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Executive Summary 
1060-31-9049 Wong Yong Jie 

 

In this research, spatiotemporal effects of land use, climate and COVID-19 impacts on 

environment in East (Taiwan) and Southeast Asia (Malaysia) are studied using four case studies 

(Chapter 3 to Chapter 6). The impacts of changing land use and occurrence of extreme climatic 

events have been alarming across the globe; however the local scale conditions remain unknown. 

Therefore, to address these questions, Chapters 3 and 4 focus on identifying the streamflow 

conditions under changing land use and changing climate, respectively. In addition, the occurrence 

of the COVID-19 pandemic has found to bring profound impacts on many aspects of life and the 

economy; notably, due to the new normal lifestyle, nature has been reclaiming itself. However, the 

air quality conditions in the absence of lockdown were not reported. Therefore, to understand the 

impacts of COVID-19, Chapters 5 and 6 performed the comparison in pollutants concentration 

between business-as-usual and simulated concentrations, using linear regression models and 

artificial intelligence (AI) models, respectively.  

In Chapter 3, it could be observed that network optimization played an important role in 

improving the prediction accuracy of the land use type classification from satellite images. 

Compared to artificial neural network (ANN), support vector machine (SVM) has lesser sensitivity 

on the hyperparameter adjustment, but higher variation is observed across different training 

algorithms/membership functions. This is mainly due to SVM is a rule-based algorithm where the 

characteristics among parameters must be well understood before making the predictions. 

Therefore, in this research, ANN might be more suitable for predicting the land use type from the 

satellite images. For future land use simulation, the prediction accuracy for utilizing the present 

land use maps (1990 and 2000) to simulate 2016 land use maps could reach up to 97%, indicating 

the accuracy of the Land Change Modeller (LCM). The forestry in the region experienced drastic 

loss up to 300% in 2050 as compared to 1990, and the urban area expanded up to 200% over 60 

years. The simulated land use is used to simulate the future streamflow. Extreme streamflow such 

as no flow rate or very high flow rate up to 100 m3/s is more commonly encountered in the future. 

Through the simulation, it is important to have proper management for water resources to prevent 

prolonged drought or extreme rainfall induced flood events.  Based on the findings, valuable 

information on designing future sustainable urban development strategies can be provided. 

In Chapter 4, the present, near-, mid- and far future of extreme flooding events across 

different cities in Taiwan were simulated using high resolution Meteorological Research Institute 

of the Japan Meteorological Agency version 3.2 (hereinafter referred to as MRI-AGCM3.2s) 

dataset under Rainfall-Runoff-Inundation (RRI) model. Bias-correction procedure is found crucial 

when using MRI-AGCM 3.2s dataset in Taiwan as huge variation are observed between 
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uncorrected and gauge dataset. The precipitation and temperature trends are observed to vary 

dynamically in the future, with increment of temperature more than 3 °C and rainfall volume 

change spatiotemporally across different cities. For near-and-mid future simulation, the maximum 

river flood rate is expected to increase more than 20%. However, for the far future, the East and 

South regions are expected to face severe flooding issues; whereas prolonged draught and water 

stress issues are expected in the Central and Northern regions, providing insightful findings to the 

responsible authorities to have better water storage and management. The application of high 

resolution GCM and regional downscaled climate data would be able to capture the complexity of 

land surface and local topographic characteristics in the small river basin, such as tributaries across 

Taiwan. Studies on climate change impacts on hydrology changes such as floods and droughts 

using MRI-AGCM 3.2s could provide additional analysis to the responsible authorities for better 

water balance management. To reduce the possibility of severe damage caused by extreme 

flooding, adequate water resource management, flood adaptation and mitigation strategies, flood 

prevention infrastructure, and efficient real-time flood early warning and forecasting systems are 

required 

In Chapter 5, long-term 2019 coronavirus disease (COVID-19) impacts on the atmospheric 

environment in Taiwan, incorporating public transportation use and meteorological impacts in the 

absence of lockdowns was studied. Substantial improvements were observed in the studied air 

pollutants, wherein both PM10 and PM2.5 showed the highest annual mean concentration reduction 

in 2020 relative to 2018-2019, by 24% and 18%, respectively, followed by SO2, NO2, CO and O3, 

with reductions of 15%, 9.6% and 7.4% and 1.3%, respectively, even in the absence of lockdown. 

The occurrence frequency of air pollutants that may cause adverse health effects decreased by 

more than 30% in 2020 compared to 2018-2019, particularly in O3 and PM2.5. This research makes 

an important contribution to the literature as it is the first to investigate the impact and patterns of 

different modes of public transportation (i.e., including roadway, railway, air, and waterway) on 

air quality improvements in 2020. The change trends of CO and NO2, the major pollutants emitted 

from the public transportation sector, were found to be in parallel with the shift in traffic volume 

patterns in 2020. Similar to other reported studies, the seasonal variation in air pollutants (Figs. 

5.4-5.6) and their correlations with meteorological parameters (Fig. 5.9) were found to be 

significant in this study. However, in 2020, although a significant improvement in air quality was 

observed during the rainy season, the simulated meteorologically normalized BAU air pollutant 

concentrations were observed to be higher than those in 2018-2019 due to reduced precipitation 

(approximately 240 mm) and an approximately 5% reduction in the frequency of wind speeds of 

less than 1.5 m/s. This may imply a delayed COVID-19 effect on the improvement in the air quality 

of Taiwan compared to the immediate improvements observed in countries that imposed lockdown, 

a phenomenon that has yet to be reported elsewhere. 



 

ix 
 

In Chapter 6, utilizing four different AI methods, namely generalized additive model 

(GAM), gradient boosting machine (GBM), generalized linear model (GLM) and random forest 

(RF) to quantify the spatiotemporal impacts of COVID-19 on NO2 and O3 concentrations across 

62 cities in Taiwan under meteorological-normalized business-as-usual (BAU) conditions. The 

selection of modelling method and the optimization of hyperparameter is crucial for each studied 

monitoring station for simulating the BAU concentrations of air pollutants. For GLM, the optimal 

data distribution for both NO2 and O3 modelling is Gaussian data distribution, whereas for GAM, 

the optimal data distribution for NO2 and O3 simulation is Quasi and Poisson, respectively. 

Meanwhile, for RF and GBM, the optimized number of trees is highly site dependent. Due to the 

complicated and non-linear characteristics between the air pollutants with temporal and 

meteorological parameters, regression-based models (GAM and GLM) have the poorest 

performance. For Taiwan, it could be observed that tree-based models (RF and GBM) are more 

suitable for simulating the NO2 and O3 BAU concentrations.  Throughout 2020, even in the absence 

of a lockdown, the daily mean meteorological-normalized NO2 and O3 across Taiwan were 

observed to reduce by 14.9% and 5.8%, respectively with significant spatiotemporal variation. 

Due to the frequent occurrence of downpour in recent decades, further studies on higher temporal 

resolution such as hourly are required to better understand the meteorological impacts to the air 

pollutants. However, measures like lockdown will be unlikely to be imposed indefinitely. 

Therefore, based on the findings in this study, it is expected to provide a new insight/approach for 

better air quality management. 

The assessment of the surface water and ground air quality is often labor-intensive, costly 

and time consuming. Therefore, the number of monitoring stations are lacking, particularly in 

developing countries. To address the possible issue, Chapter 7 presented the effective integration 

of IoT with 3D printing, microcomputers, and low-cost sensors on water quality monitoring and 

its possibility to be widely used for environmental monitoring, paving a new path for the 

development of cost-effective and reliable systems for both water and air quality monitoring. 

The application and integration of remote sensing techniques, geographical information 

system (GIS), AI, big data analysis/management and IoT system has been gaining popularity in 

addressing/evaluating environmental issues. The number of monitoring station for pollutants 

concentrations are limited in most developing countries, leading to the limited local scale pollution 

management. Concurrently, due to limited data availability, the hydrological or air quality 

modelling are facing huge simulation challenges due to low simulation accuracy. Therefore, this 

research has studied and proven the integration of these techniques to possibly evaluate/address 

the environmental issues in the region, overcoming the low simulation accuracy by optimizing the 

models and proposing new monitoring technique for enhancing the spatiotemporal monitoring 

frequency.  
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 Chapter 1 Introduction 

 

1.1 Hydrometeorological Natural Disasters 

"We cannot stop natural disasters; but we can arm ourselves with knowledge: many lives 

wouldn't have to be lost if there was enough disaster preparedness.                                              

-Petra Nemcova (2011)" 

Globally, the occurrence of disasters caused by weather-, climate- and water-related 

hazards (herein known as hydrometeorological disasters) are rising. In recent, the 

hydrometeorological hazards are usually associated with the extreme meteorological and 

climate events, such as flash floods, prolonged droughts, hurricanes, tornadoes, or landslides. 

They account for a dominant fraction of natural hazards and occur in all regions of the world, 

although the frequency and intensity of certain hazards and society’s vulnerability to them 

differ among regions. Severe storms, strong winds, floods, and droughts develop at different 

spatial and temporal scales, but all can become disasters that cause significant infrastructure 

damage and claim hundreds/thousands of lives annually worldwide. According to World 

Meteorological Organization, on average, over the past 50 years from 1970 to 2019 – has 

been causing significant loss of life and set back economic and social development by years, 

if not decades, with daily casualty of 115 people and US$ 202 million in losses (WMO, 2021). 

The number of disasters has increased by a factor of five over the 50-year period, driven by 

climate change and more extreme weather events. The WMO originated from the 

International Meteorological Organization, which was founded in 1873, to facilitate the 

exchange of weather information across different countries. Till present, the WMO's mandate 

is in the areas of meteorology (weather and climate), operational hydrology and related 

geophysical sciences, playing a unique and powerful role in contributing to the safety and 

welfare of humanity, with 193 countries as joining members. Established in 1950, WMO 

became a specialized agency of the United Nations in 1951, it has furthered the application 

of meteorology in many areas. 
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In addition, WMO has contributed to the implementation of early warning systems to 

protect people and livelihoods since its establishment. It has now refocused its assistance to 

its members to strengthen their Impact-based Multi-hazard Early Warning Systems (through 

a number of initiatives such as the Severe Weather Forecasting Programme, the Flash Flood 

Guidance System, the Coastal Inundation Forecasting Initiative, the Climate Services 

Information System, the Global Multi-hazard Alert System and the High-Impact Weather 

Project). These systems seek to strengthen forecasting and warning for the impacts of 

hydrometeorological hazards and, in so doing, will significantly increase WMO Members’ 

capacities to identify and reduce the risks associated with such hazards. The main goal is to 

provide the national agencies responsible for loss and damage accounting with an 

authoritative, scientifically reviewed dataset of hazardous events to aid in loss and damage 

accounting and to enhance risk assessment. The initiative is being implemented through the 

established WMO global observing, monitoring, and forecasting network at the national level 

as well as the regional and global levels 

Therefore, to quantify the risk across the globe, WMO is working closely with CRED-

EM DAT, which contains data on disasters associated with several types of natural hazards 

– geophysical, meteorological, climatological, hydrological, biological, and extra-terrestrial 

– and technological disasters dating back to the year 1900. According to CRED-EM DAT, 

from 1970 to 2019 there were 22,326 disasters, with reported deaths of 4,607,671 and 

US$ 4.92 trillion in economic losses. Based on the reports, oftentimes, multiple hazards can 

occur simultaneously or trigger cascading impacts from one extreme weather event. For 

example, in addition to causing injuries, deaths, and material damage, a tropical storm can 

also result in flooding and mudslides, which can disrupt water purification and sewage 

disposal systems, cause overflow of toxic wastes, and increase propagation of mosquito-

borne diseases. Regardless of the economic status of the country (developed, developing or 

underdeveloped), they are encountering the burden of increasing frequency and severity of 

the disasters. Additionally, the escalating impact of disasters also associated to the growing 

vulnerability of human societies, especially those surviving on the margins of development. 

From 1970 to 2019, hydrometeorological hazards accounted for 50% of all disasters, 45% of 



 

3 
 

all reported deaths and 74% of all reported economic losses.  Unfortunately, more than 91% 

of these deaths occurred in developing countries (using the United Nations Country 

Classification), mainly due to the unpreparedness/emergency mitigations to tackle the 

emerging climate crisis.  

1.2 Atmospheric Natural Disasters 

 Apart from the hydrometeorological disasters, atmospheric pollution is also one of 

the silent killers that has been causing more than 7 million premature deaths annually, being 

recognized as the largest environmental health risk globally.  It accounts for 1 in 8 deaths 

worldwide, particularly in developing countries (WHO, 2021). The risks from air pollution 

are now far greater than previously thought or understood, particularly for heart disease and 

stroke. Compared to 2012, the number of deaths has been increased double due to the 

uncontrolled urbanization and deforestation, particularly in Asia. As shown in Fig. 1.1, it 

could be observed that significant number of deaths is observed in Asia. Outdoor air pollution 

exposure has been one of the undeterred contributors to the wide range of adverse health 

problems, with millions of premature annual deaths worldwide. In most of the countries, the 

rapid economic development and uncontrolled urbanization have exacerbated the air 

pollutants emission, particularly from industry, power generation and transportation sectors.  
 

According to Air Quality and Climate Bulletin by World Meteorological 

Organization (WMO, 2021), the global mortality due to air pollution was increased by 2-fold 

in 2019 (4.5 million deaths) as compared to 1990, with approximately 99% of the global 

population living with air pollutants level exceeded World Health Organization guidelines 

(WHO, 2021). Despite numerous blueprints/actions were proposed and implemented across 

different nations (Global Clean Air Initiative, Climate and Clean Air Coalition, Clean Air 

Fund etc.), the cross-cutting challenges including the lack of financial resources, government 

transparency, institutional and expert capacity, have resulted outdoor air pollution remains 

an unresolved problem (UNEP, 2021).  
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Fig. 1.1: Numbers of deaths attributable to total air pollution in 2019 (Ourworlddata, 2020) 

In particular, three major threatening air pollutants are (i) ozone (O3), (ii) particulate 

matter (PM) and (iii) nitrogen dioxide (NO2). Although tremendous efforts to combat air 

pollution have been made across the globe, such as formulating numerous 

frameworks/laws/policies at both the national (Li et al., 2017; Amann et al., 2017) and 

international levels (Shapiro and Yarime, 2021). Nevertheless, large gaps have been observed 

in implementation, financing and enforcement capacity (United Nations Environment 

Programme, 2021), causing air pollution to remain a major health threat worldwide.  

1.3  Drivers for increased natural disasters 

For both hydrometeorological and atmospheric disasters, the increasing occurrence 

frequency are observed, and this may be generally due to two main drivers, which are (i)land 

use and (ii) climate change.  According to the simulation reported by Karina et al. (2021), 

the global land use change is four times faster than simulated, marking the rapid and 

uncontrolled urbanization activities across the globe. Among the land use type that is usually 

converted is forest. Based on Fig. 1.2, the annual average deforestation between 2015-2020 

has increased by almost 80% as compared to 1990-1995 (Ourworldindata, 2020). Intensive 

deforestation (up to 1 million ha per year) was observed particularly in developing countries 

in Asia, which has significantly disturbed the hydrologic storage or retention. These 
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disturbances have impaired resilience of water resources to other non-abrupt changes such 

as climate shifts (Jones et al., 2009). Moreover, it also significantly disturbed the water 

balance in a watershed by inducing significant decrease in the infiltration and 

evapotranspiration (by 76% and 12%, respectively). At the same time, total runoff, surface 

runoff, interflow and base flow increased by 20.4, 38.8, 9.0 and 25.5%, respectively. Daily 

discharge increased by 20%. The deforestation significantly increased peak discharge 

induced by a simulated extreme precipitation event with the recurrence interval of 100 years. 

In the deforested watershed, the peak discharge was higher by 58% as compared to 1990s. 

Therefore, it is necessary to understand the conditions of water balance in changing land use.  

 

Fig. 1.2: Global annual average deforestation in hectare (Ourworldindata, 2020) 

On the other hand, reported and proven in many studies, the climate change impacts 

are significant, particularly in Asia region. Asia has been known as the most vulnerable 

region for the climate change impacts, where the highest number of extreme climatic events 

are reported in this region. According to United Nation for Disaster Risk Reduction 

(UNDRR), between 2000 and 2019, there were 3,068 disaster events in Asia, which has been 

constituting 60% of global disasters. The high frequency and impact of disasters in Asia are 

largely due to the size of the continent and landscapes that represent a high risk of natural 
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hazards, such as river basins, flood plains, and seismic fault lines. Additionally, there are 

high population densities in many disaster-prone areas of the continent. In terms of affected 

countries globally, China (577 events), followed by India (321 events), Philippines (304 

events), and Indonesia (278 events) reported the highest disasters in these countries. These 

countries all have large and heterogenous landmasses and relatively high population densities 

in at-risk areas as shown in Fig. 1.3. 

Fig. 1.3: Number of extreme weather events (2000-2019) (DRR, 2020) 

Under changing climate, seasonal meteorological impacts on air pollutants have been 

studied extensively (Yousefian et al., 2020; Liu et al., 2020); however, due to their complex, 

coupled, and adaptive interactions and dynamic characteristics, the reported findings may 

vary according to geographical region and intensity of meteorological parameters (Tfwala et 

al., 2017). Although numerous flood risk management frameworks have been proposed and 

developed for minimizing the potential losses and ensuring public safety, for instance, 

identifying flood risk zone through flood inundation maps utilizing historical precipitation 
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data  (Chen et al. 2011; Doong et al., 2016); however, due to the complex and heterogeneous 

climate variability, the distribution and intensity of precipitation varied spatiotemporally, 

which has been supported by both historical observations and model simulations (Rajah et 

al., 2014). Therefore, it is fundamental to develop robust and reliable future climate 

simulations to identify the future flow regime and allow decision-makers to formulate 

corresponding prevention policies for the emerging risk.   

1.4 Unprecedented COVID-19 

Since the end of 2019, COVID-19 has tremendously disrupted the normal rhythm of 

livelihood and has led to dramatic loss of human life worldwide, with infections and deaths 

exceeding 242 million and 4.9 million, respectively, as of October 2021 (Worldometer, 2021). 

The COVID-19 is caused by the novel severe acute respiratory syndrome coronavirus 2 that 

can be transmitted through the air, particularly in crowded areas or poorly ventilated indoor 

areas (Dinoi et al., 2022) and can survive on a variety of surfaces for hours (van Doremalen 

et al., 2020). Due to its high infectivity and transmissibility, it was classified as a global 

pandemic by the World Health Organization (WHO) on March 11, 2020 (WHO, 2020). 

Therefore, most governments across the globe have imposed restrictive/preventive measures, 

such as lockdowns, travel restrictions, shelter-at-home policies, social distancing, and 

mandatory mask wearing in public places, to contain or slow down the spread of COVID-19. 

Concurrently, these measures also reduced emissions from major anthropogenic and 

economic activities due to the disruption of anthropogenic emissions. Consequently, a 

remarkable change in air pollutant concentrations was observed throughout the world, 

particularly in countries that imposed lockdown, creating a silver lining in the dark cloud of 

COVID-19 (Jephcote et al., 2021; Nakada & Urban, 2020; Kanniah et al., 2020).  
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1.5  Research Questions 

 Built upon the findings obtained above, this research has identified three major gaps 

explored within the literature for hydrometeorological, atmospheric and sudden social 

change due to COVID-19 to the environment, which are 

(i) Conditions of the water balance in changing land use? 

(ii) Extreme floods events in changing climate? 

(iii) Atmospheric pollution for regions without lockdown? 

1.6  Research Objectives 

Therefore, in light of these, the research aims to evaluate and propose 

adaptation/mitigation strategies to the spatiotemporal effects of land use, climate and 

COVID-19 impacts on environment in East and Southeast Asia. Four specific research 

objectives are proposed in this dissertation, including: 

1) To assess the impact of decadal land use change on the water balance using SWAT 

(Chapter 3); 

2) To evaluate the climate change impacts on extreme floods using high resolution 

MRI-AGCM (Chapter 4); 

3) To investigate the spatiotemporal impact of COVID-19 on air quality in the absence 

of a lockdown (Chapter 5); and 

4) To perform change analysis of meteorological-normalized air pollutants during 

COVID-19 pandemic in the absence of a lockdown (Chapter 6). 

1.7  Methodology Framework 

To achieve the following objectives, a detailed methodology framework, as illustrated 

in Fig. 1.4 was adopted. The brief introduction of hydrometeorological, atmospheric, and 

COVID-19 disasters are provided in Chapter 1. In addition, research gaps and objectives are 

provided in this chapter, too. In the following chapter, the modelling techniques, and its 

driving parameters land use land cover and hydrological are described. Chapter 2 also 
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investigates different normalization techniques for eliminating the meteorological biases for 

spatiotemporal change analysis of COVID-19. 

 In Chapter 3, the effects of land use change on the water balance components are 

studied. Two modelling techniques, namely support vector machine (SVM) and artificial 

neural network (ANN) models are utilized. Systematic hyperparameter optimization is 

performed in both modelling techniques for LULC detection from satellite images. The future 

land use map simulated and validated, and used to project the future streamflow under 

changing land use. 

In Chapter 4, the impacts of climate change on extreme floods are investigated 

utilizing high resolution satellite images, known as MRI-AGCM 3.2s. Prior to utilizing the 

MRI-AGCM 3.2s dataset, cumulative distribution function is used to correct the bias in the 

dataset. The future temperature and precipitation change are simulated and the future average 

annual peak discharge changes for near future (2020-2040), future (2050-2070) and far future 

(2079-2099) are simulated. 

Chapter 5 investigated the spatiotemporal impact of COVID-19 on air quality in the 

absence of lockdown. A novel research framework is proposed to evaluate the long-term 

monthly spatiotemporal impact of COVID-19 on Taiwan air quality through different 

statistical analyses, including geostatistical analysis, change detection analysis and 

identification of nonattainment pollutant occurrence between the average mean air pollutant 

concentrations from 2018-2019 and 2020, considering both meteorological and public 

transportation impacts. The underlying reasons during the anomalous months was identify 

through backward trajectory analysis using hybrid single-particle Lagrangian integrated 

trajectory (HYSPLIT) model. 

In Chapter 6, a novel research framework was proposed to investigate the observed 

and meteorological-normalized concentrations of nitrogen dioxide (NO2) and ozone (O3) 

across 62 cities in Taiwan. Four commonly adopted meteorological-normalization 

techniques, namely generalized additive model (GAM), generalized linear model (GLM), 

gradient boosting machine (GBM) and random forest (RF) were developed, optimized, and 

compared, utilizing nine meteorological and temporal variables. In search of robust and best 
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models, the data distribution type in GAM and GLM, and tree numbers in GBM and RF are 

optimized using systematic trial-and-error and grid-search approach, respectively. The best 

performing optimized model was selected to identify the changes of NO2 and O3 during 

COVID-19 using geographical information system (GIS). 

The comparison, mitigation and adaptation strategies for global environmental 

change are discussed in Chapter 7. The environmental challenges in Asia are identified and 

the application of utilizing 3D printed monitoring system associated with the industrial 

revolution 4.0 is discussed in this chapter. Lastly, chapter 8 summarized significant findings 

of the research and future research studies and recommendations are proposed.  

 

 

Fig.1.4: Research framework methodology 
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Chapter 2 Literature Review 

In this chapter, a review of literature on future land use change, climate change and 

impacts of COVID-19 across the globe are studied. The selection of modelling/ optimization 

techniques is chosen based on the knowledge gap identified in during the literature review 

process. 

2.1 Hydrometeorological-disasters-induced Economic and Mortality Losses  

In this section, a detailed literature review on hydrometeorological-induced economic 

and mortality losses across the globe and particularly, in Asia are discussed. The findings of 

the section are to highlight and identify the most disastrous and common natural disasters in 

the study area. 

2.1.1  Global 

Of the top 10 disasters, the hazards that led to the largest human losses during the 

period have been droughts (650,000 deaths), storms (577,232 deaths), floods (58,700 deaths) 

and extreme temperature (55,736 deaths) (Table 1(a)). Regarding to economic losses, the top 

10 events include storms (US$ 521 billion) and floods (US$ 115 billion) (Table 1(b)). All the 

storm events positioned in top 10 categories in terms of both deaths and economic losses 

were tropical cyclones. Three of the top 10 disasters in terms of economic losses occurred in 

2017: Hurricanes Harvey (US$ 96.9 billion), Maria (US$ 69.4 billion) and Irma (US$ 58.2 

billion). These three hurricanes alone accounted for 35% of the total economic losses of the 

top 10 disasters around the world from 1970 to 2019.  Floods were most common of the 

hydrometeorological disaster types recorded, but it could be observed that storms had the 

highest human and economic loss. 

Based on Fig. 2.1(a), the number of disasters has increased by five-fold over the 50 

years period: whereas 711 disasters were recorded for 1970–1979, 3,536 were recorded in 

2000–2009. In term of number of scarified during the disaster, it could be observed that 

deaths decreased almost threefold by hydrometeorological disasters from 1970 to 2019. 

Death rates have fallen decade by decade – from over 50 thousand deaths in the 1970s to less 
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than 20 thousand in the 2010s. The 1970s and 1980s reported an average of 170 related deaths 

per day. In the 1990s, that average fell by one third to 90 related deaths per day, then 

continued to fall in the 2010s to 40 related deaths per day as shown in Fig. 2.1(b). However, 

in term of economic loss, it has increased sevenfold from the 1970s to the 2010s as shown in 

Fig. 2.1(c). 

Table 1: Top 10 global disasters ranked according to reported (a) deaths and (b) economic    

     losses (1970–2019) 

(a) Disaster Type Year Country Deaths 

1 Drought 1983 Ethiopia 300,000 

2 Storm (Bhola) 1970 Bangladesh 300,000 

3 Drought 1983 Sudan 150,000 

4 Storm (Gorky) 1991 Bangladesh 138,866 

5 Storm (Nargis) 2008 Myanmar 138,866 

6 Drought 1973 Ethiopia 100,000 

7 Drought 1981 Mozambique 100,000 

8 Extreme 

Temperature 

2010 
Russian Federation 55,736 

9 Flood 1999 Bolivarian Republic of Venezuela 30,000 

10 Flood 1974 Bangladesh 28,700 

(b) Disaster Type Year Country 
Economic Losses 

(USD billion) 

1 Storm (Katrina) 2005 United States 163.61 

2 Storm (Harvey) 2017 United States 96.94 

3 Storm (Maria) 2017 United States 69.39 

4 Storm (Irma) 2017 United States 58.16 

5 Storm (Sandy) 2012 United States 54.47 

6 Storm (Andrew) 1992 United States 48.27 

7 Flood 1998 China 47.02 

8 Flood 2011 Thailand 45.46 

9 Storm (Ike) 2008 United States 35.63 

10 Flood 1995 Democratic People's Public of Korea 25.17 
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The reported losses from 2010–2019 (US$ 383 million per day on average over the 

decade) were seven times the amount reported from 1970–1979 (US$49 million per day). 

Storms were the most prevalent cause of damage, resulting in the largest economic losses 

around the globe. It is the sole hazard for which the attributed portion is continually 

increasing. Worldwide, it could be observed that 44% of disasters have been associated with 

floods (riverine floods 24%, general floods 14%) and 17% have been associated with tropical 

cyclones. Tropical cyclones and droughts were the most common encounter hazards with 

respect to human losses, accounting for 38% and 34% of disaster related deaths from 1970 

to 2019, respectively. When it comes to economic losses, it could be observed that 38% were 

associated with tropical cyclones, while different types of floods account for 31%, riverine 

floods (20%), general floods (8%) and flash floods (3%), marking its significant importance 

in mitigating/preparing for these disasters. 

Of all of human life and financial loss due to hydrometeorological disasters, it could 

be observed that 91% occurred in developing economies according to the United Nations 

country classification. The proportion remains similar for the World Bank country 

classification, according to which 82% of deaths occurred in low and lower-middle income 

countries. Based on these two economic classification methodologies, both reveal that the 

majority of reported deaths from meteorological disasters occurred in developing countries, 

while countries with developed economies incurred the majority of economic losses. 

According to the United Nations country classification, 91% of recorded deaths occurred in 

developing economies while 59% of economic losses were recorded in developed economies. 

On the other hand, based on the World Bank country classification, 82% of deaths have 

occurred in low and lower-middle-income countries and most (88%) of the economic losses 

have occurred in upper-middle- and high-income countries. Among different continents, Asia, 

accounts for almost 30% of global disasters and 50% of deaths, driving the importance to 

quantify its impacts in Asia. 
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Fig. 2.1: Distribution of (a) number of disasters, (b) number of deaths and (c) economic 

               losses by hazard type by decade globally (WMO,2021) 

2.1.2  Asia 

According to EM-DAT records from 1970 to 2019, in Asia, 3,454 disasters were 

recorded from 1970–2019, with 975,622 lives lost and US$ 1.2 trillion in reported economic 

damages, accounting for nearly a third (31%) of hydrometeorological disasters reported 

globally, accounting for nearly half of deaths (47%) and a third (31%) of associated economic 

losses. Most of these disasters were associated with floods (45%) and storms (36%). Storms 

had the highest impacts on life, causing 72% of the lives lost, while floods led to the greatest 

economic losses (57%). The top 10 recorded disasters in Asia account for 70% (680,837 

deaths) of the total lives lost and 22% (US$ 266.62 billion) of economic losses for the region. 

In Asia, in terms of loss of life, tropical cyclones were the most prevalent hazard, similar to 

the observed global trend. Three tropical cyclones, including two in Bangladesh in 1970 and 

1991 (total of 438,866 deaths) and one in Myanmar in 2008 (138,366 deaths) distort the 

overall disaster statistics whereby 0.1% of events account for 60% of deaths reported for the 

region (Table 2 (a)). Bangladesh, due to the significant loss of life caused by the two tropical 



 

19 
 

cyclones, accounted for more than half of deaths (53%) reported in Asia in the last 50 years. 

On the other hand, the most prevalent hazard in terms of economic losses were floods. Six 

costliest disasters in the region occurred in China (Table 2 (b)), which accounted for 60% of 

the top 10 events in Asia.  

There was an increase in the number of recorded hydrometeorological disasters 

between 1950-2019, where the number of reported disasters were found more frequently by 

decade, from one disaster on average of every fifteen day to one every three days over the 50 

years. Over the last decades, the average number of disasters recorded is 104 disasters per 

year. This increase may be a result of reporting bias whereby disasters have been recorded 

more frequently since the year 2000 than during previous decades due to advances in 

technology and the international focus on disaster risk reduction. The number of reported 

deaths has fluctuated over the period, with increases and decreases by decade, while 

economic losses have continuously and substantially increased. Five of the 10 deadliest 

recorded events occurred in the 1970s and nine prior to the year 2000 whereas four out of the 

10 costliest events occurred in the recent decade 2010–2019 as shown in Table 2. This has 

shown that the occurrence of disastrous hydrometeorological events have been increasing in 

both frequency and severity in the past two decades compared to previous years. 

In Fig. 2.2, the distribution in terms of total number, resulting deaths and economic 

losses as a function of hazard type are shown. The two most prevalent hazards in terms of 

number of recorded disasters: floods (37%) and tropical cyclones (21%). Tropical cyclones 

accounted for the most deaths (70%), while floods caused 21% of deaths. In terms of 

economic losses, flood (53%) and tropical cyclones (30%) were the most prelavent hazards 

in Asia. These two hazard types combined contributed to 58% of disasters, 91% of deaths 

and 83% of economic losses for the region. Moreover, according to the report, it could be 

observed that nine out of ten recorded disasters occurred in developing countries in Asia, 

constituting 89% of deaths and 25% of economic loss.  
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Among developing countries, considering the hydrometeorological impacts, the 

number of disasters occurred in Malaysia and Taiwan are relatively high, with 65 and 79 

recorded disasters for the past 50 years, and an increasing trend is observed. Therefore, this 

research selected to further investigate the hydrometeorological occurrence in these two 

regions. 

Fig. 2.2: Distribution of (a) number of disasters, (b) number of deaths and (c) economic losses   

             by hazard type by decade in Asia (WMO,2021) 
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Table 2: Top 10 disasters ranked according to reported (a) deaths and (b) economic losses  

              (1970–2019) in Asia 

(a) Disaster Type Year Country Deaths 

1 Storm (Bhola) 1970 Bangladesh 300,000 

2 Storm (Gorky) 1991 Bangladesh 138,866 

3 Storm (Nargis) 2008 Myanmar 138,866 

4 Flood 1974 Bangladesh 28,700 

5 Flood 1975 China 20,000 

6 Storm (Cyclone) 1985 Bangladesh 15,000 

7 Storm (Cyclone) 1977 India 14,204 

8 Storm (Cyclone) 1999 India 9,843 

9 Storm (Cyclone) 1971 India 9,658 

10 Flood 1980 China 6,200 

(b) Disaster Type Year Country 
Economic Losses 

(USD billion) 

1 Flood 2011 Thailand 45.46 

2 Storm (Ike) 2008 United States 35.63 

3 Flood 1995 Democratic People's Public of Korea 25.17 

4 Extreme 

Temperature 
2008 China 25.06 

5 Drought 1994 China 23.72 

6 Flood 2016 China 22.92 

7 Flood 2010 China 21.10 

8 Flood 1996 China 20.52 

9 Storm (Mireille) 1991 Japan 18.76 

10 Flood 2014 China 16.90 

 

2.1.2.1  Malaysia 

Malaysia is a federal constitutional monarchy in Southeast Asia. It is located between 

2° North and 7° North of Equator in Southeast Asia. The total land area is about 329,847 km2 

separated by the South China Sea in two regions, Peninsular and Malaysian Borneo. Land 

borders are shared with Thailand, Indonesia and Brunei, and maritime borders exist with 

Singapore, Vietnam, and the Philippines, as shown in Fig. 2.3. Almost 45% of Peninsular 

Malaysia is covered by tropical rainforest and swamp. Sabah is split in two by the Crocker 

Mountains, rising to over 4,100 m at Mt. Kinabalu, the highest point in Malaysia. The 

rainforests cover the greater part of Sarawak and many of the rivers are navigable as one the 
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famous longest river in Malaysia is Rajang River. By year 2017, the total population in 

Malaysia is about 32.0 million with 28.7 million are citizens and 3.3 million are noncitizens. 

The Capital City is Kuala Lumpur, while Putrajaya as Federal Government. Malaysia’s 

climate is a tropical climate with uniform temperature (maximum = 33°C, minimum = 23°C) 

in high humidity, situated in equatorial doldrums area. It is divided into two seasons, which 

are Southwest Monsoon (May– September), Northeast Monsoon (November–March), and 

two shorter periods of Inter-monsoon seasons (April and October). 

 

Malaysia is geographically located just outside the “Pacific Rim of Fire” and is 

generally free from severe natural disasters such as earthquake, volcanic eruption and 

typhoon. Although Malaysia is spared from the threats of severe natural disasters and 

calamities, Malaysia is nonetheless not spared from other disasters such as flood, man-made 

disaster, landslide and severe haze. In the past few years, Malaysia has experienced several 

extreme weather and climatic events, ranging from freak thunderstorms to monsoonal floods 

and strong earthquake which have caused havoc in the country. Monsoonal flood is one of 

the major disasters in Malaysia, where they are an annual occurrence which varies in terms 

of severity, spatial and temporal of occurrences. Flood is the most significant natural hazard 

in Malaysia. Annually, an estimated 29,799 km2 are flooded, affecting 4.9 million people, 

and causing physical damages amounting up to USD 350 million. Rapid development, 

unplanned urbanization, climate change and environmental degradation have caused worse 

and more frequent occurrence of flash floods especially in urban areas. The state of Selangor, 

situated in the centre and on the west coast of Peninsular Malaysia, is the most developed 

state in Malaysia with approximately 6.4 million citizens or 19.9% of the total national 

population (Department of Statistic, 2016).  In 2021, a disastrous flood has hit the peninsular 

Malaysia, causing tremendous human lives and financial losses in the region 
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Fig. 2.3: Geographical location of Malaysia 
 

On 16 December 2021, a tropical depression made landfall on the eastern coast of 

Peninsular Malaysia, bringing torrential downpours throughout the peninsula for three days. 

The resulting floods affected eight states across the Peninsula Malaysia and caused at least 

54 dead and 2 missing. During its furthest extent, it caused the concurrent displacement of 

more than 71,000 residents and have affected over 125,000 people. Declared by government 

officials as a "once in a century" disaster, it is the worst flood in the country in terms of 

displaced residents since the 2014–2015 Malaysia floods, as shown in Fig. 2.4. Record-high 

precipitations up to 316 mm of rain in 24 hours were measured at weather stations at Selangor 

and Kuala Lumpur. Widespread damages were reported at the states of Selangor, especially 

the district of Hulu Langat and the city of Shah Alam.  
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Fig. 2.4: Flood conditions recorded by residents in Shah Alam, Selangor on Dec 20, 2021    

               (Starnews,2021) 

 

2.1.2.2  Taiwan 

Taiwan is a densely populated island, with 23.8 million people spread across a total 

land area of approximately 36,000km2 in Eastern Asia, on the west edge of the Pacific Ocean. 

As Taiwan is situated at the transition between tropical and temperate latitudes (21.5 – 

25.2 °N and 120.0 – 122.0 °E), its climate is strongly influenced by the East Asian Monsoons 

(southwesterly monsoon during the wet-warm season (May–August) and northeasterly 

monsoon during the dry-cold season (September–April) (Henny et al., 2021). The mean 

annual temperature for the subtropical region is about 23.4 ºC (highest: 35.8 ºC and lowest: 

7.4 ºC) whereas for the tropical region is about 25.4 ºC (highest: 35.0 ºC and lowest: 9.3 ºC) 

(Chen et al., 2010). Approximately 90% of the total precipitation (~2,000mm) are 

contributed during the wet-warm season (Ding et al., 2020) associated with the episodic 
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typhoon impact (mid-July to August). The magnitude and scale of a typhoon hitting Taiwan 

have increased over the past decades (Hsu et al., 2017a), bringing extremely heavy rain and 

strong wind, and might eventually cause disastrous flooding, particularly in the coastal area. 

The complicated and steep topography is also one of the key drivers that have substantially 

increased the total rainfall accumulation and affected its distribution over Taiwan, especially 

due to the north-south oriented Central Mountain Range (CMR) (Fig. 2.5). Lin et al., (2020) 

demonstrated the distribution of rainfall in Taiwan is strongly modulated by the topography 

of CMR due to orographic forcing over mountains, in which the southwest region receives a 

large amount of rain. Therefore, the inundation susceptibility varied across the region.  

 

Fig. 2.5: Maps of Taiwan to show the population density (a), land cover (b), and mean  

               annual rainfall (c). 

 

Based on the findings performed by Henny et al. (2021), the change trends of extreme 

precipitation for typhoon and annual seasons have increased drastically, but relatively less 

significant increasing trend. The number of extreme precipitation events during the typhoon 

seasons increased by almost three folds during the 2010s compared to 1960s, indicating the 

impact of climate change receiving in this region as shown in Fig. 2.6. Over the past decade, 

the mean air temperature in Taiwan was observed to have increased twice (0.14 °C per 



 

26 
 

decade) as much as the global mean warming rate per decade (°C per decade) (Hsu & Chen, 

2002).  This may have exacerbated the trend of heavy precipitation phenomenon (Tu & 

Chou,2013), resulting in a significant impact on the hydrological system and inducing the 

occurrence of extreme floods in Taiwan (Chiang et al., 2018). The frequency of increased 

intensity of precipitation (>3,500 mm within 48h) (Lin et al., 2018) has been gradually 

escalating (Yeh & Huang 2019). In 2009, the flood induced by Typhoon Morakot with 

accumulated rainfall of 2,777 mm, one of the most catastrophic flooding, has caused nearly 

700 deaths and direct loss of up to 4.7 billion USD (Chjeng et al., 2009; Ge et al., 2010).  

Fig. 2.6: Time series of seasonal extreme precipitation events during rainfall, typhoon and  

               annual phenomenon. Filled circles indicate total extreme rainfall occurring on  

               consecutive days. The top five events are marked with rings. Dashed colored lines  

               show season total ER by year. Linear regression trend lines for seasonal or annual  

               ER are shown as dashed (without the top five events) and solid (with the top five  

               events) black lines (Shetha et al.,2018). 

 

Although numerous flood risk management frameworks have been proposed and 

developed for minimizing the potential losses and ensuring public safety, for instance, 

identifying flood risk zone through flood inundation maps utilizing historical precipitation 

data (Chen et al., 2011; Doong et al., 2016). However, due to the complex and heterogeneous 

climate variability, the distribution and intensity of precipitation varied spatiotemporally, 

which has been supported by both historical observations and model simulations (Rajah et 

al., 2014). Therefore, it is fundamental to develop robust and reliable future climate 
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simulations to identify the future flow regime and allow decision-makers to formulate 

corresponding prevention policies for the emerging risk.   

2.2 Land Use Land Cover (LULC) 

2.2.1 Classification of LULC 

Land use land cover (LULC) classification is the process of appointing land cover 

classes to pixels and categorizing them into waterbodies, urban area, agriculture, forest and 

bare land etc. The general goal of picture grouping is to naturally arrange all pixels in a 

picture according to the land cover classes. That is, diverse component types show a 

distinctive blend of dependent on their intrinsic otherworldly reflectance. The LULC maps 

play a significant and prime role in planning, management, and monitoring programs at local, 

regional, and national levels, which is necessary to monitor the ongoing process of LULC 

patterns over some time.  

