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Chapter 5

Topology Optimization of Lift–drag
Problems †
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5.1 Introduction

Fluid-related shape and topology optimization has undergone a tremendous development in var-
ious directions since the seminal work by Borrvall and Petersson (2003), such as turbulent flows
(Yoon, 2016; Dilgen, Dilgen, Fuhrman, Sigmund, and Lazarov, 2018a; Picelli, Moscatelli, Yam-
abe, Alonso, Ranjbarzadeh, Santos Gioria, Meneghini, and Silva, 2022), non-Newtonian flows
(Pingen and Maute, 2010; Alonso, Saenz, and Silva, 2020), unsteady state flows (Kreissl, Pingen,
and Maute, 2011; Nobis, Schlatter, Wadbro, Berggren, and Henningson, 2022), and many multi-
physics such as fluid–structure interaction (FSI) (Yoon, 2010b; Ranjbarzadeh, Picelli, Gioria, and
Silva, 2022), thermal-fluids (Dede, 2009; Troya, Tortorelli, Andrej, and Beck, 2021), etc. Detailed
and meticulous records and classification of fluid-related TO can be found in the review paper
by Alexandersen and Andreasen (2020) , see also a very recent review paper by Fawaz, Hua, Le
Corre, Fan, and Luo (2022) for heat exchanger designs based on TO techniques. The majority
of the previous works mainly focused on the internal flows, whereas the external flows have re-
ceived much less scientific attention in the state-of-the-art TO developments. More specifically, in

†The work in this chapter has been accepted for publication in Structural and Multidisciplinary Optimization
(Springer), 2022.
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the aerodynamics design, very few TO works have been carried out to find an optimal shape for
a flying object with the exception of Kondoh, Matsumori, and Kawamoto (2012), Garcke, Hinze,
Kahle, and Lam (2018), Feppon, Allaire, Dapogny, and Jolivet (2020b), and Ghasemi and Elham
(2022). The early works (Kondoh, Matsumori, and Kawamoto, 2012; Garcke, Hinze, Kahle, and
Lam, 2018) are limited to two-dimensional designs and/or very low Reynolds cases. Feppon,
Allaire, Dapogny, and Jolivet (2020b) are known as the first who performed the shape and topol-
ogy optimization in a three-dimensional setting. Their method relies on the boundary variation
of Hadamard for describing the sensitivity of functions with respect to the domain. Finally, and
very recently, Ghasemi and Elham (2022) constructed an efficient multi-stage density-based TO
framework for solving 2D and 3D aerodynamic problems in the laminar flow regime. They pro-
posed an operator-based analytical differentiation (OAD) to compute the exact partial derivatives
of the flow solver. They developed their solver via OpenFOAM software and delivered promising
designs in both two- and three-dimensional settings.

As briefly discussed above, various TO techniques have been applied in the context of fluid-
related problems. Besides the density-based and level-set based approaches, we also notice that
very recently some researches adopted an inverse homogenization (or dehomogenization) method
to recover the optimized porous media performance by way of intricate microchannel structures
in a post-processing step (Zhou, Lohan, Zhou, Nomura, and Dede, 2022). But here we mainly
discuss the two most popular approaches (density-based and level set-based approaches) used in
fluid TO. In the density-based approach, the key idea is to use a monolithic formulation by intro-
ducing the Brinkman penalization on fixed meshes. The density-based approach is a promising
method that allows one to design from scratch. The main bottleneck is that the non-conforming
mesh lacks a high resolution fluid–solid interface description. To overcome this problem, fine
meshes need to be used everywhere in the design domain. However, when performing the pri-
mal and adjoint analyses, the solution of the linear system Ax = b can be quite costly even by
leveraging parallel implementations. The level set-based method, on the other hand, uses an im-
plicit zero-level-set isosurface for the description of the fluid–solid boundary, which can be used as
a metric when being coupled with surface capturing techniques such as cutFEM (Villanueva and
Maute, 2017) and body-fitted adaptive meshes, or local mesh refinement such as iso-/anisotropic
adaptive meshes. However, the above-mentioned specific numerical techniques increase the over-
all computational cost (i.e., remeshing cost) as the total state variable increases. With this in mind,
an efficient computational tool can be of great significance in fluid TO. It is now clear that the core
interests behind this are the flow modelings and meshing techniques, which have been seldom
discussed in depth in the literature.

The aim of this chapter is to report on the technical increments toChapters 2 to 4, where we
proposed a reaction–diffusion equation-based (RDE) topology optimization (TO) framework for
solving the fluid optimization problems. More specifically, the distributed unstructured mesh
adaptation has seldom been used for topology optimization in the previous works, and this work
is a first step in that direction to the best of our knowledge. It is indeed a technical issue, but
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still, it requires a fully-distributed framework (including scalable domain decomposition, matrix
assembly, parallel interpolation, linear solver) that very few general purpose libraries offer. In
addition, as we shall show below, this work is the first attempt to conduct a comparative study by
showcasing different flow modeling strategies with their advantages and disadvantages.

In our previous works, body-fitted meshes were used. As one of the surface capturing tech-
niques, this enables the disjoint reunion of a global mesh that involves several (fluid/solid) sub-
domains, whose interfaces are described by an implicit zero-level-set isosurface. Therefore, the
fluid–structure system can be modeled using separate equations where a no-slip boundary con-
dition is imposed on the moving fluid–solid boundaries. Hereinafter, for brevity, we name it as
the “separate” modeling. However, such an implicit surface remeshing could be a significant
performance bottleneck since it is currently performed on a single MPI process. In effect, it some-
times becomes even a heavier workload than solving state equations. In addition, it also raises a
challenge that even though a parallel solver could use a sequential remesher by gathering a parti-
tioned mesh on a single MPI process, it is not always possible to handle a large mesh on it due to
memory limitations (Park, Loseille, Krakos, Michal, and Alonso, 2016). Thanks to the versatility
of the RDE method, we can also model the fluid–solid system using a monolithic formulation.
For brevity, hereinafter, we name it as the “hybrid” flow modeling strategy, see the schematic
illustration in Fig. 5.1c.

In this chapter, we shed a light on an external flow optimization problem and run our newly
updated TO algorithm, in which ParMmg is used for the parallel iso-/anisotropic mesh adapta-
tion. To this end, we first formulate a lift–drag optimum design problem in Section 5.2. In Sec-
tion 5.3, we provide the implementation details and illustrate how different meshing techniques
(fixed mesh, isotropic mesh, anisotropic mesh, and body-fitted mesh) are integrated in different
flow modeling strategies (“separate” and “hybrid”). Then, we present in Section 5.4 various 2D
and large-scale 3D design examples and conduct an in-depth comparative study. Lastly, the main
findings and the limitations of the approach are summarized in Section 5.5.

5.2 Formulation

5.2.1 Governing equations

The fluid flow is governed by the incompressible steady-state laminar flow (the gravity effect
is neglected in this chapter). The basic motion of a fluid particle within the fluid domain Wf is
characterized by the dimensionless velocity v : Wf ! Rd and the dimensionless pressure p : Wf !
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R, which are the unique solutions of the following continuity and Navier–Stokes (NS) equations:

8
>>>>>>>>>>><

>>>>>>>>>>>:

�div (sf (v, p)) + (v ·r) v � f Da (v) = 0 in Wf

�div (v) = 0 in Wf

v = v0 on ∂WD
f

sf (v, p) · nf = 0 on ∂WN
f

v = 0 on Gs,f

v · n = 0 on G,

(5.1)

where G := ∂W\
�
∂WD

f [ ∂WN
f [ Gs,f

�
denotes the free-slip boundaries. nf is the unit normal vector.

The fluid stress tensor sf (v, p) is defined as follows:

sf (v, p) := 2
1

Re
e (v) � pI, (5.2)

where Re is the Reynolds number, and I is the identity matrix. The strain tensor is given as:

e (v) :=
1
2
�
rv + rvT�.

The dimensionless fictitious body force term f Da (v) = �av is introduced in the momentum
equation, where a

�
Hf
�

is the inverse permeability of the fictitious porous medium, which can be
interpolated as follows:

a
�

Hf
�

= amax
�
1 � Hf

�
, (5.3)

where amax is the upper bound of the effective inverse impermeability in the solid domains. For
the case of “separate” modeling using body-fitted mesh, a is only to aid the sensitivity analysis.
Therefore, amax can be any positive value. For the case of “hybrid” modeling, we set amax = 107 in
this chapter. In the authors experience, generally a lower order of magnitude of amax may cause an
unstable fluid–solid surface evolution, especially for the case of higher Reynolds number. Thus,
its value should be large enough to stop the flow, please see also our very recent contribution on
natural convection optimization problem for further discussions Chapter 4.

The nonlinear problem defined in Eq. (5.1) is solved using a classical Newton method where the
linearized fluid equations are solved in sequence.

5.2.2 Optimum design problem

The optimum design problem in this chapter is to maximize the lift force under the constraints of:
(1) drag force, (2) volume, and (3) center of mass. The optimization model can be formulated as
follows:

inf
Hf2X

J(W) = �Lift(G, v(G), p(G)) (5.4a)
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(A) Schematic. (B) “Separate”
modeling.

(C) “Hybrid”
modeling.

FIGURE 5.1: (a) Schematic of the lift–drag problem and two flow modeling
strategies using: (b) body-fitted mesh and (c) isotropic mesh.

s.t.
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>>>>>>>>>>:

G1 = Drag(G, v(G), p(G)) � C0Drag0  0

G2 =

R
D
�
1 � Hf

�
dWR

D dW
� Vmax = 0

G3 =

R
D x
�
1 � Hf

�
dWR

D
�
1 � Hf

�
dW

� x0 = 0

Eq. (5.1) (Navier–Stokes equations),

(5.4b)

where the maximum allowed drag force is imposed to be C0 Drag0, where Drag0 is the value
computed based on the minimal drag problem subject to the same volume fraction Vmax and the
center of mass (COM) constraints. x0 = (x0, y0, z0) denotes the target x-, y-, and z-coordinates of
the COM. As for the cost functions, we follow the lead of Kondoh, Matsumori, and Kawamoto
(2012) by describing the drag and lift forces as the boundary integrals1, defined as below:

Drag = �

Z

∂W\Gs,f

(v · ex) (v · n) + pn · ex dG (5.5a)

Lift = �

Z

∂W\Gs,f

�
v · ey

�
(v · n) + pn · ey dG, (5.5b)

where
�
ex, ey, ez

�
is the canonical basis of R3. Using Lagrange’s method, we replace the optimiza-

tion problem given in Eq. (5.4) with an unconstrained optimization problem. The Lagrangian is
formulated as follows:

L (v, vA, p, pA, l1, l2, l3, l4, l5, W)

= J (W) + hvA, R1i + hpA, R2i +
5

Â
i=1

liGi,
(5.6)

1Other cost functions for the lift–drag problem can be found in Kondoh, Matsumori, and Kawamoto (2012) for the
density-based approach, and Feppon, Allaire, Dapogny, and Jolivet (2020a) for an extension to a domain integral which
is to aid the shape derivative. See also Garcke, Hinze, Kahle, and Lam (2018) for a phase-field method.
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where vA and pA are the adjoint velocity and adjoint pressure, respectively, and li is the Lagrange
multipliers associated to the corresponding constraint functional. The design sensitivity2 can be
derived as follows:

F̄0 =
Z

W
�amaxv · vA � l2 � l3 (x � x0) � l4 (y � y0) � l5 (z � z0) dW, (5.7)

where vA and pA can be obtained by solving the following adjoint equations:

8
<

:
� v ·rvA + vA ·rvT

�
1

Re
r ·

⇣
rvA + rvT

A

⌘
+ avA + rpA = 0

�r · vA = 0,
(5.8)

with the following adjoint boundary conditions:

8
>>>>>>>>><

>>>>>>>>>:

vA = l1ex � ey on ∂WD
f�

v · ey
�

n � l1 ((v · ex) n + ex (v · n)) + vA(v · nf)

+
1

Re

⇣
rvA + rvT

A

⌘
· nf � pAnf = 0 on ∂WN

f

vA = 0 on Gs,f

vA · n = 0 on G.

(5.9)

The adjoint equations defined in Eqs. (5.8) and (5.9) can be expressed in the weak form as follows:

Z

W
�ṽA · (v ·rvA) + ṽA ·

⇣
vA ·rvT

⌘
+

1
Re

rṽA :
⇣
rvA + vT

A

⌘

+ ṽA · avA � pAr · ṽA � p̃Ar · vAdW

+
Z

∂WN
f

�
v · ey

�
(ṽA · n) +

�
ey · ṽA

�
(v · n) + (vA · ṽA) (v · n)

� l5 ((v · ex) (ṽA · n) + (ex · ṽA) (v · n)) dG

8(ṽA, p̃A) 2 Uv,p, (v, p) 2 Uv,p,

(5.10)

where ṽA and p̃A are the test functions for the adjoint velocity and adjoint pressure, respectively.
We set the classical Hilbert spaces for the velocity v, pressure p, as follows:

Uv,p :=
n
(ṽ, p̃) 2 H1

⇣
Wf, Rd

⌘
⇥ L2 (Wf) | ṽ = 0 on ∂WD

f

o
(5.11)

2The differential to Hf instead of to f makes it possible to evolve the topological configuration rather than only
shape variation. To fully reflect the topological evolution capability of the proposed method, we present in Section 5.4.1
a test case for the classical minimal power dissipation problem.
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5.3 Implementation details

Here, we overview the numerical implementation techniques. In this chapter, we use FreeFEM
(Hecht, 2012; Jolivet, Dolean, Hecht, Nataf, Prud’homme, and Spillane, 2012) for the discretization
of PDEs, and PETSc (Balay, Abhyankar, Adams, Benson, Brown, Brune, Buschelman, Constanti-
nescu, Dalcin, Dener, Eijkhout, Gropp, Hapla, Isaac, Jolivet, Karpeev, Kaushik, Knepley, Kong,
Kruger, May, McInnes, Mills, Mitchell, Munson, Roman, Rupp, Sanan, Sarich, Smith, Zampini,
Zhang, Zhang, and Zhang, 2021) for distributed linear algebra. For the first time, we use parallel
iso-/anisotropic adaptive meshes thanks to ParMmg, see the details in (Cirrottola and Froehly,
2021). The isotropic or shape regular adaptive methods use only elements with bounded as-
pect ratio (stretched elements are avoided), see Fig. 5.2c . The anisotropic adaptive methods (see
Fig. 5.2e), on the other hand, fit high aspect ratio elements (highly stretched elements) along the
regions of rapid variation of the solution for situations like interior or boundary layers (Aguilar
and Goodman, 2006). The basic idea is to use the Delaunay algorithm (George and Borouchaki,
1998) to generate a new triangular (2D) or tetrahedral (3D) mesh whose edges are close to the unit
length in the metric M = |H|

# , where |H| is the Hessian of the variable (i.e., Heaviside function
Hf and/or velocity gradient in this work), x a point in space, and # the interpolation error for the
variables. Note that anisotropic meshes may be generated by ParMmg if needed. For comparison,
we also run the “separate” modeling algorithm and use body-fitted meshes (see Fig. 5.2g) which
are generated by Mmg in sequential (Dapogny, Dobrzynski, and Frey, 2014).

