hence,
they categorize the supermassive object as “deformed-Kerr”, which is integrable, and
“non-Kerr”, which is not integrable. The motion of the small object is studied in
deformed-Kerr and non-Kerr space-time. At the level of orbital dynamics, the KAM
and Poincare-Birkhoff theorems imply that for a non-integrable system, half of the
resonant orbits remain stable while half become unstable. The main idea is that
a non-integrable system will possess a scattered series of chaotic islands when the
orbit is in resonance. When a small object passes through one of these islands, it
undergoes an abrupt orbital evolution, leading to a sudden change (referred to as a
“glitch”) in GWs frequency. And suppose we observe this discontinuity in the frequency
evolution of a waveform. In that case, it might hint toward a deviation from the general
theory of relativity! The expected observation from non-Kerr sources is illustrated
in Figure 2 of Ref. [71]. Note that while this is one of the possibilities, several other
reasons/space-times (like an instrumental malfunction) that may mimic this erratic
feature in the spectrogram. One such example that is the Manko-Novikov space-time.
The Manko-Novikov space-time is an exact solution to the Einstein Field Equations
that allows objects to be black hole-like, but with a multipole structure different from
Kerr black holes. This space-time does not exhibit Carter symmetry.

On the other hand, the non-integrability can also be sourced by extrinsic deviations,
i.e., the environmental impact on EMRIs. One example of such deviation is the
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presence of tidal perturbers near the galactic center. Due to the close perturber,
the axi-symmetry of the Kerr space-time is broken. EMRIs may exist within noisy
astrophysical environments, and their evolution can therefore deviate from the pure
vacuum predictions of GR. My research investigates (discussed in the following chapters)
the effect of nearby stellar-mass objects induced resonances on LISA GW sources that
leave an observable print on the waveform.





Chapter 5

Tidally perturbed Kerr space-time

It is now possible to study BHs in a strong field regime with GW observatories.
Astrophysical BHs are expected to be immersed in a sea of gravitational fields arising
from external perturbations that will alter the metric of the background hole. Since
there are no exact expressions for computing waveforms in such scenarios, perturbation
theory is used to incorporate tidal effects. The goal of this chapter is to find an
approximate analytic form of the metric of a rotating BH subjected to tidal field. This
chapter summarises the work laid out in Ref. [83].

5.1 Slow-motion approximation

The analytic construction of the metric is carried out in a slow-motion approximation
where the perturbations of the external universe are assumed to vary slowly. Consider
a spinning BH of mass M with spin parameter a immersed in an external universe
described by another object of mass m⋆ with the radius of curvature R. To fulfill the
slow-motion approximation, we need,

• The perturbation hab must be relatively small to the background gB
ab.

• The perturbation must change slowly relative to the background, i.e, ḣab/hab ≪
ΩH .

where ΩH is angular velocity of the BH horizon. The rotation timescale τH of the
horizon is defined as

τH = 1
ΩH

= 2M2

a

(
1 +

√
1 − (a/M)2

)
. (5.1)
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To apply the slow-motion approximation, this time scale must be much shorter compared
to that associated with changing the radius of curvature (determined by the external
object m⋆) i.e., τH/τext ≪ 1. Thus, the condition is

M/R ≪ a/M, (5.2)

given that τext ≈ R. In terms of spinning BHs, this relation defines a well-defined
slow-motion approximation. For later convenience, we also define the inner and outer
horizon of BH as

r± = M ± (M2 − a2)1/2. (5.3)

5.2 The metric perturbation

For the construction of the full metric perturbation, first, the Newman-Penrose scalar
(ψ0) is constructed. Defining it as follows

ψ0 = Cabcd l
amblcmd, (5.4)

where Cabcd denotes the Weyl tensor of the space-time, and la, ma are the null tetrad
vectors. The tetrad consists of four null vectors (l, n,m, m̄) out of which l and m

are real and m and m̄ are complex conjugates of each other. The vectors satisfy the
following orthogonality condition,

l ·m = l · m̄ = n ·m = n · m̄ = 0 (5.5)

The explicit contravariant form in Kerr coordinates is given as,

la =
(

2r
2 + a2

∆ , 1, 02a
∆

)
,

na =
(

0,− ∆
2Σ , 0, 0

)
,

ma = 1√
2(r + ia cos θ)

[
ia sin θ, 0, 1, i

sin θ

]
. (5.6)

The Weyl tensor of the space-time is written in terms of the electric Eab and
magnetic Bab tidal tensors of the external universe (which is completely arbitrary as
long as the slow-motion approximation is satisfied), which are slowly varying functions
of advanced time v. For instance, if the external matter is characterized by mass m⋆
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with orbital velocity u at a distance d from the central black hole, the electric-type
tidal tensor scales as m⋆/d

3 and magnetic-type tidal tensor scales as m⋆u/d
3.

Using the slow-motion approximation, we can calculate the metric perturbation
by applying the Chrzanowski procedure [84] to ψ0. In this calculation, two parts are
involved: the computation of a potential (Ψ) and the determination of the metric
perturbation (hab). In summary, we have a three-step process:

ψ0 −−−→ Ψ −−−→ hab

Construction of the functional form of ψ0

In the asymptotic regime (r+ ≪ r ≪ R), the Newman-Penrose scalar is written as

ψ̃0 ∼ −
∑
m

zm(v) 2Y
m

2 (θ, ϕ), (5.7)

where the tilde is used to symbolise the asymptotic form of ψ0 and 2Y
m

2 (θ, ϕ) represents
the spin-weighted spherical harmonics. The quantities zm(v) in Eq. (5.7) determine
the nature of tidal field arising from the external object m⋆. It is defined as zm(v) =
αm(v) + iβm(v), where αm(v) are linear combination of the electric tidal tensors
Eab and βm(v) are linear combination of the magnetic tidal tensors Bab. For the
analysis described in this thesis, we will be interested in quadrupole tidal perturbation
(l = 2,m = 0,±1,±2) and static tidal field such that magnetic-type tidal tensors do
not contribute to zm(v) (more details in Chapter 6). Therefore, we only show the form
of α(v) below,

α0(v) = E11(v) + E22(v),
α±1(v) = E13(v) ∓ iE23(v),
α±2(v) = E11(v) − E22(v) ∓ 2iE12(v). (5.8)

Ansatz for the explicit form of ψ0 was constructed by Poisson using the asymptotic
form [85]. It is given as,

ψ0 = −
∑
m

zm(v)Rm(r)2Y
m

2 (θ, ϕ), (5.9)

where Rm(r) is an unspecified radial function that should satisfy Rm(r) → 1 in the
regime r ≫ r+. The point is to solve for Rm(r) by inserting ψ0 into the vacuum
Teukolsky equation [86, 87], which yields a differential constraint for Rm(r) as follows:
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First, defining a scaled radial coordinate x as

x = r − r+

r+ − r−
. (5.10)

In terms of this coordinate, the differential equation for Rm(r) is written as,
{
x(1 + x) d

2

dx2 + [3(2x+ 1) + 2imγ] d
dx

+ 4imγ 2x+ 1
x(1 + x)

}
Rm(x) = 0, (5.11)

where γ = a/(r+ − r−). On solving the differential equation, one can obtain the full
expression for ψ0 that carries the information of gravitational perturbations arising
from the external universe. It is given by

ψ0 = −
∑
m

Bmx
−2(1 + x)−2

(
1 + 4

2imγ − 1x+ 6
(2imγ − 1)imγx

2

+ 12
(2imγ − 1)imγ(2imγ + 1)x

3

+ 12
(2imγ − 1)imγ(2imγ + 1)(2imγ + 2)x

4
)

2Y
m

2 (θ, ϕ) , (5.12)

where the notations are defined as,

Bm = Amzm(v), (5.13)

Am = − i

6mγ(1 + imγ)(1 + 4m2γ2), (5.14)

The final expression for ψ0 only contains quadrupole tidal perturbation (l = 2) because
the higher modes are smaller by a relative factor of M/R.

The potential Ψ

The potential is constructed by the application of some differential operators on ψ0.

Ψ = 1
576∆2(D†)4[∆2ψ̄0], (5.15)

where the overbar stands for complex conjugation. Here, ∆ = r2 − 2Mr + a2. The
quantity D† is differential operator that is expressed in spherical Boyer-Lindquist
coordinates (t, r, θ, ϕ) as

D† = ∂r − a

∆∂ϕ. (5.16)
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The Kerr coordinates (v, r, θ, ϕK) are related to Boyer-Lindquist coordinates as follows:

dv = dt+ dr
(2Mr

∆ + 1
)
,

dϕK = dϕ+ dr
a

∆ . (5.17)

From here on, we work in Kerr coordinates and for the ease of notation we remove
the subscript ‘K’ from the azimuthal Kerr coordinate. The background (in Kerr
coordinates) is given by

ds2 = −
(

1 − 2Mr

Σ

)
dv2 +

(
r2 + a2 + 2Mra2 sin2 θ

Σ

)
sin2 θ dϕ2

+4Mar sin2 θ

Σ dvdϕ− Σ dθ2 + dvdr − 2a sin2 θ drdϕ, (5.18)

where we recall M is the mass of the background black hole, a is its spin parameter,
and Σ = r2 + a2 cos2 θ. On transformation to Kerr coordinates, we get a simple form
for the differential operator

D† = ∂r. (5.19)

After various simplifications and applying all derivatives to obtain Ψ is given by

Ψ = − 1
24∆2∑

m
2Ȳ

m
2 (θ, ϕ)z̄m(v). (5.20)

In above equation, the spin-weighted spherical harmonics 2Y
m

2 (θ, ϕ) and ∆2 carry
the angular and the radial dependence, respectively, while the information of tidal
environment is encoded in z̄m(v).

The tidally perturbed metric

The metric of the tidally perturbed space-time can be written as follows:

gab = gB
ab + hab, (5.21)

where gB
ab and hab is the background Kerr metric and the tidal perturbation, respectively.

Wald, Cohen, and Kegeles [88, 89] showed that metric perturbation can be constructed
as [85],

hab = Πab[Ψ]. (5.22)



44 Tidally perturbed Kerr space-time

Here, Πab is a differential operator that depends on the tetrad and directional derivatives
constructed from the tetrad (D = la∂a, δ = ma∂a). Using the spin-coefficients (defined
below) we can compactly write the metric perturbation as [90],

hab = 2ℜ
({

−lalb(δ + ᾱ + 3β − τ)(δ + 4β + 3τ) −mamb(D − ρ)(D + 3ρ) + l(amb)

× [(D − ρ+ ρ̄)(δ + 4β + 3τ) + (δ + 3β − ᾱ− π̄ − τ)(D + 3ρ)]} Ψ) . (5.23)

Here the bar over quantities denote the complex conjugate. The metric perturbation
(see Eq.(5.23)) depends on the spin coefficients (ρ, β, π, τ, α) of the background. The
explicit expressions are as follows [83],

ρ = − r

Σ − i
a

Σ cos θ,

β =
√

2
4
r

Σ cot θ − i

√
2

4
a

Σ cot θ cos θ,

π = −
√

2 a
2

Σ2 r sin θ cos θ + i

√
2

2
a

Σ2

(
r2 − a2 cos2 θ

)
sin θ,

τ = −i
√

2
2
a

Σ sin θ,

αR = −
√

2 a
2

Σ2 r sin θ cos θ −
√

2
4
r

Σ cot θ,

αI =
√

2
2

a

Σ2 sin θ
(
r2 − a2 cos2 θ

)
−

√
2

4
a

Σ cot θ cos θ, (5.24)

where to improve readability αR and αI are the real and imaginary part of the spin
coefficient α. The differential operators (in Kerr coordinates) are expressed as,

D = ∂r + 2a
∆ ∂ϕ,

δ = 1√
2(r + ia cos θ)

(
∂θ + i

sin θ∂ϕ

)
. (5.25)

The reconstructed metric is given in the ingoing radiation gauge, which satisfies

hll = hln = hlm = hlm̄ = hmm̄ = 0.