Remote sensing is one of the distant detecting techniques in obtaining the physical 

properties of a region by capturing the reflectance on the land surface. In general, creating 

LULC classifications builds upon two imaging methods: optical and microwave remote 

sensing. Both sensing approaches imply distinct advantages and disadvantages. While optical 

sensors rely on reflectance and cloud free conditions, microwave sensors only capture the 

backscatter in a given wavelength. Examples of optical LULC analysis on a global scale are 

reported in Chen et al. (2019); on the other hand, for a regional scale, it is reported in Lo & 

Fung (2020) and Immitzer et al. (2017). Microwave imaging using synthetic aperture radar 

images for LULC emerged in the 1980s, and examples are described in Dobson et al.  In light 

of these, the application of remote sensing has a marked importance in identifying the LULC 

change trends and intensive researches have performed to increase the accuracy of the 

classified image. 

In general, the type of classification in remote sensing analysis can be divided into 

two groups: (i) pixel-based classification, and (ii) object-based classification. For pixel-based 

classification, the classification is done at every pixel, by only utilizing the spectral data 

which are accessible for that singular pixel. Therefore, the pixels inside the region are 

overlooked. In this sense, every pixel would speak to a training model for a classification 
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algorithm, and this preparation model would be as an n-dimensional vector, where n was the 

number of spectral groups in the picture information. On the other hand, the object-based 

classification is done on a restricted gathering of pixels, considering the spatial properties of 

every pixel as they identify with one another. In this regard, a preparation model for the 

classification algorithm would comprise a gathering of pixels, and the classification 

algorithm would likewise yield a class forecast for pixels on a gathering premise for an 

unrefined model. 

2.2.2 Drivers Factors of LULC Change 

In general, land use change in developed regions is mainly a result of changes in 

production systems (e.g., crops, fertilizer, livestock numbers). Whilst these changes can lead 

to higher productivity and subsequent abandonment of agricultural land (van Vliet et al., 

2015), they do not generally cause major shifts in land cover such as from forest to agriculture. 

On the other hand, for developing regions, the land use change is mainly due to the 

urbanization. These processes are generally fast, and policy driven. These shifts in production 

systems follow thousands of years of land-use change, with the dramatic change from natural 

to more human dominated systems occurring hundreds or thousands of years ago. In the 

tropics, however, demand for new agricultural land from a rapidly expanding human 

population continues to be the main driving force for land-cover changes, and land-use and 

land-cover changes in those regions are often proceeding rapidly. Generally, it could be 

described in two driving factors: (i) Proximate and (ii) Biophysical. 

2.2.2.1 Proximate Drivers 

Proximate causes or land management actions are local or direct human modifications 

that cause changes in the landscape. Proximate causes are human activities or immediate 

actions at the local level, such as agricultural expansion, which directly impacts forest cover 

(Geist & Lambin, 2002). Underlying proximate causes are, for instance, social processes such 

as agricultural policies or population dynamics. In addition, characteristics of societies, such 

as cultural background (Rockwell, 1994), wealth and lifestyle, can be considered underlying 

causes as they have an impact on the demand for land-intensive commodities (Delgado et al., 



 

29 
 

2003), which leads to agricultural expansion. Land management is also a proximate cause 

that is determined by the societal setting (Heistermann et al., 2006) and impacts land use at 

different spatial scales. Examples of land management include farming practices such as 

fertilizer use that can increase crop yields or practices such as slash and burn and selective 

logging to manage tree density in forests. Political decisions, such as policy interventions in 

developed countries and development projects in developing countries, can also underpin 

land-use change at local to regional scales (Batistella, 2001). Governance, law enforcement, 

land tenure and access to markets are also very important factors driving land-use change 

(Geist & Lambin, 2002). 

2.2.2.2  Biophysical 

Biophysical drivers in most cases do not ‘drive’ land-use change directly (Verburg et 

al., 2004), but rather cause land-cover changes: for example, through climate change and 

influencing land-use allocation decisions. Key biophysical drivers for land-use change are 

climate (Ogallo et al., 2000), freshwater availability (Rosegrant et al., 2002) and soil 

conditions as all of these could affect land suitability. Climate change drives land-use change, 

as changes in temperature and precipitation result in changes in land and water regimes, 

which can drive a shift in vegetation and agricultural cultivation. Therefore, aiming to 

simulate the real-life conditions, in this research, both of these factors are considered. 

2.3  Climate Change  

Since early of 21st century, the Earth has experienced a mean increase in temperature 

of 0.6°C, reaching up to 4°C in the most northern latitudes, which has already caused 

significant changes in species’ distribution patterns, the structure and functioning of 

ecosystems and the timing of biological processes (Root et al., 2003; Parmesan, 2006). The 

Intergovernmental Panel on Climate Change (IPCC, 2007) defines climate change as “any 

change in climate over time, whether due to natural variability or as a result of human 

activity”. In 2014, IPCC has redefined the definition of climate change to “a change of 

climate which is attributed directly or indirectly to human activity that alters the composition 

of the global atmosphere and which is in addition to natural climate variability observed over 
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comparable time periods”. Both definitions acknowledged the major cause of climate change 

is due to human activities that have altered the atmospheric composition. In the sixth IPCC 

Report (2021), a summary of the key findings concerning projections of climate change 

impacts on freshwater resources and their management, adaptation and vulnerabilities was 

provided. Changes in the pattern of water flows and groundwater recharge over space and 

time are determined by changes in temperature, evaporation and, crucially, precipitation etc.  

2.3.1  Definition of Extreme Events  

"Extreme event", a term today most commonly used in relation to extreme weather 

phenomena and experiencing an upsurge in its usage due to their increased frequency caused 

by climate change, is applied in a variety of scientific disciplines. Based on the IPCC sixth 

assessment report, a five-fold increase in warming rate for the coming decades, including the 

increase of extreme climatic events (Schär et al., 2004; Diffenbaugh and Ashfaq, 2010) and 

alteration of global precipitation patterns are expected. Extreme weather or climate events 

includes unexpected, unusual, severe, or unseasonal weather; weather at the extremes of the 

historical distribution—the range that has been seen in the past. Often, extreme events are 

based on a location's recorded weather history and defined as lying in the most unusual 10% 

and in recent, up to the most unusual 5%.  

Four aspects are studied the change in extreme weather and climate events, including 

• Frequency: Are events occurring more often than they did in the past? 

• Intensity: Are events getting more severe, with the potential for more damaging 

effects? 

• Duration: Are events lasting longer than "the norm"? 

• Timing: Are events occurring earlier or later in the season or the year than they used 

to? 

Floods are one of the most devastating disasters, especially in Asia (Whitehead et al., 

2012). Poor people in society are the most vulnerable, as they live in the most threatened 
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locations and struggle to cope with the impacts due to income, political, and social constraints 

(Bowyer et al., 2014). This can be compounded by the observation that developing countries 

are particularly threatened by flooding because of their limited capacity to prevent and absorb 

disaster impacts (Bowyer et al., 2014). Moreover, the future threat from flooding is likely to 

increase due to the effects of climate change, changing flood patterns and rapid land use/land 

cover change placing more people in harm’s way (Bubeck, 2018). 

There have been changes in some types of global extreme weather events over the 

last several decades, including more intense and frequent heat waves, less frequent and 

intense cold waves, and regional changes in floods, droughts, and wildfires, as shown in Fig.  

2.7. This rise in extreme weather events fits a pattern you can expect with a warming planet. 

It is projected that climate change will make some of these extreme weather events more 

likely to occur and/or more likely to be severe. 

2.3.2  Drivers of Climate Change 

The temperature of the Earth system is determined by the amounts of incoming (short 

wavelength) and outgoing (both short-and long-wavelength) radiation. In general, the Earth's 

equilibrium temperature in modem era can be affected several factors: incoming sunlight, 

absorbed and reflected sunlight, emitted infrared radiation, and infrared radiation absorbed 

and re-emitted in the atmosphere, primarily by GHGs. The changes in these factors affect 

Earth's radiative balance and therefore its climate, including but not limited to the average 

near-surface air temperature. The driving factors of causing climate change can be grouped 

into natural forcing and anthropogenic activities. A brief explanation is provided below for 

each driving factor: 
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Fig. 2.7: Future climate projection and the shift of extreme temperature events (DRR, 2021) 

2.3.2.1  Natural Drivers 

The changes in solar irradiance directly impact the climate system because the 

irradiance is Earth's primary energy source (Lean, 1997). In the industrial era, the largest 

variations in total solar irradiance follow an 11-year cycle (Frölich and Lean, 2004; Gray et 

al., 2010). Although these variations amount to only 0.1% of the total solar output of about 

1,360 W/m2 (Kopp and Lean, 2011), relative variations in irradiance at specific wavelengths 

can be much larger, more than tens of percentage. Spectral variations in solar irradiance are 

highest at near-ultraviolet (UV) and shorter wavelengths (Floyd et al., 2003), which are also 

the most important wavelengths for driving changes in ozone (Ermolli et al., 2013; Bolduc 

et al., 2015). By affecting ozone concentrations, variations in total and spectral solar 

irradiance induce discernible changes in atmospheric heating and changes in circulation 

(Gray et al., 2010; Lockwood, 2012; Seppälä et al., 2014). The relationships between changes 

in irradiance and changes in atmospheric composition, heating, and dynamics are such that 
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changes in total solar irradiance are not directly correlated with the resulting radiative flux 

changes (Ermolli et al., 2013; Xu and Powell, 2013; Gao et al., 2015). 

 Another nature induced climate change forcing is due to the volcanic eruptions, with 

the effects of emissions confined to the troposphere which may be lasting for weeks to 

months. The gases and solids released by volcanic eruptions can include CO2, water vapor, 

SO2, H2S, H2, and CO. Generally, volcanic eruptions cool the climate. The explosive volcanic 

eruptions could inject substantial amount of SO2 and ash into the stratosphere and leading to 

significant short-term climate effects which condenses, forming new particles or adding mass 

to preexisting particles, thereby substantially enhancing the attenuation of sunlight 

transmitted through the stratosphere. 

2.3.2.1  Anthropogenic 

On the other hand, under the uncontrolled urbanization and development, the 

anthropogenic activities are increasingly influencing the climate and the earth's temperature 

by burning fossil fuels, cutting down forests and farming livestock. Among anthropogenic 

activities, the main driver of climate change is the greenhouse effect, which trap the heat in 

the atmosphere, as do the glass panes of a greenhouse keep heat from escaping. Greenhouse 

gases, however, reflect much of the thermal energy back to the Earth’s surface. The more 

greenhouse gases there are in the atmosphere, the more thermal energy is reflected back to 

the Earth’s surface. Greenhouse gases absorb and emit radiation and are an important factor 

in the greenhouse effect: the warming of Earth due to carbon dioxide and other greenhouse 

gases in the atmosphere. 

2.3.3  Type of Hydrological Modelling 

2.3.3.1  Soil and Water Assessment Tool (SWAT) 

The Soil and Water Assessment Tool (SWAT), a physically based and continuous-

time model, was developed to assist water resource managers in assessing water supplies and 

nonpoint source pollution in watersheds and large river basins (Arnold et al., 1998). The 

SWAT employs some empirical/conceptual methods (e.g., Penman-Monteith method for 

potential evapotranspiration calculation, and Soil Conservation Service (SCS) curve number 
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method for surface runoff simulation), which were formulated in the USA. These methods 

lead to one of the merits of SWAT: i.e., minimal input data are required for modeling (Neitsch 

et al., 2011). As reported in Tan et al. (2021), up to 2021, there are up to 4,300 related 

publications utilized SWAT for different purposes, marking it as one of the most popular 

model in the management of water, soil and waste applications, particularly in Southeast Asia. 

In general, SWAT requires a Digital Elevation Model (DEM), a land use map, a soil 

map and daily-scale climate data for the simulation of a basin system. There is a critical team 

need for the best datasets, especially climate information, to ensure that the model 

performance replicates observed streamflow as accurately as possible (Abbaspour et al., 

2018). Therefore, an assessment of available climate data sources is required before the 

development and application of a specific SWAT watershed model. As mentioned earlier, 

climate data such as daily precipitation, minimum and maximum temperatures, are normally 

collected from local meteorological and/or hydrology agencies. However, local climate 

datasets are sometimes expensive and not easily accessible for model users. Hence, this 

review can provide insights as to which open-source climate data are most available and 

reliable for SWAT model applications. 

For Malaysia, there are more than 400 research utilized SWAT modelling in the last 

decade, and the number of publications is increasing over time. Based on these findings, it 

could be observed that the application of SWAT model is established and suitable for 

modelling the conditions in Malaysia. Therefore, in this research, SWAT modelling is 

adopted for modelling the runoff scenarios in Malaysia under changing land use. 

2.3.3.2  Rainfall-Runoff-Inundation (RRI) 

On the other hand, another physically based hydrological model, known as Rainfall-

Runoff-Inundation (RRI) developed in 2017 by Sayama et al. (2017) has gained significant 

attention to use for investigating the climate change impacts on hydrological processes of 

river basins. The RRI model, an integrated two-dimensional grid cell-based hydrodynamic 

model for rainfall-runoff and inundation simulations from areas encompassing downstream 

flood plains and upstream mountain zones is selected in this research. The RRI has been 
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widely adopted and applied in different nations (e.g., Thailand ( Sayama et al., 2017), 

Myanmar (Bhagabati & Kawasaki, 2017), Pakistan (Siddiqui et al., 2018), Japan (Shakti 

et.al., 2020) etc.) for various hydrological applications. The flow on the floodplain slope grid 

cell and channel flow are calculated independently, through 2D and 1D diffusive wave 

models, respectively.  

The complicated flow interactions between river channel and slope are computed 

through different overflowing formulae (refer to Sayama et.al (2012) for detailed 

explanation). On top of these, to better represent the RRI processes, lateral subsurface 

(particularly important for the mountainous region), vertical infiltration, and surface flows 

are also considered in the model, thereby increasing the reliability and accuracy of the 

simulation in Taiwan. Therefore, in this research, RRI is adopted to simulate the Taiwan 

extreme rainfall precipitation under changing climate. 

2.4  Spatiotemporal analysis of COVID-19 on Atmosphere  

Since the end of 2019, COVID-19 has tremendously disrupted the normal rhythm of 

livelihood and has led to dramatic loss of human life worldwide, with infections and deaths 

exceeding 481 million and 6.1 million, respectively, as of 27 March 2022 (Worldometer, 

2022). Due to its high infectivity and transmissibility, it was classified as a global pandemic 

by the World Health Organization (WHO) on March 11, 2020 (WHO, 2020). Therefore, most 

governments across the globe have imposed restrictive/preventive measures, such as 

lockdowns, travel restrictions, shelter-at-home policies, social distancing, and mandatory 

mask wearing in public places, to contain or slow down the spread of COVID-19. These 

timely and strict measures have effectively slowed virus transmission among people.  

In particular, three major threatening air pollutants are (i) ozone (O3), (ii) particulate 

matter (PM) and (iii) nitrogen dioxide (NO2). For O3, it is a secondary air pollutant that is 

formed when NO2 and volatile organic compounds (VOC) under photochemical reactions, 

which is particularly profound during summer. O3 are generally found in two places, which 

are near the ground (major part of smog) and in the stratosphere. The former is harmful to 

the human health, creating a number of health problems; whereas the latter one is the 
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protective layer of ozone, helping to screen out harmful ultraviolet rays. O3 can lead to more 

frequent asthma attacks in people who have asthma and can cause sore throats, coughs, and 

breathing difficulty, and it may even lead to premature death.  

 For PM is major health issues that coming from a variety of sources of primary 

particles include fires, smokestacks, construction sites, and unpaved roads; sources of 

secondary particles include reactions between gaseous chemicals emitted by power plants 

and automobiles. All these contributes to formation of haze as well as acid rain, which 

changes the pH balance of waterways and damages foliage, buildings, and monuments. Data 

revealed significant associations of PM10 concentration to increase in daily all-cause 

mortality, daily cardiovascular mortality, and daily respiratory mortality (Tanaka et al., 2020). 

PM2.5 concentration similarly exhibited significant associations to daily mortality for all 

causes, cardiovascular, and respiratory (Tan et al., 2020). 

 NO2 is major air pollutant that is mainly released from transportation sector and is 

formed in two ways-when nitrogen in the fuel is burned, or when nitrogen in the air reacts 

with oxygen at very high temperatures. High levels of NO2 exposure can give people coughs 

and can make them feel short of breath. People who are exposed to NO2 for a long time have 

a higher chance of getting respiratory infections.  

2.4.1  Attributed premature death 

The World Health Organization (WHO) highlights air pollution as the number one 

reason for environment-related deaths in the world. It’s estimated to be the cause of seven 

million premature deaths every year – 4.3 million from outdoor air pollution, and 2.6 million 

from indoor pollution. With historical links to development and economic growth, we expect 

the number of deaths from outdoor pollution to grow (largely in Asia and Africa) as shown 

in Fig. 2.8. 
 

Among air pollutants, 307,000 premature deaths were attributed to chronic exposure 

to fine particulate matter; 40,400 premature deaths were attributed to chronic nitrogen 

dioxide exposure; 16,800 premature deaths were attributed to acute ozone exposure. PM2.5 is 

the most consistent and robust predictor of health effects from studies of long-term exposure 
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to air pollution, whereas O3 has been associated with increased respiratory mortality (Health 

Effects Institute, 2018).   

 

 

Fig. 2.8: Death rate from particulate matter air pollution vs PM2.5 concentration exposure per  

              100,000 people (Ashiawa et al., 2021). 
 

In general, there are four main air pollution pathways, which are: 

• Mobile Sources – cars, buses, planes, trucks, and trains 

• Stationary Sources – power plants, oil refineries, industrial facilities, and factories 

• Area sources – agricultural areas, cities, and wood burning fireplaces 

• Natural sources – wind-blown dust, wildfires, and volcanoes 

Exposure to air pollution is a risk factor that causes health impacts. The risk 

assessment of air pollution follows the air pollution pathway, from sources through emissions, 

concentrations, exposures, doses, to health impacts. Sources are generally the quantity and 

quality of fuel used. Emissions are air pollutants released from the source and are 

characterized by the environment, transported, and transformed. Concentrations are the 
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amount of an air pollutant in space and time. Exposures are concentrations of air pollutants 

that are breathed in and depend on pathways, durations, intensities, and frequencies of contact 

with the pollutant. Doses are how much of the exposure is deposited in the body. Health 

impacts accrue from doses, can be acute (short-term) or chronic (long-term), and are non-

specific in that they have many risk factors. Monitoring and intervention can occur at any 

stage along this pathway. Health impacts are the primary risk indicators, although control 

measures at this stage are often too late and complicated due to their non-specific nature. 

Doses are also too late in the air pollution pathway and are poorly understood for many 

pollutants. 
 

However, the emergence of COVID-19 has caused a significant reduction in air 

pollutant concentration worldwide, wherein the average concentrations of ground-level 

nitrogen dioxide (NO2) and particulate matter with average aerodynamic diameters less than 

10 µm and 2.5 µm (PM10 and PM2.5) declined by approximately 30% and 20%, respectively, 

compared to 2019 (Yang et al., 2021). Since then, there has been growing attention to 

utilizing both high-resolution satellite images and/or ground-based monitoring data to 

quantify the impact of COVID-19 on the local atmospheric environment, particularly to 

compare the differences before and after lockdown implementation: for instance, in India 

(Mahato et al., 2020), China (Shen et al., 2021), Singapore (Li and Tartarini 2020), Malaysia 

(Abdullah et al., 2020), Iran (Broomandi et al., 2020), Bangladesh (Rahman et al., 2020), 

Brazil (Nakada & Urban, 2020), and Turkey (Ghasempour et al., 2021). 

2.4.2 Economic Losses  

The COVID-19 cause a short-term fiscal impact and a long-term economic impact 

over the globe. There are efforts to curb the pandemic include imposing quarantine, preparing 

health facilities, isolating infectious cases, and tracing contacts involving public health 

resources, human resources and implementation costs. It also involves health system 

expenditures to provide health facilities to infectious cases and the arrangement of 

consumables such as antibiotics, medical supplies, and personal protective equipment. 
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The COVID-19 pandemics resulted in declined tax revenues and increased 

expenditure, which causes fiscal stress, especially in lower-middle-income countries 

(LMICs) where fiscal constraints are higher, and tax systems still need improvement. This 

economic impact severity was observed during the Ebola virus in Liberia caused by the rise 

in public health expenditure, economic downfall, and revenue decline due to the 

government's inability to raise revenue because of quarantine and curfews. Economic shocks 

are common during pandemics due to shortage of labor because of illness, rise in mortality, 

and a fear-induced behavior. Other than labor shortages, disruption of transportation, closed 

down of workplaces, restricted trade and travel, and closed land border are reasons for the 

pandemic's economic slowdown. 

Based on Fig. 2.9, it could be observed that among the major economies, those who 

have timely imposed containment measures and successfully curbed the outbreak of COVID-

19 have significantly less economic loss and deaths than those who have waited and hesitated. 

Although imposing stringent containment measures at an early stage would lead to an 

temporary contraction on economic growth, countries who have acted early enjoy a faster 

economic recovery in the long-term by effectively mitigating and containing the outbreak. 

Fig. 2.9 illustrates the loss of economic activity in different regions over the cause of the 

pandemic. It can be seen that regions like East Asia performed significantly better on 

epidemic control compared to Europe and North America and suffered less economic loss 

than the latter ones. To successfully contain the outbreak, social distancing measures to break 

the chain of transmission is required. However, the differences in the rapidity with which 

countries imposed such policies and the strictness of the policies reflect divergent 

assessments of both the public health risk of COVID-19 and the social and economic impacts 

of the different policies. 

Based on the findings obtained from Guan et al. (2021), even for countries that are 

not directly affected by COVID-19 can experience large losses (e.g., >20% of their GDP)—

with such cascading impacts often occurring in low- and middle-income countries. Open and 

highly specialized economies suffer particularly large losses (e.g., energy exporting Central 
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Asian countries or tourism-focused Caribbean countries). Supply bottlenecks and declines in 

consumer demand led to especially large losses in globalized sectors such as electronics 

(production decreases of 13-53%) and automobiles (2-49%). Many studies have identified 

that shorter lockdowns are likely to minimize overall economic damages, that a “go-slow” 

approach to lifting restrictions may reduce overall damages if it avoids further lockdowns, 

and that global supply chains will magnify economic losses in some countries and industry 

sectors regardless of direct effects of the coronavirus.  

Fig. 2.9:  Economic losses across different countries vs confirmed COVID-19 deaths   

                per million (Guan et al., 2021) 

2.4.3 A blessing in disguise to the nature?  

Nevertheless, despite the disastrous loss brought by the pandemic, these timely and 

strict measures associated with the local governments' policies have effectively slowed virus 

transmission among people. Concurrently, these measures also reduced emissions from 

major anthropogenic and economic activities due to the disruption of anthropogenic 

emissions. Consequently, a remarkable change in air pollutant concentrations was observed 
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throughout the world, particularly in countries that imposed lockdown, creating a silver lining 

in the dark cloud of COVID-19 (Jephcote et al., 2021; Nakada and Urban, 2020; Kanniah et 

al., 2020). A significant reduction in air pollutant concentration is observed worldwide, 

wherein the average concentrations of ground NO2, PM10 and PM2.5 declined by 

approximately 30% and 20%, respectively, compared to 2019 (Yang et al., 2021).  

Since then, there has been growing attention to utilizing both high-resolution satellite 

images and/or ground-based monitoring data to quantify the impact of COVID-19 on the 

local atmospheric environment, particularly to compare the differences before and after 

lockdown implementation, for instance, in India (Mahato et al., 2020), China (Shen et al., 

2021), Singapore (Li and Tartarini, 2020), Malaysia (Abdullah et al., 2020), Iran (Broomandi 

et al., 2020), Bangladesh (Rahman et al., 2020), Brazil (Nakada and Urban 2020), and Turkey 

(Ghasempour et al., 2021). Throughout 2020, significant improvement of air pollution was 

observed worldwide, with approximately 30% reduction observed in major air pollutants 

(e.g., carbon monoxide (CO), sulfur dioxide (SO2), nitrogen monoxide (NO), nitrogen 

dioxide (NO2), ozone (O3), and particulate matters with average aerodynamic diameter < 10 

and 2.5 µm (PM10 and PM2.5)) (Addas and Maghrabi, 2021), as summarized in Fig. 2.10. 

Numerous studies investigated the impact of lockdown and performed changed analysis of 

air pollutant concentrations between  pre-lockdown  with   lockdown  period   (Rodríguez-

Urrego & Rodríguez-Urrego, 2020, Tobías et al., 2020) or in relative to the selected base-

year (Abdullah et al., 2020, Nakada & Urban, 2020). Based on findings observed utilizing 

the high resolution Sentinel-5P/TROPOMI satellite and Google Community Mobility 

Reports over 164 countries, Similar findings utilizing station-based data were also reported 

in China (Zhu et al., 2020), Malaysia (Ash’aari et al., 2020), Brazil (Rudke et al., 2021), 

United States of America (Archer et al., 2020), Italy (Gualtieri et al., 2020) and many other 

regions worldwide (Anugerah et al., 2021; Baysan et al., 2021; Tian et al., 2021; Wetchayont, 

2021). Nevertheless, limited studies have focused on the air quality changes in regions that 

did not impose lockdowns.   
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Fig 2.10: Global 2020 PM2.5 concentrations change for lockdown regions (Yang et al.,  2021) 

2.4.4  Influencing Factors 

To quantify the impact of COVID-19 to the atmospheric environment, growing 

attention has been given to investigating the influencing factors of air quality changes during 

the COVID-19 period, for which the impacts of meteorology and public transportation are 

most reported. Therefore, in this research, both of these factors are included for discussion. 

To date, only a few studies have focused on the air quality changes in cities that did not 

impose lockdowns, such as Taiwan. As compared to regions imposed lockdown, contradicted 

finding was reported in Taiwan (Chang et.al., 2021), in which there was insignificant changes 

or even higher concentrations of air pollutants were observed in spite of the reduced mobility. 

Therefore, to understand the effects of meteorology and transportation volume to the regions 

without lockdown during COVID-19, detailed analysis is performed as described in Chapters 

5 and 6.  

2.4.4.1 Transportation 

Most of the reported studies have considered only the impact of public roadway 

transportation reduction during the lockdown period (Gao et al., 2021; Tian et al., 2021), but 

according to the annual transportation report of Taiwan, the use of public urban transportation, 

including different transportation modes (e.g., railway, air and waterway), in 2020 declined 
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and dropped to almost the lowest level of the past decade (Ministry of Transportation and 

Communication, 2021). Significant concentrations of air pollutants have been reported in 

railways (Moreno et al., 2015), air (Psanis et al., 2017) and waterways (Solomon et al., 2021), 

as different transportation modes have different features and may constitute divergent air 

pollutants to the environment. Therefore, to provide a comprehensive evaluation of the 

impact of public urban transportation on air quality during the study period, four 

transportation modes were included in this research. 

2.4.4.2 Meteorological 

Since meteorological parameters also play a significant role in affecting the dynamics 

of pollutants (such as dispersion rate, transportation, and transformation) (Singh & Tyagi, 

2021), various methods have been introduced: e.g., the application of black-box models to 

eliminate the associated effects caused by meteorological variability (Grange et al., 2018; 

Solberg et al., 2021). For instance, Petetin et al. (2020) and Talbot et al. (2021) performed a 

random forest machine learning algorithm to estimate the business-as-usual (BAU) pollutant 

concentration based on the emission scenario and meteorological parameters in the absence 

of COVID-19 in Spain and New Zealand, respectively. Although it is undeniable that black-

box models usually have high prediction accuracy, white-box models are still preferred 

compared to black-box models due to their transparency. Additionally, the relative 

importance of the predictor variables, which are necessary for decision making in air quality 

management, can be recognized (Fung et al., 2021). Compared to black-box models, white-

box models require fewer datasets for model construction and are commonly adopted for 

practical application due to their simplicity and robustness (Wong et al., 2021; Loyola- 

González, 2019). 

Therefore, in this research, the white-box model, known as stepwise regression model 

(SRM) was constructed for each pollutant in Chapter 5 whereas four different artificial 

intelligence models, namely generalized additive model (GAM), gradient boosting machine 

(GBM), generalized linear model (GLM) and random forest (RF) were constructed and 

evaluated in Chapter 6 for comparison. 
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Chapter 3 

Scenario-based Impacts of Decadal Land Use Change 

on the Water Balance Components using SWAT 

in Selangor River Basin 

In this chapter, the effects of land use (LU) change on water balance in Selangor river basin, 

Malaysia was studied. Two artificial intelligence methods, namely support vector machine 

(SVM) and artificial neural network (ANN) were developed and its prediction performance 

for LU identification using satellite images were compared. To simulate future land use 

scenarios, Land Change Modeller in Terrset was used, utilizing the LU maps simulated from 

the satellite images. The future streamflow was simulated using Soil and Water Assessment 

Tool (SWAT) from ArcGIS software. Extreme streamflow such as no flow rate or very high 

flow rate up to 100 m3/s is more commonly encountered in the future. Through the simulation, 

it provides an insight for the responsible authority in planning proper management for water 

resources for preventing prolonged drought or extreme rainfall induced flood events.   

3.1 Introduction 

Since 21st century, the decrease in flow discharge and the increase in contaminant 

concentration in streamflow are common global phenomena, especially for the water-limited 

regions of developing countries. Till present, researchers focus on the effect of land-use 

change in catchment hydrology. Many researchers have found that a strong relationship 

between land use and water quantity (Bultot et al., 1990; Krause, 2002; Li et al., 2007; Ranjan 

et al., 2006), as well as water quality (Ahearn et al., 2005; Baker, 2003; Heathwaite et al., 

2005; Tong & Chen, 2002). Land use is tightly linked to evapotranspiration, initiation of 

surface runoff, washout of nutrients from soil, and other hydrological processes. Land-use 

changes pertain to variations in surface roughness, soil aggregate structure, stomatal 

conductance, and soil organic content and nutrients, including nutrient input from manure 

and fertilizer (Hormann et al., 2005). In general, these changes affect water and nutrient 

cycles in watersheds. For example, converting grazing lands or farmlands into woodlands 
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decreases water and nutrient discharge (Dagnachew et al., 2003; Guo et al., 2008). Given the 

complex effect of these factors on hydrological responses, especially on hydro-chemical 

responses, the direct effects of land use and climatic variability on streamflow or non-point 

source pollution are difficult to separately identify (Juckem et al., 2008; Kent, 1999; 

Lettenmaier et al., 1994) 

The methods for detecting the effect of land-use changes on streamflow include 

historical data analysis and numerical modeling. In general, numerical models are commonly 

used for hydrological simulation, these are simple and effective tools even under changing 

conditions (Andersen et al., 2006; Ewen and Parkin, 1996; Manus et al., 2009). Using lumped 

or distributed hydrological models, most past research has focused on the influences of land-

use changes on river discharge and water balance (Chen et al., 2005; Dagnachew et al., 2003; 

Samaniego & Andras, 2006; Wang et al., 2006). Additionally, impacts of these factors on 

watershed hydrology is different across watersheds. Therefore, sites must be evaluated on a 

local scale (Khoi & Thom, 2015). Due to limited available data, it is essential to use both 

comprehensive and physical tools to extract as much information about hydrologic responses 

as possible (Li et al., 2009). Hydrological models are considered an appealing approach to 

carry out impact assessment studies, as they provide a conceptualized framework to be used 

in scenario studies on the relationship between hydrological components, land use change 

and climate variability (Jothityangkoon et al., 2001). Model parameters can have physical 

meaning as related to measurable landscape properties and meteorological conditions 

(Legesse et al., 2003), and explicitly represent spatial variability (Lu et al., 2015). Initial 

model parameters describing vegetation, land use and soil types are called physically based 

parameter values; they can be adjusted to improve streamflow simulation through subsequent 

model calibration processes (Beven, 2006). 

Recently, water resource managers and modelers have counted on hydrological 

models to identify alternative strategies for water resource allocation and to obtain more 

information about watershed systems, hydrological processes, and their responses to both 

anthropogenic and natural factors. To simulate future land use scenarios, Land Change 
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Modeller in Terrset is used and the land use maps are simulated from the satellite images. In 

this research, artificial intelligence aided techniques, for instance artificial neural network 

and support vector machines were used. To obtain highly classified land use maps, trial-and-

error approach was adopted to optimize the models. 

Due to the limited dataset and land soil type suitability of Malaysia, Soil and Water 

Assessment Tool (SWAT) was adopted in this research. Future land use maps in 2030 and 

2050 were used to simulate future streamflow scenarios under business-as-usual scenario, 

adopting the changing trends from 1990 to 2016. The findings of this study are expected to 

provide compendious information, including practical implications, to relevant authorities 

for policy planning and implementation for better water resources and risk management 

according to regions. 

3.2 Data Collection and Methodology 

3.2.1 Study Area and Data Collection 

The Selangor river basin, located between latitudes 3°12’09”N - 3°44’08”N and 

longitudes 101°10”24E - 101°48’0”E, is found in Selangor - one of the most developed and 

progressive states that contributes 23.7% of Malaysia’s 2018 gross domestic product 

(Department of Statistics, 2019). It is one of the largest river basin in Malaysia (2200 km2) 

with a total stream length of 110 km (Camara et al., 2020). As illustrated in Fig. 3.1, the river 

basin flows from the foothill of Fraser’s Hill (upstream) to the southwest direction until the 

river mouth of Kuala Selangor (downstream); traversing through three districts in the 

Selangor state: Hulu Selangor, Gombak, and Kuala Selangor (Othman et al., 2018; Cheah et 

al., 2019). The Selangor river basin is the primary water resource (over 60%) for over 4 

million people residing in the Selangor State and Kuala Lumpur, the capital of Malaysia 

(Santhi & Mustafa, 2013).  
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Fig. 3.1: Topography and geographical location of Selangor river basin with flow discharge  

              monitoring station 

The Selangor river basin is located in the tropical region, characterised with hot and 

humid climate year-round with plentiful of annual rainfall due to two monsoons; Northeast 

Monsoon (December to March) and Southwest Monsoon (June to August). These periods are 

known as wet season, while the remaining months are dry season. The mean annual rainfall 

and temperature in this river basin are 2,200 mm and 27 °C, respectively (Palizdan et al., 

2014). Surface runoff due to prolonged and heavy rainfall with river flow can exceed 122 

m3/s during the monsoon seasons, which may severely affect the people and also the 

surrounding facilities (Seyam & Othman, 2015; Al-Badaii & Shuhaimi-Othman, 2014). 

Although Selangor river basin is one of the major water supply river basin, the number of 

discharge monitoring station with data over 30 years is very limited, with only one in the 

central of the basin.  
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3.2.2 Model Development 

To investigate streamflow trend analysis under changing land use, a research 

framework is proposed, consisting of two major sections: land use land cover modelling and 

hydrological modelling, as shown in Fig. 3.2. Under land use land cover modelling, two 

artificial intelligence models namely support vector machine (SVM) and artificial neural 

network (ANN) is optimized and developed for present land use change detection, for 1990, 

2000 and 2016 using satellite image from United States Geological Survey (USGS). The 

classified satellite image is used as input for future land use simulation for year 2030 and 

2050. The simulated land use maps are used to investigate the future streamflow using SWAT 

modelling. 

 

 

Fig. 3.2: Overall schematic diagram for streamflow simulation under changing land use. 
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3.2.2.1 Current Land Use Change Detection 

In general, remote sensing analysis can be divided into three sections, which are (i) 

image segmentation, (ii) classification and (iii) accuracy assessment as shown in Fig. 3.3. In 

this section, the accuracy assessment of the satellite image classified using machine learning 

methods will be focused and discussed.  Accuracy assessment is the step to identify the 

exactness level of the classification that has been done. The level of accuracy is calculated 

by the Kappa Coefficient whereas if the result approached to number one its mean that the 

classification done is more accurate. Kappa coefficient is a measure of overall agreement of 

a matrix. In contrast to the overall accuracy, the Kappa coefficient takes also non-diagonal 

elements into account.  

After subset the data via ROI, classification of Selangor river basin satellite imagery 

nis performed according to its spatial representation. The basic step for classification is by 

creating the ROI for each image according to the type of land cover/use that exists in the 

satellite imagery. In this study, five different land cover/use classes have been chosen for 

creating ROI’s polygon in Selangor river basin area viz. forest, urban, water bodies, 

agriculture and cleared land.  

 

Fig. 3.3: Detailed schematic diagram for LULC classification 
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3.2.2.1.1 ANN Model 

The ANN model has been widely applied to solve non-linear and complex problems 

due to its capability of learning, memorising, and generalising from experience. It is 

comprised of three main layers; (i) Input Layer to receive input variable(s) of the models, (ii) 

Output Layer to perform computations on the input variables, and (iii) Hidden Layer to 

generate output variable(s), in order to mimic the information processing system as the 

human brain. Amongst the different network architectures found in the ANN family, 

feedforward backpropagation network (FFBN), the most prevalent network architecture for 

classification and management of water resources, was selected (Oyebode & Stretch,  2019). 

In FFBN, the flow of information is unidirectional, which advances from the input layer to 

the output layer through artificial neurons (elementary unit in ANN), without forming any 

cycle or loop, as portrayed in Fig. 3.4(a) (Urso et al., 2019).  

The weighted input data and bias were propagated forwardly under tangent sigmoid 

activation function (tansig) to the hidden layer, while outputs were generated at the output 

layer through linear activation function (purelin) (Ullah and Bhuiyan 2018). 

Backpropagation was performed to adjust the weight value of the network and to seek the 

optimum solution. The mathematical expression of FFBN is displayed in Eq. (3.1). 

𝑌(𝑥) = ∑ 𝑊𝑗𝑘
𝐽
𝑗=1 𝑓(𝑝𝑖 + ∑ 𝑊𝑖𝑗𝑥𝑖

𝑛
𝑖=1 ) + 𝑞𝑗          (3.1) 

In Eq. (3.1), Y(x) is output; Wij and Wjk denote the weight from input layer to hidden layer 

and from hidden layer to output layer, respectively; xi represents input data; pi and qj are bias 

from input layer to hidden layer and from hidden layer to output layer, respectively; and f is 

activation function (tansig).  

In this study, 11 training algorithms that belong to six classes are compared and 

evaluated in this study (Bisht et al., 2017; Kadam et al., 2019). The brief explanation of each 

training algorithm is summarised in Table 3.1.  
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Table 3.1: Brief description for training algorithms used in this study. 

Training Algorithm Training 

Function 

Description 

(i) Levenberg-Marquardt 

Levenberg-Marquardt 

backpropagation 

trainlm Weight and bias values are updated 

by using Levenberg-Marquardt 

optimization method. 

(ii) Gradient descent with variable learning rate 

Gradient descent with 

momentum backpropagation 

traingdm Weight and bias values are updated 

by using gradient descent with 

momentum method 

Gradient descent with 

adaptive learning rate 

backpropagation 

traingda Weight and bias values are updated 

by using gradient descent with 

adaptive learning rate method 

Gradient descent with 

momentum and adaptive 

learning rate 

backpropagation 

traingdx Weight and bias values are updated 

by using gradient descent with 

momentum and adaptive learning 

rate backpropagation 

(iii) Resilient backpropagation 

Resilient backpropagation

  

trainrp Weight and bias values are updated 

by using resilient backpropagation 

method 

(iv) Conjugated gradient descent 

Conjugate gradient 

backpropagation 

with Powell-Beale restarts 

traincgb Weight and bias values are updated 

by using conjugate gradient 

backpropagation with Powell-Beale 

restarts method.  

Conjugate gradient 

backpropagation 

with Polak-Ribiére updates 

traincgp Weight and bias values are updated 

by using conjugate gradient 

backpropagation with Polak-Ribiére 

updates method. 

Scaled conjugate gradient 

backpropagation 

trainscg Weight and bias values are updated 

by using scaled conjugate gradient 

method. 
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3.2.2.1.2  SVM Model 

The SVM model developed by Vapnik (1995) is a widely used supervised method for 

regression and classification. The SVM is used for binary classification (true or false Boolean 

operation) (Oh & Kim, 2020) and it has been extended for multi-class classification by fusing 

Error-Correcting Output Codes (ECOC) method that decomposes multi-class classification 

into many binary classification tasks (Al-shargie et al., 2018). The ECOC involves two 

stages: (i) Encoding to construct coding matrix (2𝑛−1 − 1, n=number of class) and assigning 

each class a unique codeword, and (ii) Decoding to assign the data points to the class with 

the closest codeword (Liu et al., 2018; Samat et al., 2019).  

The SVM model is a kernel-based learning algorithm, wherein classification is 

performed by setting the input data into a high-dimensional feature space via non-linear 

mapping. Input and support vectors (data points closest to the hyperplane) are optimised by 

kernel function to identify the maximal separating hyperplanes (see Fig. 3.4(b)). The solution 

function of SVM model is expressed in Eq. (3.2). 