We summarize in Algorithm 4 the workflow for a lift–drag optimization problem using iso-
/anisotropic adaptive meshes. First, the input mesh T0 in the Inria Medit format is read by
FreeFEM. Next, the computational domain is decomposed by a standard mesh partitioner such
as METIS (Karypis and Kumar, 1998). After that, the initial level-set field is given3. Then, the opti-
mization loop begins. The forward problem is solved using the Newton method and the objective
value is computed. If it is converged, the optimization ends. Otherwise, the adjoint problem is
solved and the sensitivity is computed. Next, the level-set function fit is updated using the RDE
and the Heaviside function Hfit is obtained. After that, we centralize the solution on a global mesh
and call ParMmg for updating the global mesh. Finally, the current step solutions v, p, fit and Hfit

are interpolated to the newly updated mesh Tit+1. The workload is then distributed again until
the maximum iteration number is reached (150 in this chapter).

As for the values of the regularization parameter t and the ficititious time step Dt, experience
shows that it is more efficient to start with a larger value of t and to gradually decrease its values
in a step-wise manner in a continuation scheme. This is because a larger value of t can accelerate
the topological evolution at the beginning stage while a smaller value of t is prone to generate
sharper ends after the outline is taking shape. Similarly, the fictitious time step Dt is progressively
increased to make the topological evolution not to be too slow. After pre-determining a maximum

3In this chapter, for all test cases, we initialize the design domain with a sphere in the center: f = �1, if (x � x0)
2 +

(y � y0)
2 + (z � z0)

2
 R.
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allowed iteration number (e.g., 150 in this paper), the value of these two parameters is updated at
the given steps (e.g., every 30 iterations), following the continuation scheme as below:

t = {10�5, 10�6, 10�7, 10�8
}

Dt = {1.5, 2.5, 3.5, 4.5}.
(5.12)

In this chapter, all the adaptive mesh cases were performed on a Linux workstation with dual
Intel(R) Xeon(R) Gold 6246R with a clock frequency of 3.4 GHz, having 32 cores in total and 256 GB
of memory. We use GNU compilers and OpenMPI. Besides, a large-scale fixed mesh case (cf.
Fig. 5.4) was performed on Rescale cluster (www.rescale.com) using 8 nodes where each node is
equipped with 352 GB of memory and a Xeon Platinum 8168 (Skylake) with a clock frequency of
2.7 GHz with 44 cores.

Algorithm 4 Lift–drag topology optimization using iso-/anisotropic adaptive mesh.
Input: global mesh T0
decompose the computational domain for parallel computing
initialize the level-set field f

for it = 0; it < 150; it = it + 1 do
solve Navier–Stokes equations on Tit using the Newton method, cf. Eq. (5.1)
calculate the objective functional, cf. Eq. (5.5)
if kJit � Jit�1k < # then

break
else

solve the adjoint problem on Tit, cf. Eqs. (5.8) and (5.9)
compute the sensitivity, cf. Eq. (5.7), and Lagrange multipliers
update the level-set function fit by solving RDE on Tit
update the Heaviside function Hfit

call ParMmg to obtain Tit+1 based on the input metric
broadcast to all processes
interpolate v, p, fit, and Hfit to Tit+1

end if
end for

5.4 Numerical investigation

In this section, first, we solve a classical 2D drag minimization problem to reveal the effects of
different flow modeling strategies (“separate” and “hybrid”) and different meshing techniques
on the optimization results. Then, we examine the computational efficiency of our framework to
a larger scale of 3D problem. Finally, we present several 3D test cases for the lift maximization
under a drag constraint.

www.rescale.com
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It should be noted that the fluid-based optimization problems are known to have high nonlin-
earity and nonconvexity, thus may converge to non-unique solutions. Furthermore, in the real-
world wing design, the physics to be considered will be much more complicated, i.e., turbulent
flow, or compressible flow. In such cases, even a very small change in the shape may cause a dif-
ferent level of impact on the aerodynamic performances. It could be said that the size optimization
method is necessary when we seek for an accurate design by means of fine-tune a few CAD param-
eters. In this chapter, however, we limit ourselves to low/moderately high Reynolds (Re  1000).
Regardless of the above aspects, it still makes sense to compare different flow modeling strategies
and different meshing techniques in the context of fluid-based topology optimization, since we
are not aware, to the best of our knowledge, of the analogous discussions in the literature.

Now we start by a small-scale two-dimensional test case as shown in Fig. 5.2. The computational
domain is the unit square W = [0; 1]2. The flow enters the domain from the left-hand side with
a uniform velocity profile v = [1, 0]T. The flow exits the domain from the right-hand side with a
zero normal stress. The top and bottom walls bear a free-slip boundary condition. A sphere with
the radius of R = 10�2 is suspended in the center of the cube. The Reynolds number is set to
Re = 100 and the target volume is set to 2 · 10�2.

The optimal configurations obtained by different meshes are shown in Fig. 5.2. The flow mod-
eling strategy, element number, and the objective values are summarized in Table 5.1. From these
comparison results, we can observe the following:

1. These optimal configurations are practically identical. If we take a close look at each, the iso-
/anisotropic mesh cases feature sharper ends than those of the fixed mesh or the body-fitted
mesh cases.

2. As for the fixed mesh case, in order to obtain a high-resolution optimal solution, we have to
use at least twice the element number of adaptive mesh cases, see Table 5.1.

3. We use the body-fitted mesh case as a baseline for measuring flow analysis accuracy. The
objective values are nearly the same. The relative difference is less than 1.4% among those
cases.

TABLE 5.1: Flow modeling, element number and objective value for different mesh
cases, cf. Fig. 5.2.

Mesh Flow modeling Element number Obj. value

Fixed mesh, cf. Figs. 5.2a and b Hybrid 98,352 0.201
Isotropic mesh, cf. Figs. 5.2c and d Hybrid 36,561 0.198
Anisotropic mesh, cf. Figs. 5.2e and f Hybrid 50,353 0.198
Body-fitted mesh, cf. Figs. 5.2g and h Separate 13,620 0.198

Next, we extend to the 3D test cases. The computational domain is the unit cube W = [0; 1]3.
The flow enters the domain from the left-hand side with a uniform velocity profile v = [1, 0, 0]T.
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(A) Fixed mesh. (B) Velocity field.

(C) Isotropic mesh. (D) Velocity field.

(E) Anisotropic mesh. (F) Velocity field.

(G) Body-fitted mesh. (H) Velocity field.

FIGURE 5.2: The mesh representation (left column) and velocity field (right
column) using different meshes: (a)-(b): fixed mesh, (c)-(d): isotropic mesh, (e)-(f):
anisotropic mesh, and (g)-(h): body-fitted mesh.
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The flow exits the domain from the right-hand side with a zero normal stress. The top and side
walls bear a free-slip boundary condition. A sphere with the radius of R = 10�2 is suspended in
the center of the cube. The Reynolds number is set to Re = 100 and the target volume is set to
3 · 10�3.

The cross section views of the mesh are plotted in Fig. 5.3. For this test case, the number of
tetrahedra used at the last iteration is 7.71 · 105 for the body-fitted mesh, cf. Fig. 5.3c, and 7.34 ·

105 for the isotropic mesh, cf. Fig. 5.3a. The time breakdown for each finite element action is
documented in Table 5.2. From the time breakdown, two results can be observed. The first is that
“hybrid” modeling incorporated with isotropic mesh adaptation takes 70.9% less time than the
“separate” modeling with body-fitted mesh to solve the governing equations. As for the body-
fitted mesh, it is not possible to use the previous step solution as the initial guess if we repeatedly
disjoin-reunion the computational domains through a geometry trimming process to treat this
Stefan problem. As a result, it requires us to initialize the flow field by the solution of Stokes flow,
followed by the Newton iterations for a series of Reynolds numbers until the target Reynolds
is reached. In contrast, when using the “hybrid” modeling which is less sensitive to boundary
conditions at the fluid–solid interfaces, we can use the previous step solution (v, p) as an initial
value for the current step Newton solver. In most cases, it requires less than two Newton iterations
before convergence. For the case of higher Reynolds, the “hybrid” modeling becomes an even
clearer winner over the “separate” modeling, see the test case under Reynolds number of Re =

1000 as shown in Fig. 5.5. Note that the anisotropy of the refined mesh in the downstream area is
beneficial to the convergence of the Newton solver. The second result is ParMmg takes 92.8% less
time than Mmg, which is sequential, to update the mesh. Furthermore, we confirm the validity of
the mesh refinement by comparing those results with the fixed mesh case, cf. Fig. 5.4. We push the
total tetrahedra number to 3.12 · 106, having 1.32 · 107 degrees of freedom for the linearized fluid
system.

Finally, we use the “hybrid” modeling strategy to solve the lift maximization problem under
a drag constraint. The Reynolds number is set to Re = 100. The value of Drag0 is 3.4 · 10�2, cf.
Fig. 5.6b. The optimal solutions for different values of drag coefficient C0 = {1.1, 1.3, 1.5} are
shown in Figs. 5.6c–e and Table 5.3. Note that the optimal configurations are represented by the
zero-level-set isosurface. The iterative histories of the objective and constraint values for the case
of C0 = 1.1 are plotted in Fig. 5.7.

5.4.1 Extensions

A minimal power dissipation problem

We present a test case for the classical minimal power dissipation problem to fully reflect the
topological evolution capability of the proposed method. The optimization mathematical model
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(A) Isotropic mesh. (B) Anisotropic mesh. (C) Body-fitted mesh.

FIGURE 5.3: Cross section view of the three different remeshing techniques used for
drag minimization problem.

TABLE 5.2: Time breakdown of the finite element actions (in seconds) performed at
the last iteration of the drag minimization problem, cf. Fig. 5.3.

Actions Body-fitted, cf. Fig. 5.3c Isotropic, cf. Fig. 5.3a

Solve governing equations 127.6 37.1
Solve adjoint equations 41.0 47.5
Compute sensitivity and Lagrange multiplier 0.16 0.12
Solve RDE 0.23 0.23
Visualize output 0.48 0.51
Centralize solution to process #0 0.93 0.87
Remesh 33.7 2.51
Partition updated mesh 5.19 3.18
Interpolate solution to updated mesh 1.72 1.39

Total 211.0 93.4

TABLE 5.3: Lift and drag values obtained by using different drag coefficients C0, cf.
Fig. 5.6.

C0 Drag Lift

1.0 3.41 · 10�2 0
1.1 3.75 · 10�2 2.67 · 10�3

1.3 4.43 · 10�2 8.84 · 10�3

1.5 5.12 · 10�2 1.39 · 10�2
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(A) Domain decomposition. (B) Fixed mesh.

(C) Optimal solution. (D) Velocity field.

FIGURE 5.4: Domain decomposition and parallel computing using 352 MPI
processes for the fixed mesh case.
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(A) Anisotropic mesh. (B) Velocity field.

(C) Anisotropic mesh. (D) Velocity field.

FIGURE 5.5: Optimal solutions for a moderately high Reynolds number (Re = 1000)
using anisotropic mesh.
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(A) Initial shape. (B) C0 = 1.0.

(C) C0 = 1.1. (D) C0 = 1.3. (E) C0 = 1.5.

FIGURE 5.6: Velocity field of (a): initial shape, and optimal solutions for (b): drag
minimization problem, (c)–(e): lift maximization problems.

is formulated as follows:

inf
Hf2H

J(W) =
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p +
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◆
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�
dWR

D dW
� Vmax = 0

Eq. (5.1) (Navier–Stokes equations).
(5.13b)

The adjoint equations and the sensitivity analysis can be referred to in Chapter 3. In this test
case, t is set to 10�3 and Dt is set to 0.1, and they are remained unchanged throughout the opti-
mization. The “hybrid” flow modeling is used incorporated with the anisotropic adaptive mesh.
The design model is shown in Fig. 5.8. The computational domain is the unit cubic W = [0; 1]3.
The radius of the in- and outlets are 1

6 and 1
12 , respectively. The flow enters the domain from the

inlet with a parabolic velocity profile vx = 2
�
1 �

�
36y2 + 36z2��. The flow exits the domain from

the four outlets with a zero normal stress. The rest walls bear a no-slip boundary condition. The
Reynolds number is set to Re = 50 and the maximum allowed volume fraction is set to 30%.
Fig. 5.9 shows the snapshots of the channel layout during the intermediate steps. In this test case,
the anisotropic mesh adaptation is used, as shown in Fig. 5.10.
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FIGURE 5.7: Iterative histories of the objective and constraint values, cf. Fig. 5.6c.
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FIGURE 5.8: Design model for the 3D minimal power dissipation problem.

(A) Iteration #5. (B) Iteration #20.

(C) Iteration #40. (D) Optimal solution.

FIGURE 5.9: Topology evolution history of the 3D minimal power dissipation
problem.



174 Chapter 5. Lift–drag Topology Optimization

FIGURE 5.10: Cross-section view of the anisotropic mesh for the optimal
configuration.

A forced convection problem

In addition to the pure fluid problem, we also test the updated algorithm to solve a thermal-fluid
coupled problem. More specifically, we intend to solve a steady-state forced convection problem
and find the optimal cooling channel layout which can minimize the thermal compliance under
the constraints of: (1) volume, and (2) power dissipation. Therefore, the optimization mathemati-
cal model can be formulated as follows:

inf
Hf2H

J(W) =
Z

W
QTdW (5.14a)

s.t.