As a final step, we need to take the necessary derivatives on the spin coefficients as
well as the potential to determine the form of metric perturbation. The full expression
is presented in Eq.(58) of Ref. [83].



Chapter 6

Tidal resonances in EMRIs

6.1 Executive summary

Extreme mass ratio inspirals (EMRIs) will be important sources for future space-based
gravitational-wave detectors. In 2019, B. Bonga, H. Yang , and S. Hughes pointed
out the relevance of a new phenomena — named, tidal resonances in EMRIs due to a
nearby tertiary. These resonances contain information about the next closest BH(s) or
stars to EMRI systems and may hold important clues about the formation of galaxies.
The tidal resonances in binary orbital evolution induced by the tidal field of nearby
stars or black holes have been identified as being potentially significant in the context
of EMRIs. These resonances occur when the three orbital frequencies describing the
orbit are commensurate. During the resonance, the orbital parameters of the small
body experience a ‘jump’ leading to a shift in the phase of the gravitational waveform.
In this chapter, we treat the tidal perturber as stationary, and present a first study
of how common and important such resonances are over the entire orbital parameter
space. We find that a large proportion of inspirals encounter a low-order resonance
in the observationally important regime. While the ‘instantaneous’ effect of a tidal
resonance is small, its effect on the accumulated phase of the gravitational waveform
of an EMRI system can be significant due to its many cycles in band; we estimate
that the effect is detectable for a significant fraction of sources. We also provide fitting
formulae for the induced change in the constants of motion of the orbit due to the
tidal resonance for several low-order resonances.
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6.2 Motivation

It is unlikely that all EMRIs can be treated as completely isolated for the duration
in the LISA band. If an EMRI system is not isolated but is instead influenced by
another astrophysical object, the tidal perturbation (even though relatively small to
the background) can modify the orbital dynamics and GW radiation of the EMRI
system resulting in phase variations in the gravitational waveform [6, 91]. For an EMRI
formed in a wet environment, the active accretion disk itself can be treated as a tidal
perturber. Also, in this scenario, dynamical friction caused by the disk interaction may
leave imprints on GWs [41, 92]. Recently, there has also been work focusing on the
“dephasing” of EMRI signal due to the dynamical friction caused by dark matter halos
around SMBH [93–95]. All these environmental effects are likely to be detectable with
future GW observatories.

We focus on one such environmental scenario — tidal resonances caused by the
tidal field generated by close stars/BHs near the EMRI system [6]. During most of the
EMRI inspiral, the tidal field of nearby objects can be neglected. However, when the
three fundamental orbital frequencies describing the orbit become commensurate, a
tidal resonance occurs1. As a result, the gravitational potential of the tidal perturber
measurably changes the orbit of the small BH and thereby the gravitational radiation it
emits. GWs undergoing such resonances will therefore encode information — although
limited — about the environment of the galactic center, which is difficult to obtain
from EM observations.

Here, we develop analytic and numerical tools to study tidal resonances with
the aim of surveying the orbital parameter space and investigating how often tidal
resonances occur in realistic inspirals. We compute the accumulation in phase after
a tidal resonance has been encountered by an EMRI to understand their impact on
waveforms. We investigate properties of tidal resonances such as the effect of spin of
the central massive black hole, and the orbital parameters of the EMRI on the strength
of each resonance and the resulting phase shift.

6.2.1 Event rate for tidal resonances

Studies based on a Fokker-Planck simulation suggest that a population of 40M⊙ BHs
can be close to Sagittarius A⋆, with a median distance ∼ 5 AU [97, 38, 6]. According

1Tidal resonances occur under more general conditions than self-force resonances, which require
nωr + kωθ = 0. A tidal resonance occurs when the three orbital frequencies of the EMRI and the
three of the perturber are commensurate [96]. However, we treat the perturber as static, hence its
corresponding orbital frequencies do not play a role in resonance condition.
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to [24, 98], brown dwarfs can be at an approximate distance of ∼ 30 AU for Sgr A⋆. If
this holds for even 10% of EMRI events, the detection rate for the observation of tidal
resonances can be approximated to be a few yr−1 [6]. The EMRI merger rate is itself
uncertain depending on the model parameters as discussed in Sec 3.1. Following [6, 44],
we adopt the EMRI merger rate as

1
TEMRI

≈ 0.3
(

M

106M⊙

)0.19

Myr−1 , (6.1)

where TEMRI is the interval between EMRI events, and M is the mass of the central
SMBH. Under the assumption of circular orbits and considering that the shrinking of
the orbit is mainly driven by GW emission, we can write a relation between the time
to coalescence and the distance R to the next infalling BH (with mass M⋆) as [21]

TEMRI ∼ R

Ṙ
∼ 5

256
c5R4

G3M⋆M2 , (6.2)

Combining the two equations, we can have a rough estimate of the distance of the
nearest neighbors to SMBH:

R ∼ 5.6 AU
(

M⋆

30M⊙

)1/4 (
M

4 × 106M⊙

)0.45

. (6.3)

Since the tidal field scales as M⋆/R
3, the closest stellar-mass BHs are likely to be the

main contributors to the tidal environment of EMRIs.

6.3 Framework of tidal resonances

GWs from EMRIs will encode the information of curvature around the central black
hole. In addition to this invaluable data, they can also be used to probe the stellar
distribution in galactic centers. In our study, we consider an EMRI within the influence
of an external tidal field. The information about the tidal environment created by a
stellar-mass object near EMRI is treated in a fully relativistic framework by computing
the perturbation to the Kerr spacetime (as demonstrated in Chapter 5). We use a set
of action-angle variables to study the orbital evolution, such that the action variables
Ji parameterize a torus (constant surface of conserved quantities {E,Lz, Q}) and the
conjugate angle variables qi span the torus with angular advances . This method offers
a simple formulation to incorporate and study deviations from the geodesic motion
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due to different forces [56]:

dqi

dτ
= ωi(J) + ϵg

(1)
i,td(qϕ, qθ, qr,J) + ηg

(1)
i,sf(qθ, qr,J) +O(η2, ϵ2, ηϵ) , (6.4)

dJi

dτ
= ϵG

(1)
i,td(qϕ, qθ, qr,J) + ηG

(1)
i,sf(qθ, qr,J) +O(η2, ϵ2, ηϵ) , (6.5)

where the terms with subscript “td” are from the tidal force, and the terms with
subscript “sf” are from the self-force. Here, the parameter

ϵ = M⋆M
2 x⋆/R

3 (6.6)

characterizes the strength of the tidal field produced by the perturber M⋆ at an
inclination I⋆. Here, x⋆ is a sinusoidal function of I⋆ depending on mode m of the
quadrupole (l = 2) tidal perturbation. The distance of the tidal perturber from the
central MBH is denoted by R. As mentioned before, the frequencies of EMRI orbital
evolution associated with a distant observer time are ωr (oscillations in the radial
direction), ωθ (oscillations in the polar direction), and ωϕ (rotations around the central
BH spin axis).

From the expressions above, we see that at the zeroth order (neglecting the terms
with the superscript (1) and higher order), the action variables are conserved whereas
the angle variables increase at a fixed rate in time, which are denoted by ωi. At leading
order in η, the EMRI orbit deviates from the geodesic motion due to the particle’s
self-force (gi,sf ,Gi,sf) [52–55]. In our model, the EMRI experiences an external tidal
force introduced in evolution equations by terms (gi,td,Gi,td). The tidal force depends
on the axial position of the small body ϕ unlike the self-force (due to axisymmetry of
the Kerr spacetime). The tidal force acts as a purely conservative force in contrast
to the self-force which is both conservative and dissipative. Given the conservative
nature of the tidal force, at leading order, the tidal force can be neglected throughout
most of the inspiral except when a resonance is encountered (this is also demonstrated
in Fig. 6.12.) The mathematical description of the tidal resonance is similar to the
resonance effect induced by the self-force itself [73]. Both resonances are transient
because the orbital frequencies are changing due to radiation reaction. The main
difference between the two resonances is the force that causes it (the tidal force versus
the self-force).

As we proceed, we will only consider tidal resonances and hence the leading order
tidal force G(1)

i,td, and we will drop the subscript ‘td’, for brevity. The force is written
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in terms of its Fourier modes as

G
(1)
i (qϕ, qθ, qr,J) =

∑
n,k,m

G
(1)
i,nkm(J)ei(nqr+kqθ+mqϕ) . (6.7)

For non-resonant orbits, the exponential factor in the above equation is rapidly oscil-
lating in time, thereby averaging to zero over many cycles. Thus, all m, k, n modes,
except for the one with m = k = n = 0, do not contribute to a secular change in J.
However, the phase in Eq. (6.7) will be stationary when

ωnkm := nωr + kωθ +mωϕ = 0 , (6.8)

i.e. when the tidal resonance condition is satisfied for a set of relatively small integers2

(n, k,m). Thus, the exponential factor varies slowly around the resonance point, and
the corresponding average of the force amplitude G(1)

i,nkm is non-vanishing, inducing a
secular change in J. During resonance, the orbital motion is restricted to a subspace
of the full orbital three-torus T3 = {qr, qθ, qϕ}.

It is helpful to recall the relevant timescales for our physical setup. The fastest
timescale is the orbital period τorb ∼ O(M) and the slowest timescale corresponds
to the radiation reaction time τrr ∼ M/η. The orbital period of the tidal perturber
is given by τtd ∼ 2π

√
R3/M . Another key time scale is the resonance duration τres

[73, 100],

τres ∼
√

4π
mω̇ϕ + kω̇θ + nω̇r

∼ M

√
1
η
. (6.9)

Overall, when the stationary perturber approximation is valid, we have

τorb ≪ τres ≪ τtd, τrr.

However, if the third body is close to the EMRI on the equatorial plane, thereby
violating the static approximation, the resonance condition is altered in the following
way (assuming equatorial circular prograde or retrograde orbit of the perturber)

m(ωϕ ± Ωϕ,td) + kωθ + nωr = 0 . (6.10)
2When the condition is satisfied for large integers,the corresponding G

(1)
i,nkm is much smaller. Hence,

they tend to be irrelevant from the observational point of view, although it also depends on the
magnitude of the tidal perturbation which resonances are sufficiently influential. This holds true for
self-forces resonances as well [99].
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In other words, the leading effect of the motion of the perturber would be the change
in time of occurrence of resonance. Of course, the tidal force itself will also be different:
instead of being time-independent, it will need to include the dynamical effects of the
motion of the tidal perturber. However, the time-dependence of the tidal perturber is
expected to be subdominant to the leading order quadrupolar field and therefore not
considered in our work. Since for all resonances we consider Ωϕ,td ≪ ωϕ, this shift is
negligible in evaluating the resonance strength. Note that the condition above is very
similar to the resonance condition of mean motion resonances discussed in [96]. In
fact, the tidal resonances considered here are a subset of the relativistic mean motion
resonances: tidal resonances are mean motion resonances for which the motion of the
outer object can be considered static.