𝑌(𝑥) = ∑ (−𝛼𝑖 + 𝛼𝑖
∗)𝐾(𝑥, 𝑦) + 𝑏𝑆𝑉𝑀

𝐼
𝑖=1                                                   (3.2) 

In Eq. (3.2), 𝑌(𝑥) is output; −𝛼𝑖𝑎𝑛𝑑 𝛼𝑖
∗ are Lagrangian multipliers (Kisi and Parmar 2016) 

(to identify the extrema of a function subject to equality constraints); 𝐾(𝑥, 𝑦) is kernel 

function; and 𝑏𝑆𝑉𝑀 is bias. 

For SVM modelling, eight different MFs under five categories namely are compared 

and evaluated. The brief description for each MF is summarised in Table 3.2 (Modaresi and 

Araghinejad 2014; Ji et al., 2017). The function is defined in Eq. (3.3). 

𝐾(𝑥, 𝑦) = exp(−𝜎‖𝑥 − 𝑦‖2) 𝑓𝑜𝑟 𝜎 > 0                                                  (3.3) 

In Eq. (3.3), 𝜎 denotes the kernel parameter that adjusts the smoothness of hyperplane in the 

feature space.  
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Table 3.2: Brief description for MFs used in this study 

Membership 

Function 

Function Description 

(i) Piecewise Linear Functions 

Trapezoid-

shaped MF 

trapmf Function of vector, x is mapped onto a trapezoid curve. 

Triangular-

shaped MF 

trimf Function of vector, x is mapped onto a triangular curve. 

(ii) Gaussian Distribution Functions 

Gaussian 

MF 

gaussmf Function of vector, x is mapped onto gaussian 

distribution curve. 

Gaussian 

Combination 

MF 

gauss2mf Function of vector, x is mapped onto combination of two 

gaussian distribution curves. 

(iii) Bell-shaped Function 

Bell-shaped 

MF 

gbellmf Function of vector, x is mapped onto a bell-shaped 

curve. 
 

(iv) Sigmoidal Function 

Difference 

Sigmoidal 

MF 

dsigmf Function of vector, x is mapped onto a difference of two 

sigmoidal curves. 

Product 

Sigmoidal 

MF 

psigmf Function of vector, x is mapped onto a product of two 

sigmoidal curves. 

(v) Polynomial Based Function 

Polynomial-

Pi MF 

pimf Function of vector, x is mapped onto a π-shaped curve. 
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Fig. 3.4: Schematic diagram for (a) feed-forward neural network (b) support vector machine 
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3.2.2.1.3 Model performance  

The classification performance was assessed statistically using different widely 

adopted criteria; (i) Accuracy, (ii) Sensitivity and (iii) Precision, as expressed mathematically 

in the following:   

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑂𝑣𝑒𝑟𝑎𝑙𝑙 =
∑ (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛

𝐶𝑙𝑎𝑠𝑠=1 )

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑑𝑎𝑡𝑎
 × 100%                      (3.4) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐶𝑙𝑎𝑠𝑠 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  𝐶𝑙𝑎𝑠𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)𝐶𝑙𝑎𝑠𝑠
× 100%                (3.5) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐶𝑙𝑎𝑠𝑠 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑙𝑎𝑠𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)𝐶𝑙𝑎𝑠𝑠
× 100%                   (3.6) 

 

Accuracy denotes the capability of the model to correctly identify and reject the land 

use class based on the RGB pixel combination. Meanwhile, Sensitivity of each class refers to 

the ratio of correctly identified land use classification within the same class, and Precision 

of each class is the ratio of correctly identified land use classification among the different 

classes. In order to better visualise the classification performance, a confusion matrix that 

can exemplify each land use class with a dimension of 5 x 5 was developed. Each column of 

the matrix represents the actual classifications, while the row of the matrix reflects the system 

prediction for each land use class.  

3.2.2.2 Future Land Use Simulation 

For simulating future land use, a detailed methodology framework is provided in Fig. 

3.5. The classified satellite images using SVM and ANN models are used in this step. Factors 

summarized in Chapter 2, including both biophysical and proximate drivers are included in 

this study. Land Change Modeller (LCM) in TerrSet2019 software developed by Clack Labs 

(Clark Labs 2020) is used for the modelling. The LCM is based on historical land cover data, 

transition potential maps, and Markov matrices, to simulate future LC change. The LCM 

consists of 3 main steps, change analysis, transition potential modelling, and change 

prediction. The base maps used for capturing the change trend used are the classified satellite 

images of 1990 and 2000, to simulate the land use in 2016. The classified satellite image 
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2016 was used to verify the simulation results. Future land use maps of 2030 and 2050 are 

simulated once the accuracy of the developed land use maps are verified. 

 

Fig. 3.5: Detailed schematic diagram for future land use simulation 

3.2.2.2.1 Identification proximate drivers 

In this step, the potential of land to transition is identified, and transition potential 

maps for each transition are created. The transition potential maps that have the same 

underlying driver variables are grouped within an empirically evaluated transition sub-model. 

These driver variables are used to model the historical change process. The driver variables 

used in this study are: distance to rivers, distance to roads, distance to urban area, DEM, and 

slope (Fig. 3.6). The driver variables were selected based on the literature review (Camara et 

al., 2020; Rafaai et al., 2020). This study applied the CA - Markov model for simulating and 

predicting land use change in Selangor River basin. The CA model is expressed by Eq. 3.7 

(Liping et al., 2018): 

𝑆𝑡+1 = 𝑓(𝑆𝑡 , 𝑁)                                (3.7) 

In Eq. 3.7, 𝑆𝑡  is the set of states of finite cells; While  𝑆𝑡+1  are different moments; the 

neighborhood of cells is N ; and the transformation rule of local space is f . 
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3.2.2.2.1 Markov Transition Estimator 

Markov model is a discrete random process both in time and in state (Al-sharif and 

Pradhan, 2014). The simulation process of the model mainly generates a land use area 

transfer matrix and a probability transfer matrix to predict the trends of land use change. The 

transition potential maps are created using the Decision Forest algorithm, which is an 

implementation of the Random Forest method.  The CA Markov model successfully 

integrates the benefits of the Markov and CA models. Implemented into the IDRISI software 

model, the prediction steps with the CA-Markov model involve 1) the construction of the 

suitability atlas; 2) the generation of the transfer matrix and the state of transition probability 

matrix using the Markov model; 3) the prediction of future land use using the CA model. The 

business-as-usual scenario adopting the trends obtaiend from previous years are used to 

simulate for year 2030 and 2050. 

 

Fig. 3.6: Raster maps of (a) distance to roads, (b) distance to rivers, (c) distance to urban  

              area, (d) DEM and (e) slope used as driver variables for the transition potential  

              modelling. 
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3.2.2.3 Future Streamflow Simulation 

For simulating future streamflow, SWAT model was selected as discussed in Chapter 

2. The watershed was delineated to identify the drainage area of river network, utilizing digital 

elevation models (DEM) and geographic information system (GIS) software.  To evaluate 

the performance of model simulation, three performance indicators were applied, namely 

coefficient of determination (r), Nash-Sutcliffe efficiency (NSE) and percent bias (PB), 

expressed mathematically below: 

𝑟 =
∑ (𝑄𝑠

𝑡−𝑄𝑠̅̅̅̅ )(𝑄𝑜
𝑡−𝑄𝑜̅̅ ̅̅ )𝑛

𝑡=1

√(∑ (𝑄𝑜
𝑡−𝑄𝑜̅̅ ̅̅ )2𝑛

𝑡=1 )(∑ (𝑄𝑠
𝑡−𝑄𝑠̅̅̅̅ )2𝑛

𝑡=1 )

                              (3.8) 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑠

𝑡−𝑄𝑠̅̅̅̅ )𝑛
𝑡=1

(∑ (𝑄𝑜
𝑡−𝑄𝑜̅̅ ̅̅ )2𝑛

𝑡=1 )
     (3.9) 

 𝑃𝐵 = 1 −  
∑ (𝑄𝑠

𝑡−𝑄𝑠̅̅̅̅ )𝑛
𝑡=1

∑ 𝑄𝑠
𝑡𝑛

𝑡=1
× 100%                       (3.10) 

where 𝑄𝑠
𝑡 and 𝑄𝑜

𝑡  are simulated and observed discharge at time step 𝑡 respectively; 𝑄𝑠
̅̅ ̅ and 

𝑄𝑜
̅̅̅̅  are the mean simulated and observed discharge; 𝛽 and 𝛼 are the measures of bias and 

variability. 

3.3 Results and Discussion 

3.3.1 Assessment of Classified Image using ANN and SVM 

In this section, the results obtained for classified satellite images using ANN and 

SVM are evaluated and compared. To obtain optimized network structure, systematic trial-

and-error approach are adopted. The accuracy of the classified LULC maps was assessed by 

comparing the land use classes with the satellite image (reference) ground truth data. The 

pixel-by-pixel accuracy assessment approach was undertaken based on which 150 random 

points were generated on the LULC maps of 1990, 2000, and 2016. The selected points were 

cross-referenced with the satellite images, as well as spatial maps of the study area. The 

selected points represent the various land use classes used for image classification. A 

confusion matrix was generated using the cross-referenced data to identify the degree of 

misclassified pixels by the image classification. Multiple land use classification trails were 
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conducted to achieve the optimum accuracy, based on Anderson’s classification scheme. An 

overall accuracy minimum of 85% is considered satisfactory of land use classification 

(Kingter et al., 2021).  

3.3.1.1 Hyperparameter Optimization ANN 

To determine the optimum ANN model for satellite image classification in this study, 

a structured trial-and-error method is applied on selecting the training algorithm and number 

of hidden neurons. Wong et al., (2019) and Lima et al., (2017) reported that the excessive or 

inadequate number of hidden neurons will lead to overfitting or underfitting in the network, 

respectively, causing poor generalization and prediction. Therefore, to determine optimized 

training algorithm and hidden neuron number, the effect of hidden neuron is studied, ranging 

from 1-20.  

Fig. 3.7 presents the box plots of distribution and variation of ANN classification 

performance under hidden neuron numbers. The effect of hidden neuron number is 

significantly affecting the performance of the ANN model in which the prediction accuracy 

varied from 58.7% to 86.4%. The optimum hidden neuron for training, validation and testing 

dataset in different training algorithms is summarized in Table 3.3. The best input 

combination for ANN model is under 17 hidden neurons of Levenberg-Marquardt 

backpropagation training algorithm, with accuracy of 92.4% 90.5% and 88.7%, for training, 

validation and testing dataset, respectively. Referring to Fig. 3.8, the vertical and horizontal 

grey columns represent sensitivity and precision for each classification, respectively and the 

accuracy can be found at the bottom right corner of the confusion matrix. It can be observed 

that the application of ANN could substantially predict the different type of land uses, 

including urban, water bodies and cleared land; however, as the pixel between agricultural 

and forest have high similarity, leading to the lower sensitivity for agricultural and forest 

prediction in testing dataset (70.0%). Areas with a greater concentration of mixed pixels 

belonging to different land use classes had a higher tendency of misclassification during the 

image classification process. 

 



 

65 
 

 

Fig. 3.7: Box plot of overall prediction accuracy of ANN models for different training  

               algorithms in (a) Training Dataset, (b) Validation Dataset and (iii) Testing   

               Dataset for land use classification 
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Fig. 3.8: Confusion matrix of optimized ANN model for (a) Training Dataset, (b)  

                 Validation Dataset and (c) Testing Dataset on land use classification 
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Table 3.3: Summary of ANN model performance with its optimized hidden neuron number  

                 for different training algorithms for land use classification 

  

3.2.1.2 Hyperparameter Optimization SVM 

Numerous studies have reported that kernel parameter can implicitly affect the 

generalisation ability in the feature space, which can cause overfitting or underfitting 

phenomenon (Abobakr Yahya et al., 2019; Roushangar & Shahnazi 2020; Choubin et al., 

2018), similar to the ANN model. Thus, the structured trial-and-error approach was used to 

determine the optimum 𝜎 value that ranged at 0.1-10.0. For 𝜎 value ranges at 0.1-1.0 and 1.0-

10.0, the increment had been 0.1 and 1.0, respectively.  

The box plots of distribution and variation of SVM classification performance under 

varying membership functions and kernel parameters are presented in Fig. 3.9. In comparison 

to the ANN models, the variation in SVM models was smaller for both seasons, which 

signified insignificant effect of the 𝜎 value, as displayed in the ANN model. The average 

prediction accuracy in the testing dataset for all input combinations was 75.2 ± 6.6%. The 

Training 

Algorithm 

Optimum 

hidden 

neuron 

Accuracy 

Training Validation Testing 

trainlm 11 85.91 84.13 84.96 

traingdm 13 86.79 80.95 76.69 

traingda 14 88.68 92.06 87.21 

traingdx 6 84.91 77.78 76.69 

trainrp 7 86.79 85.71 87.22 

traincgb 12 90.57 80.95 87.22 

traincgp 19 86.93 82.54 84.96 

trainscg 10 92.45 77.78 83.46 
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optimum 𝜎 values for training, validation, and testing datasets in 8 different membership 

functions are summarised in Table 3.4. 

According to Table 3.4, the most suitable membership function for SVM model is 

trimf under 𝜎 value of 0.2 with accuracy scores of 86.7%, 82.1%, and 82.2% for training, 

testing, and validation datasets, respectively. Fig. 3.10 illustrates the confusion matrix of the 

optimised SVM model for. Similarly, the optimised SVM model for dry season displayed the 

capability to make high precision for urban, cleared land and water bodies, but the SVM 

model also insufficiently capture the complex relationship between agricultural and forest 

classification. This outcome is attributed to the main feature of SVM, which placed the 

optimal hyperplane among varied classes. The optimal hyperplane in SVM was biased and 

this led to low precision and sensitivity in prediction (Gupta & Richhariya, 2018; Richhariya 

& Tanveer, 2020).  

Table 3.4: Summary of SVM model performance with its optimized kernel parameter for  

                 different membership functions for land use classification 

 

Parameters Optimum 𝜎 

value 

Accuracy 

Training Validation Testing 

TrapMF 0.2 84.96 83.37 80.21 

TriMF 0.3 76.69 76.92 71.73 

GaussMF 0.3 87.22 90.02 82.25 

Gauss2MF 0.3 76.69 74.70 74.23 

GbellMF 0.1 87.22 83.07 83.25 

DsigMF 0.1 87.22 77.32 78.33 

PsigMF 0.1 84.96 79.19 83.32 

PiMF 0.3 83.46 74.53 76.65 



 

69 
 

 

Fig. 3.9: Box plot of overall prediction accuracy of SVM models for different  

                  membership functions in (a) Training Dataset, (b) Validation Dataset and (iii)  

                  Testing Dataset for land use classification 
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Fig. 3.10: Confusion matrix of optimized SVM model for (a) Training Dataset, (b)  

                  Validation Dataset and (c) Testing Dataset on land use classification 

3.3.1.3 Comparison between ANN and SVM 

Structurally, both SVM and ANN models appeared similar, as they applied linear 

learning models for classification. Both ANN and SVM models are data-driven models, 

indicating large volume of dataset is necessary for training and tuning the model. The models, 

nonetheless, differed in how the non-linear data were classified (Ren, 2012; Moraes et al., 
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2013). In this study, the ANN model was trained with Levenberg-Marquardt training 

algorithm - a blend of gradient descent and Gauss-Newton method – to identify the local 

optimum of the solution (Lourakis, 2005; Cömert & Kocamaz, 2017). When the difference 

between actual solution and solution given by the model was small, it turned into the Gauss-

Newton method; otherwise, Levenberg-Marquardt training algorithm behaved in the steepest 

descent method; slow but guaranteed to converge. Both weights and biases were adjusted by 

using the following expressions (Mustafa et al., 2012):  

𝑤𝑡+1 = 𝑤𝑡−∆𝑤𝑡                             (3.11) 

∆𝑤𝑡 = [𝐽𝑇(𝑤𝑡)𝐽(𝑤𝑡) + 𝜇𝐼]−1𝐽𝑇(𝑤𝑡)𝑒(𝑤𝑡)                     (3.12) 

where 𝑤𝑡 is the current weight vector; 𝑤𝑡+1denotes the updated weight vector; 𝜇 indicates 

the scalar regulation parameter dynamically adjusted during learning; 𝐼 represents identity 

matrix; 𝐽 refers to Jacobian matrix; and 𝑒(𝑤𝑡) signifies the matrix of error function evaluated 

at previous iteration.  

One of the main issues of ANN model is that it suffers from multiple local minima, 

especially in a complex non-linear function that lowers the accuracy in prediction (Salkuti, 

2018). In comparison to the ANN model, the SVM model can identify the global optimum 

of the solution, which is unique and appeared to be the smallest local optimum of the solution 

(Olson & Delen, 2008). The results obtained from optimised SVM models revealed that the 

sensitivity and precision for urban area, water bodies, cleared land were slightly higher than 

those recorded for optimised ANN models. As for Class agricultural and forest predictions, 

SVM displayed poorer prediction precision due to imbalanced dataset that further led to 

insufficient support vectors for placing an optimal hyperplane. The learning capacities in 

ANN models can extract the characteristics from the available data to generalise the testing 

data (Sari et al., 2017); thus making the ANN model suitable for this application.  
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3.3.2 Land Use Change Analysis 

In this section, the current land use change (1990-2016) and future land use change 

(2030 and 2050) will be discussed. 

3.3.2.1 Current Land Use Change 

The classified LULC maps of the study area for 1990 to 2016 were classified into 

five different land use classes, namely (i) water bodies, (ii) urban, (iii) cleared land, (iv) forest, 

(v) and agriculture. LULC changes were observed over the period of more than 3 decades, 

ranging from 1990 to 2000, and then to 2016. Agricultural, forest, and urban areas were found 

to be the major land use types that cover Selangor, Malaysia, as shown in Fig. 3.11. The 

distribution of total area covered by the different LULC classes and their percentage of cover 

in the years 1990, 2000, and 2016 is shown in Table 3.5. Agricultural areas experienced a 

rapid growth from 1990 to 2000, where it increased from 2921.91 km2 to 3416.77 km2 (35.8% 

to 41.9%). Between the years 2000 and 2016, agricultural areas experienced a slight growth 

with increment from 3416.77 km2 in 2000 to 3512.24 km2 in 2016. On the other hand, forest 

covers experienced a significant drop in percentage cover from 46.65% to 36.59% (3805.57 

km2 to 2985.31 km2) between the years of 1990 and 2000. A steady decrease in forest covers 

continued in the years 2016 as the area covered was 2734.60 km2 (33.52%). In contrast, 

developed areas experienced an exponential growth over the observed period. The developed 

area grew from 707.32 km2 (8.67%) in 1990 to 1003.50 km2 (12.30%) in 2000. Between the 

years 2000 and 2016, developed areas had a major expansion as the total area cover in the 

year 2016 increased to 1878.31 km2 (23.02%). 

The main factors related to the increasing development land use at the expense of 

deteriorating the forest and agricultural covers can be attributed to urban expansion and 

growth in commercial agricultural (Shawn et al., 2020). The rapid urbanization has radically 

altered the natural environment and landscape patterns around the world, particularly in the 

21st century (Tan et al., 2020). The most important driving factors for urbanization are 

physical and social aspects, such as topography, population, and industrial growth (Aziz et 

al., 2021). Consequently, urban expansion is influenced more by economic growth than by 

population increase. 
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It was noted from 1991–2001 that forest cover decreased dramatically in covered area, 

which was attributed to agricultural lands taking over forest lands. Due to this conversion, 

agricultural lands saw great expansion, accompanied by significant changes in barren lands. 

Minimal changes were observed in the land use classes of water bodies and cleared land. 

Water had marginal area changes, where an increasing trend was noted as the total area cover 

inflated from 99.14 km2 in 1991 to 142.49 km2 in 2016. These expansions raise concerns 

regarding the effects of urbanization and disruption of land use patterns, which have effects 

on climate change, food security, and natural resources. The results obtained from the LULC 

classification indicate that the changes in the land use patterns are supported by the polices 

of the state (Shawn et al., 2020). 

 

Fig. 3.11: Land use classification using optimized ANN model for (a) 1990, (b) 2000 and  

                (c) 2016. 
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 Table 3.5: Total land use area (km²) and percentage (%) in Selangor river basin for the  

                   year of 1990, 2000, and 2016 

 

3.3.2.1 Future Land Use Change 

The transitional changes undergone by the different land use classes between the 

years 1990 and 2000 are expressed and calculated. These changes represent the distribution 

and conversion of individual land use class, as well as their nature of conversion. The major 

transitions are agriculture to developed, forest to agriculture, and barren to developed and 

agricultural lands. These trends of land conversion and transition forms the basis of transition 

potential modelling for CA-Markov model for simulating and predicting land use change in 

Selangor River basin simulation. A changes map was created using the transition matrix. The 

changes map of 2001–2011 and spatial parameters (slope, aspect, and distance form roads) 

were considered as input parameters for training the model. 

The transition potential model of CA-Markov model was validated by comparing the 

classified land use map of 2016 with the simulated 2016 map. The comparison of the maps 

was evaluated based on the kappa coefficient value and percentage of correctness. The 

magnitude of correlation between the classified map and simulated map of 2021 is 

represented in the Table 3.6. The table illustrates the degree of agreement between the 

LULC Areas 

Year-1990 Year- 2000 Year- 2016 

Area 

(km2)            

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Water 

Bodies 
48.41 1.22 97.74 1.20 56.53 1.66 

Cleared land 126.49 8.67 176.45 12.30 235.00 23.02 

Agriculture 80.47 4.19 486.02 113.74 362.63 6.02 

Forest 1,491.57 46.65 1,333.71 36.59 1,022.34 33.52 

Urban Area 456.56 39.28 513.69 43.95 827.04 35.78 

Total 2,200 100 2,200 100 2,200 100 
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different land use classes from the two maps. The classified and simulated land use classes 

are in relatively good agreement among each other, indicating that the land use pattern was 

simulated correctly, whereas deviance from the classified line denotes an inaccurate 

simulation of the land use pattern. The percentage of correctness for the simulation was 

97.99%, with the overall kappa coefficient of 0.9585. Based in the validated model, the CA-

Markov simulation was executed to obtain the predicted land use maps of the years 2030 and 

2050. 

 

Table 3.6: Accuracy Assessment for classified and simulated 2016 dataset 

 

The CA-Markov simulation was performed to obtain the predicted LULC maps for 

2030 and 2050. Fig. 3.12 shows the predicted changes in different LULC classes from the 

years 2030 and 2050 in Selangor river basin. The observed outcomes elucidated the steady 

changes within the study period. A continued growth was noted in the developed land use 

pattern, where the area increased from 1,174.31 km2 (35.23%) in 2030 to 1,492.40 km2 

(40.36%) in the 2050. Due to the increasing rate of area covered by developed land, 

Overall Accuracy 93.9%   

Kappa Coefficient 0.9585 

Ground Truth (%) 

Class Urban-area Forest Cleared land Water body Agriculture Total 

Unclassified    0.00    0.00    0.00    0.00    0.00    0.00 

Urban area  93.85    0.39    9.10    3.27    1.27  10.24 

Forest    0.40  88.72    0.00    1.91    3.91  63.15 

Cleared land    4.27    0.00  90.67    0.41    0.41    4.21 

Water body    1.49    0.89    0.23  94.41  94.41    7.50 

Agriculture    2.44    0.29    0.82    1.41 1.21  19.20 

Total 100.00 100.00 100.00 100.00 100.00 100.00 



 

76 
 

diminishing trends for forest and agricultural lands were observed in the simulated maps. 

Forest cover experiences a decline from 2536.46 km2 (31.09%) in 2031 to 2,247.83 km2 

(30.01%) in 2050. Similarly, agricultural cover also maintains its decreasing trend between 

the years 2030 and 2050 as the total percentage cover regresses from 27.51% to 23.78%, 

respectively. Water, barren, and wetlands experience insignificant changes in their total area 

covered over the study period. Water cover reduced slightly as the areas decreased from 

85.14 km2 in 2030 to 81.80 km2 in 2050. Similarly, barren lands reduced from 284.25 km2 

in 2030 to 266.75 km2 in 2050.  

 

Fig. 3.12: Land use change percentage difference from 1990 to 2050 across five different  

                 land use categories 
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3.3.3 Future Streamflow Simulation 

In this study, the observed streamflow in Selangor gauging station during period 

2000–2018 was obtained from the Department of Irrigation, Malaysia. 2000 to 2010 was set 

as the warm-up period, while the period from 2011 to 2018 was chosen to be the calibration 

period. In validation period, CMADS (The China Assimilation Driving Datasets for the 

SWAT) also was applied to simulate the processes of streamflow. The comparison between 

the simulated streamflow and observations of gauging stations is shown in Fig. 3.13, which 

describes that the variations of simulated streamflow processes with the CMADS are closer 

to the actual streamflow processes, thereby validating the better applicability of CMADS for 

SWAT model for this region. The observed differences are partly due to the limited forcing 

meteorological data for the studied region. Certainly, the effectiveness of model simulation, 

regarding to the model structure and parameterizations, also affects the simulation accuracy. 

The fitness of SWAT model in study area can be quantified, as the value of R was within the 

range of 0.71 to 0.84, and NSE was above 0.7 at each gauging station, especially for the 

simulated results with the CMADS in the gauging station. 

 The land use changes for the historical period are examined in terms of both land use 

area and its structure based on the land use data in 1990, 2000, and 2016. AGRL stands for 

agricultural land; FRST for forest land; CLR for cleared land; WATR for water bodies; and 

URB for urban land. The main land cover types are forestry, farmland, and grassland. The 

land use transfer matrix obtained in section 3.3.2.1 and 3.3.2.2 are used for analyzing the 

historical changes of land use structure, which shows the dynamic transfer information for 

different time periods. The procedures of the establishment of land use transfer matrix 

include (1) to prepare the land use status map (SHP format) in 1990 and 2015 with Arc- GIS 

software, in which each map attribute table should have a field representing the land use type; 

(2) to use the solver tool in ArcGIS software to fuse the data; (3) the area is calculated and 

the attribute table is derived; and (4) to load the property sheet in Excel, and calculate the 

matrix automatically. 
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Fig. 3.13: Comparison between simulated and observed streamflow across 2000 to 2018. 

As both climate change and land use/cover change will affect the regional runoff 

production, we studied the streamflow responses to the land use changes with the fixed 

meteorological forgings for the studied area. Among the 1088 mm (the long-term annual 

average for the period of 2000–2018) precipitation in Selangor river basin, the annual average 

evapotranspiration and annual average runoff are about 530 mm and 392 mm, respectively. 

Then, the streamflow using calibrated model was simulated with the different land use data. 

Compared to the situation in 1990, as shown in Fig. 3.14, the streamflow in 2030 and 2050 

is decreased by 7.4% when urban area is increased by 3.59%, agricultural increased by 3.44%, 

and forest decreased by 3.44%. Meanwhile, as the studied area is dominated by forestry, the 

slight changes of the forestry area will not show obvious streamflow changes. Accordingly, 

the main driver for the streamflow reduction is the reductions of forest and agricultural area, 

and the increase of urban areas have shown to may slightly increase the streamflow. 
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For monthly simulation, it could be observed that the future variation of streamflow 

for 2050 is very dynamic, ranging very high flow rate up to 0 m3/s to 90 m3/s, indicating the 

importance of water usage and irrigation management. It could be observed that the variation 

during the dry season (June to September) are frequently facing low or no streamflow. This 

phenomenon has been alarming the community in this region as prolonged dry season might 

be occurring. Therefore, the application of hydrological model (i.e., the SWAT model here) 

facilitates to examine the streamflow responses to land use changes, as it is possible land use 

change scenarios for the future. Although the past land use change had no significant impacts, 

the effects of future possible changes remain unfolded. The future land use changes (for 

example, the forestry is converted to agricultural or urban land) are possible with the local 

policy changes. This study provided some valuable information in this regard, which is very 

useful for designing future sustainable development strategies. 

The obtained results on the streamflow responses to land use changes are basically 

consistent with the reported studies for other studied area. The high and low flow responses 

to the extreme land cover alterations are consistent with the study of Niu & Sivakumar (2014) 

for the Langat basin in Selangor. The urbanization increases the runoff generation, which is 

consistent with the study of Jatin et al., (2018). Certainly, the magnitudes of these changes 

are different due to the different regional climate, geographical features, and local land 

surface backgrounds, which also highlight the importance of the regional study for local 

water resources’ management. 
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Fig. 3.14: Monthly streamflow simulation for 2030 and 2050 compared the overall  

                 observed and simulated dataset. 

3.4 Conclusions 

In this chapter, the future streamflow utilizing the application of remote sensing and 

artificial intelligence techniques for detecting the LULC changes is performed using SWAT 

model. To address the current research gap on identifying the land use from satellite using 

artificial intelligence methods, a systematic trial-and-error approach was adopted to optimize 

the network structure for both ANN and SVM models. LCM in Terrset was used to simulate 

the BAU future land use change in 2030 and 2050 by capturing the present land use changes 

observed from 1990 to 2016.  

 It could be observed that network optimization played an important role in improving 

the prediction accuracy of the land use type classification from satellite images. Compared 

to ANN, SVM has lesser sensitivity on the hyperparameter, but higher variation is observed 

across different training algorithms/membership functions. This is mainly due to SVM is 
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rule-based algorithm where the characteristics among parameters must be well understood 

before making the predictions. Therefore, in this study, ANN might be more suitable for 

predicting the land use type from the satellite images.  

For future land use simulation, the prediction accuracy for utilizing the present land 

use maps (1990 and 2000) to simulate 2016 land use maps could reach up to 97%, indicating 

the accuracy of the LCM. The forestry in the region experienced drastic loss up to 300% in 

2050 as compared to 1990, and the urban area expanded up to 200% over 60 years. The 

simulated land use is used to simulate the future streamflow. Extreme streamflow such as no 

flow rate or very high flow rate up to 100 m3/s is more commonly encountered in the future. 

Through the simulation, it is important to have proper management for water resources to 

prevent prolonged drought or extreme rainfall induced flood events.  Based on the findings, 

valuable information on designing future sustainable urban development strategies can be 

provided. 
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Chapter 4  

Climate Change impacts on Extreme Floods across 

Taiwan River Basins using RRI model 

In this chapter, the impacts of climate change on extreme floods across Taiwan river basins 

were studied using RRI model and super-high-resolution AGCM ensemble developed by the 

Meteorological Research Institute of the Japan Meteorological Agency version 3.2 

(hereinafter referred to as MRI-AGCM3.2s). Prior to the RRI model construction, bias 

correction was performed on the climate products and the observed climate dataset. To verify 

the performance of the dataset, flow rate of river basins during three extreme flood events 

induced by typhoon was studied. Last but not least, the average annual peak discharge in 

future (2020-2040), mid future (2050-2070), and far future periods (2079-2099) were 

simulated using the super-high-resolution AGCM ensemble. 

4.1 Introduction 

Since 1970, the number of global disasters has increased fivefold, resulting in at least 

2 million deaths and approximately 3.64 trillion USD economic losses (World 

Meteorological Organization, 2021). Among these, floods are regarded as the most recurrent 

and destructive disaster worldwide, accounting for 44% of all natural disasters (United 

Nations Office for Disaster Risk Reduction, 2020). Also, associated with the impact of 

anthropogenic climate change, the occurrence of extreme downpour and flooding has 

drastically increased and is expected to become more frequent, with intensified severity and 

prolonged duration, which may lead to unprecedented consequences in both economy and 

society (Hirabayashi et al., 2021), particularly in Asia Pacific region (Hashim et al., 2016). 

As with several other regions, Taiwan, a continental island in the Asia Pacific, located on the 

hub of seasonal typhoon route in the West Pacific Ocean and earthquake-prone circum-

Pacific belt (Su et al., 2017), was indicated as the most vulnerable area to natural hazards in 

the world (Arnold et al., 2005), as more than 99% of its land and population are exposed to 

2 or more hazards and is particularly susceptible to climate change (Lin et al., 2017).  
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Over the past decade, the mean air temperature in Taiwan was observed to have 

increased twice (0.14 °C per decade) as much as the global mean warming rate per decade 

(°C per decade) (Hsu & Chen, 2002).  This may have exacerbated the trend of heavy 

precipitation phenomenon (Tu & Chou, 2013), resulting in a significant impact on the 

hydrological system and inducing the occurrence of extreme floods in Taiwan (Chiang, 2018). 

The frequency of increased intensity of precipitation (>3,500 mm within 48h) (Lin et al., 

2018) has been gradually escalating (Yeh & Huang, 2019). In 2009, the flood induced by 

Typhoon Morakot with accumulated rainfall of 2,777 mm, one of the most catastrophic 

flooding, has caused nearly 700 deaths and direct loss of up to 4.7 billion USD (Chjeng et 

al., 2009; Ge et al., 2010). Although numerous flood risk management frameworks have been 

proposed and developed for minimizing the potential losses and ensuring public safety, for 

instance, identifying flood risk zone through flood inundation maps utilizing historical 

precipitation data (Chen et al., 2011; Doong et al., 2016); however, due to the complex and 

heterogeneous climate variability, the distribution and intensity of precipitation varied 

spatiotemporally, which has been supported by both historical observations and model 

simulations (Rajah et al., 2014). Therefore, it is fundamental to develop robust and reliable 

future climate simulations to identify the future flow regime and allow decision-makers to 

formulate corresponding prevention policies for the emerging risk.   

To simulate and access the impact of climate change on the hydrological system, the 

application of hydrological models with outputs of atmospheric general circulation models 

(AGCMs) (e.g., mean surface temperature and precipitation) under the framework of 

different coupled model intercomparison projects (CMIPs), which are driven by different 

emission scenarios are commonly adopted (Usman et al., 2021). The accuracy of the 

hydrological model simulations is highly dependent on the reliability of the dataset. However, 

most of the available AGCMs has coarse horizontal resolutions (approximately 100 to 400 

km) to sufficiently describe the hydrological processes (e.g., flow regime) at regional scales 

(Guo et al., 2018; Sun et al., 2016).  Although different downscaling methods (e.g., statistical 

and dynamic approach; Usman et al., 2021) were proposed to acquire finer resolution climate 

simulations from coarse AGCMs, there exists a debate over the reliability and robustness of 
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the downscaled climate simulation continues, in part due to the underlying assumptions and 

limitations which may affect the conclusion drawn over the regional characteristics (Giorgi, 

2019). With this backdrop, to address the aforementioned challenges, the development of 

high-resolution AGCM was ought to be a plausible solution for simulating reliable future 

climate simulation at the regional scale.   

In recent, extensive research has been carried out in employing multi-AGCM 

ensemble techniques to enhance the model's resolution (Rahman et al. 2019). As reported by 

Duan & Phillips (2010), a multi-AGCM ensemble that adopts different physical 

parameterizations (e.g., multiple cumulus convection schemes and different patterns of future 

seas surface temperature projections) has substantially surmounted the uncertainties and is 

capable to produce more reliable predictions (Ito et al., 2020). Among these, super-high-

resolution AGCM ensemble developed by the Meteorological Research Institute of the Japan 

Meteorological Agency version 3.2 (hereinafter referred to as MRI-AGCM3.2s) is regarded 

as the most widely adopted AGCM for regional climate simulation (Mizuta et al., 2012). 

MRI-AGCM3.2s allows realistic simulations of regional climate without requiring 

dynamic/statistical downscaling due to their high spatial resolution (with a horizontal grid 

size of approximately 20 km and 60 vertical layers).  MRI-AGCM3.2s outputs are generated 

based on representative concentration pathway (RCP) 8.5 (highest greenhouse gas emission 

pathway) introduced by Intergovernmental Panel on Climate Change (IPCC), such that the 

most extreme climate change scenario can be analyzed. As aforementioned, Taiwan is one 

of the most intense typhoon prone areas in the world (Lin & Chan, 2015); therefore climate 

data generated by MRI-AGCM3.2s which have successfully simulated the global distribution 

of typhoons as well as the seasonal march of East Asian Monsoons (Yoshida et al., 2017) are 

particularly suitable for assessing climate change impacts in Taiwan.  

At present, various conceptual-based and/or physically-based hydrological models 

have been developed, for instance, Soil and Water Assessment Tool, Hydrologiska Byrans 

Vattenavdelning, Variable Infiltration Capacity and Rainfall-Runoff-Inundation (RRI), to 

investigate the climate change impacts on hydrological processes of river basins. Among 
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them, the RRI model, an integrated two-dimensional grid cell-based hydrodynamic model 

for rainfall-runoff and inundation simulations from areas encompassing downstream flood 

plains and upstream mountain zones is selected in this research. RRI has been widely adopted 

and applied in different nations (e.g., Thailand (Sayama et al., 2017), Myanmar (Bhagabati 

& Kawasaki, 2017), Pakistan (Siddiqui et al., 2018), Japan (Shakti et al., 2020)) for various 

hydrological applications. The flow on the floodplain slope grid cell and channel flow are 

calculated independently, through 2D and 1D diffusive wave models, respectively. The 

complicated flow interactions between river channel and slope are computed through 

different overflowing formulae (refer to Sayama et al. (2012) for detailed explanation). On 

top of these, to better represent the RRI processes, lateral subsurface (particularly important 

for the mountainous region), vertical infiltration, and surface flows are also considered in the 

model, thereby increasing the reliability and accuracy of the simulation in Taiwan.  

Although there has been ongoing research on the flood risk simulation utilizing 

climate data in Taiwan (Hsiao et al., 2021; Hsu et al., 2017b; Chang et al., 2021), most of 

the research focused only on certain cities or regions and reported the extreme precipitation 

volume. As aforementioned, climate change impact may be varied across regions, therefore, 

it is crucial to identify the possible high-risk zones for decision-makers or relevant authorities 

to implement corresponding prevention measures to minimize the impacts. Indeed, 

identifying the future precipitation trend and its extreme volume is crucial for flood risk 

management, it is more important to understand the river flow discharge as the river channel 

geometries/characteristics vary locally, which will significantly alter the flood hazard across 

regions. Comprehensive studies detailing super-high-resolution climate data to understand 

the climate change impacts on extreme streamflow across Taiwan are lacking in the literature 

and considering possible devastating flood-related damage in the future, it is crucial to 

understand its hydrological changes. In light of these, the main research objectives of this 

research were (i) to evaluate and verify the reliability of the developed RRI model by 

comparing peak discharge during severe flood events across Taiwan; (ii) to improve MRI-

AGCM 3.2s simulated climate data through bias-correction method using observed data; (iii) 

to simulate spatial distribution of the ratio of changes in average annual peak discharge for 
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near-future (2020-2040), mid-future (2050-2070) and far-future (2080-2100) scenarios. To 

the best of authors knowledge, this is the first research conducted to simulate future extreme 

flood events utilizing a super-high resolution AGCM dataset using the RRI model. The 

findings of this research are expected to provide compendious information, including 

practical implications, to relevant authorities for policy planning and implementation for 

better water resources and risk management according to regions. 

4.2 Data Collection and Methodology 

4.2.1 Research area 

Taiwan is a densely populated island, with 23.8 million people spread across a total 

land area of approximately 36,000 km2 in Eastern Asia, on the west edge of the Pacific Ocean. 

As Taiwan is situated at the transition between tropical and temperate latitudes (21.5 – 

25.2 °N and 120.0 – 122.0 °E), its climate is strongly influenced by the East Asian Monsoons 

(southwesterly monsoon during the wet-warm season (May–August) and northeasterly 

monsoon during the dry-cold season (September–April) (Henny et al., 2021).  

The mean annual temperature for the subtropical region is about 23.4 ºC (highest: 

35.8 ºC and lowest: 7.4 ºC) whereas for the tropical region is about 25.4 ºC (highest: 35.0 ºC 

and lowest: 9.3ºC) (Chen et al., 2010). Approximately 90% of the total precipitation (~ 2,000 

mm) are contributed during the wet-warm season (Ding et al., 2020) associated with the 

episodic typhoon impact (mid-July to August). The magnitude and scale of a typhoon hitting 

Taiwan have increased over the past decades (Hsu et al., 2017a), bringing extremely heavy 

rain and strong wind, and might eventually cause disastrous flooding, particularly in the 

coastal area. The complicated and steep topography is also one of the key drivers that have 

substantially increased the total rainfall accumulation and affected its distribution over 

Taiwan, especially due to the north-south oriented Central Mountain Range (CMR) (Fig. 4.1). 

Lin et al. (2020) demonstrated the distribution of rainfall in Taiwan is strongly modulated by 

the topography of CMR due to orographic forcing over mountains, in which the southwest 

region receives a large amount of rain. Therefore, the inundation susceptibility varied across 

the region.  
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Fig. 4.1: Map of the research area: a) meteorological station, b) digital elevation model  

             (DEM), and c) river flow station. 
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4.2.2 Model Development 

4.2.2.1 Model Input  

The methodology flowchart of the research is schematically illustrated in Fig. 4.2. To 

construct the model, rasterized topographic (river geometry and topological data) and 

meteorological (precipitation and evapotranspiration) data are required. Twenty-one years 

(2000-2020) of daily meteorological (n=143) and daily discharge stations (n=15) that located 

widespread across the region were acquired from Taiwan Central Weather Bureau and Water 

Resources Agency, respectively, to investigate and evaluate the impact of future extreme 

floods in Taiwan. Due to data unavailability, the surface evapotranspiration, ET0 was 

calculated using the observed temperature and relative humidity, as shown in Eq. (4.1) 

(Schendel, 1967).  