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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(5.14b)
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where F denotes the power dissipation.

The design sensitivity can be derived as follows:

F̄0 = �
qaamax (qa + 1)
�
qa + Hf

�2 v · vA

�rTA ·rT
qk (ck � 1) (qk + 1)

�
qk + Hf

�2 + l1 in W,
(5.15)

where the adjoint variables vA, pA, and TA are the solutions for the following adjoint equations
with the adjoint boundary conditions:
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(5.16)

The sensitivity analysis is quite similar to that of natural convection problem and can be referred
to in Appendix A.2.

Considering a cavity whose dimension is [0; 1]3, a uniform body heat source Q0 is applied in
the computational domain. The blue region is the design domain while the white regions are
the inlet and outlet. The objective functional is the thermal compliance

R
D Q0TdW. Fig. 5.11b

shows the optimal cooling channel layout under a volume constraint and a power dissipation
constraint. To further demonstrate the mesh adaptivity ability, we show the cross-section views
of the anisotropic mesh and velocity profiles at three different xy-planes, see Fig. 5.12.
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(A) Design model. (B) Optimal cooling channel layout.

(C) Temperature field. (D) Velocity glyph.

FIGURE 5.11: A three-dimensional test case for a forced convection problem (an
ongoing work).
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5.5 Summary

This chapter reports on the recent increments to the RDE-based TO framework. The main moti-
vation is to break through the existing bottleneck of the sequentially performed body-fitted mesh
evolution method, as well as to investigate the effects of different meshing and flow modeling
strategies on the fluid-based topology optimization in terms of the computational cost and the
analysis accuracy.

First, we recall the basic concept of the RDE-based TO method. Next, we present four differ-
ent meshing techniques: fixed mesh, isotropic adaptive mesh, anisotropic adaptive mesh, and
body-fitted adaptive mesh, together with two different flow modeling strategies: “separate” and
“hybrid” modeling, followed by the implementation details. To demonstrate the workflow of the
proposed methodology, we solve a lift-drag and a minimal power dissipation optimization prob-
lem by showcasing various 2D/3D, small-/large-scale numerical examples. The main findings
are summarized as follows:

1. With the “separate” modeling strategy incorporated with body-fitted mesh, we can itera-
tively disjoin-reunion the computational domains through a geometry trimming process.
This enables us to impose the no-slip boundary condition on the moving fluid–solid inter-
face. However, for each iteration, it requires us to initialize the flow field by the solution of
the Stokes flow, followed by repeatedly solving the Newton iteration for a series of Reynolds
number until it reaches the target Reynolds. Furthermore, the body-fitted mesh adaptation
is performed sequentially on a single MPI process, which is so far a bottleneck for solving
large-scale problems.

2. The “hybrid” modeling strategy, relying on the fictitious body force term to mimic an im-
mersed solid phase in an integrated domain, has its drawbacks for those problems where the
pressure diffusion inside the solid phase can be problematic, e.g., fluid–structure interaction
(FSI) problem. However, except in these specific cases, in general, this fictitious body-force
term is not a too big issue for other fluid-based optimization problems. The comparison re-
sults show that we can obtain the practically identical solutions using either flow modeling
strategy (“hybrid” or “hybrid”) with different meshing techniques.

3. With the “hybrid” modeling, over 70% runtime-saving is reported compared with the “sep-
arate” modeling. This is partly due to the fact that the iso-/anisotropic mesh adaptation can
be performed in a distributed fashion, partly due to a huge decrease in the Newton iteration
number.

4. A large-scale 3D test case (using fixed mesh) with a total tetrahedra number of 3.12 · 106,
having approximately 1.32 · 107 degrees of freedom for the linearized fluid system, is solved
using a cluster mounted with 352 MPI processes, confirming the scalability of the proposed
framework.
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(A) z = �0.05.

(B) z = �0.15.

(C) z = �0.25.

FIGURE 5.12: Cross-section views of anisotropic mesh (left) and velocity profiles
(right) at different xy-planes.
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5. The RDE-based level-set method enables not only shape but also topology evolution. This
feature is supported by a numerical verification example for the minimal power dissipation
problem.

We intend to conduct future research by applying the proposed framework to the design of a
heat exchanger. Since the iso-/anisotropic mesh adaptation can be performed in parallel, we can
expect a more efficient solver which is capable of handling a complex channel layout.

As a final remark of this chapter, we conclude that several issues concerning fluid-related TO
are far from being resolved, and there are two main limitations of the approach (in its current
form). (1) Despite the fact that the stabilized FEM has grown to be a mature and accurate dis-
cretized method, the FVM has been the preferred one for computational fluid dynamics (Bazilevs,
Takizawa, and Tezduyar, 2015). (2) The other issue not discussed here is the use of the continu-
ous adjoint method for sensitivity analysis, which may introduce some discretization errors with
respect to the exact sensitivities (Yu, Ruan, Gu, Ren, Li, Wang, and Shen, 2020). In case of two
equation-based turbulence models, the exact sensitivities are vital (Dilgen, Dilgen, Fuhrman, Sig-
mund, and Lazarov, 2018a). This will be a topic for future investigations, aimed at the application
in higher Reynolds cases. This chapter can be a helpful discussion for such further research, aimed
at including fluid flows in large-scale TO.
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Topology Optimization of Lattice
Structures†
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6.1 Introduction

In general, TO techniques are used to find an optimal solution which can maximize the perfor-
mance. However, the generative designs with the highest performance may sometimes contra-
dict the aesthetic and/or other specific functional requirements. For example, in the architectural
design, the structures should meet the minimum performance criteria, but the performance max-
imization is not the only consideration. Architects usually need to choose the final design from
multiple design candidates from an aesthetic perspective. Yang, Zhao, He, Zhou, Zhou, Huang,
and Xie (2019) proposed five different strategies to achieve diverse and competitive designs based
on the concept of penalizing elemental sensitivities. Later in the work by He, Cai, Zhao, and Xie
(2020), they presented a stochastic approach for a similar purpose. Besides the aesthetic motiva-
tion, the visibility constraints can be another crucial consideration, such as skyscrapers (Besserud,
Katz, and Beghini, 2013). Dapogny, Faure, Michailidis, Allaire, Couvelas, and Estevez (2017) for-
mulated three different constraints on the geometry of shapes, one of which allows to control

†The work in this chapter has been submitted to Advances in Engineering Software (Elsevier).
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the visibility of structures, and to penalize the length of bars or the areas of extended surfaces of
shapes. The second typical instance is the design of implants. Lattice structures may not outper-
form the classical macroscopic TO designs (Wu, Aage, Westermann, and Sigmund, 2017), how-
ever, in the bio-system, the porosity of lattice structures will not impede the interaction between
the solid implants and the surrounding biofluidic environment (Birmingham, Grogan, Niebur,
McNamara, and McHugh, 2013). The biodegradation process will be able to happen naturally
due to the chemical reactions (Barzegari, Mei, Lamaka, and Geris, 2021). Therefore, an orthopedic
implant with well-designed lattice structure and/or functionally graded materials can facilitate
the bone healing process (Mahmoud and Elbestawi, 2017). Zhang, Takezawa, Ding, Xu, Li, and
Guo (2021) firstly presented the TO design of stiffness changeable structures considering material
degradation. In their later work (Zhang, Takezawa, Ding, Xu, Duan, Li, and Guo, 2021), they ex-
tended this idea to the microscopic composite structure design and verified its ideal performance
of the optimized composite structures. Another application scenario is that during the design
process of the key components of an aircraft, some redundant loading paths should remain due
to safety concerns. If a small portion of the loading path breaks due to fatigue failure, the remain-
ing component can still fulfill the fail-safe requirements. In Kranz, Lüdeker, and Kriegesmann
(2021), they considered maximum stress as the optimization objective and adopted a common and
easy-to-implement maximum length scale constraint approach. They obtained redundant lattice
structures and the fail-safe properties were evaluated by comparing against the explicit fail-safe
approach. With this in mind, structures with some redundant features may not have the highest
performance, but still, they have their own unique advantages in many applications.

Motivated by the need for porous structure in the design of biodegradable implants, as well as
for the diverse and competitive structural designs in the architecture, this chapter sheds a light on
the topology optimization of lattice structures. Among the literature, the existing TO methodolo-
gies can be broadly classified into three categories: (1) single-scale approach (Wu, Aage, Wester-
mann, and Sigmund, 2017; Wu, Clausen, and Sigmund, 2017; Yi, Zhou, Yoon, and Saitou, 2019;
Dou, 2020; Qiu, Jin, Jin, Wang, Xia, Zhu, and Shi, 2020; Kambampati and Kim, 2020; Träff, Sig-
mund, and Aage, 2021; Kranz, Lüdeker, and Kriegesmann, 2021; Zhou, Lu, Liu, and Lin, 2022;
Gerzen, Mertins, and Pedersen, 2022), (2) concurrent approach (Radman, Huang, and Xie, 2013;
Zhang, Ding, Li, and Xiong, 2019; Zhang, Takezawa, Ding, Guo, Ni, and Zhang, 2021; Ferro, Per-
otto, and Gavazzoni, 2022), and (3) inverse (or dehomogenization) (Pantz and Trabelsi, 2008; Al-
laire, Cavallina, Miyake, Oka, and Yachimura, 2019; Allaire, Geoffroy-Donders, and Pantz, 2019;
Groen, Stutz, Aage, Bærentzen, and Sigmund, 2020; Geoffroy-Donders, Allaire, and Pantz, 2020;
Dede, Zhou, and Nomura, 2020; Lee, Kwon, Yoo, Min, Nomura, and Dede, 2021; Zhou, Lohan,
Zhou, Nomura, and Dede, 2022) methods. Please note that those categories, based on the different
criteria, can be classified differently. For example, the readers are referred in the review paper to
Wu, Sigmund, and Groen (2021) for more detailed and meticulous records and classification of
multi-scale structures TO.

The first option is that of the single-scale approach. This approach is essentially a macroscopic
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TABLE 6.1: Computational techniques in the state-of-the-art TO developments in
the single-scale approaches.

Ref. Design TO Local Averaged Density 2D/3D Mesh Type

Wu, Aage, Westermann, and Sigmund (2017) Lattice Density Explicit 2D/3D Quadrilateral/hexahedral
Wu, Clausen, and Sigmund (2017) Shell-infill Density PDE 2D Quadrilateral
Yi, Zhou, Yoon, and Saitou (2019) Lattice Density PDE 2D Quadrilateral
Dou (2020) Lattice Density Explicit 2D Quadrilateral
Qiu, Jin, Jin, Wang, Xia, Zhu, and Shi (2020) Shell-infill BESO Explicit 2D Quadrilateral
Kambampati and Kim (2020) Flow channel LSM Explicit 2D/3D Quadrilateral/hexahedral
Träff, Sigmund, and Aage (2021) Shell Density PDE 3D Shell-element
Kranz, Lüdeker, and Kriegesmann (2021) Lattice Density Explicit 2D Quadrilateral
Zhou, Lu, Liu, and Lin (2022) Shell-infill Density Explicit 2D Quadrilateral
Gerzen, Mertins, and Pedersen (2022) Lattice Density Explicit 2D/3D Quadrilateral

This work Lattice LSM PDE 2D/3D Triangular/Tetrahedral

TO, and it is easy-to-implement, thus can be applied to any physics straightforwardly. In gen-
eral, it does not require additional efforts for the reconstruction of the design results. However,
it also has several drawbacks. As we shall show later in this chapter, this approach requires high
computational cost, especially for the case of a large size macroscopic structure with small size lat-
tice features. Wu, Aage, Westermann, and Sigmund (2017) pioneered the idea of applying a local
volume constraint at a single macroscopic scale. In this seminal work, the local volume fraction is
computed by measuring the average density over all voxels in a prescribed neighborhood. In their
later work (Wu, Clausen, and Sigmund, 2017), they extended this approach for generating simul-
taneously optimized shells and infill in the context of minimum compliance TO. They adopted
a PDE-filter for computing the averaged local density. Built upon these pioneering works, sev-
eral researchers have reported successful applications. For example, Yi, Zhou, Yoon, and Saitou
(2019) further considered buckling constraints, so that the design results can minimize compli-
ance while enhancing the structural stability against buckling failure. Träff, Sigmund, and Aage
(2021) constructed a high performance computing framework for ultra large scale, shell-element
based topology optimization. They presented excellent design results for civil engineering and
aerospace engineering examples by solving shell TO problems with up to 11 million shell ele-
ments on 800 cores. Kambampati and Kim (2020) presented one of the very few level-set methods
considering the maximum length scale constraint. They adopted a Darcy flow model, also known
as “Poor man’s” approach (Zhao, Zhou, Sigmund, and Andreasen, 2018), to optimize 2D and 3D
cooling channel layout. Zhou, Lu, Liu, and Lin (2022) shed a light on the design of shells with self-
supporting infills for additive manufacturing (AM). They proposed an overhang constraint and a
two-field based formulation to control the minimum length scale, followed by a model reconstruc-
tion to an output boundary represented geometry. Finally, and very recently, Gerzen, Mertins, and
Pedersen (2022) derived a theoretical framework for considering geometrical constraints in the
context of a density-based approach. They confirmed the validity of their framework by showcas-
ing 2D and 3D lattice or membrane-like structures. We summarize in Table 6.1 the computational
techniques in the state-of-the-art TO developments in the single-scale approaches.
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The second and third categories can be regarded as multi-scale approaches. The second cate-
gory is the concurrent topology optimization approach. This approach has attracted an increased
interest in the design of functionally graded cellular structures. The homogenized material prop-
erty tensor is a function of the fraction of solid material within each unit cell, and the topological
change in unit cells can be reflected in the macroscopic structural response. The designer can
choose to use single (or periodic) unit cells and allocate them appropriately in the macroscopic
design domain (Zhang, Ding, Li, and Xiong, 2019). A higher design flexibility can be achieved
by making the microscopic infill spatially vary in topology and characteristics. However, this
can also lead to a high computational cost (Radman, Huang, and Xie, 2013; Zhang, Takezawa,
Ding, Guo, Ni, and Zhang, 2021). A typical issue is to get well-connected neighborhood unit
cells and this drawback has been addressed in many ways in the literature. For example, very re-
cently, a preprint was uploaded to arxiv.org by Ferro, Perotto, and Gavazzoni (2022). They solved
a Stokes-type TO problem on a narrow morphing region to achieve smooth connection between
neighborhood unit cells.