As discussed in Chapter 4, Flanagan and Hinderer [73] gave an analytic expression
for the ‘jump’ induced in the constants of motion due to self-force resonances. We use
a similar estimate to model the effect of the tidal resonance, and calculate the jump
∆Ji in conserved quantities across a resonance point. Assuming that the evolution of J
and hence the orbital periods is dominantly determined by the gravitational radiation
reaction, the jump ∆Ji is estimated as

∆Ji = ϵ
∫ ∞

−∞
G

(1)
i (qϕ, qθ, qr,J)dτ = ϵ

∑
s=±1

√
2π
|Γs|exp

[
sgn(Γs)iπ4 + isχ

]

×G(1)
i,sn,sk,sm(J) , (6.11)

where χ = nqr0 + kqθ0 + mqϕ0 and Γ = nω̇r0 + kω̇θ0 + mω̇ϕ0, and the quantities qi0

and ω̇i0 are phases and frequency derivatives evaluated at τres,0 (the instant where
tidal resonance condition is satisfied), respectively. Strictly speaking, higher modes
with (n, k,m) multiplied by an integer other than ±1 are also non-vanishing, but their
contribution is highly suppressed. This is expected because higher-order resonances
(n, k > 4) come closer to covering all the points in the phase-space, so they are more
like averaging over the whole space. In the estimate of Γ, the corrections due to the
tidal resonance are neglected, because such corrections are higher order in ϵ. The
change across resonance is proportional to η/ϵ1/2. In this work, we study only the
leading quadrupolar l=2 modes, because the higher multipoles will be smaller by a
power of M/R. For l =2, allowed values for azimuthal number m are −2 to 2. In
Fig 6.1, we show the full set of low order resonance combinations investigated in our
analysis. We find that resonance jumps vanish for combinations with k + m = odd.
This suppression is discussed in Appendix A.2.
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Fig. 6.1 The low order tidal resonance contours for a prograde orbit with inclination
50◦ (left) and a retrograde orbit with inclination 130◦ (right) in e - p plane. The spin
parameter of the central BH is set to a = 0.9. The contour labels correspond to integers
{n, k,m}. We discuss the suppression of resonance combinations with k +m = odd in
appendix A.1.

To calculate the tidal force G(1)
i , we incorporate the influence of the third object, the

tidal perturber, on the EMRI system by calculating its induced tidal deformation of the
central BH spacetime. The induced deformation causes the small object of the EMRI
to coherently accelerate when resonance occurs. Thus, as a first step, we need the
perturbation hαβ to the central BH’s spacetime due to the tidal field. This is obtained
by solving the Teukolsky equation [86] in the slow-motion limit (the radius of curvature
R associated to the external spacetime is taken to be much larger than the BH’s scales,
i.e., M/R ≪ 1) followed by metric reconstruction so that the resulting metric is in the
ingoing radiation gauge [83]. Another metric describing a tidally deformed black hole
given by Eric Poisson also exists [85], which is in the lightcone gauge with coordinates
adapted to this gauge and does not rely on metric reconstruction. However, this metric
is only valid in the slow spin limit and we would like to explore the entire range in
spin of the central black hole. Therefore, we use the metric 3 discussed in Chapter 5.

The metric given by [83] includes only quadrupolar l=2 modes because the higher
multipoles will be smaller by a relative factor of O(M/R). For l =2, allowed values
for azimuthal number m are −l to l. However, the m=0 mode is excluded from the

3Note that there is an overall factor of two missing in hαβ in [83]; see footnote 17 in [101] for
details. After correcting for this factor, dLz/dt agrees in the slow spin limit with dLz/dt for hαβ given
in [85].
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metric4. An additional point of observation is that if the position of the tidal perturber
is restriced to the equatorial plane, the Newmann-Penrose scalar ψ0 (see (5.12)) is
zero for m = ±1 modes. Nevertheless, we include all m = ±2, ±1, 0 modes in our
inclined perturber setting. The input for the metric reconstruction procedure is zm. At
leading order, these coefficients are determined by the electric and magnetic quadrupole
moment tensor denoted by Eab, and Bab, respectively. Quadrupole moment tensors
scale as [102]

Eab ∼ 1
R2 , Bab ∼ V

R2 ,

where V ∼
√
M +M⋆

R
is the orbital velocity of the third body. In this work, we set

the magnetic-type tensor to be zero as we assumed the tidal perturber to be stationary.
In a general setting, the dynamics of the third body should be taken into account.
To summarize our assumptions, we consider a stationary tidal perturber restricted to
the equatorial plane and take into account only its l = 2 contributions in the tidal
resonance.

The tidal perturber is aligned along the x-axis and for the electric tidal moment
tensor we take the following form:

Eab = M⋆

R3 (2∇ax∇bx− ∇ay∇by − ∇az∇bz) , (6.12)

where x, y, and z are the Cartesian-like coordinates (see Sec. IXB of [103]). We
substitute this as input to obtain hαβ in the ingoing radiation gauge in advanced
Eddington-Finkelstein coordinates (called Kerr coordinates in [83]).

Next, we perform a coordinate transformation from the advanced Edington-Finkelstein
coordinates {v, rEF, θEF, ϕEF} to Boyer-Lindquist coordinates {t, r, θ, ϕ}:

dv = dt+
(

1 + 2Mr

r2 − 2Mr + a2

)
dr , (6.13a)

drEF = dr , (6.13b)
dθEF = dθ , (6.13c)

dϕEF = dϕ+ a

r2 − 2Mr + a2dr . (6.13d)

Given hαβ, the induced acceleration with respect to the background Kerr spacetime is

aα = −1
2(gαβ

Kerr + uαuβ)(2hβλ;ρ − hλρ;β)uλuρ , (6.14)

4These modes are included in the slow-spin limit metric given by Poisson [85].
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with uα the unit vector tangent to the worldline of the EMRI’s small mass µ. The
instantaneous change rate of the constants of motion are [91]

dLz

dτ
= aϕ , (6.15)

dQ

dτ
= 2uθaθ − 2a2cos2θutat + 2cot2θuϕaϕ . (6.16)

The energy E is conserved as the spacetime is stationary. With these equations in
hand, we obtain dLz/dτ and dQ/dτ due to the stationary phase harmonics of the tidal
force, Gi,mkn, as a function of χ (see Eq. (6.11)). Another quantity needed for the
computation of jump is Γ which contains information about the resonance duration is
obtained from the rate of change of the orbital frequencies at the time of resonance.

6.3.1 Method of determining inspiral

For the evolution of an EMRI orbit, we use the numerical data (shared with us by R.
Fujita [61]) for the GW fluxes dissipated by a stellar-mass object with bound orbits
around a Kerr BH of spin parameter a for large sets of orbital parameters. The
derivation of GW fluxes in the data sets used methods presented in Refs. [104–106]
based on the formalism developed by Mano, Suzuki, and Takasugi (MST) [107–110].

Using the MST code, the adiabatic change of constants of motion was computed
for a number of data points in the semi-latus rectum p, the orbital eccentricity e, and
the orbital inclination I for different spin parameters. We obtained dCi/dt in phase
space {p, e, I} through polynomial fitting where Ci = {E,Lz, Q}. Further, the secular
evolution of orbital parameters P i = {p, e, I} is derived from those of Ci = {E,Lz, Q}
using 〈

dP i

dt

〉
=
∑

j

(T −1)i
j

〈
dCj

dt

〉
, (6.17)

where T j
i ≡ ∂Cj/∂P j is the Jacobian matrix for the transformation from {E,Lz, Q} to

{p, e, I}. Using this approach, we obtain accurate orbits at inexpensive computational
cost. One caveat is that the numerical data sets of GW fluxes are obtained only for
orbital eccentricity e upto 0.7 and each data set is truncated at p ∼ 6M for each value
of the spin.5 Therefore, accuracy of our numerical fitting for fluxes below 6M is limited
by the available data sets and we rely on extrapolation for the change in fluxes in this
region.

5When numerical fluxes become available across the parameter space at inexpensive computational
costs, we plan to extend our fittings in future work.
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Returning to Eq. (6.11), we obtain the change in frequencies during an inspiral from
these numerical fits and evaluate Γ. For the implementation of the analytic expressions
of fundamental frequencies [51, 49], our code employs the ‘Kerr Geodesic’ Package
from the Black Hole Perturbation Toolkit [111].

6.4 Results

In this section, we investigate the orbital parameter space and find some trends regarding
the number of resonances encountered and the strength of each resonance as a function
of the spin of the central massive black hole and the orbital parameters of the EMRI.
We compute the accumulated phase shift due to different tidal resonances and show
the affected parameter space. In addition to calculating the jump semi-analytically, we
have also implemented the tidal effects using the forced osculating orbital elements
method [112, 113]. The numerical evolution establishes that, as expected, the tidal force
can be neglected throughout most of the EMRI evolution except during resonances.
Moreover, the numerical evolution not only agrees qualitatively with the general features
of tidal resonances, but also quantitatively. In particular, the numerically evaluated
jumps agree remarkably well with the semi-analytic methods, thereby supporting the
validity of both methods, which are implemented independently.

6.4.1 Inspiral crossing tidal resonances

Our aim is to span the complete orbital parameter space that is likely relevant for
observationally important EMRI events. With the help of numerical data, we can
compute the inspiral for both prograde (0 ≤ I < π/2) and retrograde orbits (π/2 <
I < π) by picking initial I from the set ∈ [20◦, 50◦, 80◦, 100◦, 130◦, 160◦]. The spin
parameter are chosen from the set a/M ∈ [0.1, 0.5, 0.9] ranging from a slowly rotating
central BH to a rapidly rotating one. For the orbital eccentricity e, the range varies
from 0.0125 ≤ e ≤ 0.7 with grid spacing ∆e = 0.0125. The values of p are not randomly
sampled but are chosen such that the resonance condition in Eq. (6.8) is satisfied for
some low order integers n, k, and m.

We find that every inspiral encounters at least one lower-order resonance. As also
seen for self-force resonances, higher-order resonances have smaller jumps compared
to lower-order ones [79]. In Fig. 6.2, we show the low-order tidal resonances (i.e.
n, k ∈ [−4, 4];m = 0,±2) shown by black contours in the e - p plane for different
spin parameters of the central black hole. In the upper panel, prograde geodesics
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Fig. 6.2 The upper panels shows the tidal resonance contours for prograde orbits with
orbital inclination 50◦ for different spin parameters of the central BH in e - p plane.
The contour labels correspond to integers n, k,m. In the right figure (upper panel),
an inspiral is shown in red starting at e = 0.7 and p = 9M . During the evolution, p
shrinks and e decreases due to radiation reaction. We see that before plunging, the
orbit crosses multiple tidal resonances. The lower panels show the tidal resonance
contours for retrograde orbits with orbital inclination 130◦ for different spin parameters.



56 Tidal resonances in EMRIs

are considered with I = 50◦ whereas in the lower panel, resonances are shown for
retrograde geodesics with I = 130◦. We see that the value of p at which resonances
occur depends strongly on EMRIs orbital parameters. For instance, comparing the
plots in the upper panel, the same resonance contour is in a different location on the e
- p plane as the spin parameter varies (left to right).

As an example, we show an inspiral (in red) evolving in the e - p plane with a = 0.9
and I = 50◦. As the orbit shrinks and circularizes due to radiation reaction it passes
through four low-order tidal resonances before it plunges. When a resonance occurs
at large p, the tidal field is stronger, leading to a larger jump in conserved quantities.
Note that for retrograde orbits (lower panel) resonances occur at larger values of p as
compared to prograde orbits thereby experiencing a larger tidal force. Also, at large p,
the EMRI systems evolve relatively slowly, spending more time in resonance. To access
the secular impact of tidal resonances on EMRIs the time remaining after crossing each
resonance is also of importance. The space-based low-frequency interferometers will be
able to track the evolution of EMRI waves for years. In the example shown, for an
inspiral with parameters M = 4 × 106M⊙ and µ = 30M⊙ the observational time after
crossing the n : k : m = −3 : 0 : 2 resonance is about 10 yrs whereas the −3 : 4 : −2
resonance is crossed ∼ 1.5 yrs before plunge.

6.4.2 Dependence on orbital phase

When we introduce the tidal perturber on the equatorial plane, the spacetime describing
the central black hole and the tidal perturber is no longer axisymmetric. As shown
in Eq. (6.5), the tidal force depends on the axial position of the small body. Hence,
the change in conserved quantities is sensitive to EMRI’s orbital phase on entering the
resonance. To illustrate this dependence, we first compute dLz/dt and dQ/dt for some
resonance with non-zero m, k, n. After orbit averaging, the sum in Eq. (6.7) can be
written as,

〈
G

(1)
i (qϕ, qθ, qr,J)

〉
≈ G

(1)
i,mkn(J)ei(mqϕ0+kqθ0+nqr0) + {c.c.}. (6.18)

In Fig. 6.3, we show dependence of average change rate of conserved quantities on qϕ0

for an inspiral orbit (shown in Fig. 6.2) crossing the 3 : 0 : −2 resonance with a = 0.9.
Note that ⟨dLz/dt⟩ and ⟨dQ/dt⟩ are made non-dimensional by factoring out ϵ/M .