𝐸𝑇0 = 16 ×
𝑇

𝑅𝐻
     (4.1) 

In Eq. (4.1), 𝐸𝑇0 is the evapotranspiration (mm/day), 𝑇 is the daily average temperature, 

and 𝑅𝐻 is the relative humidity (%). 

The 3-arc second (~90 m) resolution digital elevation model (DEM) was obtained 

from Multi-Error-Removed Improved-Terrain (MERIT) DEM (Yamazaki et al., 2017), as it 

showed better performance in flood modelling (Hirt, 2018; McClean et al., 2020) and has 

fewer artefacts (Chen et al., 2018) as compared to other global DEMs (e.g., Shuttle Radar 

Topography Mission DEM, Ordnance Survey Terrain 50 DEM and Advanced Land 

Observing Satellite DEM). Other topographic data including flow direction, flow 

accumulation and river networks were prepared using MERIT DEM using ArcHydro tools 

in ArcGIS 10.8.  
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Fig. 4.2: Flowchart of modelling process used in this research 

As there is no available surveyed data on river geometry, the river cross-sections of 

the research area were assumed as rectangular, wherein, the river width (W) and depth (D) 

in the function of upstream contributing area (A) are estimated using Eqs. (4.2) and (4.3).  

𝑊 = 𝐶𝑊𝐴𝑆𝑊  (4.2) 

𝐷 = 𝐶𝐷𝐴𝑆𝐷  (4.3) 

In Eqs (4.2) and (4.3), 𝐶𝑊 = 5 , 𝐶𝐷 = 0.1 , 𝑆𝑊 = 0.1 , 𝑆𝐷 = 0.1  represent geometry 

hyperparameters, and their coefficient are determined through a systematic trial-and-error 

approach.  

4.2.2.2 Model Optimization and Performance Evaluation 

To obtain the optimal RRI model structure for simulation, six out of nine tuning 

parameters of the RRI model were found to be sensitive for Taiwan, including Manning’s 
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coefficient for the river (nriver), Manning’s coefficient for slope (nslope), Soil depth (d), Soil 

porosity ( 𝜑 ), Lateral saturated hydraulic conductivity (ka) and unsaturated hydraulic 

conductivity (𝛽). Optimization of these parameters is performed through systematic trial and 

error method and validated using five different scenarios; wherein, three of them are super 

typhoon events (i) Typhoon Morakot: Aug, 2-13, 2009, (ii) Typhoon Jangmi: Sep. 23, Oct. 

5, 2008, (iii) Typhoon Nari: Sep. 5-21, 2001, and (iv) Long-term simulation: 2000-2020 

across 15 discharge stations (Fig. 4.1(b)). The optimized and calibrated tuning parameters 

coefficient/values are summarized in Table 4.1. 

Table 4.1: Optimized RRI model tuning parameters. 

 

To evaluate the performance of model simulation, three performance indicators were 

applied, namely Kling-Gupta efficiency (KGE) (Gupta et al., 2009), correlation coefficient 

(𝑟) and peak discharge ratio (PDR), expressed mathematically as in Eqs. (4.4) to (4.6).  

KGE = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛼 − 1)2; 𝛽 =
𝑄𝑠̅̅̅̅

𝑄𝑜̅̅ ̅̅
,  

𝛼 =
√1

𝑛
∑ (𝑄𝑠

𝑡 − 𝑄𝑠
̅̅ ̅)2𝑛

𝑡=1

√1
𝑛

∑ (𝑄𝑜
𝑡 − 𝑄𝑜

̅̅̅̅ )2𝑛
𝑡=1

 

(4.4) 

Parameter Unit Value 

nriver m-1/3/s 0.06 

nslope m-1/3/s 0.60 

d  m 4.00 

𝜑 - 0.05 

ka m/s 0.10 

𝛽 - 8.00 
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𝑟 =
∑ (𝑄𝑠

𝑡 − 𝑄𝑠
̅̅ ̅)(𝑄𝑜

𝑡 − 𝑄𝑜
̅̅̅̅ )𝑛

𝑡=1

√(∑ (𝑄𝑜
𝑡 − 𝑄𝑜

̅̅̅̅ )2𝑛
𝑡=1 )(∑ (𝑄𝑠

𝑡 − 𝑄𝑠
̅̅ ̅)2𝑛

𝑡=1 )
 (4.5) 

                                                       PDR = 
𝑄𝑠

𝑝

𝑄𝑜
𝑝 (4.6) 

In Eqs (4.4) to (4.6), 𝑄𝑠
𝑡  and 𝑄𝑜

𝑡  are simulated and observed discharge at time step 𝑡 

respectively; 𝑄𝑠
̅̅ ̅ and 𝑄𝑜

̅̅̅̅  are the mean simulated and observed discharge in the flood event; 𝛽 

and 𝛼 are the measures of bias and variability; and 𝑄𝑠
𝑝
and 𝑄𝑜

𝑝
 are simulated and observed 

peak discharge. 

4.2.2.3 Bias Correction 

Although the resolution of MRI-AGCM3.2s is satisfactory for regional-scale 

hydrological modelling; at basin scale, due to limited knowledge of physical processes in the 

real climate system (Zhuan et al., 2019) and/or derivation error due during convective 

parameterization schemes (Yano et al., 2012), the outputs usually suffer from systematic 

errors or biases. Therefore, a nonparametric quantile mapping bias correction approach is 

performed by adjusting the cumulative distribution function (CDF) of the simulated 

discharge to bridge the gap with the observed discharge, as expressed in Eq. (4.7).    

𝑄𝑚(𝑡)  =  𝐹𝑜
−1 (𝐹𝑠 (𝑄𝑠(𝑡)))     (4.7) 

In Eq (4.7),  𝑄𝑚(𝑡)  and 𝑄𝑠(𝑡)  are 𝑡 th bias-corrected and simulated data from MRI-

AGCM3.2s during the reference period in the baseline, respectively.  𝐹𝑠 and 𝐹𝑜
−1 are the CDF 

of raw data and the inverse CDF of observed data, respectively. For the future projected 

climate data, this research assumed the probability distribution of observed data to be the 

same.  

The reference period selected for calibrating the observed and simulated discharge 

was 1995-2014 (baseline period). The projection period is divided into three-time slices, (i) 

near future (2020-2040), mid future (2050-2070) and far future (2079-2099) to take into 

account the near, future and long-term changes in the discharge characteristics and flood 
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regimes for assisting relevant authorities to make appropriate decision making and designing 

long-term plans/policies/adaptation strategies for future changes.  

4.2.3 Major Typhoon Events 

Three major flood events together with a long-term simulation (2000-2020) were 

used to validate the RRI model using the datasets obtained from the Ministry of Environment. 

Follows are details of major flood events.  

- Typhoon Nari: Sep. 5-21, 2001 

- Typhoon Jangmi: Sep. 23, Oct. 5, 2008 

- Typhoon Morakot: Aug, 2-13, 2009 

- Long-term simulation: 2000-2020  

4.2.3.1 Typhoon Nari 

On August 31, 2001, a weak low-pressure area formed south of Guam. By September 

5, it merged with a monsoonal trough feeding it with moisture and strengthened into the 26th 

tropical depression of the season northeast of Taiwan. A large, dry flow of air from the 

northwestward caused the storm to drift to the northeast where it became a tropical storm on 

the September 6th. It made a small burst of convection, as wind shear lowered, and rapidly 

intensified into a category 3 typhoon. The peaking reached 185 km/h winds before weakening 

to a tropical storm (Shawn, 2021). It restrengthened to a typhoon, and as it continued 

southwestward, Nari reached 160 km/h winds before hitting northeastern Taiwan on the 16th. 

Numerous landslides triggered by the storm's rain destroyed homes and buried people. At 

least 94 people were killed on the island due to the storm and 10 others were listed as missing. 

Agricultural losses from Nari were estimated at 84 million USD. In mountainous regions, 

more than 1,225 mm of rain fell over a two-day span, leading to many rivers overflowing 

their banks (Nik Maya et al., 2021). 
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4.2.3.2 Typhoon Jangmi 

Tropical Storm Jangmi, which means "rose" in Korean, formed in a low-pressure area 

south of Guam on September 22, 2008. Undergoing the same process as Nari, the storm 

developed into a tropical storm on September 24. Jangmi made impact in Taiwan, thousands 

were evacuated, rainfall, up to 994mm were recorded, and thousands of acres of farmland 

were destroyed. Jangmi killed 2 people and caused about 77.8 million USD in damage in 

Taiwan, as well as the typhoon also made operations of Taiwan suspended due to erosion 

around a pillar, until March 30, 2010 (Nik Maya et al., 2021).  

4.2.3.3 Typhoon Morakot 

Typhoon Morakot struck Taiwan during August 6–10, 2009, and had a slowly moving 

path accompanied by a strong southwesterly monsoon with a radius of over 1,000 km. 

Typhoon Morakot dumped nearly 2,000mm of rainfall, over 70% of the average annual 

rainfall, on southwestern and southeastern Taiwan. The accumulated rainfall during the 

Typhoon Morakot were roughly 2,142 mm and 2,355mm respectively, i.e., 75% and 72% of 

the mean average annual rainfall. Moreover, nearly 3,000 mm of rainfall fell in some 

mountainous areas of southwestern Taiwan over a period of 4 days during the typhoon. It 

should be mentioned that the increasing frequency of high intensity rainfall events in recent 

decades has induced many landslides in southwestern Taiwan. The rainfall during Typhoon 

Morakot can be characterized as heavy, high-intensity rainfall with a long duration. Rainfall 

exceeding 2,000 mm during the typhoon was concentrated in the upstream areas of the 

watershed. The maximum flood discharge during Typhoon Morakot set a new record by 

reaching 27,445m3/s at 1:00 am on August 9, 2009. This discharge was approximately 1,000 

times greater than the normal discharge. 

4.3. Results and Discussion 

4.3.1 Descriptive Analysis of Meteorological Data  

Descriptive statistics of the meteorological variables in Taiwan between the years of 

2000 and 2020 were summarized in Table 4.2. The country received annual precipitation 

between 1,718 mm/year and 3,484 mm/year (average of 2,632 ± 30 mm/year), with a high 
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annual relative humidity on average of 80% (range of 77–83%). The spatial distribution of 

precipitation showed that high precipitation occurs in the high elevation areas than that of the 

plains (Fig. 4.3(a)).   

Throughout the investigation period from 2000 to 2020, four extreme events occurred, 

namely Typhoon Nari (5–21 September, 2001), Typhoon Jangmi (23 September–5 October, 

2008), Typhoon Morakot (2–13 August, 2009), Typhoon Nesat (25–31, July 2017), bringing 

a cumulative precipitation of 1,430 mm, 2,780 mm, 1,134 mm, 886mm per event, 

respectively. The daily mean temperature varied substantially from 7.8 °C in winter to 

31.2 °C in summer (average of 21.0 ± 0.8 °C). Over the course of the investigated period, the 

minimal daily temperature reached as low as 4.3 °C while the maximal temperature reached 

32.0 °C. 

Table 4.2. Descriptive of statistical metrics of meteorological variables across Taiwan  

                   during the investigated period (2000–2020). Note: Min: minimum, Avg:  

                   average, Max: maximum, SD: standard deviation. 

Meteorological Parameters Min Avg Max SD 

Annual precipitation (mm/year) 1,718.0 2,632.0 3,484.0 30.0 

Daily min. temperature (°C) 4.3 7.8 11.2 0.3 

Daily mean temperature (°C) 20.5 21.0 21.6 0.8 

Daily max. temperature (°C) 29.9 31.2 32.0 1.3 

Relative humidity (%) 77.0 80.0 83.0 6.2 
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Fig. 4.3: Spatial distribution of Meteorological parameter across Taiwan 

4.3.2 Performance of RRI Models  

The RRI model for river discharge and flood inundation extent simulated for 2000–

2020 performance indices of KGE, r, and PDR were calculated at 15 stations across Taiwan. 

Figs. S1-S4 shows the comparison of the major typhoon events and the long-term simulation 

and observation of monthly discharge at the 15 selected stations throughout 2000–2020. 

In some stations, e.g., stations 1 and 2, due to the limitation of the dataset which might 

be caused by the flood or technical errors before or during the event, no observed data was 

provided. Therefore, some stations only have the simulated dataset as shown in the 

supplementary figures at the end of this chapter. Figs. S1–S4 for the major flood events. 

Based on Fig. S1, it could be observed that most of the simulation result could fit the observed 

data. Based on the findings of the simulation, the observed flow rate in some stations could 
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reached over 8,000 m3/s, indicating the disastrous power of the flood in the area during the 

Typhoon Nari. Daily precipitation from AGCM-MRI was used as input to the calibrated and 

validated RRI model to assess river flow and annual peak flood discharge. Spatiotemporal 

performance of the models across different major flood events and the long-term simulation 

were illustrated in Fig. 4.4 in a comparison of the gauged observation and simulated 

discharge across different stations on monthly basis. The results of river discharge showed a 

satisfactory performance with R = 0.91 (0.96,0.87) and KGE= 0.86 (0.95, 0.89) for 2001 

(2008,2009, 2000-2020) flooding, respectively.  

4.3.3 Bias Correction Performance of Climate Dataset 

The bias correction performance was checked by comparing the precipitation and 

simulated discharge of historical AGCMs before and after bias correction. Fig. 4.5 shows 

average daily precipitation and simulated discharge comparing between GPCC and AGCMs 

before and after the bias correction. As compared to uncorrected dataset, closer relationship 

of the AGCMs data between the corrected and observed datasets on extreme flow (max 1-

day) was observed in this research. According to Fig. 4.5, the difference between the raw 

AGCM and gauge daily maximum discharge has relatively big variations, ranging up to 50 

to 1,500 m3/s. With the huge difference, the simulated results without bias correction will be 

inaccurate for future streamflow simulation. This has highlighted the importance of applying 

bias correction in Taiwan region prior to performing simulation using the raw AGCM dataset. 

Most studies, for instance Wang et al., 2021, Sophal et al., 2020 and Shantini & Makmud, 

2021 have utilized the AGCM dataset in understanding the flooding issues in Taiwan. 

However, based on the findings in this chapter, the reported results might have lower 

sensitivity and accuracy.  
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Fig. 4.4: Simulation performance Indices of r2, KGE, and PDR for river flow in 2001, 2008,  

              2009, 2017, and total 21-year simulation during 2000-2020. 

 

Fig. 4.5: The comparison of average annual peak flow between raw and bias corrected   

              AGCM datasets. 
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4.3.4 Climate Change 

In this section, the effects of climate change on precipitation and temperature patterns 

across different regions in Taiwan will be discussed. The summarized results are illustrated 

in Fig. 4.6. 

 

Fig. 4.6:  Annual temperature (T) and precipitation (P) in present climate and their relative  

               change in near future (NF), mid future (MF) and far future (FF). 

4.3.4.1 Temperature Change 

The spatiotemporal variation of present, near future, mid future and far-future 

temperature are illustrated in Fig. 4.6(a). For present spatiotemporal temperature variation, it 

could be observed that higher temperature is observed in the southern area, whereas lower 

temperature is observed in the eastern region. This is due to the geographical difference and 

location of the stations installed. Southern area is located at tropical region, leading the 

humidity and temperature are slightly higher compared to other regions. For Eastern region, 

(a) 

(b) 
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due to the latitudes are relatively higher as compared to other regions, the temperature are 

generally lower than other regions. Based on the simulation, a steady increasing trend is 

observed throughout the near future, future and far future, and expected to increase by more 

than 3 °C by end of 21st century under current conditions, highlighting the importance to 

combat or slow down the increasing temperature trend in the region.  

4.3.4.2 Precipitation Change  

Daily precipitation from the GCMs was used as input to the calibrated and validated 

RRI model to assess river flow and annual peak flood discharge. Fig. 4.6(b) shows the present, 

near future, future and far-future precipitation pattern across Taiwan. In present, the Eastern 

and Central regions are usually experiencing higher precipitation amount, up to 3,500mm per 

year. This is mainly due to significant amount of rainfall was brought by monsoon and 

typhoon seasons in these regions. As compared to temperature variation, the future 

precipitation change trend are different.  In the near future, most regions are experiencing 

increasing trend, ranging between 200 mm to 1,000 mm increment throughout the research 

period. However, for both future and far future, significant decreasing trend up to -200 

mm/year is observed mainly in the central region. These results have provided a significant 

finding for the responsible authority for more proper water resources management in this 

region. As reported in most studies and observed in recent rainfall events, extreme rainfall or 

drought has becoming more normal in nowadays. Therefore, more proper, and sustainable 

management are required to properly manage the flood issues as well as the water rationing 

issues.  

4.3.5 Future Change of Extreme River Flow 

The peak discharge for future flood projections was evaluated and compared with the 

baseline period. Fifteen main hydrological stations across mainstreams in different Taiwan 

cities were investigated. The maximum annual peak discharge across different stations 

showed an increase in discharge by 55, 47, and 57% for MRI-AGCM 3.2 at the projected 

periods in the near, mid, and far future, respectively (Fig. 4.7). These increases were notable 

with the K–S test at a significance level of 1% with p-values < 0.01. 
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Fig. 4.7: Changes in average annual peak discharge in near future (2020–2040), mid  

                future (2050–2070), and far future periods (2079-2099) at 15 river flow stations. 

 

Among different Taiwan regions, for near-and-mid future, the maximum river flood 

rate is expected to increase more than 20%. However, for the future, the simulated conditions 

are slightly different. For East and South regions, it is expected to face severe flooding issues 

as the PDR more than five times are expected (Fig. 4.8). Most regions during these two 

periods are expected to face extreme flooding issues and proper flood prevention 

management are required. On the other hand, on top of the severe flooding issues, for far 

future, prolonged draught and water stress issues are expected in the Central and Northern 

regions. The responsible authorities have to have rationale water storage and management. 
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Nevertheless, few limitations are present in this research. This research primarily 

evaluated historical simulation from climate datasets and future projections of GCMs under 

future climate change impacts. Only future climate change impact perspectives on flooding 

were considered while leaving important variables untouched. The sources of uncertainties 

in flood projections under the impacts of climate change could be associated with emission 

scenarios, GCMs, downscaling methods, and hydrological models (Hoan et al., 2020). This 

research evaluated only considered the worst-case scenario (SSP 8.5) from MRI-AGCM 3.2. 

Other future projection scenarios (e.g., SSP1-2.6, SSP2-4.5 and SSP3-7.0) could also 

possibly happen, and they should be considered in further studies. Moreover, different 

downscaling methods should be investigated to capture the topographic characteristics’ 

complexity, particularly in the more regional-scale studies. Only the RRI model was used to 

project floods in this research, while different hydrological models and their input parameters 

could associate with flood projection uncertainties. In addition, land use was assumed to be 

constant from baseline throughout the projected periods in the RRI model simulation. The 

changes in topography due to soil erosion and deposition were not considered in the RRI 

model as well. Moreover, the influence of hydropower and irrigation reservoirs on the river 

basin’s seasonal hydrology and flow have not yet been analyzed. The future projections of 

flooding in this research focused only on annual peak discharge using MRI-AGCM 3.2. 

Further studies are needed to assess the cumulative impacts of climate change associated with 

these land-use changes and the impacts of water infrastructure development. 
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Fig. 4.8: The spatial distribution of ratio of changes in average annual peak discharge in  

               near future (2020-2040), mid future (2050-2070), and far future periods                   

               (2079-2099). 

4.4 Conclusions 

This research has simulated the present, near-, mid- and far future of extreme flooding 

events across different cities in Taiwan using high resolution MRI-AGCM 3.2s dataset under 

RRI model. Based on the findings of the research, it could be observed that bias-correction 

using MRI-AGCM 3.2s dataset is crucial as huge variation are observed between uncorrected 

and gauge datasets. The precipitation and temperature trends are observed to vary 

dynamically in the future, with increment of temperature more than 3 °C and rainfall volume 

change spatiotemporally across different cities. For near-and-mid future simulation, the 

maximum river flood rate is expected to increase more than 20%. However, for the far future, 

the East and South regions are expected to face severe flooding issues; whereas prolonged 

draught and water stress issues are expected in the Central and Northern regions, providing 

insightful findings to the responsible authorities to have better water storage and management. 
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The application of high resolution GCM and regional downscaled climate data would 

be able to capture the complexity of land surface and local topographic characteristics in the 

small river basin, such as tributaries across Taiwan. The s1tudies on climate change impacts 

on hydrology changes such as floods and droughts using MRI-AGCM 3.2s could provide 

additional analysis to the responsible authorities for better water balance management. 

Moreover, further studies should focus on downscaling GCM to catch up with regional 

climate change by obtaining a higher spatial resolution; this might be more suitable for spatial 

distribution, particularly for studies in small-scale river basins. To reduce the possibility of 

severe damage caused by extreme flooding, adequate water resource management, flood 

adaptation and mitigation strategies, flood prevention infrastructure, and efficient real-time 

flood early warning and forecasting systems are required. 
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Supplementary Materials 

 

Fig. S1 Simulation performance in 2001 with Typhoon Nari: Sep. 5-21, 2001. 
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Fig. S2: Simulation performance in 2008 with Typhoon Jangmi: Sep. 23, Oct. 5, 2008 
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Fig. S3: Simulation performance in 2009 with Typhoon Morakot: Aug, 2-13, 2009 
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Fig. S4: Comparison of long-term simulation and observation of discharge flowrate at 15 

stations during 2000–2020. 
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Chapter 5  

Spatiotemporal impact of COVID-19 on Taiwan air 

quality in the absence of lockdown 

In this chapter, a novel research framework is proposed to evaluate the long-term monthly 

spatiotemporal impact of COVID-19 on Taiwan air quality through different statistical 

analyses, including geostatistical analysis, change detection analysis and identification of 

nonattainment pollutant occurrence between the average mean air pollutant concentrations 

from 2018-2019 and 2020, considering both meteorological and public transportation 

impacts. Reduced public transportation use had a more significant impact than meteorology 

on air quality improvement in Taiwan, highlighting the importance of proper public 

transportation management for air pollution control and paving a new path for sustainable air 

quality management even in the absence of a lockdown. 

5.1 Introduction 

Air pollution has been recognized as one of the deadliest environmental issues 

worldwide and has been reported to cause more than 7 million deaths annually (WHO 2021) 

by inducing long-term health problems such as lung cancer, heart diseases, asthma, and other 

chronic respiratory diseases (Landrigan et al., 2018). Tremendous efforts to combat air 

pollution have been made across the globe, such as formulating numerous 

frameworks/laws/policies at both the national (Li et al., 2017; Amann et al., 2017) and 

international levels (Shapiro & Yarime, 2021). Nevertheless, large gaps have been observed 

in implementation, financing and enforcement capacity (United Nations Environment 

Programme 2021), causing air pollution to remain a major health threat worldwide. However, 

the unprecedented outbreak of fatal 2019 coronavirus disease (COVID-19) has made a 

remarkable breakthrough in unresolved air pollution management. 

Since the end of 2019, COVID-19 has tremendously disrupted the normal rhythm of 

livelihood and has led to dramatic loss of human life worldwide, with infections and deaths 

exceeding 242 million and 4.9 million, respectively, as of October 2021 (Worldometer, 2021). 

COVID-19 is caused by the novel severe acute respiratory syndrome coronavirus 2 that can 



 

119 
 

be transmitted through the air, particularly in crowded areas or poorly ventilated indoor areas 

(Dinoi et al. 2022) and can survive on a variety of surfaces for hours (van Doremalen et al., 

2020). Due to its high infectivity and transmissibility, it was classified as a global pandemic 

by the World Health Organization (WHO) on March 11, 2020 (WHO 2020). Therefore, most 

governments across the globe have imposed restrictive/preventive measures, such as 

lockdowns, travel restrictions, shelter-at-home policies, social distancing, and mandatory 

mask wearing in public places, to contain or slow down the spread of COVID-19. These 

timely and strict measures have effectively slowed virus transmission among people. 

Concurrently, these measures also reduced emissions from major anthropogenic and 

economic activities due to the disruption of anthropogenic emissions. Consequently, a 

remarkable change in air pollutant concentrations was observed throughout the world, 

particularly in countries that imposed lockdown, creating a silver lining in the dark cloud of 

COVID-19 (Jephcote et al., 2021; Nakada & Urban 2020; Kanniah et al., 2020). A significant 

reduction in air pollutant concentration is observed worldwide, wherein the average 

concentrations of ground-level nitrogen dioxide (NO2) and particulate matter with average 

aerodynamic diameters less than 10 µm and 2.5 µm (PM10 and PM2.5) declined by 

approximately 30% and 20%, respectively, compared to 2019 (Yang et al., 2021). Since then, 

there has been growing attention to utilizing both high-resolution satellite images and/or 

ground-based monitoring data to quantify the impact of COVID-19 on the local atmospheric 

environment, particularly to compare the differences before and after lockdown 

implementation, for instance, in India (Mahato et al., 2020), China (Shen et al., 2021), 

Singapore (Li and Tartarini 2020), Malaysia (Abdullah et al., 2020), Iran (Broomandi et al., 

2020), Bangladesh (Rahman et al., 2020), Brazil (Nakada & Urban, 2020), and Turkey 

(Ghasempour et al., 2021). 

Most of the studies hypothesized that strict lockdowns were the major contributors to 

air pollution reduction during the early stages of the pandemic and highlighted that these 

environmental changes were only temporary due to the small respite before industrial 

activities resumed (Nigam et al., 2021); however, contradictory findings were reported by 

Dinoi et al. (2021). Due to the disruption of local economic activities, e.g., transportation and 
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tourism, as well as the reduced emissions from local private travel due to the enforcement of 

smart working in Italy, the authors showed that the concentration of ultrafine particles 

decreased more rapidly after the lockdown than during the lockdown. Moreover, to date, only 

a few studies have focused on the air quality changes in cities that did not impose lockdowns, 

such as Taiwan. Credit must be given to the established public health response mechanism 

and Taiwanese government's timely and accurate decision (e.g., border restriction). COVID-

19 was contained without imposing lockdown or implementing work-from home policies, 

and its impact on people's daily lives was minimized in 2020 (Chen & Fang, 2021). 

Consequently, in contrast with most of the reported studies, insignificant changes or higher 

concentrations of major pollutants (carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3), 

PM2.5 and PM10) were observed in Taipei and New Taipei cities (major cities in northern 

Taiwan) at the early stages of COVID-19 (Chang et al., 2021). However, according to the 

report from Taiwan’s Environmental Protection Administration (TEPA), a substantial 

improvement in air quality was observed in Taiwan for 2020 compared to 2019 (TEPA 2021), 

which may indicate a delayed improvement in the COVID-19 impact on the cities that did 

not impose lockdown. Therefore, further studies are required to evaluate the long-term 

COVID-19 impact on the environment and identify possible "new normal lifestyles" that can 

be practiced for future pollution reduction. 

Recently, growing attention has been given to investigating the influencing factors of 

air quality changes during the COVID-19 period, for which the impacts of meteorology and 

public transportation are most reported. Since meteorological parameters also play a 

significant role in affecting the dynamics of pollutants (such as dispersion rate, transportation, 

and transformation) (Singh & Tyagi, 2021), various methods have been introduced, e.g., the 

application of black-box models to eliminate the associated effects caused by meteorological 

variability (Grange et al., 2018; Solberg et al., 2021). For instance, Petetin et al. (2020) and 

Talbot et al. (2021) performed a random forest machine learning algorithm to estimate the 

business-as-usual (BAU) pollutant concentration based on the emission scenario and 

meteorological parameters in the absence of COVID-19 in Spain and New Zealand, 

respectively. Although it is undeniable that black-box models usually have high prediction 
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accuracy, white-box models are still preferred compared to black-box models due to their 

transparency; additionally, the relative importance of the predictor variables, which are 

necessary for decision making in air quality management, can be recognized (Fung et al., 

2021). Compared to black-box models, white-box models require fewer datasets for model 

construction and are commonly adopted for practical application due to their simplicity and 

robustness (Wong et al., 2021; Loyola- González, 2019). However, to the best of the authors' 

knowledge, most studies have applied only black-box models to simulate the BAU air 

pollutant concentration by utilizing meteorological parameters during the lockdown period 

(Petetin et al., 2020; Querol et al., 2021). In addition, the majority of current studies have 

considered only the impact of public roadway transportation reduction during the lockdown 

period (Gao et al., 2021; Tian et al., 2021), but according to the annual transportation report 

of Taiwan, the use of public urban transportation, including different transportation modes 

(e.g., railway, air and waterway), in 2020 declined and dropped to almost the lowest level of 

the past decade (Ministry of Transportation and Communication, 2021). Significant 

concentrations of air pollutants have been reported in railways (Moreno et al., 2015), air 

(Psanis et al., 2017) and waterways (Solomon et al., 2021), as different transportation modes 

have different features and may constitute divergent air pollutants to the environment. 

Therefore, to provide a comprehensive evaluation of the impact of public urban 

transportation on air quality during the study period, four transportation modes were included 

in this study. 

In light of these findings and to better understand the impact of COVID-19 on 

atmospheric quality in the absence of a lockdown, this study proposed a novel research 

framework to evaluate the spatiotemporal impacts of COVID-19 across five regions in 

Taiwan through comparative analysis between mean air pollutant concentrations of 2018-

2019 averaged and 2020, considering both meteorological and public transportation effects. 

In this study, to bridge the aforementioned research gaps, the research objectives are set to: 

1. evaluate, compare and illustrate the spatiotemporal variations in air pollutants 

between 2020 and the base year utilizing a geographical information system; 
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2. identify the major health risk air pollutants; 

3. identify the changes in different public transportation modes and their impact 

on air quality; 

4. evaluate the impact of meteorological parameters and formulate a white-box 

model to simulate the meteorological normalized business-as-usual 

concentration; and 

5. identify the underlying reasons during anomalous months (i.e., local 

emissions or transboundary pollution) through backward trajectory analysis. 

Although the impact of lockdown has driven the significant improvement in air 

quality, as shown in many regions, it is impossible to impose lockdown indefinitely, as it 

would lead to tremendous losses for the economy and human liberty. Therefore, these 

findings are expected to reveal the long-term COVID-19 impacts (monthly analysis 

throughout 2020) on the atmospheric environment associated with public transportation and 

meteorological impacts in the absence of lockdown and provide comprehensive information 

to relevant authorities for future sustainable planning of air quality management. 

5.2 Data Collection and Methodology 

5.2.1 Study Area  

Taiwan is geographically located in East Asia (21.5–25.2 °N and 120.0–122.0 °E) 

with altitudes ranging from -10–3880 m above sea level. As Taiwan straddles the Tropic of 

Cancer, the northern part of Taiwan belongs to the subtropical climate zone, while the very 

southern part belongs to the tropical climate zone. The mean annual precipitation of Taiwan 

ranges from 2,000 mm to 4,000 mm, with approximately 70% of the precipitation occurring 

during the wet-warm season (May to October), primarily driven by monsoon and typhoon 

events; therefore, lower concentrations of pollutants are usually observed during this period 

and higher concentrations in the dry cold season (November to April) (Hsu et al., 2020a; Wu 

et al., 2019). 

To ascertain the impact of COVID-19 on air quality in 2020, different base years, e.g., 

single year (2019) (Naqvi et al., 2021; Mesas-Carrascosa et al., 2020), two years averaged 
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(2018-2019) (Hu et al., 2021; Tian et al., 2021), and five years averaged (2015-2019) 

(Nakada & Urban, 2020; Zangari et al., 2020), were proposed. Continual improvements in 

the overall air quality conditions in Taiwan have been observed owing to effective pollution 

control strategies implemented by the government (Tsai et al., 2021), and coal use for power 

generation is gradually being reduced and replaced by liquefied natural gas since the end of 

2017 (TEPA, 2021). In light of these findings, for a better and more precise comparison 

between business-as-usual (BAU) and COVID-19 scenarios, the 2018-2019 average was 

selected as the base year in this study. 

To evaluate the spatiotemporal impacts of COVID-19 on air quality across Taiwan, 

air pollutants and meteorological stations distributed in different cities were acquired from 

the TEPA and Central Weather Bureau, respectively. The daily data for both air pollutants 

and meteorological parameters were used to calculate the mean concentrations/values for 

each month. Due to certain technical errors (i.e., power failure, machine error or under 

maintenance) (Benis et al., 2015), some data were missing (approximately 5% of the overall 

data). Therefore, the numbers of usable air quality and meteorological parameter stations 

were 69 and 224, respectively, as shown in Fig. 5.1. The air pollutants included in this study 

were CO, SO2, NO2, O3, PM10 and PM2.5, whereas the meteorological parameters included 

were station pressure (Psta), sea-level atmospheric pressure (Psea), atmospheric temperature 

(Tatm), dew temperature (Tdew), class-A pan evaporation (Evap), wind speed (WS), wind 

direction (WD), rainfall (RF), relative humidity (RH), sunshine hours (SH), global radiation 

(GR) and cloud cover (CC). 

The monthly passenger volumes (2018-2020) for roadway, railway, air and waterway 

transportation modes were acquired from the Taiwan Ministry of Transportation and 

Communication to evaluate the impact of traffic volume on air quality (Ministry of 

Transportation and Communication 2020). To better understand public mobility behavior in 

2020, each transportation mode has been further categorized into intercity/international and 

local routes, except for waterway transportation. Detailed information on the data used in this 

study is summarized in Table 5.1. 
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Fig. 5.1: Topography and geographical location of Taiwan with meteorological and air  

                quality monitoring stations as well as receptor sites for back-trajectory analysis.
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Table 5.1: Summary of the dataset used in the study 

* Total number of passengers across Taiwan 

Type Parameter/Variable Unit No. of Monitoring 

Station 

Duration Source 

Air Quality 

Carbon monoxide (CO) μg/m3 

69 
2018-2020 

(Daily) 

Taiwan 

Environmental 

Protection 

Administration 

Sulfur dioxide (SO2) μg/m3 

Nitrogen dioxide (NO2) ppm 

Ozone (O3) ppb 

Particulate matter 2.5 (PM2.5) ppb 

Particulate matter 10 (PM10) ppb 

Meteorological 

Station pressure (Psta) hPa 

224 
2018-2020 

(Daily) 

Taiwan Central 

Weather Bureau 

Sea-level pressure (Psea) hPa 

Atmospheric temperature (Tatm) ℃ 

Dew temperature (Tdew) ℃ 

Class-A pan evaporation (Evap) mm 

Wind speed (WS) m/s 

Wind direction (WD) ℃ 

Rainfall (RF) Mm 

Relative humidity (RH) % 

Sunshine hours (SH) hour 

Global radiation (GR) MJ/m3 

Cloud Cover (CC) - 

Traffic Volume 

Roadway 
Local 

person * 
2018-2020 

(Monthly) 

Ministry of 

Transportation 

and 

Communication 

Intercity 

Railway 
Local 

Intercity 

Air 
Local 

International 

Waterway Local 
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5.2.2 Research Framework 

In this section, the architecture of an integrated research framework for identifying 

the impacts of public transportation usage and meteorology on air quality during the COVID-

19 period in the absence of lockdown is introduced, as shown in Fig. 5.2. Different statistical 

analyses were performed and effectively illustrated using a geospatial information system 

(GIS) to quantify the spatiotemporal variation change in each air pollutant between 2018-

2019 and 2020. Correlation and trend analyses were performed to assess the degree of 

association and temporal changes between public transportation usage and meteorological 

parameters and air pollutants. A stepwise regression model (SRM) was adopted to simulate 

the concentration of air pollutants under the meteorological-normalized BAU scenario by 

utilizing meteorological parameters. To identify the underlying reasons during the anomalous 

months (i.e., local emissions or transboundary pollution), backward trajectory analysis using 

the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model was applied. 

A detailed discussion of each step is provided as follows: 

 

Fig. 5.2: Schematic overview of the proposed framework for evaluating the spatiotemporal  

               impacts of COVID-19 with consideration given to the impacts of public  

               transportation users and meteorology. 
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5.2.2.1 Geostatistical Analysis 

The descriptive statistics (range and mean ± standard deviation) for air pollutants are 

summarized in Table 5.2. To analyze the data distribution of the variables included in this 

study, the Shapiro–Wilk (SW) normality test was applied due to its robustness and suitability 

for complicated atmospheric interactions (Ventura et al., 2018). One-way analysis of 

variance (ANOVA) was performed to evaluate the significant differences between the air 

pollutants in 2018-2019 and 2020. All statistical tests were performed using the Statistical 

Package and Service Solutions (IBM SPSS version 22). The spatial distribution of the 

monthly mean concentration and mean percentage difference in air pollutants across Taiwan 

were determined using the spatial analyst module in the ArcGIS 10.8 platform. To visualize 

the spatiotemporal variation in air pollutants, the deterministic interpolation technique 

inverse distance weighting (IDW) method was selected due to its wide application for 

temporal climate and environmental data analysis (Chen & Liu, 2012; Wong et al., 2020). 

5.2.2.2 Change Detection Analysis 

The monthly mean percentage difference between air pollutants between 2018-2019 

averaged and 2020 was computed using Eq. (5.1) (Hu et al., 2021). 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 (%) =
𝐶𝑜𝑛𝑐2020−𝐶𝑜𝑛𝑐2018−2019

𝐶𝑜𝑛𝑐2018−19
× 100%   (5.1) 

where 𝐶𝑜𝑛𝑐2018−19 and 𝐶𝑜𝑛𝑐2020represent the mean monthly concentration of pollutants for 

2018-2019 and 2020. 

5.2.2.3 Nonattainment Pollutants Analysis 

The current Taiwan AQI framework was revised in 2016 (formerly known as the 

pollutant standard index) by Taiwan’s Environmental Protection Administration to have 

stricter standards and a more detailed classification of the concentration of each pollutant for 

air quality evaluation. The Taiwan AQI consists of six air pollutants. Pollutant concentrations 

are converted into individual dimensionless subindex values () (scaled from 0 to 500) using 

Eq. (5.2). The overall AQI is determined as the maximum of among pollutants and is 

regarded as the major pollutant, expressed mathematically in Eq. (5.3).  
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Table 5.2: Summary of the descriptive statistics of air quality parameters for 2018-2019 averaged and 2020 across different  

                 stations in Taiwan 

 

 

 

For Shapiro–Wilk test: * p < 0.05 

For ANOVA test: # p < 0.05 

Parameters 

Range Mean ± Standard Deviation Shapiro–Wilk 

ANOVA Average 

2018-2019 

2020 Average 

 2018-2019 

2020 Average 

2018-2019 

2020 

PM2.5 5.00–37.00 2.00–33.00 18.46 ± 6.08 15.32 ± 7.01 * * # 

PM10 11.50–79.50 6.00–65.00 39.54 ± 12.70 30.61 ± 13.05 * * # 

CO 0.11–0.95 0.05–0.95 0.37 ± 0.12 0.33 ± 0.13 * *  

NO2 0.25–28.12 0.30–27.20 12.25 ± 5.10 10.88 ± 5.10 0.12 *  

O3 16.05–58.75 12.60–62.00 32.23 ± 6.17 30.89 ± 8.58 * *  

SO2 1.15–5.85 0.60–5.20 2.42 ± 0.67 2.16 ± 0.61 * * # 
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𝐴𝑄𝐼𝑖 =
𝑆𝐼ℎ𝑖𝑔ℎ−𝑆𝐼𝑙𝑜𝑤

𝐶𝑜𝑛𝑐ℎ𝑖𝑔ℎ−𝐶𝑜𝑛𝑐𝑙𝑜𝑤
(𝐶𝑜𝑛𝑐𝑖 − 𝐶𝑜𝑛𝑐𝑙𝑜𝑤) + 𝑆𝐼𝑙𝑜𝑤  (5.2) 

𝐴𝑄𝐼 = 𝑚𝑎𝑥 (𝐴𝑄𝐼1, 𝐴𝑄𝐼2, … , 𝐴𝑄𝐼𝑖)       (5.3) 

where 𝐴𝑄𝐼𝑖 represents the subindex value of air pollutant i; 𝐶𝑜𝑛𝑐𝑖 represents the measured 

concentration of air pollutant i; 𝐶𝑜𝑛𝑐ℎ𝑖𝑔ℎ  and 𝐶𝑜𝑛𝑐𝑙𝑜𝑤  denote the upper and lower limit 

concentrations corresponding to the health category encompassing 𝐶𝑜𝑛𝑐𝑖, respectively; and 

𝑆𝐼ℎ𝑖𝑔ℎ  and 𝑆𝐼𝑙𝑜𝑤  denote the upper and lower subindex scores corresponding to 𝐶𝑜𝑛𝑐ℎ𝑖𝑔ℎ and 

𝐶𝑜𝑛𝑐𝑙𝑜𝑤, respectively. 

The reference concentrations of pollutants and corresponding subindex scores are 

divided into six categories, from Class I (Good): 1–50 to Class VI (Hazardous): 301–500, in 

association with their impacts on human health (TEPA 2006). Class I and Class II (AQI < 

100) are attainment grades, while others are regarded as nonattainment, which may cause 

adverse health effects (Ma et al., 2019). 