The third option is the homogenization design method which is undergoing a resurrection in
recent years since the pioneering work by Pantz and Trabelsi (2008). The key idea is to restore
the optimized micro-structure at a selected length scale to get a global and detailed picture of the
micro-structure, once an optimized composite structure is obtained (Allaire, Cavallina, Miyake,
Oka, and Yachimura, 2019). In this approach, the micro-structure is restricted to be orthotropic
with a few geometric variables. But the sacrifice in design flexibility can reduce the huge amount
of computational cost. For example, in the work by Groen, Stutz, Aage, Bærentzen, and Sigmund
(2020), comparisons with density-based single-scale approach show a reduction in computational
cost of 3 orders of magnitude, making it possible for giga-scale designs on a standard PC. Another
core interest behind this is how to recover micro-structures with good connectivity. To this end,
Lee, Kwon, Yoo, Min, Nomura, and Dede (2021) partitioned the design domain into several sub-
domains, and they used different mapping functions at each subdomain. The mapping functions
at the transition zone are adjusted to ensure the connectivity of restored micro-structures. Besides
the structural optimization problems, the authors also notice that very recently some researchers
have adopted the dehomogenization method in the context of fluid-related TO (Dede, Zhou, and
Nomura, 2020). For example, in Zhou, Lohan, Zhou, Nomura, and Dede (2022), they projected
the optimized porous media performance by means of intricate micro-channel structures in a post-
processing step based on the reaction–diffusion equation.

As briefly discussed above, the three different categories have their own merits and demer-
its. This chapter builds upon the recent advancements in the first category (macroscopic TO with
maximum length scale constraint) and develops a footprint in that direction. As summarized
in Table 6.1, first, the density-based approach outnumbers other TO methods with 8 works or
80%. This is partly because the density-based approach is more capable of generating feature-
rich shapes, starting from scratch. For this reason, very few works have contributed to the LSM
in the context of lattice design. Second, most of the existing works presented only small-scale
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2D academic examples with 7 works or 70%. Unlike 2D cases, the large-scale 3D cases require
substantial algorithm effort, i.e., a fully distributed framework (including scalable domain de-
composition, matrix assembly, parallel interpolation, linear solver) that very few general purpose
libraries offer. Third, it is known that the arbitrary geometries and complex boundary conditions
can be conveniently handled with unstructured meshes (Lin, Liu, and Wei, 2022). However, to this
date, most of the works have adopted structured meshes. Forth, the key ingredient of the single-
scale approach is to compute the local averaged density. Seven works or 70% utilized the explicit
knowledge of the neighborhood elements to compute the exact averaged density value. However,
such an explicit method limits its application to the unstructured mesh and/or adaptive mesh-
based TO framework. To overcome this problem, some researchers used the variational method
(also known as the fictitious physics model) for the simplification of the numerical evaluation of
geometric constraints (Feppon, Allaire, Dapogny, and Jolivet, 2021; Yamada and Noguchi, 2022),
though it may sometimes be less accurate than the explicit method.

Aiming at the above-mentioned gaps, this chapter proposes a level set-based method for topol-
ogy optimization of high resolution lattice structures which is the first attempt in that direction.
The main idea is to introduce the maximum length scale constraint, realized by a PDE-filter,
into the reaction–diffusion equation (RDE)-based LSM which allows us to design from scratch.
Then, this technique is coupled with the distributed computing algorithms based on PETSc, im-
plemented in an open-source software FreeFEM using unstructured and/or adaptive meshes, to
deliver two- and three-dimensional designs with complex-shape geometry. The parallel efficiency
is validated by solving large-scale 3D benchmarks with 20 million elements on a cloud-based clus-
ter.

The remainder of this chapter is organized as follows. Section 6.2 describes the mathematical
and physics frames including the level set-based TO method, maximum length scale constraint by
a PDE-filter and mathematical formulation of the optimum design problem. In Section 6.3, we il-
lustrate the numerical implementation details including the finite element modeling, parallel com-
puting, and the optimization algorithm. Section 6.4 presents several two- and three-dimensional
large-scale test cases. Lastly, we document in Section 6.5 the conclusion and prospective works.

6.2 Formulation

In Section 6.2.1, we introduce the maximum length scale constraint based on a PDE-filter. Next,
we formulate the optimum design problem for the lattice infill in Section 6.2.2.
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Zero-level-set ! " = 0

Void domain %\Ω ()! = 0)

Solid domain Ω ()! = 1)

Level-set function ! "

Characteristic function )!

Local “averaging” 
characteristic function )!

FIGURE 6.1: Schematic of the level-set function f(x), characteristic function cf, and
local “averaging” characteristic function c̄f. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

6.2.1 Maximum length scale constraint

To mimic the porous structures in natural systems, the geometrical constraint is introduced. In
this chapter, we adopt the idea of Wu, Aage, Westermann, and Sigmund (2017) by imposing a
maximum allowable volume fraction to the local averaged value of the characteristic function c̄,
see the top layer as shown in Fig. 6.1. Using the p�norm function to approximate the maximum
value of c̄, the local volume can be then calculated per the design variable and aggregated by
p-mean as

max
8i

(c̄i) ⇡ kc̄ikp =

 
1
n

n

Â
i=1

c̄
p
i

!1/p

 V̄max, (6.1)

where n is the total number of nodes1 in the design domain and V̄max is the maximum allowable
local volume fraction. When p goes to infinity, max (c̄) = kc̄kp, but a large value of p will lead to
numerical instability. Therefore, we set p = 10 in this chapter. Note that since p�norm approxi-
mation cannot represent the max function in a fully accurate way, at some places where the stress
is very high, we may observe the exceeding values.

The primary idea to compute this local volume fraction is to measure the percentage of solid
voxels over all voxels in a prescribed neighborhood Ne (Wu, Aage, Westermann, and Sigmund,

1Using the FEM, the design domain is discretized into N elements with n vertices (or nodes). In many researches,
the uniform characteristic function of each element is defined as a design variable. In this chapter, the design variables
are defined at nodes and a linear interpolation scheme is used to obtain the value within an element. See P1 element
in https://doc.freefem.org/documentation/finite-element.html#p1-element. This ensures the continuity of the
design variables (Zhu, Zhang, Li, Liang, Wang, Li, and Nishiwaki, 2021).

https://doc.freefem.org/documentation/finite-element.html#p1-element
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2017; Kambampati and Kim, 2020).

c̄ =
Âi2Ne ci

Âi2Ne 1
(6.2a)

Ne = {i| kxi � xek  r} , (6.2b)

where r is the prescribed radius. This approach requires the explicit knowledge of the spatial in-
formation of the neighborhood elements located in the design domain, which limits its application
to the unstructured mesh and/or adaptive mesh-based TO framework. In order to overcome this
problem, we use a PDE-filter (Lazarov and Sigmund, 2011; Kawamoto, Matsumori, Yamasaki, No-
mura, Kondoh, and Nishiwaki, 2011) to compute the local average value c̄, as given in Eq. (6.3).
Though this filtering technique has been adopted in several density-based approach works (Wu,
Clausen, and Sigmund, 2017; Yi, Zhou, Yoon, and Saitou, 2019; Träff, Sigmund, and Aage, 2021),
it has seldom been used in the LSM in the context of lattice designing and this work is the first
step in this direction. Moreover, the use of this PDE-filter makes the distributed computing quite
straightforward (Lazarov and Sigmund, 2011; Kawamoto, Matsumori, Yamasaki, Nomura, Kon-
doh, and Nishiwaki, 2011), which will be detailed in later sections.

(
� r2

r
2c̄ + c̄ = c in W

rc̄ · n = 0 on ∂W.
(6.3)

where c is the binalized characteristic function. The schematic of the local “averaging” character-
istic function c̄ is shown in Fig. 6.1, seen in the top layer of this schematic.

6.2.2 Optimum design problem for the lattice infill

The context of interest is that of topology optimization of lattice infills. We intend to find an opti-
mal structure which can minimize the mean compliance (or maximize the stiffness) under a global
and/or a local averaging volume constraint. The governing equation underlying the displacement
u can be formulated by the Lamé’s equation under the assumptions that: (1) small displacements
and deformations are observed (linear elasticity), and (2) the body-force and gravity are neglected.
Therefore, the optimization mathematical model can be formulated as

inf
cf2X

J(W) =
Z

∂WN
s

g · udG, (6.4a)
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s.t.

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

�div(Ccf : e(u)) = 0 in W
u = u0 on ∂WD

(C : e(u)) · ns = g on ∂WN

G1 =

R
D cdWR
D dW

� Vmax  0

G2 =

✓
1
n Ân

i=1 c̄p
◆1/p

� V̄max  0

�r2
r

2c̄ + c̄ = c in W
rc̄ · n = 0 on ∂W,

(6.4b)

where C is the fourth-order elasticity tensor, g is the surface traction, and e (u) is the linearized
strain tensor. Using the characteristic function cf, the elasticity tensor C can be expanded as

Ccf = cf (Cs � Cv) + Cv, (6.5)

Vmax and V̄max in Eq. (6.4) are the maximum allowed global and local averaging volume fractions
for the solid phase, respectively.

The mean compliance problem governed by the linear elasticity is known to be self-adjoint.
Therefore, the topological sensitivity F

0 can be derived as follows:

F
0 = �

�
e(u) : Ccf

�
: e(u) + l1 + l2G

0, (6.6)

where l1 and l2 are the Lagrange multipliers associated to the global and local averaging volume
constraints, respectively. In the present work, l1,2 are updated using the augmented Lagrangian
method. The updating scheme is given as follows:

ln+1
i = ln

i + c1Gn
i + c2

⇣
Gn�1

i � Gn
i

⌘
, (6.7)

where c1 and c2 are the constant coefficients. Both G1 and G2 are relaxed, and they are gradually
tightened until a given iterative step, in order to stabilize the optimization process.

We denote by G
0 in Eq. (6.6) the sensitivity associated to the local averaging volume constraint,

G
0 = dG2

dc , and it can be computed as the solution of Eq. (6.8).

8
><

>:

� r2
r

2
G
0 + G

0 =
∂G2

∂c̄
in W

rG
0
· n = 0 on ∂W,

(6.8)

where
∂G2

∂c̄
is expressed as

∂G2

∂c̄
=

c̄p�1
✓

1
n Â c̄p

◆ 1
p�1

n
. (6.9)
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The sensitivity analysis of the local volume constraint can be found in Appendix A.3. Note that
this constraint is independent to the physics. In other words, the deduced sensitivity G

0 can be
used in a different TO problem governed by any other constitutive laws.

6.3 Implementation details

6.3.1 Finite element modeling

We use the finite element method to solve the PDEs mentioned in Section 6.2. We set the classical
Hilbert spaces U for the displacement u, and P for the level-set function f, characteristic function
c, local averaged characteristic function c̄, and sensitivity for the local volume constraint G 0, as
follows:

U :=
n

ũ 2 H1
⇣

W, Rd
⌘
| ũ = 0 on ∂WD

s

o

P :=
n

p̃ 2 H1(W) | p̃ = 0 on ∂WD
p

o
.

(6.10)

First, the governing equation can be expressed in the weak form as:

�

Z

W
(e(u) : Ccf) : e(ũ)dW +

Z

∂WN
g · ũdG = 0

8ũ 2 U , u 2 U .
(6.11)

Second, the PDE-filter defined in Eq. (6.3) is expressed in the weak form as
Z

W
r2
r ˜̄c ·rc̄ + ˜̄cc̄ � ˜̄ccdW = 0 8 ˜̄c 2 P , c̄ 2 P (6.12)

Third, similar to the PDE-filter, the adjoint equation defined in Eq. (6.8) is expressed in the weak
form as Z

W
r2
rG̃ 0 ·rG

0 + G̃ 0G
0
� G̃ 0

∂G2

∂c̄
dW = 0 8G̃ 0 2 P ,G 0

2 P . (6.13)

In Eqs. (2.36) and (6.11) to (6.13), ũ, ˜̄c, G̃ 0, and f̃ are the test functions for u, c̄, G 0, and f,
respectively.

6.3.2 Distributed computing

To implement the weak formulations in Section 6.3.1, an open-source finite element software
FreeFEM2 (Hecht, 2012; Jolivet, Dolean, Hecht, Nataf, Prud’homme, and Spillane, 2012) is used
for the discretization of those PDEs. FreeFEM is a high-level programming language, internally

2http://www.freefem.org/.

http://www.freefem.org/
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written in C++ and its syntax is close to the mathematical formulations, which thus makes the
coding quite straightforward. For parallelism, it relies on the Message Passing Interface (MPI).

Since we target large-scale 3D problems, the most time consuming part in this workflow lies in
the solution of the sequence of linear systems of the form Ax = b. To accelerate the overall compu-
tation, we use an overlapping Schwarz domain decomposition method to solve the linear systems
in a distributed fashion. To this end, we use PETSc (Abhyankar, Brown, Constantinescu, Ghosh,
Smith, and Zhang, 2018; Balay, Gropp, McInnes, and Smith, 1997; Balay, Abhyankar, Adams, Ben-
son, Brown, Brune, Buschelman, Constantinescu, Dalcin, Dener, Eijkhout, Gropp, Hapla, Isaac,
Jolivet, Karpeev, Kaushik, Knepley, Kong, Kruger, May, McInnes, Mills, Mitchell, Munson, Ro-
man, Rupp, Sanan, Sarich, Smith, Zampini, Zhang, Zhang, and Zhang, 2021; Balay, Abhyankar,
Adams, Brown, Brune, Buschelman, Dalcin, Dener, Eijkhout, Gropp, Karpeyev, Kaushik, Knep-
ley, May, McInnes, Mills, Munson, Rupp, Sanan, Smith, Zampini, Zhang, and Zhang, 2019) for the
distributed linear algebra. PETSc and many other open-source libraries such as ParMmg (Cirrot-
tola and Froehly, 2021) can be called within FreeFEM. To this end, we use the parallel framework
macro_ddm which is a high-level FreeFEM macro that one can call in the script at different steps
which is needed for the distributed solution of a linear system.

