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Abstract

This dissertation studies the security of hash-based signature (HBS) schemes,
whose security is solely based on security notions for hash functions.

A signature scheme is an essential cryptographic primitive for authentication
and is widely used in a large number of protocols. In the post-quantum settings,
HBS schemes are considered attractive choices due to their efficiency, flexibility,
and minor assumptions.

This dissertation covers three contributions to the security analysis of HBS
schemes.

The first result is on subsetresilient hash function families (SRH). SRH is
an essential building block of HBS schemes but lacking in research. We re-
search subset resilience in three directions. First, we propose a generic quan-
tum attack on subset resilience, implying an upper bound of the generic secu-
rity. Second, we prove the relationship between subset resilience and decisional
collision resistance, another security notion for hash functions. The existence of
SRH implies the existence of decisional-collision-resistant hash function fam-
ilies. Third, we prove the impossibility of constructing an SRH from one-way
permutations in a fully black-box manner.



The second result is on security notions for stateful signature schemes. A
large number of HBS schemes are stateful, meaning that the signer needs to
maintain a dynamic state in issuing signatures. The classical security notions
for signature schemes only consider the case that the state is invisible to the
adversary. In practice, there are some situations where the state is vulnerable,
meaning that it can be visible or even bemodified in some cases. In our research,
we give some fine-grained security notions for stateful signature schemes and
show some separation and general conversions among them. We remark that
the conversions also work on signature schemes other than hash-based ones.

The third result is on quantum-access security of stateless HBS schemes.
Usually, signature schemes are required to be secure against chosenmessage at-
tacks. Any polynomial-time (quantum) adversary cannot forge a signature given
access to the signing oracle that can sign any message. Note that here the sign-
ing oracle is classical, meaning that it can only sign one message for each query.
If the signing oracle becomes quantum, the case will be completely different.
Our research gives some positive and negative results on quantum-access secu-
rity of HBS schemes. First, we give generic security bounds for few-time state-
less HBS schemes (including classical security and quantum-access security).
Second, we show some quantum-access attacks on existing many-time stateless
HBS schemes. The time complexity is much lower than that of optimal clas-
sical chosen message attacks, implying that quantum-access attacks are more
threatening than classical ones to these schemes. Second, we propose a variant
of SPHINCS+ and give security proof against quantum-access attacks. As far as
we know, it is the first practical stateless HBS scheme against quantum-access
attacks with provable security.
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Chapter 1

Introduction

1.1 Hashbased Signature Schemes

A (digital) signature scheme [41] is one of the essential primitives in cryptogra-
phy. It is inspired by signatures in the real world. In our society, signatures are
widely used in various situations requiring authentication. For instance, when a
person signs a message (or a document), the signature provides the authentica-
tion that it is the signer who writes (or at least acknowledges) the message. The
signature cannot be forged or denied. One can verify it by checking the signa-
ture sample stored in the library. If the handwriting is similar, we say that the
signature is verified to be valid, and we confirm that it is issued by the signer.

In modern society, we cannot require all signatures to be handwritten. In-
deed, the signatures should be signed by machines automatically in many cases.
Signature schemes are algorithms that can issue signatures. A signature scheme
consists of three polynomial-time algorithms: the key generation algorithm, the
signing algorithm, and the verification algorithm. The key generation algorithm
is for generating a pair of keys: a secret key and a public key. A public key is
published as a “card” of the signer (that behaves as the “sample” in the library),
while the secret key must be privately stored as a “password” of the signer. The
signing algorithm is for signing messages. Taking as input a message and the
secret key, it outputs a signature for the message. The verification algorithm is
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for verifying signatures. Taking as input a message, the corresponding signa-
ture, and the public key, it outputs a bit. If the signature is correctly issued, the
verification algorithm will always output 1. We say that it is a valid signature for
the message.

A cryptographic scheme is meaningful only if it is secure. The security of a
signature scheme is usually defined by the following experiment. First, an adver-
sary is given a public key. Then, the adversary is given access to a signing oracle
that can sign any messages. Finally, the adversary is required to output a signa-
ture for a fresh message that has not been queried to the signing oracle. If any
polynomial-time adversary can only succeed in this experiment with a negligible
probability, we say the scheme is secure, or formally existentially unforgeable
under chosen message attacks (EU-CMA).

The security of a signature scheme is usually reduced to some mathematical
problems. For example, the security of RSA-FDH signature scheme [12, 35] is
based on the hardness of RSA problem. ElGamal signature scheme [47] and
Schnorr signature scheme [96] is based on the hardness of discrete logarithms.
Since these hard problems have been studied for a long history and there is no
polynomial-time solution, we believe in the hardness of the problem and thus
the security of the related schemes. In other words, suppose a signature is forged
by an adversary, then the adversary can solve these hard problems with a good
probability, which is infeasible. Thus, these hard problems are significant and
are treated as foundations of cryptographic schemes.

In recent years, the concept of quantum computers has appeared and has
had a great influence on hard problems. In 1994, Shor [99] proposes a quantum
algorithm that can solve factorization (and thus RSA problem) and discrete log-
arithms in polynomial-time. It immediately implies the insecurity of the above
signature scheme against quantum adversaries. Although there is no practical
quantum computer so far, it is risky enough due to the rapid development of
quantum technology.

Thus, post-quantum cryptography has become a hot topic in these years. A
post-quantum signature scheme must be based on problems that remain hard
against quantumadversaries. For example, Falcon [50] andCRYSTALS-Dilithium
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[45] are lattice-based signature schemes. Rainbow [42] is a multivariate-based
signature scheme. They are candidates in the third round of the NIST post-
quantum cryptography standardization project. However, these problems have
a shorter history than the classical ones. Thus, it is hard to say whether these
problems will remain unsolved in the following decades.

We can try to solve this problem in other ways. Note that one-way function is
one of the most fundamental concepts in cryptography. It is proven that the ex-
istence of a secure signature scheme implies the existence of one-way functions
[95]. In addition, Lamport [81] proposes a one-time signature scheme that is
only based on a one-way function. That is, now we assume that we have a one-
way function (maybe the one-wayness is based on the hardness of some math-
ematical problems). Then, we can construct a signature scheme based on this
assumption.

Onemaywonder how to obtain a quantum-secure one-way function. Indeed,
the one-way function can be instantiated by hash functions.

Ahash function is another fundamental concept in cryptography, whichmaps
a string of arbitrary length to a string of constant length. Usually, designing
a hash function is the work in symmetric-key cryptography. The circuit of a
hash function usually contains various basic operations such as and, or, and xor.
Complicated structures of hash functionsmake thembehave similarly to random
functions. A well-designed hash function is expected to be one-way. Thus, if we
use a hash function to instantiate the one-way function in Lamport’s signature
scheme [81], we obtain a signature scheme whose security is not based on any
mathematical problems. If the security of a signature scheme is only based on
security notions of hash functions rather than any othermathematical problems,
we call this scheme a hashbased signature scheme (HBS scheme).

An HBS scheme is very attractive in post-quantum cryptography. The ad-
vantages are as follows.

• Flexibility. Most signature schemes use hash functions as a building
block. It implies that usually we cannot get rid of the security assump-
tions of hash functions in constructing a signature scheme. And an HBS
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scheme does not introduce any other assumptions except that the hash
functions are ideal. Of course, one cannot deny that hash functions are
also potentially threatened by quantum computers in the future, just like
mathematical problems about lattices. However, if a hash function is bro-
ken, we can immediately replace it with another designation. It is much
easier to design a new hash function than to look for a new hard math-
ematical problem. On the other hand, if we turn to a new mathematical
hard problem, it will take a long time for cryptoghraphers to construct sig-
natures based on it, and the work of replacing the signature scheme is also
troubling. In comparison, if we choose an HBS scheme and turn to a new
hash function, the structure of the signature scheme will not be changed.
We only need to change the hash function as a component in the structure.
It will save plenty of time and cost in this procedure.

• Key Size. The size of the key pair of HBS schemes is usually competi-
tive, especially for public keys. For example, in SPHINCS+-256s/256f (the
state-of-art HBS scheme providing 128-bit quantum security), the public
key size is only 64 bytes, while those of FALCON and Rainbow are 1793
bytes and 1683 KB.

• Efficiency. Since hash functions are usually constructed by basic op-
erations, they run fasters than multiplications and involutions needed in
mathematical problems. In some cases, a hash function is hardwired in
some integrated circuits. It will greatly accelerate the computation of hash
functions and the corresponding HBS schemes.

The main drawback of HBS schemes is the signature size. At the same secu-
rity level, the size of SPHINCS+ is about 23 times larger than that of FALCON
and 140 times larger than Rainbow. For this reason, SPHINCS+ is one of the
alternative candidates for the third round of NIST standard list. However, HBS
schemes are still an attractive choice in post-quantum cryptography and deserve
further research.
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1.2 Blackbox Constructions

Black-box constructions [74] are widely used in designing cryptographic primi-
tives and schemes. For example, the security of HBS schemes is based on the se-
curity notions for hash functions, such as one-wayness (or preimage resistance)
and collision resistance. That is, any hash functions that have (or are assumed
to have) the properties can be used as the building blocks in the construction.
Here, the hash functions are considered “black boxes”, and the concrete struc-
tures are independent of the reductions. Formally, in a black-box construction
of Q from P , P is given as an oracle to Q. The syntax of Q can be realized by a
sufficient number of queries to P , and the security of Q can be reduced to the
security of P , regardless of the structure and security basis of P .

From a one-way function, there exist black-box constructions of signature
schemes [81], commitment schemes [88], pseudorandom generators [62] and
pseudorandom functions [57]. (Indeed, the pseudorandom function is constructed
by a pseudorandom generator in a black-box manner.) There are also black-
box constructions between schemes with different security notions. For exam-
ple, there exist black-box constructions of EU-CMA signature schemes fromEU-
RMA (existentially unforgeable under random message attacks) ones [36] and
fromEU-naCMA (existentially unforgeable under non-adaptive chosenmessage
attacks) ones [49], where EU-RMA and EU-naCMA are weaker security notions
than EU-CMA. Usually, primitives in lower levels and schemes with weaker se-
curity notions are easier to design. These constructions are greatly helpful for
researchers in designing high-level primitives and schemes in practice.

On the other hand, a black-box construction between two primitives implies
the existential relationship between them. For example, due to the existence of
black-box construction, we believe that efficient signature schemes exist as long
as we believe in the existence of efficient one-way functions. Since there are
various assumptions in cryptography, it is likely that a primitive exists under
some assumptions but does not exist under other assumptions. For example, if
we believe that P = NP, then no one-way function or signature scheme exists.

In addition, black-box constructions have some limitations. It some cases,
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it is impossible to construct a primitive Q from P in a black-box manner. In
1989, Impagliazzo and Rudich [74] proved the impossibility of constructing key-
agreement protocols from one-way permutations. It is called black-box sepa-
rations. Later, a number of black-box separations are proven between various
primitives. From black-box constructions and separations, there are five kinds
of cryptographic worlds [73], each of which has a different assumption and im-
plies the existence of different primitives.

• Algorithmica: P = NP.

• Heuristica: NP problems are hard in the worst case but easy on average.

• Pessiland: NP problems are hard on average but there do not exist one-
way functions.

• Minicrypt: One-way functions exist but no public-key cryptography ex-
ists.

• Cryptomania: Public-cryptography exists.

Note that although signature schemes are usually considered in public-key
cryptography, they exist in Minicrypt rather than Cryptomania. Black-box
constructions and separations are helpful not only for cryptographic designs, but
also for understanding the cryptographic worlds.

1.3 Main Contributions

This dissertation studies the security of HBS schemes. We start with the funda-
mental hash functions. The security of HBS schemes is reduced to assumptions
of hash functions, such as preimage resistance and collision resistance. In addi-
tion, some HBS schemes are related to variants of subset resilience, which lacks
research. The study explores the quantum security of subset resilience and the
relationship with other assumptions. Then, the study turns to security notions
for HBS schemes. HBS schemes are classified into two types, stateful ones, and
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stateless ones. In a stateful signature scheme, the signer needs to maintain a
dynamic state, while the signer in a stateless scheme does not. This dissertation
analyzes the security of stateful signature schemes against chosen state attacks
and that of stateless ones against quantum-access attacks.

1.3.1 On subsetresilient Hash Function Families

Subset-resilient hashing (SRH) [94] is a sort of hash function families, which
is first proposed as a building block of HORS (Hash to Obtain Random Set),
a stateless few-time HBS scheme. Talking about common security notions for
hash function families, we usually focus on the behavior of a single functionmap-
ping one element from the domain to one element of the range. For example, a
collision-resistant hash function family (CRH) H = {h : {0, 1}m(n) → {0, 1}l(n)}
requires that for h← H, it is hard to find distinct x1, x2 such that h(x1) = h(x2).
Instead, subset resilience focuses on a hash function H mapping to a subset of
size at most k. We call (x, x1, x2, ..., xr) an (r, k)-subset cover with regard to H if
it holds that H(x) ⊆

⋃r
i=1H(xi) and x ̸= xi for any i = 1, ..., r. An (r, k)-subset-

resilient function family requires that for randomly sampledH, it is hard to find
an (r, k)-subset cover with regard to H.

Indeed, here the hash function H can be considered as a tuple of k “par-
tial” hash functions (h1, ..., hk). When sampling H, it samples h1, ..., hk from
a hash function family H = {h : {0, 1}m(n) → [k], and then defines H(x) =

{h1(x), ..., hk(x)}. (Note that the hi’s can be sampled dependently.)
Little knowledge about SRH is known. Aumasson and Endignoux [8] pro-

pose the classical generic security for SRH. Still, the power of SRH is unclear,
which leads to several interesting questions. How about the generic security of
SRH in the quantum world? What is the relation between subset resilience and
other assumptions (such as collision resistance)? Can we construct a provable
SRH by other fundamental primitives, such as one-way permutations? (If the
answer of the third question is “yes”, then SRH exists in theMinicrypt world.)

In this dissertation, we attempt to answer the above questions around SRH.

• A generic quantum attack against SRH. First, we give a quantum

7



OWP /

/

- CRH - rSRH - dCRH

SRH

Quantum Attack

-

6

Th.8

Th.9

Th.10

Figure 1.1: The relation among subset resilience and other assumptions. A→B
means that the existence of A implies the existence of B. A ̸→Bmeans the impos-
sibility of constructing B from A in the fully black-box manner.

algorithm finding subset covers, giving an upper bound of the quantum
security of subset resilience. The algorithm is more efficient than simply
implementing quantum exhaustive search [60] on this problem.

• SRH⇒dCRH. Second, we prove the statement that the existence of SRH
implies the existence of (infinitely often) distributional collision-resistant
hashing (dCRH),which is aweaker assumption thanCRH. Informally, dCRH
implies the hardness to find a uniform collision of the hash function. Thus,
the power of assuming the existence of SRH is stronger than dCRH. Note
that this proof does not yield a black-box construction of SRH from dCRH.

• OWP ̸→SRH. Third, we prove the impossibility of constructing an SRH
from one-way permutations (OWPs) in a fully black-box manner. Our
proof uses Simon’s separating oracle [100], which proves the fully black-
box separation of dCRH from OWP.

To sum up, the relation among SRH and other assumptions with regard to
hash functions is depicted in figure 1.1 (where rSRH will be introduced in Chap-
ter 4).

1.3.2 Security Notions for Stateful Signature Schemes

For a standard (stateless) signature scheme, security is usually considered un-
der chosen message attacks (CMA), where the adversary has no information
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about the secret key but can query the signing oracle maliciously. In hash-based
cryptography, there are a number of stateful signature schemes. For a stateful
scheme, the secret key and states are separated so that an adversary may attack
the scheme in different ways. For example, during the process of a CMA, the
adversary may additionally obtain information about the dynamic state or even
change it maliciously. It is obviously stronger than a general CMA adversary.
This naturally brings up an interesting question: are stateful signature schemes
still secure under stronger attackers than CMA adversaries?

In this dissertation, we research security notions for stateful signature schemes.
We present a formal treatment for stateful signature schemes with fine-grained
security notions and analyze the relations among them. We then show instan-
tiations (not only in hash-based cases). In standard CMA experiments, the ad-
versary cannot directly gain information from states maintained by the signing
oracle. We call this attack a hidden state chosen message attack (HSCMA). (In
the following, we say ∗SA instead of ∗SCMA for convenience.)

In addition to HSA security, we focus on a stronger adversary, which is able
to obtain the states of the scheme or even program the states. We call these a
known state attack (KSA) and a chosen state attack (CSA), respectively. More-
over, we consider a weaker adversary than a CSA adversary, and we call this
attack an n-weak chosen state attack (n-wCSA). It can only program the state to
one that has been maintained by the signing oracle at most n times. In the case
that n = 1, we simply call this opponent a w-CSA adversary.

wCSA security is essential to a stateful signature scheme. It is not only a new
security model that considers strong attacks but also a bridge between stateful
signature schemes and stateless ones. As far as we know, there is no black-box
construction from a CMA-secure stateful signature scheme (in our definition,
an HSCMA-secure one) to a CMA-secure stateless scheme, but we show that a
wCSA-secure or an n-wCSA-secure stateful signature scheme could qualify. We
provide some generic constructions for stateful signature schemeswith different
levels of security in black-box manners.

In addition, we explore how to construct awCSA-secure or ann-wCSA-secure
stateful signature scheme in black-box manners. We start from primitives of
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Figure 1.2: The transform relationships and constructions among different se-
curity notions for stateful signature schemes. A → B means that there exists
a black-box construction from A-secure schemes to B-secure schemes. A ⇒ B

means A-security immediately implies B-security.

“lower levels”, such as a wCSA-secure stateful signature scheme with low ability
to be sampled (which can be instantiated by one-time signature schemes) and
a CMA-secure stateless signature scheme with low usage times. Note that all of
our constructions are provably secure in standard models.

In addition to the abovementioned scenarios under chosen message attacks,
we can simultaneously define the security notions under random message at-
tacks (RMAs). Our results are summarized in Figure 1.2.

In our constructions, someadditional primitives are introduced, such as pseu-
dorandom generators (PRGs), pseudorandom functions (PRFs), and collision-
resistant hash functions (CRHs). PRGs andPRFs canbe theoretically constructed
by one-way functions, which are implied from any (stateless or stateful) signa-
ture scheme. On the other hand, all of the primitives can be instantiated by
well-constructed symmetric hash functions. Note that many digital signature
schemes use hash functions before signings, so our construction does not in-
troduce additional assumptions as long as the hash functions in the original
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schemes already have these properties.

1.3.3 Quantumaccess Security of Stateless Hashbased
Signature Schemes

Quantum attacks on cryptographic schemes are usually classified into two types
[65, 25, 64]. In the first type, the adversary can use execute quantum com-
putations and send classical queries to the online oracles. This is called post-
quantum security (or Q1 security in some literature). In the second type, the
queries to the oracles are also in superpositions. This is called quantum-access
security (or Q2 security). In signature schemes, the above EU-CMA security is
post-quantum security. As for the quantum-access security, it considers the case
that the adversary can query messages in superpositions to the signing oracle,
and get the corresponding signatures with quantum states in response. The ad-
versary may gain more information than that in classical cases. There is litera-
ture [40, 52] considering such situations in practice. For example, suppose the
device running protocol is a quantummachine. An adversarymaymanage to ob-
serve the intermediate information with a quantum state before measurements.
On the other hand, quantum-access security can be required by some upper-
level primitives or protocols. For example, quantum-access-secure pseudoran-
dom functions (qPRF) have been used in constructing message authentication
codes [23] and signature schemes [24].

In 2013, Boneh and Zhandry [24] propose a security notion called existential
unforgeability under quantum chosen message attacks (EU-qCMA) considering
this situation. In the EU-qCMA experiment, the adversary can query q quantum
messages in superpositions to the signing oracle. Finally, it is required to output
(q + 1) signatures for distinct messages to the challenger. They also show a spe-
cial example that is EU-CMA (against quantum adversaries) but not EU-qCMA,
which implies a separating result between the two security notions. Thus, EU-
qCMA is a strictly stronger security notion for post-quantum signature schemes
and deserves further research.

In addition, Alagic et al. propose another notion called blind unforgeability
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against quantum chosen message attacks (BU-qCMA). It is a stronger notion
than EU-qCMA. The BU security of stateless HBS schemes is lacking in research
as well.

In this dissertation, we focus on the generic security of statelessHBS schemes,
especially in the quantum-access setting.

• First, we analyze the generic security of few-time stateless HBS schemes,
such as HORS [94] and FORS [17]. Especially, we analyze the security of
(single-instance) FORS against quantum-access attacks. We suppose the
hash functions in the HBS schemes are ideal and modeled as (quantum-
accessible) random oracles. As a result, the security of the few-time HBS
schemes can be guaranteed when the number of signing operations is not
large.

• Second, we show some quantum-access attacks on two many-time state-
less HBS schemes, SPHINCS and SPHINCS+. The complexity of our at-
tacks is much lower than the security in the classical setting. We thus con-
clude that quantum-access attacks are more threatening to security than
classical chosen message attacks for these schemes. We consider the at-
tacks in the EU-qCMA model and the BU-qCMA model. See detail in 1.3.

• Third, we propose a variant of SPHINCS+, whose quantum-access security
can be proven. We call it SPHINCS-FORS. We give formal security proof
against classical attacks and quantum-access attacks. As far as we know,
it is the first practical stateless HBS scheme with provable security against
quantum-access attacks.

The price is that the signature size of SPHINCS-FORS is larger. It depends
on the security level that we need. We show instantiations of SPHINCS-
FORS with different parameters to provide different security levels and
give comparisons to SPHINCS+. See details in Figure 1.4 and Section 5.5.
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Scheme
CMA Security Our Attack (EU) Our Attack (BU)
log qs log qH log qs log qH log qs log qH

SPHINCS-256 [15] 50 128 43 43 43 Small
SPHINCS+-256s [7] 64 128 48 80 43 43
SPHINCS+-256f [7] 64 128 46 80 42 42

Figure 1.3: Comparisons between our quantum-access attacks and the CMA se-
curity of SPHINCS andSPHINCS+, which implies the bounds of toleratable hash
queries against different attacks. qs and qH denote the number of (quantum)
signing queries and quantum hash queries, respectively. For example, if the ad-
versary issues 243 quantum signing queries to the signing oracle and more than
243 quantum hash queries, then SPHINCS-256 will be broken in the sense of
PO model. “Small” means that the attack only requires a polynomial number of
queries.

Scheme
Security

Size Provably Secure?
log qs log qH

SPHINCS+-256s 48 ≤80 29272 %

SPHINCS-FORS (Ours) v.2 48 ≥80 47072 !

SPHINCS+-256s∗ 64 ≤128 41792 %

SPHINCS-FORS (Ours) v.1 64 ≤128 31904 %

SPHINCS-FORS (Ours) v.3 64 ≥128 101424 !

Figure 1.4: Comparison between (deterministic) SPHINCS+ and our variants
against quantum chosen message attacks. log qH ≤ a means that there ex-
ists a quantum-access attack with 2a quantum hash queries to the best of our
knowledge. It implies an upper bound of the security level (without security
proof). log qH ≥ a means that any quantum-access attack requires at least 2a

hash queries. It implies a lower bound of the security level (with security proof).
SPHINCS+-256s is an extended version of SPHINCS+-256s such that our attack
of Note that all the schemes in this figure can provide 128-bit EU-CMA security
when log qs ≤ 64.
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1.4 Organizations

This dissertation is composed as follows:
Chapter 2 introduces some basic notations, preliminaries, and useful lem-

mas.
Chapter 3 introduces the first result on subset-resilient hash function fami-

lies.
Chapter 4 introduces the second result on security notions for stateful signa-

ture schemes.
Chapter 5 introduces the third result on quantum-access security of stateless

hash-based signature schemes.
Chapter 6 gives the conclusion of this dissertation.

1.5 RelatedWork

In this section we introduce somework that is deeply related to this dissertation.

Hashbased Signature Schemes
HBS schemes have a long history that begins with Lamport’s one-time sig-

nature scheme [81]. Then, there are some other one-time schemes such as LM-
OTS [83], Biba [90], WOTS [28], and WOTS+[67]. They can be converted to a
many-time stateful signature scheme by aMerkle-tree [87]. After that, there are
several variants of Merkle’s scheme such as CMSS [30], GMSS [31], SPR-MSS
[39], XMSS [29, 26], XMSS+ [68], XMSSMT [70], and XMSS-T[72]. Note that
these schemes are stateful. As for stateless ones, in the few-time case, there are
HORS [94], HORS++ [92], HORST [15], PORS [9], FORS [17], DFORS [1], and
FORC [109]. In addition, Goldreich [56] proposes a framework of many-time
schemes, but it is far from efficient. SPHINCS [15] is the first practical state-
less HBS using Goldreich’s framework. There are several variants of SPHINCS
[71, 9, 17, 104, 109]. SPHINCS+ [17] is one of the 6 candidates of NIST’s stan-
dardization in the 3rd round. As for security analysis of SPHINCS and its vari-
ants, Castelnovi et al. [32] and Kannwischer et al. [75] propose side-channel
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attacks on SPHINCS. Cremers et al. [38] analyze the security beyond unforge-
ability of SPHINCS+.

Generic Security of Hash Functions
In this dissertation, we always treat hash functions as black boxes and do not

care much about their concrete structures. There are attacks regardless of the
structures, called generic attacks. For instance, the time complexity of a generic
attack on one-wayness is O(N), where N denotes the size of the range. In the
quantum setting, the above complexity decreases to O(N1/2) [60].

Generic attacks are essential for the security analysis of hash functions. They
provides upper bounds for the security level. On the other hand, suppose a hash
function is ideal enough (modeled as a randomoracle), an adversary has tomake
enough hash queries to break the security notion. It is called generic security.
In many cases, the generic attacks are optimal, and they immediately imply the
generic security (e.g., one-wayness, collision resistance [2, 107], target collision
resistance [72], and multi-collision resistance [84]). However, proving the opti-
mality of a generic attack is usuallymuchmore complicatedwork than searching
for an attack, especially in the post-quantum setting. Yamakawa and Zhandry
[108, 103] propose new techniques to prove the generic quantumsecurity of hash
functions.

Collision Resistance and its variants
Collision-resistant hashing (CRH) is first proposed in [41], and collision re-

sistance is considered a necessary property of a secure hash function. A “birth-
day attack” is a generic attack finding collisions with O(N1/2) number of hash
queries where N denotes the size of the range. In a quantum setting, Brassard
et al. [27] present a quantum algorithm on finding collisions of 2-to-1 functions
with time complexity O(N1/3) and quantum memory complexity O(N1/3). This
algorithm is proven to be optimal in terms of quantum time complexity [2, 107].
In addition, Chailloux et al. [33] present a quantum algorithm on finding colli-
sions with time complexity O(22n/5) and quantum memory complexity O(n).

Distributional collision-resistant hashing (dCRH) [44] is a hash function fam-
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ily with weaker secueity notion. Komargodski and Yogev [78] first analyze the
power of dCRH, andprove that a statistical zero-knowledge proof implies a dCRH.
Then, Bitansky et al. [18] prove that a dCRH implies a constant-round statistically-
hiding commitment scheme, and a two-message statistically-hiding commitment
scheme also implies a dCRH.

Amulti-collision-resistant hash function (MCRH) is another variant of collision-
resistant hashing. A k-MCRH requires that it is hard to find k distinct elements
from the domain such that their images are all equal. Suzuki et al. [101] first an-
alyze the time complexity of MCRH. Hosoyamada et al. [66] and Liu et al. [84]
propose two quantum algorithms on finding k-collisions. Komargodski and Yo-
gev [78] prove that the existence of MCRH implies the existence of dCRH. In
recent years, there are other results on MCRH [19, 77].

Blackbox Separation
The first black-box separating result is the impossibility of constructing a

key-agreement protocol from one-way permutations in a (fully) black-box man-
ner [74]. Then, Simon [100] proves the fully black-box separation of CRH from
one-way permutations. Indeed, Simon’s proof also rules out the possibility of
constructing a dCRH from one-way permutations in fully black-box manners.

In 2005, Haitner et al. [61] prove the fully black-box separation of constant-
round statistically-hiding commitment schemes fromone-waypermutations. Fur-
thermore, Berman et al. [14] and Komargodski et al. [77] independently con-
struct constant-round statistically-hiding commitment schemes fromMCRH in
fully black-boxmanners. This rules out the possibility of constructing anMCRH
from one-way permutations in fully black-box manners. The latter authors also
prove the fully black-box separation of CRH fromMCRH.

Due to the above black-box separation results, Komargodski et al. [77] de-
fine four worlds of hashing-related primitives, which are fine-grained based on
Impagliazzo’s five worlds mentioned in Section 1.2. They are respectively the
worlds where CRH, MCRH, and OWF exist, and the world where none of them
exists.
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Subset resilience and HBS schemes
Subset resilience is first proposed as one of the assumptions needed in a few-

time HBS scheme called HORS [94]. The security under chosen message at-
tack is based on one-wayness and subset resilience. Then, Pieprzyk et al. [92]
propose HORS++, a variant of HORS, and remove the requirement of subset
resilience. Instead, they introduce a cover-free family [48], which captures sim-
ilar properties to subset resilience. In otherwords, a cover-free family implies an
information-theoretic version of SRH, meaning that the probability of finding a
subset cover is exactly 0.

Aumasson and Endignoux [8] first analyze the generic security of subset re-
silience in classical settings and then propose an attack on HORS called a weak
message attack. To avoid weak message attacks, they propose PORS, a variant
of HORS. Based on that, the authors propose a variant of SPHINCS [15] called
Gravity-SPHINCS [9].

In the security analysis of SPHINCS, the security is reduced to subset re-
silience. However, SPHINCS essentially only requires a target version of subset
resilience, which is a relaxation of subset resilience. On the other hand, the se-
curity of SPHINCS+ is based on interleaved target subset resilience (ITSR), a
variant of target subset resilience deliberately designed for SPHINCS+.

Although they seem similar, subset resilience and ITSR are quite different
notions. First, ITSR introduces an “interleaf”. It means that the output of the
hash function also includes an index, and all the elements of a subset cover are
required to collide on a single index. Second, ITSR is a target version of subset
resilience as well. The hash computations introduce a randomizer that cannot
be freely computed by the adversary.

In SPHINCS+ paper, the authors propose a generic attack against ITSR. Al-
though their attacks can be immediately extended to our non-target case, our
attack is more efficient since an adversary is more powerful in non-target cases.

In addition, Yehia et al. [1] analyzes the security of FORS in SPHINCS+ and
propose a variant of FORS called DFORS. The motivation of DFORS also comes
from a consideration of the non-target cases.

As far as we know, all of the existing practical stateless (few-time or many-
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time) HBS schemes are related to subset resilience or its variants. On the other
hand, all of the existing stateful ones (including one-time signature schemes) are
not related to subset resilience, such as MSS [87], XMSS [29], XMSSMT [70],
XMSS-T [72], and LMS [83].

Stateful Signature Schemes
Many studies have been performed on stateful signature schemes. For ex-

ample, Merkle [87] introduced a stateful signature scheme with a limited num-
ber of signing operations, where the state was used to count the number of is-
sued signatures. Every time a signer issues a signature, it uses a new key pair
of one-time signature schemes. After that, several multi-time stateful signa-
ture schemes are proposed based on these one-time signature schemes [30, 31,
39, 29, 70, 72]. In RSA-based constructions, the Dwork-Noar scheme [46] and
the Cramer-Damg̊ard scheme [37] are well-known stateful signature schemes,
where the state is a tree with labels.

One-time signature schemes are essential building blocks for constructing
stateful signature schemes. Actually, one-time signature schemes can also be
considered simple stateful signature schemes with states in {0, 1}. The earliest
proposal goes back to Lamport’s scheme [81]. In addition, there are examples
of one-time signature schemes based on other assumptions, such as lattices [85]
and codes [51, 91].

To eliminate the limitation of having to maintain states, Goldreich [56] pro-
posed a stateless signature scheme constructed by one-time signature schemes,
but the size of the signature was extremely large. In 2013, Böhl et al. [21] pro-
posed a construction for a non-adaptive CMA-secure stateless signature scheme
from tag-based signature schemes, which are essentially stateful signature schemes.
The construction requires a chameleon hash function to achieve adaptive CMA
security, and this type of function is hard to construct by using only symmet-
ric hash functions. In this scheme, the number of signing operations is limited.
Later, Seo [97, 98] gives a tighter security proof of this scheme and eliminate the
limitation of the number of signing operations.

18



Quantumaccess Security
Quantum-access security is first considered for pseudorandom functions [106]

and then generalized to message authentication codes [23], signature schemes
and encryptions [24]. After that, other quantum-access security notions are pro-
posed [53, 3] for message authentication codes (and they can also be extended
to fit signature schemes). In particular, the blind unforgeability of Lamport’s
scheme and WOTS has been evaluated[86].

In termsof the quantum-access security ofHBS schemes, Boneh andZhandry
[24] prove the EU-qCMA security of Lamport’s scheme [81] and MSS [87]. The
former is a one-timeHBS scheme, and the latter is a statefulHBS scheme. Hope-
fully, stateful HBS schemes (such as XMSS [29]) are also EU-qCMA since they
are essentially variants of MSS, and the structures are similar. However, when
it comes to stateless schemes, the cases become different. (The authors proved
the EU-qCMA security of statelessMSS, but statelessMSS is far from efficient in
practice.) For practical statelessHBS schemes, such as SPHINCSandSPHINCS+,
the security against quantum-access attacks still lacks research.

Note that Boneh and Zhandry [24] proposed a generic construction of EU-
qCMA schemes fromUU-RMA (universally unforgeable under randommessage
attacks) schemes by introducing a hash function modeled as a quantum ran-
dom oracle. However, the construction does not work on HBS. It is because the
UU-RMA scheme in this construction is required to be polynomiallymany-time,
meaning that the success probability of the adversary remains low even if it ob-
tains a large (but polynomial) number of random message-signature pairs. As
for HBS, the number of signing executions is always restricted. For example,
SPHINCS+ provides 128-bit security only when the number of signing queries
is under 264 (if it exceeds 264, the security will be degraded rapidly). Suppose we
want an EU-qCMA scheme such that the probability of breaking the security is
under 2−10 when the adversary sends only 210 quantum queries to the signing or-
acle and 230 quantum hash queries (this requirement is fairly weak in practice).
If we use the above generic construction, we need a 2117-time UU-RMA scheme
with 254-bit quantum security, which far exceeds the security of SPHINCS+.

In recent years, there are a large amount of research on quantum-access se-
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curity of various cryptographic primitives, including pseudorandom functions
[106], message authentication codes [23], block ciphers [79, 80, 76, 82, 64], en-
cryption schemes [24], signature schemes [24, 52, 3, 34] and so on.

20



Chapter 2

Preliminaries

2.1 Notations

LetX be a set or a distribution, x← X means that x is uniformly sampled from
X. LetM be a probabilistic algorithm, x ← M(·; r) means that x is the output
ofM with randomness r. x ← M means x is the output ofM(·; r) where r
is random chosen. For event E relative toM, we use PrM[E] to represent the
probability of E over the randomness ofM.

For integer n ∈ N, we denote [n] = {1, ..., n}. We say that ϵ : N → R+ is
a negligible function if for every constant c > 0, there exists Nc > 0 such that
ϵ(n) < n−c holds for all n > Nc.

The statistical distance of two variables X and Y over distribution Ω, de-
noted by ∆(X,Y ), is defined as ∆(X,Y ) = 1

2

∑
x∈Ω |Pr[X = x] − Pr[Y = x]|. If

∆(X,Y ) ≤ δ, we say thatX and Y are δ-close.
We denote {0, 1}∗ as a string of arbitrary length, and we suppose that for any

element x there is an efficient computable encoding function Cx that can encode
x to {0, 1}⋆. For a function F : {0, 1}⋆ → Rng and any element x, we say F (x)
instead of F (Cx(x)) for convenience. We denote ⊥ ̸∈ {0, 1}⋆ as an error symbol,
which can be an input or output of an algorithm.

A quantum systemA is associated to a Hilbert spaceHA with the inner prod-
uct ⟨·|·⟩. The state of the system is described by a vector |ϕ⟩ ∈ HA such that the
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Euclidean norm || |ϕ⟩ || =
√
⟨ϕ|ϕ⟩ = 1. LetA andB be two quantum systems. We

define the joint quantum system through the tensor productHA⊗HB. The joint
state of |ϕA⟩ ∈ HA and |ϕB⟩ ∈ HB is denoted by |ϕA⟩⊗|ϕA⟩, or simply |ϕA⟩ |ϕB⟩. A
pure n-qubit quantum state |ϕ⟩ can be expressed as |ϕ⟩ =

∑
x∈{0,1}n αx |x⟩, where

αx is the complex amplitude of the basis |x⟩ and it holds that
∑

x∈{0,1}n |αx|2 = 1.
We refer to [89] for more formal and detailed discussions on quantum compu-
tations.

2.2 Hash Function Families

Definition 1 (Efficient function family ensemble.) A function family ensemble
F = {Fn : Dn →Rn}n∈N is efficient if:

• F is samplable: there exists a probabilistic polynomialtime algorithm
such that given 1n, it outputs the description of a uniform element of Fn.