5.2.2.4 Meteorological Normalization 

To eliminate meteorological biases, a backward SRM that successively excluded 

nonsignificant (p > 0.05) meteorological variables was adopted. The monthly mean 

concentration of each pollutant and meteorological variable from 2018 to 2019 was used as 

the training dataset to formulate the best fit equations and to simulate the monthly mean BAU 

concentration for each pollutant in 2020 for given meteorological conditions and temporal 

structures (Querol et al., 2021; Jephcote et al., 2021). Through this process, the monthly 

percentage change for (i) meteorological-normalized BAU, (ii) COVID-19 (observed – 

meteorological-normalized BAU) and (iii) overall (total percentage change combining 

scenarios (i) and (ii)) for each air pollutant could be identified. 

5.2.2.5 Backward Trajectory Analysis 

The HYSPLIT model developed with the National Oceanic and Atmospheric 

Administration Air Resources Laboratory was extensively used to compute backward 

trajectories of air masses (Draxler & Hess, 1998; Stein et al., 2015). The meteorological 
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fields used in the calculation of 120-h backward trajectory data are driven by the National 

Centers for Environmental Prediction Global Data Assimilation System (GDAS 1°x1°). The 

vertical transport was modeled using the isobaric option of HYSPLIT. The backward 

trajectories were computed every 6 h at 200 m arrival heights. The clustering method using 

Euclidean distance is used to reveal the dominant trajectories of air pollution events and thus 

help to identify the possible causes of pollution (Wang et al., 2010). 

5.3. Results and Analysis 

5.3.1 Descriptive Analysis of Air Pollutants 

The descriptive statistics for the 2018-2019 and 2020 air pollutant concentrations 

obtained from 69 stations across Taiwan are summarized in Table 5.2. Among the six 

pollutants, both PM10 and PM2.5 showed the highest annual mean concentration reduction in 

2020 relative to 2018-2019, by 24% and 18%, respectively, followed by SO2, NO2, CO and 

O3, with reductions of 15%, 9.6% and 7.4% and 1.3%, respectively. Significant differences 

between 2018-2019 and 2020 using one-way ANOVA were observed in the parameters with 

remarkable improvement, which were PM10, PM2.5 and SO2. Since NO2 was not normally 

distributed (p < 0.05) according to the SW normality test, Spearman correlation was used to 

examine the bivariate association between air pollutants and meteorological factors. To better 

understand the impacts of COVID-19 on the atmospheric environment, spatiotemporal 

analysis of each pollutant was performed. 

5.3.1.1 Spatiotemporal Variations in PM Concentrations 

The mean concentrations of PM2.5 and PM10 ranged between 5.0–37.0 μg/m3 and 1.5–

79.5 μg/m3 in 2018-2019 and 2.0–33.0 μg/m3 and 6.0–65.0 μg/m3 in 2020, respectively. As 

shown in Figs. 5.S1 and 5.S2, high concentrations of PM2.5 (>20.0 μg/m3) and PM10 (> 30.0 

μg/m3) are usually detected in the southern region. For both PMs, a contradictory 

phenomenon was observed, where a deteriorating trend was shown from January to April, 

even after the declaration of the COVID-19 pandemic. In most of the reported literature, the 

impact of COVID-19 on particulate matter in other countries/major cities is significant, for 

instance, India (PM2.5: ~-41%, PM10: ~-52%) by Jain and Sharma (2020), Malaysia (PM2.5: 



 

131 
 

~-30%, PM10: ~-31%) by Kanniah et al. (2020), the Yangtze River Delta of China (PM2.5: ~-

37%, PM10: ~-32%) by Li et al. (2020), and Bangkok, Thailand (PM2.5: ~-41%, PM10: ~-52%) 

by Dejchanchaiwong & Tekasakul (2021). However, in the absence of a lockdown, although 

some anthropogenic activities were restricted, the major industrial and economic activities 

were not severely disrupted (Summers et al., 2020; Wu et al., 2021). Thus, the improvement 

was less significant (< 20%) for both PMs during the first quarter of 2020 compared to other 

countries (Fig. 5.3). A slight increase in PM2.5 and PM10 concentrations was observed in April, 

which might be attributed to forest fires from China (Yang et al., 2020) and Indochina 

(Chuang et al., 2020) or caused by local emissions; the underlying reasons are to be verified 

in the following section using HYSPLIT. 

The rainy season in conjunction with the COVID-19 restrictions showed significant 

improvements, with mean percentage changes of up to -87% and -81% for PM2.5 and PM10, 

respectively. The highest improvement observed during the rainy season was in the central 

(mean percentage change: PM2.5: ~-37% and PM10: ~-33%) and southern (mean percentage 

change: PM2.5: ~-35% and PM10: ~-32%) regions, which are highly urbanized and heavily 

industrialized (Chen et al., 2019; Huang & Hsieh, 2019). The associated meteorological 

impacts coupled with government measures and public awareness (such as reduced mobility 

and human activity) have resulted a significant improvement in PM across Taiwan. 

An abnormal increase in the mean percentage change up to 42% for PM2.5 and 37% 

for PM10 was observed in the southern region in October 2020. This month marks the start 

of the Asian winter monsoon, where the cold high-pressure system exits the continent toward 

Taiwan as the northeast wind system. This wind system enters Taiwan in the north and 

gradually moves southeastwards, where a turbulent wake is formed. The latter is conducive 

to pollution accumulation and is often linked to wind-blown dust, which increases the local 

PM10 level. During 2020, a major dust storm event arose and swept over Taiwan; which 

maybe caused by a strong pressure gradient, originated from the deserts of Mongolia and 

Kazakhstan and carried large masses of PM (Keoni, 2020; Hsu & Cheng, 2019). Under high 

pressure and low wind speed conditions, the atmospheric conditions are relatively stable, 
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causing pollutants to not thoroughly disperse and leading to the occurrence of pollutant 

accumulation (Maurer et al., 2019). Nevertheless, due to the blocking effects of the Central 

Mountain Range, large concentrations of air pollutants accumulate predominantly over the 

central and southern regions; thus, higher concentrations (up to 70.0 μg/m3 and 40.0 μg/m3 

for PM10 and PM2.5, respectively) were observed over these two regions. 

 

Fig. 5.3: Spatiotemporal change detection analysis for (a) PM2.5 and (b) PM10 across Taiwan  

              between 2018-2019 and 2020. 

5.3.1.2 Spatiotemporal Variations in CO and NO2 Concentrations 

For CO and NO2, the mean concentrations in 2018-2019 ranged between 0.1–1.0 ppm 

and 0.3–28.1 ppb, whereas in 2020, they ranged between 0.1–1.0 ppm and 0.3–27.2 ppb, 

respectively. As illustrated in Figs. 5.S3 and 5.S4, the mean concentrations of CO and NO2 
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are usually in compliance with the Taiwan national standard (CO: ≤ 4.4 ppm and NO2: ≤ 30 

ppb). In agreement with most of the reported literature, an improving trend across Taiwan 

from January to April 2020 for CO and NO2 was observed, with mean percentage reductions 

of up to -11%, particularly in the northern region (Fig. 5.4). The decreases in CO and NO2 

were found to be highly associated with reduced mobility and transportation emissions as a 

result of government measures for combating COVID-19 transmission. As the northern 

region is the most densely populated region in Taiwan (with a population of more than 10 

million or approximately 40% of the whole Taiwan population), improvement due to reduced 

mobility is particularly remarkable in this region. Therefore, to investigate and validate the 

impact of traffic volume, a detailed transportation usage rate was collected and discussed in 

section 3.2. 

During the rainy season, a similar phenomenon with PMs occurred, where significant 

improvements in CO and NO2 concentrations associated with meteorological impacts were 

observed, with reductions of up to 62% and 47%, respectively. However, a substantial 

increase in CO in September 2020 over northern and central western Taiwan was observed. 

This month is the transition period between the rainy summer and the dry winter season, 

which explains the mixed changes in different air pollutants. The increase in CO and NO2 

concentrations during September 2020 might be due to the diminishing wet deposition ability 

of precipitation. In early October, the strong winter monsoon cleared out the pollutants in the 

north, and these pollutants began to accumulate over the southwestern region (concentrations 

of CO and NO2 up to 0.58 ppm and 28 ppb, respectively). This might be due to the long-

range transportation pollution from East Asia as an effect of the summer-winter transition 

period. 
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Fig. 5.4: Spatiotemporal change detection analysis for (a) CO and (b) NO2 across Taiwan  

               between 2018-2019 and 2020. 

5.3.1.3 Spatiotemporal variations in the O3 and SO2 concentrations 

The mean concentrations of O3 and SO2 in 2018-2019 ranged between 16.1–58.8 ppb 

and 1.2–5.9 ppb, whereas in 2020, they ranged between 12.6–62.0 ppb and 0.6–5.2 ppb, 

respectively. O3 has emerged as one of the major pollutants in Taiwan and has been addressed 

effectively, and it has progressively increased in the past decade (Qiu et al., 2021). As shown 

Fig. 5.5(a), in contrast to the NO2 observation, the mean concentration of O3 showed a 

significant increase (approximately 20-30%) with a mean concentration ranging between 

40.0-60.0 ppb (Fig. 5.S5) in 2020 April, and similar observations have been reported 

worldwide (Li et al., 2020; Siciliano et al., 2020; Cazorla et al., 2021). O3 is a secondary 

atmospheric pollutant that is formed during the complex photochemical reactions between 
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oxides of nitrogen and volatile organic compounds; therefore, the reduction in NO2 

subsequently leads to an increased ozone concentration. 

The main sources of SO2 are formed by burning sulfur-containing fossil fuels 

(particularly coal) and residual fuels used in shipping and by metal smelting or other 

industrial processes (Merico et al., 2016). Due to continuous efforts of the Taiwanese 

government to deploy combinations of policies and legislative initiatives to boost the 

execution of renewable energy sources and gas-fired plants in order to replace coal-fired 

power generation (Kung & McCarl, 2020), the mean concentration of SO2 is always in 

compliance with the Taiwanese national standard (≤20.0 ppb), as illustrated in Fig. 5.S6, and 

continuous improvement/reduction is observed in Fig. 5.5(b). 

During the rainy season, wet deposition is less significant for both O3 and SO2 than 

for other air pollutants, with mean percentage changes of -7.4% and -15%, respectively. An 

abnormal increase up to 52% was observed in O3 in September and October, which may have 

been caused by the similar factors mentioned in sections 5.3.1.1 and 5.3.1.2. In contrast, 

because SO2 is a short-lived gas (Wang et al., 2018), the impact of its long-range transport 

was insignificant; therefore, no abnormal phenomenon was observed compared to other air 

pollutants. 

5.3.2 Contribution of the Nonattainment Pollutants 

The contribution of major pollutants to the nonattainment days across Taiwan for 

2018-2019 and 2020 is presented in Fig. 5.6(a). A significant improvement was observed, 

where the total nonattainment days decreased from 3,736 in 2018-2019 to 2,470 in 2020, 

with a total reduction of 34%. In both 2018-2019 and 2020, the occurrence of nonattainment 

days in the central and southern regions was observed to be much higher than that in other 

regions, accounting for 80% and 78% in 2018-2019 and 2020, respectively. Among the six 

air pollutants, PM2.5 and O3 were observed as the major pollutants, with total nonattainment 

days of 1,894 and 1,812 (775 and 1,695), contributing 51% and 49% (31% and 69%) in 2018-

2019 (2020), respectively, whereas the remaining pollutants had almost negligible 

contributions (<1%) to the total nonattainment days.  
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Fig. 5.5: Spatiotemporal change detection analysis for (a) O3 and (b) SO2 across Taiwan  

                between 2018-2019 and 2020. 

Compared to 2018-2019, a significant improvement was observed, where the total 

nonattainment days decreased by 33.8% in 2020, and the nonattainment days caused by PM2.5 

decreased significantly by 59.1%, while ozone decreased by 6.0%. Seasonal meteorological 

impacts on air pollutants have been studied extensively (Yousefian et al., 2020; Liu et al., 

2020); however, due to their complex, coupled, and adaptive interactions and dynamic 

characteristics, the reported findings may vary according to geographical region and intensity 

of meteorological parameters (Tfwala et al., 2017). As shown in Fig. 5.6(b), the worst air 

quality (mainly due to PM2.5) across Taiwan usually occurred during the dry cold season, 

with a total number of nonattainment days of 2,517 and 1,602 in 2018-2019 and 2020 

(accounting for approximately 60% in both periods), respectively. High PM2.5 concentrations 

were usually detected during the dry cold season, which may have been due to the strong 
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thermal inversion and low mixing layer height, leading PMs to be trapped and accumulate in 

the troposphere (Sanguineti et al., 2020). During the wet season, PM concentrations were 

effectively decreased through wet deposition (Wang & Ogawa, 2015). In contrast, 

nonattainment days caused by O3 were observed to occur mainly during the wet–warm season, 

as meteorological parameters (e.g., T_atm, GR, SH) are more suitable for photochemical 

reactions (Cheng et al., 2022). However, an unprecedented spike in O3 was observed in April 

and September 2020, with an almost 2-fold increase as compared to base year. To identify 

the possible reasons, backward trajectory simulation using the HYSPLIT model was 

constructed and performed (Sari et al., 2020; Shan et al., 2009). 

5.4 Discussion of Findings 

5.4.1 Impact of the Traffic Volume 

The monthly passenger volume and percentage change between 2018-2019 and 2020 

for roadway, railway, air, and waterway transportation are presented in Fig. 5.7. While most 

of the people were largely unaware of the emerging crisis, the Taiwanese government had 

implemented strict enforcement of border control measures for immigration entry since 

January 2020, which resulted in a conspicuous and significant downward trend in all 

transportation modes in 2020 compared to 2018-2019 (Cheng et al., 2020). The official 

declaration of the COVID-19 outbreaks as a pandemic, which was made by the WHO on 11 

March, promoted restrictive measures (e.g., closure of bars and nightclubs and crowd control 

at hotspots); these measures were eventually imposed by the Taiwanese government to 

prevent cross-infection transmission within the community and led to minimal community 

mobility in April for all transportation modes. The use rates of roadway, railway, air, and 

waterway transportation were reduced by 32%, 34%, 82%, and 64%, respectively. 
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Fig. 5.6: Average nonattainment frequency of air pollutants in Taiwan for 2018-2019 and  

               2020 (a) according to region and (b) according to month. The relative size of the  

               pie chart corresponds to the occurrence of nonattainment frequency. The purple,  

               green, blue, yellow, orange, and red pie chart sectors represent the occurrence of  

               nonattainment days caused by CO, PM10, SO2, PM2.5, NO2 and O3, respectively. 
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As the nationwide COVID-19 condition became relatively more stable, the 

government eased the restrictions, and a steady upward trend for roadway and railway 

transportation was observed from May to July; the trend remained relatively stable from 

August to December. Although international flights were severely disrupted (almost at a 

standstill after April), the Taiwanese government focused on promoting domestic tourism to 

boost the local economy and business with support programs and safety measures, which 

resulted in a strong upward trend in both local flights and water transportation from May to 

September, reaching a peak during the summer holiday season (August) and gradually 

decreasing until December. 

Fig. 5.7 Monthly variation in public transportation passenger volume for (a) roadway, (b)  

              railway, (c) air and (d) waterway transportation across Taiwan. 

Spearman correlation was performed to investigate the relationship between 

transportation volume and air pollutants, as presented in Fig. 5.8. Although there were no 

lockdowns or enforced human mobility restrictions imposed by the Taiwan Government  

during 2020, as shown in Fig. 5.7, significant changes in traffic volume were observed. 

Therefore, to incorporate these observed changes to provide a comprehensive evaluation of 

the nexus of air pollutants with traffic volume, the monthly mean data between 2018 and 
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2020 were used. Most of the air pollutants were positively correlated with different 

transportation modes, except for local flights. Although SO2, PM10 and PM2.5 showed high 

correlations with different transportation modes, the changes were inconsistent with the 

transportation usage volume. Conversely, the change trends of the NO2 and CO 

concentrations (major pollutants emitted from transportation) that demonstrate substantial 

correlations with roadway and air transportation were congruent with the transportation 

usage volume, except during the wet season (May to August). Similar findings were reported 

by Gao et al. (2021) and Tian et al. (2021) in China and Canada during the COVID-19 period, 

respectively, where NO2 and CO were fairly correlated with the traffic volume, advocating 

for  the  importance of proper public  transportation planning/design to address NO2 and CO 

pollution. There was no statistical correlation observed between O3 and traffic volume; 

however, the abnormally high concentration up to 62 ppm observed in April may have been 

caused by reduced mobility (Siciliano et al., 2020). As most of the monitoring stations are 

located in urban areas, ozone production may be VOC-limited; therefore, the increase in O3 

concentrations might have been caused by reduced NO2 concentrations due to reduced 

mobility (Sicard et al., 2020; Cazorla et al., 2021). 
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Fig 5.8: Spearman correlation heatmap between air pollutants and (a) traffic volume and (b)  

              meteorological parameters across Taiwan. 

 



 

142 
 

5.4.2 Meteorological-normalized BAU Scenario 

To eliminate meteorological biases during the quantification of COVID-19 impacts 

on air quality (improvement/degradation), this study constructed SRM models by utilizing 

12 meteorological parameters for each studied air pollutant. The correlations between air 

pollutants and selected meteorological parameters are presented in Fig. 5.8(b). The mean 

values at all available air pollutants and meteorological stations were used (Teng et al. 2018), 

as the focus of the study is to find the overall relationship among them across Taiwan despite 

the different numbers of air quality (n=69) and meteorological stations (n=224). Similar 

approaches were also reported by He et al. (2020), Kwon et al. (2020) and Zhu et al. (2021). 

Therefore, the representative air pollutant concentration and meteorological parameter value 

were defined by averaging the monthly mean concentration/value of all the available 

monitoring stations from 2018 to 2020. Meteorological parameters have a stronger 

correlation with air pollutants (except for SO2) than traffic volume for different transportation 

modes in Taiwan; however, contradictory findings were reported by Gao et al. (2021) for 

China, as the magnitude of the impact may vary across regions. Most of the meteorological 

parameters were negatively correlated with air pollutants, except for pressures, WS and CC, 

in agreement with the majority of the literature (Peng et al., 2020; Liu et al., 2020; Talbot et 

al., 2021). 

Radar diagrams were used to illustrate and compare the mean annual percentage 

change between 2018-2019 and 2020 among different scenarios, as shown in Fig. 5.9b. Under 

the meteorologically normalized BAU scenario, slight increases in the concentrations of CO, 

NO2, O3, PM2.5, PM10, and SO2 were observed in 2020, where the mean percentage changes 

relative to 2018-2019 were 2.5%, 4.4%, 0.5%, 1.0%, 5.4% and 2.0%, respectively. This 

implied that the meteorological conditions in 2020 might have been unfavorable for the 

dispersion and transportation of air pollutants. Similar findings have also been reported in 

neighboring areas, such as cities in China (Hu et al. 2021; Bai et al. 2022).  On the other 

hand, under the COVID-19 scenario, a significant reduction was observed for PM10, PM2.5, 

SO2, and NO2, with mean percentage changes relative to 2018-2019 of -36%, -26%, -27%, 

and -20%, respectively. The maximum reduction of these four pollutants was observed in the 
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wet season, contributing a 40–60% reduction in concentration. For CO, a satisfactory 

reduction was observed, with percentage changes of -16%, and a slight increment was 

observed for O3, with 1.3%. Despite the unfavorable meteorology of 2020, significant 

improvements were observed among air pollutants (except for O3) due to the reduction of 

anthropogenic emissions even in the absence of a lockdown. Overall, for 2020, the total 

change associated with the meteorological-normalized simulated air pollutant concentrations 

and COVID-19 scenarios, a significant reduction was observed in the mean percentage 

change relative to 2018-2019, with -13% and -16%, -25%, -30%, and -25% for CO NO2, 

PM2.5, PM10, and SO2, respectively, and a slight increment was observed for O3, with 1.8%. 

 

Table 5.3: Performance and equation of the constructed SRM for each air pollutant 

Parameter R2 Standard Error 

CO 0.843 3.317 

NO2 0.867 1.080 

O3 0.827 2.315 

PM2.5 0.875 2.235 

PM10 0.830 4.585 

SO2 0.634 0.186 

 

𝐶𝑂 = −0.016𝑇𝑎𝑡𝑚 − 0.116𝑊𝑆 + 0.003𝑃𝑠𝑒𝑎 − 3.0411    (4) 

𝑁𝑂2 = −4.910𝑃𝑠𝑒𝑎 − 0.292𝑅𝐻 + 0.348𝑃𝑠𝑡𝑎 + 2.376𝐶𝐶 + 0.051𝑆𝐻 − 0.021𝐺𝑅 −

312.689          (5) 

𝑂3 = −0.124𝑊𝐷 − 8.218𝐶𝐶 − 0.373𝑆𝐻 + 0.168𝐸𝑣𝑎𝑝 − 0.009𝑅𝐹 + 0.058𝐺𝑅 −

0.469𝑅𝐻 + 148.078        (6) 

𝑃𝑀2.5 = −2.963𝑃𝑠𝑡𝑎 − 0.053𝑊𝐷 + 1.419𝑃𝑠𝑒𝑎 − 9.831𝑊𝑆 − 2.366𝑇𝑑𝑒𝑤 − 0.0060𝑅𝐹 +

1331.758         (7) 

𝑃𝑀10 =  1.01𝑃𝑠𝑡𝑎 − 0.091𝑊𝐷 − 13.530𝑊𝑆 − 1.534𝑅𝐻 − 776.544  (8) 

𝑆𝑂2 = −0.189𝑇𝑎𝑡𝑚 − 1.469𝑊𝑆 + 0.264𝑃𝑠𝑒𝑎 − 0.091𝑅𝐻 − 0.523𝑃𝑠𝑡𝑎 + 0.463𝐶𝐶 +

0.014𝑆𝐻 − 0.004𝐺𝑅 + 217.791      (9) 
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Fig. 5.9: Percentage change of six air pollutants both (a) monthly and (b) annually based on  

              meteorological-normalized BAU, COVID-impact and actual observed scenarios  

              between 2018-2019 and 2020. 
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5.4.3 Backward Trajectory Analysis of the Anomaly Months 

In this section, backward trajectory HYSPLIT analysis is used to identify the possible 

air mass origin affecting the air quality over Taiwan during April and September, as abnormal 

increments of up to 80% in pollutants were observed in 2020 compared to 2018-2019 despite 

the reduced mobility and implementation of restrictive measures. Applying a similar 

approach in section 3.1, 2018-2019 was selected to represent the BAU scenario, whereas 

2020 was selected as the COVID-19 scenario. For the April scenario, Nantou station in 

central Taiwan was selected as the receptor site due to the unusually high PM2.5 and PM10 

recorded in the spatiotemporal change percentage between 2018-2019 and 2020 (see Fig. 

5.3). For the September scenario, Wanli station in northern Taiwan was selected as the 

receptor site due to the substantial increase in CO and NO2 (see Fig. 5.4). This station is also 

a background station that is often used to identify the transboundary pollution scenario from 

East China. Fig. 5.10 presents the clustered 120-h trajectory pathways driven by the GDAS 

meteorological dataset at 1.0° x 1.0° in April and September. 

As shown in Fig. 5.10 (a), the air mass reaching Nantou station in April 2020 is mostly 

from the northeast direction, with the highest proportion accounting for C1 (88%), followed 

by C3 (8.0%) and C2 (4.0%). These three clusters shared a very similar trajectory pathway, 

indicating that they might be driven by the same synoptic weather pattern. This weather 

pattern features a weak anticyclone over the Asian continent and the Pacific subtropical high- 

pressure system that does not have an apparent influence in Taiwan, which frequently occurs 

during the seasonal transition period in April (Hsu & Cheng, 2019). Although the trajectories 

do not originate directly from the continent, the prevailing northeasterly winds associated 

with the eastward-propagating anticyclone from the Taiwan Strait make it possible to inject 

long-range transported pollutants into Taiwan. In addition, as the lockdown measures and 

travel restrictions of neighboring major cities were gradually lifted in early April for 

economic recovery, an apparent rebound effect was detected (Gao et al., 2021; Hasnain et 

al., 2021), and trajectories of polluted air masses to central Taiwan were observed originating 

from neighboring major cities (Wu & Huang, 2021). When the prevailing northeasterly wind 

is obstructed by the Central Mountain Range, low wind speeds and strong subsidence occur 
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over the leeside of the mountain, often leading to serious PM2.5 accumulations in central and 

southern Taiwan. In contrast, the backward trajectories in April 2018-2019 clearly 

demonstrated the mixture of oceanic air masses from the western Pacific Ocean, C2 (10%), 

and South China Sea, C3 (18%). The westward stretching of the Pacific subtropical high-

pressure system slightly changed the prevailing wind in Taiwan to southeasterly and 

southerly flows, bringing more pristine air to Taiwan and eventually reducing the PM and 

gas pollutant concentrations. 

 

Fig. 5.10: 120-h HYSPLIT backward trajectory driven by GDAS meteorological data at  

                  1.0°x1.0° in April and September separated for the BAU scenario in 2018-2019  

                  and the COVID-19 scenario in 2020. 
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For the September scenario, the backward trajectories C4 (21%) at Wanli station in 

2020 clearly show that the possible air mass trajectories are different compared to 2018-2019. 

Unprecedented elevated ozone concentrations associated with Asian high-pressure ridge 

incidents were reported and carried from the continent toward Taiwan in high-level (>1 km) 

trajectories, particularly in northern and eastern Taiwan, contributing to long-range 

transboundary air pollution in September 2020 (Keoni, 2020; Wang et al., 2016; Tseng et al., 

2019). Meanwhile, backward trajectories in September 2018-2019 were mainly dominated 

by oceanic air masses from the East China Sea (C1: 79%) and the western Pacific Ocean (C2: 

11% & C3: 7%), which are typically cleaner than continental air masses, resulting in lower 

observed air pollution concentrations during this period (Golubeva et al., 2013). 

5.4.4 Implications and Limitations 

The drastic disruption in normal routine due to the COVID-19 pandemic has provided 

a unique opportunity to explore the impact of transportation and meteorology on air quality. 

According to the findings, it could be observed that the impact of reduced transportation 

usage and a "new normal lifestyle", such as social distancing, has a more significant impact 

than meteorology on air quality improvement, in agreement with the findings reported by 

Nguyen et al. (2020). As demonstrated in Taiwan, although the emission scenario from 

industries has insignificant changes, an approximately 52% reduction was observed in public 

transportation usage and may be the key driver of air quality improvements. It may be 

ambitious to implement policies restricting traffic mobility to sustain long-term 

improvements (Sokhi et al., 2021); however, proper transportation system management and 

alternative greener fuel may be one of the most emerging topics at present that should be 

considered and adopted by governments worldwide for sustainable air quality management. 

The reduced precipitation in 2020 might have been due to climate change (Yeh & Huang, 

2019), and this phenomenon is expected to continue and may worsen air quality over the 

long-term (Kinney, 2021). There have been ongoing global and regional efforts to address 

climate change impacts on air quality (e.g., Kyoto Protocol, Paris Agreement, Gothenburg 

Protocol). However, climate change-driven air pollution mortality has not yet been addressed 

(Hong et al., 2019) and further contributes to the degradation of the environment and human 
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health. Therefore, decision makers must consider these important implications when 

formulating and implementing sustainable air quality policies in response to unavoidable 

climate change in order to maintain/improve air quality in the absence of lockdowns and 

prevent adverse impacts on the economy and society. 

Nevertheless, there are several limitations in this study that must be acknowledged. 

Due to the limitation of the dataset available, this study utilized only public transportation 

users. According to the Ministry of Transportation and Communication of Taiwan, the public 

transportation use rate was approximately 35% for urban cities, while the overall use rate 

across Taiwan was 18% (Department of Statistics, 2016). Therefore, the impact of private 

transportation may not be reflected in this study. Second, as the intention of the study was to 

evaluate the impact of COVID-19 under the meteorological-normalized scenario, this study 

utilized only the mean monthly concentrations of air pollutants and meteorological 

parameters across Taiwan, which may not be capable of providing accurate simulations at 

high temporal (such as daily or hourly) or spatial (according to station) variations. For the 

meteorologically normalized BAU scenario, this study assumes that there are insignificant 

changes in the environmental protection activities/policies performed by the government and 

the public, as well as the technologies for electricity generation, industrial processes, etc. 

Based on the Taiwan Energy Statistic Handbook, the average total domestic energy 

consumption in 2018-2019 was 86.1 million kiloliter of oil equivalent (KLOE), whereas in 

2020, it was 85.4 million KLOE, with less than a 1% difference. The difference in coal and 

coal product usage for electricity generation (known to be more polluting than any other 

fossil fuel) in 2018-2019 and 2020 is insignificant, with an approximately 1% difference. 

Therefore, in this study, the emissions in 2020 are assumed to be consistent with those in 

2018-2019. In addition, there are no detailed data available on the local emissions (industrial, 

domestic) and sudden/accidental pollution, which may have further limited the ability to 

identify the underlying reasons for the improvements in the study. Although HYSPLIT was 

applied, but it may not be sufficient for identifying the factors underlying the abnormal 

increase of up to 80% in pollutants that was observed in April and September of 2020 

compared to 2018-2019. 
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5.5 Conclusion 

With the current need to decrease air pollution risks in regard to public health and the 

environment, air quality management is an emerging issue that has attracted global attention. 

The occurrence of the COVID-19 pandemic has indeed had a profound impact on many 

aspects of life and the economy; notably, due to the new normal lifestyle, nature has been 

reclaiming itself even in the absence of a strict lockdown (Muhammad et al., 2020). This 

study demonstrated and contributed to the spatiotemporal impact of COVID-19 on air quality 

variation across different regions in Taiwan and provided a preliminary monthly comparative 

analysis between air pollutant concentrations in 2020 and 2018-2019. 

In this study, substantial improvements were observed in the studied air pollutants, 

wherein both PM10 and PM2.5 showed the highest annual mean concentration reduction in 

2020 relative to 2018-2019, by 24% and 18%, respectively, followed by SO2, NO2, CO and 

O3, with reductions of 15%, 9.6% and 7.4% and 1.3%, respectively, even in the absence of 

lockdown. The occurrence frequency of air pollutants that may cause adverse health effects 

decreased by more than 30% in 2020 compared to 2018-2019, particularly in O3 and PM2.5. 

This study makes an important contribution to the literature as it is the first to investigate the 

impact and patterns of different modes of public transportation (i.e., including roadway, 

railway, air, and waterway) on air quality improvements in 2020. The change trends of CO 

and NO2, the major pollutants emitted from the public transportation sector, were found to 

be in parallel with the shift in traffic volume patterns in 2020. 

Similar to other reported studies, the seasonal variation in air pollutants (Figs. 5.4-

5.6) and their correlations with meteorological parameters (Fig. 5.9) were found to be 

significant in this study. However, in 2020, although a significant improvement in air quality 

was observed during the rainy season, the simulated meteorologically normalized BAU air 

pollutant concentrations were observed to be higher than those in 2018-2019 due to reduced 

precipitation (approximately 240 mm) and an approximately 5% reduction in the frequency 

of wind speeds of less than 1.5 m/s. This may imply a delayed COVID-19 effect on the 
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improvement in the air quality of Taiwan compared to the immediate improvements observed 

in countries that imposed lockdown, a phenomenon that has yet to be reported elsewhere. 

This study has revealed the long-term COVID-19 impacts on the atmospheric 

environment in Taiwan, incorporating public transportation use and meteorological impacts 

in the absence of lockdowns. The findings of this study are expected to provide 

comprehensive information to relevant authorities for sustainable planning on air quality 

management. All of these findings imply that public urban transportation sector emissions 

have a more significant impact than meteorological conditions in Taiwan. It is expected that 

the development of public transportation facilities will be further promoted in the future; 

therefore, to maintain or further improve the current situation, the use of energy-saving, 

cleaner fuel, and emission-reducing vehicles should be considered (Tian et al., 2021; 

Muhammad et al., 2020). Additionally, strategic transportation network design associated 

with proper traffic planning and traffic light operation for reducing traffic congestion issues 

(Hsieh and You 2021; Zhai et al. 2022), could be one of the key drivers to maintain/improve 

air quality. Nevertheless, although anthropogenic activity and public transportation use seem 

to have more significant impacts in improving air quality than meteorological parameters, 

the impact of climate change should be considered when formulating future policies, as 

increased climate variability is expected. This variability will consequently project 

incremental changes to air pollution concentrations that may lead to adverse effects on both 

the environment and human health. 
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Fig. 5.S1: Spatiotemporal distribution of monthly PM2.5 mean concentrations across Taiwan for 2018-2019 and 2020 
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Fig. 5.S2: Spatiotemporal distribution of monthly PM10 mean concentrations across Taiwan for 2018-2019 and 2020 
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Fig. 5.S3: Spatiotemporal distribution of monthly CO mean concentrations across Taiwan for 2018-2019 and 2020 
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Fig. 5.S4: Spatiotemporal distribution of monthly NO2 mean concentrations across Taiwan for 2018-2019 and 2020 
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Fig. 5.5: Spatiotemporal distribution of monthly O3 mean concentrations across Taiwan for 2018-2019 and 2020 
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Fig. 5.S6: Spatiotemporal distribution of monthly SO2 concentrations across Taiwan for 2018-2019 and 2020 
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Fig. 5.S7: Spatiotemporal distribution of (i) monthly cumulative precipitation volume and (ii) 

precipitation change across Taiwan for 2018-2019 and 2020. 
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Chapter 6 

Change analysis of machine learning-based 

meteorological-normalized NO2 and O3 during 

COVID-19 pandemic in the absence of lockdown 

In this study, a novel research framework is proposed to investigate the observed and 

meteorological-normalized concentrations of nitrogen dioxide (NO2) and ozone (O3) across 

62 cities in Taiwan. Four commonly adopted meteorological normalization techniques, 

namely the generalized additive model (GAM), generalized linear model (GLM), gradient 

boosting machine (GBM), and random forest (RF), were developed, optimized, and 

compared using nine meteorological and temporal variables. The models were optimized 

using systematic trial-and-error for data distribution type in GAM and GLM and using the 

grid-search approach for tree numbers in GBM and RF. The simulation performance of RF 

and GBM outperformed GAM and GLM across Taiwan, highlighting the importance of 

model selection and hyperparameter optimization for meteorological normalization. 

6.1 Introduction 

According to the World Meteorological Organization (WMO, 2021), global 

premature mortality due to air pollution increased by 2-fold in 2019 (4.5 million deaths) 

compared to 1990, with approximately 99% of the global population living with air pollution 

levels exceeding the World Health Organization (WHO, 2021) guidelines. Although 

numerous blueprints/actions have been proposed and implemented across different nations 

such as the Global Clean Air Initiative, Climate and Clean Air Coalition, and Clean Air Fund, 

the cross-cutting challenges, including the lack of financial resources, government 

transparency, and institutional and expert capacity, have resulted in outdoor air pollution 

remaining an unresolved problem (UNEP, 2021) until the emergence of coronavirus disease 

(COVID-19). The COVID-19 pandemic has prompted significant changes in the normal 

rhythm of livelihood, leading to most countries implementing lockdowns or imposing a range 

of stringent policies, such as compulsory mask-wearing and social distancing, to retard and 
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contain the transmission of the infectious virus. These restrictive measures associated with 

rapid vaccination rates have not only substantially reduced COVID-19 morbidity and 

mortality (Vasileiou et al., 2021) but have also led to significant reductions in anthropogenic 

emissions of air pollutants, shedding light on the sources of global air pollution.  

Throughout 2020, significant improvements in air pollution have been observed 

worldwide, with an approximately 30% reduction observed in major air pollutants e.g., 

carbon monoxide (CO), sulfur dioxide (SO2), nitrogen monoxide (NO), nitrogen dioxide 

(NO2), ozone (O3), and particulate matter with average aerodynamic diameters < 10 and 2.5 

µm (PM10 and PM2.5) (Addas and Maghrabi 2021). Numerous studies have investigated the 

impact of lockdown on air pollution and performed change analyses of air pollutant 

concentrations between pre-lockdown and lockdown periods (Rodríguez-Urrego and 

Rodríguez-Urrego 2020; Tobías et al., 2020) or in relation to the selected base year (Abdullah 

et al., 2020; Nakada and Urban 2020). Based on findings observed using the high-resolution 

Sentinel-5P/TROPOMI satellite and Google Community Mobility Reports over 164 

countries, Dang and Trinh (2021) concluded that reduced mobility and transportation use 

were factors influencing air quality improvement during the COVID-19 period. Similar 

findings utilizing station-based data have been reported in China (Zhu et al., 2020), Malaysia 

(Ash’aari et al., 2020), Brazil (Rudke et al., 2021), the United States of America (Archer et 

al., 2020), Italy (Gualtieri et al., 2020) and many other regions worldwide (Baysan et al., 

2021; Tian et al., 2021; Wetchayont, 2021; Anugerah et al., 2021).  

Nevertheless, few studies have focused on changes in air quality in regions that did 

not impose lockdowns, such as Taiwan. Compared to regions that imposed lockdown, 

contradictory findings were reported in Taiwan (Wong et al., 2022; Chang et al., 2021), in 

which there were insignificant changes or even higher concentrations of air pollutants despite 

the reduced mobility. One of the possible reasons for this extraordinary phenomenon may be 

the dynamic climate variability (Pei et al., 2020). Therefore, some researchers have adopted 

different meteorological-normalization approaches to decouple meteorological impacts and 

assess the impact of COVID-19-induced changes on air quality (Fu et al., 2021; Zhai et al., 
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2019; Petetin et al., 2020). Among these, machine-learning models are the most popular due 

to their reliability and robustness in capturing the complex and non-linear relationships 

between air pollutant concentrations and various meteorological and temporal variables 

(Petetin et al., 2020; Qu et al., 2020). Key relevant studies are summarized and the most 

commonly used modelling techniques and input parameter combinations are presented in 

Table 1. 

As shown in Table 6.1, all reported studies focus on identifying the impact of 

lockdown based on the difference between the observed and simulated business-as-usual 

(BAU) air pollutant concentrations. Commonly adopted meteorological parameters are 

station pressure (P_sta), atmospheric temperature (Tatm), wind speed (WS), wind direction 

(WD), rainfall (RF), and relative humidity (RH) whereas time-related variables are Julian 

day (JD), Unix time (UT), and weekday values (WV). Although most of the developed 

models presented good to very good performance in the training dataset (Munir et al., 2021a; 

Lovrić et al., 2021; Brancher 2021), most studies did not perform model verification for 

simulating meteorologically normalized BAU air pollutant concentrations. Model 

verification is essential to ensure that the executable model provides a sufficiently accurate 

representation of the system in the presence of unseen data to evaluate the robustness of the 

system (Trensch et al., 2018). Therefore, based on the previous studies, although significant 

differences of up to 150% were observed between the simulated and observed data (Petetin 

et al., 2020), the reliability of the developed models may be limited.  

Model-type selection and hyperparameter optimization are vital to improving their 

robustness and accuracy. Depending on the characteristics of the dataset, network 

hyperparameter optimization and the type of model also influence the accuracy of the 

simulated results. Imbalanced datasets are common in environmental datasets, particularly 

for atmospheric studies (Ramos-López and Maldonado 2021; Ketu and Mishra 2021; Asgari 

et al., 2017). As reported by Wong et al. (2021), network structures and model selection play 

important roles regarding distinct learning capacities and computational formulae. Despite 

some studies reporting the relative importance of variables, to the best of our knowledge, 
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optimal parameter combination, optimized network structures, and performance comparison 

between different models have not been performed.  

In light of these findings, and considering the effect of climate variability across 

Taiwan in the absence of lockdown, this study proposes a novel research framework for 

constructing robust models in quantifying the impact of COVID-19 on air pollutant 

concentrations. The research objectives were set as follows:  

i. To select and evaluate optimal hyperparameters for each constructed model;  

ii. To compare, verify, and adopt an optimized model for predicting air pollutant 

concentration; and  

iii. To perform spatiotemporal change analysis between observed and simulated 

data.  
 

To achieve these objectives, the concentrations of NO2 and O3, emerging air 

pollutants due to increasing traffic exhaust emissions, were simulated and compared (Tsai et 

al., 2021; Li et al., 2016). This research adopted the most commonly used modelling 

techniques and input parameter combinations (including meteorological and temporal 

variables), as summarized in Table 1. Four machine-learning techniques, namely, the 

generalized additive model (GAM), gradient boosting machine (GBM), generalized linear 

model (GLM), and random forest (RF), were constructed, evaluated, and compared. In this 

research, the daily concentrations/values of the studied parameters from 2015–2018 were 

selected as the training dataset, and 2019 was selected as the base year to verify and test the 

capability of the model for application under the BAU scenario. The output of the best-

performing model during the verification stage was used to quantify the COVID-19 impacts 

associated with the meteorological normalized BAU scenario through a geographic 

information system (GIS) platform. These findings are expected to support decision-making, 

guide future development, address air quality management issues, and bridge the current 

research gaps.  
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Table 6.1. Summary of meteorological-normalization modelling techniques for COVID-19 BAU simulation 

 

Authors 

(year) 
Country/City 

Modelled 

Air 

Pollutant(s) 

Input 

Variable(s) 

Data Period Model 

Type 
Model 

Verification 

Performance 

Criteria 

Rybarczyk & 

Zalakeviciute 

(2021) 

Ecuador 

NO2, SO2, 

CO, and 

PM2.5 

Meteorological: 

RH, RF, Tatm, 

SR, Psta, WS, 

and WD  

 

Temporal: 

JD, WV, H, DI 

Training: 

1 Jan. 2016 to 

15 Jan. 2020 

 

Testing:  

16 Jan. to 30 

Jun. 2020 

 

Gradient 

Boosting 

Machine 

No 
RMSE 

PCC 
 

Petetin et al. 