The first step is that of the partition of a global mesh T into N meshes {Ti}1iN using a parti-
tioner package such as METIS (Karypis and Kumar, 1998) (by default). One can also choose to use
Scotch (Pellegrini and Roman, 1996). This step can be performed by using the macro buildDmesh.
Note that the ghost elements in the overlapping domains are along the skeletons between each
subdomain. They are used for multiple MPI processes to communicate one with another. Next,
we create the PETSc matrix with Mat followed by createMat so that one can let FreeFEM interact
with PETSc to distribute parallel matrix.

After creating the finite element space and declaring unknowns, we use the corresponding vari-
ational formulations to define the bilinear and linear parts with varf. The next important step is
to build appropriate (or physics-tailored) preconditioners. Various types of multigrid precondi-
tioners have been made available in PETSc library. The mathematical background of the domain
decomposition methods and preconditioners can be referred to in (Dolean, Jolivet, and Nataf,
2015). In this chapter, we call GAMG (Adams, Bayraktar, Keaveny, and Papadopoulos, 2004) for
solving linear elasticity, cf. Eq. (6.11). See also the scalability analysis in Chapter 2. And we call
hypre (Falgout and Yang, 2002) to solve RDE, cf. Eq. (2.36) and helmholtz-type PDEs, cf. Eqs. (6.12)
and (6.13). The use of preconditioners ensures that this part of the solver is scalable with respect
to the problem size.

For the ease of replication of results as well as to show the user-friendly syntax, we provide in
Appendix B.2 a sample code for the implementation of the adjoint equation given in Eq. (6.13).

In this chapter, all the two-dimensional test cases are performed on a laptop equipped with
an Intel Xeon processor with a clock frequency of 3.2 GHz having 8 cores and 32 GB of memory.
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The three-dimensional test cases are performed on a cloud-based HPC platform–Rescale cluster
(www.rescale.com) using 8 or 16 nodes where each node is equipped with 352 GB and an Xeon
Platinum 8168 (Skylake) with a clock frequency of 2.7 GHz with 44 cores.

6.3.3 Optimization flow chart

We summarize in Algorithm 5 the workflow of the proposed TO framework. First, the unstrctured
mesh T is created and stored in the Inria Medit format which can be parsed by FreeFEM. Next, the
computational domain is decomposed by a standard mesh partitioner such as METIS (Karypis and
Kumar, 1998). After that, the initial level-set field is defined3. After that, the characteristic function
cf is initialized based on f. Next, the local averaged characteristic function c̄ is computed by the
PDE-filter.

Then, the optimization loop begins. First, the governing equation is solved. Next, the objective
and constraint functionals are computed. If it is converged, the optimization ends. Otherwise, the
sensitivity for the local volume constraint G 0 is computed as the solution of the adjoint equations
given in Eq. (6.8). After that, the sensitivity and the Lagrange multipliers are computed. Then,
the level-set function is evolved by solving the RDE, and the newly updated f is bounded in the
range of f (x) 2 [�1, 1]. Finally, the characteristic function cf and the local averaged value c̄ are
computed successively. The aformentioned workload is repeated until the one of the following
criteria are satisfied: (1) the relative difference between the objective and constraint values in
current and previous steps is smaller than 10�4 for 5 steps in a sequence, or (2) the maximum
iteration number is reached (500 in this work).

6.4 Numerical investigation

In this section, we will run Algorithm 5 to solve several toy problems to demonstrate the effec-
tiveness of the proposed methodology. In Section 6.4.1, we consider the optimization of a 3D
cantilever. An in-depth numerical investigation is provided to examine the filter parameters and
their effects on the optimal solutions. In Section 6.4.2, we will reproduce a “hand” and a “bird
beak” example presented in Chapter 2. These two examples will clearly show the capability of
our TO framework when handling unstructured mesh and any geometries. Section 6.4.3 shows
an extension of this workflow using adaptive mesh refinement. A 2D cantilever test case will be
presented to confirm its compatibility to the mesh adaptation techniques.

3In this chapter, for all test cases, we initialize the design domain with a uniform level-set field f = 1, indicating
that all the design space is filled with solid phase material. It should be noted that one can only reach a local optima.
In other words, the generative design could be highly dependent to the initial guess. However, to examine the effect
of the initial guess on the design results is beyond the scope of this chapter, and will thus not be further detailed in the
present work.

www.rescale.com
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Algorithm 5 Lattice infill topology optimization.
Input: global mesh T

initialization:
decompose the computational domain for parallel computing
initialize the level-set field f

for it = 0; it < 500; it = it + 1 do
solve the governing equations, cf. Eq. (6.11)
compute the objective value J, cf. Eq. (6.4a)
compute the global and local volume constraint G1 and G2, cf. Eq. (6.4b)
if kJit+1 � Jitk < #, kGit+1 � Gitk < # then

break
else

compute G
0 by solving PDE, cf. Eq. (6.13)

compute the sensitivity F
0, cf. Eq. (6.6)

compute the Lagrange multipliers l1,2, cf. Eq. (6.7)
update the level-set function f by solving RDE, cf. Eq. (2.36)
update the characteristic function cf

compute the local averaged characteristic function c̄ by PDE-filter, cf. Eq. (6.12)
end if

end for

In the present work, all quantities used in the optimization are non-dimensional. We denote by
L the unit length. The Young’s Modulus E is set to 1.0 and the Poisson’s ratio n is set to 0.3. The
fictitious time step Dt is set to 0.1. In all the 3D test cases, four-node linear tetrahedron elements
are used to discretize the computational domain. The other parameters used in each test case are
documented in Table 6.2.

6.4.1 Cantilever

In this subsection, we start by a classical benchmark–a 3D cantilever as shown in Fig. 6.3. The
computational domain is a cuboid with the dimension of “length ⇥ height ⇥ width” = 0.5L ⇥

0.25L ⇥ 0.25L. The surface traction g = [0, 0,�1]T is applied at the left end portion of the bottom
surface, and the right end bears a Dirichlet boundary condition (u = [0, 0, 0]T).

First, we examine the effects of r, Vmax, V̄max on the optimal solutions, see cases #C.1–C.4. The
optimal solutions are shown in Fig. 6.3. The iterative histories of the objective and constraint
values of case #C.1 are plotted in Fig. 6.2. The runtime breakdown of the finite element actions
performed at each iteration (in average) of cases #C.1 and #C.3 are documented in Table 6.4.

Next, we compute the global volume fractions Vmax for each case #C.1–C.4, and impose only
the global volume constraint. This is seen cases #C.1G–C.4G, i.e., cases #C.1 and #C.1G have the
same value of Vmax. The objective and global/local volume fraction values for cases #C.1–C.4 and
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#C.1G–C.4G are summarized in Table 6.3. From these results, some findings can be summarized
as follows:

1. Comparing case #C.1 (cf. Figs. 6.3a–f) with #C.2 (cf. Figs. 6.3g–l), it can be observed that
with the same value of filter radius r, a larger value of maximum allowed local volume
fraction V̄max tends to suppress the appearance of the lattice infills. Instead, it ends up with
a wall-like structure. In contrast, a smaller value of V̄max results in a truss-like structure. The
objective value of case #C.2 is 58.6% higher than that of #C.1, partly due to its higher global
volume fraction Vf , partly due to the fact that the enclosed walls can provide higher stiffness
than the slender trusses.

2. Comparing case #C.1 (cf. Figs. 6.3a–f) with #C.3 (cf. Figs. 6.3m–r ), it can be found that
with the same value of V̄max, a smaller value of r can generate a thinner and denser truss-
like structure. However, we can observe a decrease of stiffness by 5.7%. Furthermore, our
experience tells that a smaller value of r requires finer meshes such that the local mesh reso-
lution can be sufficient to capture the small features such as slender bars. In this chapter, we
set r greater than or equal to five times of the mesh size.Also note that a smaller value of r
requires a smaller value of the regularization parameter t. In this chapter, we set r2 > 10t.

3. From cases #C.1–C.3 (cf. Figs. 6.3a–r), we find that though only the local volume constraint
has been activated, the obtained global volume fraction Vf < V̄f , which means that the
global volume constraint is implicitly imposed by the local one. To control the global volume
fraction directly, we need to introduce the global volume constraint, see (4).

4. As for case #C.4 (cf. Figs. 6.3s–x), we activate both global and local volume constraints.
The design results show that in the global sense, there are large void domains which are
attributed to the global volume constraint G1. On the other hand, in the local sense, truss
like structures emerge to satisfy the local volume constraint G2.

5. From cases #C.1–C.4, it can be clearly observed that no matter if the optimal configuration
has truss- or wall-like structure, the structure is dominated by the crossing elongated sub-
structures in the yz�plane which follow the principal stress directions.

6. Comparing case #C.1 (cf. Figs. 6.3a–f) with #C.1G (cf. Figs. 6.4a–c), #C.2 with #C.2G, etc., it
can be found that with the same global volume fraction, the global volume constraint cases
can always outperform their local volume constraint counterparts. It makes physical sense
because the geometrical constraints are satisfied at the expense of mechanical performances.
On the other hand, if an optimized structure can meet the minimum performance criteria,
the sacrifice in performance is not too big an issue since the performance maximization is not
the only consideration in many application scenarios as we discussed above. Furthermore,
the optimal solutions for the global volume constraint cases #C.1G–C.4G feature thin-walls
which are completely filled solid due to the lack of local volume constraint. These optimal



6.4. Numerical investigation 195

solutions seem to agree well with the previous works on high resolution topology optimiza-
tion (Liu, Tian, Zong, Ma, Wang, and Zhang, 2019; Sigmund, Aage, and Andreassen, 2016;
Wu, Aage, Westermann, and Sigmund, 2017) that thin-wall is the most efficient structure for
the minimal mean compliance problem.

7. From the iterative histories shown in Fig. 6.2, we can clearly observe that the compliance
gradually increases during the optimization process, along with the decrease in the local
volume fraction. The proposed level set-based method uses a binary structure, indicating
that there is no grey element appearing during the topological evolution. Hence, one does
not bear the risk of misinterpretation of topology.

8. From the runtime breakdown shown in Table 6.4, we can observe that the most time con-
suming step is to solve the governing equation, i.e., for case #C.3 it takes 59.0% of the total
runtime. The overall runtime is approximately 4 h12 min for this large-scale 3D problem
having 2.03 · 107 tetrahedral elements.
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FIGURE 6.2: Iterative histories of the objective and constraint values, cf. Figs. 6.3a–f.

TABLE 6.3: Comparison of the objective and constraint values of the 3D cantilever.

Case No. J Vf V̄f

Cantilever #C.1, cf. Figs. 6.3a–f 7.46 · 10�2 14.0% 20.0%
Cantilever #C.2, cf. Figs. 6.3g–l 3.09 · 10�2 31.3% 40.0%
Cantilever #C.3, cf. Figs. 6.3m–r 7.9 · 10�2 15.6% 20.0%
Cantilever #C.4, cf. Figs. 6.3s–x 9.32 · 10�2 10.1% 20.0%
Cantilever #C.1G, cf. Figs. 6.4a–c 5.3 · 10�2 14.0% 59.2%
Cantilever #C.2G, cf. Figs. 6.4d–f 2.42 · 10�2 31.3% 76.4%
Cantilever #C.3G, cf. Figs. 6.4g–i 4.81 · 10�2 15.6% 67.8%
Cantilever #C.4G, cf. Figs. 6.4j–l 7.49 · 10�2 10.1% 51.1%
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(A) Isometric view. (B) Side view. (C) Back view.

(D) Isometric view. (E) Side view. (F) Back view.

(G) Isometric view. (H) Side view. (I) Back view.

(J) Isometric view. (K) Side view. (L) Back view.

FIGURE 6.4: Design results of the 3D cantilever test case #C.1G–#C.4G (from top to
bottom).
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TABLE 6.4: Runtime breakdown (s) of the finite element actions performed at each
iteration (in average) of the cantilever test cases #C.1 and #C.3.

Case #C.1 Case #C.3

ne 1.04 · 107 2.03 · 107

np 352 704
nit 293 155
Action Runtime (s) Runtime (s)

Solve governing equations 19.4 55.0
Compute objective and constraint values 17.4 16.6
Compute dG2/dc 3.05 2.47
Compute Lagrange multiplier and sensitivity 7.01 9.30
Solve RDE 6.93 6.66
Compute local “averaging” value c̄ 3.04 2.45
Visualization output 0.52 0.52

Total 57.34 93.0

6.4.2 Hand and bird beak

To further demonstrate the capability of the proposed methodology, we now deal with complex-
shape structural components and boundary conditions. This can be achieved by using unstruc-
tured meshes. To this end, we run the proposed algorithm on another two test cases inspired by
the state-of-the-art works (Wu, Dick, and Westermann, 2015; Liu, Hu, Zhu, Matusik, and Sifakis,
2018), and later reproduced in Li, Yamada, Jolivet, Furuta, Kondoh, Izui, and Nishiwaki (2021).
Note that in these three works, the global volume constraint was taken into account.

First, we reassemble a “hand” example. The design model is shown in Fig. 6.5. The right
end is fixed and the surface traction g = [0, 0,�1]T is applied on the top of the fingers. The
computational domain is discretized into 1.19 · 107 tetrahedral elements, as shown in Fig. 6.5b. In
Fig. 6.6, the surface traction is applied on the index, middle, and ring fingers. Figs. 6.6a and b
show the optimized results with local and global volume constraint, respectively. Similar to what
we have observed in the cantilever test cases, case #H.1 has more slender bars compared with case
#H.1G. Then in Fig. 6.7, the surface traction is applied on the top of five fingers. The palm part
features bone-like lattice structures whereas the wrist part shows a shell-like structure.

The second example is the infill design of a “bird beak”, as shown in Fig. 6.8. The normal force is
applied on the outer surface and the left end is fixed. We used approximately 1.75 · 107 tetrahedral
elements and performed the distributed computing using 704 MPI processes. Compared to the
optimized results shown in our previous works Li, Yamada, Jolivet, Furuta, Kondoh, Izui, and
Nishiwaki (2021), the configuration here is much more feature rich due to the use of local volume
constraint. We can expect to obtain an ultra-high resolution result if the element number can be
increased by at least an order of magnitude.
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(A) Domain decomposition. (B) Unstructured mesh.

FIGURE 6.5: Hand example: finite element mesh and subdomains for the domain
decomposition and parallel computing using 704 MPI processes.