The phases qr0 and qθ0 determine the values of r and θ at resonance. Here, we
set qθ0 = 0 and qr0 = 0 when the orbit enters resonance meaning that the orbit
enters resonance at θ = I and r = rmin. The azimuthal phase qϕ0 describes the
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Fig. 6.3 Average change rate of z-component of angular momentum (red-solid) and
Carter constant (blue-dotted) as a function of orbital phase qϕ0 for an orbit crossing
the n : k : m = 3 : 0 : −2 resonance with a = 0.9. Both ⟨dLz/dt⟩ and ⟨dQ/dt⟩ are
normalised by ϵ and powers of M to be dimensionless.

motion of a small object with mass µ around the central BH spin axis. The change
induced in constants of motion has sinusoidal dependence on phase, i.e., sin(mqϕ0).
Therefore, depending on this phase an orbit may cross the tidal resonance without
“feeling" its effect. In our analysis, to determine the impact of tidal resonances, we
will fine-tune the phase value such that the change in Lz and Q due to resonance is
maximum. In that sense, our results show the upper limit of influence caused by these
resonances. The phase dependence is easily retrieved by multiplying the results here
by sin(mqϕ0 + kqθ0 + nqr0).

6.4.3 Trends and fitting formulae

In addition to the information of orbital phase, to estimate the jump in the constants of
motion induced (see Eq. 6.11) by tidal resonances, we need the rate of change in orbital
frequencies (Γ) and tidal force amplitude Gi,mkn. First, we survey the orbital parameter
space and compute dLz/dt and dQ/dt for different resonances to find some interesting
trends. Using the numerical data obtained by evaluating the analytic expressions
given in Eqs. (6.15) and (6.16) we made 3-D {a, e, x} fitting formulas by making a
polynomial ansatz of the form Cijka

iejxk up to some order in i, j, k and then fitting the
numerical data points simultaneously to obtain the coefficients Cijk. These numerical
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Fig. 6.4 Dependence of average change rate of the z-component of angular momentum
(red-solid) and Carter constant (blue-dotted) on the orbital eccentricity for n : k : m =
3 : 0 : −2 with spin parameter and orbital inclination set to 0.9 and 50◦, respectively.
Both rates of change increase with increasing eccentricity. The factor e2/(e − 1)2

ensures that dLz/dt and dQ/dt are zero for circular orbits (e = 0) since ωr is zero in
that case. The dots represent the values obtained from semi-analytic calculation and
curves denote the obtained fitting.

fits allow inexpensive calculations of dLz/dt and dQ/dt due to a tidal resonance. First
to analyse the trends of different resonance combinations, we discuss them separately
depending on the value of azimuthal integer m.

Resonances with m = ±2

We find that for all the resonances encountered by an inspiral before plunge the change
in Lz and Q increases as we go from low to high eccentricity regardless of the rotation
direction of the orbit, i.e., prograde or retrograde. This is expected because for large
eccentricity, the distance of the apoapsis ra = a(1+e) is larger and hence it experiences
a larger tidal force. In Fig. 6.4, we show an increase in both quantities with eccentricity
for the 3 : 0 : −2 resonance. The dots represent the values obtained from the semi-
analytic calculations and curves denote the obtained fitting. The agreement between
the semi-analytic evaluation and fitting agrees remarkably well with the error always
less than 1%.

Another interesting pattern is observed with a variation in the spin parameter of
SMBH. As shown in Fig. 6.5, for prograde orbits, dLz/dt and dQ/dt decrease as the
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Fig. 6.5 Dependence of average change rate of the z-component of angular momentum
(red-solid) and Carter constant (blue-dotted) on spin of central BH for n : k : m = 3 :
0 : −2 with eccentricity and orbital inclination set to 0.3 and 50◦, respectively. Both
quantities decrease with increasing spin of SMBH.
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Fig. 6.6 Dependence of average change rate of the z-component of angular momentum
(red-solid) and Carter constant (blue-dotted) on orbital inclination for n : k : m =
3 : 0 : −2 with eccentricity and spin set to 0.3 and 0.9, respectively. As we go from
high to a low inclination angle, dQ/dt decreases whereas dLz/dt appears to be largely
insensitive to the orbital inclination angle. The insensitivity of dLz/dt to inclination
angle is however only true for resonances with k = 0.
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Fig. 6.7 Dependence of average change rate of the z-component of angular momentum
(red-solid) and Carter constant (blue-dotted) on orbital inclination for n : k : m = 3 :
−4 : 2 with eccentricity and spin set to 0.7 and 0.9, respectively. As we go from high
to a low inclination angle, dQ/dt and dLz/dt decreases for the prograde orbit.
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Fig. 6.8 Dependence of average change rate of the z-component of angular momentum
(red-solid) and Carter constant (blue-dotted) on orbital inclination for n : k : m = 3 :
−4 : −2 with eccentricity and spin set to 0.7 and 0.9, respectively. As we go from high
to a low inclination angle, dQ/dt and dLz/dt decreases for the retrograde orbit.
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spin parameter increases. This change directly translates to the jump induced during
resonance implying that for rapidly spinning central massive objects the resonance
strength is smaller. However for retrograde orbits, dLz/dt and dQ/dt increase as the
spin parameter increases. This is expected because the resonance occurs at larger p
values (see low panels of Fig. 6.2). Thus, the acting tidal force is greater for retrograde
orbits.

We also find that as the orbital inclination angle is varied from high to low, dQ/dt
and dLz/dt decreases for both prograde and retrograde orbits. In Fig 6.6, we show
both the quantities for the 3 : 0 : −2 resonance. The change in Lz appears to be
insensitive to change in inclination, but it is only true for resonances with k = 0. In
Fig. 6.7, dependence of dQ/dt and dLz/dt on the orbital inclination is shown for the
prograde orbit crossing 3 : −4 : 2 resonance. Similarly, the case for retrograde orbit
crossing 3 : −4 : −2 resonance is shown in Fig. 6.8.

The fitting formulae to obtain change in Q and Lz by the 3 : 0 : −2 (prograde
orbits) resonance are given in Appendix A.1. The fitting depends on orbital parameters
{a, e, x} and sinusoidally on orbital phases qϕ0 and qr0 at resonance. The prefactor
e2/(e− 1)2 ensures that dLz/dt and dQ/dt are zero for circular orbits (e = 0) since ωr

is zero for this case. Note that ⟨dLz/dt⟩ and ⟨dQ/dt⟩ are normalised by multiplying
a factor of (ϵ/M)−1. The Mathematica notebook with fitting formulae for other
resonances (including 3 : 0 : 2) is made available on [114].

Resonances with m = ±1

In the following, we first explore the strength of m = ±1 mode resonances as a function
of orbital parameters (a, p, e, x) and inclination θper of the tidal perturber. We compute
the change in Lz and Q for different resonances and note some interesting trends for
m = ±1 modes. In Fig. 6.9, we show dependence of a sample resonance −3 : 1 : 1
(prograde orbit) on a, e, x and θper.

• We find that, irrespective of the resonance combinations, i.e. m = ±1,±2,
and the direction of the orbit (prograde or retrograde), both dLz/dt and dQ/dt

increase with increasing orbital eccentricity e. The prefactor e2/(e− 1)2 in the
fitting formulae ensures that dLz/dt and dQ/dt are zero for circular orbits (e = 0)
since the amplitude of radial oscillations is zero for this case.

• Another pattern is observed for variation in the spin parameter of MBH. Similar
to m = ±2 modes, for prograde orbits, m = ±1 mode resonances show a
decrease in both dLz/dt and dQ/dt as a increases whereas for retrograde orbits
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Fig. 6.9 Dependence of average change rate of the z-component of angular momentum
(red-solid) and Carter constant (blue-dashed) on the orbital eccentricity (top, left), on
orbital inclination (bottom, left), the spin of central BH (top, right), and perturber’s
inclination (bottom, right) for n : k : m = −3 : 1 : 1. The dots represent the
values obtained from the semi-analytic calculation, and curves denote the obtained
fitting. Note that both ⟨dLz/dt⟩ and ⟨dQ/dt⟩ are normalised by multiplying a factor
of (ϵ/M)−1.

both quantities increase as a increases. The difference between prograde and
retrograde orbits is expected because the resonance occurs at smaller (larger) p
values for prograde (retrograde) orbits for larger values of a (see vertical scale of
lower panel in Fig. 6.1) for which the acting tidal force is greater.

• As for orbital inclination parameter x = cos I, we find that, as x increases, both
dLz/dt and dQ/dt tends to decrease regardless of the orbit’s direction. This
feature is again qualitatively similar to the trend found for m = ±2.

• Next, we note the dependence of resonance strength on inclination of the tidal
parameter θper. For the sample resonance −3 : 1 : 1 and other resonance com-
binations with m = ±1, the change in dLz/dt and dQ/dt is maximum for the
perturber at an inclination of θper = 45◦. This behaviour can be qualitatively
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Fig. 6.10 Dependence of average change rate of the Carter constant (blue-dotted) on
the orbital eccentricity (top, left), on orbital inclination (bottom, left), the spin of
central BH (top, right), and perturber’s inclination (bottom, right) for n : k : m = −3 :
2 : 0. The dots represent the values obtained from the semi-analytic calculation, and
curves denote the obtained fitting. There is no change in the z-component of angular
momentum given the axisymmetry of the m = 0 perturbation. Note that ⟨dQ/dt⟩ is
normalised by multiplying a factor of (ϵ/M)−1.

explained for Lz using Newtonian arguments — the spherical harmonic decom-
position of (l = 2,m = ±2) mode of the tidal force and hence the torque turns
out to be proportional to sinθper cosθper [115]. This dependence also clarifies that
m = ±1 resonance gives no contribution for an equatorial perturber (θper = 0◦)
and polar perturber (θper = 90◦).

Resonances with m = 0

In Fig 6.10, we show the dependence on orbital and tidal parameter for an m = 0 mode
focusing on −3 : 2 : 0 resonance. For this mode, the axisymmetry of the background
Kerr spacetime remains intact. Therefore there is no jump induced in Lz. Nonetheless,
we find that such resonances can still drive a jump in Q as shown in Fig 6.10. The
dependency on e, a, x are qualitatively similar to m = 1 resonances discussed above. In
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Fig. 6.11 Dependence of average change rate of the Carter constant (blue-dotted) on
the perturber’s inclination for a prograde orbit crossing n : k : m = 3 : 0 : −2. The dots
represent the values obtained from the semi-analytic calculation, and curves denote the
obtained fitting. Note that both ⟨dLz/dt⟩ and ⟨dQ/dt⟩ are normalised by multiplying
a factor of (ϵ/M)−1.

contrast, for m = 0 resonances, we find that the absolute jump size is largest when
the perturber is aligned with the rotation axis of the SMBH i.e. θper = 90◦. This
finding is important because m = 0 modes can cause a jump in Q, implying that
other axisymmetric sources such as accretion disks can also induce a jump and impact
waveforms through tidal resonances. Furthermore, tidal resonances with m = 0 modes
are degenerate with self-force resonances, for which only the radial and polar integers
(n and k) determine the resonance combination due to the axisymmetry of the Kerr
space-time. In order to dissociate such resonances, waveforms need to be accurately
modeled. If multiple tidal resonances due to the same perturber are encountered by
an EMRI, they might be sufficient to break the degeneracy. For the completeness,
in Fig 6.11 we show the dependence of the m = 2 mode on θper. The cos2θper like
dependence highlights that the jump size from m = 2 modes is maximum when the
perturber is on the equatorial plane. This holds true irrespective of the orbit’s direction.