• F can be efficiently computed: there exists a deterministic polynomial
time algorithm such that given x ∈ Dn and f ∈ Fn, it outputs f(x).

Especially, we say that a probablistic polynomialtime algorithm Sampk is a
ksampling algorithm of an efficient function family ensemble F if it outputs a
tuple of (possibly nonuniform) functions (f1, ..., fk) ∈ Fk

n .

Obviously, one can construct a k-sampling algorithm of F by simply sam-
pling k elements from Fn. However, there may exist other k-sampling algo-
rithms such that the resulting function tuple has some special properties that
we may take interest in. We give a simple example. Let F = {Fn : {0, 1}n →
{0, 1}n+1}. Samp(1n; r) is a sampling algorithm that outputs f(x) = x||0 ⊕ r

where r ← {0, 1}n+1 is the randomness. We want a 2-sampling algorithm Samp2

such that for (f1, f2) ← Samp2(1
n), it is hard to find a pair (x1, x2) such that

f1(x1) = f2(x2). If we sample (f1, f2) by running Samp twice, it will have this
property only with probability 1/2. But if we sample the first function by ran-
domness r and sample the section one by randomness r⊕1, the resulting (f1, f2)
will have this property with probability 1.
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If an efficient function family ensemble is compressing, whichmeans the size
of the domain is larger than that of the range, we call it a hash function family. In
practice, an ideal hash function family is expected to be one-way and collision-
resistant.

Definition 2 (Onewayness.) Let F = {Fn : {0, 1}m(n) → {0, 1}l(n)} be an
efficient samplable family ensemble. We say thatF is a oneway function fam
ily (OWF) if for any probabilistic polynomialtime algorithm A, there exists a
negligible function ϵ(·) such that

Pr
f←Fn,x←{0,1}m(n)

[
f(x′) = f(x)

∣∣∣∣x′ ← A(1n, f, f(x))] ≤ ϵ(n) (2.1)

for large enough n ∈ N.

In particular, if F is a family ensemble of permutations, we say that F is a
one-way permutation family (OWP). If F is a hash function family, we say that
F is preimage-resistant hash function family.

Let Hn be a hash function family and h ← Hn. We say that (x1, x2) is a col-
lision w.r.t. h if h(x1) = h(x2) and x1, x2 are distinct. If there is no polynomial-
time adversary that can find a collision for h← Hn, we say thatH is a collision-
resistant hash function family (CRH).

Definition 3 (CollisionResistant Hashing.[41]) Let H = {Hn : {0, 1}m(n) →
{0, 1}l(n)} be a hash function family. We say that H is collisionresistant if for
any probabilistic polynomialtime algorithm A, there exists a negligible func
tion ϵ(·) such that

Pr
h←Hn

 x1 ̸= x2

h(x1) = h(x2)

∣∣∣∣(x1, x2)← A(1n, h)
 ≤ ϵ(n) (2.2)

holds for large enough n ∈ N.

Distributional collision resistance is a relaxation of classical collision resis-
tance. A distributional collision-resistant hash function family (dCRH) guaran-
tees that there is no probabilistic polynomial-time adversary that can output a
uniform collision. We first define the distribution of uniform collisions.
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Definition 4 For h : {0, 1}m → {0, 1}n, a joint random variable COLh ⊆
{0, 1}m × {0, 1}m over pairs of inputs (x1, x2) is sampled as follows: (1) x1 is
uniformly sampled from {0, 1}m, (2) x2 is uniformly sampled from the set {x ∈
{0, 1}m : h(x) = h(x1)}.

Note that (x1, x2)← COLh does not imply that (x1, x2) is a collision of h, since
it is possible that x1 = x2. But in the case thatm > n (e.g. m ≥ 2n), x1 = x2 only
holds with negligible probability.

Definition 5 (Distributional CollisionResistant hashing.[44]) LetH = {Hn :

{0, 1}m(n) → {0, 1}l(n)} be a hash function family. We say that H is distribu
tional collisionresistant if for any probabilistic polynomialtime algorithm A
and any two negligible functions δ(·) and ϵ(·), it holds that

Pr
h←Hn

[∆(A(1n, h),COLh) ≤ δ(n)] ≤ 1− ϵ(n) (2.3)

for large enough n ∈ N.

We say that a dCRH is infinitely often secure if the above security holds for in-
finitely many n’s rather than large enough n’s.

2.3 The Random Oracle Model

In many instances of constructions based on hash functions, the above security
notions are not enough for security proof. Indeed, if a hash function is ideal
enough, it is usually modeled as a random oracle [11], which treats the hash
function as a uniformly random function. Let H be a hash function modeled as
a randomoracleH and a building block of a schemeΠ. In the security experiment
ofΠ, the success probability is taken over the randomness ofΠ, the randomness
of the adversary A, and the random choice of H. The random oracle model has
the following useful properties:

• Uniformity. If x is not queried to the random oracle H, then the distri-
bution of H(x) is uniform.
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• Extractability. Suppose A is a subroutine of a reduction R. When A
queries x to H, x can be seen byR.

• Programmability. R can set H(x) to a value of its choice, as long as it is
uniformly distributed.

In post-quantum cryptography, the random oracle is usually required to be
quantum-accessible, since an adversary in practice can compute the hash func-
tion by a quantum computer. We call it quantum random oracle [22]. That
is, let H be a quantum random oracle. It samples a random function H at the
beginning. One can query

∑
x,y ψx,y |x, y⟩ (with superpositions) to the quantum

random oracle, and obtains
∑

x,y ψx,y |x, y ⊕H(x)⟩.
The reductions R can gain less information from quantum random oracles

than the classical ones. On the one hand, the reduction cannot directly gain
information from the observation of a query

∑
x,y ψx,y |x, y⟩ without measure-

ments. A measurement may be detected by the adversary. On the other hand, it
is possible to detect the programming since the adversary may query a uniform
quantum state to the quantum oracle.

Fortunately, the adaptive reprogramming lemma [59] shows that a quantum
random oracle can still be programmed to some extent. (It is improved from
one-way to hiding lemma [102, 5].) It shows that if we reprogram the random
oracle in some partially random records, then an adversary is hard to tell the
difference. For an oracle H : X → Y , x ∈ X and y ∈ Y , denote Hx→y as an oracle
that is the same as H except that it maps x to y. The adaptive reprogramming
lemma is as follows.

Lemma 1 (Adaptive reprogramming lemma. [59]) LetX1, X2 and Y be finite
sets, H0 : X1 × X2 → Y be a random oracle and Reprob be the adaptive repro
gramming game depicted in Figure 2.1. LetA be an algorithm issuing q quan
tum queries to Hb andR classical queries to Reprogram. Then, the probability of
distinguishing b is at most

|Pr[ReproA1 = 1]| − |Pr[ReproA0 = 1]| ≤ 3R

2

√
q

|X1|
. (2.4)
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Game Reprob Reprogram(x2)

H1 := H0 (x1, y)← X1 × Y
b′ ← A|Hb⟩,Reprogram H1 := Hx1||x2→y

1

return b′ return x1

Figure 2.1: Adaptive reprogramming games for b ∈ {0, 1}.

In addition, it is proven that a quantum random oracle is both one-way and
collision-resistant. Indeed, the generic security of any relation with regard to
a quantum random oracle can be evaluated by the quantum query complexity
lemma [103] as follows.

Lemma 2 (Quantum query complexity lemma. [103]) Let H be a random
function mapping X to Y , r be a positive integer, and R be a relation over Yr.
For any quantum adversaryAwhich can queryH at most q times, it holds that

Pr
H

[
x1, ..., xr are distinct ∧ (H(x1), ..., H(xr)) ∈ R|(x1, ..., xr)← A|H⟩

]
≤(2q + 1)2r Pr

[
∃π ∈ Perm([r]) s.t. (yπ(1), ..., yπ(r)) ∈ R|(y1, ..., yr)← Yr

]
,

where Perm([r]) denotes the set of permutations of [r].

Corollary 1 LetF be an efficient function esemblemodeled by a quantumran
dom oracle. For any quantum adversary A, it holds that

AdvOW
F ,q (A) ≤ (2q + 1)2 · 2−n. (2.5)

It implies that to break the preimage resistance of a hash function modeled
as a quantum random oracle with constant probablity, any quantum adversary
A needs at leastO(2n/2) quantum hash queries (even if the adversary has infinite
computing power).
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2.4 Primitives

Definition 6 (Pseudorandom generator [57].) Let l(n) : N → N be a poly
nomial such that for any n > 0, l(n) > n. Let G : {0, 1}n → {0, 1}l(n) be a
polynomialtime function. We say G is a pseudorandom generator if for any
probabilistic polynomialtime distinguisher D, there exists a negligible func
tion ϵ such that

AdvIndPRGG,D (n) = |Pr[D(G(s))]− Pr[D(r)]| ≤ ϵ(n), (2.6)

where s is uniformly chosen in {0, 1}n and r is uniformly chosen in {0, 1}l(n).
The probability is taken over the choice of s, r and the randomness ofD.

Definition 7 (Pseudorandom function [57].) Let F : Dom × K → {0, 1}n be
a polynomialtime keyed function with a key setK that can be efficiently sam
pled. We sayF is a pseudorandom function if for any probabilistic polynomial
time distinguisherD, there exists a negligible function ϵ such that

AdvIndPRFF,D (n) = |Pr[DFk(·)(1n)]− Pr[Df(·)(1n)]| ≤ ϵ(n), (2.7)

where k is uniformly chosen inK and f : Dom→ {0, 1}n is a random function.
The probability is taken over the choices of k and f and the randomness ofD.

Definition 8 (Static accumulator [10].) LetN(λ)beapolynomial. A static ac
cumulator A consists of four polynomialtime algorithms (Gen,Eval,Wit,Ver):

• The probabilistic key generation algorithm Gen(1λ, N) takes as input a
security parameter 1λ and an accumulation threshold N . It outputs an
accumulator key ak. It also determines an accumulation domain Lλ.

• The probabilistic evaluation algorithm Evalak(x1, ..., xN) takes as input an
accumulator key ak and N elements in Lλ. It outputs an accumulated
value z.

• The probabilistic witness extraction algorithm Witak(x, z) takes as input
an accumulator key ak, an element x ∈ Lλ and an accumulated value z.
It outputs a witness w.

27



• The deterministic verification algorithm Verak(x,w, z) takes as input an
accumulator key ak, an element x ∈ Lλ, a witness w and an accumulated
value z. It outputs a bit b ∈ {0, 1}.

The static accumulator satisfies two properties:

• (Completeness.) For all λ,N > 0, if ak ← Gen(1λ, N), xi ∈ Lλ, z ←
Evalak(x1, ..., xN), for every i ∈ {1, 2, ..., N}, and wi ← Witak(xi, z), then
Verak(xi, wi, z) = 1 holds.

• (Soundness.) For any N > 0, xi ∈ Lλ, and any probabilistic polynomial
time Turing machineM , there exists a negligible function ϵ such that

AdvAccu
A,M (λ) = Pr


ak ← Gen(1λ, N)

(x1, ..., xN , x
⋆, w⋆)←M(ak)

z ← Evalak(x1, ..., xN)

:
Verak(x⋆, w⋆, z) = 1

x⋆ ̸= xi, i = 1, ..., N

 ≤ ϵ(λ),

(2.8)
where the probability is taken over the randomness of Gen, Eval andM .

TheMerkle-tree structure [87] can be used to construct a static accumulator.
The soundness of Merkle’s accumulator is based on the collision resistance of
hash functions.

2.5 Signature Schemes

Definition 9 [58] A signature scheme Γ = (KeyGen, Sign,Ver) consists of three
polynomialtime algorithms along with an associated message space M =

{Mn} such that:

• The key generation algorithm KeyGen takes as input the security param
eter 1n. It outputs a pair of keys (pk, sk), where pk and sk are called the
public key and the secret key respectively.

• For security parameter n, the signing algorithm Sign takes as input a se
cret key sk and a messagem ∈M. It outputs a signature σ.
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• For security parameter n, the verification algorithm Ver takes as input a
public key pk, a message m ∈ M and a signature σ. It outputs a bit b. If
b = 1, we say σ is a valid signature ofm.

(Correctness.) For any (pk, sk)← KeyGen(1n),m ∈Mn and σ ← Sign(sk,m),
it holds that Ver(pk,m, σ) = 1.

Let Γ = (KeyGen, Sign,Ver) be a signature scheme. SigO denotes the signing
oracle that computes Sign(sk,m) where sk is the secret key. If SigO is quantum-
accessible, it means that

SigO :
∑
m,t

ψm,t |m, t⟩ →
∑
m,t

ψm,t |m, t⊕ Sign(sk,m)⟩ . (2.9)

Especially, if Sign is probabilistic, SigO replies
∑

m,t ψm,t |m, t⊕ Sign(sk,m; r)⟩ for
a random r for each query

∑
m,t ψm,t |m, t⟩.

When focus on HBS schemes, the security of an HBS scheme is related to
the number of hash queries executed by the adversary. In detail, the security is
defined as follows.

Experiment ExpEU-CMA
Γ,qs,qH

(1n,A)
(pk, sk)← KeyGen(1n)
(m∗, σ∗)← ASigO(pk)

Ifm∗ has not been queried to SigO and Ver(pk,m∗, σ∗) = 1, return 1,
otherwise return 0.

Definition 10 Let Γ be a signature scheme. We say it is existentially unforge
able under chosenmessageattack (EUCMA) if for all probabilistic polynomial
timeadversaryAgiven classical access toSigO, it holds thatPr[ExpEU-CMA

Γ,qs,qH
(1n,A)] ≤

negl(n), where negl is a negligible function, qs denotes the number of queries
toSigO, and qH denotes the number of queries byA. Especially, forHBS schemes,
qH denotes the number of hash queries calculated byA.

Experiment ExpEU-qCMA
Γ,qs,qH

(1n,A)
(pk, sk)← KeyGen(1n)
{(mj, σj)}j∈[r+1] ← ASigO(pk)
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Ifmj ’s are distinct and for ∀j ∈ [qs + 1], Ver(pk,mj, σj) = 1, return 1,
otherwise return 0.

Definition 11 [24] Let Γ be a signature scheme. We say it is existentially un
forgeable under quantum chosen message attack (EUqCMA) if for all proba
bilistic polynomialtime adversary A given quantum access to SigO, it holds
that Pr[ExpEU-CMA

Γ,qs,qH
(1n,A)] ≤ negl(n), where negl, qs and qH are denoted as

above.

In addition, we introduce a security notion called blind unforgeability [3].
Let ε : N → R≥0 be an efficiently computable function. Bε,n be a subset of the
message spaceMn that is selected by placing each m ∈ Mn independently with
probability ε(n). Define the blind signing oracle Bε,nSigO as follows:

Bε,nSigO(m) =

Sign(sk,m) (m ̸∈ Bε,n),

⊥, (otherwise).
(2.10)

Then, the experiment of blind unforgeability under quantumchosenmessage
attacks is as follows:

Experiment ExpBU-qCMA
Γ,qs,qH

(1n,A)
(pk, sk)← KeyGen(1n)
(m∗, σ∗)← ABε,nSigO(pk)

Ifm ∈ Bε,n ∧ Ver(pk,m∗, σ∗) = 1, return 1, otherwise return 0.

Definition 12 [3] Let Γ be a signature scheme. We say it is blind unforge
able under quantum chosenmessage attacks (BUqCMA) if for all probabilistic
polynomialtime adversary A given quantum access to Bε,nSigO, it holds that
Pr[ExpBU

Γ,qs,qH
(1n,A)] ≤ negl(n), where negl, qs and qH are denoted as above.

When we refer to blind unforgeability, we always consider the case that the
signing oracle is quantum-accessible. Thus, we simply call it blind unforgeability
(BU) in the following.
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Remark 1 In this dissertation, we mainly discuss EUqCMA security instead
of BU except in Section 5.4.5when considering quantumaccess security. Apart
from this subsection, we use the model in Definition 11 to evaluate the security
against quantumaccess attacks by default.

We omit the security parameter 1n in the inputs of the algorithms and exper-
iments for national simplicity.

2.6 Toolbox

2.6.1 Grover’s Algorithm and Its Applications

Let F : X → {0, 1} be a function or a database mapping an element of the setX
to a bit. It is called a database search problem with regard to F that finding an
x ∈ X such that F (x) = 1. We suppose an adversary can only evaluate the image
of x by querying F as an oracle and suppose |F−1(1)| is non-empty (|F−1(1)| ≪
|X|). The adversary can only solve this problem after O(|X|) (classical) queries
to F in the worst case.

Now we consider the case that the adversary is given quantum access to F :

X → Y . It means the adversary submits
∑

x∈X,y∈Y αx,y |x, y⟩ to F and receive
in return

∑
x∈X,y∈Y αx,y |x, y ⊕ F (x)⟩. This is called the quantum query model.

In this model, the time complexity of a quantum algorithm is measured by the
number of quantum queries to F .

In the quantumquerymodel, the adversary can solve a database search prob-
lem with a smaller number of queries [60].

Lemma 3 ([60]) Let F : X → {0, 1} be a function mapping an element of set
X to a bit andF−1(1) is nonempty. Let t = |F−1(1)| > 0 be the number of x such
that F (x) = 1. There is a quantum algorithm that finds x∗ such that F (x∗) = 1

with at most O(
√
|X|
t
) quantum queries to F .

In the following, we regard the above algorithm as a black box that can solve
the database search problem with regard to any function/database F with at
most O(

√
|X|

|F−1(1)|) quantum queries to F . We call it Grover’s algorithm.
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An important application of Grover’s algorithm is finding collisions for hash
functions [27, 107]. If a functionH : X → Y satisfies |X| = k|Y | and |H−1(H(x))| =
k for each x ∈ X, we say that H is a k-to-1 function. Given a 2-to-1 function
H : X → Y where |X| = 2|Y | = 2N , a quantum algorithm can output a collision
ofH with O(N1/3) queries by following steps:

1. Let t = N1/3. Pick a listL1 = {x1, ..., xt}, where xi is chosen uniformly from
the setX.

2. Evaluate yi = H(xi) for i = 1, ..., t. List them in L2 = {y1, ..., yt}. If there
exist i1 and i2 such that xi1 ̸= xi2 and yi1 = yi2 , output (xi1 , xi2). This step
requires N1/3 queries toH.

3. Let F : X → {0, 1} be a function defined as follows: F (x) = 1 if and
only if H(x) ∈ L2 and x ̸∈ L1. Run Grover’s algorithm on F . Note that
|F−1(1)| = t = N1/3, and evaluating F requires a query toH. The Grover’s
algorithm outputs x′ after at most O(

√
N/t) = O(N1/3) queries toH.

4. Find yi ∈ L2 such that F (x′) = y. Output (xi, x′) as a collision ofH.

The above algorithm submitsO(N1/3) quantumqueries toH in total and out-
puts a collision of H. There are many studies on quantum collision-finding al-
gorithms [4, 13, 107, 33].

In addition, Hosoyamada et al. [66] and Liu et al. [84] generalized this idea
and constructed quantum algorithms finding k-multi-collisions, that is, k dis-
tinct elements that collide w.r.t. a hash function. On finding k-multi-collision,
the time complexity is respectivelyO(N

1
2
(1− 1

3k
)) andO(N

1
2
(1− 1

2k−1
)
) in these stud-

ies. For example, on finding 3-collisions, the time complexity is respectively
O(N4n/9) and O(N3n/7).

2.6.2 Useful Lemmas

This subsection shows some useful lemmas that will be helpful to security proof.
The next lemma show that if we perform a partial measurement in the pro-

cess of a quantum algorithm and the measurement obtains one of t outcomes,
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then the final output of the algorithm will remain unchanged with probability at
least 1/t.

Lemma 4 [24] LetA be a probabilistic quantum algorithm. LetA′ be another
algorithmdescribed as follows: A′ runs asA but pauses it at an arbitrary stage
of execution, performs a partial measurement that obtains one of t outcomes,
and then resumes A. For any x, it holds that

Pr
A′
[x← A′] ≥ Pr

A
[x← A]/t. (2.11)

Definition 13 [72] Let F ≜ {f : {0, 1}m → {0, 1}} be the collection of all
boolean functions with input space {0, 1}m. Let λ ∈ [0, 1] be a constant. Define
a family of distributions Dλ on F such that for f ← Dλ, ∀x ∈ {0, 1}m, f(x) = 1

with probability λ and f(x) = 0with probability 1− λ.

Lemma 5 [72] Let A be an algorithm A issuing q quantum queries to f(·).
Define

Adv
Avg-Searchλ
F ,q (A) ≜ Pr

f←Dλ

[f(x) = 1|x← Af ]. (2.12)

Then, for any adversaryA, it holds that

Adv
Avg-Searchλ
F ,q (A) ≤ 8λ(q + 1)2. (2.13)
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Chapter 3

On Subsetresilient Hash
Function Families

3.1 Subsetresilient Hash Funtion Families

This section introduces definition of subset-resilient hash function families and
some variants. The core of research on subset resilience is finding subset covers.
Before givng formal definitions, this section begins with some obvervations on
this problem in prior. This introduces motivations for the new variants. Then,
this section introduces the formal definitions and applications of subset-resilient
hash function families.

3.1.1 Observations on Subset Cover Finding Problems

First, we reduce the subset cover finding problem to another one that is easier
to analyze. Consider the following two problems:

Problem 1 Given (h1, ..., hk) and hi : X → Y for each i, find (x, x1, ...xr) such
thatH(x) ⊆

⋃r
i=1H(xi)whereH(x) is denoted byH(x) = {h1(x), ..., hk(x)}.

Problem 2 Given (h1, ..., hk) and hi : X → Y for each i, find (x, x1, ...xr) such
that hi(x) ∈ {hi(x1), ..., hi(xr)} for each i.
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Problem 1 is the original subset cover finding problem, and Problem 2 is a
harder variation. A solution to Problem 2 is immediately a solution to Problem
1. However, a solution to Problem 1 is possibly not a solution to Problem 2.
We call a solution to Problem 2 an (r, k)-restricted subset cover with regard to
(h1, ..., hk). If it is hard to find an (r, k)-restricted subset cover with regard to
a randomly sampled function tuple from hash function family H, we say that
H is an (r, k)-restricted subsetresilient hash function family and (r, k)-rSRH
in short. (r, k)-restricted subset resilience is a weaker notion than (r, k)-subset
resilience.

Furthermore, we have some observations on these problems:

Observation 1 For any k < k′, finding an (r, k)subset cover of (h1, ..., hk) is
not harder than finding an (r, k′)subset cover of (h1, ..., hk′).

Observation 2 For any r < r′, finding an (r′, k)subset cover is not harder
than finding an (r, k)subset cover.

We can simply add (r′− r) elements into an (r, k)-subset cover and obtain an
(r′, k)-subset cover. Observation 1 and 2 also work on Problem 2.

Observation 3 For any r > k, finding an (r, k)restricted subset cover is as
hard as finding a (k, k)restricted subset cover.

Let (x, x1, ..., xr) be an (r, k)-restricted subset cover of (h1, ..., hk). It implies
that for each i ∈ [k], there exists xai ∈ {x1, ..., xr} such that hi(x) = hi(xai). Thus,
(x, xa1 , ..., xak) is a (k, k)-restricted subset cover. Also, we can obtain an (r, k)-
restricted cover from any (k, k)-subset cover due to Observation 2. (Note that
Observation 3 is valid for Problem 2 but not for Problem 1.)

Observation 4 Suppose r|k and k = ωr. For i ∈ [r], leth′i(x) ≜ h(i−1)ω+1(x)||...||hiω(x)
where ||denotes the concatenation operation. If (x, x1, ...xr) is an (r, r)restricted
subset cover with regard to (h′1, ..., h′r), it is also an (r, k)restricted subset cover
with regard to (h1, ..., hk).
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Therefore, finding a (k, k)-restricted subset cover is the core of these prob-
lems. It can be extended to general (r, k) case by these observations. Recall that
finding a (k, k)-restricted subset cover implies finding (x, xa1 , ..., xai) such that
hi(x) = hi(xi) for each i. It is equivalent to the following problem:

Problem 3 Given (h1, ..., hk) and hi : X → Y for each i, find (x, x1, ...xr) such
that hi(x) = hi(xi) for each i.

A solution to Problem 3 is immediately a (k, k)-restricted subset cover of
(h1, ..., hk). We simply call it a k-restricted subset cover. Also, we use k-rSRH
to represent (k, k)-rSRH for simplicity.

Problem 3 can be considered a variant of collision-finding problems. The
difference is that this problem focuses on k functions and requires k+1 elements
as a solution. For each i, (x, xi) is a collision of hi. Thus, k-rSRH is a weaker
assumption than CRH.

Our study will begin with Problem 3 and k-rSRH, and then the result can be
simply extended to general (r, k)-rSRH and (r, k)-SRH.

3.1.2 Definitions

In this subsection, we give formal definitions of subset-resilient hash function
families and variants that has been discussed above.

Given a parameter n and a set T = {0, 1}l(n), suppose there is a function H
mapping to a subset of T of size at most k. An (r, k)-subset cover ofH is defined
as (x, x1, ..., xr) such that H(x) is covered by the union of H(xi). From now on,
we let r and k be constant integers. Since we have introduced the definition of
k-sampling algorithms, an (r, k)-subset cover can also be defined as follows.

Definition 14 Let H = (h1, ..., hk) be a tuple of functions where hi : X → Y

for each i ∈ [k]. Let ORSk(x) = {h1(x), ..., hk(x)}. We say (x, x1, ..., xr) ∈ Xr+1 is
an (r, k)subset cover ofH if ORSk(x) ⊆

⋃
i∈[r] ORSk(xi).

Definition 15 (SubsetResilient Hash Function Families.) Let H = {Hn :

{0, 1}m(n) → {0, 1}l(n)} be a hash function family and Sampk be a ksampling
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algorithm ofH. We say thatH is an (r, k)subsetresilient hash function family
((r, k)SRH) with regard to Sampk such that for any probabilistic polynomial
time algorithm A, there exists a negligible function ϵ such that

Pr

 x ̸∈{x1, ..., xr}

ORSk(x) ⊆
⋃
j∈[r]

ORSk(xj)

∣∣∣∣ (h1, ..., hk)← Sampk(1
n)

(x, x1, ..., xr)← A(1n, h1, ..., hk)

 ≤ ϵ(n) (3.1)

holds for large enough n.

Next, we define a weaker assumption than subset resilience, which we call
restricted subset resilience. Before introducing this assumption, we propose a
definition called restricted subset cover, similar to subset cover. The difference
is that for a restricted subset cover (x, x1, ..., xr), hi(x) is required to be covered
by the union of hi(xj) for each i. It is a sufficient but unnecessary condition for
a subset cover.

Definition 16 Let H = (h1, ..., hk) be a tuple of functions where hi : X → Y

for each i ∈ [k]. We say that (x, x1, ..., xr) ∈ Xr+1 is an (r, k)restricted subset
cover ofH if hi(x) ∈

⋃
j∈[r]{hi(xj)} for any i ∈ [k].

Definition 17 (Restricted SubsetResilient Hash Function Families.) LetH =

{Hn : {0, 1}m(n) → {0, 1}l(n)} be a hash function family and Sampk be a k
sampling algorithm of H. We say thatH is an (r, k)restricted subsetresilient
hash function family ((r, k)rSRH)with regard to Sampk such that for any prob
abilistic polynomialtime algorithmA, there exists a negligible function ϵ such
that

Pr

 ∀i ∈ [k], x ̸= xi

hi(x) ∈
⋃
j∈[r]

{hi(xj)}

∣∣∣∣ (h1, ..., hk)← Sampk(1
n)

(x, x1, ..., xr)← A(1n, h1, ..., hk)

 ≤ ϵ(n), (3.2)

holds for large enough n.

In the following, we focus on (k, k)-restricted subset resilience in particu-
lar, and simply call it krestricted subset resilience. In this situation, finding an
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(k, k)-restricted-subset cover for H = (h1, ..., hk) is equivalent to finding a tuple
(x, x1, ...xk) such that hi(x) = hi(xi). Thus, (k, k)-restricted subset resilience can
be redefined as follows:

Definition 18 LetH = {Hn : {0, 1}m(n) → {0, 1}l(n)} be an efficient family en
semble and Sampk be a ksampling algorithm of H. We say that H is a secure
ksubsetresilient hash function family (krSRH) with regard to Sampk such
that for any probabilistic polynomialtime algorithm A, there exists a negli
gible function ϵ such that

Pr

∀i ∈ [k], x ̸= xi

hi(x) = hi(xi)

∣∣∣∣ (h1, ..., hk)← Sampk(1
n)

(x, x1, ..., xk)← A(1n, h1, ..., hk)

 ≤ ϵ(n), (3.3)

holds for large enough n.

If (x, x1, .., xk) is a (k, k)-restricted subset cover ofH = (h1, ..., hk), we simply
say that it is a restricted subset cover of H.

3.1.3 SRH and Signature Schemes

SRH and rSRH are helpful to construct hash-based few-time signature schemes.
For instance, the EU-CMA security of HORS [94] is based on SRH and one-way
function families.

Lemma 6 (HORS: Hash to Obtain Random Subset. [94]) Assuming there ex
ists an (r, k)subsetresilient hash function family H = {Hn : {0, 1}m(n) →
{0, 1}m′(n)} and a oneway function family F = {Fn : {0, 1}l(n) → {0, 1}l′(n)},
then there exists an existentially unforgeable signature scheme under rtime
chosen message attacks such that:

• The message space is {0, 1}m.

• The size of the public key and the secret key are respectively O(l′2m′) bits
and O(l2m′) bits.

• The size of a signature is km′l bits.
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• The key generation algorithm runs 2m′ oneway functions.

In addition, HORS can be simply modified to be based on rSRH (instead of
SRH) and one-wayness: instead of picking 2m′ number of random strings in the
key generation algorithm, it picks k groups of them, each of which contains 2m′

random strings. Just like HORS, the public key includes k2m′ number of values.
To sign the message m, it leaks the element indexed hi(m) in group i for each
i ∈ [k]. Compared to HORS, the size of the secret key and the public key be-
comes k times larger, and the running time of the key generation algorithm also
becomes k times longer. However, it requires a weaker assumption, resisting
weak message attacks [8].

Lemma 7 Assuming there exists an (r, k)restricted subsetresilient hash func
tion family H = {Hn : {0, 1}m(n) → {0, 1}m′(n)} and a oneway function F =

{Fn : {0, 1}l(n) → {0, 1}l′(n)}, then there exists an existentially unforgeable sig
nature scheme under rtime chosen message attacks such that:

• The message space is {0, 1}m.

• The size of the public key and the secret key are respectivelyO(kl′2m′) bits
and O(kl2m′) bits.

• The size of a signature is km′l bits.

• The key generation algorithm runs k2m′ oneway functions.

Proof.
Let H be an (r, k)-rSRH mapping m(n)-bit strings to m′(n)-bit strings and

Sampk be a k-sampling algorithm. Let f : {0, 1}l(n) → {0, 1}l′(n) be a one-way
function. A signature scheme Γ = (KeyGen, Sign,Ver) is depicted as follows:

• KeyGen(1n): (h1, ..., hk)← Sampk(H). Randomly pick si,j from {0, 1}l for all
i ∈ [k] and j ∈ {0, 1}m′ . For each i and j, compute yi,j = hi(si,j). The pub-
lic key pk contains (h1, ..., hk) and all the yi,j ’s. The secret key sk contains
(h1, ..., hk) and all the si,j ’s. Then, output (pk, sk).
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• Sign(sk,m): For each i ∈ [k], compute ti = hi(m). Outputσ = (s1,t1 , ..., sk,tk).

• Ver(pk,m, σ): Parse σ = (x1, ..., xk). For each i ∈ [k], compute ti = hi(m).
If for each i ∈ [k] it holds that yi,ti = f(xi), output 1. Otherwise, output 0.

The correctness of Γ can be easily verified. Next, we prove the security.
Suppose there exists an adversaryA that can break EU-CMA security ofΓ, we

construct a reduction algorithmRA that can break one-wayness of f or restricted
subset resilience of H. Given y as the challenge of one-wayness and (h1, ..., hk)

as the challenge of restricted subset resilience,R randomly picks si,j from {0, 1}l

for all i ∈ [k] and j ∈ {0, 1}m′ , and computes yi,j = hi(si,j). Then, it randomly
picks (i′, j′) from [k]× {0, 1}m′ and replaces yi′,j′ with the challenge y. after that,
R runs A(1n, pk).

When A queries to signing oracle, R replies as Sign(sk, ·) should do. R can
perfectly similate the signing oracle unless it meets si′,j′ . In this case, R halts
and restarts with fresh randomness. Since (i′, j′) is randomly chosen and A is
required to query at most r times, the probability that R halts is at most rk

k2m′
=

r2−m
′ ≤ c. After approximate c−1 repetitions, R finally similates the signing

oracle for A.
After queries, A output (m∗, σ∗). LetM = (m1, ...,mr) be the queries of A. If

A succeeds, it holds that Ver(pk,m∗, σ∗) = 1 and m∗ ̸∈ M . Let σ∗ = (x∗1, ..., x
∗
k).

We consider the two cases if A succeeds:

• Case 1: There exists an i ∈ [k] such that hi(m∗) ̸∈
⋃

j∈[r]{hi(mj)}. In this
case,R never leaked any information of si,hi(m∗) toA except its image w.r.t.
f . Since σ is valid, it holds that yi,hi(m∗) = f(x∗i ). Thus, A actually inverts
yi,hi(m∗). Since (i′, j′) is randomly chosen, the event that (i, h′i(m)) is equal to
(i′, j′) occurs with probability at least 1/k2m′ . If it happens,R successfully
obtains an inverse of y. Since 2m

′ is a polynomial of n, R inverts y with
polynomial probability in this case.

• Case 2: It holds that hi(m∗) ∈
⋃

j∈[r]{hi(mj)} for each i ∈ [k], which im-
plies the fact that (m,m1, ...,mr) is an (r, k)-resilient subset cover of (h1, ..., hk).
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In this case, R returns (m,m1, ...,mr) as a result of breaking subset re-
silience ofH.

Denote by AdvOWF
f (n) the upper bound of the probability of breaking one-

wayness of f and denote Adv(r,k)-rSRH
H (n) the upper bound of the probability of

breaking subset resilience ofH. We have

Pr[ExpEU-CMA
Γ (A)] = Pr[ExpEU-CMA

Γ (A)|Case 1] + Pr[ExpEU-CMA
Γ (A)|Case 2]

≤ k2m
′AdvOWF

f (n) + Adv(r,k)-rSRH
H (n),

which is negligible due to the assumptions. ⊓⊔

One may consider that the sizes of keys are extremely large and impractical.
It is not a big issue since the public keys and the secret keys can be compressed by
introducing aMerkle tree and a pseudorandom function, respectively. However,
the running time of the key generation algorithm cannot be compressed.

Remark 2 Essentially, the scheme in Lemma 7 is a very simplified version of
FORS [17]. The differences are as follows. First, FORS introduces aMerkle tree
structure to compress the public key. Second, it replaces the oneway functions
with tweakable hash functions to decrease the security loss. Third, it intro
duces a randomizer on the message. That is, instead of computing hi(m), it
picks a randomizer r and computes hi(r||m). Here r is computed by PRF (k,m)

where PRF is a pseudorandom function, and k is a secret key (in the random
ized version of FORS, r is computed by PRF (k, rand,m)where rand is a random
nonce). This step makes the security based on a “target version” of restricted
subset resilience, a weaker assumption. See details in [17].

Consider the case that the pseudorandom function key k is leaked in the de
terministic version of FORS. We have hi(r||m) = hi(PRF (k,m)||m). Denote
h′i(x) = hi(PRF (k,m)||m). Then, the EUCMA security of FORS will be de
graded to restricted subset resilience ofH ′ = (h′1, ..., h

′
k).

Apart from HBS schemes, since SRH has similar properties to cover-free
families (CFFs), it can also be used in other CFF-based primitives. For exam-
ple, in [105] and [63], the authors respectively propose an aggregate signature
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scheme and a programmable hash function based on CFF. By replacing the CFF
with an (r, k)-SRH in these primitives, we obtain an r-time aggregate signature
scheme and an (r, 1)-programmable hash function. However, this will lead to
larger public keys and do not behave better than the original versions. It is an
open question about other practical applications of SRH besides HBS schemes.

3.2 Quantum Algorithms Breaking krSRH

This section gives a quantum algorithm for finding k-restricted subset covers,
showing an upper bound of k-restricted subset resilience security for hash func-
tions in the quantum world. This work is inspired by [84], which shows a quan-
tumalgorithm findingmulti-collisions. Interestingly, the time andmemory com-
plexity for finding a k-restricted subset cover are roughly the sameas those needed
for finding a (k + 1)-collision.

In this section, we treat the target function as an oracle. We suppose that an
algorithm can only obtain the target function value by querying this oracle. The
time complexity is evaluated by the number of (quantum) queries to this oracle.

3.2.1 The First Attempt

Towarmup, we first showaquantumalgorithm finding 2-restricted subset cover
for two 2-to-1 functions. Given H = (h1, h2) where hi : Dom → Rng are 2-to-1
functions for each i, let |Dom| = 2|Rng| = 2N . The quantum algorithm runs as
follows:

1. Let t1 = N3/7. Pick a listX1 = {x(1)1 , ..., x
(t1)
1 }, where x

(·)
1 is uniformly chosen

fromDom.