(A) Case #H.1. (B) Case #H.1G.

FIGURE 6.6: Design results of the hand example with (a) local or (b) global volume
constraint.
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(A) Isometric view. (B) Front view.

(C) Bottom view. (D) Top view. (E) Side
view.

FIGURE 6.7: Design results of the hand test case #H.2.
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(A) Cross section yz�plane.

(B) Cross section xz�plane.

(C) Back view. (D) Cross section xy�plane.

FIGURE 6.8: Design result of the bird beak test case #B.1.
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6.4.3 Extensions

In this subsection, we present some extensions for the proposed framework by introducing an
additional ingredient into this workflow–mesh adaptation. As has been briefly discussed above,
with the traditional method (Wu, Aage, Westermann, and Sigmund, 2017), it is not easy to incor-
porate dynamically sparse grids into the optimization solver. On the contrary, in the proposed
method, since the PDE-filter is used to compute c̄, there is no specific restriction on the numerical
techniques. For example, numerical analysis using the FEM with other types of elements (i.e.,
hexahedral elements) or finite volume method (FVM) can be alternative options. In addition, the
boundary of the binary structure is represented by the zero-level-set isosurface. Therefore, we can
have a clear metric to refine the mesh elements along the boundary. Note that iso-/anisotropic
meshes or body-fitted meshes are both compatible to this framework.

The proposed method can adopt three types of adaptive mesh: isotropic (or regular shape),
anisotropic, and body-fitted mesh. The isotropic or shape regular adaptive method uses only
elements with bounded aspect ratio so that stretched elements can be avoided. Anistropic mesh,
on the other hand, can fit high aspect ratio elements along the regions of rapid variation of the
solution. And they are preferred to use for situations like boundary layers observed in the fluid
mechanics problems (Aguilar and Goodman, 2006). Unlike the above-mentioned two types of
meshes, body-fitted mesh adaptation can distribute nodes along the zero-level-set, indicating that
we can disjoin-reunion subdomains straightforwardly (Allaire, Dapogny, and Frey, 2013). In this
chapter, we demonstrate the mesh adaptivity using the isotropic mesh.

A two-dimensional cantilever case is presented in Fig. 6.9. The computational domain is a
rectangle whose dimension is 0.5L ⇥ 0.25L. The surface traction g = [0,�1]T is applied at the
right end portion of the bottom surface, and the left end bears a Dirichlet boundary condition.

To fully reflect this topic, we also provide a fixed mesh case for comparison. To make this
comparison fair enough, as for the adaptive mesh case #C.5A (cf. Fig. 6.9a), we set the minimum
mesh size hmin to be 1.0 · 10�3. As for the fixed mesh case #C.5F (cf. Fig. 6.9c), the mesh size is set
to 1.0 · 10�3 in the whole computational domain. The number of triangular elements used at the
last iteration is 1.18 · 105 for #C.5A, and 2.92 · 105 for #C.5F. From the results, some findings and
suggestions can be concluded as follows:

1. Adaptive and fixed mesh cases end up with a practically identical solution. The relative
difference between the obtained objective value is less than 1.2%, as shown in Table 6.5.
This observation confirms that the proposed LSM can avoid the mesh dependency to some
extent. More importantly, the PDE filter-based local volume constraint method does not
have specific restriction on the choice of meshing strategies.

2. It is not always worth performing mesh adaptation since this step is still time consuming,
especially for the case where r is very small. It is suggested to estimate the runtime for each
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(A) Isotropic adaptive mesh. (B) Optimal solution for #C.5A.

(C) Fixed mesh. (D) Optimal solution for #C.5F.

FIGURE 6.9: 2D cantilever test cases: finite element mesh and subdomains for the
domain decomposition and parallel computing using 4 MPI processes (left
column). Optimal solution (right column).

finite element action. If the total runtime of the forward analysis and mesh adaptation is
shorter than the forward analysis time using a finer fixed mesh, it may be worthy of remesh-
ing. For example, in the context of thermal fluid TO problems, the governing equations are
Navier-Stokes which is a nonlinear system of equations. In that case, the forward analysis
could be the bottleneck of the entire solver. The use of adaptive mesh can save the overall
runtime. If this is not the case, the fixed meshes may be more efficient.

TABLE 6.5: Comparison of the objective and constraint values of the 2D cantilever.

Case No. J Vf V̄f

Cantilever #C.5A, cf. Figs. 6.9a–b 0.15 47.6% 60.0%
Cantilever #C.5F, cf. Figs. 6.9c–d 0.15 46.4% 60.0%
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6.5 Summary

Motivated by the need for porous structure in the design of biodegradable implants, as well as
for the diverse and competitive structural designs in the architectures, this chapter proposes a
level set-based topology optimization method to design lattice structures. The key idea is to use
a variational method (PDE-filter) for the simplification of the numerical evaluation of geometric
constraints. It allows us to compute local “averaged” characteristic function on an unstructured
mesh by solving this PDE without knowing the spatial information of neighborhood elements.

To demonstrate the complete workflow of the proposed methodology, first, we recalled the
mathematical frame of the maximum length scale constraint and how it was integrated into the
reaction–diffusion equation-based level-set method. Secondly, the optimum design problem was
formulated and the sensitivity derived using the continuous adjoint method. Thirdly, the imple-
mentation details were illustrated regarding the finite element modeling and distributed comput-
ing, together with the sample codes to show its user-friendly syntax. Finally, we ran our algorithm
to solve various large-scale three-dimensional test cases. The main findings can be summarized
as follows:

1. With different values of the maximum allowed local volume fraction and filtered radius, one
can end up with truss-like (resp. wall-like) structures featuring slender and denser (resp.
thicker and sparser) trusses.

2. The RDE-based level-set method allows us to design from scratch. Moreover, the binary
structure ensures that one does not bear the risk of misinterpretation of topological configu-
ration throughout the iterative history.

3. There is no specific restriction on the numerical techniques. Using the unstructured mesh,
the proposed framework can easily deal with complex-shape structural components. Fur-
thermore, mesh adaptation techniques can be integrated into this workflow.

4. Large-scale 3D problems, having approximately 20 million tetrahedral elements, are com-
puted with 704 MPI processes. It requires a fully-distributed framework including scalable
domain decomposition, matrix assembly, parallel interpolation, and linear solver that very
few general purpose libraries offer. This is achieved by using multigrid preconditioners
offered by PETSc, suitably interfaced in FreeFEM.

As a final remark, the proposed PDE filter-based maximum length scale constraints can be
adopted by any other level set-based shape and topology optimization methods. But it should
be noted that the averaged value computed by this PDE-filter is weighted by the distance, which
means that it is not as precise as the the one evaluated by the average of neighboring elements
(Wu, Clausen, and Sigmund, 2017). In addition, a validated computational model of the degrada-
tion process (Barzegari, Mei, Lamaka, and Geris, 2021) paves the way to future investigations into
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the biodegradation behavior of those optimized lattice structures. Finally, this chapter can be a
helpful discussion for such further research, aimed at including maximum length scale constraint
in large-scale multiphysics TO such as thermal-fluids, multi-material designs, etc.
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Chapter 7

General Conclusions

This thesis focuses on the level set-based topology optimization for the optimum design of thermal
fluid–structure systems. The following is a summary of achievements.

In Chapter 2, the basic concept of the level-set method is introduced. The mathematical and
physical frame of the reaction–diffusion equation (RDE) based topology optimization (TO) method
is provided and the derivation of the topological derivative is given in details. Building upon this
cornerstone, we propose a parallel distributed and open-source framework for full-scale three-
dimensional structural topology optimization. This can be achieved by properly combining par-
allel computing and mesh adaption techniques by adopting a RDE-based level-set method (LSM).
Mesh adaptivity which discretizes and optimizes an implicitly defined surface (level-set inter-
face) can allow us to reach an optimal solution with high-resolution and clear boundaries. Our
framework can be easily extended to design real world engineering products which have complex
geometries, and optimized structures represented by body-fitted tetrahedral meshes can be effi-
ciently post-processed and prototypes can be built straightforwardly. Furthermore, the proposed
optimization algorithm can mitigate dependency to initial guess and mesh resolution to some ex-
tent. Our numerical implementation uses FreeFEM for finite element analysis (FEA), PETSc for
distributed linear algebra, and Mmg for mesh adaption. Several numerical examples for the mini-
mal mean compliance problem support these remarkable features. However, it should be pointed
out that the main limitations of the present framework is that the mesh adaptation step is done in
sequential, meaning that a global mesh has to be centralized. This can be quite memory demand-
ing. Indeed, the framework in its current form (integrated with the sequential version of Mmg) is
still not scalable to billions of voxels, but is targeted in our future work.

In Chapter 3, we extend the proposed TO framework to solve the two- and three-dimensional
weakly-coupled fluid–structure problems. From the numerical point of view, two key ingredi-
ents are highlighted: (i) the body-fitted adaptive mesh strategy allows the disjoint-reunion of a
global mesh that contains several (fluid/solid) subdomains, whose interfaces can be described by
an implicitly defined surface (zero level-set); (ii) physics tailored multigrid preconditioner tech-
niques are utilized to solve the large-scale finite element systems. More specifically, a modified
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augmented Lagrangian (mAL) preconditioner is adopted to solve the linearized flow equations.
From the engineering stand point, we propose a complete product development workflow includ-
ing the pre-processing, TO, B-Rep conversion, and the numerical experiment. The performance
of our methodology is demonstrated by solving three different optimization problems: minimal
mean compliance problem, minimal power dissipation problem, and fluid–structure interaction
(including both “dry” and “wet” FSI). For comparison and for assessing our various techniques,
we benchmark our designs against state-of-the-art works. The main findings real that: (1) the
suggested TO method allows the nucleation of new holes during the topology evolution. By com-
bining the body-fitted remeshing technique, we are able to solve the “wet” (design-dependent)
FSI problem with no predefined holes in the initial guess; (2) several engineering cases (e.g., roof
support design, pipe connector design, solar plate support design) are presented to highlight the
potential of the proposed design workflow to real-world applications. (3) The B-Rep conversion
allows the organic part (design domain) to be integrated into (resp. extracted from) the assem-
bly. The converted CAD data features an editable and smoothened boundary. This allows the
generation of a high quality boundary layer mesh for the CFD simulation and helps ease the man-
ufacturing.

In Chapter 4, we shed a light on the passive heat sinks cooled by natural convection which
are known to be reliable, compact, and low-noise. They are widely used in telecommunication de-
vices, LEDs, etc. This chapter builds upon the recent advancements in fluid topology optimization
to present a case study of two- and three-dimensional optimum design and thermal modeling for
natural convection problems using the proposed design methodology. To this end, first, a high-
fidelity thermal–fluid model is constructed where the full Navier–Stokes equations are strongly
coupled with the energy equation through the Boussinesq approximation. We benchmark our
simulation solver against experimental analysis and other numerical analysis methods such as
the ISHP method and the FVM. Next, we carefully investigate the flow behavior under different
Grashof numbers using a fully transient simulation solver. Then we run our algorithm to de-
liver interesting 2D and 3D generative designs. The main findings reveal that: (1) the nonlinear
RAMP scheme is employed for material interpolation to prevent bad quality local optima. The
binary structure expression allows us to avoid the use of the continuation approach to penalize
the design variable to the binary structure. The penalty parameters can be used to control the
geometrical complexity of the optimal configuration. (2) The generative designs represented by
the body-fitted meshes are converted into editable CAD models, and they are imported to the
COMSOL simulation solver for performance validation. The simulation results agree well with
the optimization solver, confirming the accuracy of the hybrid modeling strategy. The crosscheck
results show that the design optimized for a certain Grashof number preferably performs better
than the others for its particular Grashof number. Moreover, the TO designs perform better than
the reference design, which further validates the effectiveness of the suggested design methodol-
ogy. (3) A moderately large-scale TO problem with 3.56 · 106 unknowns can be solved in parallel
on a standard multiprocessor system, thanks to the use of sparsely populated grids.
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In Chapter 5, we focus on an important technical issue encountered in the large-scale fluid
relevant TO. That is to improve the computational efficiency and to save the overall computational
cost. To this end, we incorporate three different remeshing techniques (isotropic, anisotropic, or
body-fitted adaptive mesh refinement) into the proposed TO framework. This is owing to the
flexibility of the RDE method for handling both “separate” and “hybrid” flow modeling strategies.
The “separate” modeling, relying on the body-fitted mesh, allows the disjoint-reunion of a global
mesh that contains several (fluid/solid) subdomains. The no-slip boundary conditions can be
applied on the moving fluid-solid interface. The “hybrid” modeling, on the other hand, relying
on the idea of the fictitious porous media, is compatible with iso-/anisotropic mesh. Moreover,
the iso-/anisotropic remeshing algorithms can be performed in parallel. This breaks through the
existing bottleneck of the sequentially performed body-fitted mesh evolution method. A lift–drag
optimization problem, a classical minimal power dissipation problem, and a forced convection
problem are formulated. Various 2D/3D, small-/large-scale test cases are presented to validate the
computational efficiency of this framework. The results show that with the “hybrid” modeling,
over 70% runtime-saving is reported compared with the “separate” modeling. This is partly due
to the fact that the iso-/anisotropic mesh adaptation can be performed in a distributed fashion,
partly due to a huge decrease in the Newton iteration number. In addition, a large-scale 3D test
case (using fixed mesh) with a total tetrahedra number of 3.12 · 106, having approximately 1.32 · 107

degrees of freedom for the linearized fluid system, is solved using a cluster mounted with 352 MPI
processes, further confirming the scalability of the proposed framework.