6.4.4 Computation of jump and consistency with numerical
evolution

The estimate of induced jump in conserved quantities across a resonance is evaluated
using the analytical expression given by Eq. (6.11). For example, using this expression
for an orbit crossing the 3 : 0 : −2 tidal resonance, the maximum jumps (by setting
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qr0 = qθ0 = 0, qϕ0 ∼ 0.785) induced in Lz and Q are

∆Lz,max = 7.4 × 10−6, ∆Qmax = 1.8 × 10−5 .

The above values are shown for an EMRI with mass ratio η = 7.5 × 10−6 (for M =
4 × 106M⊙ andµ = 30M⊙) and orbital parameters {a, p, e, x} ∼ {0.9, 8.35, 0.62, 0.643}
at resonance under influence of a tidal perturber with mass 30M⊙ at a distance of
10 AU from the SMBH.

To perform a consistency check on the analytical calculation, we separately imple-
mented the tidal force computed from the metric perturbation hαβ using the forced
osculating orbital elements method [113, 116]. For the inclusion of radiation reaction
effects, we employ a newly developed solver of the PN fluxes that takes into account
the correction up to 5PN order and tenth order in eccentricity [61, 114]. We use 5PN
fluxes to drive the inspiral in our osculating code instead of MST fluxes because PN
fluxes are easier to implement and MST flux data sets are limited to p ∼ 6M . In the
osculating geodesics approach, the instantaneous tangential geodesics are referred to as
osculating orbits. The transition between osculating orbits corresponds to the change
in orbital elements. The inspiral motion is constructed from a smooth sequence of
tangent geodesics where the driving forces are radiation reaction (5PN fluxes) and
the tidal force caused by the perturber. We ran two simulations for an inspiral orbit
with and without the effect of the tidal force taking the same initial conditions for the
orbit as shown in Fig. 6.2. To extract the size of the jump, we compute the difference
between the full trajectory (tidal force + 5PN) and adiabatic (only 5PN) trajectory.

In Fig. 6.12, we show the differences ∆Lz (left) and ∆Q (right). The apparent
thickness of the lines shown in the figures is caused by oscillations on the orbital
timescale. The orbit spends hundreds of cycles in the resonance regime which lasts
about 17 days. It also shows that the tidal force significantly affects the inspiral around
the resonance only.

An EMRI orbit can enter the resonance with any orbital phase thus affecting the
size of the jump. We first find the value of qϕ0 at which ∆Qmax matches ∆Q in the
plot (right panel of Fig. 6.12) by solving

∆Qmax sin(−2qϕ0) = ∆Q.

This yields qϕ0 ∼ 0.23. Then, we use this phase to check what the numerical value of
∆Lz should be based on the maximum value it can take analytically, i.e., ∆Lz,max. Our
check yields ∆Lz ∼ 3.2 × 10−6, which agrees with the jump estimated from numerical
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Fig. 6.12 The left figure shows the difference in Lz between the orbit evolved with and
without tidal resonance effect. When the orbit enters resonance, there is a jump in the
quantity. The fast oscillations correspond to orbital timescales. The gap between the
horizontal dotted lines estimates the size of the jump. Similarly, the right figure shows
a jump in the Carter constant.

evolution (left panel of Fig. 6.12). This computation verifies the jump estimated using
the semi-analytic expression. Hereafter, we rely on the semi-analytical estimate of
the jump (obtained using the numerical strategy discussed in Sec. 6.3.1) to study the
impact of tidal resonances on gravitational waves.

6.4.5 Impact on gravitational waveform

For an EMRI source to be detectable by space-based interferometers, it must have
an orbital frequency higher than about fLISA = 10−4Hz. Using the approximation of
Keplerian frequency when EMRI enters LISA band, we arrive at a rough condition on
the semi-major axis asemi,

asemi

M
< 20 ×

(
M

4 × 106M⊙

)−2/3(
fLISA

10−4Hz

)−2/3

. (6.19)

Using this rough estimate, an EMRI with asemi less than 20M will lie in the observable
band. Low-order resonances encountered by both prograde and retrograde orbits lie
well within LISA frequency band for the central black hole less massive than 4×106M⊙.

As discussed in previous sections, an orbit passing through a resonance can lead
to a sudden change in constants of motion. This change means that the evolution
post-resonance can become out of phase with that of the pre-resonance evolution.
Therefore, we cannot match both parts with the same template. This can hamper the
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Fig. 6.13 Accumulated phase ∆Ψi for spin parameter a = 0.1, 0.5, 0.9 for a prograde
orbit crossing the 3 : 0 : −2 resonance in the x - e plane. Top, middle and bottom panels
correspond to ∆Ψϕ, ∆Ψθ and, ∆Ψr, respectively. The phase shift is computed for an
EMRI with M = 4 × 106M⊙, µ = 30M⊙ under the influence of a tidal perturber with
mass M⋆ = 30M⊙ at a distance of 10 AU from the central SMBH. Results for different
sets of parameters can be estimated from the scaling relation given in Eq. (6.21).
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Fig. 6.14 Accumulated phase ∆Ψi for spin parameter a = 0.1, 0.5, 0.9 for a prograde
orbit crossing the 3 : −4 : 2 resonance in the x−e plane. Top, middle and bottom panels
correspond to ∆Ψϕ, ∆Ψθ and, ∆Ψr, respectively. The phase shift is computed for an
EMRI with M = 4 × 106M⊙, µ = 30M⊙ under the influence of a tidal perturber with
mass M⋆ = 30M⊙ at a distance of 10AU from the central SMBH. Results for different
sets of parameters can be estimated from the scaling relation given in Eq. (6.21).
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Fig. 6.15 Accumulated phase ∆Ψi for spin parameter a = 0.1, 0.5, 0.9 for a retrograde
orbit crossing the 3 : 0 : 2 resonance in the x - e plane. Top, middle and bottom panels
correspond to ∆Ψϕ, ∆Ψθ and, ∆Ψr, respectively. The phase shift is computed for an
EMRI with M = 4 × 106M⊙, µ = 30M⊙ under the influence of a tidal perturber with
mass M⋆ = 30M⊙ at a distance of 10AU from the central SMBH. Results for different
set of parameters can be estimated from scaling relation given in Eq. (6.21).
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Fig. 6.16 Accumulated phase ∆Ψi for spin parameter a = 0.1, 0.5, 0.9 for a retrograde
orbit crossing the 3 : −4 : −2 resonance in the x− e plane. Top, middle and bottom
panels correspond to ∆Ψϕ, ∆Ψθ and, ∆Ψr, respectively. The phase shift is computed
for an EMRI with M = 4 × 106M⊙, µ = 30M⊙ under the influence of a tidal perturber
with mass M⋆ = 30M⊙ at a distance of 10AU from the central SMBH. Results for
different set of parameters can be estimated from scaling relation given in Eq. (6.21).
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detection of EMRIs using standard matched filtering techniques. Thus, it is important
to study their impact on EMRI waveforms. To estimate the effect, we study the
deviation in the orbital phase, which can be evaluated as

∆Ψϕ =
∫ Tplunge

0
2∆ωϕdt . (6.20)

The accumulation in phase is integrated from the resonance time up to the plunge
time Tplunge. We evolve two orbits one with and without ∆Ji included. At each time
ωϕ for both the orbits is compared and the difference in frequencies for these two
evolutions is given by ∆ωϕ. The factor of 2 in Eq. (6.20) is because the strongest
harmonic in GWs is the quadrupolar mode (l = 2,m = 2). The phase evolution of
waveform depends on the combination of three orbital phases: radial, polar, azimuthal.
Therefore, in a similar manner, we also evaluate radial and polar accumulated phase
shift, i.e., ∆Ψr and ∆Ψθ, respectively. LISA has a remarkable sensitivity to the phase
resolution of EMRI measurements, which is roughly estimated as ∆Ψϕ ∼ 0.1, assuming
SNR to be 20 [117, 6]. The resonance causes a shift in fundamental frequencies that is
not replicated by adiabatic evolution, thus resulting in gradual dephasing of waveforms.

In our analysis, we show that in a significant fraction of the parameter space
EMRIs are likely to experience a tidal resonance (or multiple) that induces phase shift
greater than 0.1 rad making the effect detectable. Therefore, including the signature
of resonances in waveform modeling is necessary to test GR with precision and allows
a study of the environment around an EMRI. To compute the phase shift we set
M = 4 × 106M⊙, µ = M⋆ = 30M⊙ and R = 10AU. This distance as twice as far as
in [6] to give a more conservative estimate. In Fig 6.13, the accumulation in phase
is shown for prograde orbits crossing the 3 : 0 : −2 resonance in the x - e plane for
different spin parameters of the SMBH. In the top panel, ∆Ψϕ is shown. The whole
parameter space except for low eccentricity orbits (< 0.2) is affected by this resonance
as the phase shift lies in the detectable range of LISA. Middle and bottom panels show
the affected parameter space for ∆Ψθ and ∆Ψr, respectively. The dephasing increases
with increasing eccentricity and mildly depends on the spin parameter. Since this
resonance is encountered early in the inspiral phase (see upper panel of Fig 6.2), the
phase is accumulated over hundreds of thousands of cycles before plunge and therefore
affects most of the parameter range.

In Fig. 6.14, a similar plot is shown for a prograde orbit crossing the 3 : −4 : 2
resonance. In this case, dephasing is sensitive to changes in inclination and spin
parameter. For the case ∆Ψϕ (top panel), orbits with low eccentricity (<∼ 0.3) and
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Fig. 6.17 Log of accumulated phase ∆Ψϕ for spin parameter a = 0.1, 0.5, 0.9 for a
prograde orbit crossing the −3 : 1 : 1 (top panel) and −3 : 2 : 0 (bottom panel)
resonance in the x - e plane. The phase shift is computed for an EMRI with M =
4 × 106M⊙, µ = 30M⊙ under the influence of a tidal perturber with mass M⋆ = 30M⊙
at a distance of 10 AU from the central MBH. Results for different sets of parameters
can be estimated from the scaling relation given in Eq. (6.21).

small inclination (<∼ 45◦) have phase shift smaller than 0.1, implying that the tidal
resonance does not cause an observable effect in this range. As the spin is increased, a
larger region of the parameter space is in the non-observable range. For a = 0.9, only
orbits with high inclination (>∼ 50◦) and high eccentricity have a detectable tidal effect.
The middle panel shows ∆Ψθ which is of the same order as ∆Ψϕ, and the bottom
panel shows ∆Ψr.

In Fig. 6.15 and Fig. 6.16, we show the accumulated phase shift for retrograde
orbits crossing the 3 : 0 : 2 and 3 : −4 : −2 resonances, respectively, for different spin
parameters. As is clear from the figures, dephasing is larger compared to prograde
orbits. This is expected because the value of p is larger for retrograde orbits (see
the lower panels of Fig. 6.2), causing the effect of tidal force to be larger compared
to prograde orbits. In contrast to the trend observed for prograde orbits, dephasing
increases as the spin parameter increases.

In Fig 6.17, ∆Ψϕ is shown for prograde orbits crossing the −3 : 1 : 1 (top panel)
and −3 : 2 : 0 (bottom panel) resonances in the x - e plane for different spin parameters
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of the MBH. The whole parameter space except for low eccentricity orbits and/or for
a large spin is measurably affected by the −3 : 1 : 1 resonance. In a similar way, the
−3 : 2 : 0 resonance impacts a large parameter space. The dephasing increases with
increasing eccentricity. Since both sample resonances are encountered early in the
inspiral phase (see the left panel of Fig 6.1), the dephasing accumulates over hundreds
of thousands of cycles before the plunge, and therefore affects most of the parameter
range.