2. Evaluate y(i)1 = h1(x
(i)
1 ) for i ∈ [t1]. List them in Y1 = {y(1)1 , ..., y

(t1)
1 }. This

step requires N3/7 queries toH.
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3. Define F1 : Dom→ {0, 1}:

F1(x) =

1, x ̸∈ X1 and h1(x) ∈ Y1,

0, otherwise.
(3.4)

Run Grover’s algorithm on F1. Note that |F−11 (1)| = t1, and evaluating F1

needs a query to H. Grover’s algorithm returns a solution after at most
O(

√
2N/t1) = O(N2/7) queries toH.

4. Let t2 = N1/7. Repeat step 3 t2 times. It requires O(N2/7 ·N1/7) = O(N3/7)

queries toH. List the result asX2 = {x(1)2 , ..., x
(t2)
2 }.

5. Evaluate y(i)2 = h2(x
(i)
2 ) for i ∈ [t2]. List them in Y2 = {y(1)2 , ..., y

(t2)
2 }. This

step requires N1/7 queries toH.

6. Define F2 : Dom→ {0, 1}:

F2(x) =

1, x ̸∈ X2 and h2(x) ∈ Y2,

0, otherwise.
(3.5)

Run Grover’s algorithm on F2. Note that |F−12 (1)| = t2. Grover’s algorithm
returns a solution x∗ after at most O(

√
2N/t2) = O(N3/7) queries toH.

7. Find i ∈ [t2] such that h2(x∗) = h2(x
(i)
2 ). (x∗, x(i)2 ) is a collision of h2.

8. Find j ∈ [t1] such that h1(x2) = h1(x
(j)
1 ) (there exists such a j since F1(x2) =

1 for every x(j)2 ∈ X2). (x(j)1 , x
(i)
2 ) is a collision of h1.

9. Output (x(i)2 , x
(j)
1 , x∗).

Since (x(j)1 , x
(i)
2 ) is a collision of h1 and (x∗, x(i)2 ) is a collision of h2, (x(i)2 , x

(j)
1 , x∗)

is a 2-restricted subset cover w.r.t. (h1, h2). In total, the algorithm requires
O(N3/7 +N3/7 +N1/7 +N3/7) = O(N3/7) queries toH.

To “inject” the third function into the algorithm, we repeat the steps a little bit
more times than before and slightly change some of the steps. We first pickN7/15

elements from the domain and list them in X. After evaluating their images
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of h1 and running Grover’s algorithm repeatedly, we find collisions of a subset
of X w.r.t. h1. We remove from the X the elements whose collisions are not
found. Next, we evaluate the images of X w.r.t. h2, and run Grover’s algorithm
repeatedly again. As a result, we obtain a subset of X, of which the collision are
found w.r.t. h2 and h1. Then, we do the same things on h3, and get the final
result. It implies a 3-restricted subset cover of (h1, h2, h3).

Our quantumalgorithmon finding 3-restricted subset cover forH = (h1, h2, h3)

is depicted as follows:

1. Let t1 = N7/15 (instead of N3/7 in the case of two functions). Pick a list
X1 = {x(1)1 , ..., x

(t1)
1 }, where x

(·)
1 is uniformly chosen fromDom.

2. Evaluate y(i)1 = h1(x
(i)
1 ) for i ∈ [t1] and list them in Y1 = {y(1)1 , ..., y

(t1)
1 }. This

step requires N7/15 queries toH.

3. Define F1 : Dom→ {0, 1}:

F1(x) =

1, x ̸∈ X1 and h1(x) ∈ Y1,

0, otherwise.
(3.6)

RunGrover’s algorithmonF1. It returns after atmostO(
√
2N/t1) = O(N4/15)

queries toH.

4. Let t2 = N3/15 (instead of N1/7). Repeat the last step t2 times. Here, we
list the solutions in the list X2 orderedly. Every time Grover’s algorithm
returns a solution x, we evaluate h1(x) and find the y(i)1 ∈ Y1. Then, denote
the solution x by x(i)2 and list it inX2.

Note that (x(i)1 , x
(i)
2 ) is a collision of h1. Next, we remove from X1 all the

x
(i)
1 ’s such that x(i)2 does not exist in X2. Now all the elements of X1 can

find their second-preimages with regard to h1 inX2 with the same labels.

This step requires O(N4/15 ·N3/15 +N3/15) = O(N7/15) queries toH.

5. Here, Y2 is no longer the images of X2 with regard to h2. Instead, we eval-
uate h2(x(i)1 ) for each x

(i)
1 ∈ X1 and list them in Y2. Since now X1 only

contains t2 elements, this step requires t2 = N3/15 queries toH.
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6. Define F2 : Dom→ {0, 1}:

F2(x) =

1, x ̸∈ X1 and h2(x) ∈ Y2,

0, otherwise.
(3.7)

RunGrover’s algorithmonF2. It returns a solution after atmostO(
√
N/t2) =

O(N6/15) queries toH.

7. Let t3 = N1/15. Repeat the last step t3 times. Similar to step 4, list the
solution of Grover’s algorithm x

(i)
3 in X3 orderedly. Again, remove from

X1 the elements whose second-preimages are not found in X3. Now for
every x(i)1 ∈ X1, (x(i)1 , x

(i)
3 ) is a collision of h2. This step requires O(N1/15 ·

N6/15 +N1/15) = O(N7/15) queries toH.

8. Evaluate h3(x(i)1 ) for each x(i)1 ∈ X1, and list them in Y3. This step requires
O(N1/15) queries toH.

9. Define F3 : Dom→ {0, 1}:

F2(x) =

1, x ̸∈ X1 and h3(x) ∈ Y3,

0, otherwise.
(3.8)

RunGrover’s algorithmonF3. It returns a solutionx4 after atmostO(
√
2N/t3) =

O(N7/15) queries toH.

10. Find y(i)3 = h3(x4) in Y3. Output (x(i)1 , x
(i)
2 , x

(i)
3 , x4).

In total, the algorithm requires O(N7/15) queries toH.
Generally, for any constant k, let ts = N (2k−s+1−1)/(2k+1−1) for each s ∈ {1, ..., k+

1}. Let H = (h1, ..., hk) be a tuple of 2-to-1 functions, where hi : 2X → Y and
|Dom| = 2|Rng| = 2N . Our quantumalgorithm finding k-restricted subset cover
forH is as follows:

1. Pick a listX0 = {x(1), ..., x(t1)}, where x(·) is uniformly chosen fromDom.

2. For s = 1 to k:
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(a) For any x(i) ∈ Xs−1, evaluate y(i)s = hs(x
(i)) and list them in Ys.

(b) Define byFs : Dom→ {0, 1} a function such thatFs(x) = 1 if and only
if x ̸∈ Xs−1 ∧ hs(x) ∈ Ys. Run Grover’s algorithm on Fs ts+1 times.

(c) For each solution x′ of Grover’s algorithm, find y(i)s ∈ Ys such that
y
(i)
s = hs(x

′). Denote x(i)s ≜ x(i) and x′(i)s ≜ x′. Note that (x(i), x′(i)s )

is a collision w.r.t. hs. (If x′ repeatedly apprears, discard it and run
Grover’s algorithm again.)
List all the x(i)s inXs and all the x′(i)s inX ′s.

3. After k repetitions,Xk contains only one elementx(i)k = x(i). Output (x(i), x′(i)1 , ..., x
′(i)
k ).

Remark 3 In practice, (h1, ..., hk) is usually instantiated as a division of a long
hash H : Dom ← Rngk. In this case, the hash values of x w.r.t. h1, ..., hk can
be computed by a single hash query. Thus, if the memory is large enough, we
can compute all the Y1, ..., Yk right after step 1 by t1 hash computations and skip
step 2(a) in the loops. This modification can decrease the time cost (but the
complexity is not changed).

Now we analyze the time complexity in the above algorithm. Step 2(a) re-
quires ts classical queries. Step 2(b) requires O(ts+1

√
N/ts) quantum queries.

Step 2(c) requires ts+1 classical queries. The number of quantum queries re-
quired in the algorithm is in total

k∑
s=1

ts+1

√
N

ts
=

k∑
s=1

N
2k−s−1

2k+1−1
+ 1

2
(1− 2k−s+1−1

2k+1−1
)
=

k∑
s=1

N
1
2
(1− 1

2k+1−1
)
= kN

1
2
(1− 1

2k+1−1
)
.

(3.9)
The number of classical queries required in the algorithm is in total

k∑
s=1

ts + ts+1 <
k∑

s=1

2t1 = 2kN
1
2
(1− 1

2k+1−1
)
. (3.10)

Since k is a constant, we conclude the following statement.

Theorem 1 For constant k ≥ 2, let H = (h1, ..., hk) be a tuple of 2to1 func
tions where hi : X → Y and |X| = 2|Y | = 2N for each i. There exists an algo
rithm finding a krestricted subset cover forH using O(N

1
2
(1− 1

2k+1−1
)
) quantum

queries toH.

47



Note that here the functions are required to be 2-to-1. Namely, it guaran-
tees that any x ∈ Dom has a second-preimage of hs and thus |F−1s (1)| is exactly
equal to |Ys| = ts. For a general function, there may exist some “bad” elements
inDomwhich have no second-preimage w.r.t. some hi. If we unfortunately pick
bad elements intoXs−1, |F−1s (1)| will be smaller than what we expected, making
Grover’s algorithm fail in the expected steps. In other words, for a general func-
tion, we need to ensure that in each loop, Xi−1 always contains enough “good”
elements which have second-preimages w.r.t. each hi.

Next, we try to eliminate the need of 2-to-1 property. We require that the
size of the domain is (k + 1) times larger than that of the range. In this case, a
constant fraction of x’s have their second-preimages w.r.t. each hi.

Lemma 8 LetH = (h1, ..., hk)where hi : Dom→ Rng for each hi and |Dom| =
(k+1)|Rng| = (k+1)N . The probability that x has a secondpreimage w.r.t. hi
for each i is at least 1

k+1
, where the probability is taken over the uniform choice

of x ∈ Dom.

Proof. Let Domhi
⊂ Dom be the set of x that does not have a second-preimage

w.r.t. hi. We observe that |Domhi
| ≤ N , otherwise the elements not contained

inDomhi
cannot find images w.r.t. hi inRng. Thus we have |

⋃
i∈[k]Domhi

| ≤ kN

and

Pr
x
[x ̸∈

⋃
i∈[k]

Domhi
] =
|Dom| − |

⋃
i∈[k]Domhi

|
|Dom|

≥ (k + 1)N − kN
kN

=
1

k
, (3.11)

This completes the proof. ⊓⊔

Then, we requireH = (h1, ..., hk) is a tuple of general functionswhere |Dom| ≥
(k + 1)|Rng| and improve our algorithm. Indeed, we only need to focus on the
case that |Dom| = (k + 1)|Rng|. If |Dom| > (k + 1)|Rng|, we can randomly
choose a subsetDom′ ⊆ Dom such that |Dom′| = (k+1)|Rng|, and then run the
algorithm in the former case.

We slightly change some of the steps in our algorithm. Let c > 0 be a con-
stant. In step 1, We pick (1 + c)kt1 number of x(i)’s from Dom (instead of t1
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number of them in the previous version). In step 2(b) of loop s, we run Grover’s
algorithm on Fs (1 + c)kts+1 times rather than ts+1 times.

LetSH be the set of x that has a secone-preimagew.r.t. each hi (which implies
SH = Dom\

⋃
i∈[k]Domhi

). Note that the elements of X0 are uniformly chosen.
Due to Chernoff bound, there are at least 1

(1+c)k
fraction of x’s in X with over-

whelming probability.

Pr[|F−11 (1)| < t1] < Pr[|X1 ∪ SH | < t1] < e−
c2t1
2 , (3.12)

which is negligible since t1 = N
2k−1

2k+1−1 and c is a constant.
Suppose |F−11 (1)| ≥ t1. Grover’s algorithm successfully runs on F1 in step

2(b) of loop 1.
When we run Grover’s algorithm on F1, it randomly picks an element from

F−11 (1), which corresponds to a uniformly random element fromX0. SinceX0 is
uniformly chosen in step 1, the distribution of each element inX1 is also uniform.
Note that the size of X1 is (1 + c)kt2. Again due to Chernoff bound, there are at
least t2 number of x’s inX1 such that x drops in SH with overwhelming probabil-
ity. It implies that |F−12 (1)| ≥ t2 holds with overwhelming probability. Suppose
it holds. Then, Grover’s algorithm in step 2(b) of loop 2 can be completed with
the expected number of queries.

Similarly, |F−1s (1)| ≥ ts holds with overwhelming probability for each s. Sup-
pose it always holds for each s, the algorithm will go through and output a k-
restricted subset cover forH. Note that k and c are constant, and the number of
quantumqueries is (1+c)k times larger than the previous one. The total number
of queries is still O(N

1
2
(1− 1

2k+1−1
)
).

Thus, we have the following statement:

Theorem 2 For constant k ≥ 2, let H = (h1, ..., hk) be a tuple of functions
where hi : Dom → Rng and |Dom| ≥ (k + 1)|Rng| = (k + 1)N . There ex
ists an algorithm finding a krestricted subset cover forH with overwhelming
probability using O(N

1
2
(1− 1

2k+1−1
)
) quantum queries toH.

Remark 4 Indeed, this algorithm also works in the case that the ranges of
functions are not identical, in other words, the case that hi : Dom → Rngi,
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where |Dom| ≥ (k + 1)|Rngi| = (k + 1)N but Rngi may differ from Rngj for
i ̸= j.

3.2.2 A timememory tradeoff

In the last subsection, we show an algorithm finding k-restricted subset cov-
ers which requires O(N

1
2
(1− 1

2k+1−1
)
) quantum queries to the functions. However,

we observe that the memory required in this algotithm is also O(N
1
2
(1− 1

2k+1−1
)
)

(the memory cost is measured by the number of preimages and images that are
necessary to be stored in the database). It is because that the algorithm stores
|X0| = t1 = N

1
2
(1− 1

2k+1−1
) elements of the domain in step 1.

Note that the memory cost mainly depends on t1. We can flexibly adapt
|X0| = t1 and other ts for s ∈ {2, ..., t + 1} to decrease the memory cost, but
increase the running time.

We redifine ts = t
(2k−s+1−1)/(2k−1)
1 for each s ∈ {2, ..., k + 1} for fixed t1. (The

original version can be considered a specific case that t1 = N
1
2
(1− 1

2k+1−1
).) As the

result, the expected number of quantum queries required in step 2(b) becomes

k∑
s=1

ts+1

√
N

ts
=

k∑
s=1

N
1
2
(1− logN t1

2k−1
)
= kN

1
2
(1− logN t1

2k−1
)
. (3.13)

In total, the time complexity becomes O(t1) +O(N
1
2
(1− logN t1

2k−1
)
).

If t1 < N
1
2
(1− 1

2k+1−1
), the algorithm will require less memories and more run-

ning time. When t1 becomes a polynomial of logN , then the running time be-
comes close toO(N1/2), which is the time complexity of simply running Grover’s
algorithms.

3.3 Constructing dCRH from krSRH

In this section, we show that the existence of k-rSRH implies the existence of
dCRH. This work is inspired by [78], which shows a similar relation between
dCRH and MCRH. Note that our construction is non-black-box. That is, we do
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not present an explicit construction of dCRH from k-rSRH, but only prove the
existence of dCRH instead.

3.3.1 From 2rSRH to dCRH

In this subsection, we prove aweaker statement: the existence of 2-rSRH implies
the existence of dCRH.

Theorem 3 Assuming the existence of a secure 2rSRH such that each of func
tions compresses 2n bits to n bits, then there exists an (infinity often) secure
dCRH.

Proof. To prove this statement, we will show the contradiction that if infinity-
often secure dCRHdoes not exist, then there does not exist a secure 2-rSRHwith
regard to any 2-sampling algorithm. We assume that there exists a probabilis-
tic polynomial-time algorithm A that breaks distributional collision resistance
of any hash function family. Then, we construct a polynomial-time algorithm
BreakSR to break 2-restricted subset resilience of any H with regard to any 2-
sampling algorithm Samp.

GivenH and Samp, let (D1,D2) be the distribution of the output of Samp(1n).
Note that D1 and D2 are two distributions of Hn. Due to our hypothesis, there
exists a probabilistic polynomial-time algorithmA and two negligible functions
δ and ϵ such that for large enough n, it holds that

Pr
h1←D1

[∆(A(1n, h1),COLh1) ≤ δ(n)] > 1− ϵ(n), (3.14)

and thus
Pr

(h1,h2)←Samp
[∆(A(1n, h1),COLh1) ≤ δ(n)] > 1− ϵ(n). (3.15)

Let r be the randomness of A. Here, A is given the security parameter, a
function h1 sampled from D1 and the randomness r, then it outputs a collision
that is statistically close toCOLhwith all but negligible probability over the choice
of h. Let (x1, x2) ← A(1n, h1; r) and denote by A1 the deterministic algorithm
with input (1n, h1, r) and output x1.
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We omit the security parameter 1n in the following. Note that fixing h1 in the
input of A1, A1 becomes a deterministic algorithm whose input is r and output
is x ∈ {0, 1}2n. Without loss of generality, suppose the length of the randomness
of A is at most lr(n) > 2n. For (h1, h2) ← Samp, we define a special function
h′2 : {0, 1}lr(n) → {0, 1}n as follows:

h′2(r) ≜ h2(A1(h1; r)). (3.16)

It is not hard to observe that h′2 is samplable by Samp and it is efficiently com-
putable.

Due to our hypothesis that no dCRH exists, there exists another probabilistic
polynomial-time algorithm A′ that can find uniform collisions for h′2. That is,
there exist two negligible functions δ′ and ϵ′ such that

Pr
(h1,h2)←Samp

[∆(A′(1n, h′2),COLh′2
) ≤ δ′(n)] > 1− ϵ′(n) (3.17)

holds for large enough n.
Due to the existence ofA andA′, we can construct an algorithmBreakSR(1n, h1, h2)

to output a 2-restricted subset cover w.r.t. (h1, h2):

1. Define h′2(r) ≜ h2(A1(h1; r)).

2. (r1, r2)← A′(h′2).

3. (x1, x2)← A(h1; r1).

4. (x3, x4)← A(h1; r2).

5. Output (x1, x2, x3).

Note that ifA succeeds in finding collisions in the process ofBreakSR(1n, h1, h2),
we have h1(x1) = h1(x2) and h1(x3) = h1(x4). In addition, if A′ succeeds as well,
we have h′2(r1) = h′2(r2) and thus h2(A1(h1, r1)) = h2(A1(h1, r2)). Due to the def-
inition of A1, it holds that A1(h1, r1) = x1 and A1(h1, r2) = x3. Thus, we have
h2(x1) = h2(x3). As a result, we have h1(x1) = h1(x2) and h2(x1) = h2(x3), which
implies the fact that (x1, x2, x3) is a 2-restricted subset cover of (h1, h2).
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Formally, we aim to prove that there exists a negligible function µ such that

Pr

 x1 ̸= x2, x1 ̸= x3

h1(x1) = h1(x2), h2(x1) = h2(x3)

∣∣∣∣ (h1, h2)← Samp(1n)
(x1, x2, x3)← BreakSR(1n, h1, h2)

 > 1−µ(n)

(3.18)
holds for large enough n.

Define the above experiment byGame 0. We show theprobability ofGame 0
is overwhelming in the following steps:

• Game 1 differs Game 0 in the following parts. BreakSR does not run
(r1, r2) ← A′(h′2) in step 2. Instead, it directly picks (r1, r2) ← COLh′2

. Due
to equation (3.17), the statistical distance of Game 0 and Game 1 is less
than δ′(n) except with probability ϵ′(n) (over the choice of h′2). We have

Pr[∆(Game 1,Game 0) ≤ δ′(n)] > 1− ϵ′(n), (3.19)

and thus
|Pr[Game 1]− Pr[Game 0]| < ϵ′(n) + δ′(n), (3.20)

where the probability is taken over the choice of (h1, h2) and the random-
ness of BreakSR.

• InGame 1, since (r1, r2)← COLh′2
, it holds thath2(A1(h1; r1)) = h2(A1(h1; r2))

and thus h2(x1) = h2(x3) with probability 1. Next, we prove that the other
three events in equation (3.18) also occur with overwhelming probability.

Lemma 9

Pr
(h1,h2),COLh′2

[h1(x1) ̸= h1(x2) ∨ x1 = x2] < ϵ(n) + δ(n) + 2−n/2+1. (3.21)

Proof.

In Game 1, r1 is the first element of a sample from COLh′2
, which means

that r1 is uniform from {0, 1}lr(n). Recall that (x1, x2) ← A(h1; r1). Thus,
the probability in equation (3.21) is essentially taken over the choice of h1
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and r1. Suppose A(h1) and COLh1 are δ(n)-close (except with probability
ϵ(n) over the choice of h1 due to equation (3.15)). We have

Pr
(x1,x2)←A(h1;r1)

[h1(x1) ̸= h1(x2)∨x1 = x2] ≤ Pr
(x′1,x

′
2)←COLh1

[h1(x
′
1) ̸= h1(x

′
2)∨x′1 = x′2]+δ(n)

(3.22)

For (x′1, x′2) ← COLh1 , h1(x1) ̸= h1(x
′
2) holds with probability 0. Next, we

show that
Pr

(x′1,x
′
2)←COLh1

[x1 = x2] < 2−n/2+1. (3.23)

For any y ∈ {0, 1}n, denote byXh1
y ⊆ {0, 1}2n the set of x such that h1(x) =

y. For convenience, we sayXy instead ofXh1
y in the following.

We sayXy is “large” if |Xy| ≥ 2n/2 orXy is “small” otherwise. SinceXy’s are
disjoint for different y, there are atmost 2n differentXy’s. Thus, there exist
at most 23n/2 number of x such that Xh1(x) is small (otherwise the number
of bad Xy’s will be more than 2n). As a result, the number of x’s such that
Xh1(x) is large is more than 22n − 23n/2. We have

Pr
x←{0,1}2n

[Xh1(x) is large] ≥
22n − 23n/2

22n
= 1− 2−n/2. (3.24)

Thus,

Pr
(x′1,x

′
2)←COLh1

[x′1 ̸= x′2] ≥ Pr
x′1←{0,1}2n

[Xh1(x′1)
is large] Pr

x′2←Xh(x′1)

[x′1 ̸= x′2|Xh1(x′1)
is large]

≥ (1− 2−n/2)(1− 2−n/2) > 1− 2−n/2+1.

From equation (3.22) and (3.23), we complete the proof of Lemma 9.

⊓⊔

Lemma 10

Pr
(h1,h2),COLh′2

[x1 = x3] < ϵ(n) + 2δ(n) + 2−n/2+1 (3.25)
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Proof. Again, we assume that ∆(A(h1),COLh1) ≤ δ(n) (except with prob-
ability ϵ(n)). Then, we have∑

x1∈{0,1}2n

∣∣∣∣ Pr
r1∈{0,1}lr(n)

[x1 ← A1(h1; r1)]−
1

22n

∣∣∣∣ ≤ δ(n). (3.26)

For any x ∈ {0, 1}2n, denote by Rx ⊆ {0, 1}lr(n) the set of random coins
making A output x as the first element:

Rx ≜ {r|A1(h1; r) = x}. (3.27)

Then, we have ∑
x1∈{0,1}2n

∣∣∣∣ |Rx1 |
2lr(n)

− 1

22n

∣∣∣∣ ≤ δ(n). (3.28)

Therefore, themapping from r1 tox1 is regular exceptwith probability δ(n).

Recall how (r1, r2)← COLh′2
and x1 are chosen. First, we uniformly choose

r1 from {0, 1}lr(n) and let x1 = A1(h1; r1). Then, r2 is uniformly chosen from
the following set:

Sx1 = {r|h2(A1(h1; r)) = h2(x1)}. (3.29)

That is, Sx1 is the set of r which maps to x′ where h2(x′) = h2(x1). Let Xh2
y

be the set of x such that h2(x) = y. We have

Sx1 =
⋃

x′∈Xh2
h2(x1)

Rx′ . (3.30)

For convenience, we sayXh2(x1) instead ofXh2

h2(x1)
in the following.

Fix r1. Obviously, we have r1 ∈ Rx1 ⊂ Sx1 . In addition, recall that x3 =

A1(h1; r2). Thus, x3 = x1 holds if and only if r2 also drops in Rx1 . It occurs
with probability |Rx1|/|Sx1| (over the choice of r2). Note that the mapping
between r1 and x1 is regular and Sx1 contains |Xh2(x1)| number of Rx′ . We
have ∣∣∣∣ |Rx1|

|Sx1|
− 1

|Xh2(x)|

∣∣∣∣ ≤ δ(n). (3.31)
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The above inequality is for a fixed r1. Since r1 is uniformly chosen, the
distribution of x1 is δ(n)-close to the uniform distribution. Thus,

Pr
r1
[Xh2(x1) is large] ≥ Pr

x1

[Xh2(x1) is large]− δ(n) ≥ 1− 2−n/2 − δ(n), (3.32)

where the second inequality is due to equation (3.24).

From equation (3.31) and (3.32) we have

Pr
COLh′2

[x3 = x1] ≤ Pr
r2←Sx1

[x3 = x1|Xh2(x1) is large] + Pr
r1
[Xh2(x1) is large]

≤ δ(n) +
1

2n/2
+ δ(n) + 2−n/2 = 2δ(n) + 2−n/2+1.

Considering the choice of (h1, h2), we get

Pr
(h1,h2),COLh′2

[x3 = x1] < ϵ(n) + 2δ(n) + 2−n/2+1, (3.33)

which completes the proof of Lemma 10. ⊓⊔

From Lemma 9 and 10 we have

Pr[Game 1] ≥ 1− ϵ(n)− 3δ(n)− 2−n/2+2, (3.34)

where the factor of ϵ(n) is not accumulated since the proofs of two lemmas
begin with the same assumption that A(h1) and COLh1 are δ(n)-close.

To sum up, letting µ(n) = ϵ′(n) + δ′(n) + ϵ(n) + 3δ(n) + 2−n/2+2, inequality
(3.18) holds. This completes the proof. ⊓⊔

3.3.2 From general krSRH to dCRH

In the last subsection, we construct an algorithm breaking the security of 2-
rSRH with an algorithm breaking dCRH. Indeed, this construction can also be
extended to break the security of k-rSRH for any constant k > 2. This implies
the relation between dCRH and general k-rSRH.
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Our extension is overviewed as follows. First, we construct amachineBreakSR
breaking 2-rSRH with A breaking dCRH as we present in the last subsection.
Next, we construct a machine Break-3-SR breaking 3-rSRH with BreakSR andA.
Iteratively, we construct a machine Break-(s+1)-SR breaking (s+1)-rSRH with
Break-s-SR and A for s = 2, ..., k − 1. Finally, we obtain a Break-k-SR breaking
k-rSRH, which proves our statement.

The induction from s to s+1 is similar to the construction of BreakSR fromA.
Consider a simple case that s = 2. Given (h1, h2, h3)← Samp3(1

n), define h′3(r) =
h3(BreakSR1(1n, h1, h2)), where BreakSR1(·) is the first element of the output of
BreakSR(·). Next, run (r1, r2) ← AdCRH(1

n, h′3). After that, run (x1, x2, x3) ←
BreakSR(1n, h1, h2; r1) and (x4, x5, x6) ← BreakSR(1n, h1, h2; r2). Finally, output
(x1, x2, x3, x4) as a 3-restricted subset cover of (h1, h2, h3).

Formally, the recursive algorithm Break-(s + 1)-SR(1n, h1, h2, ..., hs+1) break-
ing (s+ 1)-rSRH runs as follows:

1. Define h′s+1(r) ≜ hk+1(Break-s-SR1(1n, h1, h2, ..., hs)).

2. (r1, r2)← AdCRH(1
n, h′s+1),

3. (x1, x2, ..., xs)← Break-s-SR(1n, h1, h2, ..., hs; r1),

4. (xs+1, xs+2, ..., x2s)← Break-s-SR(1n, h1, h2, ..., hs; r2),

5. Output (x1, ..., xs, xs+1).

Due to the induction from s = 2 to s = k − 1, we obtain the following state-
ment.

Theorem 4 For constant k ≥ 2, assuming the existence of a secure krSRH
such that each of functions compresses 2n bits to n bits, then there exists an
(infinitely often) secure dCRH.

Proof. We analyze the algorithm in terms of efficiency and correctness:
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• Efficiency: Let t1 be the upper bound of the running time ofAdCRH and ts be
the upper bound of the running time of Break-s-SR. Since Break-(s+ 1)-SR
runs Break-s-SR twice and A once, we have ts+1 = 2ts + t1 for each s ≥ 1.
By induction, we have tk = (2k − 1)t1. Note that k is constant and t1 is
polynomial. Thus, tk is also a polynomial.

• Correctness. The proof of correctness is similar to proofs in the last sub-
section, so we omit the details. Suppose Break-s-SR fails to output an s-
restricted subset cover with probability at most ϵs(n). We have ϵs+1(n) ≈
2ϵs (where we omit the probability of error made by AdCRH in each itera-
tion). The failure probability of the final algorithm is upper bounded by
2k−1ϵ2, which is a negligible probability since k is constant.

⊓⊔

3.4 Separating krSRH from OWP

In this section, we show that there is no fully black-box construction of k-rSRH
from OWP. This separation uses Simon’s separating oracle [100]. Using this or-
acle, [6] proves the separation result of CRH fromOWP and indistinguishability
obfuscators. [14] proves the separation result of MCRH from OWP. We follow
their work and show a similar result about k-rSRH.

Definition 19 A fully blackbox construction of krSRH from a oneway per
mutation consists of a probabilistic polynomialtimegenerationalgorithm Samp
and a probabilistic polynomialtime reduction algorithmR.

• Correctness: Given an oracle of any permutation f = {fn : {0, 1}n →
{0, 1}n}n∈N, the algorithm Sampf (1n) outputs a tuple of k oracleaided cir
cuits Cf = (Cf

1 , .., C
f
k ), where for each i ∈ [k], Ci : {0, 1}n → {0, 1}l(n)

where l(n) < n− log k.

• Blackbox Security: Let f = {fn : {0, 1}n → {0, 1}n}n∈N be any per
mutation. For any (possibly nonuniform) adversary A and polynomial
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pA(n) such that

Pr
Samp,A

 ∀i, x ̸= xi

Ci(x) = Ci(xi)

∣∣∣∣ (Cf
1 , ..., C

f
k )← Sampf (1n)

(x, x1, ..., xk)← Af (C1, ..., Ck)

 ≥ 1

pA(n)
(3.35)

holds for infinitely many n ∈ N, there is a polynomialtime algorithm R
and a polynomial pR(n) such that

Pr
y←{0,1}n,R

[y = fn(x)|x←Rf,A(y)] ≥ 1

pR(n)
(3.36)

holds for infinitely many n ∈ N.

We rule out fully black-box constructions of k-rSRH from OWP.

Theorem 5 (Informal.) There is no fully blackbox construction of a krSRH
from a oneway permutation.

We prove this statement in the following steps. First, in Section 3.4.1, we
construct a separating oracle which consists of a random permutation oracle
f and an oracle CoverFinder, which outputs a k-restricted subset cover for any
(Cf

1 , ..., C
f
k ) with high probability. CoverFinder oracle plays the role of the adver-

saryA that breaks k-rSRH. Then, we prove that any polynomial-time algorithm
given the access to Γ = (f,CoverFinder) cannot output the preimage of y w.r.t.
f with non-negligible probability. Note that if the algorithm is only given the
access to f (without CoverFinder), this statement is obviously true because a ran-
dom permutation is one-way with overwhelming probability [54]. To prove the
stronger statement, we define a special event called yhit. In Section 3.4.2, we
prove that any polynomial-time algorithm cannot invert ywithout triggering this
event. This uses the Reconstruction Paradigm in [55]. In Section 3.4.3, we prove
that if there exists a reduction algorithm that can invert y with triggering yhit,
then there exists another algorithm that can do the same without triggering y
hit. Finally, in Section 3.4.4, we conclude that any polynomial-time algorithm
cannot invert y with non-negligible probability by querying the separating ora-
cle. It implies the impossibility of fully black-box constructions.
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3.4.1 The Separating Oracle

In this subsection, we define a separating oracle Γ and show that it can break
k-rSRH with high probability. The oracle is depicted as follows:

SeparatingOracleΓ: The oracle Γ consists of two oracles (f,CoverFinderf ):

• The function f = {fn}: For every n, fn is a random permutations on n bits.

• The oracle CoverFinderf (C1, ..., Ck): Let Cf
1 , ..., C

f
k : {0, 1}n → {0, 1}l(n)

be k circuits given access to oracle f . Given the description of Cf
1 , ..., C

f
k ,

CoverFinderf (C1, ..., Ck) tries to output a k-restricted subset cover for (Cf
1 , ..., C

f
k )

as follows. First, it picks a random n-bit string w. Then, for each i ∈ [k],
it picks a random permutations πi on n bits. After that, it independently
computes the lexicographically smallest n-bit string wi such that Cf

i (w) =

Cf
i (πi(wi)). Finally CoverFinderf outputs (w, π1(w1), ..., πk(wk)). Note that

CoverFinderf is expected to be exponential-time.

In the following, we say CoverFinder instead of CoverFinderf for simplicity. We
show that this oracle outputs a k-restricted subset cover for any k-tuple of cir-
cuits with at least polynomial probability for infinitely many n.

Lemma 11 For any permutation fn and any oracleaided circuits Cf
1 , ..., C

f
k :

{0, 1}n → {0, 1}l(n) where n > l(n) − log k, there exists a polynomial p(n) such
that

Pr
CoverFinder

 ∀i ∈ [k], x ̸= xi

Cf
i (x) =C

f
i (xi)

∣∣∣∣(x, x1, ..., xk)← CoverFinder(1n, Cf
1 , ..., C

f
k )

 ≥ 1

p(n)

(3.37)
for infinitely many n.

Proof.
We first show that for (x, x1, ..., xk) ← CoverFinderf (1n, Cf

1 , ..., C
f
k ), x has a

collision w.r.t. each Cf
i with constant probability.

For i ∈ [k], let XCi
be the set of x that does not have a collision w.r.t. Ci. We

observe that |XCi
| < 2l(n), otherwise the range size ofCi must be larger than 2l(n).
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Since x is randomly chosen from {0, 1}n, it holds that

Pr
CoverFinder

[x ∈
⋃
i∈[k]

XCi
] ≤ k · 2l(n)

2n
=

1

2n−l(n)−log k
<

1

2
, (3.38)

where the second inequality holds since n > l(n)− log k.
Next, we show that (x, x1, ..., xk) is a k-restricted subset coverw.r.t. (C1, ..., Ck)

with constant probability. Suppose x ̸∈
⋃

i∈[k]XCi
(with probability is more than

1/2). Due to the stategy of CoverFinder, it holds that Ci(x) = Ci(xi) for each
i ∈ [k], but it is possible that x = xi for some i. Note again that x is randomly
chosen from {0, 1}n and π1 is a random permutation on {0, 1}n. Since x ̸∈ XCi

,
there are at least two x′ ∈ {0, 1}n such that Ci(x) = Ci(xi) and xi is one of them
with uniform distribution. Thus, the probability that x = xi is at most 1

2
. We

have

Pr
CoverFinder

∀i ∈ [k], x ≠ xi

Ci(x) =Ci(xi)

∣∣∣∣x ̸∈ ⋃
i∈[k]

XCi

 ≥ 1

2k
. (3.39)

Note that k is constant. Due to inequality (3.38) and (3.39), the probability
that (x, x1, ..., xk) is a k-restricted subset cover is more than 1

2k+1 . This completes
the proof. ⊓⊔

3.4.2 From Inversing to Compressing

From this subsection, we show that for every polynomial-time algorithmA given
the access to the oracle Γ, there exists a negligible function negl such that

Pr
y←{0,1}n

fn,CoverFinder,A

[y = fn(x)|x← AΓ(1n, y)] ≤ negl(n) (3.40)

for large enough n.
LetAwinbe the above event andweneed to show that Pr[Awin] ≤ negl(n).

In this subsection, we show a weaker statement. We define a special event called
yhit and prove that without triggering yhit,Awin only occurs with negligible
probability.
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Definition 20 In the process of runningAΓ(y), whenAmakes aquery (C1, ..., Ck)

toCoverFinderandobtains (x, x1, ..., xk), we say that this query triggers the event
yhit if in evaluatingCf

i (x) andC
f
i (xi) for some i ∈ [k], it queries an x to fn such

that y = fn(x). If there exists such a query to CoverFinder triggering yhit, we
simply say that yhit occurs.

Lemma 12 For any polynomialtime adversary A, it holds that

Pr
y←{0,1}n,fn,A

CoverFinder

[Awin ∧ yhit] ≤ 2−n/7 (3.41)

for large enough n.