In Chapter 6, we focus on the biomimetic design of porous structures observed in natural sys-
tems. The basic idea is to impose a maximum allowable volume fraction to the locally averaged
value of the characteristic function. To compute this local averaged value, a PDE-filter is intro-
duced. Unlike the traditional approach which requires the measurement of the percentage of
solid voxels overall voxels in a prescribed neighborhood, the proposed method shows the fol-
lowing good features: (1) it can be used in the unstructured mesh and/or adaptive mesh-based
TO framework. There is no specific restriction on the numerical techniques. (2) The use of this
PDE-filter makes the distributed computing quite straightforward. (3) This geometrical constraint
can be applied to any physics governed by different constitutive laws. To formulate the opti-
mization model, we use the p�norm function to approximate the maximum value of the local
averaged value thus makes it differentiable. Various large-scale three-dimensional test cases are
presented. We push the tetrahedral element number to the level of 20 million and perform the
computation on cloud-based clusters. The design results reveal that: (1) a larger value of maxi-
mum allowed local volume fraction tends to suppress the appearance of the lattice infills. Instead,
it ends up with a wall-like structure. (2) A smaller value of PDE-filter radius can generate thinner
and denser truss-like structure. (3) No matter the optimal configuration has truss- or wall-like
structure, the structure is dominated by the crossing elongated sub-structures which follow the
principal stress directions. (4) With the same global volume fraction, the global volume constraint
cases can always outperform their local volume constraint counterparts. It makes physical sense
since we have to sacrifice the ultimate in performance for the sake of geometrical requirement. (5)
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Adaptive and fixed mesh cases end up with a practically identical solution. This confirms that the
PDE filter-based local volume constraint method does not have specific restriction on the choice
of meshing strategies.

To conclude, this thesis develops a reaction–diffusion equation-based level-set method to solve
multi-physics topology optimization problems. We highlight two key ingredients in this work-
flow. The first is the physics-dependent multigrid preconditioner for distributed computing. This
ensures that the physical computation part of the TO framework can be highly scalable with re-
spect to the problem size. The second is the adaptive mesh refinement. This further exploits the
potential of LSM, stating that, at each iterative step, the global mesh needs to be reconstructed
and tetrahedra are only refined in the region-of-interest while remaining coarse at the far field,
making it possible to reduce the overall computational cost. We present a variety of conceptual
designs for not only academic toy problems but also practical application cases. We hope that this
thesis can provide some guiding significance to the generative design of fluidic devices that can
be used in the real-world industry.
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Appendix A

Sensitivity Analysis

A.1 Minimal mean compliance problem

Using Lagrange’s method, the optimization problem given by Section 2.2.4 is replaced with an
unconstrained optimization problem.The Lagrangian L (ũ, ṽ, l1, W) is formulated as:

L (ũ, ṽ, l1, W) =
Z

GN

g · ũ dG �

Z

W
(div(C : e(ũ))) · ṽ dW +l1

 R
D cfdWR

D dW
� Vmax

!
, (A.1)

where ũ and ṽ are vector-valued functions, ṽ is the adjoint variable for the governing equation,
and l1 is the Lagrange multiplier for the volume constraint. First, in order to derive the adjoint
equations, we use the Lagrangian L (ũ, ṽ, W) which does not include the volume constraint G1,
as follows:

L (ũ, ṽ, W) =
Z

GN

g · ũ dG �

Z

W
(div(C : e(ũ))) · ṽ dW. (A.2)

For the second term on the right-hand side in Eq. (A.2), by applying integration by parts and the
divergence theorem, Eq. (A.2) can be rewritten as follows:

L (ũ, ṽ, W) =
Z

GN

g · ũ dG +
Z

W
(e(ũ) : C) : e(ṽ) dW �

Z

GN

g · ṽ dG. (A.3)

Using the definition of Gâteaux derivative, the partial derivative of the Lagrangian L (ũ, ṽ, W)

with respect to ũ in the direction x at the stationary point (u, v) will be:

⌧
∂L

∂ũ
(u, v, W), x

�
=
Z

GN

g · xdG +
Z

W
(e(x) : C) : e(ṽ) dW = 0. (A.4)

For the second term on the right-hand side in Eq. (A.4), x can be switched with ṽ thanks to the
symmetric property of the bilinear form. Thus, Eq. (A.4) can be rewritten as:

⌧
∂L

∂ũ
(u, v, W), x

�
=
Z

GN

g · xdG +
Z

W
(e(ṽ) : C) : e(x) dW = 0. (A.5)
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For the second term on the right-hand side of Eq. (A.5), by applying integration by parts and the
divergence theorem, the following equation is obtained:

⌧
∂L

∂ũ
(u, v, W), x

�
= �

Z

W
div(C : e(ṽ)) · xdx +

Z

GD

((C : e(ṽ))) · n) · xdG

+
Z

GN

((C : e(ṽ)) · n) + g) · xdG = 0.
(A.6)

The above equation should be satisfied with any arbitrary x. Therefore, the adjoint equation can
be obtained as follows: 8

><

>:

div(C : e(v)) = 0 in W
v = 0 on GD

�g̃ = ḡ on GN,
(A.7)

where g̃ = (C : e(v)) · n. Comparing adjoint equation Eq. (A.7) with the governing equation
Eq. (2.1), it can be seen that the adjoint problem is self-adjoint with v = �u.

Next, to derive the topological derivative, a boundary value problem considering a created hole
is formulated as: 8

>>>><

>>>>:

�div(C : (e(u) + e(du)) = 0 in W\We

u + du = 0 on GD

g + dg = ḡ on GN

g + dg = 0 on Ge.

(A.8)

The Lagrangian considering a created hole is given as:

F̄ + dF̄ =
Z

W\We

e(v) : C : e(u + du)dW +
Z

GN

(u + du) · (g + dg) dG

�

Z

GN

(g + dg) · vdG �

Z

Ge

(g + dg) · vdG + l1

 R
W\We

cfdW
R

W\We
dW

� Vmax

!
.

(A.9)

Substituting the boundary condition g + dg = 0 on Ge into Lagrangian Eq. (A.9), then subtracting
the Lagrangian Eq. (A.1) from Lagrangian Eq. (A.9), the variation dF̄ of the Lagrangian is given
as:

dF̄ =
Z

W\We

e(v) : C : e(du)dW �

Z

We

e(v) : C : e(u)dW +
Z

GN

(g · du + dg · u) dG

�

Z

GN

dg · vdG � l1

 R
We

cfdW
R

We
dW

!
.

(A.10)
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Applying Green’s formula to the first term in Eq. (A.10), and substituting the boundary conditions,
du = 0 on GD and dg = 0 on GN , the variation can be rewritten as:

dF̄ = �

Z

W\We

div (C : e(v)) · dudW �

Z

We

e(v) : C : e(du)dW +
Z

Ge

(C : e(v)) · du · ndG

+
Z

GN

(g̃ + g) · dudG � l1

 R
We

cfdW
R

We
dW

!
.

(A.11)

Using the adjoint variable v = �u obtained by solving the adjoint equation Eq. (A.7), the variation
of Lagrangian can be rewritten as:

dF̄ =
Z

We

e(u) : C : e(du)dW �

Z

Ge

(C : e(u)) · du · ndG � l1

 R
We

cfdW
R

We
dW

!
. (A.12)

To calculate the unknown du in Eq. (A.12), we subtract Eq. (2.4) from Eq. (A.8), and obtain the
following problem: 8

>>>><

>>>>:

�div(C : e(du)) = 0 in W\We

du = 0 on GD

dg = 0 on GN

dg = �g0 on Ge,

(A.13)

where the tensor g0 = s0(u) · n = C : e0(u). Note that the superscript 0 indicates the values
without creating a hole. The solution of the boundary value problem in Eq. (A.13) is given by
Guzina and Bonnet (2004), as follows:

dui = �
e

µ

✓
4 � 5µ

7 � 5µ
s0

ij(u)nj �
3 � 5µ

4(7 � 5µ)
s0

jj(u)nj + O(#)

◆
. (A.14)

Therefore, the variation of Lagrangian F̄ is obtained as:

dF̄ =

4pe3

3

(
3(1 � n)

2(1 + n)(7 � 5n)

"
�
�
1 � 14n + 15n2� E(cf)

(1 � 2n)2 dijdkl + 5E(cf)
�
dikdjl + dildjk

�
#

e0
ij(u)e0

kl(u) � l1

)
,

(A.15)
where dij is the Kronecker delta function. Hence, the topological derivative dtF̄ is derived as
follows:

dtF̄ = lim
e!0

dF̄
4pe3

3

= (e(u) : A) : e(u) � l1, (A.16)

where the fourth-order tensor A is defined as follows:

Aijkl := A1dijdkl + A2
�
dikdjl + dildjk

�
, (A.17)
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where A1 and A2 are given as:

8
>><

>>:

A1 = �
3(1 � n)

�
1 � 14n + 15n2�

2(1 + n)(7 � 5n)(1 � 2n)2 E(cf)

A2 =
15(1 � n)

2(1 + n)(7 � 5n)
E(cf).

(A.18)

A.2 Natural convection problem

Using Lagrange’s method, the optimization problem given by Eq. (4.12) can be replaced with an
unconstrained optimization problem. The Lagrangian L (v, vA, p, pA, T, TA, l1, W) is formulated
as:

L (v, vA, p, pA, T, TA, l1, W)

=
Z

w
QTdW

| {z }
obj. function

+
Z

W
vA ·

⇣
(v ·r) v � Prr ·

⇣
rv + rvT

⌘
+ rp + av � Gr Pr2 Te3

⌘

| {z }
momentum conservation

dW

�

Z

W
pA (r · v)| {z }

continuity

dW +
Z

W
TA ((v ·rT) �r · (krT) � Q)| {z }

energy conservation

dW + l1

 R
D 1 � cfdWR

D dW
� Vmax

!

| {z }
volume constraint

(A.19)
Using the definition of Gâteaux derivative, the partial derivative of the Lagrangian L (v, vA, p, pA, T, TA, l1, W)

with respect to v, p, and T in the direction x at the stationary point will be:

⌧
∂L

∂v
(v, vA, p, pA, T, TA, l1, W) , x

�

=
Z

W
�x · (v ·rvA) + x ·

⇣
vA ·rvT

⌘
� x ·

⇣
Prr ·

⇣
rvA + rvT

A

⌘⌘

+ x · avA + x ·rpA + TA (x ·rT) dW

+
Z

G
(vA · x) (v · n) +

⇣
x · Pr

⇣
rvA + rvT

A

⌘⌘
· n

�

⇣
vA · Pr

⇣
rx + rxT

⌘⌘
· n � (pAx) · ndG = 0.

(A.20)

⌧
∂L

∂p
(v, vA, p, pA, T, TA, l1, W) , x

�

= �

Z

W
r · vAxdW +

Z

G
(vAx) · ndG = 0

(A.21)
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⌧
∂L

∂T
(v, vA, p, pA, T, TA, l1, W) , x

�

=
Z

w
QxdW �

Z

W
vA ·

�
Gr Pr2 xe3

�
� (rTA · v) x �r · (krTA) xdW

+
Z

G
(TAvx + krTAx � kTArx) · ndG = 0

(A.22)

The above system of equations should be satisfied with any arbitrary x. Therefore, the adjoint
equation can be obtained as follows:

8
>>><

>>>:

� v ·rvA + vA ·rvT
� Prr ·

⇣
rvA + rvT

A

⌘
+ avA + rpA + TArT = 0

�r · vA = 0

Q � Gr Pr2 vA · e3 �rTA · v �r · (krTA) = 0,

(A.23)

with the following adjoint boundary conditions:

8
><

>:

vA = 0 on ∂W
TA = 0 on G
(TAv + krTA) · n = 0 on ∂W\G.

(A.24)

Finally, following the RAMP material interpolation scheme defined in Eq. (4.11), the design sensi-
tivity can be easily derived as follows:

dL

dcf
=
Z

W
�

qaamax (qa + 1)
�
qa + cf

�2 v · vA �rTA ·rT
qk (ck � 1) (qk + 1)

�
qk + cf

�2 � l1dW, (A.25)

A.3 Local averaging volume constraint

The local averaging constraint functional G2 (c̄ (c)) is defined as follows:

G2 =

✓
1
n Â c̄p

◆1/p
� V̄max  0, (A.26)

Using Lagrange’s method, the extend constraint functional is formulated as

G :=G2 +
Z

W
c̄A
�
�r2

r
2c̄ + c̄ � c

�
dW

=G2 +
Z

W
�r2c̄r2c̄A + c̄A (c̄ � c) dW +

Z

∂W
�c̄A

∂c̄

∂n
+ c̄

∂c̄A
∂n

dG
(A.27)
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Using the definition of Gâteaux derivative, the partial derivative of the extended constraint func-
tional G with respect to c̄ in the direction x at the stationary point will be:

⌧
∂G

∂c̄
, x

�
=
Z

W
�r2xr2c̄A + xc̄A + x

∂G2

∂c̄
dW +

Z

∂W
x

∂c̄A
∂n

dG = 0. (A.28)

The above equation should be satisfied with any arbitrary x. Therefore, the adjoint equation can
be derived as follows: 8

><

>:

� r2
r

2c̄A + c̄A = �
∂G2

∂c̄
in W

rc̄A · n = 0 on ∂W.
(A.29)

The sensitivity for the local volume constraint can be thus obtained as

G
0 = �c̄A. (A.30)

By substituting Eq. (A.30) into Eq. (A.29), we can rewrite Eq. (A.29) as
8
><

>:

� r2
r

2
G
0 + G

0 =
∂G2

∂c̄
in W

rG
0
· n = 0 on ∂W,

(A.31)

where
∂G2

∂c̄
is expressed as

∂G2

∂c̄
=

c̄p�1
✓

1
n Â c̄p

◆ 1
p�1

n
. (A.32)
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Appendix B

FreeFEM Code Implementation

B.1 Natural convection

B.1.1 Adjoint equations

The FreeFEM code implementation for the adjoint equation Eq. (4.20) is briefly illustrated here.
First, we define a vector field for the adjoint velocity, adjoint pressure, and adjoint temperature.
Since the mini-element is already supported in FreeFEM, we declare in the script as func Pk =
[P1b, P1b, P1b, P1, P1]. Next, we create a new finite element space as fespace VhV1(Sh, Pk)
that is associated with Ṽ ⇥ Ṽ ⇥ Ṽ ⇥ P̃ ⇥ P̃. Then, we define unknowns by declaring VhV1<real>
[ua1,ua2,ua3,pa,Ta] for adjoint variables, and VhV1<real> [uau1,uau2,uau3,pap,TaT] for the
corresponding test functions. After that, we use the macro to define the material interpolation
scheme in Eq. (4.11) and the operators appears in Eq. (4.20), as follows:

macro kappa(chi) 1.0+(Ck-1.0)*(qkappa*(1-chi)/(qkappa+chi))//
macro alpha(chi) (alphamax*(qalpha*(1-chi))/(qalpha+chi))//
macro grad(u)[dx(u), dy(u), dz(u)]//
macro Grad(u)[grad(u#1), grad(u#2), grad(u#3)]//
macro div(u)(dx(u#1) + dy(u#2) + dz(u#3))//
macro UgradV1(u1,u2,u3,v1,v2,v3)[[u1,u2,u3]’*[dx(v1),dx(v2),dx(v3)],
[u1,u2,u3]’*[dy(v1),dy(v2),dy(v3)],
[u1,u2,u3]’*[dz(v1),dz(v2),dz(v3)]]//
macro UgradV2(u1,u2,u3,v1,v2,v3)[[u1,u2,u3]’*[dx(v1),dy(v1),dz(v1)],
[u1,u2,u3]’*[dx(v2),dy(v2),dz(v2)],
[u1,u2,u3]’*[dx(v3),dy(v3),dz(v3)]]//