(2020) 

 

Spain NO2 

Meteorological: 

mean/min/max 

2m Tatm, 
normalized 10 

m zonal and 

meridian WS 

components, 

WS, Psta, SR, 

downward SR, 

downward 

UVR, BLH,  

 

Temporal: 

JD, WV, DI 

Training:  

1 Jan. to 31 

Dec. 2016-

2019 

& 

1 Jan. to 31 

Dec. 2020 

 

Testing:  

1 Jan. to 23 

Apr. 2016-

2019 

& 

1 Jan. to 13 

Mac. 2020 

 

Gradient 

Boosting 

Machine 

No 

MB 

nMB 

RMSE 

nRMSE 

PCC 
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Barré et al. 

(2021) 
European NO2 

Meteorological 

mean/min/max 

2m Tatm, 
normalized 10 

m zonal and 

meridian WS 

components, 

WS, Psta, SR, 

downward SR, 

downward 

UVR, BLH,  

 

Temporal: 

JD, WV, DI  

Training: 

2017-2019 

 

Testing: 

1 Jan. to 15 

Mac. 2020 

Gradient 

Boosting 

Machine 

No 

MB 

nMB 

RMSE 

nRMSE 

PCC 

 

 

Jephcote et 

al. (2021) 

United 

Kingdom 

NO2, NOX, 

O3, and 

PM2.5 

Meteorological: 

Tdew, Tatm, Psta, 

WS, WD, RH, 

CCH 

Training: 

75% of 1 Jan. 

to 31 Dec. 

2017-2019 

 

Testing:  

25% of 1 Jan. 

to 31 Dec. 

2017-2019 

 

Prediction: 

30 Mac. to 3 

May. 2020 

 

 

 

Gradient 

Boosting 

Machine 

Yes 

F2 

IOA 

COE 

R2 
 

Table 6.1. Summary of meteorological-normalization modelling techniques for COVID-19 BAU simulation (continued) 
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Granella et 

al. (2021) 

Lombardy, 

Italy 

NO2 and 

PM2.5 

Meteorological 

min/max Tatm, 

WS, WD, and 

RH,  

 

Temporal: 

DI, WD, MD 

Training: 

2012-2019 

 

Testing: 

1 Jan. to 31 

Mac. 2020 

Gradient 

Boosting 

Machine 

No 

MB 

nMB 

RMSE 

cRMSE 

ncRMSE 

PCC 
 

Wang et al. 

(2020) 

 

Megacities 

of China 

(Beijing, 

Chengdu, 

Shenzhen, 

Xi'an, 

Shanghai, 

and Wuhan) 

NO2, O3, 

CO, and 

PM2.5 

Meteorological: 

RH, WD, WS, 

Psta, and Tatm 

 

Temporal: 

JD, Y, WV, H, 

LD 

Training: 

1 Jan. 2019 to 

31 Apr. 2019 

 

Testing: 

1 Jan. to 31 

Apr. 2020 

Random 

Forest 
No 

F2 

MB 

NMB 

R2 

RMSE 
 

Shi et al. 

(2021) 

Beijing, 

Wuhan, 

Milan, 

Rome, 

Madrid, 

London, 

Paris, Berlin, 

New York, 

Los Angeles, 

Delhi 

 

 

 

 

 

NO2, O3, 

Ox, and 

PM2.5 

Meteorological: 

RH, WD, WS, 

Psta, and Tatm, 

AMC, BLH, 

CC, SR, RF 

 

Temporal: 

UT, JD, WD, H 

Training:  

70% of Dec. 

2015 to May. 

2020  

 

Testing:  

30% of Dec. 

2015 to May. 

2020 

Random 

Forest 
No 

F2 

MB 

NMB 

PCC 

IOA 

MGE 

NMGE 
 

Table 6.1. Summary of meteorological-normalization modelling techniques for COVID-19 BAU simulation (continued) 
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Diémoz et al. 

(2021) 

Aosta 

Valley, Italy 

NO, NO2, 

O3, PM2.5 

and PM10 

Meteorological: 

RH, WD, WS, 

Psta, Ttm, SR and 

RF 

 

Temporal: 

UT, JD, WD 

Training:  

2015-2019 

 

Testing:  

2020 

Random 

Forest 
No 

PCC 

MB 

 
 

Grange et al. 

(2021) 
European 

NO2, OX, 

and O3 

Meteorological: 

RH, WD, WS, 

Psta, and Tatm 

 

Temporal: 

UT, JD, WD 

and H 

Training: 

80% of 1 Jan. 

2018 to 14 

Feb. 2020 

 

Testing: 

20 % of 1 Jan. 

2018 to 14 

Feb. 2020 

Random 

forest 
No 

PCC 

MB 

NMB 

NRMSE 

 
 

Velders et al. 

(2021) 
Netherland 

NO2, NOx, 

O3, PM2.5, 

and PM10 

Meteorological: 

RH, WD, WS, 

Psta, Tatm, SR, 

CC and RF 

 

Temporal: 

DI and H 

Training: 

1 Jan. 2017 to 

29 Feb. 2020 

 

Testing: 

1 Mac. 2020 to 

30 May. 2020 

Random 

Forest 
No - 

Dobson and 

Semple 

(2020) 

Scotland 
NO2, and 

PM2.5, 

Meteorological: 

RH, WD, WS, 

Psta, and Tatm 

 

Temporal: 

JD, Y, WV, H, 

LD 

24 Mac. to 23 

Apr. in 2017-

2020 

 

(Details of 

training/testing 

data not 

provided) 

Random 

Forest 
No - 

Table 6.1. Summary of meteorological-normalization modelling techniques for COVID-19 BAU simulation (continued) 
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Fenech et al. 

(2021) 
Malta 

NO2, and 

O3 

Meteorological: 

RH, WD, WS, 

and Tatm 

 

Temporal: 

UT, JD, and 

WV 

Training: 

2008–2017 

 

Testing: 

1 Jan. 2020 to 

15 Oct. 2020 

Random 

Forest 
No 

RMSE 

R2
 

 
 

Brancher 

(2021) 

Vienna, 

Austria 

NO2, OX, 

and O3 

Meteorological: 

RH, WD, WS, 

Psta, and Tatm 

 

Temporal: 

UT, JD, WV 

and H 

Training 

1 Jan. 2015 to 

15 Feb. 2020 

 

Testing: 

16 Feb. to 29 

Feb. 2020 

 

Prediction: 

16 Feb. to 30 

Sep. 2020 

Random 

Forest 
Yes 

F2 

MB 

RMSE 

PCC 

IOA 

 
 

Lovrić et al. 

(2021) 

Graz, 

Austria 

NO2, O3, 

and PM2.5 

Meteorological: 

RH, WD, WS, 

Psta,Tatm and RH 

 

Temporal: 

M, JD, WV and 

DI 

Training 

3 Jan. 2014 to 

31 Dec. 2019 

 

Testing: 

3 Jan. to 10 

Mac. 2020 

 

Prediction: 

10 Mac. to 2 

May. 2020 

Random 

Forest 
Yes 

R2 

RMSE 

nRMSE 

 
 

Table 6.1. Summary of meteorological-normalization modelling techniques for COVID-19 BAU simulation (continued) 



 

177 
 

Dai et al.  

(2021) 

31 major 

cities of 

China 

SO2, NO2, 

O3, CO, 

PM2.5, and 

PM10 

Meteorological: 

RH, WD, WS, 

Psta, and Tatm, 

BLH, CC, SR, 

AMC and RF 

 

Temporal: 

UT, GD, WV 

and H, LD 

Training 

70% of 2015 

to 2020 

 

Testing: 

70% of 2015 

to 2020 

 

Random 

Forest 
No 

F2 

MB 

NMB 

MGE 

NMGE 

RMSE 

PCC 

COE 

IOA 
  

Talbot et al. 

(2021) 

New 

Zealand 

NO2, 

PM2.5, and 

PM10 

Meteorological: 

RH, WD, WS, 

and Tatm 

 

Temporal: 

UT, WN, and 

WV 

Training 

80% of 2015 

to 2019 

 

Testing: 

20% of 2015 

to 2019 

 

Prediction: 

2020 

Random 

Forest 
Yes 

MAE 

NRMSE 

R2
 

 

Solberg et al. 

(2021) 
Europe NO2 

Meteorological: 

RH, WD, WS, 

BLH and Tatm 

 

Temporal: 

JD, WN, and 

WV 

 

 

 

Training 

2015 to 2019 

 

Testing: 

2020 

 

Generalized 

adaptive 

model 

No 
PCC 

NMGE 
 

Table 6.1. Summary of meteorological-normalization modelling techniques for COVID-19 BAU simulation (continued) 
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Munir et al. 

(2021b) 

Reading, 

United 

Kingdom 

NO2, NOX, 

O3, and 

PM2.5 

Meteorological: 

RH, WD, WS, 

Patm and Tatm 

 

Temporal: 

H, MD, and 

WN 

Training and 

Validation: 

2018-2019 

 

Prediction: 

2020 

Generalized 

adaptive 

model 

Yes 

FAC2 

MB 

RMSE 

PCC 

MAE 
 

Munir et al. 

(2021a) 

Northern 

United 

Kingdom 

NO2, NOX, 

O3, and 

PM2.5 

Meteorological: 

WD, WS and 

Tatm 

 

Temporal: 

H, MD, and 

WN 

Training: 

80% of 2019-

2020 

 

Testing: 

20% of 2019-

2020 

Generalized 

adaptive 

model 

No - 

Abbreviation:  

Input Variables: station pressure (Psta), atmospheric temperature (Tatm), dew temperature (Tdew), class-A pan evaporation, 

(Evap), wind speed (WS), wind direction (WD), rainfall (RF), relative humidity (RH), sunshine hours (SH), global radiation 

(GR) and cloud cover (CC) ,atmospheric mass cluster (AMC), boundary layer height (BLH), Julian day (JD), unix time (UT) 

and weekday values (WV), Gregorian day (GD), Lunar day (LD), week number (WN), month number (MN), hour (H). 

Performance Criteria: root mean square error (RMSE), Pearson correlation coefficient (PCC), mean bias (MB), normalized 

mean bias (nMB), normalized RMSE (nRMSE), factor-of-two (F2), index of agreement (IOA), coefficient of determination (R2), 

centered RMSE (cRMSE), normalized centered RMSE (ncRMSE), mean gross error (MGE), normalized MGE (nMGE). 

Table 6.1. Summary of meteorological-normalization modelling techniques for COVID-19 BAU simulation (continued) 
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6.2. Materials and Methodology 

6.2.1 Research Area and Data Collection 

Taiwan is a densely populated island in East Asia (21.5–25.2 °N and 120.0–122.0 °E), 

with an average population density of 647 per km2 (National Statistics, 2021) and a land area 

of approximately 36,000 km2. Over half of Taiwan is mountainous and heavily forested, with 

the highest peak at an elevation of 3,880 m (Fig 6.1). Being located at the hub of the typhoon 

route, its climate is strongly affected by seasonal monsoons and typhoons, with more than 

70% of the mean annual precipitation (approximately 1,800 mm) occurring during the wet-

warm season (May-August) (Wu et al., 2019). High and steep topography leads to 

pronounced spatiotemporal variations in rainfall distribution (Hsu et al., 2020). Recently, the 

uneven distribution of precipitation across Taiwan has become more serious and frequent 

due to climate change, creating meteorological conditions that increase air pollutant 

dispersion, particularly in central and southern Taiwan (Cheng et al., 2021; Cheng and Hsu, 

2019). Therefore, to comprehensively evaluate COVID-19 in Taiwan's atmospheric 

environment, 62 daily air quality measurements were obtained at air quality monitoring 

stations across the regions (23 in Northern; 14 in Central; 2 in Eastern; 20 in Southern; and 

3 in Offshore) and data was collected from the corresponding meteorological stations.  
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Fig. 6.1: Topography and geographical location of Taiwan with locations of meteorological  

              and air quality monitoring stations 
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6.2.2 Proposed Research Framework 

To eliminate meteorological biases and verify the application of machine learning 

methods for quantifying the impacts of COVID-19 in the absence of lockdown, a flowchart 

of the proposed research framework is introduced, as illustrated in Fig 6.2. The framework 

comprises five major sections: data preprocessing, model construction, hyperparameter 

optimization, performance evaluation, and change analysis. A detailed discussion of each 

section is provided below: 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2: Schematic flowchart of the proposed framework for quantifying the spatiotemporal  

              changes between the meteorological-normalized business-as-usual and COVID-19  

              scenarios by utilizing different machine learning techniques. 

6.2.2.1 Data Preprocessing  

The 24-h averaged concentration/values of air pollutants and meteorological 

parameters between 1 January 2015 and 31 December 2020 were collected from the Taiwan 

Environment Protection Agency (TEPA 2021) and Central Weather Bureau (CWB 2020), 

respectively (except for precipitation for which a 24-h accumulated value was used). The 

upper limit of the buffer distance between the meteorological and air quality stations was set 

as 5 km to minimize spatial variability in the meteorological parameters of the air pollutants 
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(Peña Quiñones et al., 2019). Temporal variables were incorporated to enhance the accuracy 

of the model prediction and minimize the temporal variability (e.g., seasonal effect) of air 

pollutants. 

Prior to model construction, the collected dataset was normalized to the range of (0.1, 

0.9) to prevent the dominance of larger-value data over smaller-value data, expressed 

mathematically in Eq. (6.1) (Wong et al., 2021): 

𝑋𝑖
′ = 0.8 ×

𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
+ 0.1     (6.1) 

In Eq. (6.1), 𝑥𝑖 and 𝑋𝑖
′ represent the original and normalized values of the input parameter, 

respectively, and 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 denote the maximum and minimum values of the original 

input parameter, respectively.  

In this research, the complex non-linear relationship between the meteorological 

parameters and air pollutant concentration was captured, the performance of the models was 

assessed, and the normalized dataset was divided into training (2015–2018 dataset), and 

testing and verification (2019 dataset). 

6.2.2.2 Model Description 

Based on literature review findings summarized in Table 6.1, the commonly adopted 

GAM, GLM (base model of GAM), GBM, and RF models for quantifying COVID-19 

impacts under meteorological-normalized BAU scenario were selected. The detailed 

schematic diagram of the modelling process is illustrated in Fig. 6.3. A brief description of 

the selected models is provided as follows. 
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 Fig. 6.3: Detailed schematic diagram for modelling meteorological-normalized business-as- 

               usual NO2 and O3 concentrations. 

6.2.2.2.1 GLM technique 

GLM is an extension of the traditional linear regression models that was formulated 

by Nelder & Wedderburn (1972). The GLM is widely applied in environmental studies due 

to its simplicity relative to the robust regression (Saggi & Jain, 2019). To establish a linear 

relationship between response and predictor variables, an exponential family distribution 

(e.g., Gaussian and Poisson) is assigned for responses along with a predefined link function, 

as expressed in Eq. (6.2).  

𝑔(𝐸(𝑦𝑖)) = 𝛽0 + ∑ 𝛽𝑗(𝑥𝑖,𝑗)𝑘
𝑗=1 + ε   (6.2) 

In Eq. (6.2), 𝑦𝑖  represents the measured air pollutants concentration (NO2/O3) in 𝑖𝑡ℎ day at a 

specific monitoring station, while 𝑥𝑖  represents the measured meteorological and temporal 

parameters value in 𝑖𝑡ℎ day with 𝛽𝑗, the regression coefficients of 𝑥𝑗; 𝛽0 and ε represent the 

constant intercept and error term, respectively; 𝑔 denotes the link function which connect the 

expected value Yi to the xi,j. 

https://en.wikipedia.org/wiki/Exponential_family
https://en.wikipedia.org/wiki/Link_function
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6.2.2.2.2 GAM technique 

GAM was proposed and developed by Hastie & Tibshirani (1990), an addendum of 

GLM, in which non-linear relationship between response and predictor variables are 

incorporated (Shafizadeh-Moghadam et al., 2018). The semiparametric GAM provides a 

more flexible structure for the response variable by allowing additivity of non-linear smooth 

functions ( 𝑓𝑗)  to replace the defined parametric relationship (𝛽𝑗)  on the covariates 𝑥𝑗 , 

expressed mathematically in Eq. (6.3).  

𝑔(𝐸(𝑦𝑖)) = 𝛽0 + ∑ 𝑓𝑗(𝑥𝑖,𝑗)𝑘
𝑗=1 + ε                               (6.3) 

6.2.2.2.3 GBM technique 

GBM, an ensemble model that integrated both gradient descent and decision tree 

methods for minimizing the overfitting issues of traditional ensemble methods, through 

bagging and boosting algorithms. The learning procedure of GBM consecutively combine 

and optimize multiple shallow and weak successive classifiers or "trees" to reach the 

maximum negative gradient of the loss function for a more accurate estimation of the 

response variable (Alzamzami et al., 2020). In this research, as the response variable values 

(concentrations of NO2 and O3) are continuous, squared-error loss function is applied 

(Natekin & Knoll, 2013). The general mathematical representation of GBM is expressed as 

follows (Rong et al., 2020): 

 

𝑌𝑖 = ∑ 𝜃𝑖ℎ𝑖(𝑥);
𝑗
𝑖=1                                                       (6.4) 

In Eq. (6.4), 𝑌𝑖  represents the predicted air pollutant concentration; ℎ𝑖(𝑥) denotes the weak 

classifier in each iteration while 𝜃𝑖 represents the loss function which can be described: 

 𝜃𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖 , 𝑌𝑖−1(𝑥𝑖) + 𝜃𝑖ℎ𝑚(𝑥))𝑀
𝑚=1         (6.5) 

In Eq. (6.5), argmin function is the argument of minimum; 𝑌𝑖−1(𝑥𝑖) denotes the present 

iteration and 𝐿 represents a differentiable squared-error loss function. Detailed description 

can refer to Friedman (2001). 
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6.2.2.2.4 RF technique 

RF model was introduced by Breiman (2001) which utilizes multiple decision trees 

as base classifier and integrated with bagging method for aggregating a whole forest of trees 

separated with oblique hyperplanes to obtain the final prediction (expressed mathematically 

in Eq. (6.6). As each tree is independently grown without pruning using a bootstrap sample 

of the training data (random data subset and subset of predictor variables), the tree diversity 

promotes the model stability which in turn reduces the generalization error or overfitting 

issues in decision tree technique(Ließ et al., 2012; Carranza et al., 2021). Further detailed 

description of RF technique is provided in by Breiman (2001). 

𝑌𝑟𝑓,𝑖 =
1

𝐽
∑ 𝑇𝑗(𝑥𝑖);𝐽

𝑗=1                                                       (6.6) 

In Eq. (6.6), 𝐽 represents number of trees; 𝑇𝑗(𝑥𝑖) denotes the output of ensemble of trees in 

𝑖𝑡ℎ  day at a specific monitoring station and 𝑌𝑟𝑓,𝑖  represents the averaged air pollutant 

concentrations for random forest.  

6.2.2.3 Hyperparameter Optimization 

Hyperparameter tuning is crucial in machine learning models to achieving maximum 

learning capacity during training process and providing highest prediction performance 

during the testing stage due to the distinct data characteristics. Therefore, to obtain the 

optimized network structure of the models, as shown in Fig. 6.3, trial-and-error approach and 

grid-search approach are applied on GLM/ GAM and GBM/RF, respectively.  

 For GLM and GAM, the critical hyperparameter selected in this research is data 

distribution family type (Nzediegwu et al., 2021; Thompson et al., 2014) whereas for GBM 

and RF, is number of trees (Oyedele et al., 2021; Akbar et al., 2021). Six different data 

distribution from (i) Classical: Binomial, Gaussian, Poisson, and (ii) Quasi-based: Quasi-

binomial, Quasi-Gaussian and Quasi-Poisson were tested in both GLM and GAM (Zeileis et 

al., 2008). For GBM and RF, the number of trees ranged between 10 to 10000 and the 

optimized value is determined using coarse grid-search and followed by fine grid-search 

methods. During the coarse grid-search, for range between 10 to 100, the interval was set 10 

whereas for range between 100 to 10000, the interval was set at 100. Fine-grid search was 
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conducted at lower interval (minimum 10) around the range of optimized values obtained 

from coarse grid-search. For instance, if the optimized coarse grid-search value is 2000, at 

the interval of 100, the number of trees at 1100 to 2900 will be performed, followed by an 

interval of 10 around the range of optimized values. 

6.2.2.4 Evaluation Criteria 

Various evaluation criteria have been proposed and formulated to evaluate the 

model's performance; however, till present, there is no universal evaluation criterion that can 

provide comprehensive assessment on the model. Therefore, to fairly compare and evaluate 

the models' performance from different perspectives, this research adopted three evaluation 

criteria categories: scale-dependent error, percentage-based error, and efficiency-based error 

(C. Chen et al., 2017; Despotovic et al., 2015).  

Scale-dependent error metrics are utilized to compare the dataset within the same 

scale (Hyndman & Koehler, 2006). However, one of the major limitations of these measures 

is it cannot be applied to compare accuracy results across dataset under different scale. In 

this research, two common scale-dependent error metrics, namely mean absolute error 

(MAE) and root mean square error (RMSE) are adopted, expressed respectively in Eqs. (6.7) 

and  (6.8).  

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑌𝑖 − 𝑦𝑖|𝑛

𝑖=1    (6.7) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖 − 𝑦𝑖)2𝑛

𝑖=1    (6.8) 

Percentage-based error metrics are dimensionless; therefore, it is commonly used to 

compare different modelling methods across different datasets. One of the major drawbacks 

of this metric is its tendency towards infinity when the observed values closed to zero (Soyiri 

& Reidpath, 2012; Nigitz & Gölles, 2019). Therefore, the data normalization described 

aforementioned is crucial to avoid this occurrence. The percentage-based error metrics 

included are mean absolute percentage error (MAPE) and root mean square percentage error 

(RMSPE), expressed respectively in Eqs. (6.9) and (6.10).  
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𝑀𝐴𝑃𝐸 =
1

𝑛
 
∑ |𝑌𝑖−𝑦𝑖|

𝑛
𝑖=1

�̅�𝑖

×  100%   (6.9) 

𝑅𝑀𝑆𝑃𝐸 = √
1

𝑛

∑ (𝑌𝑖−𝑦𝑖)
2𝑛

𝑖=1

�̅�𝑖

 ×  100%  (6.10) 

In Eqs. (6.9) and (6.10), �̅�𝑖  represents mean values of 𝑦𝑖. 

Efficiency-based error metrics are crucial in quantifying the variation/goodness-of-

fit between the simulated and observed dataset. Although efficiency metrics such as 

coefficient of determination (R2) and index of agreement (IOA) (expressed in Eqs. (6.11) and 

(6.12), respectively) are commonly adopted to evaluate the model's performance, these 

metrics are insensitive to over- or under-prediction (Krause et al., 2005).  

𝑅2 = 1 −
∑ (𝑦𝑖−𝑌𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�𝑖)2𝑛
𝑖=1

     (6.11) 

𝐼𝑂𝐴 = 1 −
∑ (𝑦𝑖−𝑌𝑖)2𝑛

𝑖=1

∑ (|𝑌𝑖−�̅�𝑖|+|𝑦𝑖−�̅�𝑖|)2𝑛
𝑖=1

    (6.12) 

6.2.2.4.1 Global Performance Index  

To comprehensively evaluate the model's performance, this research adopted global 

performance index (GPI) which integrated different perspective statistical evaluations 

aforementioned into a single index (Eq. 6.13) (Despotovic et al., 2015).  

𝐺𝑃𝐼𝑖 = ∑ 𝛼𝑗(�̃�𝑗 − 𝛽𝑖𝑗)6
𝑗=1     (6.13) 

In order to prevent the dominance effects of larger error value over the smaller error 

value, all indicators are normalized using Eq. (6.1). In Eq. (6.13), 𝛼𝑗 represents the weight 

factor (𝛼𝑗  equals -1 for R2
 and IOA, and equals to 1 for other evaluation criteria); �̃�𝑗 

represents the median of normalized values of evaluation criterion j whereas  𝛽𝑖𝑗 represents 

the normalized value of evaluation criterion j for model i.  
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6.2.2.4.2 Average Rank Score 

Since the hyperparameter optimization for GAM and GLM is categorical based, an 

average rank score (ARS) was adopted to identify the optimized data distribution type (Chia 

et al., 2021). Specifically, for each monitoring station, 12 models were compared (6 data 

distribution family type x 2 (Training dataset and Testing Dataset)). The model with the 

lowest GPI value was assigned the ranking score=1 (Worst), whereas the model with the 

highest GPI value was assigned with ranking score=12 (Best). The sum of ARS for all 

monitoring stations were adopted for evaluating the optimized data distribution in this 

research (Huang et al., 2019). 

6.2.2.5 Spatiotemporal Change Detection Analysis 

The monthly mean percentage change between the observed and simulated air 

pollutants was computed using Eq. (6.14) (Hu et al., 2021). The spatiotemporal variation of 

monthly mean concentration and percentage difference between the observed and simulated 

NO2 and O3 concentrations were performed using ArcGIS 10.8 platform, utilizing inverse 

distance weighting method under spatial analyst module (Wong et al., 2020) 

Percentage Change (%)=
Conc2020_obs-Conc2020_sim

Conc2020_obs
×100%   (6.14) 

In Eq. (6.14), 𝐶𝑜𝑛𝑐2020_𝑜𝑏𝑠  and 𝐶𝑜𝑛𝑐2020_𝑠𝑖𝑚 represent the observed and simulated mean 

monthly concentration of pollutants in 2020. 
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6.3 Results and Discussions 

6.3.1 Optimized GLM and GAM models 

A total of 744 GLMs and GAMs (2 models × 62 sites × 6 data distributions family 

type) were developed for simulating the BAU concentration of each air pollutant in this 

research. To select the optimized distribution family type for GLM and GBM, the average 

rank score for NO2 and O3 under different data distribution are presented in Fig. 6.4 (a) and 

(b), respectively. 

 For GLM, according to Fig. 6.4, the performance of GLMs under classical data 

distribution are same as the Quasi-based data distribution for both NO2 and O3 simulations 

(e.g., results obtained between Gaussian and Quasi-Gaussian). Quasi-based data distribution 

was developed to overcome the overdispersion in computation, in which a dispersion 

parameter was considered by specifying the relationship on the mean and variance of dataset 

according to the type of distribution selected. In this research, for GLM models developed 

utilizing classical data distributions, the dispersion ratio was approximately equal to 1 , 

indicating no overdispersion occurred (Payne et al., 2018). Therefore, only conventional data 

distribution will be discussed for GLM. As shown in Table 6.2, for GLM, the optimal data 

distribution type for both NO2 and O3 is Gaussian, with ARS test_NO2 and ARStest_O3 of 10.661 

and 9.581, respectively; followed by Binomial, with mean ARStest_NO2 and ARStest_O3 of 5.306 

and 3.742, respectively; and Binomial, with mean ARStest_NO2 and ARStest_O3 of 4.629 and 

3.613, respectively.  

On the other hand, for GAM models, it was noticed that the ψ was larger than 1.1, 

indicating the occurrence of overdispersion. A possible reason for the observation might be 

due to the more complicated non-linear smooth function adopted in GAM as compared to the 

constant regression coefficient adopted in the GLM, leading the residual deviance was larger 

than the residual degrees of freedom utilizing conventional distributions (Guikema et al., 

2010; Lee & Nelder, 2000). For NO2 simulation, the top three data distributions type for 

GAM are Quasi-Gaussian (ARStest_NO2=7.064), Gaussian (ARStest_NO2=7.064), and Binomial 

(ARStest_NO2=7.064); whereas for O3 simulation, the top three data distribution type for GAM 
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are Poisson (ARStest_O3=6.968), Binomial (ARStest_O3=5.710) and Gaussian 

(ARStest_O3=4.758). Although it could be observed that most Quasi-based models illustrated 

relatively better performance in training dataset; however, the testing results are much poorer 

than conventional data distributions, particularly in O3 simulation. Although the dispersion 

ratio in GAM is larger than two in all conventional data distributions, it was just slightly 

beyond the limit (ranging between 1.2-1.4). The further adjustment of the dispersion 

parameter in Quasi-based data distribution may have caused poorer simulation for testing 

dataset due to overfitting in training data (Zhang et al., 2012; Zou et al., 2017).  

As reported by Lorenzo et al. (2021) and Ravindra et al. (2019), Poisson-based data 

distribution was selected as the most suitable distribution type for air pollution modelling for 

GAM and GLM, respectively; however different findings were found in this research. For 

GLM, the optimal data distribution for both NO2 and O3 modelling is Gaussian data 

distribution, whereas for GAM, the optimal data distribution for NO2 and O3 simulation is 

Quasi and Poisson, respectively. Based on these findings, the importance of performing 

optimal data distribution selection for GLM and GAM are shown. Although the optimal data 

distribution selection may be varied in different monitoring stations under the influence of 

the geographical and climate variations; still, associated with the application of ARS, it serves 

as a basis of proper data distribution type selection, especially for studies incorporating large 

research area.  
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Fig. 6.4: Mean average rank score of GLR and GAM for 62 monitoring stations under  

              different data distribution family type 
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Table 6.2: Mean average rank score of GLR and GAM for 62 monitoring stations under  

                  different data distribution family type 

 

6.3.2 Optimized GBM and RF models 

In most reported studies summarized in Table 6.1, the number of trees in GBM and 

RF models were usually fixed by default or adopted from published references. However, 

referring to Figs. 6.5 and 6.6 (model's performance of NO2 and O3 in coarse grid-search, 

respectively) the optimal tree number varied significantly across the monitoring stations as 

well as the pollutant type. The optimized GBM and RF models through fine grid-search will 

be discussed in Section 6.3.3. 

During the training (testing) stage, GBM shows much higher variation in model's 

performance (> ± 200%) under different number of trees as compared to RF, with GPI 

ranging from -4.2 to 4.2 (-5.0 to 1.0) and -1.3 to 4.2 (-2.3 to 0.0) for NO2 and O3 simulation, 

respectively. The results demonstrate that the GBM has higher sensitivity and dependency 

towards the number of trees included in the model. Structurally, although both RF and GBM 

For NO2 simulation 

Distribution 

Family Type 

Generalized Linear 

Model (GLR) 
Dispersion 

ratio 

Generalized Additive 

Model (GAM) 
Dispersion 

ratio 
Training Testing Training Testing 

Binomial 3.113 5.306 1.003 4.742 7.000 1.153 

Gaussian 10.339 10.661 1.004 11.605 6.935 1.126 

Poisson 4.952 4.629 1.003 5.968 6.565 1.129 

Quasi-Gaussian 10.339 10.661 1.003 11.395 7.065 1.168 

Quasi-Binomial 3.113 5.306 1.004 5.387 1.452 1.115 

Quasi-Poisson 4.952 4.629 1.003 7.774 2.113 1.134 

   

For O3 simulation 

Distribution 
Family Type 

Generalized Linear 

Model (GLR) 
Dispersion 

ratio 

Generalized Additive 

Model (GAM) 
Dispersion 

ratio 
Training Testing Training Testing 

Binomial 3.581 3.742 1.008 5.452 5.710 1.374 

Gaussian 10.419 9.581 1.006 11.677 4.758 1.269 

Poisson 5.065 3.613 1.005 7.258 6.968 1.315 

Quasi-Gaussian 10.419 9.581 1.008 11.323 4.903 1.442 

Quasi-Binomial 3.581 3.742 1.006 6.532 1.258 1.389 

Quasi-Poisson 5.065 3.613 1.005 9.452 2.710 1.234 



 

193 
 

appear to be similar as their learning are based on decision tree algorithm, nonetheless, the 

models differed significantly in tree-building/learning process. The GBM sequentially build 

each tree at a time and improves relying on the prior trees, causing it to be non-parallelizable 

(Natekin & Knoll, 2013) and has high sensitivity to noises in dataset (Cortes-Ciriano et al., 

2015) as compared to RF. As the relationship between air pollutant and meteorological data 

are stochastic and dynamic (González-Recio et al., 2013), therefore large variation of 

generalization performance in GBM was observed at different number of tree. 

On the other hand, RF shows relatively more stable simulation performance 

(approximately ± 25%), for training (testing) dataset even under large range number of tree, 

with GPI ranging from 1.8 to 2.9 (-3.5 to -2.0) and 2.6 to 2.9 (-3.3 to 2.7) for NO2 and O3 

simulation, respectively. This is due to RF has higher parallelization compared to GBM as 

all trees are built independently by maximizing the information from randomized dataset 

(Probst et al., 2019). According to Fig. 6.6(b), although it could be observed that most of the 

models' performance increase as the number of trees increases in the training dataset for NO2 

simulation, poorer performance is observed in the testing dataset, which might be due to the 

occurrence of overfitting (Richter et al., 2016). However, for O3 simulation (Fig. 6.5(b)), this 

phenomenon is inconspicuous. As reported in Probst & Boulesteix (2017), these contradicted 

phenomenon might due to the characteristics of variables (both input and output) in the 

dataset, highlighted the importance of testing large range of tree in order to more precisely 

optimizing the model.   
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Fig. 6.5: Effects of number of trees on (a) GBM and (b) RF for NO2 simulation across 62  

               monitoring stations. Heatmap representations illustrate the GPI values for both  

               training and testing dataset 
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Fig. 6.6: Effects of number of trees on (a) GBM and (b) RF for O3 simulation across 62  

               monitoring stations. Heatmap representations illustrate the GPI values for both  

               training and testing dataset 
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6.3.3 Selection of Optimized Modelling Type 

A robust and accurate model is an important pre-requisite for reliable simulation of 

air pollutants’ concentrations. In previous sections, the performance of the optimized GLM, 

GAM, GBM and RF for simulating the concentrations of NO2 and O3 during the training 

(2015-2018) the testing period (2019) was evaluated in terms of various criteria and the 

comprehensive GPI. In this section, the most suitable modelling technique of each 

monitoring station for NO2 and O3 simulation will be selected based on the performance of 

the models as summarized in Tables 6.S1 and 6.S2, respectively. 

Fig. 6.7 illustrates the boxplots of the six performance criteria and the Taylor diagram 

that shows the average GPI as well as the standard deviation of GPI for NO2 and O3 

simulations using the four aforementioned machine learning techniques. The boxplots serve 

to visualise the performance variance of different models at different stations across Taiwan, 

whereas the Taylor diagrams provides a more comprehensive view of the overall 

performance. It is noteworthy to mention that the performance deterioration was very drastic 

for the case of GAM and RF. Not only had their simulation accuracies became lower, at the 

same time the expansion of the boxplots for the two models indicated that the performance 

variance across the whole Taiwan had increased, resulting in less stable performance. Potts 

& Rose (2018) had suggested that both GLM and GAM share mutual framework, in which 

the GAM considers additional smoothing function for at least one covariate. This has resulted 

in the GAM to be able to model non-linear processes to the better extent, and outperformed 

GLM when it was used for the training dataset. However, due to the dynamic climate 

variability, the GAM models seem unable to capture the essential relationship among 

parameters, leading to the poor testing performance. Despite many literatures claiming that 

the GAM is a more powerful model than the GLM, however, contradicted phenomenon was 

reported in this research (Fig. 6.7).  
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Fig. 6.7: Boxplots for six performance criteria (MAE, RMSE, MAPE, RMSPE, R2
 and IA)  

                      and Taylor diagram of average GPI and standard deviation of GPI under four  

               machine learning techniques for (a) NO2 and (b) O3 simulations. The brown, red,  

               green, and blue colour indicates performance of GAM, GLM, GBM and RF,  

               respectively; whereas the solid and striped colours represent performance for   

               training dataset and testing dataset, respectively.  
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Similar issue was faced by the RF for NO2 simulation whereby the RF could simulate 

well for the training data but not for the testing data. While both the GBM and RF are tree-

based, such phenomenon was not observed for the GBM. The core difference between the 

GBM and RF is that the former is trained progressively by working on the residual of 

previous tree, leading to the minimisation of the bias. On the other hand, trees of the RF are 

trained in parallel and independent on each other. The randomness is the key factor of the RF 

performance, and poor randomization or insufficient could lead to higher bias (Barthwal et 

al., 2021). This could explain the difference in performance of the GBM and RF.  

Despite having poorer performance than the GBM, the RF still managed to perform 

better than the GAM and GLM. The Taylor diagram in Fig. 6.7(a) indicates that the GBM 

and RF had the highest average GPI across the 62 selected stations. RF with training dataset 

had higher standard deviation of GPI, probably due to the bias of the model to certain regions. 

Fig. 6.S1 illustrates the optimal modelling techniques for both NO2 and O3 across each 

monitoring station for the whole Taiwan. The model selection at the individual station was 

based on the GPI value. It can be seen that only the GBM and RF were selected as they 

achieved better GPI score. For NO2 simulation, based on Fig. 6.S1(a), GBM dominated most 

of the areas in Taiwan as the selected models for O3 concentration simulation, including the 

Northern (13/23 stations), Central (11/14 stations) and Southern (14/20 stations) regions 

whereas the RF was only favoured in the Offshore (3/3 stations). 

The same approach was used to select the best model of O3 concentration. In this case, 

the GAM exhibited notable difference in performance as compared to the other three machine 

learning techniques. As illustrated in Fig. 6.S1 (b), similar to NO2 simulation, the GBM 

dominated in the Northern (20/23 stations), Central (9/14 stations), Eastern (2/2 stations) and 

Southern (16/20 stations) whereas the RF was only favoured in the Offshore (3/3 stations). 

It is worth to mention that the domination of the GBM for O3 concentration simulation was 

much decisive than the NO2 concentration simulation, whereby higher number of stations 

opted for GBM in the Northern and Southern regions. 
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From the currents research, it can be inferred that the GAM is not suitable for NO2 

and O3 concentration simulation in Taiwan. As for the GLM, despite having high stability 

with low performance variance, its accuracy in terms of the six evaluation criteria and GPI 

was still slightly lower than the GBM and RF. With high computational capacity, different 

models could be used to simulate NO2 concentration at different regions of Taiwan, however, 

the GBM, with its outstanding balance accuracy and generalization shall be opted if only one 

model is to be used over the whole Taiwan. 

6.3.4 Change Detection Analysis 

By utilizing the meteorological normalized data simulated from best performing 

models, the impact of COVID-19 on air quality can be better quantified by identifying the 

spatiotemporal trend of monthly mean percentage change for NO2 and O3 concentration 

between BAU scenario with the observed data. The observed and simulated daily mean 

concentration of NO2 ranged between 0.8–27.0 and 1.8–29.8 ppb, whereas for O3, they 

ranged 12.6–87.2 and 14.6–67.8 ppb, respectively (Figs. 6.S1 and 6.S2).  

For NO2 and O3 simulation, the observed and simulated meteorological normalized 

BAU scenario utilizing best performing models across Taiwan is illustrated in Fig. 6.8. 

Referring to Fig. 6.8(a), although in the absence of a lockdown, the observed NO2 

concentrations in 2020 were usually lower than the simulated BAU concentrations across 

different cities, with mean concentration reduced by approximately 14.9%. For both observed 

and simulated BAU concentrations, the daily mean concentrations of NO2 are in compliance 

with the Taiwan national standard where NO2 is always ≤ 30 ppb. Due to different 

socioeconomic and urbanization level across Taiwan, the NO2 concentration change varied 

spatially, ranging between reduction up to 60% and increment up to 80% (observed in the 

offshore islands). Keller et al., (2021) performed XGBoost machine learning algorithm to 

access the 6-month (January to June 2020) change of NO2 and O3 in 46 countries at over 

5,700 monitoring stations. It was reported that the observed NO2 concentration declined by 

18% as compared to BAU scenario, similar improvement shown in Taiwan. This implies that 
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the reduced human activity and mobility under the government measures and public 

awareness might played a major role for the improvement instead of the climate.   

 On contrary to NO2 continual improvement throughout 2020, significant reduction 

up to 78% of O3 concentration was only observed in June to August 2020 and an abnormal 

increment up to 45% was observed in April and September. The meteorologically normalized 

daily O3 across all cities in Taiwan was below the standard (O3: ≤ 71 ppb), however for the 

observed dataset, abnormally high O3 was detected, particularly in Northern and Southern 

regions (frequency = 43 times). Throughout 2020, eliminating the meteorological impacts, 

the mean O3 concentration was observed to have reduced by approximately 5.8%. The 

significant increment of O3 concentration in April 2020 was observed globally, primarily due 

to the effects of reduced mobility and anthropogenic emissions, after the declaration of 

pandemic by WHO (Tang et al., 2021). Although there was no lockdown imposed in Taiwan; 

Taiwan Government imposed restrictive measures such as border restriction and crowd 

control at travel hotspots, which has subsequently led to minimal community mobility in all 

forms of transportation in April and drastically reduced the NOx (NO+NO2) and volatile 

organic chemicals (VOCs) emissions (Zhang et al., 2021). Similar to most regions, most of 

the monitoring stations are installed in urban areas, where the O3 production are usually 

VOC-limited. Therefore, the decrease in NOx might have led to its abnormal increment in 

April (Fenech et al., 2021). In September, due to the effects of unprecedented transboundary 

pollution associated with the Asian high-pressure ridge, an elevated ozone concentration was 

observed in the North and Southern regions (Keoni, 2020). 