Proof. Weprove a stronger statement, fixing the randomness ofCoverFinder and
A. Since the randomness ofA is fixed, we consider a deterministic adversaryA.
Let Z be the truth table of fn. We show that given an adversary A that inverts
y without triggering yhit, it is possible to compress Z with a more efficient en-
coding (Xf , Yf , Zf ). Here, Zf is the part of Z, andXf , Yf are respectively the set
of preimages and images which are not covered in Zf . Thus, the truth table be-
tween Xf and Yf is not recorded in (Xf , Yf , Zf ). We introduce a reconstruction
algorithm to reconstruct the whole truth table Z from (Xf , Yf , Zf ). However,
since fn is a random permutation, the truth table cannot be compressed. This
yields a contradiction.

Next, we show how to pick (Xf , Yf , Zf ). Let If ⊆ {0, 1}n be the set of y ∈ Y
that A can invert without triggering yhit.

If = {y|Awin ∧ yhit}. (3.42)

Now we pick Yf as follows: (1) pick the lexicographically smallest y∗ ∈ If , (2)
run A(y∗), (3) every time A makes fn-query x and obtains an image y = fn(x),
remove this y from If , (4) every timeAmakes CoverFinder-query (C1, ..., Ck) and
obtains (x, x1, ..., xk), evaluateCi(x) andCi(xi) for each i ∈ [k], and removes from
If all the outputs of fn-queries during the evaluation, (5) store this y∗ in a set Yf ,
and (6) go to step (1).
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Without loss of generality, we suppose that if x← A(y),A has queried fn(x)
in the execution. Thus, for each y∗ picked in step (1), it is removed from If in
step (3).

Lemma 13 Let qA be the upper bound of the number of queries made by A
and qC be the upper bound of the number of fqueries required in evaluating
Cf

i . Let q = max{qA, qC}. It holds that

|If | ≤ 3kq2|Yf |. (3.43)

Proof. Suppose a query to CoverFinder(C1, ..., Ck) is replied by (x, x1, ..., xk).
Note that evaluating all the Ci(x) and Ci(xi) makes at most 2kqC queries to fn.
For every y, A(y)makes at most qA queries to fn and also at most qA queries to
CoverFinder. When we pick Yf , for each y ∈ Yf , we remove at most qA elements in
step (3) and atmost qA ·2kqC elements in step (4). Thus, in each loop, we remove
at most

qA · 2kqC + qA ≤ 3kq2 (3.44)

number of elements from If and then add one element to Yf . This implies the
lemma. ⊓⊔

Let Xf = f−1n (Yf ). Let Zf be the partial truth table that stores all the maps
of fn except those fromXf to Yf . Next, we show that (Xf , Yf , Zf ) can encode the
whole truth table of fn. We introduce a reconstruction algorithm that outputs
the truth table Z of fn taking as input (Xf , Yf , Zf ).

1. While Yf ̸= ∅

(a) Pick the lexicographically smallest y ∈ Yf

(b) Run A(y) as follows:

• When A queries x to fn, if x ∈ Zf , answers Zf (x). Else, let Zf =

Zf ∪ {(x, y)}. Remove y from Yf and go to step 1.

• When A queries (C1, ..., Ck) to CoverFinder, do as follows:
i. Obtain (w, π1, ..., πk) from the random tape of CoverFinder.
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ii. Compute Cf
i (w) for each i ∈ [k]. When it queries x to fn,

answer Zf (x).

iii. For every j from 0n to 1n, evaluateCf
1 (π1(j)). During the eval-

uation, when it queries x to fn, answer Zn(xn) if it is stored.
Otherwise, pick the next j. If all fn queries are answered and
Cf

1 (π1(j)) = Cf
1 (w), then let w1 = π1(j).

iv. Do the same on πi for each i ∈ [k] and obtains wi.

v. return (w,w1, w2, ..., wk).

(c) When A outputs x, let Zf = Zf ∪ {(x, y)} and remove y from Yf . Go
to step 1.

2. Output Zf .

Lemma 14 The whole truth table for fn can be encoded by (Xf , Yf , Zf ).

Proof. We claim that the above reconstruction can build the whole truth table
Z. Since Yf is the set of images that is not stored in Zf but needs to be stored
in Z. We fill in the “blanks” of Z by starting from the smallest element of Yf . If
the blanks are filled in correctly, the reconstruction outputs the real Z. In the
reconstruction algorithm, we use A to fill in these blanks. Since Yf ⊆ If , which
means for every y ∈ Yf ,A(y) can correctly output the preimage of y w.r.t. fn, we
only need to guarantee that A gets the same responses from fn and CoverFinder
as the real one.

Next, we show that in step 1(b) of the reconstruction algorithm, it replies to
the queries of A perfectly as the true oracles.

• The reconstruction algorithm replies CoverFinder-queries correctly.

Note that the random tape of CoverFinder is fixed, πi and w is identical to
that of the real CoverFinder. The only difference is the stategy computing
Cf

i (w) in step (ii) andC
f
i (πi(j)) in step (iii). In detail, in the execution of the

real CoverFinder, Cf
i (w) and C

f
i (πi(j)) are evaluated with access to the real

truth table of f , while for the reconstruction algorithm, they are evaluated
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with Zf . However, we claim that this will not cause a different response
for CoverFinder-queries.

First, we claim that Cf
i (w) is computed correctly in step (ii). Suppose y ∈

Yf and A(y) queries CollFinder(C) obtaining (w,w1, ..., wk). For each fn-
query x in computing Cf

i (w), fn(x) is removed from If . That is, fn(x) is
not in Yf , and thus (x, fn(y)) is covered in Zf . Hence, Zf can reply all the
queries in computing Cf

i (w).

Next, we assume that computingCf
i (πi(j)) is differentwith that ofC

f
i (πi(j))

for some j in step (iii), and resulting in a different response for aCoverFinder-
query. It implies that in computing Cf

i (πi(j)), it queries an x′ to fn, but
x′ ∈ Xf and thus the map of x′ is not stored in Zf . This causes a difference
between the real CoverFinder and our reconstruction algorithm.

However, we claim that this event never occurs. When we construct Yf
from If , we remove all y from If queried in computing Cf

i (wi). Thus, for
all y ∈ Yf , if A(y) queries to CoverFinder and obtains a (w,w1, ..., wk), the
fn-queries in evaluating Cf

i (wi) are not contained inXf . This yields a con-
tradiction that computingCf

i (wi) triggers a query x′ to fn such that x′ ∈ Xf .

• The reconstruction algorithm replies fn-queries correctly.

Assume that the reconstruction algorithm cannot reply fn correctly for
somex. It implies that given a y ∈ Yf and the realCoverFinder,Afn,CoverFinder(y)

queries an x to fn, which is not stored in Zf . There are two cases:

– fn(x) = y. In this case the reconstruction algorithm will store (x, y)

in the truth table and terminate the loop.

– fn(x) ̸= y. This event never happens. Assume it does, it implies that
A(y) queries x to fn but x ∈ Xf , and thus fn(x) ∈ Yf . Note that
y ∈ Yf ⊆ If . Due to the description of Yf , all the fn-queries during
the execution of A(y) have been removed from Yf . Thus, A(y) never
queries an x to fn that fn(x) ∈ Yf .

As is discussed above, the reconstruction algorithm correctly replies to the
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queries from A(y) for any y ∈ Yf . The reconstruction algorithm identically
builds the real truth table Z. ⊓⊔

Let ϵ = 2−n/3. We say fn is “ϵ-good” if |If | ≥ ϵ2n. It implies that for any
ϵ-good fn, the probability of Awins ∧ yhit is more than ϵ over the choice of
y ∈ {0, 1}. Let Sϵ be the set of fn such that fn is ϵ-good. We reconsider the
probability Prfn,y[Awins ∧ yhit].

Since fn is a random permutation, we consider the following cases:

• Case 1: fn is ϵ-good.

In this case, we have |If | ≥ ϵ2n = 22n/3. Since |If | ≤ 3kq2|Yf |, we have

|Yf | ≥
|If |
3kq2

≥ 22n/3

3kq2
. (3.45)

Note that fn canbe encodedby (Xf , Yf , Zf ). Here, |Zf | is encodedby log((2n−
|Yf |)!) bits. We have

Pr
fn
[fn ∈ Sϵ] ≤

(
2n

|Yf |

)2 · (2n − |Yf |)!
(2n)!

=

(
2n

|Yf |

)
|Yf |!

≤ (
e2n

|Yf |
)|Yf |(

e

|Yf |
)|Yf | ≤ (

e22n

|Yf |2
)
|Yf |

.

(3.46)

Note that q is a polynomial of n. Since |Yf | ≥ 22n/3/5q2, for large enough n,
we have

(
2ne2

|Yf |2
)
|Yf |

≤ (
9e2k2q42n

24n/3
)|Yf | = (

9e2k2q4

2n/3
)|Yf | ≤ 2−n. (3.47)

Thus, for every random tape of CoverFinder and A, we have

Pr
fn,y

[Awins ∧ yhit ∧ fn ∈ Sϵ] ≤ Pr
fn
[fn ∈ Sϵ] ≤ 2−n (3.48)

for large enough n.

• Case 2: fn is not ϵ-good.

In this case we have |If | < ϵ2n, and thus for y ← {0, 1}n, the probability
that A(y) inverts y is at most ϵ = 2n/3. We have

Pr
fn,y

[Awins ∧ yhit ∧ fn ̸∈ Sϵ] ≤ Pr
y
[Awins ∧ yhit|fn ̸∈ Sϵ] ≤ 2−n/3.

(3.49)
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From inequality (3.48) and (3.49), we have

Pr
fn,y

[Awin ∧ yhit] ≤ 2−n + 2−n/3 ≤ 2−n/2, (3.50)

for large enough n, which completes the proof. ⊓⊔

3.4.3 From yhit to yhit

In this subsection, we show that if there exists an adversaryAf,CoverFinder that can
invert y with triggering yhit, then we can construct an another algorithm to
invert y without triggering yhit.

Lemma 15 For any y ∈ {0, 1}n and any permutation fn, suppose there exist a
polynomial p(n) and a polynomialtime algorithm A such that

Pr
CoverFinder,A

[Awin ∧ yhit] ≥ 1

p(n)
(3.51)

for infinitely many n. Then, there exists a polynomialtime algorithm B such
that

Pr
CoverFinder,B

[Bwin ∧ yhit] ≥ 1

2p(n)
(3.52)

for infinitely many n.

Proof. The intuition of constucting B is as follows. Suppose A is a polynomial-
time algorithm depicted above. B mainly follow the steps of A. The difference
is that every time A(y) queries to CoverFinder (that is, every time A has chances
to trigger the event yhit), B tries to inverse y before the query to CoverFinder by
additional operations (without querying CoverFinder). Suppose that A(y) trig-
gers yhit for the first time in the ith query to CoverFinder, and that B succeeds
in inversing y by additional operations before this query. This implies that B
inverses y without triggering yhit.

Now we show how to inverse y by additional operations without querying
CoverFinder. Let us review the strategy ofCoverFinder. Taking as input (Cf

1 , ..., C
f
k ),

it picks a randomw ∈ {0, 1}n and k random permutations πi on {0, 1}n. For each
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i ∈ [k], it picks the lexicographically smallest ji ∈ {0, 1}n such that Ci(πi(ji)) is
equal to Ci(πi(w)). Note that here the behavior of CoverFinder is independent to
y. If the computation of Cf (·) requires a fn-query x such that fn(x) = y, we say
Cf (·) “hits” y. Since w and πi are uniformly random, the event that Cf

i (w) hits y
and the event that Cf

i (wi) hits y are of the same probability for each i, where the
probability is taken over the choice of y and randomness of CoverFinder.

We add following operations toA. BeforeAqueries (w,w1, ..., wk)← CoverFinder(C1, ..., Ck),
it picks random w∗ ∈ {0, 1}n and then computes Cf

i (w
∗) for each i. This is the

same as the behaviors of CoverFinder(C1, ..., Ck). This implies that for any f , the
probability that Cf

i (w
∗) hits y is equal to the probability that Cf

i (w) hits y, and
thus is equal to the half of the probability thatCf

i (w) andC
f
i (wi) hit y. To add up

the case of i ∈ [k], the probability that our additional operations hit y is a half of
the probability that CoverFinder(C1, ..., Ck) triggers yhit, where the probability
is taken over the choice of y and the randomness of CoverFinder and B.

Formally, taking as input y ∈ {0, 1}n, the algorithm B follows the steps of
A(y). Additionally, when A makes a query to oracles f and CoverFinder, B be-
haves as follows:

• When it queries x to f , B also queries x to f .

• WhenAqueries (C1, ..., Ck) toCoverFinder,B randomly choosesw∗ ∈ {0, 1}n

and evaluatesCf
i (w

∗) for each i ∈ [k]. In this process, if it ever queries x′ to
fn where y = fn(x), B terminates and outputs x. If it does not terminate,
it queries (C1, ..., Ck) to CoverFinder.

Next, we prove the inequality (3.52). Let q be the upper bound of the num-
ber of queries to CoverFinder made by A, and let C(1), ..., C(q) be the queries to
CoverFinder made by A(y) (each C(i) is a tuple of k circuits (C(i)

1 , ..., C
(i)
k )). There

are at most q “chances” for B to terminate. We define two events as follows:

• Jumpi: Before querying CoverFinder(C(i)), B choosesw∗ such thatC(i)
j (w∗)

hits y for some j ∈ [k], which leads to termination.

• Faili: The query C(i) to CoverFinder triggers yhit.
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Weobserve that the eventBwin∧yhit occurs if and only if Jumpi happens
for some i ∈ [q] and Failj never occurs for any j < i. That is,

Pr[Bwins ∧ yhit] =
∑
i∈[q]

Pr[Jumpi ∧
∧
j<i

Failj]. (3.53)

In addition, we observe that for any fn, Jumpi happenswith the half of prob-
ability that Faili happens. That is,

Pr
CoverFinder,B

[Jumpi|
∧
j<i

Failj] =
1

2
Pr[Faili|

∧
j<i

Failj]. (3.54)

From equality (3.53) and (3.54), we have

Pr
CoverFinder,B

[Bwins∧yhit] = 1

2

∑
i∈[q]

Pr[Faili∧
∧
j<i

Failj] =
1

2
Pr[

∨
i∈[q]

Faili]. (3.55)

Note that
∨

i∈[q] Faili implies yhit and that Pr[yhit] ≥ Pr[Awins∧yhit] ≥
1

p(n)
. We have Pr[Bwins ∧ yhit] ≥ 1

2p(n)
. This completes the proof.

⊓⊔

3.4.4 Main Result

In this section, we give the separation result using the lemma in the last three
subsections.

Theorem 6 For any constant k ≥ 2 and r, there is no fully blackbox construc
tion from OWP of kSRH compressing n bits to l(n) < n− log k bits.

Proof.
Suppose there exists such a fully black-box construction (Samp,R). Let Γ =

(f,CoverFinder) be the oracle depicted in section 3.4.1. Due to Lemma 11, for any
permutation fn, there exists a polynomial p(n) such that

Pr
Samp,CoverFinder

 ∀i, x ̸= xi

Ci(x) = Ci(xi)

∣∣∣∣ (Cf
1 , ..., C

f
k )← Sampf (1n)

(x, x1, ..., xk)← CoverFinderf (1n, C1, ..., Ck)

 ≥ 1

p(n)
,

(3.56)

69



for infinitely many n ∈ N.
Since (Samp,R) is a fully black-box construction, given access to any oracle

Γ = (f,CoverFinder), there exists a polynomial pR such that

Pr
y,R

[y = fn(x)|x←RΓ(y)] ≥ 1

pR(n)
(3.57)

for infinitely many n ∈ N and thus

Pr
fn,y,R

CoverFinder

[y = fn(x)|x←RΓ(y)] ≥ 1

pR(n)
. (3.58)

That is,
Pr[Rwin ∧ yhit] + Pr[Rwin ∧ yhit] ≥ 1

pR(n)
. (3.59)

Due to Lemma 12, Pr[Rwin∧yhit] ≤ 2−n/7 for large enough n. Thus, there
exists a polynomial p′R(n) such that Pr[Rwin∧yhit] ≥ 1

p′R(n)
. From an average

argument, we have

Pr
fn,y

[ Pr
CoverFinder,R

[Rwin ∧ yhit] ≥ 1

2p′R(n)
] ≥ 1

2p′R(n)
. (3.60)

Let T = {(fn, y)|PrCoverFinder,R[Rwin ∧ yhit] ≥ 1
2p′R(n)

}. Due to Lemma 15,
for any (fn, y) ∈ T , there exists a polynomial-time machine R̃ such that

Pr
CoverFinder,R̃

[R̃win ∧ yhit] ≥ 1

4p′R(n)
(3.61)

for infinitely many n. Therefore,

Pr
fn,y,R̃

CoverFinder

[R̃win ∧ yhit] ≥ Pr
fn,y,R̃

CoverFinder

[R̃win ∧ yhit ∧ (fn, y) ∈ T ]

= Pr
CoverFinder,R̃

[R̃win ∧ yhit|(fn, y) ∈ T ] · Pr
fn,y

[(fn, y) ∈ T ]

≥ 1

4p′R(n)
· 1

2p′R(n)
=

1

8p′R(n)
2

for infinitelymanyn. This contradicts to Lemma 12 showing that this probability
is negligible. ⊓⊔
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3.5 From krSRH to General (r, k)SRH

In the last sections, we discuss the attacks and properties of k-rSRH. In this
section, we extend the results to general (r, k)-SRH.

Since k-restricted subset resilience is a weaker assumption than (k, k)-subset
resilience, our results can be smoothly extended to (k, k)-subset resilience.

• In Section 3.2, we propose a quantumalgorithm finding k-restricted subset
covers that are also (k, k)-subset covers.

• In Section 3.3, we prove that the existence of k-rSRH implies the existence
of dCRH. Note that the existence of (k, k)-SRH immediately implies the
existence of k-rSRH, so it further implies that of dCRH.

• In Section 3.4, we prove the fully black-box separation of k-rSRH from
OWP, which also implies the same result of (k, k)-SRH from OWP.

On the other hand, it is non-trivial to extend the result from (k, k)-SRH to
(r, k)-SRH, since (k, k)-SRH is a stronger assumption than (r, k)-SRH for r <
k. It is natural that when we turn to (r, k)-SRH, there will be some additional
constraint conditions upon our results.

Now we explain how our results of (k, k)-SRH is generalized to (r, k)-SRH.
We give a simple example on generalizing our first result to finding an (r, k)-
restricted subset cover. Given quantum access to H = (h1, ..., h4) where hi :

X → Y , we aim to find a (2,4)-restricted subset cover (x, x1, x2) forH. It implies
that for each i ∈ [4], hi(x) ∈ {hi(x1), hi(x2)} holds. Denote h1||2(x) ≜ h1(x)||h2(x)
and h3||4(x) ≜ h3(x)||h4(x). Here h1||2 and h3||4 map fromX to Y ′ ≜ Y 2. Suppose
X ≥ 3|Y ′| = 3|Y |2. We can run the algorithm in Section 3.2 on (h1||2, h3||4) and
obtain (x, x1, x2), where h1||2(x) = h1||2(x1) and h3||4(x) = h3||4(x2). Thus, it is
a (2, 4)-restricted subset cover (and also a (2,4)-subset cover) w.r.t. (h1, ..., h4).
The time complexity is O(|Y ′|3/7) = O(N6/7).

Formally, we generalize our results to (r, k)-SRH (and also to (r, k)-rSRH) as
follows:
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Theorem 7 (Extended Theorem 2) For constant k ≥ 2 and r, denote ω =

⌈k/r⌉. Let H = (h1, ..., hk) be a tuple of functions where hi : X → Y and
|X| ≥ (r + 1)|Y |ω = (r + 1)Nω. There exists an algorithm finding an (r, k)
subset cover forH with overwhelming probability usingO(N

ω
2
(1− 1

2r+1−1
)
) quan

tum queries toH.

Proof.
To prove this statement, we only need to consider the case where k = ωr.

If k < ωr ≜ k′, we denote hk+1, ..., hk′ by functions mapping X to a constant
element of Y . Then, we obtain a tuple of k′ functions. Finding a subset cover for
this tuple implies finding a subset cover for (h1, ..., hk).

Nextwe assume that k = ωr. For each i ∈ [r], denoteh∗i (x) ≜ h∗(i−1)ω+1(x)||...||h∗iω(x).
Thus, H∗ = (h∗1, ..., h

∗
r) is a tuple of functions where h∗i : X → Y ′ and |Y ′| =

|Y |ω = Nω. Note that |X| ≥ (r + 1)|Y ′| due to the conditions on each hi.
We can run the algorithm in Theorem 2 on H∗, and obtain (x, x1, ..., xr) as a r-
restricted subset cover of H∗ with overwhelming probability. The output is an
(r, k)-restricted subset cover of H (and also an (r, k)-subset cover). Due to The-
orem 3, the number of required quantum queries to H is O(|Y ′|

1
2
(1− 1

2r+1−1
)
) =

O(N
ω
2
(1− 1

2r+1−1
)
).

⊓⊔

Theorem 8 (Extended Theorem 4) For constant k ≥ 2 and r, denote ω =

⌈k/r⌉. Assuming the existence of a secure (r, k)SRH such that each of func
tions compresses 2ωn bits to n bits, then there exists an (infinitely often) secure
dCRH.

Proof. Similar to the last theorem, we also only need to consider the case that
k = ωr. In the case that k < ωr ≜ k′, the existence of (r, k)-SRH implies the
existence of (r, k′)-SRH. Then we can turn to prove that the existence of (r, k′)-
rSRH implies the existence of dCRH, which implies the original statement.

Nextwe assume that k = ωr and there exists an (r, k)-SRHH = {h : {0, 1}2ωn →
{0, 1}n} w.r.t. k-sampling algorithm Sampk. Denote another function family en-
semble by H∗ = {h∗ : {0, 1}2ωn → {0, 1}ωn} and its k-sampling algorithm by
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Samp∗k. Samp∗k runs as follows. It samples (h1, ..., hk) ← Sampk, and let h∗i ≜
h(i−1)ω+1||...||hiω for each i ∈ [r]. Then, it outputs (h∗1, ..., h∗r). We observe that an
r-restricted subset cover of (h∗1, ..., h∗r)← Samp∗k implies an (r, k)-subset cover of
(h1, ..., hk) ← Sampk. Thus, H∗ is an r-rSRH w.r.t. Samp∗k since H is (r, k)-rSRH
w.r.t. Samp∗k. Furthermore, the existence of H∗ (mapping 2ωn bits to ωn bits)
implies the existence of a dCRH due to Theorem 4. This completes the proof.

⊓⊔

Theorem 9 (Extended Theorem 6) For constant k ≥ 2 and r, let ω = ⌈k/r⌉.
There is no fully blackbox construction from OWP to (r, k)SRH compressing
n bits to l(n) < (n− log r)/ω bits.

Proof. Again, we consider the case that k = ωr. In the proof of Theorem 8,
we show that an (r, k)-rSRH compressing n bits to l(n) bits immediately implies
a k-rSRH compressing n bits to ωl(n) ≜ l′(n) bits. Note that l′(n) < n − log r.
Due to Theorem 6, there is no fully black-box construction of such a k-rSRH
fromOWP. It implies that there is no fully black-box construction of (r, k)-rSRH
compressing n bits to l(n) bits from OWP. ⊓⊔

Remark 5 Note that coverfree families (CFFs) are informationtheoretic ver
sion of SRH, implying the possibility to construct a perfect SRH without any
assumption (such as OWP). For instance, by implementing the CFF in [48], we
can constuct an (r, k)SRHmapping {0, 1}n to {0, 1}l(n) where 2l(n) ≤ 16r2n and
k = 2l(n)/4r. However, it does not contradicts to our result, since the parameter
k in this instance is far from a constant. We stress that our Theorem 8 and 9
only work on their constraint conditions.

3.6 Conclusion and Open questions

In this work, we present three results on the studies of subset resilience. The
first result is a generic quantum attack against subset resilience. This implies an

73



upper bound of the security of subset resilience. The second result is the relation
with dCRH. It implies that the power of assuming SRH is stronger than dCRH.
The third result is the fully black-box separation from one-way permutations,
which rules out the possibility of constructing SRH from one-way permutations
in a fully black-box manner.

Note that there is a constraint condition in each statement. (For example, we
only rule out the possibility of constructing an (r, k)-SRH from OWP in the case
that l(n) < (n − log r)/ω where ω = ⌈k/r⌉.) Indeed, we do not know whether
the bounds of the parameters and the complexity of the attacks are optimal, and
we cannot give a counterexample when the parameter is out of the bound. It
leaves an open question of whether we can improve the results presented in this
chapter.

Target subset resilience is a weaker variant of subset resilience. It is first
proposed as a security notion needed in RMA security of HORS[94]. Although
the CMA security of SPHINCS[15] and Gravity-SPHINCS[9] is reduced to sub-
set resilience, the reductions are non-tight since finding a subset cover does not
immediately cause a forgery. SPHINCS+[17] fills this gap by introducing inter-
leaved target subset resilience (ITSR), a variant of target subset resilience. Thus,
it is also an interesting open questionwhether our results can be extended to tar-
get versions of subset resilience.

There are still a number of open questions around SRH. First, we do not
know how to construct a provable SRH based on other assumptions, such as
hard mathematical problems (we only ruled out the possibility of being con-
structed by one-way permutation). Second, we do not know other practical ap-
plications of SRH, such as constructing commitment schemes or analyzing hash
functions with particular structures. Third, we do not know whether it is pos-
sible to construct a CRH from SRH. These questions have been answered with
regard to other relaxations of CRH, such as multi-collision-resistant hash func-
tions (MCRH).

Talking about MCRH, it has very similar properties to SRH on our results.
However, we cannot observe a precise relation between SRH and MCRH. This
is another interesting question about SRH.
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Chapter 4

Security Notions for Stateful
Signature Schemes

4.1 Stateful Signature Schemes

A stateful signature scheme is a special signature schemewhere the signer needs
to maintain a state during signing operations. When signing a message, the
signer inputs the state along with the secret key and the message, and then, the
current state may be updated to a new state.

4.1.1 Definitions

In this subsection, we give a formal definition for stateful signature schemes.

Definition 21 (Stateful signature scheme.) A stateful signature schemeΓ con
sists of three polynomialtime algorithms (KeyGen, Sign,Ver) along with an as
sociated message spaceM = {Mλ} and an associated state space ST = {STλ}
such that:

• The probabilistic key generation algorithm KeyGen(1λ; c) takes as input
the security parameter 1λ. It outputs a pair of keys (pk, sk) and a state
st0. The behavior of KeyGen is determined by a random coin c uniformly
chosen from {0, 1}λ.
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• The signing algorithm Signsk(m, st) takes as input a secret key sk, a mes
sagem ∈Mλ and a state st ∈ STλ. It outputs a signature and a new state
(σ, st′).

• The deterministic verification algorithm Verpk(m,σ) takes as input a pub
lic key pk, amessagem ∈Mλ and a signature σ. It outputs a bit b ∈ {0, 1}.

Obviously, a stateless signature scheme is a special case of a stateful signature
scheme, where st ≡ ∅.

Similar to a stateless signature scheme, a stateful signature scheme needs to
be correct. It is a natural idea to define the correctness as Verpk(m,σ) = 1 for any
(pk, sk, st0) ← Gen(1λ), m ∈ Mλ, st ∈ STλ and σ ← Signsk(m, st), but this is too
strong for a general stateful signature scheme. In some cases, there are some
st ∈ STλ that never appear as the signer’s state. We call them “invalid“ states.
It is meaningless to confirm the validity of signatures that are signed with such
invalid states. We thus define the correctness of stateful signature schemes as
follows.

Definition 22 Let Γ = (Gen, Sign,Ver) be a stateful signature with state space
{STλ}. For (pk, sk, st0) ← Gen(1λ), a valid state space ST⊤λ (sk, st0) ⊂ STλ is
described as follows:

ST⊤λ (sk, st0) := {st0}∪{st′|∃m ∈Mλ, st ∈ ST⊤λ (sk, st0) : (σ, st
′)← Signsk(m, st)}.

(4.1)
We say a stateful signature scheme Γ = (KeyGen, Sign,Ver) is correct if for

any (pk, sk, st0) ← KeyGen(1λ), m ∈ Mλ, and st ∈ ST⊤λ (sk, st0), if (σ, ∗) ←
Signsk(m, st), then Verpk(m,σ) = 1 holds.

The correctness of stateless signature schemes is slightly different than that
of stateful schemes. A stateless signature σ is a valid signature as long as it is
generated by Signsk(m). However, for a stateful signature scheme, σ is a valid
signature if it is generated by Signsk(m, st), where the state st is a valid state. It
is possible that Signsk(m, st) outputs an invalid signature when st is not valid.
In some cases, the signing algorithm of a stateful signature scheme contains a
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verification operation for checking whether the state is valid. This verification
operation is helpful for protecting the security of the scheme in cases where an
attacker can exchange the current state with a malicious state.

4.1.2 Security Notions

In this section, we introduce the security notions for stateful signature schemes.
We consider various adversaries that have different levels of control over the
messages and states.

First, we consider the adversary, which is identical to the that in standard def-
inition. In this case, the adversary can obtain the signatures of chosenmessages.
The states are maintained by the signing oracle and not given to the adversary.
We call this scenario a hidden state attack (HSA). The formal definition is de-
picted as follows.

Definition 23 Let Γ = (KeyGen, Sign,Ver) be a stateful signature scheme. If
for all probabilistic, polynomialtime adversariesA in Figure 4.1 there exists a
negligible function ϵ : N→ R such that for every λ ∈ N,

Pr[ExpEU-HSCMA
Γ,A (λ) = 1] ≤ ϵ(λ), (4.2)

where the probability is taken over the randomness of A and Γ, we say that Γ
is existentially unforgeable under a hidden state chosen message attack (EU
HSCMA).

Next, we take twomore powerful adversaries into consideration. In one case,
the adversary has knowledge of the current state maintained by the signing ora-
cle. We call this known state attack rather than a hidden state attack. In another
case, the adversary can not only obtain the current states but also change them.
Thismeans that the adversary is able to request signatures for amessagem along
with any state st as desired, and it obtains a corresponding signature and a new
state in response. We call this a chosen state attack. The formal definition is
depicted as follows.
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ExpEU-HSCMA
Γ,A (λ) OHSCMA(m)

Qmsg ← ∅ Qmsg ← Qmsg ∪ {m}
(pk, sk, st)← KeyGen(1λ) (σ, st′)← Signsk(m, st)

(m⋆, σ⋆)← AOHSCMA
(1λ, pk) st← st′

b← Verpk(m⋆, σ⋆) return σ
if b = 1 ∧m⋆ ̸∈ Q then
return 1

return 0

Figure 4.1: Definition of the experiment ExpEU-HSCMA
Γ,A (λ) from Definition 23.

Definition 24 Let Γ = (KeyGen, Sign,Ver) be a stateful signature scheme. Let
∗ ∈ {KSCMA,CSCMA}. If for all probabilistic, polynomialtime adversaries A
in Figure 4.2 there exists a negligible function ϵ : N → R such that for every
λ ∈ N,

Pr[ExpEU-∗
Γ,A (λ) = 1] ≤ ϵ(λ), (4.3)

where the probability is taken over the coins flipped by A and the choice of c,
we say:

• Γ is existentially unforgeable under a chosen state chosenmessage attack
(EUKSCMA) if ∗ = KSCMA.

• Γ is existentially unforgeable under a chosen state chosenmessage attack
(EUCSCMA) if ∗ = CSCMA.

It is very reasonable to consider security against known state and chosen state
adversaries in practice. When using a stateful signature scheme, the secret key
and the states can be saved separately. The secret key can be saved in read-only
storagewhile the state ismaintained inwritablememory. For some side-channel
attackers, it is much easier to extract information from writable memory than
from read-only memory.
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ExpEU-∗
Γ,A (λ) On-wCSCMA(m, st)

Qmsg,Qs ← ∅ if ∃i s.t. (st, i) ∈ Qs then
(pk, sk, st)← KeyGen(1λ) if i ≥ n return (⊥, st)
(m⋆, σ⋆)← AO∗(1λ, pk, st) Qs ← Qs ∪ {(st, i+ 1)} \ {(st, i)}
b← Verpk(m⋆, σ⋆) elseQs ← Qs ∪ {(st, 1)}
if b = 1 ∧m⋆ ̸∈ Qmsg then Qmsg ← Qmsg ∪ {m}
return 1 (σ, st′)← Signsk(m, st)

return 0 return (σ, st′)

OKSCMA(m) OCSCMA(m, st)

Qmsg ← Qmsg ∪ {m} Qmsg ← Qmsg ∪ {m}
(σ, st′)← Signsk(m, st) (σ, st′)← Signsk(m, st)

st← st′ return (σ, st′)

return (σ, st′)

Figure 4.2: Definitions of the experiments from Definitions 24 and 25
.
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It is obvious that being EU-CSCMA implies being EU-KSCMA and further
implies beingEU-HSCMA. In addition, we prove that beingEU-CSCMA is equiv-
alent to being stateless EU-CMA. If a stateless signature scheme is EU-CMA, it
is EU-CMA immediately because states play no role in this case. Next, we show
that a stateful EU-CSCMA signature scheme can be simply converted to a state-
less EU-CMA scheme.

Theorem 10 (EUCSCMA↔ stateless EUCMA.) Suppose a stateful signature
scheme
Γ = (KeyGen, Sign,Ver) is EUCSCMA; then, there exists an EUCMA stateless
signature scheme Γ′.

Proof. Γ′ = (KeyGen′, Sign′,Ver′) runs as follows:
When KeyGen′ takes 1λ as input, it runs KeyGen(1λ) → (pk, sk, st0) and out-

puts (pk′, sk′) = ((pk, st0), (sk, st0)). When Sign′ takes as input a messagem and
secret key sk′ = (sk, st0), it runs Signsk(m, st) → (σ, st0) and outputs σ. When
Ver′ takes as input pk′ = (pk, st0),m and σ, it outputs b← Verpk(m,σ).

Note that the behaviors of OCMA
Γ′ (·) and OCSCMA

Γ (·, st0) are the same, and the
verification algorithms of Γ′ and Γ are the same as well. This means that if there
exists an adversary A that can break the CMA security of Γ′, there exists a re-
ductionRA that can break the CSCMA security of Γ. Here,RA simply simulates
OCMA

Γ′ (·) by OCSCMA
Γ (·, st0) for A.

⊓⊔

From what has been discussed above, if a stateful signature scheme is EU-
CSCMA, it is unnecessary to maintain any state at all. Thus, this notion is too
strong and goes beyond what we expect for stateful signature schemes.

In the following, we present a more relaxed notion that fits our expectations.
We call it an n-weak chosen state attack (n-wCSA). In this case, the adversary
can also query the signing oracle with a message and a state, but there is an
additional restriction where the adversary is not allowed to query on the same
state more than n times. A formal definition follows.
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Definition 25 Suppose Γ = (KeyGen, Sign,Ver) compose a stateful signature
scheme. If for all probabilistic, polynomialtime adversaries A in Figure 4.2
there exists a negligible function ϵ : N→ R such that for every λ ∈ N,

Pr[ExpEU-n-wCSCMA
Γ,A (λ) = 1] ≤ ϵ(λ), (4.4)

where the probability is taken over the randomness ofA and Γ, we say that Γ is
existentially unforgeable under an nweak chosen state chosenmessage attack
(EUnwCSCMA).

Note that if n is extremely large (e.g., exponential with respect to the param-
eter λ), EU-n-wCSCMA is equivalent to EU-CSCMA since a polynomial-time ad-
versary cannot query the signing oracle that many times. In particular, we sim-
ply call 1-wCSCMA wCSCMA for convenience. In the EU-wCSCMA experiment,
all states are distinct. The adversary is allowed to read and change the state but
not to reuse any state.

We can similarly define the security notions for stateful signature schemes
under RMA, where the adversary can only obtain signatures for random mes-
sages and hidden/known/chosen/weak-chosen states. This results in HSRMA/
KSRMA/CSRMA/wCSRMA security. Starting in the next subsection, we focus
on security under CMAs since the results underRMAs can also be proven in simi-
lar ways. For convenience, we say CSA, wCSA, KSA, andHSA instead of CSCMA,
wCSCMA, KSCMA, and HSCMA.

In the following, we explore the relationships among these security notions.

4.1.3 FromHSAsecurity to KSAsecurity

It is obvious that EU-KSA implies EU-HSA. Furthermore, we can convert an EU-
HSA signature into an EU-KSA signature with the help of a pseudorandom func-
tion. Here, the pseudorandom function is used to “encrypt” the states, thereby
preventing aKSAadversary fromgaining additional information from the knowl-
edge of states.

Theorem 11 (EUHSA+ PRF→EUKSA.) Let Γ be an EUHSA stateful signa
ture scheme with a state space ST = {0, 1}λ and Fk : {0, 1}λ×{0, 1}λ → {0, 1}λ
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KeyGen′(1λ)
(pk, sk, st0)← KeyGen(1λ)
r, k

$←− {0, 1}λ

s̃k := (sk, k), s̃t0 := (r, Fk(r)⊕ st0)
return (pk, s̃k, s̃t0)

Sig′
s̃k
(m, s̃t)

Parse s̃k = (sk, k), s̃t = (r, t)

st = t⊕ Fk(r)

(σ, st′)← Signsk(m, st)

r′
$←− {0, 1}λ

s̃t′ := (r′, Fk(r
′)⊕ st′)

return (σ, s̃t′)

Ver′pk(m,σ)
return Verpk(m,σ)

Figure 4.3: Construction of an EU-HSA scheme from an EU-KSA scheme.
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be a pseudorandom function. Then, the Γ′ = (KeyGen′, Sign′,Ver′) depicted in
Figure 4.3 is an EUKSA stateful signature scheme.