Finally, the variational formulation can be coded using the built-in syntax varf. It is to build the
matrix and the right-hand side vector of the linear system. All these technical issues related to the
finite element method are hidden and such advantage makes the script look like the mathematical
formulations:
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varf Adj ([ua1,ua2,ua3,pa,Ta],[uau1,uau2,uau3,pap,TaT])
= intN(Sh)(
// (ua*grad)u^T
UgradV1(ua1, ua2, ua3, u1, u2, u3)’ * [uau1,uau2,uau3]
// -(u*grad)ua
- UgradV2(u1, u2, u3, ua1, ua2, ua3)’ * [uau1,uau2,uau3]
// the -Pr*Lap(ua)
+ Pr * ( Grad(ua):Grad(uau) )
// Brinkman model, alpha*ua
+ alpha(chiP)*[ua1,ua2,ua3]’*[uau1,uau2,uau3]
// the grad(pa)
- div(uau)*pa
// Ta*grad(T)
+ [uau1,uau2,uau3]’ * grad(T) * Ta
// the Continuity
- div(ua)*pap
// the Bouyancy force -Gr*Pr^2*ua*(0,1,0)’
- (1./nu)*Pr^2*TaT*[ua1,ua2,ua3]’*[0,1,0]
// the-grad(Ta)*u
- TaT * grad(Ta)’ * [u1,u2,u3]
// the kappa*Lap(Ta)
+ kappa(chiP) * grad(Ta)’*grad(TaT)
)
// the Heat source term
+ intN(Sh, HeatSource)(-HtS*TaT)

// Adjoint Boundary Conditions for velocity field
+ on(wall, ua1=0,ua2=0,ua3=0) //Dirichlet velocity B.C
+ on(sym1, ua3=0) // sysmetric B.C (uz=0)
+ on(sym2, ua1=0) // sysmetric B.C (ux=0)
// Adjoint Boundary Conditions for temperature field
+ on(Twall, Ta=0) //Dirichlet temperature B.C.
+ intN1(Sh,Adiabatic)(
TaT * Ta * [u1,u2,u3]’ * [N.x, N.y, N.z]
) // Temperature Neumann B.C.
;

B.1.2 Body-fitted mesh adaptation

The FreeFEM code implementation for the body-fitted mesh is presented here (cf. Section 4.3.3).
The sequential version of Mmg can be called within FreeFEM, as follows:

load "mmg"
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ShtruncGlobal = mmg3d(ShtruncGlobal, metric=ophiGlobal[], iso=true, hmin=hmin, hmax=
hmax, hgrad = hgrad, hausd=hausd, localParameter = lp, requiredTriangle = rt);

The input parameters are listed as follows:

• iso: if true, allows the implicit domain mesh (body-fitted) adaptation;

• hmax, hmin: maximum and minimum edge size, respectively;

• hgrad: imposes two adjacent edges e1 and e2 to satisfy 1
hgrad


le1
le2

 hgrad;

• hausd: imposes the maximal distance between the piecewise linear representation of the
boundary and the reconstructed ideal boundary;

• localParameter: associates local Hausdorff, minimal edge size and maximal edge size to
boundary references. The local parameters overwrite the global ones;

• requiredTriangle: associates the unchanged elements to the boundary reference.

B.1.3 Anisotropic mesh adaptation

As for the anisotropic mesh used in the transient simulation solver (cf. Section 4.3.3), in 2D case
(see Fig. 4.8), we use the built-in function adaptmesh offered by FreeFEM:

ShGlobal = adaptmesh(ShGlobal, [uG,uGB], ratio = ratio, err = err, hmax = hmax, hmin =
hmin);

For 3D simulation (see Fig. 4.9), the mesh algorithm can be performed by ParMmg, a parallel
version of Mmg recently developed by Cirrottola and Froehly (2021). First, the metric is saved
by mshmet. Then, we call ParMmg to read the metric and to generate the new mesh using the
following script:

load "mshmet"
real[int] met = mshmet(ShGlobal, [uG,uGB,uGC], aniso = 1, hmin = hmin, hmax = hmax, err

= err, nbregul = 1, normalization = 1);
load "parmmg"
ShGlobal = parmmg3d(ShGlobal, metric = met, hgrad = hgrad,comm=mpiCommWorld);

The input parameters are listed as follows:

• ratio: ratio for a prescribed smoothing on the metric (1.5 by default);

• err: interpolation error level (0.01 by default);
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• metric: array of 3 real arrays to set or get metric data information;

• aniso: if true, allows the adapted mesh to be anisotropic.

B.2 Local averaging volume constraint

Here we briefly illustrate the FreeFEM code implementation for the distributed computing of
the adjoint equation Eq. (6.13). As has been discussed in Section 6.3.2, FreeFEM is used for the
discretization of the PDEs, and PETSc for linear algebra backend, and it has been interfaced in
FreeFEM. To call PETSc within FreeFEM, we first load the necessary plugins as

load "PETSc" // PETSc plugin
macro dimension()3// for 3D problems
include "macro_ddm.idp" //additional DDM functions

We define a scalar field by declaring in the script as func Pk1= [P1] since the P1 linear element
is used in the present work. Next, an external mesh file T can be read by FreeFEM. For instance,
as for the “hand” and “bird beak” examples shown in Section 6.4.2, we first generate the global
mesh file in Gmsh (Geuzaine and Remacle, 2009) and store it in the Inria Medit format. Then they
can be natively parsed by FreeFEM. After that, the global mesh T is partitioned into N meshes
{T }11N using a graph partitioner package such as METIS. This domain decomposition step can
be achieved by calling buildDmesh. Note that there are ghost elements in the overlapping domains
along the skeletons between each subdomain. They are used to help multiple MPI processes to
communicate one with another. Then we create the PETSc matrix with the script Mat. Then using
createMat, we let FreeFEM interact with PETSc to distribute parallel matrix.

meshN Sh=readmesh3("./Hand.mesh"); // read external global mesh
buildDmesh(Sh);
Mat B4; // parallel PETSc matrix
createMat(Sh, B4, Pk1) // parallel finite element numbering

Then, the finite element space can be created with the script fespace VhS1(Sh,Pk1) which is as-
sociated to Eq. (B.1).

P :=
n

p̃ 2 H1(W) | p̃ = 0 on ∂WD
p

o
. (B.1)

After that, the unknowns can be defined as VhS1<real> def1(sensV), def1(testsensV), def1(sensP),
which associate to G

0, G̃ 0, and ∂G2
∂c̄ , respectively.

Next, we define the weak formulation as in Eq. (B.2) on the distributed mesh.

Z

W
r2
rG̃ 0 ·rG

0 + G̃ 0G
0
� G̃ 0

∂G2

∂c̄
dW = 0 8G̃ 0 2 P ,G 0

2 P . (B.2)
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The variational formulation can be coded using the built-in syntax varf.

varf Adjoint(sensV,testsensV)
= intN(Sh,qforder=3)((radiusX^2*dx(sensV)*dx(testsensV)+radiusY^2*dy(sensV)*dy(

testsensV)+radiusZ^2*dz(sensV)*dz(testsensV)) + sensV*testsensV)
+ intN(Sh,qforder=3)(sensP*testsensV);

qforder is the quadrature formula as follows:

Z

W
f (x) ⇡

L

Ầ
=1

w` f (x`) . (B.3)

In two-dimensional cases where qfroder=3, the quadrature formula is exact on P2
1.

Finally, we assemble the variational formulation inside the parallel matrix and define the right
hand side. And we call hypre (Falgout and Yang, 2002) to solve the linear equation as

real[int] Adjointrhs = Adjoint(0, VhS1); // right hand side
B4 = Adjoint(VhS1, VhS1); // parallel finite element assembly
set(B4, sparams = "-pc_type hypre -ksp_type gmres -ksp_max_it 200");
sensV[] = B4^-1 * Adjointrhs;

The obtained sensitivity is normalized by max8i (G 0

i ). To this end, we use a standard MPI reduction
as

real sensVmaxloc = sensV[].max;
real sensVmax;
mpiAllReduce(sensVmaxloc, sensVmax, mpiCommWorld, mpiMAX);
sensV = sensV/sensVmax;

To post-process the results, one can output them in the .vtk format using savevtk. For the dis-
tributed computing, the outputs include N .vtu files and one single .pvd file. Each .vtu file store
the mesh and data for one MPI process and they can be gathered by the .pvd file.

int[int] order = [1];
savevtk("./sensV.vtu", Sh, sensV, dataname = "sensV", order = order);

B.3 An educational code for mean compliance problem based on the
density approach

This part of the work is for educational purposes. We solve a minimal mean compliance problem
given in Chapter 2. The density approach is adopted, as discussed in Section 1.2.1. The optimality

1https://doc.freefem.org/references/quadrature-formulae.html#qf2pt

https://doc.freefem.org/references/quadrature-formulae.html#qf2pt
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criteria is used to update the design variables. Readers are referred to in our recent educational
paper for more details (Zhu, Zhang, Li, Liang, Wang, Li, and Nishiwaki, 2021).

// Macros
macro el(ux,uy) [dx(ux), (dx(uy)+dy(ux)), dy(uy) ] // Linear strain
macro e(ux,uy) (el(ux,uy) + enl(ux,uy)) //

real L = 2; // Length of the design domain
real W = 1; // Width of the design domain
real E1 = 3e9; // Young’s modulus for solid material
real E0 = 1e-9*E1; // Young’s modulus for void material
real nu = 0.4; // Poison’s ratio
real fx = 0; // External load, x direction
real fy = -1e6; // External load, y direction
real volfrac = 0.4; // Target volume fraction
real p = 1; // Penalty
real change = 1; // Maximum change of design variable
int s = 1; // Index to controll the meshfine
int i = 1; // Optimization iteration number
int Imax = 200; // Maximum iteration number

// Border: Cantilever
int loaded = 1, free = 2, fixed = 3;
border b1 (t = -0.025*W, 0.025*W) {x = 0.5*L; y = t; label = loaded;}
border b2 (t = 0.025*W, 0.5*W) {x = 0.5*L; y = t; label = free;}
border b3 (t = 0.5*L, -0.5*L) {x = t; y = 0.5*W; label = free;}
border b4 (t = 0.5*W, -0.5*W) {x = -0.5*L; y = t; label = fixed;}
border b5 (t = -0.5*L, 0.5*L) {x = t; y = -0.5*W; label = free;}
border b6 (t = -0.5*W, -0.025*W) {x = 0.5*L; y = t; label = free;}

// Mesh
mesh th = buildmesh(b1(2*s) + b2(19*s) + b3(160*s) + b4(40*s) +b5(160*s) + b6(19*s));

// Fespace: define all the variables
fespace Vh (th, [P1, P1]);
Vh [ux, uy], [vx, vy];
fespace Vh1 (th, P1);
Vh1 E, theta, testtheta, oldtheta, sens, thetaold, thetanew, dtheta, sensnew, vv, gama;

// Make intial design
theta = volfrac;

// Map theta to the material property
E = theta^p*(E1 - E0) + E0;

// Form A matrix
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real lambda = nu/((1+nu)*(1-2*nu));
real mu = 1/(2*(1+nu));
real a11= 2*mu + lambda ;
real a22= mu ;
real a33= 2*mu + lambda ;
real a12= 0 ;
real a13= lambda ;
real a23= 0 ;
real a21= a12 ;
real a31= a13 ;
real a32= a23 ;
func A = [ [ a11,a12,a13],[ a21,a22,a23],[ a31,a32,a33] ];

// Optimization loop
while (change > 1e-3 && i < Imax){
i = i + 1;
thetaold = theta;
p = min(3., p + (i%5 == 0)*0.2); // Penalty update
// Linear finite element analysis

------------------------------------------------------------
solve linear([ux, uy], [vx, vy]) =
int2d(th)( E*(el(ux,uy)’*A*el(vx,vy)) )
- int1d(th, loaded)(fx*vx + fy*vy)
+ on(fixed, ux = 0, uy = 0);

// Sensitivity and smoothing
------------------------------------------------------------

// sens = -p*theta^(p-1)*(E1 - E0)*((el(uxa,uya))’*A*(el(ux,uy)));
sens = -p*theta^(p-1)*(E1 - E0)*((el(ux,uy))’*A*(el(ux,uy)));
solve smoothing (sensnew,vv) = int2d(th)( 0.002*( dx(sensnew)*dx(vv)+dy(sensnew)*dy(vv)

) + sensnew*vv ) - int2d(th)(sens*vv);
sens = sensnew;

// OC update ------------------------------------------------------------
real l1 = 0; real l2 = 100000; real move = 0.1;
while ((l2-l1)/(l2+l1) > (1e-4)&&l2>1e-40){
real lmid = 0.5*(l2+l1);
thetanew = max(0., max(theta - move, min(1., min(theta + move, theta*(max(1e-10, -

sens/lmid))^0.3))));
if ((int2d(th)(thetanew)- int2d(th)(volfrac)) > 0){
l1 = lmid;

}
else{
l2 = lmid;

}
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}
theta = thetanew;
E = theta^p*(E1 - E0) + E0;

// Objective functions and visualization
------------------------------------------------------------

real comp = int1d(th, loaded)(fx*ux + fy*uy);
real vol = int2d(th)(theta)/int2d(th)(1); // volume fraction
dtheta = abs(theta - thetaold);
change = dtheta[].max;
plot(theta, fill =1, grey=true);
cout <<"iter = "<< i <<"; comp = "<<comp<<"; vol = "<<vol <<"; change ="<< change <<"

.----------------------"<<endl;
}
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