 Referring to the Fig. 6.8, substantial improvement in NO2 and O3 could be observed 

after eliminated the meteorological impacts (except for O3 in September). Their results 

presented implied that the reduction/disruption of anthropogenic emissions even in the 

absence of a lockdown is more pronounced as compared to the meteorological impacts in 

Taiwan. The findings are in consistent with most of the reported literature where lockdown 

was imposed, only with a smaller magnitude of improvement (Liu et al., 2022, Petetin et al., 

2020), highlighting a new insight/approach for air quality management.  
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6.4. Implications and Limitations 

The utilization of different modelling techniques for quantifying the COVID-19 

impacts is imperative, and extensive research has been carried out across the globe; however, 

the modelling framework has not yet been clearly established. Based on the findings, this 

research has proven the importance of modelling method chosen and the necessity to perform 

hyperparameter optimization for each monitoring station during the simulation of BAU 

concentrations of air pollutants. In addition, most studies reported poorer simulation 

performance of O3 simulation due to complex photochemical reactions with NOx, VOCs and 

meteorology (Brancher, 2021, Fenech et al., 2021, Lee et al., 2020). Under systematic 

optimization and proper modelling method selection, it could be observed that the developed 

models not only performed well in simulating the primary pollutant (NO2), but also for the 

secondary pollutant (O3). Therefore, the proposed framework in this research could be useful 

to facilitate and investigate the meteorological-normalized scenario over air pollutants for 

special incidence. 
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Fig. 6.8: Spatiotemporal change detection analysis for (a) NO2 and (b) O3 concentration in  

               Taiwan between observed and simulated meteorological normalized BAU scenario. 

Ozone has been identified as the major health-threating air pollutant worldwide, and 

recognized as the emerging air pollutant in Taiwan due to increasing detection of non-

attainment frequency, with O3 concentration  > 71 ppb (Chen et al., 2021). Despite the 

ubiquitous decrease in NO2 observed throughout 2020, however insignificant improvement 

for O3 or worse, significant increment of O3 could be observed, which might be attributed to 

the higher VOC/NOx ratio. This might increase the mortality burden from cardiorespiratory 

diseases, especially to the vulnerable population (Li et al., 2021). Based on this phenomenon, 

for better management of O3 pollution, stringent emission control is crucial, not only on the 

primary pollutants but also the precursors like VOCs.  
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Several limitations of this research that must be acknowledged. Due to intensive 

computation required during model selection and hyperparameter optimization across 62 

monitoring stations, this research only simulate the daily mean concentrations of NO2 and 

O3. Phenomenon such as downpour or sudden pollution might not be reflected in this research. 

In addition, the long-range transportation of pollutants sourcing was not performed, therefore 

underlying reasons (local emission or transboundary emission) for the changes of 

concentration in NO2 and O3 between observed and simulated data might not be clearly 

evaluated in this research.  

6.5 Conclusions and Future Recommendations 

With the increasing popularity on quantifying the impacts of COVID-19 induced 

lockdown on the air quality utilizing different modelling techniques, this research has a 

marked importance to provide an insight of COVID-19 on air pollutants to region without 

lockdown imposed. This research has utilized and compared four different AI methods, 

namely GAM, GLM, GBM and RF to quantify the spatiotemporal impacts of COVID-19 on 

NO2 and O3 concentrations across 62 cities in Taiwan under meteorological-normalized BAU 

conditions.  

Based on the findings, the selection of modelling method and the optimization of 

hyperparameter is crucial for each studied monitoring station for simulating the BAU 

concentrations of air pollutants. For GLM, the optimal data distribution for both NO2 and O3 

modelling is Gaussian data distribution, whereas for GAM, the optimal data distributions for 

NO2 and O3 simulation are Quasi and Poisson, respectively. Meanwhile, for RF and GBM, 

the optimized number of trees is highly site dependent. Due to the complicated and non-linear 

characteristics between the air pollutants with temporal and meteorological parameters, 

regression-based models (GAM and GLM) have the poorest performance. For Taiwan, it 

could be observed that tree-based models (RF and GBM) are more suitable for simulating 

the NO2 and O3 BAU concentrations. 

 Throughout 2020, even in the absence of a lockdown, the daily mean meteorological-

normalized NO2 and O3 across Taiwan were observed to reduce by 14.9 and 5.8%, 
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respectively with significant spatiotemporal variation. Due to the frequent occurrence of 

downpour in recent decades, further studies on higher temporal resolution such as hourly are 

required to better understand the meteorological impacts to the air pollutants. Furthermore, 

to sustainably maintain the air quality management, future studies should also identify the 

possible pollution sources (e.g., type of industry, local emission, or transboundary pollution) 

so that the corresponding mitigations can be performed by relevant authorities. This 

unexpected "global experiment" provided an opportunity to assess the weight of 

anthropogenic activity and the changing climate on enhancing the environment (Rybarczyk 

& Zalakeviciute, 2021). However, measures like lockdown will be unlikely to be imposed 

indefinitely. Therefore, based on the findings in this research, it is expected to provide a new 

insight/approach for better air quality management.  
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Table 6.S1: Summary of optimized modelling techniques for NO2 simulation and its corresponding GPI values 

Station 

number 

GLM GAM GBM RF 

Distribution 
Family 

GPI_Train GPI_Test 
Distribution 

Family 
GPI_Train GPI_Test 

Number 
of Tree 

GPI_Train GPI_Test 
Number 
of Tree 

GPI_Train GPI_Test 

1 Gaussian -0.249 -0.312 Poisson -4.437 -4.415 120 0.228 0.391 90 1.388 0.379 

2 Gaussian -0.220 -0.386 Poisson -4.334 -4.397 560 0.439 0.363 170 1.478 0.361 

3 Gaussian -0.300 -0.394 Poisson -4.669 -4.779 770 0.476 0.446 290 1.146 0.360 

4 Gaussian -0.327 -0.424 Poisson -4.437 -4.432 570 0.381 0.454 1130 1.400 0.490 

5 Gaussian -0.363 -0.323 Poisson -4.392 -4.363 420 0.319 0.430 300 1.433 0.454 

6 Gaussian -0.335 -0.350 Poisson -4.364 -4.361 310 0.356 0.462 490 1.443 0.438 

7 Gaussian -0.228 -0.444 Poisson -4.251 -4.357 310 0.497 0.374 250 1.532 0.394 

8 Gaussian 0.090 -0.559 Poisson -4.002 -4.334 910 0.825 0.468 130 1.569 -0.003 

9 Gaussian -0.121 -0.419 Poisson -4.282 -4.430 180 0.344 0.282 710 1.462 0.425 

10 Gaussian -0.257 -0.495 Poisson -4.165 -4.237 320 0.462 0.485 430 1.607 0.480 

11 Gaussian -0.237 -0.425 Poisson -4.160 -4.139 670 0.700 0.419 10 1.650 0.493 

12 Gaussian -0.162 -0.310 Poisson -4.212 -4.350 1050 0.715 0.312 70 1.533 0.217 

13 Gaussian -0.177 -0.348 Poisson -4.248 -4.414 120 0.318 0.322 250 1.501 0.384 

14 Gaussian -0.155 -0.415 Poisson -4.299 -4.413 280 0.435 0.342 220 1.446 0.239 

15 Gaussian -0.180 -0.405 Poisson -4.334 -4.437 340 0.450 0.309 240 1.445 0.362 

16 Gaussian -0.213 -0.358 Poisson -4.423 -4.538 460 0.521 0.368 460 1.382 0.318 

17 Gaussian 0.502 -0.123 Poisson -3.798 -4.082 10 -0.015 -0.355 50 1.691 0.257 

18 Gaussian -0.108 -0.475 Poisson -4.291 -4.484 1210 0.639 0.245 80 1.420 0.220 

19 Gaussian -0.277 -0.301 Poisson -4.466 -4.432 1310 0.638 0.419 730 1.418 0.368 

20 Gaussian -0.237 -0.259 Poisson -4.506 -4.033 460 0.457 0.334 370 1.418 0.360 

21 Gaussian -0.171 -0.409 Poisson -4.669 -3.101 410 0.476 0.171 50 1.244 0.264 

22 Gaussian -0.150 -0.287 Poisson -4.416 -4.502 580 0.425 0.299 30 1.398 0.228 

23 Gaussian -0.232 -0.257 Poisson -4.517 -4.478 470 0.482 0.366 130 1.397 0.337 

24 Gaussian -0.265 -0.330 Poisson -4.327 -4.285 600 0.459 0.415 370 1.549 0.352 

25 Gaussian -0.152 -0.219 Poisson -4.339 -4.281 630 0.578 0.452 110 1.517 0.160 
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26 Gaussian -0.065 -0.172 Poisson -4.341 -4.325 120 0.292 0.181 20 1.478 0.230 

27 Gaussian -0.200 -0.439 Poisson -4.241 -4.373 630 0.692 0.389 330 1.544 0.234 

28 Gaussian -0.253 -0.381 Poisson -4.251 -4.378 620 0.659 0.495 180 1.522 0.286 

29 Gaussian -0.318 -0.293 Poisson -4.423 -4.396 660 0.536 0.456 150 1.392 0.377 

30 Gaussian 0.229 -1.038 Poisson -3.636 -3.817 1540 0.362 0.306 110 1.622 0.413 

31 Gaussian -0.203 -0.449 Poisson -4.318 -4.412 350 0.470 0.386 90 1.487 0.262 

32 Gaussian -0.315 -0.442 Poisson -4.286 -4.306 340 0.517 0.454 160 1.513 0.394 

33 Gaussian -0.397 -0.205 Poisson -4.375 -4.312 130 0.257 0.363 60 1.495 0.337 

34 Gaussian -0.166 -0.582 Poisson -3.977 -4.127 1700 1.064 0.342 110 1.719 0.342 

35 Gaussian -0.310 -0.290 Poisson -4.384 -4.420 860 0.717 0.392 120 1.462 0.373 

36 Gaussian -0.327 -0.440 Poisson -4.420 -4.380 540 0.595 0.461 130 1.487 0.476 

37 Gaussian -0.150 -0.438 Poisson -3.607 -3.924 830 0.786 0.344 120 1.548 0.256 

38 Gaussian -0.333 -0.449 Poisson -4.239 -4.346 920 0.660 0.423 50 1.500 0.496 

39 Gaussian -0.256 -0.435 Poisson -4.178 -4.253 220 0.545 0.388 140 1.614 0.401 

40 Gaussian -0.488 -0.450 Poisson -4.005 -4.110 1260 0.973 0.594 100 1.712 0.513 

41 Gaussian -0.347 -0.477 Poisson -4.090 -4.022 1260 0.775 0.551 230 1.529 0.437 

42 Gaussian -0.581 -0.398 Poisson -4.314 -4.366 400 0.448 0.634 130 1.401 0.438 

43 Gaussian -0.527 -0.404 Poisson -4.406 -4.377 1220 0.656 0.263 50 1.389 0.394 

44 Gaussian -0.325 -0.603 Poisson -4.075 -4.264 1830 0.771 0.371 280 1.458 0.410 

45 Gaussian -0.285 -0.183 Poisson -4.156 -4.214 230 0.464 0.305 310 1.506 0.204 

46 Gaussian -0.660 -0.344 Poisson -4.251 -4.044 270 0.435 0.387 330 1.433 0.383 

47 Gaussian -0.298 -0.368 Poisson -4.142 -4.261 640 0.616 0.489 60 1.576 0.360 

48 Gaussian -0.295 -0.365 Poisson -4.057 -4.380 470 0.545 0.419 540 1.444 0.466 

49 Gaussian -0.429 -0.461 Poisson -4.254 -4.296 240 0.409 0.502 890 1.491 0.544 

50 Gaussian 0.077 -0.355 Poisson -4.545 -4.645 1080 0.741 0.195 170 1.286 0.021 

51 Gaussian -0.327 -0.314 Poisson -4.543 -4.516 670 0.514 0.393 260 1.272 0.366 

52 Gaussian -0.352 -0.465 Poisson -4.622 -4.645 530 0.491 0.495 770 1.235 0.458 

53 Gaussian -0.283 -0.297 Poisson -4.587 -4.453 300 0.357 0.333 230 1.322 0.415 

54 Gaussian -0.364 -0.220 Poisson -4.606 -4.509 640 0.455 0.399 260 1.234 0.250 
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55 Gaussian -0.172 -0.363 Poisson -4.272 -4.345 250 0.400 0.371 380 1.536 0.299 

56 Gaussian -0.141 -0.212 Poisson -4.270 -4.371 240 0.427 0.270 240 1.529 0.220 

57 Gaussian -0.232 -0.337 Poisson -4.405 -4.457 810 0.515 0.408 800 1.394 0.443 

58 Gaussian -0.565 -0.116 Poisson -4.015 -4.142 410 0.279 0.739 80 1.638 0.619 

59 Gaussian -0.251 -0.356 Poisson -4.283 -4.302 510 0.585 0.518 310 1.576 0.276 

60 Gaussian -0.238 -0.541 Poisson -4.478 -4.591 1000 0.608 0.374 280 1.279 0.261 

61 Gaussian -0.218 -0.274 Poisson -4.473 -4.543 710 0.491 0.290 210 1.350 0.406 

62 Gaussian 0.088 -0.347 Poisson -4.256 -3.877 560 0.858 0.020 390 1.394 0.036 
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Table 6.S2: Summary of optimized modelling techniques for O3 simulation and its corresponding GPI values 

Station 

number 

GLM GAM GBM RF 

Distribution 
Family GPI_Train GPI_Test 

Distribution 
Family GPI_Train GPI_Test 

Number 
of Tree GPI_Train GPI_Test 

Number 
of Tree GPI_Train GPI_Test 

1 Gaussian -0.235 -1.052 Quasi -0.539 -1.853 210 1.426 0.155 30 4.050 0.197 

2 Gaussian -0.149 -0.209 Quasi -0.114 -4.995 510 0.348 0.198 60 1.005 0.091 

3 Gaussian -0.109 -0.245 Quasi 0.077 -4.757 1010 0.536 0.113 20 1.243 -0.111 

4 Gaussian -1.023 -0.618 Quasi -0.030 -4.757 950 0.571 0.101 70 1.243 0.056 

5 Gaussian -0.350 -0.169 Quasi -0.085 -4.949 110 0.162 0.085 40 1.051 0.054 

6 Gaussian -0.408 -0.159 Quasi -0.094 -4.657 240 0.329 0.313 70 1.343 -0.023 

7 Gaussian -0.202 -0.248 Quasi -0.614 -4.960 1140 0.527 0.198 20 1.040 0.083 

8 Gaussian -1.721 -0.054 Quasi -0.003 -3.900 210 0.214 -0.040 70 1.312 -0.012 

9 Gaussian -0.396 -1.802 Quasi -0.161 -3.655 410 0.603 0.228 210 1.901 0.173 

10 Gaussian -0.325 -0.323 Quasi -0.033 -4.808 310 0.288 0.189 70 1.192 0.033 

11 Gaussian -0.347 -0.639 Quasi 0.032 -4.554 710 0.704 0.070 90 1.446 0.053 

12 Gaussian -0.795 -0.636 Quasi -0.285 -4.326 310 0.465 0.263 40 1.674 0.207 

13 Gaussian -0.322 -0.121 Quasi 0.060 -4.772 260 0.352 0.102 20 1.228 -0.087 

14 Gaussian -0.085 0.010 Quasi -0.044 -4.829 520 0.400 0.065 40 1.171 0.024 

15 Gaussian -0.161 -0.029 Quasi -0.147 -5.085 230 0.247 0.037 50 0.915 -0.009 

16 Gaussian -0.225 0.016 Quasi -0.083 -4.901 460 0.299 0.038 70 1.099 0.005 

17 Gaussian -1.369 -1.015 Quasi -0.035 -4.469 1220 0.385 0.129 60 0.855 0.008 

18 Gaussian -0.114 -0.028 Quasi -0.109 -5.254 230 0.148 0.065 60 0.746 -0.041 

19 Gaussian -0.154 -0.112 Quasi -0.015 -5.199 260 0.155 0.071 70 0.801 0.011 

20 Gaussian -0.169 -0.287 Quasi -0.025 -5.407 1510 0.263 0.051 50 0.593 0.072 

21 Gaussian -0.455 -0.753 Quasi -0.072 -4.622 530 0.402 0.241 80 1.378 0.002 

22 Gaussian -0.444 -0.402 Quasi -0.998 -3.589 2310 1.020 0.353 90 1.765 0.226 
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23 Gaussian -0.196 -0.067 Quasi -0.070 -5.323 310 0.120 0.136 30 0.677 0.037 

24 Gaussian -0.658 -0.551 Quasi -0.839 -4.655 310 0.362 0.565 60 1.201 0.468 

25 Gaussian -0.276 -0.124 Quasi -0.120 -5.258 210 0.056 0.199 50 0.742 0.248 

26 Gaussian -0.429 -0.093 Quasi -0.143 -5.103 320 0.106 0.150 60 0.897 0.129 

27 Gaussian -0.259 -0.155 Quasi -0.101 -5.244 810 0.213 0.134 720 0.756 0.195 

28 Gaussian -0.149 -0.073 Quasi -0.063 -5.104 280 0.145 0.055 90 0.896 0.090 

29 Gaussian -0.174 0.008 Quasi -1.023 -5.126 430 0.153 0.048 2030 0.874 0.011 

30 Gaussian -0.186 -0.061 Quasi -0.115 -5.344 240 0.113 0.089 550 0.656 0.070 

31 Gaussian -0.210 -0.135 Quasi -0.117 -4.928 310 0.293 0.120 50 1.072 0.051 

32 Gaussian -0.151 -0.021 Quasi -0.193 -5.469 100 0.048 0.147 50 0.531 0.051 

33 Gaussian -0.441 -0.121 Quasi -0.059 -5.178 90 0.085 0.059 80 0.822 0.104 

34 Gaussian -0.034 -0.085 Quasi -0.117 -4.819 60 0.559 0.061 90 1.181 -0.358 

35 Gaussian -0.110 -0.139 Quasi -0.096 -5.231 220 0.119 0.092 3510 0.769 0.114 

36 Gaussian -0.119 -0.130 Quasi -0.110 -5.300 260 0.183 0.130 80 0.700 0.062 

37 Gaussian -1.830 0.119 Quasi -0.059 -3.787 80 0.185 0.123 70 1.557 -0.129 

38 Gaussian -0.248 -0.218 Quasi -0.192 -4.688 2410 0.664 0.351 60 1.312 0.084 

39 Gaussian -1.016 -0.466 Quasi -0.050 -4.556 1620 0.486 0.128 70 0.866 0.028 

40 Gaussian -0.161 -0.018 Quasi -0.013 -5.456 90 0.125 0.024 810 0.544 0.007 

41 Gaussian -0.094 -0.683 Quasi -0.080 -5.021 510 0.149 0.123 50 0.979 0.092 

42 Gaussian -0.047 -0.363 Quasi -0.805 -5.186 510 0.293 0.050 80 0.814 0.165 

43 Gaussian -0.073 -0.335 Quasi -0.053 -5.197 310 0.286 0.099 230 0.803 0.048 

44 Gaussian -0.130 -0.140 Quasi 0.026 -5.037 3520 0.601 0.079 70 0.963 0.028 

45 Gaussian 0.021 -0.221 Quasi 0.015 -5.170 320 0.336 -0.032 1120 0.830 -0.061 

46 Gaussian -0.671 -0.206 Quasi 0.029 -5.392 420 0.187 0.050 60 0.608 -0.042 

47 Gaussian -0.036 -0.234 Quasi 0.000 -5.309 230 0.237 -0.010 50 0.691 0.010 
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48 Gaussian -0.095 -0.205 Quasi -0.009 -5.360 730 0.281 0.095 50 0.640 -0.099 

49 Gaussian -0.023 -0.138 Quasi -0.014 -5.216 6130 0.573 -0.085 90 0.784 -0.004 

50 Gaussian -0.037 -0.091 Quasi -0.012 -5.029 610 0.337 0.037 70 0.971 -0.092 

51 Gaussian 0.071 -0.290 Quasi -0.022 -5.097 220 0.237 0.000 90 0.903 -0.026 

52 Gaussian -0.441 -0.167 Quasi -0.022 -4.219 920 0.484 0.065 930 1.781 -0.006 

53 Gaussian -0.046 -0.406 Quasi -0.217 -4.125 410 0.747 -0.068 920 1.875 -0.153 

54 Gaussian -0.059 -0.290 Quasi 0.140 -4.599 310 0.402 0.014 80 1.401 -0.134 

55 Gaussian -0.198 -0.228 Quasi 0.023 -5.223 310 0.166 0.082 30 0.777 -0.018 

56 Gaussian -0.244 -0.260 Quasi -0.010 -5.274 310 0.201 0.013 70 0.726 0.104 

57 Gaussian -0.357 -0.216 Quasi -0.106 -5.166 510 0.256 0.278 810 0.834 0.080 

58 Gaussian -0.085 -0.111 Quasi 0.007 -5.386 410 0.247 0.022 1210 0.614 -0.037 

59 Gaussian -0.204 -0.213 Quasi -0.163 -4.870 70 0.138 0.338 60 1.130 0.201 

60 Gaussian -0.143 -0.283 Quasi 0.213 -4.379 1670 0.106 -0.144 80 1.621 0.290 

61 Gaussian -1.253 -0.284 Quasi -0.016 -4.933 1210 0.372 0.004 70 1.067 0.123 

62 Gaussian 0.254 -0.754 Quasi 0.542 -3.585 90 0.903 -0.505 220 2.415 -0.404 
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Fig 6.S1: Optimal modelling techniques for (a) NO2 and (b) O3 across different air quality monitoring stations in Taiwan 
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Fig 6.S2: Spatiotemporal distribution of monthly NO2 mean concentration across Taiwan for observed (left) and 

meteorological-normalized simulated (right) for 2020 
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Fig 6.S3: Spatiotemporal distribution of monthly O3 mean concentration across Taiwan for observed (left) and 

meteorological-normalized  
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Chapter 7  

 
Comparison, Mitigation and Adaptation Strategies for 

Global Change 
 

In this chapter, a review of environmental management and monitoring conditions in the 

developing countries in Asia is discussed. Besides that, the recent technological advances 

and developments have evolved the application of the Internet of Things (IoT), low-cost 

sensors, and three-dimensional (3D) printing for near-real-time environmental monitoring; 

however, these technologies have not yet been widely implemented in field operations. 

Therefore, in this research, a solar-powered 3D-printed IoT-based water quality monitoring 

system prototype was developed to measure turbidity and water level every two hours and 

utilized in a palm oil plantation on Carey Island, Malaysia for two months. Based on the 

developed prototype, it could be further modified to address the monitoring frequency across 

wider area for both water and air quality monitoring, paving a new path for the development 

of cost-effective and reliable systems for near-real-time or real-time monitoring. 

7.1 Environmental Management and Monitoring Conditions in Asia 

Over the past few decades, industrialization, climate change, and urbanization have 

disrupted the natural balance of ecosystems, imposing inimical impacts particularly to the 

aquatic environments through a wide range of pollutants (Arfanuzzaman & Dahiya, 2019). 

According to the World Water Assessment Program (WWAP, 2021), approximately 70–90% 

of untreated wastewater is discharged into the environment by middle- and low-income 

countries. The proliferation of pollutants in the aquatic environments has affected 

approximately a billion people worldwide, who have no access to safe drinking water, 

attracting global attention (WHO, 2019). In particular, high levels of suspended solids and 

turbidity in waterways have been a major concern (Patang & Soegianto, 2020), because these 

are primary indicators of toxics, heavy metals, and organic matter, which may severely affect 
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both the aquatic environments and human health. Moreover, the air quality issues in this 

region have been observed deteriorating as discussed in Chapter 2, especially, the particulate 

matters (PMs) pollutions. 

With the current need to decrease these risks to the environment, among other global 

challenges, the United Nations Sustainable Development Goals (UNSDGs), introduced in 

2015, provide a blueprint for “attaining a better and more sustainable future for all.” Among 

these goals, the third and sixth specify ensuring substantial reduction of health impacts from 

hazardous air substances and clean accessible water for everyone, respectively. Since then, 

numerous frameworks have been proposed and developed for sustainable water and air 

quality management, for example, through collaboration among diverse stakeholders 

(Medema et al., 2017), and cost-effective classification based on water/air quality index (an 

aggregated normalized value of multiple water/air quality parameters) (EPA, 2020). 

However, one of the main challenges that hinder the implementation of these frameworks is 

the inadequacy in water/air quality monitoring programs, particularly in developing countries 

of Asia, due to significant difficulties concerning the economy and the workforce (Awan et 

al., 2019).   

In order to solve the water and air crisis issues, Asia countries established water/air 

quality assessment to regularize the management (Gholizadeh et al., 2016). However, 

assessment of the surface water and ground air quality is often labor-intensive, costly and 

time consuming. It is a complex process that requires a large number of samples to 

characterize a water/air body over multiple parameters including but not limited to 

physicochemical and bacteriological aspects (Bharti & Katyal, 2011).  Conventionally, to 

evaluate surface water and ground air quality, individually measured parameter will be 

compared to its existing standard/guidelines set by the local authority. Nevertheless, since 

there are large number of parameters are included, it is difficult to provide a comprehensive 

evaluation of water quality status with its scientific basis (Lumb et al., 2011, Noori et al., 

2019). 
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7.1.1 Towards Industrial Revolution 4.0 

Recently, the fourth industrial revolution (IR 4.0) paradigm shift has initiated a wave 

of technological innovation (Cheng et al., 2021) and sustainable transformation in various 

industries and sectors (Kumar et al., 2020), including water and air quality monitoring (Wang 

et al., 2021). The IR 4.0 has interconnected people, processes, and data via a networked 

connection, and its utilization has become more prevalent and relevant to the public (Awan 

et al., 2021). Among the nine main pillars of IR 4.0 (Rüßmann et al., 2015), the integration 

of the Internet of Things (IoT), cloud computing, and three-dimensional (3D) printing is most 

commonly adopted for water quality monitoring. Premised on the search for low-cost and 

reliable water and air quality monitoring systems, there has been a remarkable increase in the 

use of low-cost sensors and power-efficient integrated on-chip computers (Raspberry Pi and 

Arduino) (Tushar et al., 2018) for adaptive water and air quality monitoring (i.e., intervals of 

a few hours) (Prasad, 2015). However, there are trade-offs between certified reference 

standard sensors and low-cost sensors in terms of measurement accuracy and robustness 

(Castell et al., 2017). On the other hand, the spatial dynamics of water and air quality could 

be better understood through the use of low-cost sensors because they are inexpensive in 

terms of deployment and operation. Thus, the application of low-cost sensors has a marked 

importance in addressing present challenges with inadequate monitoring.  

7.1.2 Low cost and reliable monitoring system 

Typically, an IoT-based system is continuously exposed to the environment, and thus 

the system should be durable and capable of coping with prevailing local weather conditions. 

Therefore, to minimize potential damage due to harmful environmental influences (such as 

rainfall, dust, and wind) on the system, the method of fabrication (e.g., machining, laser 

cutting, and 3D printing) and the durability of the resulting device should be a focus of further 

research. Among the various techniques currently available, 3D printing is employed in this 

research because of its infinite possibility and flexibility for producing cost-effective 

prototypes and customized sensor fabrications (Khosravani & Reinicke, 2020).  
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With the increasing popularity of low-cost and miniaturized IoT-based system on 

low-cost sensors, the 3D-printed system architecture has been studied extensively; the 

relevant recent studies are summarized in Table 7.1. As shown in Table 7.1, both 

physicochemical parameters (e.g., turbidity, pH, and temperature) and hydrological 

parameters (e.g., water level and flow rate) are incorporated. In particular, for water quality 

monitoring, hydrological measurement is necessary for sustainable water resource 

management because of the significant climatic impact of heavy precipitation, which could 

potentially cause surface contaminants to overflow into water bodies (Ogata et al., 2018). 

However, most of these studies have not progressed much beyond the development and 

validation stages, practicality and to the best of the authors’ knowledge, only a few studies 

have focused on the deployment of the system for continuous monitoring. Some of the major 

challenges that remain to be addressed, contributing further to the slow deployment of IoT-

based systems, include: (i) reliability under harsh environmental conditions, (ii) poor power 

management, and (iii) complex interoperability among sensors, as summarized by Talavera 

et al., (2017) and Farooq et al., (2020), causing major knowledge gaps concerning in the 

deployment and of IoT-based system. Although rechargeable battery has been connected to 

solar panels are often utilized as primary energy source for IoT devices, their optimal 

sampling frequency is not commonly discussed, nor has it been determined, which has 

restricted the application of photovoltaic devices in field operation of IoT systems. 

Furthermore, when high numbers of electronics are involved (Arduino, relay module, 

convertors, etc.), syntactical and technical interoperability among the IoT devices becomes 

more complicated; therefore, further research and development of robust algorithms are 

required to solve these problems (Farooq et al., 2020).  

Based on findings from a review of literature, this research intends to design, develop, 

and deploy a 3D-printed IoT-based system with a high reliability using low-cost sensors that 

could address the aforementioned challenges. Compared to air quality monitoring using low-

cost sensors, the application to water quality monitoring is much limited. Therefore, this 

research attempted to address the installation of IoT system for water quality monitoring 

system (WQMS) and the research objectives are set follows: 
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(i) To design and develop of a cost-effective and standalone 3D-printed IoT-based 

WQMS that measures turbidity and water level; 

(ii) To calibrate and validate sensors according to internationally adopted standards, 

for obtaining the optimal measurement range; and 

(iii) To Demonstrate the applicability of the developed system for water quality 

monitoring and management through field tests.  

The proposed WQMS is compact and portable, consisting of four major modules: energy, 

time, monitoring, and communication. These modules can be easily assembled and 

disassembled. To promote the utilization of renewable energy, the WQMS relies on only a 

photovoltaic system as its primary energy source for operation. The electrical consumption 

values of the WQMS in the standby, operating, and data transmission modes were calculated 

to determine the optimal monitoring frequency. The sensors were developed and validated 

according to international standards (e.g., International Organization for Standardization 

(ISO) and Environmental Protection Agency (EPA)) to ensure that the measurements are 

comparable with those of commercial sensors. The developed system was then deployed in 

a palm oil plantation on Carey Island, Malaysia, for two months (November 28, 2019–

January 21, 2020) to evaluate its practicality and durability. The findings of this research are 

expected to provide comprehensive information, including on practical implications, to 

relevant authorities and practitioners for decision making, future development and 

application of 3D-printed IoT-based WQMSs. The ultimate objective is to address the 

inadequacies in water monitoring programs, particularly in developing countries, to 

contribute to the fulfillment of the UNSGDs.   

The remainder of the chapter is organized as follows: Section 7.2 describes the 

research area and development of the IoT-based 3D-printed WQMS. Section 7.3 discusses 

the calibration and application of the WQMS. Section 7.4 reports on the findings, 

implications, and contributions of the research. Section 7.5 presents pertinent conclusions 

from the investigations and information regarding relevant future research.  
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Table 7.1. Related studies on IoT-based WQMS and its characteristics 

Authors 
Monitoring 

Frequency 
Energy Source 

Measurement 

Parameters 

Sensor 

Type 

Data 

Communication 

Platform 

Deployment 

duration 

Cost 

(USD) 

Nandakumar 

et al. (2020) 
Continuous 

Direct current 

supply 

pH, conductivity, 

turbidity 
Hybrid** Firebase Cloud * - 

Pasika & 

Gandla 

(2020) 

Every 30s 
Direct current 

supply 

pH, turbidity, water 

level, temperature 
Hybrid ThingSpeak * - 

Jerom  et al. 

(2020) 
- Battery 

Dissolved oxygen, 

pH and temperature 
Low cost Firebase Cloud * - 

Darmalim et 

al. (2020) 

 

Continuous 

Photovoltaic 

system 

pH, turbidity, 

temperature, TDS 
Low cost 

PondIOT 

(Developed by 

authors) 

* - 

Rohit et al. 

(2019) 
Continuous 

Direct current 

supply 

pH, turbidity and 

temperature 
Hybrid 

If This Then 

That (IFTTT) 
* 68.00 

Chowdury et 

al. (2019) 

 

Continuous 

Direct current 

supply 

pH, turbidity, 

temperature, ORP 
Hybrid Zigbee module * - 

Kshirsagar et 

al. (2019) 
- 

Direct current 

supply 

pH, turbidity, 

conductivity 
Hybrid ThingSpeak * - 
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Oelen et al. 

(2018) 

Every 15 

min 

Photovoltaic 

system 

pH, turbidity, 

temperature, TDS, 

ORP. 

Hybrid Zigbee Module * 250.00 

Koditala & 

Pandey 

(2018) 

Continuous 
Direct current 

supply 

Turbidity, 

temperature 
Low-cost 

Power Business 

Intelligence (BI) 
* - 

Mulyana & 

Hakim 

(2018) 

Continuous 
Direct current 

supply 

Turbidity, water 

level 
Low-cost ThingSpeak * 

 

Encinas et al. 

(2017) 
Every 15s 

Rechargeable 

9v battery 

Dissolved oxygen, 

pH and temperature 
Hybrid XBee Module * - 

Daigavane & 

Gaikwad 

(2017) 

Continuous 
Direct current 

supply 

pH, turbidity, 

temperature, 

flowrate 

Low-cost Blynk  * - 

This research Every 2h 
Photovoltaic 

system 

Turbidity, water 

level 
Low-cost Ambient 2 months 261.20 

 

       * Only test runs were performed. 

**   Hybrid indicates utilizing both certified reference and low-cost sensors. 

 

Table 7.1. Related studies on IoT-based WQMS and it’s characteristics (continued) 
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7.2 Materials and Methodology 

7.2.1 Research Area 
 

This research was conducted on Carey Island, the largest ex-promontory island of the 

Klang Isles in Malaysia, bounded by latitudes 2° 48′ N–2° 59′ N and longitudes 101°16′ E–

101 27′ E. Carey Island was selected because its surrounding water quality has been 

deteriorating (Zakaria et al., 2017); in particular, levels of suspended solids and turbidity are 

high, and source tracking of these pollutants is necessary to enhance the water condition. The 

island is located on the west coast of Selangor state, the most developed state in Peninsular 

Malaysia, within the busy sea lanes of the Strait of Malacca (Fig. 7.1). The total area of Carey 

Island is approximately 162 km2, with more than 65% of the island being used for palm oil 

plantations (Almasi et al., 2018), managed by the largest producer of sustainable palm oil in 

the world, Sime Darby Plantation. The remaining area comprises settlements and mangrove 

forest reserves. Therefore, the main economic activities of the island are associated with palm 

oil-based products, from cultivation to milling and refinement (Sofawi et al., 2017). 

 

Fig. 7.1:  Geographic location of Carey Island and position where water quality monitoring  

               system was deployed 
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7.2.2 Development of IoT System 

In this section, the architecture of the 3D-printed IoT-based WQMS (Fig. 7.2) is 

introduced. It consists of four major modules: energy, time, monitoring, and communication. 

A detailed discussion of each module is provided below.  

 

Fig. 7.2: Overview of 3D-printed IoT-based water quality monitoring system 

7.2.2.1 Energy Module 

In this research, to utilize the abundant sunshine (4–8 h/day) with a high intensity of 

average daily solar irradiation (4,000–5,000 Wh/m2) in Malaysia (Mohammad et al., 2020), 

a photovoltaic system is designed. It comprises a 20-W polycrystalline solar panel, pulse 

width modulation (PWM) solar charge controller, and 12-V lead–acid rechargeable battery 

(Li et al., 2020). The PWM-type solar charge controller is chosen because of its affordable 

price and suitability for use in small systems (Uno & Kukita, 2018). It regulates the battery 

voltage and current generated by the solar panel, preventing overcharging and gassing of the 

battery while ensuring an optimum charging speed (Mhetre et al., 2019). To ensure that the 

WQMS functions continuously, while depending only on the photovoltaic system, the 
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residual capacity of the battery is calculated using the following equations; the procedure for 

determining the sampling time per day is discussed in the Results and Analysis section in the 

chapter 

𝑅𝐶 = (1 +
𝑉(∫ 𝐼𝐶𝑑𝑡−∫ 𝐼𝐷𝑑𝑡)

𝐶𝑏
) × 100%      (7.1) 

In Eq. (7.1), RC represents the residual capacity of the battery (%), Cb represents the rated 

capacity of the battery (kW∙h), V represents the voltage of the battery (V), and IC and ID 

represent the charging and discharging currents (A), respectively. 

The terms 𝑉 ∫ 𝐼𝐶𝑑𝑡 and 𝑉 ∫ 𝐼𝐷𝑑𝑡 can be calculated using Eqs. (7.2) and (7.3). 

𝑉 ∫ 𝐼𝐶𝑑𝑡 = ∑ 𝐶𝑝 ×
𝐼𝑟𝑟

𝐺𝑠
× 𝐾𝑡

0         (7.2) 

In Eq. (2), CP represents the rated capacity of the solar panel (kW), Irr represents the hourly 

average solar radiation (kW∙h/m2∙h), t represents the ending time of measurement, Gs is the 

solar irradiance under standard test conditions (kW/m2), and K represents the overall 

efficiency factor. 

𝑉 ∫ 𝐼𝐷𝑑𝑡 = ∑ 𝐸𝑆𝑡𝑎𝑛𝑑𝑏𝑦 + 𝐸𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 + 𝐸𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛
𝑡
0    (7.3) 

In Eq. (7.3), EStandby, EOperating, and ECommunication represent the energy consumption (kW/h) of 

the WQMS in the standby (only the time module is functioning), operating (acquiring 

measurements for samples), and communication (transmitting data to the cloud system via a 

USB Wi-Fi dongle) modes, respectively. 

7.2.2.2 Time Module 

To routinely boot up the WQMS for sampling, a time module is implemented, 

comprising three major components: real-time clock (RTC) module, relay module, and 

Arduino (Fig. 7.3). Because there are multiple Arduinos used in this research, the Arduino in 

the time module is designated the timekeeper Arduino (TKA) to help differentiate between 

the applications. The RTC module, which provides timing and date information is connected 

to the TKA, and acts as the system switch. During operation, the WQMS is booted up for 5 
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min for sampling measurement, and subsequently, the RTC connected to the TKA sends a 

signal to the relay module to switch off, causing the connection to be cut off. During the 

standby mode, electricity is supplied only to the RTC and TKA, such that the energy can be 

effectively and efficiently utilized. The voltage supplied by the battery is 12 V; however, the 

recommended voltage for Arduino is between 7 and 12 V, whereas for Raspberry Pi, it is 5 

V. Therefore, the supply voltage values are set to 8 V and 5 V for the Arduino and Raspberry 

Pi via pins, respectively. 

 

Fig. 7.3: Detailed connection diagram of proposed time module. Yellow arrows indicate  

               current flow direction. Red and black lines represent positive and negative terminals,  

               respectively. Green line connected to serial clock and blue line to serial data of RTC  

               module are used to synchronize data transfer and operate timing of transfer between  

               TKA and RTC modules, respectively. Yellow lines connected between relay 

               module and TKA are used as switches. 
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7.2.2.3 Monitoring Module 

To enable the proposed WQMS to monitor turbidity and water level, a turbidity 

sensor and water level sensor are designed and developed using electronic components and 

low-cost sensors (Fig. 7.4). The system utilizes a single board credit card-sized computer 

known as Raspberry Pi (Model: Zero WH) assisted by Arduinos. The details of the turbidity 

and water level sensors are described below. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.4: Detailed connection diagram of proposed monitoring module. Yellow arrows  

      indicate current flow direction. Red and black lines represent positive and negative  

                terminals of battery, respectively. Green line connected to serial clock and blue line  

                to serial data of Raspberry Pi are used to synchronize data transfer and operate  

                timing of transfer between Arduinos and Raspberry Pi. Purple line represents  

                ground terminal for Raspberry Pi. Yellow lines are used for receiving and  

                transmitting information between electronic components and Arduinos 
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7.2.2.3.1 Turbidity Sensor 

At present, there are many techniques available for measuring turbidity, among which 

the most commonly used are visual turbidity, turbidimetry, nephelometry, and ratiometric 

methods. Visual turbidity methods are subjective because the readings are based on personal 

perception and determination; therefore, these are only suitable for approximate estimation. 

The latter methods commonly utilize an incident light source (e.g., a light-emitting diode 

(LED) laser and/or tungsten) and a phototransistor(s) for turbidity measurement. 

Turbidimetry and nephelometry methods differ mainly in the detection angle between the 

incident light source and the phototransistor. Trevathan et al. (2020) summarized the 

detection angles for both of these methods based on the most widely adopted standards: ISO  

7027 and EPA Method 180.1. However, these methods have a significant drawback: 

nephelometry methods are considerably insensitive for detecting high turbidities because of 

multiple scattering caused by high particle concentrations, whereas turbidimetry methods are 

considerably insensitive for detecting low turbidities (Gillett & Marchiori, 2019; Kitchener 

et al., 2019). Ratiometric methods integrate both turbidimetry and nephelometry methods 

using two phototransistors positioned at 90° and 180° for the synchronous measurement of 

scattered light and attenuated light, respectively. Turbidity measurement using ratiometric 

methods not only provides high accuracies over a broad range of turbidities (Metzger et al., 

2018) (e.g., 0–1,000 formazin nephelometric units (FNUs)), but also minimizes the effects 

of the light source and water color (Zhu et al., 2020). Therefore, in this research, a ratiometric 

method was adopted for the development of the turbidity sensor. 