Proof.
We show that the success probability of a probabilistic polynomial-time ad-

versary in the EU-KSA experiment against Γ′ is negligible as long as Γ is EU-
HSA and F is a pseudorandom function. We consider the following sequence of
games.

• Game 0 is the original EU-KSA experiment against Γ′.

• Game 1 differs fromGame 0 in the following ways. In KeyGen′, it picks a
random function f : {0, 1}λ → {0, 1}λ. After that, all theFk used inKeyGen′

and Sign′ are replaced by f .

Suppose the success probability of adversary A differs in Game 0 and
Game 1, and we construct a distinguisher DA for breaking the pseudo-
randomness of F . Given access to an oracleO : {0, 1}λ → {0, 1}λ, which is
eitherFk(·) or a truly random function f ,D runs (pk, sk, st0)← KeyGen(1λ)
and randomly picks r ∈ {0, 1}λ. Let st = st0. Then, it computes s̃t =

(r, st0 ⊕ O(r)) by making a query to O. After that, D runs A(1λ, pk, s̃t).
WhenAqueries for a signature for amessagem,D runs (σ, st′)← Signsk(m, st)

andupdates stwith st′. Then,D randomly picks r′ ← {0, 1}λ, queriesO(r′),
and returns (σ, st⊕O(r′)) toA. WhenA outputs a forgery (m⋆, σ⋆),D out-
puts 1 iff Verpk(m⋆, σ⋆) = 1.

If O is a pseudorandom function Fk with a random k ∈ {0, 1}λ, D per-
fectly simulates the challenge and the signing oracle for A in Game 0. D
outputs 1 iffA succeeds inGame 0. On the other hand, ifO is a truly ran-
dom function f , D perfectly simulates those in Game 1 and outputs 1 iff
A succeeds in Game 1. Thus, we have

|Pr[ExpGame 0
Γ′,A (λ)]−Pr[ExpGame 1

Γ′,A (λ)]| = |Pr[DFk(1λ)]−Pr[Df (1λ)]| = AdvInd-PRFF,D (λ),

(4.5)
which is negligible if F is a pseudorandom function.
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• Game 2 differs from Game 1 in the following ways. Let Qrand := {r},
where r is the randomness chosen in KeyGen′. In Sign′, every time a fresh
r′ is chosen randomly from {0, 1}λ, Sign′ additionally checks whether r′ ∈
Qrand. If so, it halts andGame 2 outputs 0. Otherwise, letQrand = Qrand∪
r′.

Suppose the adversary can query for at most q signatures during the ex-
periment. Let E be the event that Sign′ halts during Game 2. Game 2
differs from Game 1 only if E happens, that is, two identical randomness
values are repeatedly chosen from among q + 1 choices. Note that r and r′

are randomly chosen in {0, 1}λ, and we have Pr[E] = 1− (1− 1
2λ
)
q+1

< q+1
2λ

.
Thus, we have

|Pr[ExpGame 1
Γ′,A (λ)]− Pr[ExpGame 2

Γ′,A (λ)]| < q + 1

2λ
, (4.6)

which is a negligible function.

• In Game 2, state s̃t in the experiment consists of (r, f(r)⊕ st), where r is
a fresh random string and f is a truly random function. Thus, f(r) ⊕ st

is uniformly distributed in {0, 1}λ. We construct a reduction R that can
break the HSA security of Γ. Given pk, R randomly chooses r ∈ {0, 1}λ

and y ∈ {0, 1}λ and then runs A(1λ, pk, (r, y)). Every time A queries with
a message m, R queries OHSA(m) and obtains σ. After that, R randomly
chooses r′ ∈ {0, 1}λ and y′ ∈ {0, 1}λ. If r′ appeared before, R halts. Oth-
erwise, R returns (σ, (r′, y′)) to A. When A outputs (m⋆, σ⋆), R outputs
(m⋆, σ⋆) as a forgery of Γ′.

Since f(r)⊕st is uniformly distributed in {0, 1}λ,R perfectly simulates the
OHSA

Γ′ forA. Note that the verification algorithms of Γ and Γ′ are the same,
andR succeeds if A succeeds in forging a signature for Γ′. Thus, we have

Pr[ExpGame 2
Γ′,A (λ)] ≤ Pr[ExpEU-HSA

Γ,RA (λ)], (4.7)

which is negligible since Γ is EU-HSA.

To summarize, we have

Pr[ExpEU-KSA
Γ′,A (λ)] ≤ Pr[ExpEU-HSA

Γ,RA (λ)] + AdvInd-PRFF,DA (λ) +
q + 1

2λ
, (4.8)
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which is negligible due to the abovementioned assumptions. ⊓⊔

4.1.4 KSAsecurity and wCSAsecurity

Note that EU-CSA implies EU-n-wCSA and further implies EU-KSA, but the re-
lationship between EU-KSA and EU-n-wCSA is not clear. Many well-known ex-
amples of stateful signature schemes (such as the MSS [87]) are both EU-KSA
and EU-wCSA, but the next fact shows that EU-KSA does not imply EU-wCSA
in general.

Lemma 16 (EUKSA ̸⇒ EUwCSA.) There exists an EUKSA stateful signa
ture scheme Γ′ that is not EUwCSA.

Proof. Suppose Γ = (KeyGen, Sign,Ver) compose an EU-KSA stateful signa-
ture scheme with a state space {STλ}. Without loss of generality, let ⊥ be an
element such that ⊥ ̸∈ STλ for every λ. Consider a stateful signature scheme
Γ′ = (KeyGen′, Sign′,Ver′) with a state space ST ′ = {ST ′λ}, where ST ′λ = STλ ∪
{⊥}. Taking as input 1λ with a random coin c, KeyGen′ runs (pk, sk, st0) ←
KeyGen(1λ; c). Then, it outputs (pk′, sk′), where pk′ := pk and sk′ := (sk, c).
When signing a messagem together with a state st ∈ ST ′λ, Sign′ checks whether
st = ⊥. If so, it outputs (σ, st) := (c,⊥). Otherwise, it outputs (σ, st′) ←
Signsk(m, st). When verifying (m,σ), Ver′ checks whether σ is a coin or a signa-
ture of Γ. If it is a coin, it runs (p̃k, s̃k)← KeyGen(1λ;σ) and outputs 1 iff p̃k = pk.
If σ is a signature, it outputs b← Verpk(m,σ).

It is not hard to see that if Γ is correct and EU-KSA, Γ′ is also correct and
EU-KSA (since the behaviors of two signing oracles in KSA experiments are the
same). However, Γ′ is never EU-wCSA. An adversary can query OwCSA

Γ′ (m,⊥),
obtain the coin c from the answer, and generate a forgery (m⋆, c) for anym⋆ ̸= m.

⊓⊔

Despite the negative result, it is possible to convert an EU-KSA stateful sig-
nature scheme to an EU-wCSA scheme. To avoid a wCSA adversary obtaining
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KeyGen′(1λ)
(pk, sk, st0)← KeyGen(1λ)
k

$←− K

s̃k := (sk, k), s̃t0 := (st0, Fk(st0))

return (pk, s̃k, s̃t0)

Sig′
s̃k
(m, s̃t)

Parse s̃k = (sk, k), s̃t = (st, t)

if t ̸= Fk(st) return (⊥, s̃t)
(σ, st′)← Signsk(m, st)

s̃t′ := (st′, Fk(st
′))

return (σ, s̃t′)

Ver′pk(m,σ)
return Verpk(m,σ)

Figure 4.4: Construction of an EU-wCSA scheme from an EU-KSA scheme.

additional information frommaliciously chosen states, we can use a pseudoran-
dom function to “authenticate” the states so that it is infeasible for an wCSA
adversary to obtain a fresh state that is not output by the signing oracle. If so, a
wCSA adversary can only query with the current state of the signing oracle, and
thus, it is reduced to a KSA adversary. The generic construction is depicted in
Figure 4.4.

Theorem 12 (KSA + PRF → wCSA.) Let Γ be an EUKSA stateful signature
scheme with a state space ST = {STλ} and F : STλ×K → {0, 1}λ as a pseudo
random function. Then, the Γ′ = (KeyGen′, Sign′,Ver′) depicted in Figure 4.4 is
an EUwCSA stateful signature scheme.

Proof. We show that the success probability of a probabilistic polynomial-time
adversary in an EU-wCSA experiment against Γ′ is negligible as long as Γ is EU-
KSA. We consider the following sequence of games.
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• Game 0 is the original EU-wCSA experiment against Γ′.

• Game 1 differs fromGame 0 in that in KeyGen′ and Sign′, a truly random
function f : STλ → {0, 1}λ is used instead of the pseudorandom function
Fk.

Suppose that the success probability of an adversaryA differs inGame 0
andGame 1; we construct a distinguisherD to break the pseudorandom-
ness of Fk. Given an oracle O that is either Fk(·) or f(·), the distinguisher
D runs (pk, sk, st0) ← KeyGen(1λ) and computes s̃t = (st0,O(st)). Then,
D runs A(1λ, pk, s̃t). When A queries with (m, s̃t), where s̃t = (st, t), D
checks whether t = O(st). If not, it returns (⊥, s̃t). Otherwise, it runs
(σ, st′) ← Signsk(m, st) and computes s̃t′ = (st′,O(st′)). Then, it returns
(σ, s̃t′) toA. After the queries are completed,A outputs a forgery (m⋆, σ⋆).
D outputs 1 if Verpk(m⋆, σ⋆)) = 1 and outputs 0 otherwise.

In cases whereO is Fk(·), the distinguisherD perfectly simulates the chal-
lenge and the signing oracle inGame 0 forA. Thus, Pr[DFk(1λ)] = Pr[ExpGame 0

Γ′,A (λ)].
In cases where O is f , D simulates those in Game 1. Thus, Pr[Df (1λ)] =

Pr[ExpGame 1
Γ′,A (λ)]. Therefore, we have

|Pr[ExpGame 0
Γ′,A (λ)]−Pr[ExpGame 1

Γ′,A (λ)]| = |Pr[DFk(1λ)]−Pr[Df (1λ)]| = AdvInd-PRFF,D (λ),

(4.9)

which is negligible if F is pseudorandom.

• Game 2 differs fromGame 1 in that all signing queries with a fresh state
s̃t (whichmeans s̃t is not contained in the answers of previous queries) will
be answered by (⊥, s̃t).

The outputs of Game 2 and Game 1 differ only if the adversary ever
queried with a fresh state and was returned a valid signature. For every
fresh state s̃t = (st, t), f(st) is never calculated by OwCSA and is thus uni-
formly distributed in {0, 1}λ. It can be returned with a valid signature only
if t = f(st), for which the probability is at most 2−λ. Suppose the adversary
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can query for q signatures; we have

|Pr[ExpGame 1
Γ′,A (λ)]− Pr[ExpGame 2

Γ′,A (λ)]| ≤ q

2λ
, (4.10)

which is a negligible function.

• InGame 2, when the adversary queries with (m, s̃t), where s̃t = (st, t), the
query can be answered (by a non-error signature) only if s̃t is ever returned
by the signing oracle. In addition, due to the rule of the wCSA experiment,
if the adversary queries with a state more than once, the query will be an-
swered with⊥. Thus, the adversary can only obtain a valid signature from
the signing oracle if it queries with the state contained in the output of the
last query (or the challenge). This is the same as the strategy in a KSA
experiment.

Consider a reductionRA against the EU-KSA experiment against Γ. Given
a challenge (pk, st0),R picks t0 ← {0, 1}λ uniformly (at random) and runs
A(1λ, pk, (st0, t0)). After that, R records state = (st0, t0). When A queries
(m, s̃t), R checks whether s̃t = state. If not, it replies (⊥, s̃t). Otherwise,
R queries OKSA withm and obtains (σ, st′). Then, R returns (σ, (st′, t′)) to
A with a uniformly random t′ ∈ {0, 1}λ and updates state = (st′, t′).

WhenA outputs a forgery (m⋆, σ⋆), this is also a forgery for Γ. This means
thatR succeeds in the KSA experiment against Γ as long as A succeeds in
Game 2. Thus, we have

Pr[ExpGame 2
Γ′,A (λ)] ≤ Pr[ExpEU-KSA

Γ,RA (λ)], (4.11)

which is negligible if Γ is EU-KSA.

To summarize, we have

Pr[ExpEU-wCSA
Γ′,A (λ)] ≤ Pr[ExpEU-KSA

Γ,RA (λ)] + AdvInd-PRFF,DA (λ) +
q

2λ
, (4.12)

which is negligible due to the abovementioned assumptions.
⊓⊔
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Wenext demonstrate how to construct anEU-KSA scheme fromanEU-wCSA
scheme. This construction is natural: suppose there is an EU-wCSA stateful sig-
nature scheme; the remaining work is to ensure that the same state never ap-
pears twice during the process of signing.

To establish this construction, we need an additional property called sam-
plability, which implies that valid states can be sampled from the state space.

Definition 26 (Samplability.) We say a stateful signature is qsamplable if
there is a polynomialtime algorithm Sampq(pk, i) such that:

• Suppose (pk, sk, st0) ← KeyGen(1λ). Taking as input pk and an index i ∈
[q], Sampq(pk, i) outputs a valid state st ∈ ST⊤λ (sk, st0) ⊂ STλ.

• For any i1, i2 ∈ [q], let st1 ← Sampq(pk, i1) and st2 ← Sampq(pk, i2). If
i1 ̸= i2, then st1 ̸= st2.

We require q ≤ |STλ|; otherwise, there exists an index i such that Sampq(pk, i)

can never sample a state from STλ. Note that not all stateful signature schemes
are samplable. A counterexample is the scheme in Figure 4.4. It is difficult for
one who does not know the secret key to generate a valid state in that case.

Suppose that a stateful signature is EU-wCSA and q-samplable. We show the
construction of a q-time EU-KSA stateful signature by the construction method
depicted in Figure 4.5. Here, the state is a counter recording the number of
signing operations. For each signing, the signer samples a state by using the
sampling algorithm and signs the message.

Theorem 13 (wCSA+ Samplability→ KSA.) Let Γ = (KeyGen, Sign,Ver) be an
EUwCSA and qsamplable stateful signature scheme, whose sampling algo
rithm is Sampq. Then, the Γ′ = (KeyGen′, Sign′,Ver′) depicted in Figure 4.5 is a
qsamplable, qtime and EUKSA stateful signature scheme with a state space
ST ′ = {[q]}.

Proof.
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KeyGen′(1λ)
(pk, sk, st0)← KeyGen(1λ)
s̃t0 := 0

return (pk, sk, s̃t0)

Sig′sk(m, s̃t)
st← Sampq(pk, s̃t)

(σ, st′)← Signsk(m, st)

s̃t′ = s̃t+ 1

return (σ, s̃t′)

Ver′pk(m,σ)
return Verpk(m,σ)

Figure 4.5: Construction of an EU-KSA scheme from an EU-wCSA scheme.

Γ′ is q-samplable since Samp′q(pk, i) = i is a sampling algorithm for Γ′. Next
we prove the KSA security of the scheme.

Suppose there is an adversary A that succeeds in the EU-KSA experiment
against Γ′ with nonnegligible probability; then, there is a reductionRA that can
break the wCSA security of Γ. In the EU-wCSA experiment against Γ, when R
receives a challenge (pk, st0), it runs A(1λ, pk, 0) and sets s̃t := 0. Every time A
queries amessagem,R samples st← Sampq(pk, s̃t) and queriesOwCSA

Γ on (m, st),
thereby obtaining (σ, st′). After that, it updates s̃t with s̃t + 1 and replies (σ, s̃t)
to A. After at most q queries, A outputs a forgery (m⋆, σ⋆) for Γ′, and this is also
a forgery for Γ. Due to the property of the sampling algorithm, R never queries
the same state repeatedly, so it perfectly simulates the signing oracle OKSA

Γ′ for
A. Thus, the KSA security of Γ′ is reduced to the wCSA security of Γ.

⊓⊔
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4.1.5 From wCSA security to stateless CMA security

Comparedwith a stateful signature scheme, a stateless signature scheme ismore
convenient in practice since it is unnecessary to maintain the state. In Theorem
10, we showed that a stateless signature scheme can be constructed from an EU-
CSA stateful scheme. In this subsection, we consider how to construct a stateless
signature scheme from an EU-wCSA or EU-n-wCSA stateful signature scheme,
which requirea weaker assumptions than CSA security.

To construct a stateless signature schemewith anEU-wCSA q-samplable state-
ful scheme, a key point is to avoid sampling two identical states without main-
taining the states. This can be realized using a collision-resistant function that
maps the message space to [q].

Theorem 14 (wCSA+Samplability+CRH→ statelessCMA.) LetΓ = (KeyGen, Sign,Ver)
be a stateful signature scheme that is EUwCSA and qsamplable. Let H be a
collisionresistant function family mapping to [q]. Then, there exists an EU
CMA stateless signature scheme Γ′.

Proof. Let Sampq be the sampling algorithm of Γ. Γ′ is described as follows.
KeyGen′ and Ver′ are the same as those of Γ except that a function H is chosen
from H and is contained in pk and sk. For the signing algorithm, when taking
a message m as input, Sign′ samples st ← Sampq(pk,H(m)) and runs (σ, st′) ←
Sign(m, st). Then, it outputs σ.

We show that Γ′ is EU-CMA if Γ is EU-wCSA and thatH is collision resistant.
Suppose there is an adversary A that can succeed in the EU-CMA experiment
against Γ′ with nonnegligible probability; then, there is a reductionRA that can
succeed in the EU-wCSA experiment against Γ or can output a collision of H.
First, R receives a challenge pk for the EU-wCSA experiment against Γ and a
challengeH for the collision resistance experiment ofH. Then,R runsA(1λ, pk).
When A queries for the signature of a message m, R records (m,H(m)) in a
list QH and checks whether there exists (m′, H(m′)) ∈ QH such that m ̸= m′

but H(m) = H(m′). If so, R returns a collision (m,m′) for H. Otherwise, R
queries (m, Sampq(pk,H(m))) to OwCSA

Γ . Due to the property of samplability,
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Samp(pk,H(m)) is never queried as a state prior to this point. OwCSA
Γ outputs

(σ, st′), where σ is also a valid signature forΓ′. R returns σ toA. After the queries
are completed, A returns a forgery (m⋆, σ⋆), andR outputs (m⋆, σ⋆) as a forgery
for Γ.

Let Collision be the event that A queries m and m′ at any point, where
H(m) = H(m′). If Collision occurs, R succeeds in obtaining a collision for
H. Otherwise,R perfectly simulates the signing oracle for A. Then,R succeeds
in the wCSA experiment against Γ ifA succeeds in the CMA experiment against
Γ′. Thus, we have

Pr[ExpEU-CMA
Γ′,A (λ)] ≤ Pr[ExpEU-CMA

Γ′,A (λ)|Collision] + Pr[Collision]

= Pr[ExpEU-wCSA
Γ,RA (λ)] + AdvCollH,RA(λ),

(4.13)

which is negligible if Γ is EU-wCSA andH is collision resistant. ⊓⊔

This construction only works on the condition that q is super-polynomial.
Otherwise, there does not exist such a collision-resistant function familyHmap-
ping to [q], since a birthday attack can always find a collision with constant prob-
ability after q1/2 queries to H. However, it is possible to convert an EU-n-wCSA
scheme into a stateless scheme even if q is polynomial in the security param-
eter. The stateless scheme runs as follows. Every time the scheme signs for a
message, it samples a state by using the sampling algorithm, taking as input a
fresh randomness value r, which is uniformly chosen from [q]. Then, it signs the
message with this state using the EU-n-wCSA stateful signature scheme. If the
number of signing operations is not very large, it is of a small probability that
the same state is repeatedly chosen more than n. To ensure that this probability
is negligible, the number of signing operations needs to be limited.

Theorem 15 (nwCSA+Samplability→Ntime stateless CMA). LetΓ = (KeyGen, Sign,Ver)
be a qsamplable nwCSA stateful signature scheme and Sampq be a sampling
algorithm for Γ. The Γ′ = (KeyGen′, Sign′,Ver′) depicted in figure 4.6 is an EU
wCSA, Ntime stateless signature scheme, where N(λ) = nq1−1/n ·O(2−λ/n).
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KeyGen′(1λ; c)
(pk, sk, st0)← KeyGen(1λ; c)
s̃k := (pk, sk)

return (pk, (pk, s̃k))

Sig′
s̃k
(m)

Parse s̃k = (pk, sk)

r
$←− [q]

st← Sampq(pk, r)

(σ, st′)← Signsk(m, st)

return σ

Ver′pk(m,σ)
return Verpk(m,σ)

Figure 4.6: Construction of an EU-CMA stateless signature scheme from an EU-
n-wCSA stateful scheme.
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Proof. Let be an adversary in the CMA experiment against Γ′ and A queries
OCMA at most N = qn · O(2−λ/n) times. A reduction RA for the EU-n-wCSA
experiment against Γ runs as follows. Upon receiving the challenge pk and st0,R
randomly picksN random values r1, ..., rN from the set [q]. R halts immediately
if there exists a value r ∈ [q] that is picked at least n + 1 times. After that, R
runs A(1λ, pk). When A queries with the message m in the ith query, R runs
sti ← Sampq(pk, ri). Then, R queries (m, sti) to On-wCSA

Γ , obtains (σ, st′i), and
returns σ to A. After the queries are completed, A returns a forgery (m⋆, σ⋆) of
Γ′, andR returns (m⋆, σ⋆) as a forgery of Γ.

Note that ri is chosen randomly from [q], andR perfectly simulates OCMA
Γ′ for

A (if it does not halt). Additionally, since there is no r ∈ [q] appearing more
than n times in {r1, ..., rN}, R does not query a state more than n times from
On-wCSA

Γ . The only hindrance is that R may halt when picking random values.
Let E(N, q, d) be the event such that out of N samples, a given element in [q] is
chosen d times. We have

Pr[E(N, q, d)] =
(
N

d

)
(1− 1

q
)
N−d 1

qd
<

N !

(N − d)!d!qd
. (4.14)

Since N !
(N−d)! < Nd and d! > dde−d (where e is the base of the natural loga-

rithm), we have

Pr[E(N, q, d)] < Nd

dde−dqd
= (

eN

qd
)d. (4.15)

Let α = eN
qn

= O(2−λ/n)

q1/n
. The probability that a given element is chosen more

than n times is
N∑

d=n+1

Pr[E(N, q, d)] <
N∑

d=n+1

(
eN

qd
)d <

N∑
d=n+1

(
eN

qn
)d =

N∑
i=n+1

αd < αn =
O(2−λ)

q
.

(4.16)
Thus, the probability that there is an element in [q] chosenmore than n times

is at most O(2−λ), which is the probability that R halts before it runs A. There-
fore,

Pr[ExpEU-CMA
Γ′,A (λ)] ≤ Pr[ExpEU-n-wCSA

Γ,RA (λ)] +O(2−λ), (4.17)

which is negligible if Γ is EU-n-wCSA. ⊓⊔

94



4.2 Constructions for samplablewCSAsecurity

In the previous section, we showed that a q-samplable EU-wCSA or EU-n-wCSA-
secure stateful signature scheme can be used to construct an EU-KSA stateful
signature scheme or an EU-CMA stateless scheme. Here, qmust be a large num-
ber (even though it is not required to be super-polynomial), since the numbers
of signing operations in our constructions are linearly related to q. Then, a natu-
ral question is how to construct a q-samplable EU-wCSA or EU-n-wCSA-secure
stateful signature scheme, where q is large enough. In this section, we provide
some constructions for these schemes using primitives in “lower levels”.

4.2.1 wCSAsecureStateful SignatureSchemeswithHigher
Samplability

Astateful signature scheme is often constructed fromaone-time signature scheme
(OTS), where a key pair can only be used to sign once. A CMA-secure OTS can
be considered a 1-samplable wCSA-secure stateful signature schemewhose state
space has only one element. A wCSA adversary can only query for one signature
in this case since it cannot provide two distinct states in the state space. In the
literature, there are some practical OTSs based on different kinds of assump-
tions. For example, Hülsing [67] proposed W-OTS+, which is based on the sec-
ond preimage resistance of hash functions. Lyubashevsky and Micciancio [85]
proposed an efficient lattice-based OTS. They are all efficient but constrained by
the number of signing events.

Merkle [87] proposed the Merkle tree structure, which can be used to con-
struct a multi-time signature scheme from an OTS. It essentially enlarges the
state space of a stateful signature scheme, resulting in a q-samplable scheme
with a larger q than before. We simply call this a scheme with higher sampla-
bility. A Merkle tree can be generalized by any static accumulator, as defined in
Definition 4. In this section, wedemonstrate two general constructions ofwCSA-
secure stateful signature schemes with higher samplability. The first construc-
tion is froma q-samplable EU-wCSA stateful signature scheme to a kq-samplable
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scheme for any polynomial k. It can be used to construct a polynomial-samplable
stateful signature scheme from an OTS. The second construction is from a q-
samplablewCSA-secure stateful signature scheme to a qd-samplablewCSA-secure
scheme for any constant integer d. This canbeused to construct a higher-samplable
stateful signature scheme.

Let Γ = (KeyGen, Sign,Ver) be a q-samplable EU-wCSA stateful signature
scheme and Sampq be a sampling algorithm forΓ. The first construction is shown
in Figure 4.7. It runs the key generation algorithm for Γ k times and accumulates
the public keyswith a static accumulatorA. When signing amessage, it picks one
of the key pairs of Γ according to the current state, signs the message with the
secret key and generates the witness of A for the public key. A state consists of
two counters (i, j), where i ∈ [q] and j ∈ [k]. The former records the number
of signatures issued with regard to a key pair, while the latter is the index of the
key pair.

Theorem 16 Let Γ be a qsamplable EUwCSA stateful signature scheme in
which the public key is of length l = l(λ), Sampq be a sampling algorithm for
Γ, and A be a static accumulator, where the accumulation domain includes
{0, 1}l(λ). Let Gk : {0, 1}λ → {0, 1}kλ be a pseudorandom generator. Then,
the Γ′ = (KeyGen′, Sign′,Ver′) depicted in Figure 4.7 is a kqsamplable EUwCSA
stateful signature scheme.

Proof. First, we show that Γ′ is kq-samplable. For i′ ∈ [kq], let i′ = a+ bq, where
a, b ∈ [q]. Then, SampΓ′

kq(pk, i
′) = (a, b) is a sampling algorithm for Γ′.

Next, we show that Γ′ is EU-wCSA if Gk is a pseudorandom generator andA
is a static accumulator. We consider the following sequence of experiments:

• Game 0 is the original EU-wCSA experiment against Γ′.

• Game1differs fromGame0 in the followingways. InKeyGen′, (c0, ..., ck−1)
is randomly chosen from {0, 1}kλ instead of through the pseudorandom
generatorGk. After that, (c0, ..., ck−1) is contained in sk′. InKeyGen′, (c0, ..., ck−1)
are not computed by the pseudorandom generator. Instead, they are di-
rectly obtained from sk′.
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KeyGen′(1λ; c) Sig′sk′(m, st)
(c0, c1, ..., ck−1)← Gk(c) Parse st = (i, j), sk′ := (c, pk)

For j = 0 to k − 1: if i ̸∈ [q] ∨ j ̸∈ [k] return (⊥, st)
(pkj, skj, stj)← Γ.KeyGen(1λ; cj) (c0, c1, ..., ck−1)← Gk(c)

ak ← A.Gen(1λ, k) (pkj, skj)← Γ.KeyGen(1λ; cj)
z ← A.Evalak(pk0, ..., pkk−1) sti ← Sampq(pkj, i)

pk′ := (z, ak) (σ, st′i)← Γ.Signskj
(m, sti)

sk′ := (c, pk) wj ← A.Witak(pkj)
st′0 := (0, 0) σ′ := (σ, pkj, wj)

return (pk′, sk′, st′0) st′ = (i+ 1, j)

if i = q − 1 then st′ = (0, j + 1)

return (σ′, st′)

Ver′pk′(m,σ)
Parse pk′ = (z, ak), σ′ = (σ, pk, w)

b1 ← Γ.Verpk(m,σ)
b2 ← A.Verak(pk, w, z)
return b1 ∧ b2

Figure 4.7: Construction of a kq-samplable EU-wCSA stateful signature scheme.
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SinceGk is a pseudorandom generator, the difference between the success
probabilities of Game 0 and Game 1 is negligible. Otherwise, we can
construct a distinguisher D to break the pseudorandomness of Gk. This
reduction is the same as that in previous theorems, so we omit the details.
As a result, we have

|Pr[Game 0]− Pr[Game 1]| ≤ AdvInd-PRGGk,DA
(λ). (4.18)

• In Game 1, KeyGen′ runs KeyGen k times with k randomness values and
accumulates the public keys by using a static accumulator A. We show that
if there exists an adversaryA that can succeed inGame1, we can construct
a reductionRA that can break the wCSA security of Γ or the soundness of
A.

Given the challenges pk and ak, R runs as follows. Firstly, it randomly
picks t ∈ [k] and sets pkt = pk. After that, it picks k randomness values
from {0, 1}λ and runs KeyGen k times, obtaining k key pairs of Γ. Let pki
and ski be the corresponding key pairs except for that when i = t. Note that
all the pkis (including pkt) are generated by KeyGen with a random input,
and R does not know ski. Then, R runs z ← Evalak(pk1, ..., pkk) and runs
A(1λ, (z, ak), (0, 0)).

WhenA queries with (m, st), where st = (i, j),RA replies as follows. If i ̸∈
[q] or j ̸∈ [k], it returns (⊥, st). Otherwise, it computes sti ← Sampq(pk, i).
If j ̸= t, it runs (σ, st′) ← Signskj

(m, sti). If j = t, it queries (σ, st′) ←
OwCSA

Γ (m, sti). After that, it runswj ← A.Witak(pkj) and letsσ′ = (σ, pkj, wj).
Then,R returns (σ′, st) to A.

Then, A returns a forgery (m⋆, σ′⋆). Suppose it is a valid forgery; let σ′⋆ =

(σ⋆, pk⋆, w⋆) and NewPK be the event that pk⋆ ̸∈ {pk1, ..., pkk}. We con-
sider the following two cases:

– If NewPK occurs, this means A generates a pk⋆ ̸∈ {pk1, ..., pkk} and
w⋆ such thatA.Ver(pk⋆, w, z) = 1. R returns (pk1, ..., pkk, pk⋆, w⋆), which
breaks the soundness of A.

98



– If NewPK does not occur, this means pk⋆ = pkt′ for some t′ ∈ [k].
Since all the pkis are generated by random coins, the probability that
t′ = t is 1/k. If t′ = t, R returns (m⋆, σ⋆) as a forgery of Γ, thereby
breaking the wCSA security of Γ. Thus, the probability of this case is
k · Pr[ExpwCSA

Γ,RA(λ)].

We have

Pr[Game 1] = Pr[Game 1 ∧NewPK] + Pr[Game 1 ∧NewPK]

= AdvAccu
A,RA(λ) + k · Pr[ExpEU-wCSA

Γ,RA (λ)]

To summarize, we have

Pr[ExpwCSA
Γ′,A (λ)] ≤ AdvInd-PRGGk,DA

(λ) + AdvAccu
A,RA(λ) + k · Pr[ExpEU-wCSA

Γ,RA (λ)], (4.19)

which is negligible ifGk is a pseudorandom generator, A is a static accumulator,
and Γ is EU-wCSA.

⊓⊔

The construction above is not practical enough in terms of the running times
of the key generation and signing processes, since KeyGen is invoked k times.
This implies that it can only extend the samplability property by a polynomial
factor. The second construction depicted in Figure 4.8 is a qd-samplable stateful
signature scheme from a q-samplable scheme, and this can extend the sampla-
bility property to the dth power. The cost is the linear expansion of a signature.

The construction in Figure 4.8 uses a tree structure of depth d and out-degree
q. Each node of the tree contains a key pair of Γ that is generated by a pseudo-
random coin. The key pairs at a leaf are used to sign the message, and those at
other nodes are used to sign the public keys of child nodes. The state consists
of d counters, (q1, q2, ..., qd), where qi ∈ [q]. (q2, q3, ..., qd) points to an address of a
leaf, and q1 records the number of signatures issued with regard to that leaf. The
public key of Γ′ is the public key of the root node, and the secret key is the seed
generating the tree. Given a message and a state (q1, q2, ..., qd), Γ′ signs with the
corresponding key pair and generates the d − 1 signatures from the leaf to the
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KeyGen′(1λ; c)
(pk, sk, st0)← KeyGen(1λ; c)
sk′ := c

st′0 := (0, 0, ..., 0) ∈ [q]d

return (pk, sk′, st′0)

Sig′sk′(m, st)
Parse st = (q1, q2, ..., qd)

l := ⌈log q⌉
Let Bi ∈ {0, 1}l be the binary expression of i
If ∃qi ̸∈ [q] return (⊥, st)
pk0 := m, c = sk′

For i = 1 to d:
ci := Fc(Bqi+1

||...||Bqd)

(pki, ski, st0)← KeyGen(1λ; ci)
(σi, sti)← Signski

(pki−1, Sampq(pki, qi))

σ := (σ1, ..., σd, pk1, ..., pkd−1)

If q1 = q2 = ... = qd = q − 1 then st′ = ⊥
else let j be the smallest i such that qi ̸= q − 1

st′ = (0, ..., 0︸ ︷︷ ︸
j−1

, qj + 1, qj+1, ..., qd)

return (σ, st′)

Ver′pk′(m,σ)
Parse σ = (σ1, ..., σd, pk1, ..., pkd−1)

h0 = m, pkd = pk′

For i = 1 to d: bi ← Verpki(pki−1, σi)

return
d∧

i=1

bi

Figure 4.8: Construction of a qd-samplable EU-wCSA stateful signature scheme.
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root. The signature of Γ′ contains a signature of m, d − 1 public keys and d − 1

signatures in the path.

Theorem 17 Let Γ = (KeyGen, Sign,Ver) be a qsamplable EUwCSA stateful
signature scheme, where the public key is of length l = l(λ), the message space
Mλ includes {0, 1}l(λ), and q is polynomial with respect to λ. Let Sampq be a
sampling algorithm for Γ. Let F : {0, 1}⋆ × COINλ → COINλ be a pseudo
random function where the input is of arbitrary length. For a constant d, the
Γ′ = (KeyGen′, Sign′,Ver′) depicted in Figure 4.8 is a qdsamplable EUwCSA
stateful signature scheme.

Proof. First, we show that Γ′ is qd-samplable. For i ∈ [qd], let i =
∑d

i=1 qiq
d−1,

where qi ∈ [q]. Then, Samp′pk,qd(i) = (q1, ..., qd) is a sampling algorithm for Γ′.
The proof of wCSA security is similar to Theorem 16. To begin with the EU-

wCSA experiment against Γ′, we first replace the pseudorandom function with
a truly random function. That is, all the key pairs in the tree are generated by
random coins, which are selected in the key generation algorithm. All the coins
are contained in sk′. When signing messages, the scheme directly uses the coins
contained in sk′ instead of computing themwith a pseudorandom function. The
difference between the success probabilities of these two experiments is negligi-
ble if F is pseudorandom.

After that, we reduce the EU-wCSA security of Γ′ to the EU-wCSA security
of Γ. Given a public key pk of Γ, RA runs KeyGen′ and generates qd−1

q−1 key pairs
in the tree. After that, R randomly chooses a node in the tree. This is called
”the target node“. Then, R replaces the public key at the target node with pk.
Let pk′ be the public key at the root. R runs A(1λ, pk′, 0d). When A queries with
the message (m, st),R signs the message using the secret keys at corresponding
nodes except the target node (sinceR does not know the secret key of the target
node). When it reaches the target node, R obtains the corresponding signature
by querying Ow-CSA

Γ . Note that the public keys at the nodes are all generated by
random coins. After the queries are completed, A returns a forgery (m⋆, σ⋆). σ⋆

contains at least one forgery of the public key at a node. The probability that σ⋆
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contains a forgery of the target node is at least q−1
qd−1 . Thus, we have

Pr[ExpwCSA
Γ′,A (λ)] ≤ AdvInd-PRFF,DA (λ) +

qd − 1

q − 1
Pr[ExpEU-wCSA

Γ,RA (λ)], (4.20)

which is negligible if F is a pseudorandom function and Γ is EU-wCSA. ⊓⊔

4.2.2 From wCSAsecurity to nwCSAsecurity

Now, we present a construction for the EU-n-wCSA stateful signature scheme,
and it is depicted in Figure 4.9. It is similar to the construction in Figure 4.8,
where the tree has only 2 layers. The root contains a key pair of a q-samplable
EU-wCSA stateful signature scheme. The root has q leaves, each of which con-
tains a key pair of an n-time stateless signature scheme. The secret key of the
root is used to sign the public keys of leaf nodes. Thus, a signature of Γ′ consists
of a signature of an n-time stateless signature scheme, the corresponding public
key, and a stateful signature of this public key.