The accumulated phase shown for the sample resonances is calculated for fixed
masses of the MBH, EMRI and the tidal perturber. The accumulated phase ∆Ψ′

nkm

for a different set of parameters M ′, µ′,M ′
⋆, R

′ , x′
⋆ simply scales as

∆Ψ′ = ∆Ψ
(
M ′

M

)7/2(
µ′

µ

)−3/2(
M ′

⋆

M⋆

)(
x′

⋆

x⋆

)(
R′

R

)−3

. (6.21)

So far, our results suggest that resonance jumps are sensitive to intrinsic orbital
parameters, especially the orbital phases at resonance. Also, dephasing due to low-
order tidal resonances can strongly impact the EMRIs detectable by LISA, assuming
such tidal perturbers exist. Consequently, the waveform evolution becomes out of
phase, compared to a template neglecting resonances — reducing the detection rate
because the signal-to-noise ratio falls as the phase error accumulates. It calls for careful
modeling of waveforms that correctly detect EMRIs and estimate the parameters of
EMRI and perturber. This serves as our motivation for the next chapter.





Chapter 7

Modeling transient resonances in
EMRIs

7.1 Executive summary

The observation of EMRI gravitational waves will offer stringent tests on general theory
of relativity, and provide a wealth of information about the dense environment in
galactic centers. To unlock such potential, it is necessary to correctly characterize
EMRI signals. However, resonances are phenomena that occurs in EMRI systems and
can impact parameter inference, and therefore the science outcome, if not properly
modeled. The previous chapter has demonstrated that tidal resonances induced by
the tidal field of a nearby astrophysical object alters the orbital evolution, leading to
a significant dephasing across observable parameter space. Here, we explore how to
model resonances and develop an efficient implementation.

If the resonance effects are large enough, post-resonance waveform evolution can
become totally out of phase compared with the template neglecting resonances. It
requires a practical, i.e., fast and accurate, model to efficiently detect EMRIs and
correctly estimate the parameters of EMRI and the perturber. A recent work [81]
presented a partially phenomenological Effective Resonance Model (ERM) with addi-
tional free parameters for the resonance jumps. We use techniques from this model to
incorporate tidal resonances that are constrained by physics, and hence our model is
no longer “effective” in the above sense.

Here, we go beyond semi-analytic fits to resonant jumps by proposing a new
waveform model taking the resonances into account. A consistency check confirms
that the obtained fitting formulae accurately estimate the jump size by comparing it
with the osculating elements trajectory [113]. Hence, these fittings allow incorporating
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resonances at inexpensive computational costs. To model the jump, we use a step
function approach rather than a ‘smooth’ impulse function [81], and show that this
simplified treatment is enough to maintain the accuracy required for data analysis.
The accuracy of post-resonance evolution depends far more on the fitting formulae
than the profile of the jump. For a small tidal perturbation (examined here), the
phase accumulated during the passage of the resonance is negligible, which makes
the step function approach suitable. In case of large tidal perturbations (sustained
resonances), the impulse function must be carefully selected. However, this occurs in a
less astrophysically relevant region of the parameter space, and is beyond the scope of
our work.

With our model, we explore the parameter measurement precision when tidal
resonances are present and study the parameter bias induced by ignoring them [118].
Based on the studied EMRI configurations, we find that biases are larger than noise-
induced statistical errors. As a result of our findings, parameter estimates of resonant
EMRIs will likely be biased if resonances are not taken into consideration in parameter
estimation models. The Fisher matrices are also used to discuss the threshold magnitude
of tidal perturbation below which the observed signal cannot be interpreted as indicative
of tidal perturbation. Modeling of self-force resonances can also be carried out using
the implementation presented in this study, which will be crucial for EMRI waveform
modeling.

7.2 Motivation

The event rate of EMRIs depends on highly uncertain parameters such as the stellar
density profile around each galactic center, the population of compact objects, and
rates of dynamical processes that can lead to the capture of the stellar-mass body in the
gravitational potential of a MBH [24, 23, 37–40]. Therefore, the expected range varies
from a few to a few hundred EMRI signals over a four-year mission duration for LISA
[117, 40]. To take the full advantage of the scientific potential of such astrophysical
sources, data analysis methods rely on theoretical waveform templates to compare
against the data. Thus, we must have waveforms for generic orbits that are modelled
accurately within a fraction of a radian, even after hundreds of thousands of orbital
cycles. Another necessity is that the templates should cover the high dimensional
parameter space of possible EMRI configurations and their generation must be fast
enough to be able to deal with templates in large numbers. Significant efforts by the
scientific community focusing on the computation of the self-force, together with LISA
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working groups and mock data challenges, are concentrated on realizing the goal of
accurate and fast waveform modeling [61, 76, 77, 119–121].

Environmental effects will introduce systematic parameter estimation errors, poten-
tially spoiling the efforts of the community towards accurate waveform models and
precision gravitational wave astrophysics. This can lead to the erroneous conclusion
that the data conflicts with GR [6]. Thus, quantifying and modeling resonances result-
ing from self-force and external tidal fields on inspirals is another challenge to overcome,
if we want to perform precision tests of GR [6, 122]. Our research is motivated by
this issue, and we investigate the modeling of resonances induced by an external tidal
field. We developed for the first time the implementation of a realistic EMRI waveform
passing through a resonance. This is essential for the scientific success of LISA. In
particular, full waveforms will be essential for the search [99] and parameter estimation
of EMRIs [81]. The insights gained from this work will be also relevant to self-force
resonances, which we do not model as there are no precise jump size estimations
available at present, but we hope they will be available in the near future [74, 123–125].

7.3 Modeling Tidal Resonances

In this section, we first review how to evaluate the expected accuracy and systematic
bias in parameter estimation, based on Fisher analysis. Next, we introduce the structure
of the resonance model (RM), which is used to incorporate tidal resonances in waveforms
and investigate the loss of signal and the systematic bias due to inaccurate modeling.

7.3.1 Gravitational wave data analysis

The output data s(t) of a gravitational detector consists of random noise, n(t) and
possibly a gravitational wave signal h(t; λ) characterized by a set of parameters
λ = [λ1 . . . λn] in n-dimensional parameter space.

s(t) = h(t; λ) + n(t). (7.1)

We assume that noise is given by a weakly stationary, Gaussian random process with
zero mean and a signal is present in the detector output. Under these assumptions,
the Likelihood for the parameters λ () is given by [126],

p(s|λ) ∝ exp
(

−1
2⟨s− h(λ)|s− h(λ)⟩

)
, (7.2)
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where ⟨·|·⟩ is a noise-weighted inner product defined as,

⟨a(t)|b(t)⟩ := 4 Re
∫ ∞

0

ã∗(f)b̃(f)
Sn(f) df . (7.3)

Sn(f) is the power spectral density (PSD) of the noise and the variable with tilde
indicates the Fourier transform of the corresponding time series data. Additionally, it
is customary to define the signal-to-noise ratio (SNR),

ρ =
√

⟨h|h⟩, (7.4)

which characterizes the detectability of a signal by a detector with a given noise power
spectrum.

We recall two other quantities defined in Chapter 2 that serve as a measure of
similarity between two template waveforms ha = h(t; λa) and hb = h(t; λb), the Overlap
O(ha, hb) and Mismatch M(ha, hb), by

O⟨ha, hb⟩ = ⟨ha|hb⟩√
⟨ha|ha⟩⟨hb|hb⟩

(7.5)

M(ha, hb) = 1 − O(ha, hb). (7.6)

If we want to estimate how accurately parameters are measured, it is helpful to
calculate the Fisher Information matrix Γij . When a strong signal with parameters λ is
present in the detector output, the likelihood is strongly peaked in the parameter space
at the best-fit (BF) parameter set close to the true values. Namely, the measurement
error

∆λ = λBF − λ , (7.7)

is small. Then, we expand h(λ) up to linear order in ∆λ (truncating higher orders
terms given the smallness of ∆λ in the strong signal limit) and substitute it into (7.2).
On substitution, the Likelihood function becomes

p(s|λ) ∝ exp
−1

2
∑
i,j

Γij∆λi∆λj

 . (7.8)

where
Γij = ⟨ ∂h

∂λi

∣∣∣∣∣ ∂h∂λj
⟩. (7.9)
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The probability function shows that the inverse of Γij, known as the covariance
matrix, contains information about variances of parameter measurement error (diagonal
elements) as well as correlations of errors among different parameters (off-diagonal
elements). In particular, the statistical error in the estimate of the parameter λi can
be evaluated by1

∆λstat
i =

√
(Γ−1)ii . (7.10)

From (7.9), the Fisher Matrix scales as ∼ ρ2, therefore ∆λ scales as ∼ ρ−1.
Besides the errors induced by noise, there can be a possible systematic uncertainty

that is not parameterized in our waveform models. For instance, if we use an inaccurate
waveform model hm(λ) to estimate the parameters λ0 of a signal actually described by
a model ht(λ), the recovered parameters will be affected by systematic errors given by
[118],

∆λsys
i = (Γ−1)ki⟨∂kh(λ0)|ht(λ0) − hm(λBF)⟩ . (7.11)

This error is independent of the strength of the signal. Therefore, if exists, it will
dominate over noise-induced error, whenever the data quality is sufficiently good.

In this work, we evaluate the above mentioned errors, by comparing two kinds of
waveforms: resonant waveforms which are produced using the AAK module [67, 127]
implemented in the RM (discussed in Sec. 7.3.2), and non-resonant waveforms where we
“turn-off" the jumps induced by tidal resonances. For our Fisher analysis, we assume
that from the data we determine the following ten parameters:

λ =
(

log10
M

M⊙
, log10

µ

M⊙
, a, p, e, x, qr, qθ, qϕ, ϵ̃

)
, (7.12)

where qr, qθ, qϕ are the initial phases of an EMRI orbit and ϵ̃ is the normalized (by
the fiducial value of ϵ) tidal parameter. These intrinsic parameters govern the detailed
dynamical evolution of a system, regardless of where or how an observer observes it.
For computational convenience, we are not including extrinsic parameters such as the
sky location angles (θS, ϕS) and the angles pointing to the direction of the MBH’s
spin (θK , ϕK) in this list. The luminosity distance DL of the source is rescaled for
each waveform to fix the SNR to 30. Our fiducial values for the masses of the EMRI
system are M = 106M⊙ and µ = 30M⊙. The perturber of mass M⋆ = 30M⊙ is placed
at a distance of 5AU on the equatorial plane, resulting in the following fiducial tidal
parameter ϵ ∼ 2.3 × 10−13 for x = 1. For every Fisher matrix computed, we examine

1In our analysis, the waveform derivatives ∂jh are computed numerically using the five-point stencil
formula such that the numerical error scales at fourth order in the derivative spacing.
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Fig. 7.1 Workflow of Resonance Model.

its validity by checking the condition number and the linear signal approximation in
which the Fisher matrix analysis is valid.

7.3.2 Resonance model

The Effective Resonance Model (ERM) is a phenomenological model developed re-
cently to study EMRI resonances. It was constructed using the resonance jumps
as free parameters and applied to the case of self-force resonances [81]. Following
the implementation of [81], we extend the ERM to incorporate tidal resonances. We
refer to our working code as the resonance model (RM); the word “Effective” has
been discarded since we are not using the resonance jumps as free parameters. The
flowchart is shown in Fig 7.1. The solver employs flux and phase evolution equations
to obtain the trajectory, given some initial condition (E0, Lz0, Q0). Our calculations
use the fifth order post-Newtonian (5PN) fluxes generated by the post-Newtonian (PN)
approximation in first-order black hole perturbation theory [61]. The right-hand side
of the phase evolution equations are corresponding Kerr orbital frequencies [49] i.e.
dqi/dt = ωi. The resonance condition is checked at each time step of the solver (using
the adaptive time step and event handling tool in the Solve-ivp ODE package in
Python) for some low order integer m, k, andn. If the resonance condition is satisfied,
we record the orbital parameters at the resonance surface and use them to estimate the
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Fig. 7.2 The left figure shows the difference in Lz between the orbits evolved with
and without tidal resonance effect. When the orbit undergoes a resonance, there
is a jump in the action variables J. Black dashed lines illustrate the evolution of
∆Lz using a step impulse function in the RM, whereas orange (dashed-dotted) lines
represent evolution tracks using a ‘smooth’ impulse function. Similarly, the right
figure shows the evolution of the Carter constant Q. The initial conditions for this
orbit are (a, p, e, x) = (0.9, 11.8, 0.8, 0.0187), and the trajectory crosses two resonances,
n : k : m = 3 : 0 : −2 and n : k : m = 3 : −4 : −2 around t ∼ 2.2 × 107and ∼ 5.8 × 107,
respectively. The fast oscillations in both figures correspond to timescales of the orbital
motion. The inset plot shows zoomed-in evolution near the 3 : 0 : −2 resonance.

jump size of the resonance due to the tidal field using the analytic fits obtained from
our semi-analytic calculations [100]. Once the jump sizes ∆Lz and ∆Q are measured,
we update the constants of motion for the next time step using a step function. In
[81], the resonance jump is implemented using a “smooth” impulse function. In this
study, however, we find that using a smooth function instead of a step function did not
affect our results (shown in Fig 7.2). Consequently, we choose to implement the faster
and simpler step function. We stop the evolution of the trajectory once the separatrix,
where ωr vanishes, is reached. The orbital parameters and phases are then fed to the
Augmented Analytic Kludge (AAK) module to obtain the waveform. Our code makes
use of the modular FEW package [127].