 In this research, sensor casings were designed using Autodesk Fusion 360 software 

and manufactured from polylactic acid (PLA) filament via 3D printing. The turbidity sensor 

will be continuously exposed to the environment, and therefore, to minimize adverse effects 

to the environment (e.g., plastic pollution), PLA was chosen for its biodegradability, 

durability, and affordability (Lamberti et al., 2018; Lyu et al., 2020). Fig. 7.5(a) shows the 

actual setup and schematic of the designed turbidity sensor, which consists of a LED light 

source with a wavelength of 940 nm (chosen, for its low cost and good sensitivity in high 

turbidity water (Matos et al., 2019)) and two phototransistors L-51ROPT1D1 (Para Light 
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Electronics Co., Ltd.) at 90° and 180°. The diameter and length of the turbidity sensor are 

7.0 cm and 11.4 cm, respectively, where the central part of the sensor is hollowed for 

continuous water flow.  

To obtain the relationship between the signal measured by the developed turbidity 

sensor and its corresponding FNU values, calibration was performed using formazin at 25 °C 

as the standard solution, in compliance with the ISO 7027 method. Standard formazin 

solutions with 0, 1, 2, 4, 10, 20, 40, 100, 200, 400, and 1,000 FNU were prepared via serial 

dilution of a 4,000 FNU stock solution (Hach) using ultrapure water. The range of turbidity, 

0–1,000 FNU, was selected based on the present turbidity concentrations of Malaysian rivers 

as reported in the Environmental Quality Report 2018 (Strategic Communication Division, 

2019). Before the measurement, each standard solution was mixed well through gentle 

agitation and inversion to avoid entrainment of air bubbles within the sample (Liu et al., 

2015). To reduce random measurement noises, each standard solution was subjected to the 

measurement process for five times. The average measurements from the scattered light and 

attenuated light phototransistors were used together with ratiometric method to develop a 

calibration curve, as shown in Algorithm 7.S1 (Zhou et al., 2021).  
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Fig. 7.5: Real setup and schematic of developed (a) turbidity sensor and (b) ultrasonic water  

              level sensor. 

7.2.2.3.2 Water Level Sensor 

During the monsoon and inter-monsoon seasons, Malaysia experiences unpredictable 

downpour (extreme rainfall intensity exceeding 400 mm/h), higher frequencies of which are 

observed in Selangor (Syafrina et al., 2015). Therefore, in that region, on-site automated 

water level monitoring is a critical hydrological aspect of river management. Different 

physical sensors have recently been proposed and developed for water level measurement, 

the most commonly used of which are based on float-type, radar, and ultrasonic methods 

(Lucklum & Jakoby, 2009). However, float-type water level sensors have low accuracies 

because of large cumulative measurement errors and, thus, must be calibrated regularly 

(Chetpattananondh et al., 2014). Meanwhile, both radar and ultrasonic-type water level 
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sensors can provide high-accuracy water level measurements and are resistant to pollution; 

however, in this research, an ultrasonic-based water level sensor was selected because its cost 

is lower than that of a radar-based water level sensor. Moreover, its measurement capability 

is less likely to be affected by raindrops (Zhang et al., 2019).  

The designed ultrasonic water level sensor consists of an ultrasonic sensor (HC-

SR04) with a 3D-printed housing and a temperature sensor, as shown in Fig. 7.5(b). The 

distance is measured based on the echolocation principle via calculation of the time taken for 

the receiver to detect the echo signal emitted by the transmitter, as expressed in Eq. (7.4) 

(Mvemba et al., 2018).  

𝑑 =
𝑣×𝑡𝑡𝑜𝑓

2
         (7.4) 

In Eq. (4), d is the distance between the sensor and the water surface, v is the speed of sound 

in air, and ttof represents the time taken for the echo signal to be detected by the receiver. The 

sound velocity is highly dependent on the working environment, particularly on the 

atmospheric temperature and humidity, and can be obtained using Eq. (5). 

𝑣 = 331.5 + 0.606𝜃 + 0.0124𝐻      (7.5) 

In Eq. (5), θ represents the real-time atmospheric temperature in °C, whereas H represents 

the relative humidity. However, because the effect of humidity deviation on velocity is almost 

negligible (<0.2% on the accuracy of the measurement), the humidity parameter is not 

considered in this research (Shin et al., 2019).  

The ultrasonic water level sensor was calibrated via adjustment in the distance 

between the sensor and a water tub that was placed 4 m below in an open area. This was 

performed to avoid the detection of surrounding objects, because the HC-SR04 sensor is 

sensitive and provides a high detection accuracy within a range of 2 to 400 cm (Asadullah & 

Ullah, 2017). The actual distance between the sensor and the water surface was measured, 

and the signal was recorded five times to reduce random measurement noise, as expressed in 

Algorithm 7.S2 (Liao et al., 2020). To calibrate the temperature sensor, it was placed in an 

incubator with a pre-set temperature along with a digital thermometer.  
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7.2.2.4 Communication Module 

For near-real-time monitoring of turbidity and water level, a data communication 

module was designed, consisting of a USB Wi-Fi dongle (model: Soracom Air) with a local 

subscriber identity module card plugged into the USB port of Raspberry Pi. Internet 

connection is established to enable communication via hypertext transfer protocol, one of the 

most commonly adopted text-based protocols for data transfer in IoT systems because it 

offers continuous and reliable connections and chunked transfer encoding (Viswanath et al., 

2016). The measured parameters were uploaded and stored in an open cloud platform, 

Ambient, for centralized near-real-time monitoring and anomaly detection. Although the data 

can be stored in the platform for only one year, a user can download the dataset (in CSV 

format) for future use and/or distribution. The Ambient platform allows a user to illustrate a 

maximum of eight different graphs (dataset and GPS position of monitoring point) 

simultaneously. An example of the user interface of the cloud platform used in this study is 

shown in Fig. 7.S1.  

7.3 Results and Analysis 

7.3.1 Cost Analysis 

The major components of the WQMS and their approximate costs expressed in US 

dollars are shown in Table 7.2. These products were purchased in Japan; the costs varied 

based on the dynamics of the global market exchange rate. The energy module constitutes a 

major portion of the total cost; however, the utility costs could be omitted because of the 

utilization of a photovoltaic system, which can function for years (lifespan of solar panel is 

20–25 years (Lim et al., 2014) whereas for lead–acid batteries, it is 4–6 years (Dufo-López 

et al., 2014)). Although the initial WQMS development cost (approximately US $261) in this 

study is slightly higher than those in previous studies (Table 7.1), the cost of the monitoring 

module is relatively low, particularly owing to the low-cost sensors, indicating that the 

replacements or add-on costs for these sensors are much lower than those for commercially 

available sensors (Fisher, 2014; Fletcher & Fisher, 2018).  
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Table 7.2 Summary and approximate costs of major hardware components of water quality monitoring system 

Module Component Manufacturer Cost per 

Unit 

(US$) 

Quantity Total 

Price 

(US$) 

Energy  2. 20W Solar Panel with 

PWM controller 

Saya 45.00 1 45.00 

3. 12V 7.2Ah Battery Long 25.00 1 25.00 

4. DC-DC adjustable 

Converter 

HiLetGo 2.00 2 4.00 

Time 1. Arduino (Nano) Elegoo 5.00 1 5.00 

2. Relay Module Elegoo 18.00 1 18.00 

3. Real-Time Clock 

Module 

HiLetGo 4.00 1 4.00 

Monitoring 1. Raspberry Pi (Zero 

WH) 

Raspberry Pi 

Foundation 

26.00 1 26.00 

2. 32GB Micro SD Toshiba 6.00 1 6.00 

3. Arduino (Nano) Elegoo 5.00 2 10.00 

4. 940nm LED OptoSupply 0.20 1 0.20 

5. 940nm 

Phototransistor 

Para Light 

Electronics 

0.20 2 0.40 

6. Ultrasonic sensor HiLetGo 2.00 1 2.00 

 

7. Temperature sensor Texas Instruments 0.60 1 0.60 

8. 3D printer Filament Creality 3D 25.00 1 25.00 

Data 1. USB Wi-Fi Dongle Soracom 60.00 1 60.00 

Miscellaneous Electronics and piping 

components 

 30.00 1 30.00 

Total 261.20 
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7.3.2 Optimum Sampling Frequency 

To determine the optimum sampling frequency of the WQMS, which relies on only 

the photovoltaic system as its power source, calculations were performed to ensure sufficient 

energy storage during the worst-case scenario, in which there is negligible or no solar 

irradiation (Decker, 2014). Incident solar irradiation is the most important parameter 

affecting the power generated by a photovoltaic system. In this study, the average hourly 

irradiation data for the period 1999–2018 with a 1-km resolution were obtained from the 

Global Solar Atlas, which is  under the World Bank Group (The World Bank Group, 2020).   

The energy consumption of the WQMS was measured and averaged over at least five 

iterations using a multimeter in three different modes: standby, operating, and 

communication, as shown in Table 7.3. The highest energy consumption was observed 

during the communication stage; similar results were reported by Gray et al. (2019). With 

Eq. (7.1), the minimum residual capacity and the number of days that the battery will be 

capable of supplying energy to the system without charging were calculated at different 

sampling time intervals (10. 20, 30, 60, 120, 180, and 240 min) based on the hourly average 

solar irradiation, as illustrated in Fig. 7.6. It can be observed that, although sunshine is 

abundant in Malaysia, at a high sampling frequency (at least one sampling per hour), the 

minimum residual capacity computed ranged from 40 to 80%, and the battery could sustain 

the system for only 1–4 days without charging. As reported by Mayowa et al. (2015) and Tan 

et al. (2019), an increase in the number of consecutive wet days (a key indicator of extreme 

precipitation) in Malaysia may increase the frequency of cloud days during the monsoon 

season. To prevent energy shortage due to these climate conditions, the battery should be 

capable of sustaining more than 85% of its residual capacity for more than five days without 

receiving solar irradiation at its maximum current consumption level (Martínez et al., 2020). 

Therefore, the optimum sampling frequency is set to two hours.  
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Table 7.3 Power consumption measurement of WQMS in different modes 

 

 

 

 

 

 

 

Fig. 7.6: Minimum residual capacity under worst scenario and battery life without charging  

              for different sampling intervals 

 

Mode Current (A) Voltage (V) Power (W) 

Standby 0.045 12 0.540 

Operating 0.370 12 4.440 

Communication 0.428 12 5.136 
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7.3.3 Sensor Calibration and Validation 

 After the WQMS was assembled and tested, the developed sensors were calibrated. 

For the turbidity sensor, as shown in Fig. 7.7(a), the signal received by the attenuated light 

phototransistor decreased as the turbidity increased, because the suspended particles blocked 

the transmission of the received light. On the other hand, for the scattered light 

phototransistor, the signal received increased as the turbidity increased owning to more light 

was scattered by the higher-concentration suspension in the solution. Both the scattered and 

attenuated light phototransistors exhibited appropriate corresponding relationships between 

signal value and turbidity, with a coefficient of determination R2>0.97. However, at low 

turbidities (FNU<4), both phototransistors provided constant signals, which may be due to 

sensitivity limitations. Consequently, the reliable measurement range of the developed 

turbidity sensor was 10–1,000 NTU. To minimize the effect of light refraction and aging of 

the LED light source, the ratiometric method was adopted, as illustrated in Fig. 7.7(b). The 

fitted formula derived from the calibration dataset was used to process the on-site monitoring 

data. 

 

 

 

 

 

 

 

 

Fig. 7.7: Calibration curves for turbidity using (a) attenuated and scattered light methods and  

              (b) ratio method, and calibration curves for (c) ultrasonic water level sensor and (d)  

              atmospheric temperature sensor 
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For the water level sensor, the calibration distance was set from 2 to 400 cm, as 

illustrated in Fig. 7.7(c). The analog signal transmitted by the temperature sensor and the 

observed temperature were recorded, as illustrated in Fig. 7.7(d). Both the water level and 

temperature sensors presented a high linearity, with R2>0.99, and can be deployed for on-site 

monitoring. However, the HC-SR04 sensor is not water-resistant and may be damaged when 

exposed to rain. Therefore, to validate if the designed casing would be protective against 

rainfall, the sensor was tested on a rainy day, and the time-series data were captured, as shown 

in Fig. 7.8. 

For this validation, the maximum rain intensity was obtained from the Weather News, 

and the device was operated continuously from 14:30 to 17:00 on July 27, 2019, in Lake 

Biwa, Japan. Owing to the nonlinear wave dynamics at Lake Biwa, the time-series water 

level measured by the sensor fluctuated significantly, ranging from 128 to 150 cm from the 

sensor to the water surface. Nevertheless, the water level sensor operated normally with the 

protection of the designed casing, preventing rainfall from damaging the system and ensuring 

an appropriate linearity between the actual water level and the water level measured by the 

sensor, as all the recorded data were within the measurement range. 

 

Fig. 7.8: Validation of water level sensor operating under rainfall 
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7.3.4 Field Study 

In this study, the WQMS was set up at one of the main drainages next to the tidal gate 

of the West Estate Sime Darby Plantation, for continuous monitoring of turbidity and water 

level every two hours for eight weeks, from November 28, 2019 to January 21, 2020. The 

installation of the system and the dimensions of the drainage are shown in Fig. 7.9.  

The turbidity values recorded at the monitoring station ranged from 0 to 926 FNU, 

with an average of 525 FNU, as illustrated in Fig. 7.10(a). The system was installed during 

the monsoon season, wherein the frequency of heavy rainfall was high (Wong et al., 2016), 

which may have resuspended settled sediments and eroded soil particles from the plantation 

into the water bodies. Therefore, the turbidity values observed were relatively dynamic and 

higher than those in the dry season (ranging from 4 to 207 NTU) (Al-Badaii et al., 2013). It 

is worth noting that this is the first study to reveal the time-series turbidity values for a palm 

oil plantation during the monsoon season. Based on the results obtained, the trend and 

average turbidity values (approximately 500 FNU) can be identified for the detection of 

anomalous phenomena in the plantation field. Several anomalous occurrences were observed 

during deployment, wherein the turbidity values sharply increased up to 900 FNU. This type 

of information is important to the relevant authorities for identifying pollution sources and 

appropriately adopting immediate measures.   

 
 

Fig. 7.9: Installation of water quality monitoring system and dimensions of drainage 
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Because the West Estate Sime Darby Plantation is located in a rural and remote area 

with highly limited network coverage, some of the data were not transmitted to the cloud 

system, leading to a discontinuity in the graph. This may also be caused by a failed connection 

between the Raspberry Pi and Arduino during data transmission. In addition, turbidity data 

became unavailable after December 26, 2019 because no measurements were obtained by the 

turbidity sensor. As reported by Matos et al. (2019), this may be a result of biofouling on the 

phototransistor and LED light source due to the high turbidity of water and presence of 

biological organisms, preventing the device from functioning. Therefore, maintenance work 

should be performed at least once a month to ensure that the device is running smoothly and 

correctly.  

 An important factor that affects the water level measurement accuracy is the 

measuring angle. Therefore, to ensure an accurate measurement, the support system was 

reinforced using heavy rocks as anchors to prevent sensor displacement by strong winds, as 

shown in Fig. 7.9. During the deployment, the average water level recorded was 129.9 cm, 

and it could be observed that the water level was higher in the middle of the December–

January period, as a result of the monsoon season, as shown in Fig. 7.10(b). The maximum 

and minimum water levels recorded were 160 and 9 cm, respectively. Concurrently, the 

average atmospheric temperature recorded was 30°C, and the maximum and minimum 

atmospheric temperatures were 29°C and 41°C, respectively, as illustrated in Fig. 7.10(c). 

The results obtained reflect the typical climate in Malaysia; however, the maximum 

temperature observed was slightly higher than those reported by Amirabadizadeh et al. 

(2015) and Yatim et al. (2019). A possible reason for this trend could be that the temperature 

sensor was stored in a sealed container in an open area without a shelter, resulting in a higher 

observed temperature than the typical climate in Malaysia.  

 

 



 

248 
 

7.4 Discussion of Findings 

At present, the most commonly adopted technologies for real- or near-real-time water 

quality monitoring are high-end or certified reference sensors. This concept has been adopted 

by many developed countries (such as Canada, Japan, and the United States) and has been 

promoted for use in developing countries. Thailand was among its pioneers in Southeast Asia, 

having installed 126 real-time monitoring stations across the nation to monitor pH, turbidity, 

dissolved oxygen, conductivity, and water temperature (Pollution Control Department, 2016). 

However, although this solution can easily address challenges in continuous monitoring, the 

initial investment cost required for installation is enormous, at approximately US $8.4 million, 

along with the annual maintenance cost for each monitoring station, which is approximately 

US $3,155 (Pollution Control Department, 2014), making it infeasible for application in other 

developing countries. Therefore, the framework of the low-cost 3D-printed IoT-based 

WQMS developed in this study, including its system architecture, sensor development and 

validation, optimal sampling frequency, and deployment could be a possible solution for the 

sixth UNSDG and promote environmental sustainability through the utilization of renewable 

energy.  

Based on the results of the field study, the contact-type sensor (for turbidity) requires 

monthly maintenance to prevent the deposition of mud/silt and biofouling problems, whereas 

the non-contact sensor (for water level) consistently provides accurate measurements. This 

study has demonstrated the feasibility of addressing global issues through an economical and 

practical approach. Through the use of IR 4.0 technologies and low-cost sensors, which have 

widespread positive implications for the environment, a sustainable and standalone WQMS 

that measures turbidity and water level every two hours has been developed.  
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Fig. 7.10: Time-series data of turbidity, water level, and temperature recorded by water 

quality monitoring system during deployment period 
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7.4.1 Theoretical Contributions 

The implementation of IR 4.0, replacing traditional water quality monitoring, is 

imperative, and thus, extensive research has been conducted; however, the linkage between 

theoretical developments and real-world applications is still at a nascent stage (Yadav et al., 

2020). Primarily, the present study addressed the implementation challenges of IoT-based 

WQMSs, utilizing low-cost sensors based on existing methodologies (photovoltaic system, 

3D printing) for the development of the monitoring system. Because most studies thus far 

have presented only an overview of their respective developed systems (Table 7.1), a 

compact and solar-powered WQMS architecture has not yet been clearly established. 

Therefore, this study provides a detailed explanation of the function of each module 

constituting the architecture to facilitate the future development/improvement of WQMSs.  

Several studies have attempted to utilize commercially available low-cost turbidity 

sensors for measurement (Gillett & Marchiori, 2019; Kitchener et al., 2019; Pasika & Gandla, 

2020); however, details on the designs of these sensors have not been provided (e.g., type of 

light source and wavelength of LED), which prevents comparison among the different 

turbidity sensors for validation. Therefore, in this study, to ensure that the sensor 

measurements are comparable, the sensors have been developed and validated according to 

international standards, such as ISO or USEPA. 

7.4.2 Practical Implications 

This study highlighted and demonstrated how the integration of 3D printing, IoT 

systems, and low-cost sensors could be a key driver in addressing inadequacies in WQMSs 

for sustainable water resource management, particularly in developing countries, as 

highlighted in the UNSDGs. The affordable cost (in installation and maintenance) and 

acceptable measurement accuracy range of IoT-based monitoring systems could be the main 

drivers for their emergence as a next-generation solution (Miller, 2018) for sustainable water 

resource management. 

The conventional water quality monitoring through laboratory-based techniques is 

difficult, time-consuming, and expensive Under the umbrella of IR 4.0, emerging innovations 
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that are highly decentralized, automated, and interdependently controllable (via open or 

closed platforms) may be possible solutions to the aforementioned problem and have 

therefore gained significant attention. Relevant authorities are moving toward smart 

monitoring as they significantly reduce the laborious work required for monitoring and are 

empowered to provide real- or near-real-time monitoring of specific water quality parameters, 

which could be an effective tool for addressing water quality related problems (Ahmed et al., 

2019; Pasika & Gandla, 2020). 

As small/desktop-scale 3D printers become more affordable and commercially 

widespread, 3D printing could become a promising and pragmatic alternative to conventional 

fabrication/prototyping processing (where sophisticated machines are required) for 

developing complicated geometries and structural details. The 3D-printing also allows 

developers to share computer-aided design files of their sensors over specific platforms (for 

instance, Thingiverse, GrabCAD, and Pinshape) to facilitate information flow among 

practitioners, and enable download, modification, and/or improvisation based on their 

requirements. Furthermore, the integration of 3D printing with IoT systems and low-cost 

sensors may present a new path for the relevant authorities to adopt this framework for the 

construction of devices for measuring other parameters, based on their local geographical 

and metrological conditions.  

The application of the developed WQMS is not only useful for studying trends in 

water bodies in terms of certain parameters, but also aids relevant authorities in making 

immediate decisions when an abnormal measurement is observed. For conventional water 

quality measurement methods, monitoring frequencies are relatively low (weekly, monthly, 

or seasonal basis) that may hinder immediate and specific operation responses required to 

address water pollution arising from point or non-point sources (for example, illicit discharge 

and surface runoff) (Park et al., 2020). As reported by Wang et al. (2021), the traceability 

service provided by IoT systems is critical for establishing the accountability of these systems. 

Through the use of real- or near-real-time monitoring via an IoT system, the risk of pollution 

of an exposed water body can be tracked and immediate actions can be performed.  
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7.5 Conclusions  

Water and air quality monitoring has typically been challenging in developing 

countries, particularly because of the high equipment cost, intensive labor, and extensive time 

required. Although there has been a remarkable increase in the use of low-cost sensors in the 

development of IoT-based WQMSs, they have not yet been widely implemented in field 

operations. To address this issue, a low-cost and novel 3D-printed IoT-based near-real-time 

WQMS powered by only a photovoltaic system was developed, calibrated, and deployed in 

a palm oil plantation on Carey Island, Malaysia, for two months. The designed WQMS 

comprises four major modules: energy, time, monitoring, and communication. The modules 

are composed of different sensors, Raspberry Pi, Arduinos, and a cloud platform. The 

proposed WQMS has proven the practicality of the integration of IoT with 3D printing, 

microcomputers, and low-cost sensors and has paved a new path for developing cost-

effective and reliable systems for near-real-time water quality monitoring. 

The study revealed the high potential of utilizing solar energy as the primary energy 

source for operating low-power WQMSs in tropical countries. For example, the abundant 

sunlight in Malaysia will allow the system to operate sustainably using energy harvested by 

the photovoltaic system when the sampling is limited to a maximum of once every two hours. 

Turbidity, a major water quality problem encountered in Southeast Asia, was used as a 

monitoring parameter together with the water level. Calibration and validation of the turbidity, 

temperature, and ultrasonic water level sensors were performed, and high linearities were 

obtained between the signals received and the actual measurements. The developed turbidity 

sensor provides an accurate measurement of turbidity within a range of 10 to 1,000 FNU, 

whereas the optimum measurement ranges for the ultrasonic and temperature sensors are 2–

400 cm and 10–50°C, respectively. During the deployment period, the contact-type sensor 

(turbidity sensor) stopped functioning after a month, whereas the non-contact-type sensors 

(water level sensor) consistently continued to provide measurements. Therefore, to improve 

the turbidity sensor, self-cleaning mechanisms, such as installation of a wiper/brush to 

remove the deposition of mud/silt and microorganisms, will be necessary.  
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7.5 Way Beyond  

To further improve its durability and reliability, the developed 3D-printed IoT-based 

WQMS could be integrated with a cyber-physical system, which would exhibit an improved 

self-resilience/optimization and prediction performance (Fatima et al., 2020) that is more 

robust to random disturbances caused by environmental influences and will be useful for 

long-term trend analysis. A warning notification system could be incorporated into the 

system to inform relevant authorities for anomalous detections, such that immediate 

action/checking can be performed. Associating with artificial intelligence algorithms/models 

that can learn and capture non-linear characteristics in datasets and implement consistent 

calibration with past and current data (Wong et al., 2020a), the sensor sensitivity can be 

improved, the impact of measurement errors can be minimized or almost eliminated, and 

warning notifications for  future events (e.g., flooding caused by overflows in plantation 

areas) can be provided (Jenny et al., 2020). An optimum maintenance time is required to 

ensure performance and cost-effectiveness of the system; therefore, further studies are 

necessary to evaluate effects of the environment on the accuracies and lifespans of the sensors. 

The proposed WQMS implemented demonstrates the effective integration of IoT with 

3D printing, microcomputers, and low-cost sensors. Based on the developed prototype, it 

could be further modified to address the monitoring frequency across wider area for air 

quality monitoring, paving a new path for the development of cost-effective and reliable 

systems for both water and air quality monitoring. 

 

 

 

 

 

 

 

 



 

254 
 

Supplementary Materials 

 

Fig. 7.S1: Interface of Ambient cloud platform with measured parameters and installation 

location. 
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Algorithm 7.S1: Turbidity sensor measurement 

Measurement of Turbidity 

Input: count: frequency of sampling; Signal scattered/attenuated/ratio: voltage value received by 

phototransistors based on turbidimetry method, nephelometry method, and ratio method, 

respectively; FNU scattered/attenuated: Turbidity measurement based on turbidimetry method, 

and nephelometry method, respectively; and FNU Ratio: Turbidity measurement based on 

ratiometric method 

Output: Turbidity: Averaged turbidity measurement based on ratiometric method 

 

1.    for count   =   1 to 5 do 

2.          Obtain 𝑺𝒊𝒈𝒏𝒂𝒍𝑺𝒄𝒂𝒕𝒕𝒆𝒓𝒆𝒅  

3.          if (𝑺𝒊𝒈𝒏𝒂𝒍𝑺𝒄𝒂𝒕𝒕𝒆𝒓𝒆𝒅 was not obtained) then 

4.                Remove 𝑺𝒊𝒈𝒏𝒂𝒍𝑺𝒄𝒂𝒕𝒕𝒆𝒓𝒆𝒅 as an outlier 

5.          end if  

6.          Obtain 𝑺𝒊𝒈𝒏𝒂𝒍𝑨𝒕𝒕𝒆𝒏𝒖𝒂𝒕𝒆𝒅  

7.          if (𝑺𝒊𝒈𝒏𝒂𝒍𝑨𝒕𝒕𝒆𝒏𝒖𝒂𝒕𝒆𝒅 was not obtained) then 

8.                Remove 𝑺𝒊𝒈𝒏𝒂𝒍𝑨𝒕𝒕𝒆𝒏𝒖𝒂𝒕𝒆𝒅 as an outlier 

9.          end if 

10.        if (Both 𝑺𝒊𝒈𝒏𝒂𝒍𝑺𝒄𝒂𝒕𝒕𝒆𝒓𝒆𝒅  and  𝑺𝒊𝒈𝒏𝒂𝒍𝑨𝒕𝒕𝒆𝒏𝒖𝒂𝒕𝒆𝒅 are not outliers) then 

11.              𝑺𝒊𝒈𝒏𝒂𝒍𝑹𝒂𝒕𝒊𝒐   =   𝑺𝒊𝒈𝒏𝒂𝒍𝑺𝒄𝒂𝒕𝒕𝒆𝒓𝒆𝒅 / 𝑺𝒊𝒈𝒏𝒂𝒍𝑨𝒕𝒕𝒆𝒏𝒖𝒂𝒕𝒆𝒅 

12.              𝑭𝑵𝑼𝑹𝒂𝒕𝒊𝒐[𝒄𝒐𝒖𝒏𝒕]   =   0.001 * 𝑺𝒊𝒈𝒏𝒂𝒍𝑹𝒂𝒕𝒊𝒐 + 0.0116 

13.              if (𝑭𝑵𝑼𝑹𝒂𝒕𝒊𝒐[𝒄𝒐𝒖𝒏𝒕] < 10  or  𝑭𝑵𝑼𝑹𝒂𝒕𝒊𝒐[𝒄𝒐𝒖𝒏𝒕] > 1000) then 

14.                    Remove 𝑭𝑵𝑼𝑹𝒂𝒕𝒊𝒐[𝒄𝒐𝒖𝒏𝒕] as an outlier 

15.              end if 

16.        else 

17.              Set 𝑭𝑵𝑼𝑹𝒂𝒕𝒊𝒐[𝒄𝒐𝒖𝒏𝒕] as an outlier 

18.        end if 

19.        Wait 10 seconds 

20.  end for 

21.  𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚   =   Average of ∑ 𝐅𝐍𝐔𝐑𝐚𝐭𝐢𝐨
𝟓
𝐜𝐨𝐮𝐧𝐭=𝟏  

22.  return   𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚 

 

The algorithm for turbidity detection utilizes an Arduino microcontroller associated 

with a light-emitting diode (LED) light source with a wavelength of 940 nm and two 

phototransistors L-51ROPT1D1 for synchronous measurement of scattered and attenuated 

lights, as described in Algorithm 7.S1. The algorithm provides turbidity measurements based 

on the turbidimetry, nephelometry, and ratiometric methods (refer to Section 7.2.2.3 for a 
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detailed explanation). The sampling frequency is set at 5 to reduce the random measurement 

error, whereas the time interval for each sampling is set at 10 s. When the system boots up, 

the signals for both the scattered and attenuated phototransistors are recorded, unless no 

signals are transmitted from the sensor to the Arduino, owing to electronic issues 

(malfunctioned sensor, interrupted signal communication, electricity shortage or poor 

internet connection). To obtain the ratiometric turbidity, the ratio between the scattered and 

attenuated signals is obtained and converted using the equation in Line 12. The ratiometric 

turbidity value is sent to Raspberry Pi, providing a ratio value between 10 and 1000. 

Otherwise, the measurement is recorded as an outlier. The range between 10 and 1000 is 

chosen in accordance with the optimal measurement range obtained from the calibration 

curve (Fig. 7.7). The process is repeated five times, and an average value of the turbidity 

values is sent to the Ambient cloud platform.   
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Algorithm 7.S2: Water level sensor measurement 

Measurement of Water Level 

Input: count: frequency of sampling; Signal Temp: voltage value received by temperature 

sensor; WL: water level measured by sensor; Signal Time: Echo reflection time. 

Output: Temperature: temperature measured by sensor; WaterLevel: Averaged 

atmospheric condition corrected water level; 

 

1.     for count   =   1 to 5 do 

2.           Obtain 𝑺𝒊𝒈𝒏𝒂𝒍 𝑻𝒆𝒎𝒑  

3.           if (𝑺𝒊𝒈𝒏𝒂𝒍 𝑻𝒆𝒎𝒑 was not obtained) then 

4.                 Remove 𝑺𝒊𝒈𝒏𝒂𝒍 𝑻𝒆𝒎𝒑 as an outlier 

5.           else 

6.                 𝑻𝒆𝒎𝒑[𝒄𝒐𝒖𝒏𝒕]   =   1.9689 * 𝑺𝒊𝒈𝒏𝒂𝒍 𝑻𝒆𝒎𝒑 + 122.92 

7.           end if  

8.           Obtain 𝑺𝒊𝒈𝒏𝒂𝒍 𝑻𝒊𝒎𝒆  

9.           if (𝑺𝒊𝒈𝒏𝒂𝒍𝑻𝒆𝒎𝒑 or 𝑺𝒊𝒈𝒏𝒂𝒍𝑻𝒊𝒎𝒆was not obtained) then 

10.               Remove 𝑺𝒊𝒈𝒏𝒂𝒍𝑻𝒊𝒎𝒆 as an outlier 

11.         else 

12.               𝑾𝑳[𝒄𝒐𝒖𝒏𝒕]   = (331.5 + 0.606 * 𝑻𝒆𝒎𝒑[𝒄𝒐𝒖𝒏𝒕]) * 𝑺𝒊𝒈𝒏𝒂𝒍𝑻𝒊𝒎𝒆[𝒄𝒐𝒖𝒏𝒕] / 2 

13.         if (𝑾𝑳[𝒄𝒐𝒖𝒏𝒕] < 2 or 𝑾𝑳[𝒄𝒐𝒖𝒏𝒕] > 400) then 

14.              Remove 𝑾𝑳[𝒄𝒐𝒖𝒏𝒕] as an outlier 

15.         end if 

16.         Wait 10 seconds 

16.   end for 

17.         𝑾𝒂𝒕𝒆𝒓𝑳𝒆𝒗𝒆𝒍   =   Average of ∑ 𝑾𝑳𝟓
𝐜𝐨𝐮𝐧𝐭=𝟏  

18.   return   𝑻𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆,   𝑾𝒂𝒕𝒆𝒓𝑳𝒆𝒗𝒆𝒍 

 

The algorithm for water level detection utilizes an Arduino microcontroller associated 

with an ultrasonic sensor (HC-SR04) and temperature sensor (LM61CIZ/NOPB), as 

mentioned in Algorithm 7.S2. The sampling frequency is set at 5 to reduce the random 

measurement error, whereas the time interval for each sampling is set at 10 s. When the 

system boots up, the signal of the temperature sensor is recorded, unless no signals are 

transmitted from the sensor to the Arduino, owing to electronical issues (malfunctioned 

sensor, interrupted signal communication, electricity shortage or poor internet connection). 

If the signal is received by the Arduino, the signal is converted to the actual temperature 

value using the equation in Line 6. Otherwise, the value is recorded as an outlier and sent to 
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the Raspberry Pi. The water level is computed using the equation in Line 12 after the echo 

reflection time is received by the ultrasonic sensor. The water level value is sent to Raspberry 

Pi, providing the computed water level value as < 400 or > 2. Otherwise, the measurement is 

recorded as an outlier.  The process is repeated five times and an average value of the water 

level is sent to the Ambient cloud platform.   
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Chapter 8  

 
Conclusions and Recommendations 

 

8.1 Summary and Conclusions 

In this research, spatiotemporal effects of land use, climate and COVID-19 impacts 

on the environment in East (Taiwan) and Southeast Asia (Malaysia) were studied using four 

case studies (Chapter 3 to Chapter 6). The impacts of changing land use and occurrence of 

extreme climatic events have been alarming across the globe; however, the local scale 

conditions remain unknown. Therefore, to address this question, Chapters 3 and 4 which 

focus on the streamflow conditions under changing land use and changing climate, 

respectively, are studied. In addition, the occurrence of the COVID-19 pandemic has brought 

profound impacts on many aspects of life and the economy; notably, due to the new normal 

lifestyle, the nature has been reclaiming itself. However, the air quality conditions in the 

absence of lockdown were not reported. Therefore, to understand the impacts of COVID-19, 

Chapters 5 and 6 performed the comparison in pollutants concentration between business-as-

usual and simulated concentrations, using linear regression models and artificial intelligence 

(AI) models, respectively.  

In Chapter 3, it could be observed that network optimization played an important role 

in improving the prediction accuracy of the land use type classification from satellite images 

in Malaysia. Compared to artificial neural network (ANN), support vector machine (SVM) 

has lesser sensitivity on the hyperparameter adjustment, but higher variation is observed 

across different training algorithms/membership functions. This is mainly due to SVM is 

rule-based algorithm where the characteristics among parameters must be well understood 

before making the predictions. Therefore, in this research, ANN might be more suitable for 

predicting the land use type from the satellite images. For future land use simulation, the 

prediction accuracy for utilizing the present land use maps (1990 and 2000) to simulate 2016 
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land use maps could reach up to 97%, indicating the accuracy of the LCM. The forestry in 

the Selangor river basin experienced drastic loss up to 300% in 2050 as compared to 1990, 

and the urban area expanded up to 200% over 60 years. The simulated land use is used to 

simulate the future streamflow. Extreme streamflow such as no flow rate or very high flow 

rate up to 100 m3/s is more commonly encountered in the future. Through the simulation, this 

is important to have proper management for water resources to prevent prolonged drought or 

extreme rainfall induced flood events.   

For Chapter 4, the present, near-, mid- and far future of extreme flooding events 

across different cities in Taiwan were simulated using high resolution Meteorological 

Research Institute of the Japan Meteorological Agency version 3.2 (hereinafter referred to as 

MRI-AGCM3.2s) dataset under Rainfall-Runoff-Inundation (RRI) model. Bias-correction 

procedure is crucial when using MRI-AGCM 3.2s dataset as huge variation are observed 

between uncorrected and gauge datasets. The precipitation and temperature trends are 

observed to vary dynamically in the future, with increment of temperature more than 3°C and 

rainfall volume change spatiotemporally across different cities. For near-and-mid future 

simulation, the maximum river flood rate is expected to increase more than 20%. However, 

for the far-future, the East and South regions of Taiwan are expected to face severe flooding 

issues; whereas prolonged drought and water stress issues are expected in the Central and 

Northern regions, providing insightful findings to the responsible authorities to have better 

water storage and management. 

In Chapter 5, long-term COVID-19 impacts on the atmospheric environment in 

Taiwan, incorporating public transportation use and meteorological impacts in the absence 

of lockdowns was studied. Substantial improvements were observed in the studied air 

pollutants, wherein both PM10 and PM2.5 showed the highest annual mean concentration 

reduction in 2020 relative to 2018-2019, by 24 and 18%, respectively, followed by SO2, NO2, 

CO and O3, with reductions of 15, 9.6 and 7.4 and 1.3%, respectively, even in the absence of 

lockdown. The occurrence frequency of air pollutants that may cause adverse health effects 

decreased by more than 30% in 2020 compared to 2018-2019, particularly in O3 and PM2.5. 
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This research makes an important contribution to the literature as it is the first to investigate 

the impact and patterns of different modes of public transportation (i.e., including roadway, 

railway, air, and waterway) on air quality improvements in 2020. The change trends of CO 

and NO2, the major pollutants emitted from the public transportation sector, were found to 

be in parallel with the shift in traffic volume patterns in 2020. 

In Chapter 6, utilizing four different AI methods, namely generalized additive model 

(GAM), gradient boosting machine (GBM), generalized linear model (GLM) and random 

forest (RF) to quantify the spatiotemporal impacts of COVID-19 on NO2 and O3 

concentrations across 62 cities in Taiwan under meteorological-normalized BAU conditions. 

The selection of modelling method and the optimization of hyperparameter is crucial for each 

studied monitoring station for simulating the BAU concentrations of air pollutants. For GLM, 

the optimal data distribution for both NO2 and O3 modelling is Gaussian data distribution, 

whereas for GAM, the optimal data distribution for NO2 and O3 simulation is Quasi and 

Poisson, respectively. Meanwhile, for RF and GBM, the optimized number of trees is highly 

site dependent. Due to the complicated and non-linear characteristics between the air 

pollutants with temporal and meteorological parameters, regression-based models (GAM and 

GLM) have the poorest performance. For Taiwan, it could be observed that tree-based models 

(RF and GBM) are more suitable for simulating the NO2 and O3 BAU concentrations.  

Throughout 2020, even in the absence of a lockdown, the daily mean meteorological-

normalized NO2 and O3 across Taiwan were observed to reduce by 14.9% and 5.8%, 

respectively with significant spatiotemporal variation. Due to the frequent occurrence of 

downpour in recent decades, further studies on higher temporal resolution such as hourly are 

required to better understand the meteorological impacts to the air pollutants. 

Based on the findings from Chapter 3 to Chapter 6, a common issue facing in the 

developing countries is the inadequate number of monitoring stations as the assessment of 

the surface water and ground air quality is often labor-intensive, costly and time consuming. 

Therefore, to address the possible issues, Chapter 7 presented the effective integration of IoT 

with 3D printing, microcomputers, and low-cost sensors on water quality monitoring and its 
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possibility to be widely used for environmental monitoring, paving a new path for the 

development of cost-effective and reliable systems for both water and air quality monitoring. 

The application and integration of remote sensing techniques, geographical 

information system (GIS), AI, big data analysis/management and IoT system has been 

gaining popularity in addressing/evaluating environmental issues. The number of monitoring 

station for pollutant concentrations are limited in most developing countries, leading to the 

limited local scale pollution management. Concurrently, due to limited data availability, the 

hydrological or air quality modelling are facing huge simulation challenges due to low 

simulation accuracy. Therefore, this research has studied and proven the integration of these 

techniques to possibly evaluate/address the environmental issues in the region, overcoming 

the low simulation accuracy by optimizing the models and proposing new monitoring 

technique for enhancing the spatiotemporal monitoring frequency.  

8.2 Recommendations 

In this research, only flood simulations were performed in this research. However, as 

summarized in Chapters 1 and 2, the impacts of drought are also critical in these regions. The 

economical impacts of drought, particularly in agricultural areas were not accessed in this 

research. Therefore, in the future, utilizing the available dataset, the drought impacts should 

be accessed and possible mitigation solutions such as proper water management/storage 

during drought should be studied.  

In addition, for the BAU air pollutants concentration simulation in both Chapters 5 

and 6, due to the limitation of the dataset available, the cross-boundary pollution was omitted. 

The long-range transportation of air pollutants in the neighboring countries also poses 

significant impacts to Taiwan and should be considered in the future studies. Last but not 

least, as there are no detailed data available on the local emissions (industrial, domestic) and 

sudden/accidental pollution, which may have further limited the ability to identify the 

underlying reasons for the improvements in the research even though back trajectory tool 

was applied. 