Theorem 18 Let Γ̃ = (K̃eyGen, S̃ign, Ṽer) be anntimeEUCMAstateless signa
ture scheme inwhich the public keys are of length l = l(λ). LetΓ = (KeyGen, Sign,Ver)
be a qsamplable EUwCSA stateful signature scheme in which the message
spaceMλ includes {0, 1}l(λ), where q is polynomialwith respect to λ. LetF : [q]×
{0, 1}λ → {0, 1}λ beapseudorandom function. Then, theΓ′ = (KeyGen′, Sign′,Ver′)
depicted in Figure 4.9 is a qsamplable EUnwCSA stateful signature scheme.

Proof. Γ′ is q-samplable since Sampq(pk, i) = i is a sampling algorithm. Next,
we prove that Γ′ is EU-n-wCSA. The first step is similar to those of Theorems
16 and 17. First, we replace the pseudorandom function used in Γ′ with a truly
random function. That is, KeyGen′ additionally picks c0, ..., cq−1 randomly from
{0, 1}λ and contains them in sk′. In Sign′, Fst(sk

′) is replaced by the cst contained
in sk′. Suppose the success probability differs from that of the original EU-n-
wCSA experiment against Γ′; we can construct a distinguisher D to break the
pseudorandomness of F , as we did in previous proofs.
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KeyGen′(1λ) Sig′sk′(m, st)
(pk, sk, ∗)← KeyGen(1λ) If st ̸∈ [q] return (⊥, st)
s

$←− {0, 1}λ Parse sk′ = (pk, sk, s)

pk′ := pk, sk′ := (pk, sk, s) (p̃k, s̃k)← K̃eyGen(1λ;Fs(st))

return (pk′, sk′, 0) σ2 ← S̃igns̃k(m)

(σ1, ∗)← Signsk(p̃k, Sampq(pk, st))

σ′ = (σ2, p̃k, σ1)

Ver′pk′(m,σ′) return (σ′, st+ 1)

Parse σ′ = (σ1, p̃k, σ2)

b2 ← Verp̃k(m,σ2)
b1 ← Verpk′(p̃k, σ1)
return b1 ∧ b2

Figure 4.9: Construction of a q-samplable EU-n-wCSA stateful signature
scheme.

Next, we show that if there exists an adversary A that succeeds in this ex-
periment with nonnegligible probability, then there exists a reduction RA that
can break the wCSA security of Γ or the CMA security of Γ̃. First, R is given a
challenge pk for the EU-wCSA experiment against Γ and a challenge p̃k for the
EU-CMA experiment against Γ̃. R randomly picks c0, ..., cq−1 from {0, 1}λ and
runs (p̃ki, s̃ki)← K̃eyGen(1λ, ci) for i ∈ [q]. After that, it randomly chooses t← [q]

and replaces p̃kt with p̃k. Then,R runsA(1λ, pk, 0). WhenA queries for the sig-
nature of (m, st), R checks whether st ̸∈ [q] or st has been queried more than n
times. If so, it returns (⊥, st). Otherwise, it runs σ2 ← S̃igns̃kst

(m) when st ̸= t

or σ2 ← OCMA
Γ̃

(m) when st = t. Then, it runs σ1 ← OwCSA
Γ (p̃kst, Sampq(pk, st)).

Finally,R answers (σ2, p̃kst, σ1) to A.
After the queries are completed, the adversary returns a forgery (m⋆, σ⋆),

where σ⋆ = (σ⋆
2, p̃k

⋆
, σ⋆

1). If it is a valid forgery, let NewPK be the event that
p̃k

⋆
̸∈ {p̃k0, ..., p̃kq−1}.

• IfNewPK occurs, this means that p̃k
⋆
is never input intoOwCSA

Γ . Further-
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more, since Verpk(m⋆, σ⋆) = 1, we have Verpk(p̃k
⋆
, σ⋆

1) = 1. Thus, (p̃k, σ⋆
1) is

a forgery of Γ, andR breaks the wCSA security of Γ. The probability of this
case is bounded by Pr[ExpEU-wCSA

Γ,R (λ)].

• If NewPK does not occur, this means that p̃k
⋆
= p̃ki for some i ∈ [q]. If

i = t, R returns (m⋆, σ⋆
2) as a forgery of Γ̃, and it returns fail otherwise.

Since all the p̃kis are generated by random coins, the probability that i = t

is 1/q. Thus, R breaks the CMA security of Γ̃ with probability 1/q. The
probability of this case is bounded by q · Pr[ExpEU-CMA

Γ̃,R (λ)].

To summarize, we have

Pr[ExpEU-n-wCSA
Γ′,A (λ)] ≤ AdvInd-PRFF,DA (λ) + Pr[ExpEU-wCSA

Γ,RA (λ)] + q · Pr[ExpEU-CMA
Γ̃,RA (λ)],

(4.21)
which is negligible if F is a pseudorandom function, Γ is EU-wCSA and Γ̃ is EU-
CMA. ⊓⊔

4.3 Generality of Our Frameworks

In the previous sections, we discussed constructions in a black-box manner. In
this section, we generalize our frameworks to instantiations based on concrete
assumptions. Indeed, our frameworks capture several existing constructions.

• Hashbased Assumptions.

Since all the additional primitives used in our constructions, such as PRFs
andPRGs, can be instantiated by hash functions, themost natural instanti-
ations are HBS schemes. There are several hash-based one-time signature
schemes, such as theWinternitzOTS (W-OTS) [87, 43], theBleichenbacher-
Maurer OTS [20], the Leighton-Micali OTS [83], BiBa [90] and W-OTS+
[67]. W-OTS+ is probably the most widely-used OTS. We can instanti-
ate the accumulator in Figure 4.7 by using a Merkle tree. According to
the constructions in Figures 4.7 and 4.8, any of the one-time signature
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schemes above can be converted to q-samplable EU-wCSCMA and q-time
EU-KSCMA stateful signature schemes with large values of q.

Note that XMSSMT [70] can be considered as an example of the above
scheme. It uses the construction in Figure 4.7 from W-OTS+ to XMSS
and then uses the construction in Figure 4.8 from XMSS to XMSSMT . The
slight difference between XMSSMT and the construction in Figure 4.8 is
that the signature of XMSSMT does not contain the public keys in the path.
For W-OTS+, a public key can be calculated from a message and its valid
signature and thus is omitted in XMSSMT .

In addition, according to the constructions in Figures 4.9 and 4.6, it is pos-
sible to construct a hash-based stateless signature scheme (with a large
number of signing operations). In the construction in Figure 4.9, ann-time
stateless signature scheme is needed, and it can be instantiated with hash-
based few-time signature schemes, such as HORS [94], HORS++ [92],
HORST [15], PORS [8], FORS [17] and DFORS [1]. HORS++ is based on
the one-way property of hash functions and a cover-free family, and oth-
ers are based on the one-way and hardness properties of subset resilience
problems. By comparison, HORS++needs aweaker assumption but yields
larger signatures (although the running time is shorter).

SPHINCS [15] and its variants can be considered examples of combining
the constructions in Figures 4.9 and4.6. They use a highly samplable state-
ful signature scheme based on hash functions, such as XMSSMT , and then
combine it with different kinds of few-time stateless signature schemes.
SPHINCS,Gravity-SPHINCS [9] andSPHINCS+ [17] chooseHORST, PORS
and FORS, respectively, as their n-time stateless signature schemes. Sim-
ilar to WOTS+, the public key of the few-time signatures is omitted in
SPHINCS/ Gravity-SPHINCS/ SPHINCS+, since it can be calculated from
a message and its signature.

• RSA & CDH & SIS Assumption.

Another efficient instantiation is based on the (standard, not strong) RSA
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assumption. There are several stateful signature schemes based on the
RSAassumption; these include theDwork-Noar scheme[46] and theCramer-
Damg̊ard scheme[37]. They are EU-KSCMAbased on our security notions.
In detail, they both use a tree of depth d and out-degree l. The tree can be
divided into two parts. The lower part contains the leaves of the tree, where
each leaf is labeled by a message. The upper part contains the other nodes
of the tree, where each node is labeled by a randomness value. Every time
the scheme signs for a message, it picks the left-most unused leaf in the
lower part, labels the leaf with the message, and yields the authentication
path from the leaf to the root. As the upper part is determined during the
signing operation and can be calculated in advance, it can be seen as a part
of the secret key. Then, these schemes can be seen as stateful signature
schemes whose states are the indices of the leaves that have been used. In
this case, these schemes are also EU-wCSCMA and ld-samplable.

In [21], the authors proposed a general construction for a stateless signa-
ture scheme froma tag-based signature schemewithEU-naCMA⋆

n security,
and it can be considered a non-adaptive version of the EU-n-wCSCMA de-
fined in this chapter. Then, the constructions in [21] can be considered as
examples of those in Figure 4.6.

Note that the construction in [21] works well only if (a) there exists an effi-
cient non-adaptive-wCSA-secure stateful signature schemewith high sam-
plability, (b) there exists an aggregation algorithm for signatures, and (c)
there exists an efficient chameleon hash function. The authors gave exam-
ples based on the RSA, CDH and SIS assumptions. In comparison, HBS
schemes do not satisfy the second and third conditions, so the construc-
tion in [21] fell short in terms of hash-based cryptography.

• Other Assumptions.

There are some stateful signature schemes that fit our framework, such
as the code-based one-time signature schemes proposed in [51, 91]. Un-
fortunately, few-time code-based signature schemes still lack research, es-
pecially those that are secure in the standard model. With our construc-
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tion, we can transform a code-based few-time EU-CMA stateless signature
scheme into a general stateless EU-CMA scheme in the standard model. It
is still an open question whether our construction can be instantiated by
schemes based on other assumptions, such asmultivariate quadratic prob-
lems.

4.4 Specific Stateful Signature Schemes

Finally, we compare our definition with other stateful signature schemes men-
tioned in related work. For convenience, stateful signature schemes are abbre-
viated as SS in this subsection.

• KeyEvolving Signature Scheme.

A key-evolving signature scheme (KES) consists of four algorithms: Key-
Gen, Sign, KeyUpd, and Ver. KeyGen generates a pair of keys (pk, sk). A
signer who owns a secret key sk can sign a message m by running σ ←
Signsk(m). After that, the signer runs sk′ ← KeyUpd(sk) to update the se-
cret keywith a new key. (In some definitions of a KES, the public key is also
updated during this step. In this work, we only consider the case where the
secret key is updated and the public key is static.) Anyone who owns the
public key pk can verify the signature by runningVerpk(m,σ). As long as the
secret key is updated in a correct way, a signer can generate a valid signa-
ture. A KES can be seen as an SS if we let the state of the SS be the updated
secret key of the KES and the secret key of the SS be empty, and Sign to-
gether with KeyUpd in the KES can be considered the signing algorithm of
the SS. Thus, an SS is a more general object than a KES.

Thus, the security of a KES can only hold under HSAs. It will never be se-
cure under a KSA or CSA since the updated secret keys are given to the ad-
versary in these cases. However, it is possible to convert an EU-CMA KES
(that is, the EU-HSA in our definition) to an EU-wCSA signature scheme
by the conversions in Figures 4.3 and 4.4.
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Some cases of KESs are of forward security. In these cases, the signature
contains the time slot when it was issued. Forward security implies that
even if an adversary obtains the entire secret key at a time slot t, it cannot
forge a valid signature with a time slot before t. It is meaningless to discuss
forward security in our definition of SS, since the syntax of SS does not
mention the time slot. The conversion of a EU-HSA/KSA/wCSA stateful
signature scheme into a forward-secure KES in a black-box manner is still
an open question.

• Tagbased Signature Scheme.[21]

A tag-based signature scheme (TS) consists of three algorithms: KeyGen,
Sign, and Ver. It is the same as a stateless signature scheme except that
both Sign and Ver take as input an additional tag in a tag space. A tag has
a similar role as that of a state in an SS. For a TS, the signing algorithm al-
ways outputs a valid signature when taking a secret key and a tag as inputs.
However, for a general SS, the signing algorithmmay output an invalid sig-
nature if the state is invalid. Thus, a TS can also be considered a samplable
SS where all the states are valid.

In [21], the authors defined EU-naCMA⋆
n security for a TS, and this is very

similar to our definition of EU-n-wCSA for an SS. An EU-naCMA⋆
m adver-

sary against a TS is allowed to query the signing oracle with any (m, tag),
as long as the tag has not been queriedmore than n times. Namely, it is the
same as an n-wCSA adversary in the case of an SS except that themessages
are chosen non-adaptively. In addition, a TS does not update the tag or the
keys when signing messages. Thus, it is meaningless to discuss HSA/KSA
security for TSs. It is natural to convert it into an EU-KSA SS by using the
construction in Figure 4.5 (if the TS is EU-wCSA).

Furthermore, there are several specific tag-based signature schemes, such
as double-authentication signature schemes [93], that can also be consid-
ered stateful signature schemes with special properties.
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4.5 Conclusion and Open Questions

In this work, we formally define the syntax and security notions of stateful signa-
ture schemes anddemonstrate the conversions among them. After that, we show
the conversions from stateful signature schemes to stateless schemes. However,
many conversions require an additional property of stateful signature schemes
called q-samplability. Even thoughmany stateful signature schemes indeedhave
this property, it is still a strong condition, as it does not hold for all stateful signa-
ture schemes. In this work, we attempt to solve this problem by presenting some
general constructions of q-samplable stateful signature schemes fromOTSs, but
this is not efficient enough in practice. It is still an open question whether it
is possible to remove samplability from the requirements of constructions or to
replace it with a weaker property.

In addition, the construction in Theorem 6 is proven to be limited-time EU-
CMA. Indeed, it is weaker than being general EU-CMA. In [97, 98], the author
proves that two limited-time EU-CMA stateless signature schemes are also gen-
eral EU-CMAby using a prefix-guessing strategy in the reductions. Since the two
schemes have similar structures to ours, it is potential to implement this tech-
nique in our black-box construction. Unfortunately, it seems hard to directly
obtain a positive result. It is probably because the prefix-guessing strategy be-
haves well in some special cases. It is an interesting open question whether we
can improve our construction in Theorem 6 to general EU-CMA one. (This may
require some additional property of the stateful signature schemes besides sam-
plability.)

Finally, it is interesting to look for the relationship between stateful signa-
ture scheme and other specific signature schemes. For example, is it possible to
construct a forward-secure key-evolving signature scheme from an EU-KSCMA
or EU-wCSCMA stateful signature scheme? As far as we know, although theƒ
two schemes are closely related, there does not exist a black-box construction.
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Chapter 5

Quantumaccess Security of
Stateless Hashbased Signature
Schemes

5.1 Tweakable Hash Functions

In this chapter, we particularly focus onH : {0, 1}∗ → [t]k, that is, hash functions
mapping to k (ordered) elements of set [t] (where t = 2τ for some integer τ). We
can simply sample such a function by sampling a hash function H ′ : {0, 1}∗ →
{0, 1}k·log t, splitting the output into k short strings of length τ , and thenmapping
the short strings into integers in [t]. In other words, the aboveH andH ′ are two
equivalent expressions of one hash function.

In the following, we denote a function H : {0, 1}∗ → [t]k by H = (h1, ..., hk),
where hi : {0, 1}∗ → [t] denotes the “partial” functionmapping to the ith element
of the output ofH. To avoid ambiguity, we always use capital letters (such asH)
to denote a hash function and their corresponding small letters with a subscript
(such as hi) as the partial functions. For instance, in the case that H is a hash
function family mapping to [t]k, (h1, ..., hk) ← H means sampling H ← H and
lettingH = (h1, ..., hk), rather than sampling k functions fromH.

A tweakable hash function is a special hash function taking as input a mes-
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sage m together with a tweak T and a public parameter P . Especially, let T be
the tweak space, P be the public parameter space andM be the message space,
a tweakable hash function Th is defined as

Th : P × T ×M→ {0, 1}n. (5.1)

Definition 27 (SMTCR.[17]) Let Th be a tweakable hash function defined
above. Let p ≤ |T |. For an adversary A = (A1,A2), A1 is allowed to give p
queries to an oracle Th(P, ·, ·)where P is uniformly chosen from P . Denote the
set ofA1’s queries beQ = {(Ti,Mi)}pi=1 and define the predicateDIST({Ti}pi=1) =

1 iff all tweaks are distinct. Then, A2 takes as input (Q,P ) and the state of A1,
and finally outputs (j,M). Define

AdvSM-TCR
Th,p,q (A) ≜ Pr

P←P
[Th(P, Tj,Mj) = Th(P, Tj,M)∧M ̸=Mj∧DIST({Ti}pi=1) = 1],

(5.2)
where q denotes the maximum number of queries to Th.

We say thatTh is singlefunctionmultitarget targetcollisionresistant for
distinct tweaks (SMTCR) if for any polynomialtime adversaryA, there exists
a negligible function ϵ(·) such thatAdvSM-TCR

Th,p (A) ≤ ϵ(n) for large enough n ∈ N.

Definition 28 (SMDSPR.[17]) LetTh,DIST, Q be as defined above. Denote a
predicateSPP,T (M) = 1 iff there exists anotherM ′ ̸=M such thatTh(P, T,M) =

Th(P, T,M ′). For adversaryA = (A1,A2),A1 is allowed to give p queries to an
oracle Th(P, ·, ·) where P is uniformly chosen from P . Then, A2 takes as input
(Q,P ) and the state of A1, and finally outputs (j, b). Define

succ ≜ Pr
P←P

[SPP,Tj
(Mj) = b ∧ DIST({Ti}pi=1)], (5.3)

triv ≜ Pr
P←P

[SPP,Tj
(Mj) = 1 ∧ DIST({Ti}pi=1)] (5.4)

and
AdvSM-DSPR

Th,p,q (A) ≜ max{0, succ− triv}, (5.5)
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where q denotes the maximum of queries to Th.
We say thatTh is singlefunctionmultitarget decisional secondpreimage

resistant for distinct tweaks (SMDSPR) if for any polynomialtime adversary
A, there exists a negligible function ϵ(·) such thatAdvSM-DSPR

Th,p (A) ≤ ϵ(n) for large
enough n ∈ N.

Then, we give a definition of preimage resistance for tweakable hash func-
tions. It is a tweakable version of Open-PRE [16] and has been implicitly used
in security proof of SPHINCS+[17].

Definition 29 (SMOpenPRE.) Let Th be a tweakable hash function defined
above. Let p ≤ |T |. For an adversary A = (A1,A2), A1 is allowed to give p
queries to an oracle O initialized by a random P ∈ P . Taking as input Ti ∈
T, O randomly choose Mi ← M and output Yi = Th(P, Ti,Mi). Define Q =

{(Ti, Yi)}pi=1 be the input/output pairs of O and DIST({Ti}pi=1) as above. Then,
A2 takes as input (Q,P ) and the state ofA1, and is given the access of an oracle
Open(i) = Mi. Let L be the list of the queries to Open(·). Finally, A2 outputs
(j,M). Define

AdvSM-OpenPRE
Th,p,q (A) = Pr

P←P
[Th(P, Tj,M) = Yj ∧ DIST({Ti}pi=1) = 1 ∧ j /∈ L], (5.6)

where q denotes the maximum number of queries to Th.
We say that Th is SMOpenPRE if for any polynomialtime adversary A,

there exists a negligible function ϵ such that AdvSM-OpenPRE
Th,p (A) ≤ ϵ(n) for large

enough n ∈ N.

The following lemma shows that the insecurity of SM-OpenPRE can be re-
duced to SM-TCR or SM-DSPR.

Lemma 17 ([16, 17]) Let Th be a tweakable hash function family and A be
an adversary against SMOpenPRE of Th. Then, there exist polynomialtime
reductions BA and CA such that

AdvSM-OpenPRE
Th,p,q (A) ≤ 3 · AdvSM-TCR

Th,p,q (B) + AdvSM-DSPR
Th,p,q (C). (5.7)
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In particular, if the tweakable hash function Th is modeled as a random ora-
cle (whichmeans thatTh(P, T,M) = H(P ||T ||M)whereH is a quantumrandom
oracle), the security has been evaluated in [17].

Lemma 18 ([16, 17]) LetTh be constructed abovemapping to {0, 1}n. For any
quantumadversaryAmakingatmost q queries to the quantumrandomoracle,
it holds that

AdvSM-TCR
Th,p,q (A) ≤ 8(2q + 1)2/2n. (5.8)

AdvSM-DSPR
Th,p,q (A) ≤ 32pq2/2n. (5.9)

Remark 6 It is conjectured that equation (5.9) is loose. In [17], the author con
jectures that AdvSM-DSPR

Th,p,q (A) should be bounded by O(q2/2n) (without the factor
p).

In practice, the hash function Th is sampled by choosing the public param-
eter P ∈ P . Since P is public, we omit P and simply write Th(T,M) in the
following.

An SM-TCR tweakable hash function can be used to construct a tree structure
[17]. For convenience, we only show the syntax and the security notion and omit
the detailed construction.

Proposition 1 Let τ be an ingeter, (y1, ..., yt) be a ttuple of nbit stringswhere
t = 2τ and Th : {0, 1}l × {0, 1}∗ → {0, 1}n be a tweakable hash function where
l ≥ τ + 1. There exists a tuple of algorithms Tree = (TreeGen,TreeProv,TreeVer)
where

• TreeGen(Th, t, (y1, ..., yt))generates a hash treewith leaf (y1, ..., yt)and func
tionTh, where the tweak ofTh is the address of the node. Then, it outputs
the root of the hash tree.

• TreeProv(Th, t, (y1, ..., yt), i) runsTreeGen(Th, t, (y1, ..., yt)), obtains the hash
tree, and outputs the authentication path πi for leaf yi.
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• TreeVer(Th, t, i, yi, πi) uses yi and its authentication path πi to generate the
root of the hash tree, and then outputs the root.

Lemma 19 Let Th : {0, 1}l×{0, 1}∗ → {0, 1}n and Tree be depicted above. For
any (y1, ..., yt) and adversary A, there exists a reductionMA such that

Pr
Th,A

[
y∗ ̸= yi∗

y0 = TreeVer(Th, t, i∗, y∗, π∗)

∣∣∣∣ y0 ← TreeGen(Th, t, (y1, ..., yt))
(i∗, y∗, π∗)← A(Th, t, (y1, ..., yt))

]
≤ AdvSM-TCR

Th,t,qH (MA).

(5.10)

5.2 Revisiting Subsetresilient Hash Function
Families

In this chapter, the definition of subset-resilient hash function families is slightly
different from that in Chapter 3. The range of a hash function is [t] instead of
{0, 1}l(n) where t = 2τ for some τ . The new definitions are essentially equivalent
to the previous ones but more concise in constructions.

In addition, this section proposes a new variant calledweak subset resilience.
It is a weaker security notion than restricted subset resilience and helpful to the
following analysis.

5.2.1 Definitions

Definition 30 (Subset Cover.[94]) LetH = (h1, ...hk) be a hash functionmap
ping {0, 1}m to [t]k and r ≥ 0bean integer. We say that (r+1)tuple (x, x1, ..., xr) ∈
{0, 1}m(r+1) is an (r, k)subset cover ofH if it holds that {hi(x)}i∈[k] ⊂ {hi(xj)}i∈[k],j∈[r]
and x ̸∈ {xj}j∈[r].

Definition 31 (Restricted Subset Cover.) LetH = (h1, ...hk) be a hash function
mapping {0, 1}m to [t]k and r ≥ 0 be an integer. We say that (r + 1)tuple
(x, x1, ..., xr) ∈ {0, 1}m(r+1) is an (r, k)restricted subset cover of H if it holds
that x ̸∈ {xj}j∈[r], and for ∀i ∈ [k], hi(x) ∈ {hi(xj)}j∈[r].
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Next, we show a weaker statement calledweak subset cover that is useful in
the following sections.

Definition 32 (Weak Subset Cover.) Let H = (h1, ...hk) be a hash function
mapping {0, 1}m to [t]k and r ≥ 0 be an integer. We say an (r + 1)tuple
(x1, ..., xr+1) ∈ {0, 1}m(r+1) is an (r, k)weak subset cover of H if for ∀i ∈ [k],
it holds that |{hi(xj)}j∈[r+1]| ≤ r and xj ’s are distinct. In other words, there
exists a collision in x1, ..., xr+1 w.r.t. each hi.

Corollary 2 If (x, x1, ..., xr) is an (r, k)restricted subset cover of H, it is also
an (r, k)weak subset cover ofH.

If it is hard for any polynomial-time adversary to find a (restricted/weak-
)subset cover, then we say that the hash function family is (restricted/weak-
)subset-resilient.

Definition 33 Let H = {H : {0, 1}m → [t]k} be a hash function family. Let A
be an adversary that takes as input H = (h1, ..., hk) ← H, runs at most q hash
queries and finally outputs (x, x1, ..., xr) ∈ {0, 1}m(r+1). Define

Adv(r,k)-SR
H,q (A) ≜ Pr

H,A

[
{hi(x)}i∈[k] ⊂ {hi(xj)}i∈[k],j∈[r] ∧ x /∈ {xj}j∈[r]

]
(5.11)

and

Adv(r,k)-rSR
H,q (A) ≜ Pr

H,A

[
∀i ∈ [k], hi(x) ∈ {hi(xj)}j∈[r] ∧ x /∈ {xj}j∈[r]

]
. (5.12)

LetA be an adversary that takes as inputH = (h1, ..., hk)← H, runs atmost
q hash queries and finally outputs (x1, ..., xr+1) ∈ {0, 1}m(r+1). Define

Adv(r,k)-wSR
H,q (A) ≜ Pr

H,A

[
∀i ∈ [k],

∣∣{hi(xj)}j∈[r+1]

∣∣ ≤ r∧x1, x2, ..., xr+1 are distinct
]
.

(5.13)
We say thatH is a secure (r, k)(restricted/weak) subset resilient hash function
family or (r, k)SRH(/rSRH/wSRH) if Adv(r,k)-SR

H,q (A)/Adv(r,k)- rSR
H,q (A)/Adv(r,k)-wSR

H,q (A)
is negligible for any probabilistic polynomialtime quantum adversary A.
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5.2.2 Generic Security with Quantum Queries

This subsection gives generic security of subset resilience and its variants with
quantum queries.

Theorem 19 LetH = {H : {0, 1}m → [t]k} be a random function family and r
be a positive integer. For any quantum probabilistic polynomialtime adver
sary A, it holds that

Adv(r,k)-wSR
H,q (A) ≤ (2q + 1)2(r+1)

(
r2

t

)k

, (5.14)

Adv(r,k)-rSR
H,q (A) ≤ (2q + 1)2(r+1)(r + 1)

(
r

t

)k

, (5.15)

and

Adv(r,k)-SR
H,q (A) ≤ (2q + 1)2(r+1)(r + 1)

(
rk

t

)k

. (5.16)

Proof. Since H is a random function family, the success probability of adver-
saries can be evaluated by Lemma 2. For i ∈ [k], denote by y(i) ∈ [t] the i-th
element of y ∈ [t]k.

1. (Proof of (5.14).)

ForH = (h1, ..., hk) : {0, 1}∗ → [t]k, define R1 ⊆ [t]k(r+1) as follows:

R1 ≜ {(y1, y2, ..., yr+1) : ∀i ∈ [k],
∣∣{y(i)j }j∈[r+1]

∣∣ ≤ r}. (5.17)

We analyze the size of R1. From (y1, ..., yr+1) ∈ R1, for every i ∈ [k], (at
least) two of y(i)1 , ..., y

(i)
r+1 are equal. Fix an i ∈ [k], we can tranverse all the

possible (y(i)1 , ..., y
(i)
r+1) w.r.t. i as follows:

(a) Pick a pair of indices a1, a2 from [r].

(b) Pick y ∈ [t], let ya1 = ya2 = y.

(c) Tranverse all possible values of y(i)j for all j ̸∈ {a1, a2} and j ∈ [r + 1].

117



The numbers of choices in the three steps are
(
r+1
2

)
, t and tr−1 respectively.

Thus, for all i ∈ [k], the total number of possible values of (y1, ..., yr+1) ∈ R1

is at most ((
r + 1

2

)
· t · tr−1

)k

=

(
(r + 1)r

2
tr
)k

≤ (r2tr)k. (5.18)

In addition, it is not hard to see that relation R1 is not ordered (which
means that for any π ∈ Perm([r + 1]), the statement (y1, ..., yr+1) ∈ R1 is
equivalent to the statement (yπ(1), ..., yπ(r+1))). Due to Lemma 2, we have

Adv(r,k)-wSR
H,q (A) ≤ (2q + 1)2(r+1) (r

2tr)k

t(r+1)k
= (2q + 1)2(r+1)

(
r2

t

)k

, (5.19)

which is what we expected.

2. (Proof of (5.15).)

Note that in Lemma 2, the elements in a solution have to be distinct, but
those in a restricted subset cover do not. (In a restricted subset cover, only
x ̸∈ {xj}j∈[r] is demanded, and thus xj can be equal to another xj′ .) We
divide a restricted subset cover into several cases.

Fix r,H andA. Recall thatH = (h1, ..., hk)← H and (x, x1, ..., xr)← A(H).
Let 1 ≤ s ≤ r be some integer. Define

f(s) ≜ Pr
H,A

[
∀i ∈ [k], hi(x) ∈ {hi(xj)}j∈[r] ∧ x ̸∈ {xj}j∈[r] ∧

∣∣{xj}j∈[r]∣∣ = s

]
.

(5.20)

Then, we have
Adv(r,k)-rSR

H,q (A) =
∑
s∈[r]

f(s), (5.21)

and

f(r) = Pr
H,A

[
{hi(x)}i∈[k] ⊂ {hi(xj)}i∈[k],j∈[r] ∧ x, x1, ..., xr are distinct

]
.

(5.22)

First, we give a bound for the case that r = s.
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Lemma 20 f(r) ≤ (2q + 1)2(r+1)(r + 1)( r
t
)k.

Proof. For H = (h1, ..., hk) : {0, 1}∗ → [t]k, define R2 ⊆ [t]k(r+1) as follows:

R2 ≜
{
(y, y1, ..., yr) : ∀i ∈ [k], y(i) ∈ {y(i)j }j∈[r]

}
. (5.23)

Next, we analyze the size of R2. For convenience, we call the first element
of (y, y1, ..., yr) ∈ R2 as y0.

First, there are exactly tk possible values of y0. Then, for any fixed y0 =

(y
(1)
0 , ..., y

(k)
0 ), it holds that y(i)0 ∈ {y(i)j }j∈[r] for each i ∈ [k]. This implies

that y(i)j = y
(i)
0 for some j ∈ [r]. We can tranverse all the possible value of

(y
(i)
1 , ..., y

(i)
r ) for each i w.r.t. y0 by the following steps:

(a) Pick j ∈ [r] and let y(i)j = y
(i)
0 .

(b) Tranversing all the possible value of y(i)j′ for all j′ ∈ [r] and j′ ̸= j.

The number of possible values of (y(i)1 , ..., y
(i)
r ) w.r.t. y0 is at most r · tr−1 for

each i. Thus, considering all i ∈ [k] and tranversing all possible values of
y0, the total number of (y0, y1, ..., yr) is at most

(r · tr−1)k · tk = (rtr)k. (5.24)

Unlike R1, relation R2 is ordered. Define

R∗2 ≜ {(y1, ..., yr+1) : ∃π ∈ Perm([r+1]) s.t. (yπ(1), ..., yπ(r+1)) ∈ R2}. (5.25)

Observe that for any π ∈ Perm([r]), the statement (y, y1, ..., yr) ∈ R2 is
equivalent to the statement (y, y(π(1)), ..., yπ(r)) ∈ R2. This implies that the
order ofR2 is only determined by the first element. Thus, we can tranverse
all the possible values of (y1, ..., yr+1) ∈ R∗2 by the following steps:

(a) Pick (y, y1, ..., yr) ∈ R2.

(b) Pick j ∈ [r+1], and insert y between (j−1)-th element and the j-th ele-
ment of (y1, ..., yr). In otherwords, tranverse (y, y1, ...yr), (y1, y, y2, ..., yr),
..., (y1, ..., yr, y).
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Thus, we have
|R∗2| ≤ (r + 1)|R2| ≤ (r + 1)(rtr)k. (5.26)

Due to Lemma 2, we have

f(r) ≤ (2q + 1)2(r+1) (r + 1)(rtr)k

t(r+1)k
= (2q + 1)2(r+1)(r + 1)

(
r

t

)k

. (5.27)

⊓⊔

Next, we consider the case that s < r.

If the adversary output an (r, k)-restricted subset cover (x, x1, ..., xr) such
that |{xj}j∈[r]| = s < r. Let {xj}j∈[r] = {x′j′}j′∈[s] after reordering. Then,
it is not hard to see that (x, x′1, ..., x′s) is an (s, k)-restricted cover and all
the elements are distinct. The probability of this event is also bounded by
Lemma 20. That is, for all 1 ≤ s ≤ r it holds that

f(s) ≤ (2q + 1)2(s+1)(s+ 1)

(
s

t

)k

≤ (2q + 1)2(s+1)(r + 1)

(
r

t

)k

. (5.28)

Thus, we have

Adv(r,k)-rSR
H,q (A) =

∑
s∈[r]

(2q+1)2(s+1)(r+1)

(
r

t

)k

≤ (2q+1)2(r+1)(2r+2)

(
r

t

)k

.

(5.29)

3. (Proof of (5.16).)

Similarly, fix r,H,A. For s ∈ [r], we define

g(s) ≜ Pr
H,A

[
x /∈ {x1, ..., xr}∧{hi(x)}i∈[k] ⊂ {hi(xj)}i∈[k],j∈[r]∧

∣∣{xj}j∈[r]∣∣ = s

]
,

(5.30)
and thus

Adv(r,k)-SR
H,q (A) =

∑
s∈[r]

g(s). (5.31)

As above, we first consider the case that s = r.
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ForH = (h1, ..., hk) : {0, 1}∗ → [t]k, define R3 ⊆ [t]k(r+1) as follows:

R3 ≜ {(y, y1, ..., yr) : {y(i)}i∈[k] ⊆ {y(i)j }i∈[k],j∈[r]}. (5.32)

We divide R3 into k subsets R3,1, ..., R3,k, where, form ∈ [k],

R3,m ≜ {((y, y1, ..., yr) ∈ R3 :
∣∣{y(i)}i∈[k]∣∣ = m}. (5.33)

Observe thatR3,m’s are disjoint and thatR3 =
⋃

m∈[k]R3,m. More precisely,
the statement (y, y1, ..., yr) ∈ R3,m implies that {y(i)}i∈[k] contains exactlym
elements in [t], and {y(i)j }i∈[k],j∈[r] covers them. Since there are at most rk
elements in set {y(i)j }i∈[k],j∈[r], there are rk “chances” to cover the m target
elements. We can tranverse all the elements ofR3,m by the following steps:

(a) Pickm distinct elements x1, ..., xm from [t]. LetX = {x1, ..., xm}.

The number of choices in this step is
(
t
m

)
.

(b) Pick y(1), ..., y(k) fromXk such that {y(i)}i∈[k] = X.

This step is equivalent to the experiment of putting k different balls
into m different bins such that there is at least one ball in each bin.
The number of choices is

{
k
m

}
·m!, where

{
k
m

}
denotes Stirling number

of the second kind.

(c) Next, we require that {y(i)j }i∈[k],j∈[r] coversX = {y(i)}i∈[k]. Since |X| =
m, we only need to choose m elements of {y(i)j }i∈[k],j∈[r], make them
equal to a permutation of X, and do not have any demand for the
remaining (rk −m) elements.

The number of choices in the two substeps are
(
rk
m

)
and m! respec-

tively.

(d) Finally, since the remaining (rk−m) elements have no demand, tran-
verse all the possible y(i)j that have not been assigned in the above
steps.

The number of choices in this step is t(rk−m).
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To sum up, the total number of elements in R3,m is

|R3,m| =
(
t

m

){
k

m

}
·m! ·

(
rk

m

)
·m! · trk−m

≤ t
m

m!
·
{
k

m

}
·m! ·

(
rk

m

)
·m! · trk−m

=

{
k

m

}
·
(
rk

m

)
·m! · trk

=

{
k

m

}
· (rk)m · trk,

where (·)m denotes the falling factorial:

(x)m = x · (x− 1) · ... · (x−m+ 1). (5.34)

Thus, we have

|R3| =
k∑

m=1

|R3,m| ≤
k∑

m=1

{
k

m

}
· (rk)m · trk = (rk)k · trk, (5.35)

where the last equality uses the fact that
∑k

m=1

{
k
m

}
(x)m = xk.