7.4 Results

In this section, we compare the jump obtained from analytic fits with the result
obtained by the numerical osculating code, to find a good agreement between the two.
Using the RM and Fisher matrices, we show mismatches for different initial conditions
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Fig. 7.3 Snapshot of h+ waveforms obtained from the RM and osculating method a
few hours before plunge. Top panel: comparison of h+ from RM (with resonance jump
included) and the one from the osculating method. Lower panel: comparison of h+
from the RM without resonance jump and the one from the osculating method.

IC (a, p, e, x) t3:0:−2 (107sec)
1 0.1, 11.5, 0.7, 0.642 ∼ 1.64
2 0.5, 10.5, 0.8, 0.642 ∼ 1.85
3 0.7, 11.0, 0.7, 0.342 ∼ 1.71
4 0.9, 11.8, 0.8, 0.087 ∼ 2.24

Table 7.1 Initial conditions for EMRI orbit. The last column shows the time of
n : k : m = 3 : 0 : −2 resonance encounter.

and assess the measurement precision of EMRI orbital parameters and tidal parameters.
We also compute the systematic bias that would be induced by ignoring resonances.

7.4.1 Mismatch analysis

Dephasing induced by tidal resonances accumulates over the inspiral, resulting in
a decrease in the overlap (7.5) between resonant and non-resonant waveforms after
resonance encounter. In this section, we analyze the evolution of the mismatch M (7.6)
as a function of the final time for different initial conditions listed in Table 7.1. These
conditions were chosen since they cover a broad range of possibilities for astrophysical
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EMRI events that may be measured by future low-frequency GW missions. All initial
conditions are subject to a 30 M⊙ tidal perturber at a distance of 5 AU on the equatorial
plane, and the EMRI inspiral lasts for ∼ 1 − 2 years. The parameters chosen for
tidal perturber are motivated by the Fokker-Planck simulation study that suggests a
population of stellar-mass BHs at a median distance of ∼ 5AU [38]. We note that for
the chosen set of parameters τres ∼ τtd, thereby violating the stationary perturbation
approximation. However, we leave the impact of a dynamical tidal perturber on the
resonances for future work.

We first determine the consistency of the resonance model by comparing its trajec-
tory evolution with the numerical osculating trajectory. The forced osculating orbital
elements method [113, 116] uses the tidal force computed from the metric perturbation
hαβ and for the inclusion of radiation reaction effects, 5PN fluxes [61, 114] are employed.
Using the osculating code, we ran two simulations for an inspiral orbit — with and
without the effect of the tidal force with the same initial conditions. To extract the
jump size, we compute the difference (∆Lz and ∆Q) between the full trajectory (tidal
force + 5PN) and adiabatic (only 5PN) trajectory. A similar trajectory evolution is
obtained by means of the resonance model, where the inspiral is derived mostly from
5PN adiabatic fluxes, and the jump is added only when the resonance condition is
satisfied.

The comparison is presented in Fig 7.2. We show the differences ∆Lz (left, red)
and ∆Q (right, blue) for IC4 crossing two resonances 3 : 0 : −2 and 3 : −4 : −2. The
apparent thickness of the lines shown in the figures is due to oscillations on the orbital
timescale. In this plot, the evolution of the respective quantities obtained from the RM
are overlaid for both the ‘step’ (black, dashed) and ‘smooth’ (orange, dashed-dotted)
impulse functions that model the jump obtained from the fitting formulae. This
figure shows a good agreement of jump size (and therefore resonant phase) and overall
evolution between the RM and osculating method regardless of the choice for the
impulse function. The difference between the evolutions from the two impulse functions
is ∼ O(10−8), too small to resolve on the scale in Fig 7.2.

Additionally, we compare the agreement between the RM and osculating methods at
the waveform level. The trajectory information from both models is fed into the AAK
module, and the snapshot of the waveform (+ polarization) a few hours just before
the plunge is displayed in Fig 7.3. We can see a remarkable phase match between the
two in the top panel. In the lower panel, we switch off the jump in the RM waveform
and compare it with the osculating waveform. As a result of dephasing, there is a
clear disagreement in the waveforms. Furthermore, we see that in the present example
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Fig. 7.4 The cumulative mismatch between resonant and non-resonant waveforms
using the RM and osculating method. Here, the unfilled markers show the cumulative
mismatch between the resonant waveforms using the RM and osculating method for
different initial conditions (see Table 7.1) crossing two resonances n : k : m = 3 : 0 : −2
and n : k : m = 3 : −4 : −2 during the evolution. In contrast, the filled markers show
the mismatch if resonances are neglected in the waveform model. The filled markers
overlay the unfilled ones before crossing the first resonance for every initial condition.
The condition with spin 0.9 has the longest inspiral time because the separatrix is close
to the central BH compared to the low spin EMRIs.

the merger time corresponding to the end point of the waveform is delayed for the
osculating waveform, which takes the tidal jump into account, because of the positive
jump in Lz and Q.

In Fig 7.4, the cumulative mismatch between resonant and non-resonant waveforms
using the RM and osculating method is shown. The unfilled markers show the
cumulative mismatch between the resonant waveforms using the RM and osculating
method, for four different initial conditions crossing two resonances n : k : m = 3 : 0 : −2
and n : k : m = 3 : −4 : −2 during the evolution. In contrast, the filled markers
show the mismatch when the resonances are neglected in the RM waveform model.
Before crossing the first resonance, the filled markers overlay the unfilled ones for every
initial condition. This indicates that the mismatch increases with each subsequent
resonance encounter. The tiny increase in M before resonance is only due to numerical
error arising from a ‘shift’ in initial orbital frequencies due to tidally perturbed metric
as also discussed in [128] using a Newtonian analysis. A key point to notice is that
after the resonance the mismatch between the RM and osculating resonant waveforms
grows from 10−5 − 10−7 only up to ∼ 10−3. This result is significant for the waveform
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Fig. 7.5 Measurement precision ∆λ of EMRI’s intrinsic and tidal parameters for the
initial conditions listed in Table 7.1. All the signals are normalized to SNR = 30.
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Fig. 7.6 The ratio δλbias/∆λ between the size of the systematic and statistical errors is
shown for the initial conditions listed in Table 7.1. The dashed grid line indicates that
the ratio is equal to 1. For δ λbias/∆λ > 1, the bias induced by inaccurate waveform
modeling is more significant than that caused by the noise fluctuations in the detector.
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Fig. 7.8 The 2-dimensional posterior showing 3σ contours for IC1 (see Table 7.1), where
the injected signal had an SNR of 30. The blue-solid contours represent the model in
which the tidal parameter is set to zero (ϵ̃ = 0), and red-dotted contours represent the
model in which the tidal parameter is not included in the analysis. The confidence
contours are centered at the true value since both signals were unperturbed.
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modeling community, because it quantifies the mismatch induced by ignoring the
resonance modeling. As long as we correctly predict the resonance jumps, it is possible
to have an accurate waveform up to a mismatch of ∼ 10−3. In summary, we can
model (multiple) tidal resonances by using the RM and match the waveform until the
end of the inspiral keeping M below 10−3. It is worth reminding the reader that the
cause of the mismatch of O(10−3) comes from a numerical error resulting from tidally
perturbed metric causing a tiny ‘shift’ in the initial conditions. If we can determine the
initial conditions correctly, the mismatch would be smaller. We also find no discernible
difference in mismatch between the RM with the ‘step’ and the ‘smooth’ impulse
functions for all four initial conditions.

7.4.2 Parameter estimation and systematic bias

With the resonant waveforms derived from the RM and including only one resonance
(3 : 0 : −2), we examine the parameter measurement precision of the orbital and
tidal parameters based on Fisher matrices (discussed in Sec 7.3.1). All the waveforms
have been normalized so that their SNR = 30 and the extrinsic parameters are set to
{θK , ϕK , θS, ϕS} = {π/4, 0, π/4, 0}. The results for Fisher matrix estimates are shown
in Fig. 7.5. In this figure, we can see that the orbital parameters (except the initial
phases) are well constrained, whereas the tidal parameters are less well constrained.
In particular, the measurement precision for the tidal parameter ϵ̃ and the phases is
∼ 10−1. In terms of the waveform, the initial phases determine the initial position of
the compact object and do not affect the frequency evolution of the EMRI at adiabatic
order, so their impact is weaker, which leads to the lower measurement precision. Due
to the longer observation time for IC4 (see Fig. 7.4), the orbital parameters of this
system are better constrained than for the other models.

In waveform modeling, using an approximate model can introduce systematic
error (7.11) into parameter estimation. We investigate the systematic error by using a
non-resonant approximate waveform hm, while the true waveform ht incorporates the
resonance using the RM. To compare this error with the statistical error (7.10), we
show the ratio δ λbias/∆λ in Fig. 7.6. With δ λbias/∆λ > 1, the inaccurate waveform
modeling leads to biases larger than those induced by noise fluctuations. The magnitude
of systematic bias naturally depends on the magnitude of the tidal perturbation. For
the strong but still realistic examples (motivated by [97, 38, 6]) of tidal resonance that
we consider, the systematic errors cannot be completely ignored. Thus, we may need
to account for the presence of tidal perturbers when performing careful inference, as
also indicated by mismatch analysis in Fig. 7.4.
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In addition to measurement precision, the Fisher matrix also provides the covariance
relation between the parameters. Covariance is a measure of how much two variables
vary together. To visualize this, we plot the 3σ contours in Fig. 7.7 for IC1. The solid
(blue) contours are generated by the true model (with resonance) and are centered
on the true parameter values. The dotted (red) contours are derived from the model
without resonance, where the peak values are shifted by the amount of the systematic
errors shown in Fig. 7.6. For the example considered in Fig. 7.7, the bias is within the
credible region for most of the EMRI parameters. However, our ability to measure
the initial phases is more significantly affected if tidal effect is not modeled. The
normalized tidal parameter ϵ̃ (discussed below Eq. 7.12) can be constrained with an
absolute precision of 0.25.

In the analysis above, we showed the bias induced in parameter measurement
precision if tidal resonance was not modeled in the waveform. Next, we compare the
same model with the one in which tidal parameter is set to zero i.e. the signal is not
tidally perturbed but the tidal parameter is included in the Fisher analysis. The goal
is to check whether the error estimates are affected by the introduction of the tidal
parameter. We assume that the signal is given by a model with the tidal parameter set
to zero. In Fig. 7.8 blue-solid contours show the 3σ confidence region when we use the
model with 10 parameters including the tidal parameter, while the red-dotted contours
corresponding to the model with 9 parameters excluding the tidal parameter.