Similar to R2, we define

R∗3 ≜ {(y1, ..., yr+1) : ∃π ∈ Perm([r+1]) s.t. (yπ(1), ..., yπ(r+1)) ∈ R3}, (5.36)

and then we have

|R∗3| ≤ (r + 1)|R3| ≤ (r + 1)(rk)k · trk. (5.37)

Due to Lemma 2, we have

g(r) ≤ (2q+1)2(r+1) (r + 1)(rk)k · trk

t(r+1)k
= (2q+1)2(r+1)(r+1)

(
rk

t

)k

, (5.38)

and for s ∈ [r],

g(s) ≤ (2q + 1)2(s+1)(s+ 1)

(
sk

t

)k

≤ (2q + 1)2(s+1)(r + 1)

(
rk

t

)k

. (5.39)

Thus,

Adv(r,k)-SR
H,q (A) =

∑
s∈[r]

(2q+1)2(s+1)(r+1)

(
rk

t

)k

≤ (2q+1)2(r+1)(2r+2)

(
rk

t

)k

.

(5.40)
⊓⊔
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5.2.3 Target Subset Resilience

Target subset resilience (TSR) [94] is a variant of subset resilience. In (r, k)-TSR
experiment, the adversary is given a hash functionH = (h1, ..., hk) and r random
targets x1, ...xr. Then, the adversary is required to output a single element x such
that {hi(x)}i∈[k] ⊂ {hi(xj)}i∈[k],j∈[r]. It is not hard to see that (r, k)-TSR is aweaker
notion than (r, k)-SR.

This subsectionproposes a target version of restricted subset resilience, which
is called extended target subset resilience (eTSR). Unlike TSR, the adversary in
eTSR can adaptively control the target to some extent. In detail, the adversary
is able to adaptively query a (classical) oracle Box. For a query xj, Box randomly
chooses zj ∈ {0, 1}n and returns (zj, H(zj||xj)). After r queries, the adversary is
required to output (x, z) such that for each i ∈ [k], hi(z||x) ∈ {hi(zj||xj)}j∈[r] and
(x, z) ̸∈ {(xj, zj)}j∈[r] hold. Note that (r, k)-eTSR is a weaker notion than than
(r, k)-rSR.

Definition 34 (ExtendedTarget SubsetResilience.) LetH = {H = (h1, ..., hk) :

{0, 1}m+n → [t]k} be a hash function family. Let ABox be an adversary that
queries Box at most r times, computes H at most q times and then outputs
(x, z) ∈ {0, 1}m+n. Define

Adv(r,k)-eTSR
H,q (A) ≜ Pr

Box,H,A

[
∀i ∈ [k], hi(z||x) ∈ {hi(zj||xj)}j∈[r]∧(x, z) ̸∈ {(xj, zj)}j∈[r]

]
.

(5.41)
We say that hash function familyH is an (r, k)extended targetsubsetresilient
hash function family ((r, k)eTSRH) if Adv(r,k)-eTSR

H,q (A) is negligible for anyprob
abilistic polynomialtime quantum adversary A.

Here wemodelH as a quantum-accessible H : {0, 1}m+n → [t]k and h1, ..., hk :

{0, 1}m+n → [t] be the partial oracle. Then, the experiment of eTSR is depicted
asGame 0 in Figure 5.1.
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Game 0 Box(xj)
(x, z)← A|H⟩,Box() zj ← {0, 1}n

if ∀i ∈ [k], hi(z||x) ∈ {hi(zj||xj)}j∈[r] return (zj,H(zj||xj))
if (x, z) ̸∈ {(xj, zj)}j∈[r] return 1

return 0

Game 1 Box’(xj)
(x, z)← A|H⟩,Box’() zj ← {0, 1}n

if ∀i ∈ [k], hi(z||x) ∈ {y(i)j }j∈[r] yj := y
(1)
j ||...||y

(k)
j ← [t]k

if (x, z) ̸∈ {(xj, zj)}j∈[r] return 1 H := Hzj ||xj→yj

return 0 return (zj, yj)

Figure 5.1: Hybrid arguments in the proof of Theorem 20.

Theorem 20 LetH bemodeled as a quantumaccessible randomoracleHand
r be a positive integer. For any quantum probabilistic polynomialtime adver
sary A, it holds that

Adv(r,k)-eTSR
H,q (A) ≤ 3r

2

√
q + r + 1

2n
+ 8(q + r + 2)2(

r

t
)
k

. (5.42)

Proof. We use the technique in security proof of (multi-target) extended colli-
sion resistance in [72] and [59]. We prove this theoremby showing the following
games:

• Game 0 is the original experiment of eTSR.

• Game 1 differs from Game 0 in that Box is replaced by Box’. Every time
A queries xj to the oracle Box’, Box’ randomly picks zj, randomly chooses
y
(1)
j , ..., y

(k)
j ∈ [t] and reprograms hi(zj||xj) := y

(i)
j for each i ∈ [k]. (In

other words, it reprograms H(zj||xj) := yj = y
(1)
j ||...||y

(k)
j .) Then, it returns

(zj, yj) to the adversary. See details in Figure 5.1.

Next, we show that the probabilities of Game 0 and Game 1 are negligi-
ble close by Lemma 1. If not, the adversary A can be used to distinguish
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Repro0 andRepro1 in Figure 2.1. InGame 0,H is simulated byO0 andBox is
simulated by Reprogram0 with additional classical query to O0. InGame 1,
Box’ is simulated by Reprogram1 with additional classical query to O1. In
total, it issues (q+ r+1) queries to Ob (q for simulating H, r for simulating
Box/Box’ and 1 for the final verification). Due to Lemma 1, we have

|Pr[Game 0]− Pr[Game 1]| ≤ 3r

2

√
q + r + 1

2n
. (5.43)

• In Game 1, the adversary outputs (x, z) such that for all i ∈ [k], hi(z||x) is
covered by {y(i)j }j∈[r]. Define S = {y(1)a1 ||...||y

(k)
ak }(a1,...,ak)∈[r]k . In other words,

S contains all y = y(1)||...||y(k) where y(i) ∈ {y(i)j }j∈[r] for each i. Thus, the
adversary is to output (x, z) such thatH(z||x) ∈ S and (x, z) is not equal to
any (xj, zj).

Note that |S| ≤ rk. Without loss of generality, we suppose |S| = rk. (If
|S| < rk, the success probability is obviously smaller. Here our purpose is
to find an upper bound of the probability.) Reorder S = {y′1, ..., y′rk}.

Next, we use an adversary succeeding inGame 1 to construct a reduction
breaking Avg-Searchλ in Lemma 5.

Let f ← Dλ : {0, 1}m+n → {0, 1} and λ = ( r
t
)k. Let I : {0, 1}m+n → [rk] and

g : {0, 1}m+n → [t]k\S be random functions. Construct H̃ : {0, 1}m+n → [t]k

as follows: for any (z||x) ∈ {0, 1}m+n, define:

H̃(z||x) =


yj, x = xj ∧ z = zj,

y′I(z||x), f(z||x) = 1,

g(x), otherwise.

(5.44)

Note that the outputs of H̃ distributes uniformly. Thus, an adversary in
Game 2 finds (x, z) such that f(z||x) = 1. Due to Lemma 5, we have

Pr[Game 1] ≤ 8(q + r + 1 + 1)2
(
r

t

)k

= 8(q + r + 2)

(
r

t

)k

. (5.45)
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From equation (5.43) and (5.45), we complete the proof. ⊓⊔

Interleaved target subset resilience (ITSR) [17] is another variant of target re-
silience and has been used in constructing SPHINCS+. It can be considered an
extended version of eTSR. We introduce another hash function h0 : {0, 1}m+n →
{0, 1}h (whereh is a constant) andmodify the oracleBox to an interleaved version
iBox. Givenxj as input, iBoxpicks random zj andoutputs (zj, h0(zj||xj), H(zj||xj)).
After queries, the adversary outputs (x, z) that, for each i ∈ [k], (hi(z||x), h0(z||x)) ∈
{(hi(zj||xj), h0(zj||xj))}j∈[r] and (x, z) ̸∈ {(xj, zj)}j∈[r] hold. Note that if h = 0,
ITSR becomes the same as eTSR.

Definition 35 (InterleavedTarget SubsetResilience.) LetH = {H = (h1, ..., hk) :

{0, 1}m+n → [t]k} andH0 = {h0 : {0, 1}m+n → {0, 1}h} be hash function families.
LetAiBox be an adversary that queries iBox at most r times, computes (H, h0) at
most q times and then outputs (x, z) ∈ {0, 1}m+n. Define

Adv(r,k)-ITSR
H,H0,q

(A) ≜ Pr
iBox,H,H0,A

∀i ∈ [k],(hi(z||x), h0(z||x)) ∈ {(hi(zj||xj), h0(zj||xj))}j∈[r]
(x, z) ̸∈ {(xj, zj)}j∈[r]

 .
(5.46)

We say that hash function family pair (H,H0) is an (r, k)interleaved target
subset resilient hash function family ((r, k)ITSRH) if Adv(r,k)-ITSR

H,H0,q
(A) is negligi

ble for any probabilistic polynomialtime quantum adversary A.

Remark 7 In practice (e.g., in SPHINCS+[17]),H0 andH are instantiated by a
separation of a single hash function family. That is, pick a hash function Hmsg

mapping to {0, 1}h+k log t and let Hmsg(z||x) = (MD||idx). H denotes the map
from (z||x) to MD and h0 denotes the map to idx.

In [17], the authors give an attack on ITSR and conjecture a bound for the
security. Here we give a concrete lower bound of the security in the quantum-
accessible randomoraclemodel. The ideamainly follows [17] except usingLemma
1.
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Game 0
(x, z)← A|h0⟩,|H⟩,iBox()

if ∀i ∈ [k], (h0(z||x), hi(z||x)) ∈ {(h0(z||x), hi(zj||xj))}j∈[r]
if (x, z) ̸∈ {(xj, zj)}j∈[r] return 1

return 0

Box(xj)
zj ← {0, 1}n

return (zj, h0(zj||xj),H(zj||xj))

Game 1
(x, z)← A|h0⟩,|H⟩,iBox’()

if ∀i ∈ [k], (h0(z||x), hi(z||x)) ∈ {(y(0)j , y
(i)
j )}j∈[r]

if (x, z) ̸∈ {(xj, zj)}j∈[r] return 1
return 0

iBox’(xj)
zj ← {0, 1}n

for ∀i ∈ [k], y(i)j ← [t], y(0)j ← {0, 1}h

yj := y
(1)
j ||...||y

(k)
j

H := Hzj ||xj→yj , h0 := hzj ||xj→y
(0)
j

0

return (zj, y
(0)
j , yj)

Figure 5.2: Hybrid arguments in the proof of Theorem 21.
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Theorem 21 LetH and h0 bemodeled as quantumaccessible random oracles
Hand h0 respectively and r be apositive integer. For anyquantumprobabilistic
polynomialtime adversary A, it holds that

Adv(r,k)-ITSR
H,h0,q

(A) ≤ 3r

2

√
q + r + 1

2n
+ 8(q + r + 2)2Γ, (5.47)

where Γ =
∑

γ

(
1−

(
1− 1

t

)γ)k(r
γ

)(
1− 1

2h

)r−γ 1
2hγ

.

Proof. We prove the statement by the following games, which is very similar to
Theorem 20. We write H′(z||x) = (H(z||x), h0(z||x)).

• Game 0 is the original experiment of ITSR as depicted in Figure 5.2.

• Game1differs fromGame0 expect that iBox is replaced by iBox’ in Figure
5.2. Every time iBox’ is queried with xj, it randomly samples y(0)j ,...,y(k)j

where y(0)j ∈ {0, 1}h and y
(i)
j ∈ [t] for other i ∈ [k], anddoes reprogramming.

As in Theorem 20, we have

|Pr[Game 0]− Pr[Game 1]| ≤ 3r

2

√
q + r + 1

2n
. (5.48)

• We give a bound for the probability of Game 1. Let y = (y
(0)
j ,...,y(k)j )j∈[r]

and z = (zj)j∈[r] be all the choices of y(i)j ’s and zj ’s in Box’ respectively. For
y ∈ {0, 1}h, let Jy be the set of index j that h0(zj||xj) = y. That is

Jy ≜ {j : h0(zj||xj) = y}. (5.49)

Then, define

S(y) ≜
⋃

y∈{0,1}h:Jy ̸=∅

{(y(1)a1
||...||y(k)ak

, y)}(a1,...,ak)∈Jk
y
. (5.50)

The adversary succeed if and only if it finds an (x, z) such that H ′(z||x) ∈
S(y) and x is not equal to any xj. The success probability is taken over the
choice of y, z, H′ and the randomness of A. That is

Pr[Game 2] ≤ Pr
y,z,H′,A

[H′(z||x) ∈ S(y)] = Ey Pr
z,H′,A

[H′(z||x) ∈ S(y)] . (5.51)
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Again, we use the adversary in Game 1 to construct a reduction breaking
Avg-Searchλ in Lemma 5. Fix y (and also S(y)). Let f ← Dλ : {0, 1}m+n →
{0, 1} and λ = |S|/tk. Let I : {0, 1}m+n → |S| and g : {0, 1}m+n → [t]k ×
{0, 1}h\S(y) be random functions. Reorder S(y) = {y′1, ..., y′|S(y)|}. Con-
struct H̃′ : {0, 1}m+n → [t]k × {0, 1}h as follows: for any (z||x) ∈ {0, 1}m+n,
define

H̃′(z||x) =


yj (x = xj ∧ z = zj),

y′I(z||x) (f(z||x) = 1),

g(x) (otherwise).

(5.52)

If A succeeds in Game 1, then the reduction succeeds in Avg-Search with
the same probability. From Lemma 5, we have

Pr
z,H′,A

[H′(z||x) ∈ S(y)] ≤ 8(q + r + 2)2
|S(y)|
2htk

. (5.53)

From the analysis in [17], for any y′ ∈ [t]k × {0, 1}h, the probability of
y′ ∈ S (over the choice of y) is at most Γ. Accordingly the expectation
of |S(y)|/(2htk) over the choice of y is at most Γ. Thus, we have

Pr[Game 1] ≤ Ey

[
8(q + r + 2)2

|S(y)|
2htk

]
≤ 8(q + r + 2)2Γ. (5.54)

From equation (5.48) and (5.54), we complete the proof.
⊓⊔

Remark 8 Wegive an exact bound for the generic security of ITSR. Compared
to the conjecture in [17], we have an additional term 3r

2

√
q+r+1

2n
here. This term

does not have an essential role if a mild security argument based on the notion
of security level is sufficient. Note that for HBS schemes, the security level is
defined as the complexity of qH , making the probability of breaking the security
reach a constant. For example, in SPHINCS+256s (r = 264 and n = 256), this
additional term will cause 128bit security, which is the same as the original
security level of SPHINCS+256s. Thus, this additional termhas a small impact
on the security level.
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5.3 SecurityAnalysis ofFewtimeHBSSchemes

5.3.1 Fewtime Hashbased Signature Schemes

In this section, we analyze two few-time HBS schemes.
The first is Hash to Obtain Random Subsets (HORS) [94]. The outline of

HORS is as follows. In the key generation algorithm, it picks a one-way function
f : {0, 1}l(n) → {0, 1}n and a (r, k)-subset-resilient function H = (h1, ..., hk) :

{0, 1}m → [t]k. Then, it picks t random strings s1, ..., st from {0, 1}l(n) and com-
putes yj = f(sj) for each j ∈ [t]. Let (s1, ..., st) be the secret key and (y1, ..., yt)

be the public key. In the signing algorithm, it reveals k elements from {sj}j∈[t]
determined by H(m). Due to (r, k)-subset resilience of H, it is hard to find a
message m∗ such that the secret values in the corresponding signature are cov-
ered by r (classical) queries to the signing oracle. The formal description is as
follows.

Construction 1 (Hash to Obtain Random Subsets (HORS) [94].) Let F =

{Fn : {0, 1}l(n) → {0, 1}n} and H = {H : {0, 1}m → [t]k} be hash function
families. HORS = (KeyGen, Sign,Ver) is depicted in Figure 5.3.

SPHINCS [15] introduces a variant ofHORScalledHORST (HORSwith trees).
HORST compresses the public keywith a (bitmarked) hash tree, and thus the sig-
nature needs to contain the corresponding authentication path. This operation
does not hurt the security except that it introduces a second-preimage-resistant
hash function.

Furthermore, SPHINCS+ [17] introduces an improvement of HORST, which
is calledFORS (Forest ofRandomSubsets). Themaindifferences betweenHORST
and FORS are as follows. First, the key generation algorithm picks kt random
strings from {0, 1}l(n) (rather than t strings) and divides them into k groups of t
strings. In the signing algorithm, instead of revealing k elements from t strings,
FORS reveals one element from each group. Second, FORS uses a tweakable
hash function F instead of the one-way function f , where the tweaks are the in-
dices of the strings. Third, instead of using bitmarked hash functions in the hash
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HORS.KeyGen(1λ)
F ← Fn,H = (h1, ..., hk)← H.
for j ∈ [t], sj ← {0, 1}l(n), yj = f(sj)

Y = (y1, ..., yt), S = (s1, ..., st)

pk = (Y, f,H), sk = (S, f,H).
return (pk, sk).

HORS.Sig(sk,m)

Parse S = (s1, ..., st) andH = (h1, ..., hk)

for i ∈ [k], xi = shi(m).
return σ = (x1, ..., xk).

HORS.Ver(pk,m, σ)
Parse σ = (x1, ..., xk) andH = (h1, ..., hk).
if for ∀i ∈ [k], yhi(m) = f(xi) return 1
return 0

Figure 5.3: Construction of Hash to Obtain Subsets (HORS).
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tree, FORS uses a tweakable hash function Th in generating hash trees, where
the tweaks are the addresses of the nodes. Finally, since there are k hash trees in
FORS, it compresses the k roots by calling Th and denote the value as the public
key.

InFORS, themessage is not hashed. In the signing operation, it directly splits
the messagem into k digits with size log t and then proceeds the following steps.
Thus, the scheme is not EU-CMA secure. (One can forge a signature and on
messagem1||m2 given signatures onm1||m∗2 andm∗1||m2.) In practice, FORS has
to be used on hashedmessages to achive EU-CMA.We call FORSwith integrated
hashing as simplified FORS (sFORS).

In SPHINCS+ [17], sFORS is never directly used. In each signing operation,
it introduces a (pseudo-)randomizer z. The message is then hashed with z, and
z is contained in the signature. It results in a new scheme that achieves higher
security. We call it randomized FORS (rFORS).

Construction 2 (Simplified&RandomizedForest ofRandomSubsets (sFORS
& rFORS) [17].) Let T = [k]× [t] and α ≥ log t+2. Let F : T×{0, 1}l(n) → {0, 1}n

andTh : {0, 1}α×{0, 1}∗ → {0, 1}n be tweakable hash functions where α ≥ and
H = {H : {0, 1}∗ → [t]k} be a hash function family. Let PRF be a pseudorandom
function. sFORS and rFORS are depicted in Figure 5.4 and 5.5.

5.3.2 Security Analysis

In this subsection we analyze the security of few-time signature schemes. Some
of the reductions have been given in previous work [94, 17] and Section 3.1.3.
Particularly, we analyze the EU-qCMA security of sFORS.

In the security analysis, we use insecurity functions to show the maximum
probability of breaking the security notions. For ∗ ∈ {SR,rSR,wSR,eTSR,OW}
and hash function family H, InSec∗H,qH

(ξ) denotes the maximum of Adv∗H,qH
(A)

for all ξ-time adversary A. In addition, for ∗ ∈ {SM-TCR,SM-DSPR} and tweak-
able hash functionTh, InSec∗Th,q1,q2(ξ) denotes themaximum ofAdv∗H,q1,q2

(A) for
all ξ-time adversary A.
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sFORS.KeyGen(1λ)
H = (h1, ..., hk)← H
for (i, j) ∈ [k]× [t], si,j ← {0, 1}l(n)

yi,j = F((i, j), si,j)
for ∀i ∈ [k], yi ← TreeGen(Th, t, (yi,1, ..., yi,t)).
y0 = Th(0, (y1, ...yk)), S = (s1,1, ..., sk,t),
pk = (y0, H), sk = (S,H).
return (pk, sk).

sFORS.Sig(sk,m)

Parse S = (s1,1, ..., sk,t) andH = (h1, ..., hk)

for i ∈ [k], xi = si,hi(m).
for (i, j) ∈ [k]× [t], yi,j = F((i, j), si,j).
for ∀i ∈ [k], πi ← TreeProv(Th, t, (yi,1, ..., yi,t), hi(m))

return σ = (x1, ..., xk, π1, ..., πk).

sFORS.pkFromSig(m,σ,H)

Parse σ = (x1, ..., xk, π1, ..., πk) andH = (h1, ..., hk).
for ∀i ∈ [k], yi ← TreeVer(Th, t, hi(m),F((i, j), xi), πi).
return y′0 = Th(0, (y1, ..., yk))

sFORS.Ver(pk,m, σ)
Parse pk = (y0, H)

return [[sFORS.pkFromSig(m,σ,H) = y0]]

Figure 5.4: Construction of Simplified FORS.
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rFORS.KeyGen(1λ)
(pk, sk)← sFORS.KeyGen(1λ)
k ← {0, 1}n

return (pk, (sk, k)).

rFORS.Sig((sk, k),m)

z = PRF(k,m)

σ ← sFORS.Sig(sk′, z||m)

return (z, σ).

rFORS.pkFromSig(m, (z, σ), H)

return sFORS.pkFromSig(z||m,σ,H)

rFORS.Ver(pk,m, (z, σ))
Parse pk = (y0, H)

return [[rFORS.pkFromSig(m, (z, σ), H) = y0]]

Figure 5.5: Construction of Randomized FORS.
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First we show the EU-CMA security of HORS and sFORS. The reduction is
straightforward and has been given in previous work [94] and Section 3.1.3.

Lemma 21 For any ξtime adversary A, it holds that

AdvEU-CMA
HORS,r,qH (A) ≤ InSec(r,k)-SR

H,qH
(ξ) + kt · InSecOW

F ,qH (ξ),

AdvEU-CMA
sFORS,r,qH (A) ≤ InSecSM-TCR

Th,rkt,qH (ξ)+InSec
(r,k)-rSR
H,qH

(ξ)

+3InSecSM-TCR
F,kt,qH (ξ) + InSecSM-DSPR

F,kt,qH (ξ),

Next, we focus on EU-qCMA security of sFORS.

Theorem 22 For any ξtime adversary A, it holds that

AdvEU-qCMA
sFORS,r,qH (A) ≤ InSecSM-TCR

Th,rkt,qH (ξ) + InSec(r,k)-wSR
H,qH

(ξ)

+ ktr
(
3InSecSM-TCR

F,t,qH (ξ) + InSecSM-DSPR
F,t,qH (ξ)

)
.

Proof. Our proof follows the idea of proving theEU-qCMAsecurity of Lamport’s
scheme in [24]. LetA be a quantum adversary, we reduce AdvEU-qCMA

sFORS,r,qH (A) by the
following hybrid arguments.

• Game 0 is the original EU-qCMA experiment of sFORS.

• Game 1 differs fromGame0 as follows. InGame 1, the challenger stores
all the yi,j in key generation algorithm. Game 1 returns 0 if A outputs a
(m,σ) = (m, (x1, ..., xk, π1, ..., πk)) such that f(xi) ̸= yi,hi(m) for some i ∈ [k].

The probabilities ofGame 0 andGame 1 differ only if the adversary gen-
erates a different hash tree of which the root collides with the real one. By
Lemma 19, this implies a reduction to SM-TCR of Th. That is, there exists
a reductionM1 such that

|Pr[Game 0]− Pr[Game 1]| ≤ AdvSM-TCR
Th,rkt,qH (M1). (5.55)

• Game 2 differs from Game 1 as follows. Given forgeries (mj, σj)j∈[r+1],
Game 2 outputs 0 if for ∀i ∈ [k], |{hi(mj)}j∈[r+1]| ≤ r holds. If the output
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of the game differs, it implies that the adversary outputs a weak subset
cover of H = (h1, ..., hk), and thus succeeds in attacking the weak subset
resilience ofH. There exists a reductionM2 such that

|Pr[Game 1]− Pr[Game 2]| ≤ Adv(r,k)-wSR
H,qH

(M2). (5.56)

IfA succeeds inGame 2, there exists i∗ ∈ [k] such that |{hi∗(mj)}j∈[r+1]| =
r+1 holds, which means that hi∗(mj)’s are distinct for j ∈ [r+1]. In other
words,A outputs (r+ 1) preimages of {yi∗,j}j∈[t] after only r queries to the
signing oracle.

• Game 3 differs from Game 2 as follows. Before running A, Game 3
randomly guesses i′ ∈ [k]. Game3 outputs 1 if and only ifGame2 outputs
1 and i′ = i∗. We have

Pr[Game 2] ≤ k · Pr[Game 3]. (5.57)

• Game 4 differs from Game 3 as follows. Every time A queries to the
signing oracle, the signing oracle performs a partial measurement after
computing hi∗ . Since each measurement has at most t outcomes and there
are at most r measurements, due to Lemma 4 we have

Pr[Game 3] ≤ tr · Pr[Game 4]. (5.58)

• In Game 4, the adversary can only obtain r elements of {si∗,j}j∈[t] with
pure states, but it is required to output (r + 1) preimages in the forgeries.
The forgeries must contain an xi∗,u∗ where u∗ ∈ [t] is never the outcome
of the partial measurements on hi∗ (and thus si∗,u∗ is never revealed), but
xi∗,u∗ is a preimage of yi∗,u∗ .

Given a successful adversary in Game 4, we construct a reductionM to
attack SM-OpenPRE of F. First,M queries all (i, j) ∈ [k] × [t] to oracle O
and obtains yi,j = F((i, j), si,j) for (i, j) ∈ [k] × [t] where si,j ’s are random
strings picked byO. In the second stage,M obtains parameter P of F and
uses P and yi,j ’s to generate a public key of sFORS. Then, it queries the
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oracle Open with all (i, j) ∈ [k]× [t] except i = i∗. In response, it obtains all
si,j ’s expect i = i∗ and sends the public key to A. When A sends a quan-
tum signing query,M performs a partial measurement after computing
hi∗ and suppose the outcome is u. It sends (i∗, u) to Open and obtains si∗,u
in response. It then simulates the signing oracle inGame 4 and sends the
corresponding signature toA. Finally, whenA successfully returns (r+1)

forgeries, there must be an xi∗,u∗ such that (i∗, u∗) is never sent to Open
and is a preimage of yi∗,u∗ . Sending xi∗,u∗ to the challenger completes the
SM-OpenPRE attack on F. We thus have

Pr[Game 4] ≤ AdvSM-OpenPRE
F,t,qH (M). (5.59)

By Lemma 17, there existM3 andM4 such that

Pr[Game 4] ≤ 3AdvSM-TCR
F,t,qH (M3) + AdvSM-DSPR

F,t,qH (M4). (5.60)

From equation (5.55), (5.56), (5.57), (5.58), and (5.60), we complete the proof.
⊓⊔

By introducingTheorem22, Corollary 1, Lemma18 and the conjecturedbound
of SM-DSPR in Remark , we immediately obtain the security bounds of few-time
siganture schemes in the quantum random oracle model.

Corollary 3 Let hash funcions in HORS and sFORS be modeled as quantum
random oracles. It holds that

AdvEU-CMA
HORS,r,q(A) ≤ O

(
q2(r+1)

(
rk

t

)k

+
q2kt

2n

)
, (5.61)

AdvEU-CMA
sFORS,r,q(A) ≤ O

(
q2(r+1)

(
r

t

)k

+
q2kt

2n

)
, (5.62)

and

AdvEU-qCMA
sFORS,r,q(A) ≤ O

(
q2(r+1)

(
r2

t

)k

+
q2ktr+1

2n

)
. (5.63)
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Remark 9 In the above equalities, we use the loose bound of SMDSPR. If we
use the conjectured bound of SMDSPR in Remark 6, then the second and third
bounds are

AdvEU-CMA
sFORS,r,q(A) ≤ O

(
q2(r+1)

(
r

t

)k

+
q2

2n

)
, (5.64)

and

AdvEU-qCMA
sFORS,r,q(A) ≤ O

(
q2(r+1)

(
r2

t

)k

+
q2ktr

2n

)
. (5.65)

We always follow the above bounds in the rest of the dissertation.

Next, we give an example of the concrete security of few-time signatures
by implementing the parameters used in SPHINCS-256 [15] (t = 216, k = 32,
n = 256). The concrete security of few-time signature schemes is summarized
in Figure 5.6. Here the security levels denote the logarithm of qH such that the
probabilities depicted in Corollary 3 reach a constant. It implies lower bounds
of the generic security of the schemes.

In addition, note that an attack on restricted-subset resilience immediately
implies a chosen message attack on the corresponding sFORS. In Chapter 3,
a generic quantum attack is shown on (r, k)-restricted subset resilience with
O(kt

1
2
(1− 1

2k+1−1
)
) quantum queries toH. It implies an upper bound of the generic

security of sFORS (and HORS) against CMA (and qCMA, respectively). The
comparison is also depicted in Figure 5.6.

Next, we analyze the security of rFORS.

Theorem 23 For any ξtime adversary A, it holds that

AdvEU-CMA
rFORS,r,qH (A) ≤ InSecSM-TCR

Th,rkt,qH (ξ) + InSec(r,k)-eTSR
H,qH

(ξ) + InSecInd-PRF,r
PRF (ξ)

+3InSecSM-TCR
F,kt,qH (ξ) + InSecSM-DSPR

F,kt,qH (ξ),

AdvEU-qCMA
rFORS,r,qH (A) ≤ InSecSM-TCR

Th,rkt,qH (ξ) + InSec(r,k)-wSR
H,qH

(ξ)

+ ktr
(
3InSecSM-TCR

F,t,qH (ξ) + InSecSM-DSPR
F,t,qH (ξ)

)
.

Proof.
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r CMA-HORS CMA-FORS qCMA-FORS Attacks

1 87.0 116.5 108.5 128.0
2 52.3 79.0 73.6 114.8
3 36.6 56.6 50.3 87.2
4 27.8 43.8 37.4 67.0
5 22.1 35.4 29.2 60.2
6 18.2 29.6 23.7 52.6
7 15.3 25.3 19.7 44.9

Figure 5.6: Concrete security of r-time HBS schemes derived from Corollary
3 with concrete parameters in SPHINCS-256. The three columns in the left
hand show lower bounds of the logarithm of hash queries needed in breaking
the generic security, and the rightmost column shows upper bounds.

1. (Proof of EU-CMA.)

The reduction of rFORS is similar to sFORS. The main difference is that
rFORS is not reduced to rSR. Instead, it is reduced to eTSR and the se-
curity of PRF. Since the signing algorithm is deterministic, we suppose
the adversary does not require repeated messages in the experiment. Let
(m∗, (z∗, σ∗)) be a forgery that A outputs.

The hybrid argument is as follows.

• Game 0 is the original EU-CMA experiment of rFORS.

• Game 1 diffes from Game 0 in that it returns 0 if σ∗ contains a dif-
ferent hash tree with the real one. As shown in the proof of Theorem
22, there exists a reductionM1 such that

|Pr[Game 0]− Pr[Game 1]| ≤ AdvSM-TCR
Th,rkt,qH (M1) (5.66)

• Game 2 differs from Game 1 in that it returns 0 if σ∗ contains a
preimage which has not been revealed in the signing queries. Also as
shown in the proof of Theorem 22, a difference of success probability
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with Game 1 implies a breaker of SM-PRE of F. Then, there exist
reductionM2 andM3 such that

|Pr[Game 1]− Pr[Game 2]| ≤ 3AdvSM-TCR
F,t,qH (M2) + AdvSM-DSPR

F,t,qH (M3).

(5.67)

• Game 3 differs fromGame 2 in that the signing oracle does not cal-
culate pseudorandom functions. Instead, it uses a truly random func-
tion (which can be instantiated by querying a random oracle). If the
probability differs, there exists a distingusherM4 breaking the secu-
rity of PRF:

|Pr[Game 3]− Pr[Game 2]| ≤ AdvInd-PRF
PRF,r (M4). (5.68)

• In Game 3, the adversary succeeds if for ∀i ∈ [k], it always holds
that hi(z∗||m∗) ∈ {hi(zj||mj)}j∈[r]. We construct a reductionM5 that
breaks eTSR of H. Given challenge H, it generates the key pair of
rFORS and give the public key to A. When the adversary queries mj

to the signing oracle, M5 queries mj to the oracle Box and obtains
(zj, H(zj)) in response. Then,M5 generates the corresponding signa-
ture and gives it to A. Finally,M5 returns (m∗, z∗) to the challenger.
If A succeeds, thenM5 succeeds with the same probability. We thus
have

Pr[Game 3] ≤ Adv
(r,k)-eTSR
H,qH

(M5). (5.69)

Fromequation (5.66), (5.67), (5.68) and (5.69), we complete the proof.

2. (Proof of EU-qCMA.)

We claim that rFORS is at least as secure as sFORS (if we suppose that the
input of H is of arbitrary length). That is, if there exists an adversary A
breaks EU-qCMA security of rFORS, then we constructM breaking EU-
qCMA security of sFORS.

Given the public key pk of sFORS as the challenge,M randomly picks k ∈
{0, 1}n and then sends pk to A. Every time A queries

∑
m,t |m, t⟩,M com-
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putes
∑

m,t |m,PRFk(m), t⟩ and queries
∑

m,t

∣∣(PRFk(m)||m
)
, t
〉
to the sign-

ing oracle. Then,M sends toAwhat it receives from the signing oracle. Fi-
nally, whenA returns {(m∗j , (z∗j , σ∗j ))}j∈[r+1],M returns {(z∗j ||m∗j , σ∗j )}j∈[r+1].
It is a set of valid forgeries of sFORS if A succeeds. We thus have

AdvEU-qCMA
rFORS,r (A) ≤ AdvEU-qCMA

sFORS,r (M). (5.70)

By Theorem 22, we complete the proof.
⊓⊔

By imcoporating Theorem 20 to Theorem 23, we obtain the generic security
of rFORS in the random oracle model as follows.

Corollary 4 Let the hash functions in rFORS be modeled as quantum random
oracles. It holds that

AdvEU-CMA
rFORS,r,q(A) ≤ O

(√
q

2n
+ q2

(
r

t

)k

+
q2

2n

)
, (5.71)

and

AdvEU-qCMA
rFORS,r,q(A) ≤ O

(
q2(r+1)

(
r2

t

)k

+
q2ktr

2n

)
. (5.72)

5.4 QuantumaccessAttacksonExistingMany
time Stateless HBS Schemes

5.4.1 Manytime Stateless HBS Schemes

SPHINCS [15] andSPHINCS+[17] aremany-time statelessHBS schemes. Briefly
speaking, they introduce a stateful HBS with trees (denoted by HT) and a few-
timeHBS. In each signing execution, the signer first pseudorandomly picks a leaf
from HT, which authenticate the public key of the few-time HBS. The signature
contains (1) the few-time signature of the message, (2) the HT signature of the
public key of the corresponding few-timeHBS, and (3) the (pseudo-)randomizer.
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Note that in SPHINCS and its variants, the few-time signatures are never explic-
itly verified. Instead, it uses pkFromSig to recover the public key from the mes-
sage and signature. The security of HT guarantees that only the real public key
can be verified in the next steps.

Remark 10 Essentially, SPHINCS and SPHINCS+ uses the constructions in
Figures 4.9 and 4.6 in Chapter 4. In this chapter, the syntax of stateful signa
ture is slightly different from that in Chapter 4. The verification algorithm also
takes as input the state. In addition, the security notion of HT is also different
from that in 4. The new security notion is described in the following.

Although SPHINCS and SPHINCS+ use different HT, the security notions
for HT are the same and implicitly contained in [15, 17]. The security is a state-
ful version of existential unforgeability under non-adaptive chosen message at-
tacks. We call it existential unforgeability under nonadaptive chosen message
attacks with states (EU-sNACMA). In detail, the security experiment is defined
as follows.

Experiment ExpEU-sNACMA
HT,qs,qH

(1n,A = (A1,A2))

(pk, sk)← KeyGen(1n)
({(mi, sti)}i∈[qs], S)← A1()

If sti are not distinct, return 0
For i ∈ [qs], σi ← Sign(sk,mi, sti)
(m∗, σ∗, st∗)← A2(pk, S, {σi}i∈[qs])
If st∗ = stj for some j ∧m∗ ̸= mj ∧ Ver(pk,m∗, σ∗, st∗) = 1, return 1,

otherwise return 0.

In this chapter, we do not depict the detailed construction ofHT in SPHINCS
and SPHINCS+. We use it as a black box and only care about the security.

In SPHINCS, the few-time signature scheme is HORST (HORS with trees),
a variant of HORS. It compresses the HORS public key by a Merkle tree struc-
ture, and the compressed public key can be generated by an algorithm pkFromSig
from the message and the signature. In this section, we also use HORS.Sig and
HORS.pkFromSig to denote the algorithms of HORS with trees.
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SPHINCS.KeyGen(1λ)
skseed ← {0, 1}n

(pkHT, skHT)← HT.KeyGen(1λ)
sk = (skseed, skHT), pk = pkHT

Output (pk, sk).

SPHINCS.Sig(sk,m)

z = PRFmsg(skseed,m), idx = PRFidx(skseed,m)

sidx = PRFseed(skseed, idx)

(pkHORS, skHORS)← HORS.KeyGen(1λ; sidx)
σHORS ← HORS.Sig(skHORS(z||m))

σHT ← HT.Sig(skHT, pkHORS, idx)

return (idx, z, σHT, σHORS).