Because the tidal parameter is positive by definition, we show a section of ellipses
in the positive range. The orbital parameters such as M,µ, a, p, e, x are measured
with approximately the same precision in both models. Our ability to measure the
EMRI’s initial phasing is noticeably more degraded, but the overall impact is still fairly
marginal. Thus, the tidal parameter is largely a non-degenerate degree of freedom, and
its inclusion in EMRI data analysis will not pose fundamental issues in the absence of a
tidal perturber at least for the magnitude of tidal perturbation considered in our work.

By combining the results from Fig. 7.7 and Fig. 7.8 for the example considered,
we can infer the maximum value of tidal parameter under which the presence of a
tidal resonance cannot be assessed. According to Fig. 7.7, we can constrain the tidal
parameter within the error bar of ±0.25 of the true value, whereas Fig. 7.8 says that
we can rule out values larger than 0.25 for ϵ̃. Therefore, if we choose a signal with
ϵ̃ = 0.25, we would likely have an ellipse centered at 0.25 and the width touching the
zero (since the error bar is ±0.25). It follows that we may rule out zero for a larger ϵ̃
(> 0.25), thereby marking the presence of the perturber, but not for a smaller ϵ̃.





Chapter 8

Conclusion

It is only the start of an exciting succession of events that have unfolded in the field
since the first direct detection of GWs by Advanced LIGO in 2015. In just a short
period, we have witnessed numerous binary mergers, while the outlook for a forthcoming
detection with pulsar timing arrays has greatly improved. In this fast-evolving field
of GW astronomy, it is hoped that the work presented here contributes modestly but
timely to the growing field.

While the background theory of GWs and the framework needed for our work
is explained in Chapters 1 to 5, our main results are presented in Chapter 6 and
Chapter 7. In Chapter 6, we show that in the presence of a tidal perturber, an
EMRI can encounter multiple resonances before the plunge. Each resonance may
last for hundreds or thousands of orbital cycles depending on the EMRI’s mass ratio.
We assessed the impact of tidal resonances on GWs to survey the orbital parameter
space and investigate how often tidal resonances occur in realistic inspirals. The
effect of resonances (self-force and tidal) on phase evolution contributes more than
post-adiabatic corrections. In order to understand the impact of tidal resonances on
waveforms, we calculated accumulation in phase following an encounter with a tidal
resonance by an EMRI. The study of dephasing revealed that a large portion of orbital
space is impacted by the tidal resonance, while the less eccentric (<∼ 0.2) inspirals do
not leave a detectable imprint in the phase evolution. We also provide fitting formulae
for the change in the constants of motion caused by low-order tidal resonances, which
can be efficiently used to take into account the resonance jump in waveform modeling
without much computational cost.

In Chapter 7, using Fisher matrices, we analyzed how this phenomenon impacts
the estimation of the intrinsic orbital and tidal parameters by using a resonance model
(RM) based on a step function approach. We validated the evolution of the trajectory
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derived from the RM by comparing it with the forced osculating trajectory. This gives
us confidence in the robustness of the fitting formulae as well as the implementation of
the RM. Our study examined the systematic errors that might arise from neglecting
tidal resonances in the estimation of intrinsic parameters. Our results suggest that
parameter estimates are likely to be biased if resonances are not considered in waveform
modeling. In addition to tidal resonances, transient self-force resonances could also be
modeled using the analysis presented in our work.

As part of the extension of this work, we will relax the stationary perturber
approximation and explore multiple resonant interactions in parameter estimation
using Bayesian posterior calculations. Furthermore, once the resonances jump sizes
due to the self-force is available, the ability of RM to detect and characterize EMRIs
should be investigated. Last, the overall approach in this work, and modeling efforts by
the EMRI community is to pursue a modeled treatment of resonances (be it self-force
or tidal) in data analysis. However, this is not the only possible approach, since
phenomenological treatments such as ERM (where information on resonance jumps is
recovered rather than modeled) might also prove useful; this is especially the case if
sufficiently precise modeling of these jumps turns out to be unfeasible or unachievable.
Thus, it is worthwhile to continue exploring both approaches in parallel, which will in
turn benefit from shared techniques such as those introduced in this thesis.



Appendix A

A.1 Fitting formulae for n : k : m = 3 : 0 : −2

〈
dLz

dt

〉
= e2

(e− 1)2

(
13.8664(a2(e5(x4 + 1.70942x3 − 0.8785x2 − 0.5336x− 0.32076)

− 4.79651x3 + 1.781x2 + 2.27585x+ 1.11764) + e3(7.17415x4

+ 5.67992x3 − 1.22333x2 − 4.01184x− 1.64238) + e2(−7.25395x4

− 3.92149x3 − 0.0528632x2 + 3.96175x+ 1.36426) + e(4.21764x4

+ 1.69592x3 + 0.404326x2 − 2.33394x− 0.756895) + 0.012012x4 − 0.012569x3

+ 0.0127552x2 − 0.00766985x− 0.000627702) + a(e5(0.289607x4 − 3.94961x3

− 3.9027x2 − 1.82132x+ 0.710913) + e4(−0.370237x4 + 12.6334x3 + 15.3809x2

+ 6.2625x− 2.47674) + e3(−0.377266x4 − 17.4934x3 − 25.9795x2 − 9.31769x
+ 3.78052) + e2(1.09716x4 + 14.3769x3 + 25.2598x2 + 7.96198x− 3.5384)

+ e(−0.864082x4 − 7.40462x3 − 14.5161x2 − 4.3349x+ 1.92547) − 0.0109531x4

+ 0.0114339x3 − 0.0375848x2 − 0.00156484x+ 0.00169788) + e5(−0.328544x4

+ 0.766588x3 + 1.98025x2 + 5.37844x+ 2.57726) + e4(0.850133x4 − 2.02349x3

− 7.73277x2 − 19.233x− 9.3297) + e3(−0.8120x4 + 2.0503x3 + 13.0406x2

+ 29.8651x+ 14.6449) + e2(0.320494x4 − 0.886721x3 − 12.336x2

− 26.4222x− 13.0807) + e(−0.0228461x4 + 0.142487x3 + 7.20898x2 + 14.7695x
+ 7.35985) + 0.00829816x4 − 0.0186416x3 + 0.0256575x2 + 0.0190106x

+ 0.0117907)
)

sin(−2qϕ0 + 3qr0) , (A.1)
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〈
dQ

dt

〉
= e2

(e− 1)2

(
6166.4(a2(e5(x6 −3.36x5 +4.29x4 −2.64672x3 +0.827x2 −0.113x)

+ e4(−2.561x6 + 8.6411x5 − 10.9856x4 + 6.73865x3 − 2.14181x2

+ 0.2942x+ 0.01469) + e3(2.4592x6 − 8.338x5 + 10.4957x4 − 6.38662x3

+ 2.10369x2 − 0.307742x− 0.02541) + e2(−1.0576x6 + 3.73285x5 − 4.57117x4

+ 2.7179x3 − 0.98419x2 + 0.16744x+ 0.023683) + e(0.2142x6 − 0.77253x5

+ 0.858453x4 − 0.46584x3 + 0.23502x2 − 0.054646x− 0.0146077)
− 0.0131998x6 + 0.0442585x5 − 0.057625x4 + 0.0360626x3 − 0.01073x2

+ 0.0130161x− 0.00683955) + a(e5(−1.41091x6 + 4.70494x5 − 5.988x4

+ 3.7815x3 − 1.17999x2 + 0.082132x+ 0.01024) + e4(3.636x6 − 12.12x5

+ 15.3555x4 − 9.7812x3 + 3.11081x2 − 0.16016x− 0.03945) + e3(−3.51x6

+ 11.7153x5 − 14.6986x4 + 9.5462x3 − 3.1598x2 + 0.048679x+ 0.06504)
+ e2(1.56518x6 − 5.20606x5 + 6.36726x4 − 4.35903x3 + 1.5984x2

+ 0.10196x− 0.06398) + e(−0.31407x6 + 1.02894x5 − 1.14294x4 + 0.9495x3

− 0.45183x2 − 0.10985x+ 0.03645) + 0.02657x6 − 0.066807x5 + 0.0859032x4

− 0.0523576x3 + 0.0151582x2 − 0.00205405x+ 0.0944331) + e5(0.50946x6

− 1.6744x5 + 2.1131x4 − 1.3159x3 + 0.3583x2 + 0.00554x+ 0.04718)
+ e4(−1.32659x6 + 4.35489x5 − 5.48625x4 + 3.45939x3 − 0.77303x2

− 0.060315x− 0.168315) + e3(1.3068x6 − 4.2645x5 + 5.36471x4 − 3.47472x3+
0.6569x2 + 0.15588x+ 0.26122) + e2(−0.58987x6 + 1.944x5 − 2.42323x4

+ 1.67565x3 − 0.186175x2 − 0.1797x− 0.22711) + e(0.12024x6 − 0.39217x5

+ 0.49435x4 − 0.42018x3 − 0.0448911x2 + 0.118569x+ 0.12802) − 0.00827x6

+ 0.02662x5 − 0.03651x4 + 0.0195x3 − 0.05746x2 + 0.000836659x

+ 0.000193748)
)

sin(−2qϕ0 + 3qr0) , (A.2)
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A.2 Suppression of odd k +m integer resonances

A.2.1 Qualitative discussion for m = ±1 resonances

We discover that tidal resonances with odd k +m integer do not give rise to a jump in
the constants of motion. Hence, they do not contribute to a secular accumulation of a
phase shift and are therefore not relevant for waveform modeling. On assuming a static
tidal interaction, the leading order external potential at a large distance is expressed as

Uext ∝ Eab x
axb,

where the symmetric tidal tensor Eab contains all the information about the tidal
environment. For m = ±1 modes, only Exz and Eyz contribute where x, y, z(r, θ, ϕ) are
standard Cartesian (spherical) coordinates. Note that transforming qϕ → qϕ+π ⇒ x →
−x, y → −y or qθ → qθ+π ⇒ z → −z leads to a sign flip of the tidal potential and hence
the resulting torque. Therefore, if corresponding points (for instance, both (qϕ, qθ) and
(qϕ, qθ+π)) are passed by an orbit, then it results in a net cancellation of dLz/dt between
the two segments of the orbit. In Fig A.1, for illustrative purpose, we show a section
of the orbit in the qϕ - qθ plane for k +m = 1 (left) and k +m = 2 (right) resonance
combinations. In the left plot, for fixed qr = 0, the distance between two lines is π.
Thus, the orbit evolves in such a manner, that the net tidal force cancels out resulting
in no change in Lz. Whereas, in the right plot, the corresponding “cancellation" points
are not crossed by the orbit. While this discussion helps understand the vanishing
dLz/dt on crossing odd k+m resonances, empirically we found that dQ/dt also vanishes
for such resonances.
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Fig. A.1 Section of orbit in qϕ - qθ plane for different resonance conditions.
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A.2.2 Qualitative discussion for m = ±2 resonances

In Fig. A.2, for illustrative purpose, we show section of orbit in qr - qθ plane for different
resonances (with m = ±2). In the leftmost panel we consider a 2 : 1 : −2 resonance
(odd k) and compare section for fixed values of qϕ = 0 (red lines) and qϕ = π/2
(blue-dashed lines). On rotation of the orbit by π/2, the plot shows the same value for
qr and qθ. Thus, the net tidal force of m = ±2 modes acting on the orbit cancels out
completely resulting in no change in Lz. Hence, they do not contribute to a secular
accumulation of a phase shift and are therefore not relevant for waveform modeling.
The middle plot shows a k = 2 resonance. In this case, two lines are not identical:
therefore, the tidal force couples with the quadrupole moment of the orbit causing a
finite jump in Lz. The rightmost plot shows the −2 : 3 : −2 resonance exhibiting the
same behavior as the k = 1 case.

Fig. A.2 Section of orbit in qr - qθ plane for different resonance conditions. The red
lines and blue dashed lines are obtained for qϕ = 0 and qϕ = π/2, respectively.
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