SPHINCS.Ver(m, (idx, z, σHT, σHORS))

pkHORS ← HORS.pkFromSig(z||m,σHORS)

return HT.Ver(pkHT, pkHORS, σHT, idx)

Figure 5.7: The framework of SPHINCS

In detail, the frameworks of SPHINCS and SPHINCS+ are depicted in Figure
5.7 and 5.8.

Remark 11 Figure 5.8 shows the deterministic version of SPHINCS+. It can
be converted into a probabilistic version by adding a random salt to the input
of PRFmsg. In this section, wemainly focus on the deterministic version andwill
discuss the probabilistic version in the next section.

5.4.2 Quantum Chosen Message Attacks on SPHINCS

From this subsection, we analyze the quantum-access security of SPHINCS and
SPHINCS+. Let qs be the maximum number of signing queries and qH be the
maximum number of hash queries. For classical-accessible security (EU-CMA),
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SPHINCS+.KeyGen(1λ)
skseed ← {0, 1}n, h0 ← H0

(pkHT, skHT)← HT.KeyGen(1λ)
sk = (skseed, skHT), pk = (pkHT, h0)

Output (pk, sk).

SPHINCS+.Sig(sk,m)

z = PRFmsg(skseed,m)

idx = h0(z||m)

sidx = PRFseed(skseed, idx)

(pkFORS, skFORS)← sFORS.KeyGen(1λ; sidx)
σFORS ← sFORS.Sig(skFORS, z||m)

σHT ← HT.Sig(skHT, pkFORS, idx)

return (z, σHT, σFORS).

SPHINCS+.Ver(pk,m, (z, σHT, σFORS))

idx = h0(z||m)

pkFORS ← sFORS.pkFromSig(z||m,σFORS)

return HT.Ver(pkHT, pkFORS, σHT, idx)

Figure 5.8: The framework of SPHINCS+
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it needs approximately 2128 hash queries to break the security of SPHINCS-256
when qs = 250 and also approximately the same number of hash queries to break
that of SPHINCS+-256s. One may consider that the success probability may in-
crease when the signing queries become quantum. In this subsection, we prove
this conjecture by showing some concrete quantum chosen message attacks on
SPHINCS and SPHINCS+ that can succeed with a larger probability than clas-
sical chosen message attacks.

The outline of the attack is as follows.
In SPHINCS, idx = PRFidx(skseed,PRFmsg(skseed,m)). Fix skseed. Then, it im-

plies a function f(m)mappingm to idx. Although an adversary cannot calculate
f without knowing skseed, idx is a part of the signature and thus f can be com-
puted by querying the signing oracle. By using Grover’s algorithm in Lemma
3, one can search a message m mapping to any specialized index after O(2h/2)
queries to the signing oracle.

Note that any index authenticates a key pair of the few-time signature scheme.
By repeating the above steps r times, one can obtain r message-signature pairs
w.r.t. the same few-time signature key pair. If the secret key of the few-time
signature is used too many times, the security level will be degraded rapidly.

The formal description of the quantum chosen message attack on SPHINCS
is as follows:

1. Given pk and the signing oracle SigO, for some idx∗ ∈ {0, 1}h, denote func-
tion F (m) = 1 iff SigO(m, 0h, 0∗) = (m, idx∗, ∗). Here, F is quantum-
computable by querying SigO.

2. RunGrover’s algorithm on F (m). It outputs a randomm such that F (m) =

1. It implies aHORS signature labeled by idx∗. This requiresO(2h/2) quan-
tum queries to the signing oracle.

3. Repeat the previous step r times. This requires O(r2h/2) quantum queries
to the signing oracle. Let S be the set of labels of which the preimages have
appeared in the HORS signatures. In other words, let m(1), ...,m(r) be the
outputs of the Grover’s algorithm, then S = {hi(m(j))}i∈[k],j∈[r].
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Note that for each sj, the probability of appearing in a HORS signature is
k/t. The probability of appearing in r random signatures is 1− (1− k/t)r.
Thus, the expectation of |S| is

E[|S|] =
(
1−

(
1− k

t

)r)
· t ≥ (1− e−

kr
t ) · t, (5.73)

where the equality comes from (1− x)α ≤ e−αx.

4. Denote function G(z||m) = 1 iff {hi(z||m)}i∈[k] ⊂ S. Run Grover’s algo-
rithm on G. It outputs z∗||m∗ whose corresponding preimages have ap-
peared in the HORS signatures. The expected number of quantum hash
queries in this step is

O

(√(
t

|S|

)k)
= O((1− e

kr
t )−

k
2 ). (5.74)

5. Note that the signing oracle has been queried qs = O(r2h/2) times. The
forgery needs to contain at least one-more message-signature pairs. Step
4 needs to be repeated (qs + 1 − r) times. (It is unnecessary to compute
σHT for the new forgeries since all the forgeries share a common σHT.) The
total number of hash queries is

qH = O(qs + 1− r) ·O((1− e−
kr
t )−

k
2 ) = O((1− e−

kr
t )−

k
2 · r2

h
2 ). (5.75)

In SPHINCS-256, k = 32, t = 216 and h = 60. When r = 210, qs and qH
are approximately 240 and 261, respectively. When r = 214, qs reaches 243 and
qH decreases to 243 as well. It is much lower than the level of EU-CMA security,
where qs = 250, and qH is expected to be 2128.

Remark 12 The purpose of Step 1 and 2 is to obtain r messages mapping to
the single index, idx∗. Essentially, what we need here is an rcollision of the
function mapping m to idx∗. Intuitively, finding an rcollision is easier than
searching r preimages for a special index. However, when r is large, the quan
tum query complexities of the two problems are close. Finding an rcollision
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requiresO(r2
h
2
(1− 1

2r+1−1
)
) hash queries [84] (with additional hugememory cost)

and finding r preimages by Grover’s algorithm requires O(r2h
2 ) queries. Since

it greatly increases memory cost and only slightly decreases the time cost, we
will not use the multicollision finding algorithm here.

5.4.3 Quantum Chosen Message Attacks on SPHINCS+

In SPHINCS+, the index is not directly contained in the signature. It is com-
puted by idx = h0(z||m), avoiding forgeries with a malicious index. It is not a
big issue since we can add some additional conditions on Grover’s algorithm to
find a malicious randomizer z mapping to our malicious index. In this section,
we simply denote by H the hash computation of h0 and (h1, ..., hk). (In practice,
h0 and (h1, ..., hk) are parts of a functionH.)

Our attack on SPHINCS+ is as follows:

1. Given pk and signing oracle SigO. Let SigO : (m, 0n, 0∗) → (m, z, ∗). Let
function z(m) be the map fromm to the corresponding z. For some idx∗ ∈
{0, 1}h, denote predicate F (m) = 1 iff h0(z(m)||m) = idx∗. Here, F is
quantum-computable by querying SigO and a quantum query to h0.

2. RunGrover’s algorithm on F (m). It outputs a randomm such that F (m) =

1. It implies a sFORS signature labeled by idx∗. This requiresO(2h/2) quan-
tum queries to the signing oracle and O(2h/2) quantum queries to h0.

3. Repeat the previous step r times. This requires O(r2h/2) quantum queries
to the signing oracle. For i ∈ [k], let Si be the set of labels of which the
preimages have appeared in the i-th tree of sFORS signatures. In other
words, Si = {hi(m(j))}j∈[r].

For each si,j, the probability of appearing in an sFORS signature is 1/t. The
probability of appearing in r random signatures is 1− (1− 1/t)r. Thus, the
expectation of |Si| is

E[|Si|] =
(
1−

(
1− 1

t

)r)
· t ≥ (1− e−

r
t ) · t, (5.76)
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and thus
E
[∏
i∈[k]

|Si|
]
≥ (1− e−

r
t )k · tk. (5.77)

4. Denote function G(z||m) = 1 iff ∀i ∈ [k], hi(z||m) ∈ Si ∧ h0(z||m) =

idx∗. Run Grover’s algorithm onG. It outputs z∗||m∗ whose corresponding
preimages have appeared in sFORS signatures. The expected number of
quantum hash queries in this step is

O

(√(
2h · tk∏
i∈[k] |Si|

))
= O((1− e−

r
t )−

k
2 · 2

h
2 ). (5.78)

5. The signing oracle has been queried qs = O(r2h/2) times. The forgery needs
to contain at least one more message-signature pair. Step 4 needs to be
repeated (qs + 1− r) times. The total number of hash queries is

qH = O(r2
h
2 )+O(qs+1−r)·O((1−e−

r
t )−

k
2 ·2

h
2 ) = O((1−e−

r
t )−

k
2 ·r2h). (5.79)

In SPHINCS+-256s, k = 22, t = 214 and h = 64. When r = 216, qs and qH are
approximately 248 and 280, respectively. It is also lower than the level of EU-CMA
security, where qs = 264 and qH is expected to be 2128.

5.4.4 Attack on PRF

Another quantum-access attack focuses onPRFmsg. It does not workwell in prac-
tice but still reminds a potential risk under quantum chosen message attacks.

In SPHINCS and SPHINCS+, the security notion of PRFmsg and PRFidx are
(post-quantum) pseudorandomness. That is, any polynomial-time (quantum)
adversary cannot tell the difference between oracle PRFmsg(k, ·) (where k is ran-
domly chosen) and a random oracle O(·). Note that here the oracle is classical-
accessible, meaning that the adversary can only query the oracle with pure states
in the experiment. However, if the oracle becomes quantum-accessible, the se-
curity may differ. In [106], the author shows a separating example PRF that is
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secure under classical queries but completely insecure under quantum queries.
That is, there exists an adversary that queries the quantum oracle PRF(k, ·) poly-
nomial times and then becomes able to calculate PRF(k, ·) without querying the
oracle anymore.

If the pseudorandom functions are instantiated by such quantum-insecure
instances, the resulting SPHINCSandSPHINCS+will be fragile under quantum-
access attacks. Let us give an example of SPHINCS+. Since z = PRFmsg(skseed,m)

is contained in the signature, PRFmsg(skseed, ·) is implied in the signing oracle. A
quantum adversary mentioned above can send quantum queries to the signing
oracle and then obtain the ability of calculating PRFmsg(skseed, ·). As a result, the
adversary can calculate f(m) = h0(PRFmsg(skseed,m)||m) without querying the
signing oracle and use Grover’s algorithm to find a message m mapping to a
special index idx∗. Then, the adversary sendsm with the pure state to the sign-
ing oracle and obtains a few-time signature labeled by idx∗. By repeating the
previous step r times, the adversary can obtain r few-time signatures and then
generate a forgery for any message if r is large enough (approximately r = ct

where c > 1 is a small constant). Finally, the adversary uses Grover’s algorithm
to find (qs + 1) number of (z,m) pairs such that h0(z||m) = idx∗ (this requires
O(qs2

h
2 ) hash queries). If the number of queries needed in attacking PRFmsg is

smaller than O(2h
2 ), the signing queries and hash queries will be smaller than

the attacks in the previous subsections.
In practice, PRFmsg is instantiated by hash functions such as SHA-256 and

SHAKE-256. They are conjectured secure in quantum-access settings. Thus, it
is likely that there does not exist such an efficient quantum-access attacker on
PRFmsg. However, to make the scheme remain secure under quantum chosen
message attacks, it is natural to adapt the security notion for PRFmsg to be resis-
tant to quantum-access adversaries (e.g., QPRF [106]).

5.4.5 Attacks in the BUmodel

In the above attacks, when r is large enough, the adversary can forge a signature
for any message that it wants. However, because of the rule of EU-CMA exper-
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iment, the adversary has to generate qs forgeries, which leads to large qH in the
attacks.

Now that the adversary has already obtained the ability to forge any signa-
tures, intuitively, we should admit that the security has been broken and that the
adversary succeeds. Thus, it then seems meaningless to “force” the adversary to
repeatedly generate such a large number of forgeries.

In Section ??, we have introduced a security notion called blind unforgeabil-
ity (BU). In this subsection, we call the original security notion (existential un-
forgeability under quantum chosen message attacks) PO security, which means
Plus-One. It has been proven that the BU security implies the PO security, mean-
ing that if there exists an adversary A that breaks the PO security, then, there
exists a general reductionMA that can break the BU security. Thus, it is natural
that our attacks also work in the BU model. If we use the BU model, the ad-
versary does not need to execute the “meaningless” hash queries as mentioned
above. That is, after the adversary gains the ability to forge signatures, it only
needs to forge one signature for a message in the blind region Bε,n. The number
of hash queries will be much lower than that in the PO model.

In the following, we omit the parameter n and useBϵ to denoteBϵ,n. In detail,
the strategy of breaking the BU security of SPHINCS is as follows.

1. Given pk and quantum access to signing oracle BεSigO, for some idx∗ ∈
{0, 1}h, denote functionF (m) = 1 iffBεSigO(m, 0h, 0∗) = (m, idx∗, ∗). (Note
that F (m) = 1 implies that m ̸∈ Bε.) Here, F is quantum-computable by
querying BεSigO.

2. RunGrover’s algorithmonF (m). This requiresO
(√

2h

1−ε

)
queries toBεSigO.

3. Repeat the last step r times and denote S as above. The expectation of |S|
is also (1− e− kr

t ) · t.

4. Denote predicate F ′(m) = 1 iff BεSigO(m) = ⊥. It outputs a message
m∗ ∈ Bε. This requires approximately O(ε−1/2) signing queries.

5. Denote function G(z) = 1 iff {hi(z||m∗)}i∈[k] ⊂ S . Run Grover’s algorithm
onG. It outputs z∗ such that the preimages corresponding to (z∗,m∗) have
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appeared in S. The expected number of quantum hash queries in this step
is also O((1− e kr

t )−
k
2 ).

Then, the adversary successfully forges σ∗ = (idx∗, z∗, σ∗HT, σ
∗
HORS) form∗ ∈

Bε, where σ∗HT is obtained by an additional signing query and σ∗HORS is ob-
tained by S.

The total number of required queries is

qs = O(r2
h
2 (1− ε)−

1
2 ) +O(ε−

1
2 ), qH = O((1− e−

kr
t )−

k
2 ). (5.80)

Note that qs is slightly larger than the original attack (increased by a polynomial
√
ε) and qH decreases to 1/r2h/2 of the original one.
The above attack also works on SPHINCS+, but we have another one that

requires less queries. The main idea is similar. First, we find a message m∗ in
the blind region. Then, to sign a message for m∗, we need an sFORS signature
associated with some index idx∗. Note that the sFORS signature includes k ele-
ments. We directly use Grover’s algorithm to search k messages (outside of the
blind region) that respectively map to the k target elements. It can be done by
quantum signing queries. Finally, the sFORS signature of m∗ is covered by the
k signatures, and a forgery is generated. The attack is as follows.

1. Given pk and quantum access to signing oracle BεSigO, find m∗ such that
BεSigO(m∗) = ⊥. This requires O(ε− 1

2 ) quantum hash queries.

2. Let z∗ ∈ {0, 1}n and idx∗ = h0(z
∗||m∗). Let SigO : (m, 0n, 0∗) → (m, z, ∗).

Let function z(m) be the map from m to the corresponding z. For i ∈ [k],
denote predicate Fi(m) = 1 iff (1) z(m) ̸= ⊥, (2) h0(z(m)||m) = idx∗ and
(3) hi(z(m)||m) = hi(z

∗||m∗). Fi is quantum-computable by querying SigO
and a quantumquery to h0, hi. RunGrover’s algorithmonFi. The expected
number of Fi computations is O(

√
(1− ε)−1 · 2h · t).

3. After that, the secret values in sFORS signature on m∗ is covered the k
signatures. A forgery is then generated.
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In total, the number of required queries is

qs = O(k2
h+log t

2 (1− ε)−
1
2 ) +O(ε−

1
2 ), qH = O(k2

h+log t
2 (1− ε)−

1
2 ). (5.81)

With the parameters in SPHINCS+-256s, qs and qH are both approximately
243, which is lower than out attack in the PO model.

Remark 13 The above attack can also be simplymodified to attack SPHINCS,
but the number of hash queries is greatly higher than the former attack.

The concrete complexity of our attacks is summarized in Figure 1.3.

5.5 SPHINCSFORS: A Provably Secure Hash
based Signature Scheme against Quantum
Chosen Message Attacks

5.5.1 Discussion: How to Avoid Quantum Attacks?

In the previous section, we introduce quantum-access attacks on deterministic
SPHINCSandSPHINCS+and show that their security levels in theEU-qCMA/BU-
qCMA model are much lower than that in the EU-CMA model. The key point
of the above attacks is searching messages that map to some index idx∗. The
search is done by iteratively running a function F in Grover’s algorithm. A sim-
ple improvement to avoid these attacks is making F randomized. That is, in
each signing operation, the signer adds a random nonce in calculating the pseu-
dorandomness z = PRFmsg(skseed,m). This is indeed the probabilistic version
of SPHINCS+ [17]. Note that this nonce is not necessary to be uniformly dis-
tributed. This nonce does not affect the security reduction of EU-CMA, but it
affects EU-qCMA security.

However, we do not find security proof of EU-qCMA security for probabilistic
SPHINCS or SPHINCS+, even if the random nonce is well sampled. Although
the above attacks do not work on these probabilistic versions, there is no evi-
dence to show that they are secure against any quantumchosenmessage attacks.
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Note that the security under quantum chosen message attacks of SPHINCS
and SPHINCS+ is more complicated than that in the classical setting for the fol-
lowing reasons. First, in the classical setting, a response of the signing query
contains only one few-time signature. Since idx may differ in superpositions
in the quantum-access setting, a SPHINCS/SPHINCS+ signature with quantum
states may contain many few-time signatures for many key pairs. This multi-
instance case exceeds our discussion about the security of few-time signature
schemes. Second, a quantum SPHINCS/SPHINCS+ signature may also contain
a large number of HT signatures σHT in superpositions. It makes the analysis
even more difficult.

So how do we construct a provably secure HBS scheme under quantum-
access attacks? Our solution is simple. The first step is to make each signing
response only contain few-time signatures related to one key pair. For this pur-
pose, we make the index of the few-time signature irrelevant to the message.
In each signing query, the signing algorithm randomly picks a leaf from {0, 1}h

instead of running the pseudorandom function on the message. Since the ran-
domness of a signing query is global, the resulting signatures in superpositions
share common randomness and thus a common idx, implying a common few-
time signature key pair. In addition, note that σHT is the signature on the few-
time signature public key. Since all superpositions share a common public key,
the resulting σHT is also identical in all superpositions. The security is then re-
duced to the quantum-access security of the few-time signature scheme in the
single-instance case, which has been evaluated in Section 4.

This variant can avoid the above quantum-access attacks since the index is
independent of the message. However, note that the random index needs to be
directly contained in the signature, so an adversary can arbitrarily choose an
index in the forgeries. It causes lower security than SPHINCS+, especially in the
EU-CMA model. Thus, the classical security also needs re-analyzed.

In the next subsection, we present SPHINCS-FORS, a variant of SPHINCS+
that follows the approach andprovides provable security in theEU-qCMAmodel.
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SPHINCS-FORS.KeyGen(1λ)
skseed ← {0, 1}n,
(pkHT, skHT)← HT.KeyGen(1λ)
sk = (skseed, skHT), pk = pkHT

Output (pk, sk).

SPHINCS-FORS.Sig(sk,m)

idx← {0, 1}h

sidx = PRFseed(skseed, idx)

(pkFORS, skFORS)← rFORS.KeyGen(1λ; sidx)
(z, σFORS)← rFORS.Sig(skFORS,m)

σHT ← HT.Sig(skHT, pkFORS, idx)

return (idx, z, σHT, σFORS).

SPHINCS-FORS.Ver(pk,m, (idx, z, σHT, σFORS))

pkFORS ← rFORS.pkFromSig(m, (z, σFORS))

return HT.Ver(pkHT, pkFORS, σHT, idx)

Figure 5.9: The framework of SPHINCS-FORS

5.5.2 SPHINCSFORS

Now we introduce the variant of SPHINCS discussed by the end of the last sec-
tion.

Construction 3 Let PRFseed : {0, 1}n × {0, 1}h → {0, 1}n be a pseudorandom
function, and HT and rFORS be depicted in above sections. SPHINCSFORS is
depicted in Figure 5.9.

The difference with SPHINCS+ is as follows:

• The main difference is the strategy of choosing the index. In SPHINCS-
FORS, the index is randomly chosen from {0, 1}h while in SPHINCS+ it
is pseudorandomly related to m. The motiation has been mentioned in
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Subsection 5.5.1. The random index is directly contained in the signature
in SPHINCS-FORS.

• In SPHINCS-FORS, we uses rFORS as the few-time signature. The slight
difference is that in SPHINCS+, the (pseudo-)randomizer z is calculated by
a global function PRFmsg(skseed,m) while in SPHINCS-FORS, skseed differs
in different indices. This will be helpful for security proofs.

5.5.3 Security Analysis

In this subsection, we analyze the security of SPHINCS-FORS under (quantum)
chosen message attacks.

At first, we need to discuss the security for HT. As we use the same HT as
SPHINCS+ and its (EU-sNACMA) security has been evaluated in [17, 69], we
omit the formal analysis of HT. The success probability of breaking the security
is at most O(q2/2n), where q denotes the number of hash queries.

For a signature scheme Γ, let InSec∗Γ,r,qH (ξ) be the maximum of Adv∗Γ,r,qH (A)
for all ξ-time adversary A and ∗ ∈ {EU-CMA,EU-qCMA,EU-sNACMA}.

We first prove the security under quantum chosenmessage attacks. We treat
rFORS as a black box.

Theorem 24 For any ξtime adversary A, it holds that

AdvEU-qCMA
SPHINCS-FORS,r,qH (A) ≤ InSecEU-sNACMA

HT,2h,qH
(ξ) + InSecInd-PRF

PRFseed,2h
(ξ)

+

qs∑
r=0

p(r, qs) · InSecEU-qCMA
rFORS,r,qH (ξ),

where p(r, qs) = min{2r(log qs−h)+h−log r!, 2h}.

Asmentioned in Section 5.5.1, all the signatures contained in a response from
the signing oracle share a common index and thus a common rFORS key pair.
In each superposition, idx and σHT are identical. The only “quantum state” of
a response is (z, σFORS), the signature of rFORS. It implies that the EU-qCMA
security of SPHINCS-FORS is reduced to the EU-qCMA security of rFORS and
the classical security of HT.
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Proof.
The statement can be proved by the following hybrid arguments.

• Game 0 is the original EU-qCMA experiment of SPHINCS-FORS.

• Game 1 differs from Game 0 in that, in the signing oracle, sidx is calcu-
lated by TRF(idx) where TRF : {0, 1}h → {0, 1}λ is a truly random func-
tion. If the success probability differs, it implies a reduction distinguishing
PRFseed and TRF. Note that there are at most 2h calls to PRF. We have

|Pr[Game 1]− Pr[Game 0]| ≤ InSecInd-PRF
PRFseed,2h

(ξ). (5.82)

• Game2 differs fromGame 1 as follows. AfterA outputs (qs+1)message-
signature pairs, Game 2 checks whether there exists a forgery (m∗,Σ∗) =
(m∗, (idx∗, z, σ∗FORS, σ

∗
HT)) such that pk∗FORS ̸= pkFORS, where sidx∗ = TRF(idx∗),

pk∗FORS ← rFORS.pkFromSig(m∗, (z, σ∗FORS)), pkFORS ← rFORS.KeyGen(1n; sidx∗).
If so, it returns 0.

Game 2 differs from Game 1 only if the adversary generates a HT sig-
nature for a “fake” pk∗FORS which is not consistent to the real one. It im-
plies a reduction attacking the EU-sNACMA security of HT. At the begin-
ning, the reduction generates the rFORS public keys w.r.t. all the indices in
{0, 1}h and sends them with the corresponding indices to the challenger.
Then, it obtains the HT signatures and the public key pkHT from the chal-
lenger. When signing a message m from the adversary, it picks a ran-
dom idx ∈ {0, 1}h, generates the corresponding rFORS signature (z, σFORS).
Then, it replies with (idx, z, σFORS) and the corresponding σHT from the
challenger. Finally, the adversary outputs a pk∗FORS that is different from
the real one. It implies a forgery of HT with state idx∗. We have

Pr[Game 1] ≤ Pr[Game 2] + AdvEU-sNACMA
HT,2h,qH

(A). (5.83)

InGame 2, the adversary wins only if it generates (qs+1) rFORS forgeries
(of multiple instances) after qs signing queries. Note that in each signing
query, the signing oracle picks one idx ∈ {0, 1}h and signs the message
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by the rFORS key pair associated with idx. Due to the pigeonhole princi-
ple, there must exist a special idx∗ ∈ {0, 1}h that has been used r times in
signing queries and is used at least (r + 1) times in the forgeries for some
r ≥ 0.

• Game 3 differs from Game 2 in that it guesses idx′ ∈ {0, 1}h at the be-
ginning of the experiment and outputs 0 if idx′ ̸= idx∗. We have

Pr[Game 2] ≤ 2h · Pr[Game 3]. (5.84)

• InGame3,Awins if it generates (r+1) forgeries for the rFORSkey pair as-
sociatedwith idx′ conditioned that it is chosen r times in qs signing queries.
It breaks the EU-qCMA security of rFORS with r signing queries. In addi-
tion, let Er be the event that a leaf is chosen r times. The probability of Er

is
(
qs
r

)
(1− 2−h)qs−r(2−h)r < 2r(log qs−h)−log r!. Thus, we have

Pr[Game 3] =
qs∑
r=0

Pr[Game 3|Er] · Pr[Er]

≤
qs∑
r=0

InSecEU-qCMA
FORS,r,qH

(ξ) ·min{2r(log qs−h)−log r!, 1}.

This completes the proof. ⊓⊔

From Corollary 3, we have

Corollary 5 Let hash funcions in SPHINCSFORSbemodeledas quantumran
dom oracles. It holds that

AdvEU-qCMA
SPHINCS-FORS,qs,qH (A) ≤ O

(
q2H
2n

+

qs∑
r=0

p(r, qs) ·min
{
q
2(r+1)
H

(
r2

t

)k

+
q2Hkt

r

2n
, 1

})
.

(5.85)

In terms of EU-CMA security, the proof is very similar to EU-qCMA and thus
omitted.
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Theorem 25 For any ξtime adversary A, it holds that

AdvEU-CMA
SPHINCS-FORS,r,qH (A) ≤ InSecEU-sNACMA

HT,2h,qH
(ξ)+InSecInd-PRF

PRFseed,2h
(ξ)

+

qs∑
r=0

p(r) · InSecEU-CMA
rFORS,r,qH (ξ),

where p(r, qs) = min{2r(log qs−h)+h−log r!, 2h}.

From Theorem 4, we have

Corollary 6 Let hash funcions in SPHINCSFORS be modeled as quantum
random oracles. It holds that

AdvEU-CMA
SPHINCS-FORS,qs,qH (A) ≤ O

(
qs

√
qH + qs

2n
+
q2H
2n

+ q2H

qs∑
r=0

p(r, qs)

(
r

t

)k)
. (5.86)

Note that here the term caused by adaptive reprogramming is O
(
qs

√
qH+qs
2n

)
rather than

∑qs
r=0 p(r, qs) ·

3r
2

√
qH+r+1

2n
. It is because that the random oracle is

reprogrammed at most qs times in the reduction. For the same reason the terms
caused by SM-TCR, SM-DSPR and Ind-PRF are gathered to O(q2H/2n).

5.5.4 Concrete Security

As a variant of SPHINCS+, SPHINCS-FORS is expected to reach the same se-
curity level as SPHINCS+. However, we note that the EU-CMA security level
of SPHINCS-FORS is lower than SPHINCS+ with the same parameters. It is
because of the different strategies of choosing the index. Since the index is di-
rectly contained in the signature (just like what SPHINCS does), the adversary
is able to arbitrarily choose a target index to forge a signature. Recall that in
SPHINCS+, the index can be verified by the message and thus makes the ad-
versary harder to succeed. In the next section, we show a concrete attack on
SPHINCS-FORS, implying the difference in security levels with SPHINCS+.

For example, in SPHINCS+-256s, h = 64, k = 22, t = 14, and qs = 264.
The expected number of qH breaking EU-CMA security is 2128. With the same
parameters on SPHINCS-FORS, qH is only 296, much lower than what we expect.
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Parameters log qs log qH

10 91
20 88

SPHINCS-FORS-256s 30 86
(n = 256, h = 64, t = 217, k = 22) 40 52

50 28
60 10

10 93
20 91

SPHINCS-FORS-256f 30 88
(n = 256, h = 68, t = 211, k = 32) 40 50

50 32
60 13

Figure 5.10: Concrete security against qCMA of SPHINCS-FORS. qH denotes a
lower bound of the hash queries needed in all quantum-access attacks.

Thus, we suggest the parameters be h = 64, k = 22, and t = 217. When
qs = 264,

∑qs
r=0 p(r, qs)(

r
t
)k in the equation (5.86) becomes approximately 2−256.

The scheme can then provide 128-bit security against chosen message attacks.
This causes approximately 7.09% larger signatures.

In addition, we adapt the parameters in SPHINCS+-256f from h = 68, k =

32, t = 29 to h = 68, k = 32, t = 211 and obtain a version SPHINCS-FORS-256f.
This causes approximately 4.49% larger signatures than SPHINCS+-256f.

As for EU-qCMA security, our reduction provides security levels in Figure
5.10 by Corollary 5.

We observe that the EU-qCMA security does not provide 128-bit security
even if qs is lower than 264. Accordingly, one can flexibly adapt the parameters to
provide higher security levels. As a result, the signature size and running time
will become larger. For instance, our attack in the previous section shows that
the quantum-access bit security of SPHINCS+-256s is at most 80 when qs = 248.

159



We can set the parameters (k = 32, t = 217, h = 128, n = 256, SPHINCS-FORS
v.2 in Figure 1.4) to achieve the same security level with security proof. It im-
plies that the bit security is at least (rather than at most) 80. The price is that
the signature size is larger than SPHINCS+-256s. In addition, we can simply
increase the parameters of SPHINCS+-256s so that our attacks require qs = 264

and qH = 2128 (say SPHINCS+-256s* in Figure 1.4). Similarly, we can also set
the parameters (k = 48, t = 218, h = 128, n = 384, SPHINCS-FORS v.3 in Figure
1.4) to achieve the same (but provable) security level.

See details in Figure 1.4 (SPHINCS-FORS-256s is written as v.1 in this fig-
ure).

Remark 14 Note that the EUqCMA security of SPHINCSFORS is reduced to
EUqCMA security of rFORS. However, our security bound for rFORS seems
nontight since the reduction even does not require any security notion for the
pseudorandom function inside of rFORS. It is an open question to find a tighter
reduction for rFORS. We conjecture that the security of rFORS can be bounded
byO(q2( r2

t
)k + q2/2n) conditioned that the hash functions are modeled as quan

tum random oracles, and the pseudorandom function is quantumaccess se
cure [106]. If it is true, then the security level of SPHINCSFORS will be much
higher thanwhat we depicted (it then provides 96bit EUqCMA security when
qs = 264, security level 4 in NIST standardization).

5.6 An Attack on SPHINCSFORS

This subsection shows a (classical) chosen message attack on SPHINCSFORS
focusing on breaking eTSR. It is similar to the attack on SPHINCS+ focusing
on ITSR, but there are some slight differences. This implies the difference in
security levels between SPHINCSFORS and SPHINCS+ in the EUCMAmodel
and that the EUCMA security bound of SPHINCSFORS is tight.

First, the adversary queries arbitrary qs messages to the signing oracle
and obtains the corresponding sigantures. Let Sj be the set of labels of preim
ages contained in the signature of mj, that is, Sj = {(idxj, i, hi(zj||mj))}i∈[k].
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After that, the adversary uses Grover’s algorithm to find (z∗,m∗) such that
∃idx∗ ∈ {0, 1}h : {(idx∗, i, hi(z∗||m∗))}i∈[k] ⊂

⋃qs
j=1 Sj and that m∗ has not been

queried. Then, (m∗, (idx∗, z∗, σ∗HT, σ
∗
FORS)) is a forgery where σ∗HT and σ∗FORS can

be calculated by the signatures received from the signing oracle.
Next, we evaluate the complexity of hash queries needed in the above attack.

For idx ∈ {0, 1}h, let Yidx be the set of y = y1||...||yk such that {(idx, i, yi)}i∈[k] ⊂
S =

⋃qs
j=1 Sj. LetEidx,γ be the event that idx is picked γ times. WehavePr[Eidx,γ] =(

qs
γ

)
(1− 1

2h
)qs−γ 1

2hγ
and

E[|Yidx|] =
(
1−

(
1− 1

t

)γ)k(
qs
γ

)(
1− 1

2h

)qs−γ tk

2hγ
. (5.87)

Thus,

E
[∑

idx

|Yidx|
]
=

(
1−

(
1− 1

t

)γ)k(
qs
γ

)(
1− 1

2h

)qs−γ tk

2γ
. (5.88)

Let Γ =
(
1−

(
1− 1

t

)γ)k(qs
γ

)(
1− 1

2h

)qs−γ 1
2hγ

. We haveE
[∑

idx |Yidx|
]
= tk2hΓ. In

the average case, the probability of the aboveGrover’s search isE
[∑

idx |Yidx|
]
/tk =

2hΓ. The number of quantum hash queries is approximately O(2−h
2Γ−

1
2 ).

Note that in SPHINCS+, the quantumhashquery complexity needed in break
ing ITSR is O(Γ− 1

2 ). Thus, with the same parameters, the quantum bit security
of SPHINCSFORS is h/2 lower than SPHINCS+.

5.7 Conclusion and Open Questions

This work analyzes the security of stateless HBS schemes, especially in terms
of quantum-access security. First, for few-time signature schemes, we prove
the concrete security levels of the schemes and the quantum-access security of
FORS. Then, we turn to quantum-access security of many-time HBS schemes.
We show quantum-access attacks (or superposition attacks) on HBS schemes,
such as SPHINCS and SPHINCS+. The time complexity of the quantum-access
attacks is lower than the optimal attacks in the classical setting. Next, we pro-
pose a variant of SPHINCS+ called SPHINCS-FORS. It is a provably secure HBS
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scheme against quantum chosen message attacks. As far as we know, it is the
first practical HBS scheme with provable security against quantum-access at-
tacks.

Note that our quantum-access attacks do not work on the probabilistic ver-
sion of SPHINCS+. Since there is no security proof, it is an openquestionwhether
probabilistic SPHINCS+ is secure in the quantum-access setting. In addition,
our security proof of SPHINCS-FORS against quantum chosen message attacks
is possibly non-tight. It shows a lower bound of the security, but we are unaware
of any concrete attacks that reach this bound. It is also an open questionwhether
we can get a tighter reduction or if there exists a better quantum-access attack.
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Chapter 6

Conclusion

Digital signature schemes are widely used for authentications in various situ-
ations. In the post-quantum setting, hash-based signature (HBS) schemes are
attractive due to the minor assumptions and short key sizes. It is significant to
carefully analyze the security of HBS schemes before we use them. Our secu-
rity analysis is two-fold. First, since the security is based on security notions for
hash functions, it is necessary to have a comprehensive understanding of these
notions. Second, considering various situations and attacks, it is necessary to
guarantee security in various security models.

In this dissertation, we finish the security analysis from the fundamental as-
sumptions to upper constructions.

In Chapter 3, we analyze the security of subset-resilient hash function fami-
lies (SRH), a building block of (stateless) HBS schemes. First, we give a generic
quantum attack on SRH, implying an upper bound of the security level. Second,
we prove the existence of decisional-collision-resistant hash function families by
assuming the existence of SRH. Third, we prove the fully black-box separation
from one-way permutations. The above two statements confirm the existential
“position” in the cryptographic worlds of hash functions.

InChapter 4, we give fine-grained security notions for stateful signature schemes.
It is inspired by the fact that many HBS schemes are stateful and the state may
bemore vulnerable than the seret keys in practice. We consider adversaries with
different control abilities over the state. Then, we show some separations and
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general conversions among these security notions. Some of the models can be
considered bridges between stateful and stateless signature schemes. Finally, we
give some general constructions of stateful signature schemes from a one-time
signature scheme, a fundamental primitive in cryptography.

InChapter 5, we analyze the quantum-access security of statelessHBS schemes.
Quantum-access security is a strictly stronger notion than classical ones, where
the adversary can send messages with superpositions to the signing oracle. Our
analysis is in twodirections. First, we showquantum-access attacks onSPHINCS
and SPHINCS+, two practical stateless HBS schemes. The time complexity is
lower than the optimal attacks in the classical setting. Second, we propose a new
HBS scheme with provable security against quantum-access attacks. As far as
we know, this is the first practical HBS scheme whose quantum-access security
is provable.

In summary, one can have a deeper understanding of HBS schemes from this
dissertation, especially in terms of security levels. On the one hand, we need to
have a comprehensive and accurate knowledge of the security of the underlying
hash functions before we use them as the building blocks. On the other hand,
when analyzing the security of a cryptographic scheme, we need to consider dif-
ferent adversaries in various situations in practice. The classical securitymodels
may be not enough to analyze the security against these attacks.
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